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(57) ABSTRACT

System, device, and method of determining Anisomelia or
Leg Length Discrepancy (LLD) of a subject, by using image
analysis and machine learning. A system includes a plurality
of end-user devices; each device includes a camera to
capture digital non-radiological non-X-Ray photographs of
legs of a person; each device further includes a local Deep
Neural Network (DNN) engine to perform local classifica-
tion of images as either manifesting LLD or non-manifesting
LLD. The digital non-radiological non-X-Ray photographs
are also uploaded from the end-user devices to a central
server, which updates and upgrades the DNN model based
on transfer learning, and periodically distributes the
upgraded DNN model downstream to the end-user devices.
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Figure 19 (Laplacian Edge Detection)
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Figure 20
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Figure 27 (Legs Posture Photos)
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SYSTEM, DEVICE, AND METHOD OF
DETERMINING ANISOMELIA OR LEG
LENGTH DISCREPANCY (LLD) OF A
SUBJECT BY USING IMAGE ANALYSIS AND
MACHINE LEARNING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This patent application is a Continuation-in-Part
(CIP) of U.S. Ser. No. 17/203,499, filed on Mar. 16, 2021,
which is hereby incorporated by reference in its entirety.

FIELD

[0002] Some embodiments are related to the field of
computerized systems for determining medical conditions.

BACKGROUND

[0003] Anisomelia, or Leg Length Discrepancy (LLD) or
Leg Length Inequality (LLI), is a condition in which the two
legs of a human have unequal length. Some researchers
estimate that such condition may affect between 40 to 70
percent of the general population.

[0004] Some cases of LLD may be caused by structural or
anatomical differences between the two legs; for example,
due to differences in the length of the femur in the thigh, or
the tibia bone or fibula bone in the lower leg. Some cases of
LLD may be caused by a birth defect, or due to a broken leg
or a severe infection.

SUMMARY

[0005] Some embodiments provide systems, devices, and
methods of determining or detecting Anisomelia or Leg
Length Discrepancy (LLD) of a human subject, by using
image analysis and machine learning. A system includes a
plurality of end-user devices; each device includes a camera
to capture digital non-radiological non-X-Ray photographs
of'legs of a person. Each device further includes a local Deep
Neural Network (DNN) engine to perform local classifica-
tion of images as either manifesting LLD or non-manifesting
LLD. The digital non-radiological non-X-Ray photographs
are also uploaded from the end-user devices to a central
server, which updates and upgrades the DNN model based
on transfer learning, and periodically distributes the
upgraded DNN model downstream to the end-user devices.
[0006] Some embodiments may provide other and/or addi-
tional benefits or advantages.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a schematic illustration of a system,
including the LEG-Minder client-side device and the LEG-
islator server-side device, the system being operable for Leg
Length Discrepancy (LLD) detection or diagnosis, in accor-
dance with some demonstrative embodiments.

[0008] FIG. 2 is a block diagram illustration of System
Level Architecture of the LEG-Minder device and the LEG-
islator device combination, in accordance with some demon-
strative embodiments.

[0009] FIG. 3 is a block diagram illustration of Compo-
nent Level architecture of the LEG-Minder device which
forms the patient image portion, in accordance with some
demonstrative embodiments.

Sep. 22, 2022

[0010] FIG. 4 is a block diagram illustration of the LEG-
islator Master Neural Network Server and the Learning
server which forms the cloud-based algorithm updater por-
tion in accordance with some demonstrative embodiments.
[0011] FIG. 5 is an illustration demonstrating Step A,
which is “Initial Learning” by the LEGislator server, in
accordance with some demonstrative embodiments.

[0012] FIG. 6 is an illustration demonstrating Step B,
which is “Upgrade LEG Minder”, or the process of upgrad-
ing the LEG-Minder by the LEGislator, in accordance with
some demonstrative embodiments.

[0013] FIG. 7 is an illustration demonstrating Step C,
which is “Transfer Data”, which is the steps that are
involved with LEG-Minder transfer of data, in accordance
with some demonstrative embodiments.

[0014] FIG. 8 is an illustration demonstrating Step D,
which is “Transfer Learning”, which includes the steps
involved with transfer learning by LEGislator, in accordance
with some demonstrative embodiments.

[0015] FIG. 9 is an illustration demonstrating Step E,
which is “Mission Mode”, which includes the steps involved
with operational mode of LEG-Minder, in accordance with
some demonstrative embodiments.

[0016] FIG. 10 is an illustration demonstrating Pipeline
Architecture for Neural Network Model Generation, and
further demonstrating the Learning server’s pipeline archi-
tecture, in accordance with some demonstrative embodi-
ments.

[0017] FIG. 11 is a flow-chart demonstrating a user flow
with the LEG-Minder device, in accordance with some
demonstrative embodiments.

[0018] FIG. 12 is an illustration demonstrating Convolu-
tion and pooling, which shows the configurations and the
summary of transformations, in accordance with some
demonstrative embodiments.

[0019] FIG. 13 is an illustration demonstrating Convolu-
tional layers and Max Pooling, which shows the traversal of
an image though all the convolutional and the pooling
layers, in accordance with some demonstrative embodi-
ments.

[0020] FIG. 14 is a flow-chart demonstrating Image Pre-
Processing, in accordance with some demonstrative embodi-
ments.

[0021] FIG. 15 is an illustration demonstrating Convolu-
tion Building and the architecture of the convolutional
neural network, in accordance with some demonstrative
embodiments.

[0022] FIG. 16 is an illustration demonstrating Padding
Implementation and how padding is implemented in the
algorithm, in accordance with some demonstrative embodi-
ments.

[0023] FIG. 17 is an illustration demonstrating Dimen-
sionality Reduction and how performance improvements
may be implemented to achieve dimensionality reduction, in
accordance with some demonstrative embodiments.

[0024] FIG. 18 is an illustration demonstrating the Deep
Neural Network (DNN) and the implementation of back
propagation, in accordance with some demonstrative
embodiments.

[0025] FIG. 19 is a set of two illustrations demonstrating
Laplacian Edge Detection for an image of tibia and fibula,
in accordance with some demonstrative embodiments.
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[0026] FIG. 20 is an illustration demonstrating Bone Con-
tour Detection, in accordance with some demonstrative
embodiments.

[0027] FIG. 21 is an illustration demonstrating Bone Con-
touring, in accordance with some demonstrative embodi-
ments.

[0028] FIG. 22 is an illustration demonstrating Rectangu-
lar Contouring (with rotated and non-rotated rectangular
boundary), in accordance with some demonstrative embodi-
ments.

[0029] FIG. 23 is an illustration demonstrating Minima
Detection, in accordance with some demonstrative embodi-
ments.

[0030] FIG. 24 is an illustration demonstrating LL.D detec-
tion, in accordance with some demonstrative embodiments.
[0031] FIG. 25 is a flowchart demonstrating point fitting
via a Machine Learning (ML) engine, in accordance with
some demonstrative embodiments.

[0032] FIG. 26 is an illustration demonstrating Sources of
Data Retrieval, in accordance with some demonstrative
embodiments.

[0033] FIG. 27 is a set of illustrations demonstrating
various leg posture photographs that can be utilized for LL.D
detection, in accordance with some demonstrative embodi-
ments.

[0034] FIG. 28 is a set of illustrations demonstrating
photograph capturing of various leg postures, in accordance
with some demonstrative embodiments.

[0035] FIG. 29 is a flowchart of processing or utilizing
photographs or non-X-Ray images, in accordance with some
demonstrative embodiments.

[0036] FIG. 30 is an illustration demonstrating optional
body landmarks and their locations, which may be used in
accordance with some demonstrative embodiments.

DETAILED DESCRIPTION OF SOME
DEMONSTRATIVE EMBODIMENTS

[0037] Anisomelia or Leg length discrepancy (LLD) is a
condition involving abnormal loading of the lower extremity
and lumbar joints, and/or unequal length of the two legs of
a human. While simple X-rays may attempt to diagnose
some cases of LLD, it is estimated that only one-third of the
world’s population has X-Ray diagnostic imaging access.
There is a need to provide an efficient, user-friendly, cost-
effective, portable, solution that may allow end-users (in-
cluding individual users, or remote medical offices that do
not have cumbersome and costly X-Ray equipment and
X-Ray personnel) to efficiently diagnose LLD. The proposed
solution of some embodiments elegantly and efficiently
provides and strengthens the processes for the assessment,
adoption, and use of appropriate health technologies for
diagnostic imaging with digital photographs (e.g., captured
by a smartphone or a cellular phone or a tablet, or a
web-camera or web-cam, or a gaming device or other
camera-equipped electronic device) and avoids the need to
install, maintain and operate expensive for X-ray equipment,
and/or can become a substitute for cases that need radiation
protection of the public, workers, patients, and/or the envi-
ronment.

[0038] Anatomic leg-length inequality is near-universal. It
is estimated that Leg length discrepancy (LLD) affects up to
90% of the general population, with a mean discrepancy of
5.2 millimeters between the length of two legs of a human.
In most such cases, LLD is typically mild (e.g., the length
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discrepancy is smaller than 20 mm). When overlooked
during early medical examinations, severe spinal cord mis-
alignment and/or kyphosis may occur in children born with
this condition. Therefore, early detection may be vital in
Anisomelia. The system of some embodiments includes
inexpensive, affordable, reachable, and non-radiology
equipment to perform a test to detect LLD which is very
much needed, as realized by the Applicants. Hence the need
for an innovative system that can detect this condition. Some
of the valuable features for new inspection method and
system of some embodiments may include: (a) No radiation
exposure; no need for costly and bulky X-Ray equipment;
(b) Equally accurate to, or more accurate than, current
X-Ray based inspection methods; (¢) More cost-effective,
affordable, cheaper, and smaller form-factor solution.

[0039] The present invention is a technology relating to a
Leg Length Discrepancy (LLD) diagnosis or detection sys-
tem, using Machine Learning (ML) and/or Deep Learning
(DL) and/or Deep Neural Network (DNN) learning and/or
other suitable type of Artificial Intelligence (Al) engine or
unit. It comprises a diagnosis “Leg-Minder” device that is
installed in (or is available at) each diagnosis center, typi-
cally as a client-side device, and determines the patients legs
to either have a height (or length) discrepancy (e.g., beyond
a pre-defined threshold value), or not, on the basis of a
neural network model which utilizes a patient legs photo-
graph or a potential radiographic image (e.g., an X-ray
image which can still be used in some implementation,
instead of non-X-Ray images or in addition to them) as
inputs; and a neural network learning server which is the
“LEGislator” that is connected to the Internet (or to a local
or area or regional communication network) and performs
DNN Learning on the LLD database of a plurality of
“LEG-Minder” devices in the network. It is noted that the
terms “LEGislator” or “LEG-islator” are used herein as a
non-limiting example of a server or a central server or a
computer or a computing device or a cloud-computing
server, which may perform the functionalities described
above and/or herein as the Server side of a demonstrative
client-server architecture; and similarly, the terms “LEG-
Minder” or “LEGminder” are used herein as a non-limiting
example of a client-side computing device or electronic
device, which may perform the functionalities described
above and/or herein as the Client side of a demonstrative
client-server architecture.

[0040] For demonstrative purposes, some portions of the
discussion above or herein may refer to a smartphone or a
tablet as non-limiting examples of electronic devices that
may be used, in some embodiments, for capturing or acquir-
ing (and uploading/transterring) digital photographs of legs
of human subjects; however, other suitable devices may be
used for this purposes; for example, an electronic device that
is equipped with a camera or imager and that is capable of
transferring-out data or uploading data via a Wi-Fi connec-
tion or a wireless connection or a cellular connection or a
Bluetooth connection or via a wired link or a cable; a digital
camera or a stand-alone camera; a laptop computer equipped
with a camera; a desktop computer equipped with a camera;
or a special-purpose electronic device that is equipped with
a camera, a processor, a memory unit, and a wireless (or
wired) transceiver for uploading or transferring captured
images.

[0041] In particular, some embodiments of the present
invention relate to a technology or system in which patient’s
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leg photos and diagnostic result data are acquired or cap-
tured or imaged in each diagnosis center, and are then
uploaded to a centralized server which is the neural network
learning server or “LLEGislator device”. Then, on the basis of
this collected or aggregated information, the learning server
performs DNN learning or training on its neural network
model, to generate an initial and then an upgraded neural
network model. This dynamically-updated and upgraded
model is later downloaded (e.g., periodically, such as once
per day or once per week) to all the LEG-Minder devices in
the network. Therefore, the LEG-Minder device becomes an
integral part of a neural network system and model, which
is optimized to the diagnosis environment within a diagnosis
center.

[0042] Anisomelia is classified as either anatomical (struc-
tural) or functional. Structural is side-to-side differences in
lower limb length, while functional is due to bio-mechanical
abnormalities of joint function in the lower limbs (athletes).
The causes for LLD can be congenital or can be acquired.
Congenital causes include, for example, phocomelia and
dysgenetic syndromes. Acquired causes include, for
example: dysplasias, Ollier’s disease, polio, osteomyelitis,
neurofibromatosis; septic arthritis; fractures; and surgically
induced, or due to breaking a leg, or due to severe infection.
LLD can exist from childhood, or it can develop in adult life.
The clinical methods (direct and indirect methods) in com-
mon use to measure leg length discrepancy (LLD) cannot
always meet the demands of precision and accuracy, or are
not reachable or accessible or affordable at rural locations or
non-urban locations. Some of the current clinical methods of
assessing this discrepancy include manual tape measures of
the leg lengths, and X-rays for measuring bones length.
Some researchers estimate that clinical assessments of this
condition were incorrect by at least 5 mm in at least 29% of
subjects.

[0043] In addition, it also turns out that these conventional
methods are expensive (both time-wise and cost-wise), and
not necessarily prescribed to every patient due to undesired
exposure to X-Ray radiation of the pelvic region or other
body organs which may also be inadvertently exposed to
X-Ray, which may be unsafe for some patients (e.g., young
children).

[0044] The conventional manual diagnosis can be com-
plicated and error-prone. For example, the attending physi-
cian needs to clearly observe the patient’s posture and needs
to then autonomously suspect LLD condition. The physician
should have the presence of mind to initiate the radiological
process for the patient. The clinician reading the X-ray
images has to accurately classify this to be a potential LLD
problem. The patient has to follow through the long process
and has to complete the process. The relevant location or
region should have an expensive X-Ray machine, with
available technicians, and with available time-slots for the
patient.

[0045] Typically, LLD diagnosis and detection is not a part
of regular annual medical check-ups for anyone, and espe-
cially so for younger children in the age group of 5 to 12.
When LLD is not identified and fixed or corrected or
otherwise handled early, posture deformation, gait asymme-
try, and lower-joint damages may occur in later years.
Apparent LLD condition is more common than true LLD,
some of the symptoms for which include: Scoliosis; Flat
feet; Unleveled hips. In cases where the apparent LLD
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cannot be confirmed via X-rays, this proposed system and
method of some embodiments is an indispensable method
for accurate diagnosis.

[0046] The Applicants have further realized that some
biases are prevalent and endemic in medicine. Such biases
could result in deeply fallible and flawed medical diagnoses/
data. This flawed data and decisions can amplify harm
caused to the complex human body system. Since the initial
screening is done under the experience and skill of a human
practitioner, the accuracy of the first examination, which
sometimes may be affected by the screener’s personal con-
dition, is the trigger for the course of action a patient/
physician takes. Therefore, it is important for this to be
accurate and to ‘de-bias’ via qualitative and quantitative
means and via a non-biased computerized system as pro-
vided by some embodiments.

[0047] As discussed above, the analysis and classification
of LLD can be complex and sometimes overlooked, even for
a trained eye. This gap is addressed by some embodiments,
by using Machine Learning (ML). For example, a ML unit
can be configured and trained and used to perform compu-
tationally complex tasks, leading to determination or detec-
tion or determination or diagnosis or classification of certain
conditions in the general population and/or in high-risk
patients. Some embodiments therefore provide and use ML
technologies to diagnose or detect LL.D. The computational
means provides consistent and reliable and non-biased first
diagnosis results, without relying solely on the skills of the
human screener and/or the associated problems as discussed
above. This makes the system and method of some embodi-
ments an elegant and easier and efficient solution to diagnose
LLD with improved-accuracy and faster diagnosis, creating
an economical long-term solution to diagnose the LLD
condition across a population of patients.

[0048] Further, in the current art, individual diagnosis
centers might be introducing various technologies in their
own tests; which in turn renders diagnosis technology incon-
sistent and/or insufficiently reliable. Because each of large
diagnosis centers individually utilizes its own diagnostic
result data, the process can be complex, and data from
multiple centers cannot be combined or aggregated by a
conventional system. An electronic means to provide uni-
formity to the solution, according to some embodiments,
removes complexities arising from such incompatibilities
among medical providers and/or removes or reduces various
biases. Often Artificial Intelligence (Al) unit(s) may be used
for these processes, as increasingly complex diagnosis can
be automated to not miss the intricate details.

[0049] An objective of some embodiments is to provide an
elegant, efficient, rapid, reachable, affordable, and accurate
LLD diagnosis system and method, using computational
approaches such as Deep Neural Network (DNN) learning,
in which diagnosis accuracy of devices can be gradually
improved and dynamically updated, particularly as a greater
corpus of leg images is gradually collected and analyzed.
This is performed by a client-server type architecture (as a
non-limiting example; or, using peer-to-peer architecture, in
some embodiments, or multiple Nodes architecture) with an
Internet connection, without individually modifying each of
the neural network models that each end-point is currently
using. The system uses Deep Neural Learning Network by
which computers may think and learn like a human, con-
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tinuously or constantly, and are trained to categorize or to
classify objects and hence perform an Artificial Intelligence
process.

[0050] Image classification techniques are used in some
embodiments by or for computer vision tasks or computer-
ized vision tasks (e.g., segmentation, object detection, and
image classification), as well as pattern recognition exploit-
ing (or utilizing) handcrafted features from a large-scale
database, thus allowing the system to generate new predic-
tions from new data and/or from existing data.

[0051] Inthe ML algorithm associated with some embodi-
ments of this invention, images (or videos, or video frames)
are parsed into multiple layers; and computationally higher-
level features are extracted from the raw input images (or
video frames). Progressively, an algorithm is trained on
pre-classified images and is then validated on a separate set
of pre-classified images. From the predictions that were
generated on the training images, the ML algorithm com-
pares the expected results and charts an auto correction
sequence. The ML algorithm thus learns from existing data
and derives a model which is then used to predict or to
classify the features of new images presented to it.

[0052] In some embodiments, the ML algorithm uses
Convolutional Neural Network (CNN) transforms, which
apply functions such as convolution, kernel initialization,
pooling, activation, padding, batch normalization, and stride
to the images for processing. The CNN unit then adaptively
learns various image features, and performs an image trans-
formation, focusing only on the features that are highly
predictive for a specific learning objective. Leveraging such
patterns, classifiers such as sigmoid and/or SoftMax classi-
fiers are then applied to learn the extracted and important
features. This results in a Neural network model that can be
used to make predictions on test or patient leg images.
[0053] The method of some embodiments involves using
pipelines for LLD classification using ML techniques to
develop a lightweight CNN model for automatic detection of
LLD in various bilateral leg pictures or bilateral leg X-rays.
This lightweight model is then adopted into the LEG-Minder
devices.

[0054] The ML models are trained using several simulated
LLD image dataset with different parameters and filters in
the LEGislator. With every iteration, hyperparameters are
fine-tuned, activation functions are optimized to improve the
accuracy of the model. Then, binary classification is
employed for detection. This model is deployed in the
LEG-Minder devices. Periodically, the LEG-Minder data-
base is uploaded to the LEGislator server, which then
performs an upgrade or a dynamic update of its neural
network model. Then the upgraded model version is
deployed or distributed again downstream, to the various
LEG-Minder devices. From a LEG-Minder device stand-
point, the end-user can upload a smartphone-captured or a
tablet-captured (non-X-Ray, non-Ultrasound, non-CT) pho-
tograph of the legs, or (in some embodiments) a radiograph
or a photograph in a bilateral fashion, and feed it to the MLL
algorithm, which then compares and classifies the image for
LLD detection. This is summarized in the proposed user-
flow as shown in FIG. 11.

[0055] The framework of some embodiments is practical
and can be compared to handcrafted measurements by
practitioners. The potential outcomes of some embodiments
of'this invention can be applied to expand into other areas of
ML based classifications in the medical field, as well as
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specifically also measure the leg length discrepancy more
accurately. Some embodiments can also predict or determine
results from plain photographs (non-X-ray). For example,
some embodiments may be trained to receive as input a
photograph showing a group of two or more pairs of legs, of
two or more persons (e.g., a class picture type of setting in
a school), and to rapidly analyze it and to quickly identify
potential LLD issues of a particular person (e.g., child,
student) in the group photograph, and thus alert the parents
or caregiver of that particular person (child, student) to seck
further medical help and aid in early detection.

[0056] The proposed solution is elegant and sufficiently
efficient to be applied in the context of reaching young
children in underprivileged or underserved or rural or non-
urban communities, by identifying LLD early via a regular
smartphone-captured photograph, which can be uploaded
remotely (e.g., via a parent, via a caregiver) into the LEG-
Minder device with appropriate controls via a local medical
practitioner, instead of getting expensive and time-consum-
ing X-ray images which require qualified technicians to
produce them and to correctly read them. Some embodi-
ments may also help prevent expensive deformities later in
the life, with a trigger to seek medical help for the necessary
intervention early or at a young age. The system and method
of some embodiments thus offer an elegant, rapid, efficient,
affordable, reachable, and accurate LLD diagnosis system
using computational non-biased approaches.

[0057] When compared to the existing clinical methods,
this computational method and system of some embodi-
ments may be more precise, and/or can take advantage of the
continual learning to update the knowledge and the ML
model, and is computationally more accurate than (possibly-
biased or possibly erroneous) human estimation and human
measurements. Inaccurate diagnosis by a human doctor can
lead to higher illness burden on the patient, and well as the
hospital and insurance companies. This innovation of some
embodiments thus helps reduce the patient and hospital
burden and costs, as well as the time and monetary resources
consumed for LLD diagnoses or detection.

[0058] The fact that this algorithm can even work with
non-radiological images and can use non-X-Ray photo-
graphs, or smartphone-acquired photographs, enables the
use of technology even for those patients that cannot tolerate
exposure to radiation of the pelvic region, or that cannot
physically reach or cannot afford X-Ray imaging.

[0059] The use of non-X-Ray photographs also allows
some embodiments to be used in under-served and under
privileged communities, or rural or non-urban or low-in-
come communities, where radiography reach is not available
or is not affordable, or in communities in which there is a
waiting line of weeks or months to schedule an X-Ray
imaging visit. Some embodiments may help spread the reach
of LLD diagnosis to nearly half the world’s population that
does not have yet access to radiological equipment.

[0060] The global radiology gap is far less discussed than
infectious-disease outbreaks and natural disasters, but its
dangers to public health are as urgent. In certain countries,
there is a serious deprivation of radiologists and/or radiology
equipment. The use of regular or non-X-Ray photographs or
smartphone-captured photographs, in some embodiments,
may allow the general population to use this technology that
can provide more accurate and faster and cheaper diagnosis
of LLD, and even junior-level or entry-level technicians may
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be trained to operate the system of some embodiments,
obviating the need to get manual assistance from more
qualified radiologists.

[0061] The time that elapses from from the point of first
patient-doctor contact to the point of LLD diagnosis comple-
tion, can be significantly reduced by using some embodi-
ments of this invention. Since there is no scheduling to be
made with radiology department, patient having to come
back at another time for getting X-rays, and once taken,
waiting for the Radiologist to read the X-rays and then
passing the information to the orthopedic doctor, the mul-
tiple steps of this process can all be cut down to a few
minutes as the technician or the orthopedic doctor them-
selves can use the device to diagnose LLD problem in a
matter of few minutes.

[0062] Some embodiments may use the following (or
similar) Algorithm, which may be performed at or by the
LEG-Minder client-side device and/or at the LEGislator
server-side device:

[0063] Step (1): As a first step, the algorithm pre-classifies
images (or discrete video frames) into a training set and a
validation set.

[0064] Step (2): Next, the algorithm addresses image
normalization. Since the raw input data may not already be
normalized, i.e., there is no control over what pixel size a
user may input, the algorithm rescales the images to nor-
malize all the input parameters. After this step, all the images
will have identical parameters although the content inside
may be very different. The normalization may be performed
by image re-scaling or image re-sizing; such that, for
example, all raw input images are re-sized or re-scaled into
normalized images in which the longest dimension of the
longest leg occupies (vertically) exactly 1,200 pixels, as a
non-limiting demonstrative example.

[0065] Step (3): Then, the algorithm pre-processes the
image data. Image pre-processing is done by augmentation
of the existing data, and also considers and takes into
account overfitting the data.

[0066] Step (4) Then, the algorithm expands the scope of
the input images to account for yet unseen image variations;
by amending the existing images to overfit while training the
data, and/or by use of various transforms like rotation,
flipping, skewing, relative zoom, and other affine transfor-
mations such as translation, rotation, isotropic scaling and/or
shear.

[0067] Step (5): Next, the algorithm sets or determines or
selects a specific batch size, in order to process a batch of
images at once; for example, 50 images per batch, or 256
images per batch or other suitable batch size. In some
embodiments, the batch size is pre-configured or pre-de-
fined; or, may be dynamically determined based on one or
more pre-defined rules or criteria.

[0068] In some embodiments, the Batch Size may be
dynamically configured or set or modified or updated, by the
device performing the LDD classification (e.g., the LEG-
Minder device and/or the LEG-islator server). In some
embodiments, the Batch Size may be dynamically modified
based on one or more parameters, for example: the size of
each image (e.g., in kilobytes or megabytes), the cumulative
size of a group of images, the size of Random Access
Memory (RAM) that is available for processing, the pro-
cessing resources and/or speed of the available processor or
processing core or CPU or GPU, and/or other parameters. In
some embodiments, the Batch Size should not be too high
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and not too low; and/or it should cause the same or generally
the same number of images remain in every step of an epoch.
In some embodiments, there is a high degree of correlation
between the learning rules and the cost functions. In some
embodiments, the Batch Size may also take into account the
total number of images that are in the dataset or database. In
some embodiments, the Batch Size should be set such that
the system would not exceed the available resources (e.g.,
RAM memory size and/or GPU memory size); for example,
some embodiments may utilize a single GPU having its own
RAM memory of 6 gigabytes, and thus the Batch Size
should not exceed 6 gigabytes as this is the maximum size
of data that the GPU can hold in its RAM memory. A large
batch size may result in faster progression in training, but
does not necessarily achieve fast converging. Additionally, a
small batch size may cause the training to be slow, but the
converging may be fast. In some embodiments, the
ML/DNN/CNN model improves with more epochs of train-
ing, and its accuracy reaches a plateau as convergence is
reached. Some embodiments may utilize a process in which
the system determines, within a few iterations (e.g., within
not more than 5 or 8 iterations) if the algorithm would
indeed converge or would not converge, based on how quick
(measured by the number of iterations it takes for) the error
reduction to occur and based on how fast (measured by the
number of iterations it takes for) the accuracy rate to get to
around 90% (or more) and to stay at approximately 95% (or
more). In some embodiments, if within 5 or 6 iteration, there
is already an indication that the algorithm does not converge
(at all, or sufficiently fast), then the Batch Size may be
dynamically modified or adjusted (increased or decreased),
and the number of steps may also be adjusted, in a balanced
way; such that the number of steps would equal the number
of all images in the training set divided by the number of
batches. In some embodiments, such implementation is
harmonious to all the images in the training set; such that in
each epoch, all the images are reviewed once. This approach
is counter-intuitive, and the validation accuracy is utilized
right after each epoch and can provide a reliable indication
for whether or not the model is trending towards right
direction. If the model does not appear to be efficiently
converging in the desired direction within N iterations (e.g.,
within 5 iterations), then the system may abort the ongoing
algorithm from running any further, and may modify or
adjust the Batch Size and/or the number of epochs (in a
balanced way as described above), and then the system
restarts the algorithm with these adjusted parameters. In
other embodiments, the system may automatically test the
algorithm by running it for only N iterations (e.g., 5 itera-
tions) at a Batch Size of B1 images (such as 200 images),
and then repeating at a Batch Size of B2 images (such as 450
images), and then repeating at a Batch Size of B3 images
(such as 700 images), and determining whether converging
is expected to occur and at what rate in each such attempt,
and then selecting to run the algorithm at the Batch Size (and
the respective number of epochs) that appears to lead the
fastest to convergence.

[0069] Step (6): Then, the algorithm invokes a binary class
mode of classification, because (in some embodiments)
there are exactly two possible classes for image classifica-
tion, namely, either LLD exists or LLD does not exist.
Optionally, in some embodiments, the system may use more
than a binary class mode of classification, such as a ternary
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or quaternary classification, to distinguish the severity of the
LLD condition (and not only the binary detection of LLD
exists/LLD does-not-exist).

[0070] Step (7): Then, the algorithm passes the training
image set via convolutions, to learn particular features of the
training images.

[0071] Step (8): Then, the algorithm initiates pooling and
image traversal through the above path of convolutions
while extracting the next set of features.

[0072] Step (9): Then, the algorithm stacks multiple sets of
convolutions and pooling layers as described in the prior two
steps. The size of the subject image is progressively reduced,
which is then fed into the dense layers.

[0073] Step (10): The algorithm also implements a Soft-
Max classifier (or other suitable or equivalent classifier) to
reduce binary loss through the above process steps.

[0074] Step (11): The Learning rate is then adjusted for
convergence to arrive at a solution.

[0075] Step (12): The algorithm then outputs a single
neuron with a sigmoid activation which gives or indicates
the final result on the processed image.

[0076] Step (13): Next, the algorithm performs the same
process on a validation dataset to verify that the algorithm is
indeed classifying images accurately.

[0077] Step (14): The algorithm is now trained, and can
accept a new image for classification (namely, for LLD
detection); upon which it will process the feature extraction
identified earlier to finally arrive at a classification output on
(or indicated by) the single neuron.

[0078] Image Pre-Processing (Step 3 in Algorithm):
[0079] Image preprocessing refers to step 3 defined in the
algorithm summary. The system can accept various image
formats, such as JPEG, GIF, PNG, etc., typically used for
photographic images. Formats such as DICOM, NIFTI, and
Analyze AVW are used in medical imaging. Formats such as
TIFF, ICS, IMS, etc., are used in microscope imaging. Image
data will be stored as a mathematical matrix. Approximately,
2D image of size 1024-by-1024 pixels is stored in a matrix
of'the same size. It takes an image as an input and recognizes
image pixels and converts it into a mathematical matrix. As
shown in FIG. 14, the algorithm then checks for the image’s
compatibility with a predictive model. If the image is
compatible, it is fed directly to the image segmentation
section, skipping the rescaling. During the rescaling opera-
tion, first, a combination of linear filters and non-linear
filters are used to remove the undesirable properties in the
input image. Image enhancement, if needed, is accom-
plished either in spatial or frequency domain as necessary. In
the Image Segmentation step, the image is segmented to
separate the background and foreground objects. All the
objects are marked with different markers setting a clear path
for the predictions using the ML model. The transformed
image is then stored in the database and fed to a predictive
model for further processing. The Image Preprocessing
flowchart shows a detailed outline of the process.

[0080] Convolutional Neural Network Layers (Steps 7, 8,
and 9) in Algorithm:

[0081] Reference is made to FIG. 15, and to steps 7, 8, and
9 in the algorithm summary. In the convolutional neural
network (CNN), the neurons in the first convolutional layer
are not connected to every single pixel in the input image,
but only to pixels in their receptive fields. In turn, each
neuron in the second convolutional layer is connected only
to neurons located within a small rectangle in the first layer.

Sep. 22, 2022

This architecture is selected so that it allows the network to
concentrate on small low-level features in the first hidden
layer, then assemble them into larger higher-level features in
the next hidden layer, etc.

[0082] Forexample, a neuron located in row i, column j of
a given layer is connected to the outputs of the neurons in the
previous layer located in rows i to i+f,—1, columns j to
j+f,~1, where f, and £, are the height and width of the
receptive field (e.g., as shown in FIG. 16, padding imple-
mentation). Zero padding is implemented, such that a layer
has the same height and width as the previous layer, by
adding zeros around the inputs.

[0083] In cases where the input image layer is to be
connected to a much smaller layer, a technique to space out
the receptive fields is implemented so that the model’s
computational complexity is dramatically reduced. This is
innovative because it is not a generic method to implement
stride. Since there is no guarantee what the input image
would look like, an illustration for a 5x7 input layer (with
zero padding) to connect to a 3x4 layer, using 3x3 receptive
fields and a stride of 2 is illustrated in FIG. 17 (Dimension-
ality Reduction). Here, the stride is the same in both direc-
tions, but it may not necessarily be so with the input images.
A neuron located in row i, column j in the upper layer is
connected to the outputs of the neurons in the previous layer
located in rows ixs,, to ixs,+f,—1, columns jxs,, to jxs +f, —
1, where s, and s,, are the vertical and horizontal strides.

[0084] Filters in Convolution Neural Network Layers
(Steps 7, 8, 9):
[0085] A neuron’s weights, which are referred to as filters

or convolution kernels, are assigned as a small image which
is equal to the size of the receptive file. The first filter is a
vertical filter, which is a square matrix full of Zero values,
except for the central i” column, of One values. The corre-
sponding neurons will ignore everything in their receptive
field except for the central vertical line. This technique
ensures that the horizontal white lines get enhanced, while
the rest gets blurred. The second filter is a horizontal filter,
which is again a square matrix full of Zero values, except for
the central i row, of One values. The corresponding neu-
rons using these weights will ignore everything in their
receptive field except for the central horizontal line. This
technique ensures that the vertical white lines get enhanced
while the rest gets blurred. During training of the convolu-
tional layer, the algorithm will automatically learn the useful
filters for its task of processing an image, and the layers
described above will learn to combine them into more
complex patterns. This allows the algorithm to stack such
filters. Such combination of filters will be inputs in each
convolution, and the output is one feature map per filter. It
has one neuron per pixel in each feature map, and all neurons
within a given feature map share the same parameters.
Neurons in different feature maps use different parameters.
Thus, a convolutional layer simultaneously applies multiple
trainable filters to its inputs, making it capable of detecting
multiple features anywhere in its inputs. All neurons in a
feature map share the same parameters, thus dramatically
reducing the number of parameters in the model. Once the
CNN has learned to recognize a pattern in one location of the
image, it can recognize that pattern also in any other location
within the image. Sometimes, in case of normal human leg
photographs, images are composed of multiple sublayers:
one per color channel. This case is illustrated in FIG. 18,
demonstrating a Regular photograph with three colors. At a



US 2022/0301718 Al

basic level, there are red, green, and blue (RGB) values (or
channels), while grayscale images have just one channel.
When some of the latest photography techniques are used,
some images may also have extra light frequencies (such as
infrared).

[0086] In this case, a neuron located in row i column j of
the feature map kin a given convolutional layer 1, is con-
nected to the outputs of the neurons in the previous layer
(I-1), located in the rows (ixS,) to (ixs,+f,~1) and columns
(jxs,,) to (jxs,+f,—1), across all feature maps (in layer I-1).
[0087] In order to compute the output of a given neuron in
a convolutional layer, the following formula may be used:

SV =l Sl
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[0088] In this equation:

[0089] z,;, is the output of the neuron located in row i,
column j in feature map k of the convolutional layer (layer
D).

[0090] s, and s, are the vertical and horizontal strides, f,
and f,, are the height and width of the receptive field, and f,,
is the number of feature maps in the previous layer (layer
I-1).

[0091] x,;, is the output of the neuron located in layer 1-1,
row i', column j', feature map k'.

[0092] b, tweaks the overall brightness of the feature map
k (in layer 1).

[0093] w, ., is the connection weight between any neu-
ron in feature map k of the layer 1 and its input located at row
u, column v and feature map k'.

[0094] Pooling Layers (Steps 7, 8, 9 in Algorithm):
[0095] Pooling layers shrink the input image in order to
reduce the computational load, the memory usage, and the
number of parameters and this is specifically done to reduce
the possibility of overfitting. Each neuron in a pooling layer
is connected to the outputs of a limited number of neurons
in the previous layer, located within a small rectangular
receptive field. Its size, the stride, and the padding is defined,
but the pooling neuron will be assigned no weights; all it
does is aggregate the inputs using an aggregation function,
such as the max or mean. Only the max input value in each
receptive field makes it to (or, is transferred to) the next
layer, while the other inputs are dropped or discarded. At the
end of this step, the image still looks generally identical or
generally similar to the input image, but the pixel density is
drastically reduced. This reduces the computations, memory
usage, and the number of parameters. This stage may offer
a small amount of rotational invariance and a slight scale
invariance. This invariance is useful in cases where the
prediction should not depend on these details for the clas-
sification task.

[0096] The Applicants have realized that in some situa-
tions, Underfitting occurs when a model cannot adequately
capture the underlying structure of the data. An under-fitted
model is a model where some parameters or terms that
would appear in a correctly specified model are missing.
Under-fitting may occur, for example, when fitting a linear
model to non-linear data. Such a model will tend to have
poor predictive performance. Generally, realized the Appli-
cants, over-fitting may exist because the criterion used for
selecting the model is not the same as the criterion used to
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judge the suitability of a mode, i.e., a model might be
selected by maximizing its performance on some set of
training data, and yet its suitability might be determined by
its ability to perform well on unseen data; then over-fitting
occurs when a model begins to “memorize” training data
rather than “learning” to generalize from a trend. For
instance, if the number of parameters is the same as or
greater than the number of observations, then a model may
be able to perfectly predict the training data simply by
“memorizing” the data in its entirety. Such a model, though,
would typically fail severely when making predictions. The
potential for overfitting, realized the Applicants, depends not
only on the number of parameters and data, but also on the
conformability of the model structure with the data shape,
and/or on the magnitude of model error compared to the
expected level of noise or error in the data. Even when the
fitted model does not have an excessive number of param-
eters, realized the Applicants, it may be expected that the
fitted relationship will appear to perform less well on a new
data set than on the data set used for fitting. To lessen the
chance or amount of overfitting, in accordance with some
embodiments, one or more techniques may be used (e.g.,
model comparison, cross-validation, regularization, early
stopping, pruning, Bayesian priors, dropout). The basis of
some techniques is either (1) to explicitly penalize overly
complex models, or (2) to test the model’s ability to gen-
eralize by evaluating its performance on a set of data that
was not used for training, which is assumed to approximate
the typical unseen data that a model will encounter. Some
embodiments may thus use a combination of these tech-
niques mentioned above, including for example: to prune the
data first by applying filters on images, and to perform
cross-validation and regularization.

[0097] Similarly, realized the Applicants, a model with too
little capacity cannot adequately learn the problem, whereas
a model with too much capacity can learn it too well or
excessively and thus overfit the training dataset. Both cases
may result in a model that does not generalize well. To
address this issue, some embodiments are configured to
reduce generalization error so that they can still use a larger
model by introducing regularization during training that
keeps the individual weights of the model small. This
technique reduces overfitting, and/or leads to faster optimi-
zation of the model and/or better overall performance.
Sometimes the system may not have all the data needed to
come up with the necessary parameters needed. This is
referred to as underfitting. Underfitting is the inverse of
overfitting, meaning that the statistical model or machine
learning algorithm is too simplistic to accurately represent
the data. A sign of underfitting, realized the Applicants, is
that there is a high bias and low variance detected in the
current model or algorithm used (the inverse of overfitting,
which is characterized by low bias and high variance). This
can be gathered or deduced from the Bias-variance tradeoff,
which is a method of analyzing a model or algorithm for bias
error, variance error, and irreducible error. With a high bias
and low variance, the result of the model is that it will
inaccurately represent the data points, and thus insufficiently
be able to predict future data results. Indeed, some embodi-
ments may utilize a rule that an underfitted model may
ignore some important replicable (i.e., conceptually repli-
cable in most other samples) structure in the data and thus
fail to identify effects that were actually supported by the
data. Some embodiments may address this, for example, by
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increasing the capacity of the network and/or by increasing
the size of the image data that is available for training the
ML model and/or for dynamically updating and optimizing
it.

[0098] in some embodiments, a few convolutional layers
are stacked, and each one is followed by a rectified linear
activation function or ReLU. This is a piecewise linear
function that is configured to output the input directly if it is
positive; otherwise, it will output zero. This ReLu is used to
achieve better performance. In some embodiments, the
stacking of layers may be, for example: The ReL.U layer,
then a pooling layer, then another few convolutional layers
again followed by ReL.U, then another pooling layer. The
input image becomes smaller and smaller as it progresses
through the network and its layers, but it also typically gets
deeper with more feature maps. At the top of the stack of
layers, a regular feedforward neural network is added, with
a few fully connected layers followed by ReLLU and the final
layer outputs the prediction.

[0099] FIG. 12 shows a demonstrative example of the
convolutional blocks, with a depth of several layers, dem-
onstrating a set of convolutions followed by pooling. The
input image is (for example) 300 by 300 pixels. There is a
single neuron with a sigmoid activation on the output. The
summary of the layers is also shown with the corresponding
size changes. The first convolution reduces that to 147 by
147 pixels. From there, convolution loop repeats until the
image size is reduced to 35 by 35 pixels, which is then fed
into the dense layers. In a demonstrative example, a total of
40,165,409 trainable parameters were identified with this
algorithm iteration according to some embodiments.
[0100] While it may be difficult to examine a CNN on a
layer-by-layer basis, each layer’s output may be visualized
and extracted features may be seen, as demonstrated in FIG.
13.

[0101] Referring now to the SoftMax Classifier (Step 10 in
the algorithm): the SoftMax Regression classifier is used to
predict only one class at a time. Even though it is generally
used for multiclass (since the outputs are strictly limited to
mutually exclusive classes), the Applicants have realized
that counter-intuitively this classification works well for a
clear, unequivocal classification in accordance with some
embodiments. Overall, the model is aimed at estimating
probabilities and making predictions. The objective for the
algorithm is to overall estimate a high probability ‘p’ for the
intended class, and consequentially a low probability ‘(1-p)’
for the other class. This is accomplished by minimizing the
cost function for cross entropy. The cross entropy is struc-
tured for measuring how well the estimated class probabili-
ties matches the target class, by “penalizing” the model
when it estimates a low probability for a target class. The
Cross entropy cost function may be represented by the
following expression:

1 m K . )
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[0102] In this equation:

[0103] y,® is the target probability that the i”* instance
belongs to class k. Since the prediction is either Yes or No,
it will be a 1 or a 0 depending on whether the instance
belongs to the class or not. If the assumptions are wrong, the
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cross entropy will be greater by an amount called the
Kullback-Leibler (KL) divergence. The cross entropy in
such cases, will be governed by:

H(p,q)=—L,p(x)log g(x)

[0104] Where p and q represent the discrete probability
distributions.

[0105] The gradient vector of this cost function with
regard to 6% is:

m
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[0106] With this, the gradient vector for every class is
computed, and then Gradient Descent is used to find the
parameter matrix ® that minimizes the cost function deter-
mined by the cost entropy cost function.

[0107] Reference is made to FIG. 1, demonstrating the
overall system including LEG-Minder and LEGislator com-
ponents for the Leg Length Discrepancy (LLD) diagnosis,
using Deep Neural Network (DNN), according to some
demonstrative embodiments of the present invention.
[0108] In some embodiments, a Deep Neural Network
(DNN) Implementation may be used. In order to non-
linearly combine information in the server, Dense/Deep
Neural Networks may be used. They are used in the server
‘LEGislator’ device. The “LEGislator’ device can be used
on its own to also make categorical predictions, although in
some embodiments it is primarily used to improve the
CNN’s accuracy in the LEGMinder device (the client-side
device, which may be located at a remote medical office or
physician’s office or at another end-user). Dense layers are
on the server, and they are hierarchically on top of the CNN
architecture in the LEGMinder devices. This allows recom-
bination of the information learned by the convolutional
layers from the client-side devices. This comprises of one
passthrough input layer, one or more hidden layers, and the
one final layer called the output layer. This is depicted and
demonstrated in FIG. 18 showing a demonstrative Deep
Neural Network. The layers close to the input layer are
referred to as the lower layers, and the layers close to the
outputs are referred to as the upper layers.

[0109] The main components of the algorithm are:
[0110] (a) Algorithm in the server will handle one mini-
batch at a time, and goes through the full training set
multiple times. Each such pass is referred to in this speci-
fication as an Epoch.

[0111] (b) Each mini-batch is passed to the network’s
input layer, which sends it to the first hidden layer.

[0112] (c) The algorithm then computes the output of all
the neurons in this layer for every Epoch.

[0113] (d) The result is passed on to the next layer, its
output is computed and passed to the next layer, and so on
until it reaches the output layer. This is the forward pass: it
is exactly like making predictions in the CNN, except all
intermediate results are preserved.

[0114] (d) Next, the algorithm measures the network’s
output error.
[0115] (e) Then it computes how much each output con-

nection contributed to the error using chain rule.
[0116] (f) The algorithm then measures how much of these
error contributions came from each connection in the layer
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below all the way to the input layer. This will be done by
propagating the error gradient backward through the net-
work.

[0117] (g) Next, Gradient Descent is performed to tweak
all the connection weights in the network, using the error
gradients just computed.

[0118] (h) The Rectified Linear Unit function Rel.U(z)
=max(0, z) may be used for this algorithm.

[0119] Referring to FIG. 1, the individual components
comprise of a “LLEGislator” based on ML which is connected
to the Internet and performs DNN learning on the neural
network of the “LEG-Minder” device. In particular, some
embodiments provide a system in which patient leg photos
and/or diagnostic result data are acquired in each diagnosis
center (e.g., medical office, physician’s office, healthcare
center) by the LEG-Minder device and are then uploaded (or
copied or sent upstream to a central server) to the neural
network learning server “LEGislator”. The central learning
server performs DNN learning, and updates the neural
network model; which in turn is installed in the ‘LEG-
Minder’ of the diagnosis center via an update cycle or an
update distribution cycle (e.g., every hour, or every day, or
every week).

[0120] FIG. 2 is a block diagram of the LEG-Minder and
the Neural Network Server “LEGislator” combination,
according to some demonstrative embodiments of the pres-
ent invention. This is a system level architecture represen-
tation, showing the individual actions/functions that each of
the devices may be configured to perform.

[0121] Leg-Minder Device (100):

[0122] FIG. 3 demonstrates a Component Level architec-
ture of the LEG-Minder Device (100). This device captures
the input data from the patient, and is equipped with a neural
network model that runs on a local Machine Learning
engine, which may be implemented as computer software
and/or using hardware components (e.g., processor, memory
unit, storage unit).

[0123] The LEG-Minder device (100) captures the patient
image, directly through a camera and/or by allowing a user
to upload image (e,g., photograph, X-ray image) to the
LEG-Minder device using external means, such that the
image(s) are received into the image processor module
(110). The neural network model, which is initially installed
in the LEG-Minder device (100), may be referred to as the
“current neural network model” (120), and it may be
updated and modified and optimized from time to time or on
a continuous basis. Further, “No-LLD” or “LLD Not
Detected” refers to a photograph or X-ray image of a person
that is classified Not to have Anisomelia or Leg Length
Discrepancy; whereas “LLD” or “LLD exists” or “LLD
Detected” photograph or image represents one of a non-
ignorable possibility of Leg Length Discrepancy and possi-
bly requiring further examination by a specialist Orthopedic
for treatment/rectification. The image is processed to find if
the subject picture has LLD or Not, by using the LLD
Diagnosis module (130). When a new image is diagnosed or
processed by the LLD diagnosis module (130), the corre-
sponding computation result, as to whether the subject
image has LLD or not, is stored in the classified Diagnosis
Database (140).

[0124] Periodically, the LEG-Minder device transfers its
local Diagnosis Database (140) of locally-obtained diagno-
sis results to the central LEGislator server, though the Neural
Network Updating module (150); such as, over the Internet,

Sep. 22, 2022

over a secure channel (HTTPS), over Wi-Fi, over a cellular
connection, over a wired connection, and/or by other com-
munication means. The Neural Network updating module
(150) also receives (e.g., periodically) the updated model
that is distributed from the LEGislator device (200), and
updates the current neural network model (120) that runs on
the local LEG-minder device. As the neural network updat-
ing module (150) updates the current neural network model
(120), the version history is maintained in the “Version
Control Module” (170).

[0125] There are two databases in the device, namely, the
LLD database for storage of raw images (180), and a
diagnosis database (140) storing images that were already
classified by the model.

[0126] Sentry Security module (160) ensures the integrity
of the learned model, as well as governs the security aspects
related to sentry operations; such as, fending off any mali-
cious attempts to induce bad data either at the network level
or at the image ingress level for the LEG-Minder device
(100), and/or otherwise blocking or detecting or preventing
malicious attacks on the system.

[0127] Learning Server—“LEGislator” (200):

[0128] FIG. 4 demonstrates a LEGislator Master Neural
Network Server, or the “LEGislator Device” (200). The
function of the LEGislator Device is to perform transfer
learning on the accumulated dataset, and to generate an
upgraded or updated or modified neural network model to be
disseminated or distributed (e.g., periodically) to the various
LEG-Minder (100) device(s). The operations of LEGislator
Device (200) are orchestrated or controlled by the Learning
model orchestrator (210) or control unit.

[0129] Upon initiation by the Learning model orchestrator
(210), the various LEG-Minder device(s) (100) or at least
some of them will transfer their diagnosis database (140) to
the Master LLD database (220). The transfer learning pro-
cessor (240) then uses Deep Neural Network Model A (230)
and the Master LLD database (220) to perform deep learning
using DNN techniques to generate a Deep Neural Network
Model B (250).

[0130] Deep Neural Network Model B (250) reflects all
the current learning and all the up-to-date aggregated data in
this client server architecture. The Server version tracker and
distributor (280) keeps track of Deep Neural network model
A (230) and the Deep Neural network model B (250). It
performs a switch to model B from the previous model
which was model A, at the appropriate time; as well as
performs dissemination or distribution or copying of the
current model (model B) to all the LEG-Minder devices
(100) via the Internet or via a secure communication channel
(e.g., HTTPS), thus performing an auto-upgrade and a
dynamic/periodic update of the model utilized by LEG-
Minder devices. However, to prevent any spurious devices
from getting updates and/or to ensure that no compromised
LEG-Minder device (100) ever gets the update, the Server
security module (260) ensures that proper Authentication,
Authorization, Accounting and Auditing is conducted. For
this purpose, Server security module (260) will work in
conjunction with the Device version tracker (270). The
Device version tracker (270) is a database that keeps track
of every device that connects to the neural network, its
associated credentials and access privileges and security
parameters, to ensure integrity and security of the overall
system.
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[0131] After updating to the latest neural network model,
the LEG-Minder device updates its Version control (170).
Depending on certain pre-defined rules or constraints, the
Version control (170) may choose to accept or reject the
downloaded version from the LEGislator device. For
example, a particular LEG-minder device may download
Model Version 18; may run it for several iterations, and may
observe that this model version is extremely slow to con-
verge and/or to yield classifications prediction, such as 20
times slower than Model Version 17, due to one or more
reasons which may be known or not known (e.g., due to
Model Version 18 being computationally complicated for
the processing resources/memory resources of this specific
LEG-minder device); and thus, this LEG-minder device may
autonomously determine that the most-recent model version
is not suitable and/or is not efficient for the particular
resources or configuration or constraints of this device, and
its own Version Control unit may revert to the previous
version, which was Model Version 17; and may optionally
send a report or a message to the LEGislator server, to report
that the new Model Version 18 is not suitable for this
particular LEG-minder device.

[0132] System Architecture:

[0133] At a system level, the LEGislator server and a
plurality of the LEG-Minder devices form a client-server
architecture; the LEG-Minder device is the client, and the
LEGislator is the server. This is depicted in FIG. 2 showing
System Level Architecture, as a non-limiting example; other
suitable architectures may be used, for example, peer-to-
peer architecture, or an architecture having a plurality of
Serving Nodes that serve batches or groups of Client
Devices.

[0134] In a demonstrative example, consider a healthcare
network which is present in multiple locations and across
multiple states/cities within the USA. Each medical practice
or medical office or healthcare facility can cater to a certain
number of patients or to a particular population, typically
around or near its geographic location. In the case of an
orthopedic doctor, when the doctor sees a range of patients,
that particular doctor develops a certain level of knowledge
and expertise. Given the regionalities, population density
belonging to a certain ethic origin or geographic location,
may see (e.g., more often) a certain type of patients, and may
become experts within that population segment and know
better what to expect. This is based on the specialist’s
‘learning’. Boston or Miami may have a different set of
patients who bring their own nuances. So, the “LEGminder”
operates as a machine in a way which may emulate the
expertise of a regional doctor with regard to a local or
regional population. The plurality of the devices is emulat-
ing many such local or regional doctors, who get their own
local or regional learnings. They get their learning based on
the patients they see, which in turn is typically a function of
their geographical location; since a doctor (or a LEG-minder
device) in Miami would typically see patients who reside in
Florida, and not in California.

[0135] In the above example, the system of some embodi-
ments allows to replace the regional doctors with one doctor
who serves the entire humanity or the entire global popu-
lation or the entire U.S. population, and becomes an expert
(via machine learning) due to accumulated regional/local
knowledge. Because the server would get images from a vast
number of patients that are scattered all over the USA or all
over the world, the server’s knowledge base would be huge,
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and it may be able to generate learned insights and a model
that cannot be achieved by a local/regional facility by itself.
This is a direct relationship with the number of patients they
see. So, the knowledge has a direct correlation with the
“learning” that can be obtained. In this case, we have a
server device, that takes the regional leanings and builds and
also dynamically updates a master database, keeping track of
the individual leanings (similar to a journal of regional
doctors). In the case described above, we would rather see
the entire network provide a similar experience to the
patients. For this to happen, every device on the network is
configured to be working based on the same unified learning
that was derived from all the accumulated knowledge.
Therefore, the server aggregates the learning, develops a
common and unified and aggregated base from which each
client device would operate, and serves this information to
the individual client devices.

[0136] Since the LEG-Minder device is a machine, it
needs security measures. Hence the security aspects are
embedded to prevent someone from providing pictures of
donkey’s legs or animal legs or non-human legs versus the
expected human legs, for example.

[0137] As shown in FIG. 2, the Learning model orches-
trator (210) controls the operations of the LEGislator 200.
The Learning model orchestrator (210) performs four fun-
damental operations. Those are: Initial Learning; Transfer
Learning; Database Transfer; Upgrade.

[0138] As shownin FIG. 2, the LEG-Minder 100 performs
three fundamental operations. They are: Mission mode
(Learn and Predict); Upgrade; Transfer database.

[0139] Each of the operations mentioned above are
described in greater detail in—FIG. 5, FIG. 6, FIG. 7, FIG.
8 and FIG. 9 each process step described in detail as below.
[0140] Step A—Initial Learning

[0141] As shown in FIG. 5, upon receiving the trigger or
a signal or a command from the learning model orchestrator
(210), the Transfer learning processor (240) will perform:
[0142] STEP Al: Initiate a learning sequence with its
associated image generators, and create the train and vali-
dation datasets as described in the Algorithm Summary.
[0143] STEP A2: Generate the CNN model, by stacking
multiple sets of convolutions and pooling layers along with
the dense layers, and by applying a SoftMax classifier.
[0144] STEP A3: Adjust the model fit, by modifying or
setting the value of adjustable parameters, such as the
learning rate.

[0145] STEP A4: Save the resulting Neural Network
model “B” in the server version tracker and distributor
(280).

[0146] Step B—Upgrade the LEG-Minder devices
[0147] As outlined in FIG. 6, Step B—Upgrade the LEG-

Minder devices, the output of STEP A above is used to
update dynamically and/or periodically the LEG-Minder
(100) device(s). Steps associated with this are as described
below with reference to FIG. 6:

[0148] STEP B0: The LEGislator device (200) will, upon
initiation or signal or command from the learning model
orchestrator (210), initiate the upgrade command or process
to LEG-Minder device(s) (100).

[0149] STEP B1: The upgrade process is initiated by the
Server version tracker and distributor (280) over an Internet
connection and/or via a secure communication channel (e.g.,
over HTTPS or other encrypted channel).
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[0150] STEP B2: The LEG-Minder device (100) receives
the command into the Sentry Security module, and authen-
ticates the command received.

[0151] STEP B3: Upon authentication, the Neural Net-
work updating module (150) will update the current neural
network model sent by (or, obtained from, or downloadable
from) the LEGislator device (200) which operates as a
server.

[0152] STEP B4: Upon successful update verification by
Neural Network updating module (150), the version control
module (170) will update the version number.

[0153] STEP B5: The current neural network model (120)
is then replaced with the newly downloaded updated model
or up-to-date model.

[0154] Step C: Transfer Data

[0155] At this point, the LEG-Minder device has acquired
all the new learnings from the server, and continues to
diagnose LL.D and continues to update its local database as
described in the component section. To provide the new
learnings (that were obtained locally) back to the LEGislator
central server, the following steps are used as shown in FIG.
7:

[0156] STEP CO0: A transfer command is issued by the
learning model orchestrator (210) of the LEGislator device
(200)

[0157] STEP C1: A command is issued to initiate the
transfer process by the Server version tracker and distributor
(280) over an Internet connection (or a secure communica-
tion channel) to a specific LEG-Minder device (100).
[0158] STEP C2: The Sentry Security module (160)
receives it, authenticates that it is intended for the correct
LEG-Minder device (100), and then relays it to the Neural
Network Updating module (150).

[0159] STEP C3: The Neural Network Updating module
(150) initiates an upload of the local diagnosis database
(140) to the LEGislator (200) central server, via the Internet
or via a secure communication channel.

[0160] STEP C4: The Server security module (260)
ensures that proper Authentication, Authorization, Account-
ing and Auditing are employed, and relays the relevant
commands to the Server version tracker and distributor
(280).

[0161] STEP C5: The Server version tracker and distribu-
tor (280) then saves the uploaded images to the Master LL.D
database (220), thereby incorporating into the central master
database the additional data that was provided by the scat-
tered plurality of LEG-minder devices.

[0162] This will initiate or trigger the transfer learning
process in the LEGislator (200) server, as shown in FIG. 8.
[0163] Step D—Transfer Learning:

[0164] As shown in FIG. 8, STEP D0 includes: A transfer
learning command is issued by the learning model orches-
trator (210) of the LEGislator device (200)

[0165] STEP D1: The transfer learning processor (240)
then uses Deep Neural Network Model A (230) and the
Master LLD database (220), to perform deep learning using
DNN techniques.

[0166] STEP D2: The above steps results in the generation
of the Deep Neural Network Model B (250).

[0167] STEP D3: The updated network model (model B)
is saved in Device version tracker (270) along with the
credentials of the LEG-Minder (100) and the Server version
tracker and distributor (280).
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[0168] Step E—Mission Mode:

[0169] When the LEG-Minder Device (100) is in Mission
mode, as shown in FIG. 9, it is ready of diagnosis. When a
new image is presented to the LEG-Minder Device (100) for
diagnosis of LLD, it performs the following steps:

[0170] STEP E1: The image processor (110) processes the
image per the algorithm described under Algorithm Sum-
mary.

[0171] STEP E2: Using the current neural network model

(120) and the LLD Diagnosis module (130) to process the
image, and using the most up-to-date model that is currently
installed in the LEG-minder device, it makes a prediction
and then updates the local Diagnosis database (140) and the
LLD database (180).

[0172] A demonstrative model to implement the bone
measurement:
[0173] Some embodiments may utilize an innovative algo-

rithm to find the difference in length of two bones, such as
in pixels in a radiographic image of two legs. This may be
done with the assistance of several different image process-
ing libraries, such as OpenCV. The Applicants have realized
that sometimes, the bones may be rotated at an angle of 5 or
6 degrees (e.g., relative to each other), which makes finding
the minima and maxima of each bone more difficult and may
require particular processing to compensate for such slanting
or angulation.

[0174] In some embodiments, the following steps may be
taken to find the LLD of a Tibia: Converting the image to
grayscale; Apply Laplacian Edge Detection so that the edges
are highlighted and the bone itself is darker (this makes
finding contours simpler); Use cv2’s findContours( ) method
and get the two largest contours found in the image; Sur-
round this contours with rectangles; Rotate each of these
contours so that the width of rectangle is perfectly level;
Find top extreme of bone; Dilate each rotated contour;
Apply Laplacian Edge Detection like in step 2 above; Use
cv2’s find Contours( ); Find the highest location in the
largest contour return by findContours( ); Return that loca-
tion; Find bottom extreme of bone; Ignore side of bone
because we want to detect a specific point on the bottom
side; Dilate each edited and rotated contour; Apply Lapla-
cian Edge Detection like in step 2 above; Use cv2’s find
Contours( ); Find the lowest location in the largest contour
return by findContours( ); Modity that location’s x-coordi-
nate to account for the cutoff that may have been made in
part a; Return that location; With both sets of minima/
maxima, use the distance formula to compute LLD.

[0175] In some embodiments, the Differences for Com-
puting LLD of Tibia vs Femur may be as follows: Comput-
ing LLD of femur bones is a process in which there are no
minima or maxima that need to be ignored. In the case of the
tibia, x-rays often include the fibula, which dips lower than
the tibia and will be considered the minima when running
findContours( ). To combat this, we ignored the fibula in
each set of bones. The x-rays of femurs require no such
modification, so the minima and maxima can be computed.
[0176] As a preliminary means of computing the LLD of
X-ray images, several preprocessing steps can be taken to
ensure that the algorithm has the highest accuracy in rec-
ognizing the appropriate minima and maxima of each leg.
When considering an x-ray image of bones, the complica-
tions are manifold: the contours of each bone must be
identified, the algorithm must account for each bone rotated
at independent angles, and surrounding bones need to be
ignored. This may require a series of image transformations
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and rotations which will effectively emphasize edges and
deemphasize clusters of similarly colored areas.

[0177] One useful image processing library to use is
OpenCV, which contains several advanced contour detection
methods, image transformations, and image rotations that
can simplify complex x-rays into rectangular boundaries
which can be individually focused on for the computation of
the Leg Length Discrepancy. To identify these rectangular
boundaries, some preliminary transformations must take
place: 1) converting to grayscale and 2) applying edge
detection.

[0178] The process of converting to grayscale is per-
formed, but applying edge detection is a more nuanced
process; for example, Laplacian edge detection has many
different arguments, from kernel size, ddepth (desired
depth), scale, delta, and default border. By analyzing the
second derivative of the function, or more specifically,
finding zero crossings of the second derivative, the edges
can be detected. The Laplacian Operator may be defined as
the sum of the pure second derivatives, as indicated below.

Laplacian(f)=d 2fdx2+d 2fdy"2

[0179] Often, when considering to apply Laplacian edge
detections to images, the edge will become lost as there can
be infinitely many changes in intensity between neighboring
pixels. To combat this, smoothing (such as Gaussian Blur)
may be added or applied, before applying Laplacian Edge
detections. These preliminary transformations will allow
more accurate findings of the two major contours in each
image. Reference is made to FIG. 19, which is an example
of what a Laplacian Edge Detection may look like on an
x-ray of two sets of tibia and fibula; showing on the left side
the original image, and further showing on the right side a
post Laplacian Edge Detection version which shows the
contours/edges more clearly.

[0180] Following these transformations, the major con-
tours must be found. It is difficult to separate the tibia and the
fibula in one pass of finding the contours, so first, the general
rectangular boundaries that define each set of bones must be
identified. Bone contour detection is demonstrated in FIG.
20.

[0181] Subsequently, using a contour finder and bounding
that contour with a rectangle, each rectangle can then
become a new image. These individual images are then
appropriately cropped and rotated so that irrelevant minima
and maxima can be discarded. For instance, in the image
shown in FIG. 20 demonstrating contouring, the minima
returned would be the lowest point on the fibula, which
should be ignored.

[0182] To do this accurately, the vertical middle part of
each set of bones can be analyzed. More precisely, if the
middle vertical 60% of the bones is considered, the break
between the tibia and the fibula can be better identified. The
reasoning for this, realized the Applicants, is in the bone
structure. These two bones join at the top at the proximal
tibiofibular joint. The space between the bones comprises an
interosseous membrane, which is much darker than the
bones in X-rays. Disregarding the top and bottom of each
boneset allows a better analysis, in accordance with some
embodiments, because the darker interosseous membrane
will be the only separating factor between the tibia and
fibula. The darkest column that lies in the boneset will be in
this interosseous membrane. Once the image is cropped to
60% of the bone (vertically), two additional steps may be
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taken for the tibia to be appropriately separated from the
fibula: the border should be perfectly straightened so it is
upright, and then the darkest portion from the left side of the
bone to the right side of the bone should be found (the border
itself); as demonstrated in FIG. 21.

[0183] Using the rectangular contour and finding the
points that form the rotated rectangular boundary of each
boneset, each boneset can then be appropriately rotated so
that the boundary between the tibia and fibula is completely
upright. An example of using boxPoints( ) vs a non-rotated
rectangular boundary is shown in FIG. 22.

[0184] Once making the rotated rectangle upright, finding
the border between the tibia and the fibula may be performed
by finding the column with the lowest mean. However, the
problems that may arise in some situations are, that areas
immediately adjacent to the boneset on both sides may be
returned as the columns with the lowest mean, so only
columns comprising a majority of bone pixels can be
considered. There are various ways to achieve this and to
overcome such possible problems, in accordance with some
embodiments; and one solution is to use the sides of the
rectangle bounding the contour of the cropped image (shown
in the previous Figures). Alternatively, a fixed portion of the
image can be searched, such as only 30-70% of the entire
image. Once the column is found in the upright image of the
bone, some a math calculation can be done to find the
column in the original image that separates the tibia and
fibula at the bottom of the bone. The point referred to is
shown in FIG. 23, demonstrating such minima detection.
[0185] Some embodiments may use one or more methods
of finding this point. One method is to use a geometry-based
process, to convert from the column in the upright image to
the column in the original rotated image. Another method is
to rotate each original boneset to the angle that makes it
upright (without out any vertical crop). Then, the process
continues by finding the minima of each boneset, wherein
the start to the column is considered if it is the left boneset,
and the column to the end is considered if it is the right
boneset. FIG. 24 is an example of the range of possible
values that need to be searched in order to find the extreme
of each tibia.

[0186] Then, using the distance formula, the actual LLD
can be determined or computed. All this together forms a
calculation of the LLD when the image uploaded is in X-ray
form. However, the complexity may increase when the
algorithm is identifying and calculating LD based on a
non-X-Ray photograph of a pair of legs. The aim is to
provide only a minimum amount of “stenciling”, just so that
there is immediate feedback for the user before the image is
uploaded, which notifies them that the image passes the
initial constraints. The algorithm is configured to identify
several points in each leg in order to measure discrepancies
between the distances of corresponding points, and ulti-
mately gauge inconsistencies that can point to LLD issues.
[0187] Static recognition of each boneset can be achieved
through machine learning, by training an algorithm on
marked photos with the joints labeled. In some embodi-
ments, millions of training images may be used to properly
train algorithms, but it may increase the complexity when a
user seeks to upload a video for a more comprehensive
analysis. Using machine learning in conjunction with some
“incremental adjusting” techniques (such as point cloud
mapping) can prove effective in providing real-time skeletal
tracking. The amount with which these are combined can be
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determined by their purpose. The requirements of diagnos-
tics in apps are high frame rate, and an acceptable image
quality, though it is not essential to have the highest quality
image to generate a depth map. In this context, FIG. 25
shows a flowchart point fitting via a Machine Learning
engine.

[0188] The machine learning algorithm may be trained on
thousands of annotated images. The approaches towards
classification of the leg joints can include convolutional
neural networks (CNNSs), decision trees, random decision
forests, K-nearest neighbors, and Naive Bayes algorithms.
Each of these methods will be weighed in their effectiveness
in leg tracking, and some will be noted to have greater
accuracy by way of their adaptability and scalability.
[0189] In some embodiments, Decision Trees can be uti-
lized as a classification problem for each pixel in a frame.
The classification problem for a lower body tracker can
include identifying the Greater Trochanter, Patella, as well
as the joining of the tibia with the talus and navicular bones.
The distance between these points can reveal important
information about the stance of the user and expose incon-
sistencies through asymmetry between the left and right
bonesets. One decision tree can classify all pixels in an
image by a randomizer that estimates depth differences
between a parent pixel and randomly picked children pixels.
[0190] Conjunction of multiple decision trees can provide
more accurate probability distributions of each pixel and
what body part it belongs to. Once this is done, utilization of
a maximizer can retrieve what body part the algorithm
believes the body part is most likely. Rigorously, the lower
body classification algorithm fI(x) for an image [ may be:

fi) = [b:Z[P(f,(x) =0)> Y P =1 &b reB&b2 r]

teT teT

[0191] In this formula:

[0192] b is the decided body part classified by the algo-
rithm;

[0193] T is the set of all decision trees;

[0194] ft(x) is the classification of the pixel according to

one decision tree;

[0195] r is any other body part;

[0196] B is the set of all body parts;

[0197] P denotes probability;

[0198] For any image I, the classification of a certain pixel
will be the body part for which the random forest results in
the max sum of the probabilities from each decision tree.
Each decision tree will produce a unique probability distri-
bution for each pixel. Summing over the probability that
each decision tree believes a pixel to be from a body part will
demonstrate the confidence of the algorithm in the classifi-
cation of a pixel.

[0199] System Security Implementation:

[0200] The Server and the device may optionally employ
Blockchain technology to create distributed databases and/
or a self-proving ledger and/or a self-authenticating ledger.
The data in the form of images may be stored in the form of
a chain or a blockchain that grows incrementally, by append-
ing new images to the end of the current blockchain. This
makes each image instance immutable. Each block of data
is connected to the previous one with a cryptographic hash
function to ensure the integrity and prevent tampering with
data. This ensures that the system is robust to attacks, such
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that even if a single bit in the chain changes, it would require
recomputing all hashes from the altered block to the last one,
which is a power-consuming task. The system and device
combination also leverages the advantage in distribution
because it makes the database directly accessible to all the
other devices, and is resistant to DDoS attacks against a
single central server. This allows the system to be open to all
the participating networks, but if there is a rogue device that
enters the network or if a hospital network needs to be turned
off, while re-allowing the access as needed in a selective
manner. This also brings enormous amount of benefits to the
network which include shared learning, instantaneous data
exchange, automated contract execution, network security,
and improved collaboration. This enables ‘Smart Contracts’
type execution for images.

[0201] This type of robust security allows this system to
be deployed on the Internet in a B2C business model. This
can be an Internet of Things type of application, opened for
people to subscribe and identify potential conditions related
to LLD while gamifying the network and possibly with
gamification and to store data and access it with Ethereum
smart contracts for doctors or other hospital networks. Since
all the data-at-rest (essentially the images after they are used
for creating the CNN/DNN algorithms) protecting the integ-
rity of a collection of images is of paramount importance.
This is done leveraging ‘Merkle trees’ concept by creating a
hash of all files that are organized in a tree, and storing the
root of the tree in the blockchain. This configuration pro-
vides a very efficient and a suitable way to store the large
data structures.

[0202] In some embodiments, the system needs to be
accessible by multiple people of facilities: For example,
image retrieval may happen from multiple data sources;
each of the devices in this case may be an [oT device or other
type of electronic device. Doctors or experts in hospitals
want to improve the accuracy of diagnosis, and can search
for similar images over a great number of medical images or
common leg images with an already determined diagnosis.
The subset of results may form a separate set of images from
which a new CNN can be generated, and this would serve as
auxiliary diagnosis which overall improves the diagnosis
effectiveness.

[0203] This is illustrated in FIG. 26, which shows sources
of data retrieval.

[0204] When data exchange like this happens, the key
factors to consider are:

[0205] (a) Privacy Protection: Prevent revealing person-
ally identifiable information.

[0206] (b) Scalability: The number of images can expo-
nentially increase in a B2C type of scenario described.
Therefore, the system should be capable of accommodating
this exponential growth in terms of the number of partici-
pants as well as the size of the images/volume shared.
[0207] (c) Reliability: Protect the shared images from
being deleted or tampered with by potential attacks. System
will also maintain data replicas to provide redundancy.
[0208] In the scenario described, image transmission from
the database to any of the users will go through a public or
private cloud. While there may be end encryption, the
interaction information and association relationship of the
endpoints may leak, rendering the system vulnerable result-
ing in the relevant information in the images leaked. Fur-
thermore, an entire server can crash, with a single point of
failure. Some embodiments may address these problems by
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utilizing a blockchain, which is a time-stamped, decentral-
ized series of fixed records, containing data of any size,
which is controlled by and accessible by a large network of
computers, which are scattered around the globe, and not
necessarily owned by any one single organization. Every
block is secured and connected with each other block using
cryptographic hashing which protects it from being tem-
pered by an unauthorized person.

[0209] Since the images (radiological or non-radiological;
X-Ray images, or non-X-Ray photographs) are considered
electronic health records (EHRs), some embodiments may
implement an attribute-based signature scheme with mul-
tiple authorities to guarantee the validity of the images. With
a de-centralized system, peer-to-peer transactions make it
impossible for third parties to steal image privacy informa-
tion during the retrieval process. Secondly, each node in the
network has a copy of the transaction record, which avoids
single points of failure. Thirdly, making the transaction
information on the blockchain publicly available allows the
users to conduct image retrieval over a collection of images
shared by either different medical image providers or even
by millions of patients worldwide. This scale in images
renders higher accuracy while protecting the information
from unnecessary privacy disclosure to unintended parties,
data tampering by non-essential personnel, and data forgery
by random players.

[0210] For this application, the block chain structure will
consist of the following elements:

[0211] (a) A block will always contain a timestamp or data
regarding the time when the block was created.

[0212] (b) Each block will have a digital finger print which
is a unique hash produced by combining all the contents
within the block itself.

[0213] (c) A block will also always contain a previous
hash or a reference to the prior block’s hash. This is how
blocks chain to one another.

[0214] So, the properties of a block in the block chain may
be, for example:

[0215] (i) Timestamp: The time the block is created deter-
mines the location of it on the blockchain.

[0216] (ii)) Transaction Data: The information to be
securely stored in the block.

[0217] (iii) Cryptographic Hash: A unique code produced
by combining all the contents within the block itself—as a
digital fingerprint. A cryptographic hash function is used to
here, meaning that the output appears to be random (or
pseudo-random) but is actually deterministic, i.e., the same
input will always produce the same hash, and the output
(hash) is irreversible such that it cannot be used to produce
the original input.

[0218] (iv) Previous Hash: Each block has a reference to
the block prior to its hash. This is what makes the blockchain
unique because this link will be broken if a block is
tampered with.

[0219]

[0220] (a) The image data which is based on attribute-
based signatures, is stored in JSON format so that it is easy
to read. The image data is stored in a block and the block
contains multiple data. As multiple blocks get added, to
differentiate one from another fingerprinting is used.

[0221] (b) The fingerprinting is implemented by using
hash and to be particular, we will use the SHA256 hashing

The general steps for implementation are:
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algorithm. Every block will contain its own hash and also
the hash of the previous function so that it cannot get
tampered.

[0222] (c) This fingerprinting will be used to chain the
blocks together and thus create a blockchain. Every block
will be attached to the previous block having its hash and to
the next block by giving its hash.

[0223] (d) The mining of the new block is done by
successfully finding the answer to the proof of work. To
make mining hard, the proof of work must be hard enough
to get exploited. It is noted that for demonstrative purposes,
a proof-of-work blockchain is discussed; however, some
embodiments may be implemented using proof-of-stake
technology or other suitable proof-based blockchains.
[0224] (e) After mining the block successfully, the block
will then be added to the chain.

[0225] (f) After mining several blocks, the validity of the
chain must be checked in order to prevent tampering with
the blockchain. For this a webapp is made (e.g., with Flask)
and can be deployed locally or publicly as per the need of
customers (e.g. large network like a hospital).

[0226] (g) The image features can be extracted from the
Machine Learning algorithm, which is then encrypted and
recorded in blockchain transaction.

[0227] The encryption will be carried out by seeding with
two same sized very large prime numbers p and q. The RSA
modulus is calculated as n=p*q. The greater the modulus
size, the higher is the security level of the RSA system. RSA
modulus size is 2,048 bits to 4,096 bits. So, we find numbers
that are prime with a satisfactorily high level of probability.
Steps involved for this are, for example:

[0228] (i) Preselect a random number with the desired
bit-size.
[0229] (ii) Ensure the chosen number is not divisible by

the first few hundred primes (these are pre-generated).
[0230] (iii) Apply a certain number of Rabin Miller Pri-
mality Test iterations, based on acceptable error rate, to get
a number which is probably a prime; Set error probability
limit to very low (e.g., 12"128).

[0231] (iv) If the chosen random value passes all primality
tests, it is returned as the n-bit prime number. Otherwise, in
the case of test-failure, a new random value is picked and
tested for primality. The process is repeated until the desired
prime is found.

[0232] The parameter p is public to all participants, such
as hospitals, third parties, patients, and image retrieval
service providers in the system while the others are kept
secret in the system.

[0233] Some embodiments may utilize one or more Alter-
nate ways of measuring pressure points on the feet, for
example as described herein:

[0234] Insoles are in use for years and can sometimes be
used to adjust structural deformities and reduce the stress in
threatened areas that are exposed to pressure beneath the
foot. Foot orthoses or insoles have several applications and
may be useful in diagnosing cause and effect in some cases.
How the insole is created depends on its intended use.
Orthoses can be custom made to control the velocity and
degree of ankle pronation or to redistribute the plantar
pressure etc.

[0235] To preserve the aesthetics, a custom shoe insert
would be easier for a patient to use while walking/running
during the normal course of regular activities while gather-
ing real-time pressure points on the feet. In order to imple-
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ment this, ultra-thin force measuring sensors can be inte-
grated into a shoe insert, to measure and to analyze force
distribution on a patient’s foot at different points in the feet.
The data is then reported back to the system for further
analysis; for example, via a Wi-Fi or Bluetooth transmitter
or transceiver, which may be in the insole or in a shoe, and
which may be connected to a small battery or power source
(which also powers the miniature force-measuring sensors).
When this insert or insole (or shoe) is configured to notify
family members, the same show insert also serves the
purpose of security/call for help in the case of patients who
have a severe case of LLD or in the case of elderly patients
during the event of a fall or accident or other traumatic
event; or for detecting that a person is lying down and
non-moving or non-walking for a pre-defined time period.
The same insert or insole or sole or shoe can also serve the
purpose of tactile feedback via the insert to the wearer, when
the system determines that the person has deviated from the
normal balance posture. This may help elderly patients or
those with severe impairments or with particular disabilities.

[0236] This is accomplished, for example, by load cells
positioned under the foot to map the foot pressure or the
force(s) that are applied onto such load cells or force
sensors. This type of arrays with load cells may be force
plate arrays, suitable for measurement of ground reaction
forces of legs during running or walking. The force plate is
composed of a plate base and three beams whose surface and
sidewall area are doped, which enable to detect pressure
and/or shear force. Force plate arrays are accurate and can
provide repeatable measurements of pressure values. The
frictional force is resulting from two surfaces sliding against
each other. The force depends on the weight of the object
and the coefficient of friction ps. The value of ps varies
depending on the material, the “wetness” (or dryness) of the
surface, and the static or dynamic nature. Friction is calcu-
lated by the following formula:

F=usxmxg

[0237] wherein g=9.81 m/s2, and m is the mass in kilo-
grams. In addition, there will be stress and strains. For
example, Hooke’s Law allows quantification to determine
the stress and strain as: 0=F/A, where F is the force acting
over the cross-sectional area A and the deformation compo-
nent is calculated from e=8/L0, where d is the change of strut
length, and L0 is the original strut length; and depending on
the elasticity of the material used, modulus of elasticity and
Hooke’s law provide a way to calculate the proportional
stress and strain.

[0238] An alternate solution is to use pressure sensitive
films to measure the contact pressure as well as the cavita-
tion pressure. For example, homogeneous opaque films can
be used as substrates or overlay to measure Pressure on soles
of human feet and on soles of shoes. Adult humans have a
foot pressure of between 2.5 Ibs/in® and 3.5 Ibs/in>.

[0239] To produce insoles, a representation of the patient
feet’s is required. This is usually made through casting or
with the help of a foam box or by 3D scanning a represen-
tation of the feet. This representation of the feet makes it
possible to manufacture individualized insoles. Current state
of the art technology is either vacuum forming or Additive
manufacturing or subtractive manufacturing with ethylene-
vinyl acetate (EVA) combined with cork or plastic. The
proposed force plate array can be integrated into a standard
insole produced by any one of the methods. The insoles have
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specialized contours which make the material selection and
the lamination of pressure sensitive film extremely difficult
to mount on to the insoles. The lamination of this pressure
sensitive film uses a specialized process for a special type of
fabric. This allows for uniform, aesthetically pleasing
appearance to flexible printed circuit materials to be embed-
ded into the insole without diminishing key physical prop-
erties such as dielectric strength, tensile strength and dimen-
sional stability. In addition to the aesthetics, the adhesion of
the film can also provide functional benefits in applications
where accuracy for both continuous and momentary pres-
sure measurements are important. Thickness variations in
the overall composition of the material is also very impor-
tant to ensure that it can be inserted into a variety of shoes
with varying level of stiffness of outer sole. In some embodi-
ments, force-measuring sensors or films or components may
be integrated into an insole or an insert, or into a sole portion
of a shoe, or into a shoe itself.

[0240] The “Deep Learning” technology refers to a tech-
nology by which computers may think and learn like a
human, especially to group or categorize objects and data.
Deep-learning methods are representation-learning methods
with multiple levels of representation, obtained by compos-
ing simple but non-linear modules that each transform the
representation at one level into a representation at a higher,
slightly more abstract level. The key aspect of deep learning
is that these layers of features are not designed by human
engineers: they are learned from data using a general-
purpose learning procedure as used in this invention.
[0241] The deep learning is a machine learning technique
which is proposed for overcoming the limitation of “Arti-
ficial neural network™ algorithm. The Deep learning has two
kinds of data categorization approach, i.e., supervised learn-
ing and unsupervised learning. In the supervised learning
approach, a computer is trained with well-categorized infor-
mation. Some embodiments may use supervised learning.
[0242] Deep learning in some embodiments of this inven-
tion uses a pipeline of modules all of which are trainable.
This allows for multiple stages in the process of recognizing
an object and all of those stages are part of the training for
subsequent model generations i.e., representations are hier-
archical and trained.

[0243] How are mobile pictures/photographs taken (Nor-
mal Photographs and determination of the LLD based on
them):

[0244] Normal/non-Xray images (or photographs) will
take upon a predetermined format. For these purposes, a
mobile app is created that would help normalize all the new
images taken and added to the database in a specific format.
The images will consist of three formats:

[0245] (1) Frontal image of the legs from above the knees;
[0246] (2) Rear view of the legs from above the knees;
[0247] (3) Side view of the legs with both knees visible,

and particularly,

[0248] (3a) With right leg in the front,
[0249] (3b) With left leg in the front.
[0250] These are depicted in the images of FIG. 27,

demonstrating the various leg posture photographs that can
be utilized in accordance with some embodiments.

[0251] To accomplish the accurate determination of the
posture, one or more options may be used, for example:
[0252] (i) A mobile phone or smartphone based applica-
tion for capturing images of a particular size (aided by a
template) in conjunction with a computer adapted to receive
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this electronic image file and a photograph generation soft-
ware component in communication with the computer. The
photo capturing is demonstrated in FIG. 28.

[0253] (ii) The photograph generation software compo-
nent is adapted to analyze the electronic image file and
present to a user a plurality of image formats from which the
user selects a desired format. The method includes the steps
of providing an electronic image file to a computer, selecting
the electronic image file, and presenting to a user a plurality
of image formats from which the user selects a desired
format with which to upload the selected electronic image
file.

[0254] The image is optimized and optionally enhanced
for feature extraction as shown and discussed above.
Accordingly, some embodiments provide a method and/or
system for capturing an image within a template, using a
mobile communication device; transmitting the image to a
server; and processing the image to create a bi-tonal image
for feature extraction. For example, a mobile communica-
tion device, such as a camera-equipped phone, or a smart-
phone or a tablet or other electronic device having a camera
and a transceiver (e.g., some smart-watch devices or even
some camera-equipped gaming devices) would transmit the
image of the legs to the server, where the image is processed
and results in a bi-tonal image.

[0255] The term “color images” includes, but is not lim-
ited to, images having a color depth of 24 bits per a pixel (24
bit/pixel), thereby providing each pixel with one of approxi-
mately 16 million possible colors. Each color image is
represented by pixels and the dimensions W (width in
pixels) and H (height in pixels). An intensity function I maps
each pixel in the [WxH] area to its RGB-value. The RGB-
value is a triple (R,G,B) that determines the color the pixel
represents. Within the triple, each of the R (Red), G (Green)
and B (Blue) values are integers between 0 and 255 that
determine each respective color’s intensity for the pixel.

[0256] The term “gray-scale images™ includes, but is not
limited to, images having a color depth of 8 bits per a pixel
(8 bit/pixel), thereby providing each pixel with one of 256
shades of gray. Gray-scale images also include images with
color depths of other various bit levels (e.g. 4 bit/pixel or 2
bit/pixel). Each gray-scale image is represented by pixels
and the dimensions W (width in pixels) and H (height in
pixels). An intensity function I maps each pixel in the
[WxH] area onto a range of gray shades. More specifically,
each pixel has a value between 0 and 255 which determines
that pixel’s shade of gray.

[0257] Bi-tonal images are similar to gray-scale images in
that they are represented by pixels and the dimensions W
(width in pixels) and H (height in pixels). However, each
pixel within a bi-tonal image has one of two colors: black or
white. Accordingly, a bi-tonal image has a color depth of 1
bit per a pixel (1 bit/pixel). The similarity transformation, in
some embodiments, utilizes an assumption that there are two
images of [Wx] and [W'xH'] dimensions, respectively, and
that the dimensions are proportional (i.e. W/W'=H/H"). The
term “similarity transformation” may refer to a transforma-
tion ST from [Wx] area onto [W'xH'] area such that the
figures should look the same—but yet, one may be of a
different size, and/or may be flipped, rotated, or translated
relative to the other, and similarity transformation maps
pixel p=p(x,y) on pixel p=p'(x'y') with x'=x*W'W and
y=y*H'/H.
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[0258] Mobile devices that incorporate cameras have also
become ubiquitous. The mobile device may include a cam-
era, or might include functionality that allows it to connect
to a camera. This connection might be wired or wireless. In
this way the mobile device may also connect to an external
camera and receive images from the camera; or may have an
integrated or built-in camera or imager.

[0259] Typically, for systems which utilize images cap-
tured on the mobile device, the process of evaluating an
image to determine if it is of sufficient image quality can
become time consuming and cumbersome for the user of the
mobile device. Moreover, these images need to be uniform
in look and feel for an effective outcome. Therefore, it would
be advantageous to streamline and automate the process of
capturing such images with mobile devices and verifying
that the quality of the image is sufficient for processing. Such
images can vary quite a bit depending on the resolution,
picture depth, height etc. For this, some embodiments may
ensure uniformity in:

[0260] (a) high resolution photo that is not blurry, grainy,
or pixelated.
[0261] (b) Standard square size (eg mxm inches)—Image

pixel dimensions of a square aspect ratio (meaning the
height must be equal to the width). Minimally 600 pixels
(width)x600 pixels (height) to a maximum of 1200 pixels
(width)x1200 pixels (height).

[0262] (c) Use a white background.

[0263] (d) Use of markers for image processing—a large
sheet of white paper to tape up on the wall with the markers
affixed on the paper.

[0264] (e) Using a flash or illumination unit, or not having
the subject stand in direct sunlight, to avoid shadows in the
photo.

[0265] Mobile Device Automatic Capture of Still Picture
or Photograph:
[0266] (i) The mobile device is configured to automati-

cally capture an image of the subject when certain param-
eters are met.

[0267] (ii) This involves analysis of various position set-
tings of the mobile device, its internal image sensor and the
ambient environment to get the subject in focus. Here, an
additional feature may be implemented to automatically
capture the picture when the settings are met without the
user pressing a button can be done.

[0268] (iii) This serves as the first step of capturing of the
image to the prior end-to-end solution implementation
where images are processed and the algorithm is run to
identify the LLD in the subject image. The mobile device
application provides the user with tools and information to
improve the quality of the image and reduce errors from
poor image quality or improper position.

[0269] (iv) When a desired higher quality image is
uploaded, that reduces the chance that the image will be
rejected by the server, which would otherwise require the
user to capture another image of the patient’s legs. So,
moving this functionality to the end device (leg minder)
problems with the captured image can be immediately
identified and corrected. This will prevent the time and
processing associated with image transmission to the server,
complex image processing and analysis at the server, and
response from the server back to this user.

[0270] (v) By utilizing this technology within a mobile
capture device helps the user to capture a high-quality
image, reduced post-capture image processing.
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[0271] Mobile Device Automatic Capture of a Video:
[0272] (I) The above-mentioned benefits can also be
derived by a video-based mobile image capture, such that
the user utilizes an electronic device to capture a video,
which in turn comprises of series of discrete frames (e.g., 30
frames per second).

[0273] (II) While the user takes a photo of a patient’s legs,
the image capture application will be automatically switched
into a video capturing mode. The video frames are imme-
diately captured (via OpenCV API) and are stored in a
buffer. As the video frames are captured, selected frames are
pre-processed on the mobile device to determine the image’s
suitability criteria for upload to the server. This allows image
quality assessment to evaluate focus, exposure, contrast,
shadows, reflection, and other criteria as defined by custom-
ized and dynamic settings resident on the mobile device or
received from the server. Those frames that do not meet the
criteria are quickly discarded, and another frame is then
selected for pre-processing. This pre-processing continues
until an acceptable frame is found, at which time the video
stream is stopped and the user receives a message that the
image capture process is complete.

[0274] (III) The parameters are measured in real time, to
meet certain image quality thresholds.

[0275] (IV) These image quality thresholds can be indi-
vidual parameters being measured, or can be a set of
threshold parameters or can be based on a computed total
overall quality score. The pass/fail criteria for such thresh-
olds are user defined or are configurable in the server and
can be downloaded to each application device.

[0276] (V) Over time, the device dependencies are com-
puted and stored on the server for image quality based on the
above parameters. This will allow the server to make any
auto adjustments depending on the device ID so that the
threshold value of one or more parameters can be adjusted
based on the computed image quality score.

[0277] Template for the Mobile Phone:

[0278] A user may be provided with a template in the form
of'leg and hip outline shape or a quadrilateral on the display
screen of the mobile device to guide the user such that the
patient’s legs are fully contained in the template during the
image capture process. The template on the screen may also
give the indication to the user to move closer or to move
further or move up or to move down. Various user-friendly
intuitive icons/colors/vibration/audio cues may be generated
for this purpose.

[0279] The template aids to fit the desired image size,
stability, contour detection and orientation angle. The tem-
plate may be user specific for example adult male vs female,
pediatric male vs female, or may be user selectable based on
age group and gender. Since the tilt of the camera is also
equally important, the display screen/template will guide the
user to change the orientation of the camera to the desired
level, to remove any distortion and skew in the images. In
some embodiments, the Template may be implemented as a
see-through over-layer, or as a partially-gray or partially-
opaque layer, or as a border, or as on-screen markers or
indicators, or as four-corners on-screen indicators. Addition-
ally, FIG. 29 shows a flowchart of processing or utilizing
photographs or non-X-Ray images, in accordance with some
embodiments.

[0280] Metrics to Measure the “Desired Image” Quality:
[0281] A variety of metrics might be used to detect an
out-of-focus image. For example, the Brenner function score
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is a measure of the texture in the image. An in-focus image
has a high Brenner function score, and contains texture at a
smaller scale than an out-of-focus image. Conversely, an
out-of-focus image has a low Brenner function score, and
does not contain small-scale texture. Some embodiments
may utilize, for ML or NN based analysis of images, only
photograph that have a Brenner function score that is greater
than a pre-defined threshold value, while discarding other
photographs from such training set or validation set or
analysis candidates. Alternatively, a focus measure could be
employed.

[0282]

[0283] The direct bone length measurement method mea-
sures the distance between the anterior superior iliac spine
and the medial malleolus. The indirect method measures the
differences in leg length between the sides while standing.
However, measuring all the components involving leg
lengths, for example: joint contractures, static or dynamic
mechanical axial malalignment due to structural deformities
or muscle weakness or shortening, cannot all be accounted
for in this method. To properly measure this, a gait cycle
measurement approach May be used. In some embodiments’
approach to measure gait, the system may capture move-
ment by video streams captured by cameras, depth cameras
and sensors, wearable sensors, and/or recorded videos. Body
movement generates tens of thousands of data points a
minute while moving through the 3 spatial planes (length,
width, and depth). Videos and camera streams are crowded
with a lot of other objects in the scene that makes extracting
body joint locations a more complex task. Therefore, some
systems can use “body landmarks™ (e.g., as demonstrated in
FIG. 30, showing such body landmarks and their locations)
with passive and/or reflective markers per the PlugInGait
(PGM) protocol or similar protocol to locate certain points
of interest as shown. Such markers appear as a middleware
software library (e.g., Wrnch, OpenPose and Azure Kinect
body tracker), which is mainly dependent on a pre-trained
ML and DL algorithms for skeletal tracking and joints
positions extracted from different video frames.

[0284] Gait patterns can then be established using a stan-
dard laboratory evaluation system that uses a motion analy-
sis system (for example: Vicon, Oxford Metrics, Oxford,
UK), following the PluglnGait model (PGM), to measure
gait deviations in the lower extremities and pelvis. Patients
can walk at their natural/self-selected speed. Thus, the
system of some embodiments can automatically perform
steering of one or more Narrow Field of View (NFOW)
cameras to a target subject and generate un-binned depth
mode and outputs at 16:9 resolution of 1080p RGB at 30 fps
including inertial measurement units (IMU) data.

[0285] The position and orientation of each of the joints
can be extracted, for example, as a right-handed joint
coordinate system. These form absolute coordinates in the
depth camera 3D coordinate system. Thus, in accordance
with some embodiments, each joint will be a quaternion
represented by q=w+ix+jy+kz=a+v. The system may then
normalize quaternions or convert them to unit quaternions
by:

Dynamic Leg Length Measurements:

Ug=g+|qll
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[0286] Wherein:

w

LX)y z
Uq:EJrl-EJr]-EJrk-—

d

[0287] And wherein:
d=|q| \=\/W2+)c2+yz+z2

[0288] Some embodiments may utilize an Augmented
Reality marker, which is is an image that can be recognized
by an AR-enabled mobile app and triggers certain aug-
mented reality features. Such markers are typically placed
on flat surfaces; as bumpy, irregular or rounded surfaces may
deform marker images. A computer vision algorithm will
consider all angles to be an additional marker and only be
able to pair the AR content with one of the angles. A
self-service AR creator is used to combine a marker image
with the desired AR content. The user would need to
download a mobile app to scan the marker image (depicted
in figure X). This approach allows centralized updates of the
application and enables dissemination of such apps that are
updated centrally. The software then recognizes the image
and pairs it with the previously prepared AR content, dis-
playing it on the device’s display in real-time.

[0289] Some embodiments may utilize an ML model or
NN model that was trained on, and/or that is configured or
optimized to analyze, images or photographs that are aug-
mented with such AR markers, and/or with Body Landmarks
markers or indicators; as such model or engine may have
improved results, in certain situations, relative to utilization
of photographs that lack such landmarks or markers.
[0290] In some embodiments, the ML or NN model is
trained on, and/or is utilized for analyzing, only a single
frame out of a video clip of multiple frame; wherein the
single frame is selected by the system based on a plurality
of parameters that are pre-defined as making it the best-
available frame for ML or NN purposes. It is noted that in
some embodiments, the particular video frame which
appears to be the most pleasant to a human observer, is not
necessarily the most useful video frame for the purposes of
training the ML or NN engine, or for the purposes of feeding
such frame into a ML/NN based classifier or prediction unit;
but rather, realized the Applicants, a particular video frame
which may appear (for example) out of focus and/or having
non-pleasant darkness may actually be more beneficial for
ML/NN applications. Therefore, some embodiments may
define a set of parameters and their respective values; may
examine discrete frames of a video clip; and may select a
single frame from such video, that has the best set of values
of these parameters that are pre-defined as the most advan-
tageous for ML/NN purposes, rather than for human obser-
vation purposes.

[0291] In some embodiments, the ML/NN engine is
trained on, and is validated on, and is then utilized to
classify, photographs that are non-X-Ray images; each such
photograph showing a pair of legs of a human. In some
embodiments, at least some of those photographs (or most of
them, or all of them) show the pair or legs from the right
side, as a side photograph and as a non-frontal photograph.
In some embodiments, at least some of those photographs
(or most of them, or all of them) show the pair or legs from
the left side, as a side photograph and as a non-frontal
photograph. In some embodiments, at least some of those
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photographs (or most of them, or all of them) show the pair
or legs from the right side or from the left side, as a side
photograph and as a non-frontal photograph. In some
embodiments, at least some of those photographs (or most of
them, or all of them) show the pair or legs from an angle,
such that the view is non-frontal and non-rear and non-right
and non-left, but rather at an angle (e.g., 30 or 40 or 50
degrees).

[0292] In some embodiments, the ML/NN engine may
detect LLLD based on a Binary Type classifier or predictor,
which classifies a fresh photograph or a candidate photo-
graph into one of exactly two possible classes which are: (i)
a first class, in which the photograph indicates that an LL.D
condition exists beyond a pre-defined threshold value of
certainty; or (ii) a second class, in which the photograph
indicates that an LLLLD condition was not detected (at all, or
beyond said pre-defined threshold value of certainty).
Accordingly, the ML/NN model may be trained and con-
figured to implement such Binary Type classifier, that clas-
sifies a given photograph according to these exact two
possible classes.

[0293] In some embodiments, the ML/NN engine may
detect LLD based on a Ternary Type classifier or predictor,
or a Three-Classes classifier or predictor, which classifies a
fresh photograph or a candidate photograph into one of
exactly three possible classes which are: (I) a first class, in
which the photograph indicates that a Severe LLD condition
exists (e.g., the engine determines or estimates that there is
an LLD condition and that it manifests at least D millimeters
of leg length discrepancy, wherein D is a particular pre-
defined threshold value, such as 6 millimeters); or (II) a
second class, in which the photograph indicates that a Mild
LLD condition exists (e.g., the engine determines or esti-
mates that there is an LLD condition and that it manifests not
more than D millimeters of leg length discrepancy, wherein
D is a particular pre-defined threshold value, such as 6
millimeters); or (iii) a third class, in which the photograph
indicates that an LLLLD condition was not detected (at all, or
beyond a pre-defined threshold value of certainty for detec-
tion of LLD). This approach may be innovative as it may
divert from a conventional approach in some ML/NN sys-
tems, that typically classify certain data-points into exactly
one out of exactly two possible classes.

[0294] Some embodiments may utilize an Over-Fitting
Prevention Unit and also an Under-Fitting Prevention Unit;
which may perform, respectively, one or more of the above-
described techniques in order to prevent (or reduce, or
eliminate, or minimize) over-fitting and under-fitting (re-
spectively) of the ML/NN model relative to the data
(namely, the photographs or images that are utilized for LLD
detection or classification). In some embodiments, the over-
fitting prevention operations and/or the under-fitting preven-
tion operations are particularly tailored to the particular
domain of LLD detection based on X-Ray images or based
on non-X-Ray photographs.

[0295] Some embodiments include a computerized
method, which is implementable by using at least: one or
more hardware processors that are configured to execute
code, and that are operably associated with one or more
memory units that are configured to store code; wherein the
computerized method comprises: determining whether a
particular subject has a Leg Length Discrepancy (LLD), by
performing: (al) receiving a training set of images of legs of
patients; (a2) receiving a validation set of images of legs of
patients; (b) operating on the training set of images by: (b1)
performing image normalization and image resizing on said
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images of legs of patients; (b2) modifying the images of the
training set, by applying one or more image transformation
operations selected from the group consisting of: image
rotation, image flip, skewing, zoom modification, isotropic
scaling, shear transformation; (b3) performing a binary-type
classification of said images of legs of patients, into exactly
one of: (i) a first class of images that includes only images
that are determined to not be associated with LLD, or (ii) a
second class of images that includes both images that are
determined to be associated with LLD and images that are
determined to possibly be associated with LLD; (b4) passing
the images of the training set of images via convolutions and
extracting a first set of unique features from said images of
the training set; and operating a Convolutional Neural
Network (CNN) unit which applies convolution, kernel
initialization, pooling, activation, padding, batch normaliza-
tion, and stride to the images, to detect one or more
particular image-features that are determined to be predic-
tive for LLD detection; (b5) performing pooling and image
traversal, through a particular path of convolutions that was
passed in step (b4), and concurrently extracting a next set of
unique features from said images of the training set by using
computerized-vision object detection and computerized-vi-
sion pattern recognition; (b6) stacking multiple sets of
convolutions that were passed in step (b4), and also stacking
multiple pooling layers that were pooled in step (b5), to
generate reduced-size images; (b7) feeding the reduced-size
images into one or more dense layers of said CNN unit; (b8)
applying a SoftMax classifier to reduce binary loss, and
further applying a sigmoid classifier; (b9) adjusting a learn-
ing rate of said CNN unit for convergence into a solution;
(b10) generating by said CNN unit a single-neuron output
with a sigmoid activation, which indicates a binary-type
output with regard to a particular image; wherein the binary-
type output is either (i) the particular image is not associated
with LLD, or (ii) the particular image is associated or is
possibly associated with LLD; and, (c) operating on the
validation set of images by: performing steps (bl) through
(b10) on the validation set of images to verify an accuracy
of classifications performed by said CNN unit.

[0296] In some embodiments, said images of legs of
patients include both (i) X-Ray images of legs of patients
and (ii) photographic non-X-Ray images of legs of patients.
[0297] In some embodiments, said images of legs of
patients include, exclusively, X-Ray images of legs of
patients.

[0298] In some embodiments, said images of legs of
patients include, exclusively, photographic non-X-Ray
images of legs of patients.

[0299] In some embodiments, the method further com-
prises: collecting said images of legs of patients at a central
server, from a plurality of remote imaging devices that are
located at a plurality of remote locations; generating a
unified Deep Neural Network (DNN) model based on said
images of legs of patients that were collected from said
plurality of remote imaging devices that are located at said
plurality of remote locations; wherein the DNN model is
configured to reduce bias or to eliminate bias in diagnosis of
LDD by performing training and convolutions on said
images of legs of patients that were collected from said
plurality of remote imaging devices that are located at said
plurality of remote locations, rather than by relying on legs
images from a single source or from a single hospital or from
a single locality.
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[0300] In some embodiments, the method further com-
prises: operating a security module that secures an integrity
of said unified Deep Neural Network (DNN) model from
malicious attacks, and that blocks malicious attacks to
introduce bad data (i) at said central server at a network
level, and (ii) at said plurality of imaging devices at an image
ingress level.

[0301] In some embodiments, the method further com-
prises: performing a transfer learning process at said central
server, on a dynamically-updated dataset of images of legs
of patients; periodically generating at said central server an
upgraded DNN model; and periodically sending the
upgraded DNN model to the plurality of imaging devices.
[0302] In some embodiments, said DNN model is config-
ured to detect LLD of a particular person, based on a group
photograph that depicts two or more persons standing
together.

[0303] In some embodiments, said images of legs of
patients include, exclusively, side images of legs of patients,
and not frontal images of legs of patients.

[0304] In some embodiments, said images of legs of
patients include both: (i) side images of legs of patients, and
(i) frontal images of legs of patients.

[0305] In some embodiments, the CNN model is devel-
oped and is dynamically updated at a central server com-
puter based on images of legs that are uploaded to said
central computer server from a plurality of end-user devices;
wherein a current version of the CNN model is periodically
distributed from said central server computer to said end-
user devices, and dynamically replaces on said end-user
devices a prior version of the CNN model; wherein central
upgrading of the CNN model, based on images of legs that
are uploaded to said central computer server from a plurality
of'end-user devices that are located at a plurality of different
locations, causes the CNN model and the determining of
LLD to be more resilient to bias.

[0306] Some embodiments include a computerized sys-
tem, which is implemented by utilizing at least: one or more
processors that are configured to execute code, and that are
operably associated with one or more memory units that are
configured to execute code. The system comprises: (a) a
plurality of distributed end-user devices; wherein each end-
user device is an electronic device selected from the group
consisting of: a smartphone, a tablet, an electronic device
comprising a processor and an imager; wherein each end-
user device is configured to acquire digital non-radiological
non-X-Ray photographs of legs of persons; wherein each
end-user device is configured to perform: (i) a learn-and-
predict process, (ii) a Deep Neural Network (DNN) model
upgrade process, and (iii) a database transfer process;
wherein each end-user device locally-stores therein, and
locally-runs therein, a local version of a DNN model that is
periodically updated by a central computer server. The
system further includes: (b) said central computer server,
that is configured to communicate separately, over Internet-
based communication links, with each one of the plurality of
distributed end-user devices. The central computer server
comprises a DNN Engine, that is configured to perform: (i)
an initial learning process, (ii) a transfer learning process,
(iii) a further database transfer process, and (iv) a further
DNN model upgrade process; wherein the DNN Engine
periodically upgrades the DNN model, and periodically
distributes an upgraded DNN model to each one of said
end-user devices. At least one of: (I) an end-user device (out
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of the plurality of end-user devices), (II) said central com-
puter server, is configured to utilize said upgraded DNN
model to generate a determination for LLD diagnosis, indi-
cating whether or not a particular subject has a Leg Length
Discrepancy (LLD), by feeding a digital non-radiological
non-X-Ray photograph of legs of said particular subject into
said upgraded DNN model, based on output from a sigmoid-
activated single-neuron of said DNN model. An accuracy of
diagnosis of LLD, by each of the plurality of end-user
devices or by said central server, gradually improves based
on cumulative DNN learning by the central computer server
which is based on analysis of images from the plurality of
end-user devices.

[0307] Insome embodiments, the central server computer
stores at least: (i) a first version of the DNN model, which
is currently being utilized for LLD determination by at least
one end-user device; and also, (ii) a second version of the
DNN model, which is an upgraded version of the DNN
model that is more accurate than the first version of the DNN
model, and which is pending for distribution to one or more
end-user devices.

[0308] In some embodiments, each end-user device peri-
odically replaces, a current-version of the DNN model that
is stored locally and is utilized locally in the end-user device,
with an upgraded-version of the DNN model that is peri-
odically received over an Internet-based communication
link from said central computer server.

[0309] In some embodiments, each end-user device is
equipped with a security module that is configured to block
malicious images from being added to a locally-stored
dataset of images and from being copied upstream to said
central computer server.

[0310] In some embodiments, the central computer server
comprises: a Master LLD Database which stores images that
are utilized by the central computer server to generate and to
update the DNN model for detection of LLD; and a Trans-
ferred Learning LLLD Database which stores images that
were received from a particular end-user device and that
were not yet utilized for updating the DNN model. In some
embodiments, a DNN Model Updater Unit operates to
upgrade or improve the DNN model based on the images in
the Transferred Learning LLLD Database; and wherein con-
tent of the Transferred Learning L.L.D Database is then added
to the Master LLD Database of the central computer server.
[0311] In some embodiments, said DNN model is config-
ured to detect LD of a particular person, based on a group
photograph that depicts two or more persons standing
together.

[0312] In some embodiments, said images of legs of
patients include, exclusively, side images of legs of patients,
and not frontal images of legs of patients.

[0313] In some embodiments, said images of legs of
patients include both: (i) side images of legs of patients, and
(i) frontal images of legs of patients.

[0314] In some embodiments, the CNN model is devel-
oped and is dynamically updated at the central server
computer based on images of legs that are uploaded to said
central computer server from said plurality of end-user
devices; wherein a current version of the CNN model is
periodically distributed from said central server computer to
said end-user devices, and dynamically replaces on said
end-user devices a prior version of the CNN model; wherein
central updating of the CNN model, based on images of legs
that are uploaded to said central computer server from a
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plurality of end-user devices that are located at a plurality of
different locations, causes the CNN model and the deter-
mining of LLD to be more resilient to bias.

[0315] Some embodiments provide a computerized sys-
tem, which is implemented by utilizing at least: one or more
processors that are configured to execute code, and that are
operably associated with one or more memory units that are
configured to execute code. The system is configured to
detect Leg Length Discrepancy (LLD) of humans, by apply-
ing a Machine Learning algorithm with a Deep Neural
Network (DNN) model that classifies digital non-radiologi-
cal non-X-Ray photographs of legs. The system comprises:
(a) a plurality of distributed end-user devices, wherein each
end-user device is an electronic device selected from the
group consisting of: a smartphone, a tablet, an electronic
device comprising a processor and an imager; wherein each
end-user device is configured to acquire digital non-radio-
logical non-X-Ray photographs of legs of persons; wherein
each end-user device is configured to perform: (i) a learn-
and-predict process, (ii) a Deep Neural Network (DNN)
model upgrade process, and (iii) a database transfer process;
wherein each end-user device locally-stores therein, and
locally-runs therein, a local version of a DNN model that is
periodically updated by a central computer server; and also,
(b) said central computer server, that is configured to com-
municate separately, over Internet-based communication
links, with each one of the plurality of distributed end-user
devices. The central computer server comprises a DNN
Engine, that is configured: (b1) to receive an initial training
set of digital non-radiological non-X-Ray photographs of
legs of persons, (b2) to generate from said initial training set
an initial DNN model, that is capable of classifying a
particular new digital non-radiological non-X-Ray photo-
graph either as manifesting LLD or as non-manifesting
LLD, (b3) to receive, from time to time, from a particular
end-user device out of said plurality of end-user devices, a
copy of additional digital non-radiological non-X-Ray pho-
tographs that were captured by said particular end-user
device and that were already classified as manifesting LL.D
or non-manifesting LD based on a current version of the
DNN model that is installed in said particular end-user
device, (b4) to add said additional digital non-radiological
non-X-Ray photographs to a master database utilized by said
central computer server, (b5) to update said initial DNN
model based on cumulative DNN learning derived from said
additional digital non-radiological non-X-Ray photographs.
The DNN Engine periodically upgrades the DNN model,
and periodically distributes an upgraded DNN model to each
one of said end-user devices. At least one of: (I) an end-user
device out of the plurality of end-user devices, (II) said
central computer server, is configured to utilize said
upgraded DNN model to generate a determination for LL.D
diagnosis, indicating whether or not a particular subject has
a Leg Length Discrepancy (LLD), by feeding a digital
non-radiological non-X-Ray photograph of legs of said
particular subject into said upgraded DNN model, based on
output from a sigmoid-activated single-neuron of said DNN
model.

[0316] In some embodiments, an accuracy of diagnosis of
LLD, by each of the plurality of end-user devices or by said
central computer server, gradually improves based on cumu-
lative DNN learning by the central computer server which is
based on analysis of images from the plurality of end-user
devices.
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[0317] Insome embodiments, the central computer server
comprises: a Master LLD Database which stores images that
are utilized by the central computer server to generate and to
update the DNN model for detection of LLD; and a Trans-
ferred Learning LLLD Database which stores images that
were received from a particular end-user device and that
were not yet utilized for updating the DNN model; wherein
a DNN Model Updater Unit operates to upgrade and
improve the DNN model based on the images in the Trans-
ferred Learning LD Database; and wherein content of the
Transferred Learning LL.D Database is then added to the
Master LLLD Database of the central computer server.
[0318] In some embodiments, the central server computer
stores at least: (i) a first version of the DNN model, which
is currently being utilized for LLD determination by at least
one end-user device; and also, (ii) a second version of the
DNN model, which is an upgraded version of the DNN
model that is more accurate than the first version of the DNN
model, and which is pending for distribution to one or more
end-user devices.

[0319] In some embodiments, each end-user device peri-
odically replaces, (I) a current-version of the DNN model
that is stored locally and is utilized locally in the end-user
device, with (II) an upgraded-version of the DNN model that
is periodically received over an Internet-based communica-
tion link from said central computer server.

[0320] In some embodiments, each end-user device is
equipped with a security module that is configured to block
malicious images from being added to a locally-stored
dataset of images and from being copied upstream to said
central computer server.

[0321] In some embodiments, said DNN model is config-
ured to detect LD of a particular person, based on a group
photograph that depicts two or more persons standing
together; wherein said DNN model is trained on pre-classi-
fied group photographs, wherein each of said pre-classified
group photographs depicts two or more persons standing
together; wherein each of said pre-classified group photo-
graphs is classified into exactly one of exactly two classes
that are: (i) a first class, in which the group photograph
manifests LLLD of at least one depicted person, and (ii) a
second class, in which the group photograph does not
manifest LLD of any depicted person.

[0322] In some embodiments, said images of legs of
patients include, exclusively, side images of legs of patients,
and not frontal images of legs of patients; wherein said DNN
model is trained on a pre-classified set of images, that depict
side-views of legs of patients, and that are pre-classified as
either manifesting LLD or non-manifesting LLD.

[0323] In some embodiments, said images of legs of
patients include, exclusively, at-an-angle images of legs of
patients, which are non-frontal images and are non-rear-side
images and non-right-side images and are non-left-side
images of legs; wherein said DNN model is trained on a
pre-classified set of images, that depict at-an-angle images
of legs of patients, and that are pre-classified as either
manifesting LLD or non-manifesting LLD.

[0324] In some embodiments, said images of legs of
patients include both: (i) side images of legs of patients, and
(i) frontal images of legs of patients; wherein said DNN
model is trained on both (I) a first pre-classified set of
images that depict side-views of legs of patients and that are
pre-classified as either manifesting L.LD or non-manifesting
LLD, and also (II) a second pre-classified set of images that
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depict front-views of legs of patients and that are pre-
classified as either manifesting LD or non-manifesting
LLD.

[0325] In some embodiments, the DNN model is devel-
oped and is dynamically updated at the central computer
server based on images of legs that are uploaded to said
central computer server from said plurality of end-user
devices; wherein a current version of the DNN model is
periodically distributed from said central server computer to
said end-user devices, and dynamically replaces on said
end-user devices a prior version of the DNN model; wherein
central updating of the DNN model, based on images of legs
that are uploaded to said central computer server from a
plurality of end-user devices that are located at a plurality of
different locations, causes the DNN model and the deter-
mining of LLD to be more resilient to bias; wherein the
DNN model is configured to reduce bias or to eliminate bias
in diagnosis of LDD by performing training and convolu-
tions on said images of legs of patients that were collected
from said plurality of remote imaging devices that are
located at a plurality of remote locations, rather than by
relying on legs images from a single source or from a single
hospital or from a single geographical region.

[0326] In some embodiments, a first end-user device of
said plurality of end-user devices, is located in a first
geographical region and is operated by a first operator, and
thus suffers from a first level of bias; wherein a second
end-user device of said plurality of end-user devices, is
located in a second, different, geographical region and is
operated by a second, different operator, and thus suffers
from a second level of bias; wherein the DNN model is
dynamically updated at the central computer server based on
images of legs that are uploaded to said central computer
server from said plurality of end-user devices that comprise
said first end-user device having said first level of bias and
said second end-user device having said second level of
bias; wherein central updating of the DNN model, based on
images of legs that are uploaded to said central computer
server from the plurality of end-user devices that are located
at a plurality of different locations and are operated by a
plurality of different operators, causes the DNN model and
detection of LLD to be more resilient to bias.

[0327] In some embodiments, at least one of the end-user
devices is configured to capture a video clip that depicts legs
of'a person, and is further configured to select only a single
particular video frame from said video clip; wherein only
said single particular video frame, and not other video
frames of said video clip, is used for local in-device LLD
detection; wherein only said single particular video frame,
and not other video frames of said video clip, is uploaded
from said end-user device to a master LLD database of said
central computer server; wherein said single particular video
frame is selected, locally within said end-user device, not
based on its being a video frame having highest visible
qualities to a human observer, but rather, based on being a
video frame having the highest values of parameters that
indicate image suitability for classification by a DNN-based
classifier that classifies images based on manifestation or
non-manifestation of LLD.

[0328] In some embodiments, at least some of the digital
non-radiological non-X-Ray photographs, that are used for
training the DNN model, include Body Landmarks indica-
tors that are placed on particular body-parts or body-loca-
tions of humans that are depicted in said photographs;
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wherein the DNN model is trained on a training set of
images that include digital non-radiological non-X-Ray pho-
tographs that show include Body Landmarks indicators.
[0329] In some embodiments, at least some of the digital
non-radiological non-X-Ray photographs, that are used for
training the DNN model, include Augmented Reality Mark-
ers that are placed on particular body-parts or body-locations
of humans that are depicted in said photographs; wherein the
DNN model is trained on a training set of images that
include digital non-radiological non-X-Ray photographs
that show include Augmented Reality Markers.

[0330] In some embodiments, said digital non-radiologi-
cal non-X-Ray photographs, that are used for training the
DNN model and/or for LLD classification, are stored in a
blockchain that prevents content tampering.

[0331] In some embodiments, said digital non-radiologi-
cal non-X-Ray photographs, that are used for training the
DNN model and/or for LLD classification, are stored in a
blockchain that prevents content tampering.

[0332] In some embodiments, the central computer server
further comprises: (A) an Over-Fitting Prevention Unit, that
is configured to prevent or reduced over-fitting of the DNN
model to digital non-radiological non-X-Ray photographs,
(A1) by performing one or more randomly-selected trans-
formations to existing images of pairs of legs, and creating
a set of image variants which is used for increasing a
diversity and a total number of training examples of pairs-
of-legs, and also (A2) by removing one or more randomly-
selected images from said existing images of pairs of legs
during a training gradient or a training iteration; and also,
(B) an Under-Fitting Prevention Unit, that is configured to
prevent or reduce under-fitting of the DNN model relative to
digital non-radiological non-X-Ray photographs, by per-
forming at least one of: (Bl) adding a hidden layer to the
DNN model, (B2) modifying regularization parameters to
the DNN model.

[0333] In some embodiments, the central computer server
is configured to perform a process comprising determining
whether a particular subject has a Leg Length Discrepancy
(LLD), by performing: (al) receiving a training set of
images of legs of patients; (a2) receiving a validation set of
images of legs of patients; (b) operating on the training set
of images by: (bl) performing image normalization and
image resizing on said images of legs of patients; (b2)
modifying the images of the training set, by applying one or
more image transformation operations selected from the
group consisting of: image rotation, image flip, skewing,
zoom modification, isotropic scaling, shear transformation;
(b3) performing a binary-type classification of said images
of legs of patients, into exactly one of: (i) a first class of
images that includes only images that are determined to not
be associated with LLD, or (ii) a second class of images that
includes both images that are determined to be associated
with LLD and images that are determined to possibly be
associated with LLD; (b4) passing the images of the training
set of images via convolutions and extracting a first set of
unique features from said images of the training set; and
operating a Convolutional Neural Network (CNN) unit
which applies convolution, kernel initialization, pooling,
activation, padding, batch normalization, and stride to the
images, to detect one or more particular image-features that
are determined to be predictive for LLD detection; (b5)
perform pooling and image traversal, through a particular
path of convolutions that was passed in step (b4), and
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concurrently extracting a next set of unique features from
said images of the training set by using computerized-vision
object detection and computerized-vision pattern recogni-
tion; (b6) stacking multiple sets of convolutions that were
passed in step (b4), and also stacking multiple pooling layers
that were pooled in step (b5), to generate reduced-size
images; (b7) feeding the reduced-size images into one or
more dense layers of said CNN unit; (b8) applying a
SoftMax classifier to reduce binary loss, and further apply-
ing a sigmoid classifier; (b9) adjusting a learning rate of said
CNN unit for convergence into a solution; (b10) generating
by said CNN unit a single-neuron output with a sigmoid
activation, which indicates a binary-type output with regard
to a particular image; wherein the binary-type output is
either (i) the particular image is not associated with LLD, or
(ii) the particular image is associated or is possibly associ-
ated with LLD; (¢) operating on the validation set of images
by: performing steps (b1) through (b10) on the validation set
of images to verify an accuracy of classifications performed
by said CNN unit; (d) performing a transfer learning process
at said central server, on a dynamically-updated dataset of
images of legs of patients; periodically generating at said
central server an upgraded DNN model; and periodically
sending the upgraded DNN model to the plurality of imag-
ing devices.

[0334] Some embodiments provide a a computerized
method, which is implemented by utilizing at least: one or
more processors that are configured to execute code, and that
are operably associated with one or more memory units that
are configured to execute code. The method comprises:
detecting Leg Length Discrepancy (LLD) of humans, by
applying a Machine Learning algorithm with a Deep Neural
Network (DNN) model that classifies digital non-radiologi-
cal non-X-Ray photographs of legs; wherein the method
comprises: (a) providing a plurality of distributed end-user
devices, wherein each end-user device is an electronic
device selected from the group consisting of: a smartphone,
a tablet, an electronic device comprising a processor and an
imager; wherein each end-user device is configured to
acquire digital non-radiological non-X-Ray photographs of
legs of persons; wherein each end-user device is configured
to perform: (i) a learn-and-predict process, (ii) a Deep
Neural Network (DNN) model upgrade process, and (iii) a
database transfer process; wherein each end-user device
locally-stores therein, and locally-runs therein, a local ver-
sion of a DNN model that is periodically updated by a
central computer server; (b) providing said central computer
server, that is configured to communicate separately, over
Internet-based communication links, with each one of the
plurality of distributed end-user devices; wherein the central
computer server comprises a DNN Engine; wherein the
method comprises configuring or operating said DNN
Engine (bl) to receive an initial training set of digital
non-radiological non-X-Ray photographs of legs of persons,
(b2) to generate from said initial training set an initial DNN
model, that is capable of classifying a particular new digital
non-radiological non-X-Ray photograph either as manifest-
ing LLD or as non-manifesting LLD, (b3) to receive, from
time to time, from a particular end-user device out of said
plurality of end-user devices, a copy of additional digital
non-radiological non-X-Ray photographs that were captured
by said particular end-user device and that were already
classified as manifesting LD or non-manifesting LLD
based on a current version of the DNN model that is installed
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in said particular end-user device, (b4) to add said additional
digital non-radiological non-X-Ray photographs to a master
database utilized by said central computer server, (b5) to
update said initial DNN model based on cumulative DNN
learning derived from said additional digital non-radiologi-
cal non-X-Ray photographs; wherein the method further
comprises: at said DNN Engine, periodically upgrading the
DNN model, and periodically distributing an upgraded DNN
model to each one of said end-user devices; wherein at least
one of: (I) an end-user device out of the plurality of end-user
devices, (II) said central computer server, is configured to
utilize said upgraded DNN model to generate a determina-
tion for LLD diagnosis, indicating whether or not a particu-
lar subject has a Leg Length Discrepancy (LLD), by feeding
a digital non-radiological non-X-Ray photograph of legs of
said particular subject into said upgraded DNN model, based
on output from a sigmoid-activated single-neuron of said
DNN model.

[0335] Some embodiments provide systems, devices, and
methods of determining Anisomelia or Leg Length Discrep-
ancy (LLD) of a subject, by using image analysis and
machine learning. A system includes a plurality of end-user
devices; each device includes a camera to capture digital
non-radiological non-X-Ray photographs of legs of a per-
son; each device further includes a local Deep Neural
Network (DNN) engine to perform local classification of
images as either manifesting LL.D or non-manifesting LL.D.
The digital non-radiological non-X-Ray photographs are
also uploaded from the end-user devices to a central server,
which updates and upgrades the DNN model based on
transfer learning, and periodically distributes the upgraded
DNN model downstream to the end-user devices.

[0336] Although portions of the discussion herein relate,
for demonstrative purposes, to wired links and/or wired
communications, some embodiments are not limited in this
regard, but rather, may utilize wired communication and/or
wireless communication; may include one or more wired
and/or wireless links; may utilize one or more components
of wired communication and/or wireless communication;
and/or may utilize one or more methods or protocols or
standards of wireless communication.

[0337] Any one or more of the components or units
described above and/or herein may be implemented by using
a suitable combination of hardware components and/or
software components; for example, a processor, a processing
core, a Central Processing Unit (CPU), a Graphics Process-
ing Unit (GPU), a Digital Signal Processor (DSP), a con-
troller, an Integrated Circuit (IC), a logic circuit; a short-
term memory unit (e.g., Random Access Memory (RAM),
Flash memory); a long-term storage unit (e.g., hard disk
drive, solid state drive, Flash drive); an input unit (e.g.,
keyboard, keypad, touch-screen, mouse, pointing device,
microphone); an output unit (e.g., screen, touch-screen,
display unit, audio speakers); wired transceivers and/or
wireless transceivers (e.g., Ethernet card, Network Interface
Card (NIC), modem, Wi-Fi transceiver, cellular transceiver,
Bluetooth transceiver); a power source (battery, recharge-
able battery, power cell, mains electricity); an Operating
System (OS), drivers, applications, and/or other suitable
components.

[0338] Some embodiments may be implemented by using
a special-purpose machine or a specific-purpose device that
is not a generic computer, or by using a non-generic com-
puter or a non-general computer or machine. Such system or
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device may utilize or may comprise one or more compo-
nents or units or modules that are not part of a “generic
computer” and that are not part of a “general purpose
computer”, for example, cellular transceivers, cellular trans-
mitter, cellular receiver, GPS unit, location-determining
unit, accelerometer(s), gyroscope(s), device-orientation
detectors or sensors, device-positioning detectors or sensors,
or the like.

[0339] Some embodiments may be implemented as, or by
utilizing, an automated method or automated process, or a
machine-implemented method or process, or as a semi-
automated or partially-automated method or process, or as a
set of steps or operations which may be executed or per-
formed by a computer or machine or system or other device.

[0340] Some embodiments may be implemented by using
code or program code or machine-readable instructions or
machine-readable code, which may be stored on a non-
transitory storage medium or non-transitory storage article
(e.g., a CD-ROM, a DVD-ROM, a physical memory unit, a
physical storage unit), such that the program or code or
instructions, when executed by a processor or a machine or
a computer, cause such processor or machine or computer to
perform a method or process as described herein. Such code
or instructions may be or may comprise, for example, one or
more of: software, a software module, an application, a
program, a subroutine, instructions, an instruction set, com-
puting code, words, values, symbols, strings, variables,
source code, compiled code, interpreted code, executable
code, static code, dynamic code; including (but not limited
to) code or instructions in high-level programming lan-
guage, low-level programming language, object-oriented
programming language, visual programming language,
compiled programming language, interpreted programming
language, C, C++, C#, Java, JavaScript, SQL, Ruby on
Rails, Go, Cobol, Fortran, ActionScript, AJAX, XML,
JSON, Lisp, Eiffel, Verilog, Hardware Description Lan-
guage (HDL), BASIC, Visual BASIC, MATLAB, Pascal,
HTML, HTMLS5, CSS, Perl, Python, PHP, machine lan-
guage, machine code, assembly language, or the like.
[0341] Discussions herein utilizing terms such as, for
example, “processing”, “computing”, “calculating”, “deter-
mining”, “establishing”, “analyzing”, “checking”, “detect-
ing”, “measuring”, or the like, may refer to operation(s)
and/or process(es) of a processor, a computer, a computing
platform, a computing system, or other electronic device or
computing device, that may automatically and/or autono-
mously manipulate and/or transform data represented as
physical (e.g., electronic) quantities within registers and/or
accumulators and/or memory units and/or storage units into
other data or that may perform other suitable operations.

[0342] The terms “plurality” and “a plurality”, as used
herein, include, for example, “multiple” or “two or more”.
For example, “a plurality of items” includes two or more
items.

[0343] References to “one embodiment”, “an embodi-
ment”, “demonstrative embodiment”, “various embodi-
ments”, “some embodiments”, and/or similar terms, may
indicate that the embodiment(s) so described may optionally
include a particular feature, structure, or characteristic, but
not every embodiment necessarily includes the particular
feature, structure, or characteristic. Furthermore, repeated
use of the phrase “in one embodiment” does not necessarily

refer to the same embodiment, although it may. Similarly,
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repeated use of the phrase “in some embodiments” does not
necessarily refer to the same set or group of embodiments,
although it may.

[0344] As used herein, and unless otherwise specified, the
utilization of ordinal adjectives such as “first”, “second”,
“third”, “fourth”, and so forth, to describe an item or an
object, merely indicates that different instances of such like
items or objects are being referred to; and does not intend to
imply as if the items or objects so described must be in a
particular given sequence, either temporally, spatially, in
ranking, or in any other ordering manner.

[0345] Some embodiments may be used in, or in conjunc-
tion with, various devices and systems, for example, a
Personal Computer (PC), a desktop computer, a mobile
computer, a laptop computer, a notebook computer, a tablet
computer, a server computer, a handheld computer, a hand-
held device, a Personal Digital Assistant (PDA) device, a
handheld PDA device, a tablet, an on-board device, an
off-board device, a hybrid device, a vehicular device, a
non-vehicular device, a mobile or portable device, a con-
sumer device, a non-mobile or non-portable device, an
appliance, a wireless communication station, a wireless
communication device, a wireless Access Point (AP), a
wired or wireless router or gateway or switch or hub, a wired
or wireless modem, a video device, an audio device, an
audio-video (A/V) device, a wired or wireless network, a
wireless area network, a Wireless Video Area Network
(WVAN), a Local Area Network (LAN), a Wireless LAN
(WLAN), a Personal Area Network (PAN), a Wireless PAN
(WPAN), or the like.

[0346] Some embodiments may be used in conjunction
with one way and/or two-way radio communication sys-
tems, cellular radio-telephone communication systems, a
mobile phone, a cellular telephone, a wireless telephone, a
Personal Communication Systems (PCS) device, a PDA or
handheld device which incorporates wireless communica-
tion capabilities, a mobile or portable Global Positioning
System (GPS) device, a device which incorporates a GPS
receiver or transceiver or chip, a device which incorporates
an RFID element or chip, a Multiple Input Multiple Output
(MIMO) transceiver or device, a Single Input Multiple
Output (SIMO) transceiver or device, a Multiple Input
Single Output (MISO) transceiver or device, a device having
one or more internal antennas and/or external antennas,
Digital Video Broadcast (DVB) devices or systems, multi-
standard radio devices or systems, a wired or wireless
handheld device, e.g., a Smartphone, a Wireless Application
Protocol (WAP) device, or the like.

[0347] Some embodiments may comprise, or may be
implemented by using, an “app” or application which may
be downloaded or obtained from an “app store” or “appli-
cations store”, for free or for a fee, or which may be
pre-installed on a computing device or electronic device, or
which may be otherwise transported to and/or installed on
such computing device or electronic device.

[0348] Functions, operations, components and/or features
described herein with reference to one or more embodiments
of the present invention, may be combined with, or may be
utilized in combination with, one or more other functions,
operations, components and/or features described herein
with reference to one or more other embodiments of the
present invention. The present invention may thus comprise
any possible or suitable combinations, re-arrangements,
assembly, re-assembly, or other utilization of some or all of
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the modules or functions or components that are described
herein, even if they are discussed in different locations or
different chapters of the above discussion, or even if they are
shown across different drawings or multiple drawings.
[0349] While certain features of some demonstrative
embodiments of the present invention have been illustrated
and described herein, various modifications, substitutions,
changes, and equivalents may occur to those skilled in the
art. Accordingly, the claims are intended to cover all such
modifications, substitutions, changes, and equivalents.
What is claimed is:
1. A computerized system,
which is implemented by utilizing at least: one or more
processors that are configured to execute code, and that
are operably associated with one or more memory units
that are configured to execute code;
wherein the system is configured to detect Leg Length
Discrepancy (LLD) of humans, by applying a Machine
Learning algorithm with a Deep Neural Network
(DNN) model that classifies digital non-radiological
non-X-Ray photographs of legs;
wherein the system comprises:
(a) a plurality of distributed end-user devices,
wherein each end-user device is an electronic device
selected from the group consisting of: a smartphone, a
tablet, an electronic device comprising a processor and
an imager;
wherein each end-user device is configured to acquire
digital non-radiological non-X-Ray photographs of
legs of persons;
wherein each end-user device is configured to perform: (i)
a learn-and-predict process, (ii) a Deep Neural Network
(DNN) model upgrade process, and (iii) a database
transfer process;
wherein each end-user device locally-stores therein, and
locally-runs therein, a local version of a DNN model
that is periodically updated by a central computer
server;
(b) said central computer server, that is configured to com-
municate separately, over Internet-based communication
links, with each one of the plurality of distributed end-user
devices;
wherein the central computer server comprises a DNN
Engine, that is configured
(b1) to receive an initial training set of digital non-radio-
logical non-X-Ray photographs of legs of persons,
(b2) to generate from said initial training set an initial DNN
model, that is capable of classifying a particular new digital
non-radiological non-X-Ray photograph either as manifest-
ing LLD or as non-manifesting LL.D,
(b3) to receive, from time to time, from a particular end-user
device out of said plurality of end-user devices, a copy of
additional digital non-radiological non-X-Ray photographs
that were captured by said particular end-user device and
that were already classified as manifesting LLLD or non-
manifesting LLD based on a current version of the DNN
model that is installed in said particular end-user device,
(b4) to add said additional digital non-radiological non-X-
Ray photographs to a master database utilized by said
central computer server,
(b5) to update said initial DNN model based on cumulative
DNN learning derived from said additional digital non-
radiological non-X-Ray photographs;
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wherein the DNN Engine periodically upgrades the DNN
model, and periodically distributes an upgraded DNN
model to each one of said end-user devices;

wherein at least one of: (I) an end-user device out of the
plurality of end-user devices, (1) said central computer
server, is configured to utilize said upgraded DNN
model to generate a determination for LLD diagnosis,
indicating whether or not a particular subject has a Leg
Length Discrepancy (LLD), by feeding a digital non-
radiological non-X-Ray photograph of legs of said
particular subject into said upgraded DNN model,
based on output from a sigmoid-activated single-neu-
ron of said DNN model.

2. The computerized system of claim 1,

wherein an accuracy of diagnosis of LLD, by each of the
plurality of end-user devices or by said central com-
puter server, gradually improves based on cumulative
DNN learning by the central computer server which is
based on analysis of images from the plurality of
end-user devices.

3. The computerized system of claim 2,

wherein the central computer server comprises:

a Master LLD Database which stores images that are
utilized by the central computer server to generate and
to update the DNN model for detection of LLD; and

a Transferred Learning LD Database which stores
images that were received from a particular end-user
device and that were not yet utilized for updating the
DNN model,;

wherein a DNN Model Updater Unit operates to upgrade
and improve the DNN model based on the images in the
Transferred Learning LLD Database; and wherein con-
tent of the Transferred Learning LL.D Database is then
added to the Master LLD Database of the central
computer server.

4. The computerized system of claim 3,

wherein the central server computer stores at least: (i) a
first version of the DNN model, which is currently
being utilized for LD determination by at least one
end-user device; and also, (ii) a second version of the
DNN model, which is an upgraded version of the DNN
model that is more accurate than the first version of the
DNN model, and which is pending for distribution to
one or more end-user devices.

5. The computerized system of claim 4,

wherein each end-user device periodically replaces, (1) a
current-version of the DNN model that is stored locally
and is utilized locally in the end-user device, with (II)
an upgraded-version of the DNN model that is peri-
odically received over an Internet-based communica-
tion link from said central computer server.

6. The computerized system of claim 1,

wherein each end-user device is equipped with a security
module that is configured to block malicious images
from being added to a locally-stored dataset of images
and from being copied upstream to said central com-
puter server.

7. The computerized system of claim 1,

wherein said DNN model is configured to detect LLD of
a particular person, based on a group photograph that
depicts two or more persons standing together;

wherein said DNN model is trained on pre-classified
group photographs, wherein each of said pre-classified
group photographs depicts two or more persons stand-
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ing together; wherein each of said pre-classified group
photographs is classified into exactly one of exactly
two classes that are: (i) a first class, in which the group
photograph manifests LLD of at least one depicted
person, and (ii) a second class, in which the group
photograph does not manifest LLD of any depicted
person.

8. The computerized system of claim 1,

wherein said images of legs of patients include, exclu-
sively, side images of legs of patients, and not frontal
images of legs of patients;

wherein said DNN model is trained on a pre-classified set
of images, that depict side-views of legs of patients,
and that are pre-classified as either manifesting LD or
non-manifesting LLD.

9. The computerized system of claim 1,

wherein said images of legs of patients include, exclu-
sively, at-an-angle images of legs of patients, which are
non-frontal images and are non-rear-side images and
non-right-side images and are non-left-side images of
legs;

wherein said DNN model is trained on a pre-classified set
of images, that depict at-an-angle images of legs of
patients, and that are pre-classified as either manifest-
ing LLD or non-manifesting LLD.

10. The computerized system of claim 1,

wherein said images of legs of patients include both: (i)
side images of legs of patients, and (ii) frontal images
of legs of patients;

wherein said DNN model is trained on both

(D a first pre-classified set of images that depict side-
views of legs of patients and that are pre-classified as
either manifesting LLD or non-manifesting LLLD, and
also

(I) a second pre-classified set of images that depict
front-views of legs of patients and that are pre-classi-
fied as either manifesting LLD or non-manifesting
LLD.

11. The computerized system of claim 1,

wherein the DNN model is developed and is dynamically
updated at the central computer server based on images
of legs that are uploaded to said central computer server
from said plurality of end-user devices;

wherein a current version of the DNN model is periodi-
cally distributed from said central server computer to
said end-user devices, and dynamically replaces on said
end-user devices a prior version of the DNN model;

wherein central updating of the DNN model, based on
images of legs that are uploaded to said central com-
puter server from a plurality of end-user devices that
are located at a plurality of different locations, causes
the DNN model and the determining of LLD to be more
resilient to bias;

wherein the DNN model is configured to reduce bias or to
eliminate bias in diagnosis of LDD by performing
training and convolutions on said images of legs of
patients that were collected from said plurality of
remote imaging devices that are located at a plurality of
remote locations, rather than by relying on legs images
from a single source or from a single hospital or from
a single geographical region.
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12. The computerized system of claim 1,

wherein a first end-user device of said plurality of end-
user devices, is located in a first geographical region
and is operated by a first operator, and thus suffers from
a first level of bias;

wherein a second end-user device of said plurality of
end-user devices, is located in a second, different,
geographical region and is operated by a second, dif-
ferent operator, and thus suffers from a second level of
bias;

wherein the DNN model is dynamically updated at the
central computer server based on images of legs that
are uploaded to said central computer server from said
plurality of end-user devices that comprise said first
end-user device having said first level of bias and said
second end-user device having said second level of
bias;

wherein central updating of the DNN model, based on
images of legs that are uploaded to said central com-
puter server from the plurality of end-user devices that
are located at a plurality of different locations and are
operated by a plurality of different operators, causes the
DNN model and detection of LLD to be more resilient
to bias.

13. The computerized system of claim 1,

wherein at least one of the end-user devices is configured
to capture a video clip that depicts legs of a person, and
is further configured to select only a single particular
video frame from said video clip;

wherein only said single particular video frame, and not
other video frames of said video clip, is used for local
in-device LLD detection;

wherein only said single particular video frame, and not
other video frames of said video clip, is uploaded from
said end-user device to a master LLD database of said
central computer server;

wherein said single particular video frame is selected,
locally within said end-user device, not based on its
being a video frame having highest visible qualities to
a human observer, but rather, based on being a video
frame having the highest values of parameters that
indicate image suitability for classification by a DNN-
based classifier that classifies images based on mani-
festation or non-manifestation of LLD.

14. The computerized system of claim 1,

wherein at least some of the digital non-radiological
non-X-Ray photographs, that are used for training the
DNN model, include Body Landmarks indicators that
are placed on particular body-parts or body-locations of
humans that are depicted in said photographs;

wherein the DNN model is trained on a training set of
images that include digital non-radiological non-X-Ray
photographs that show include Body [Landmarks indi-
cators.

15. The computerized system of claim 1,

wherein at least some of the digital non-radiological
non-X-Ray photographs, that are used for training the
DNN model, include Augmented Reality Markers that
are placed on particular body-parts or body-locations of
humans that are depicted in said photographs;

wherein the DNN model is trained on a training set of
images that include digital non-radiological non-X-Ray
photographs that show include Augmented Reality
Markers.
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16. The computerized system of claim 1,
wherein said digital non-radiological non-X-Ray photo-
graphs, that are used for training the DNN model and/or
for LLD classification, are stored in a blockchain that
prevents content tampering.
17. The computerized system of claim 1,
wherein said digital non-radiological non-X-Ray photo-
graphs, that are used for training the DNN model and/or
for LLD classification, are stored in a blockchain that
prevents content tampering.
18. The computerized system of claim 1,
wherein the central computer server further comprises:
(A) an Over-Fitting Prevention Unit, that is configured to
prevent or reduced over-fitting of the DNN model to digital
non-radiological non-X-Ray photographs, (A1) by perform-
ing one or more randomly-selected transformations to exist-
ing images of pairs of legs, and creating a set of image
variants which is used for increasing a diversity and a total
number of training examples of pairs-of-legs, and also (A2)
by removing one or more randomly-selected images from
said existing images of pairs of legs during a training
gradient or a training iteration;
(B) an Under-Fitting Prevention Unit, that is configured to
prevent or reduce under-fitting of the DNN model relative to
digital non-radiological non-X-Ray photographs, by per-
forming at least one of: (B1) adding a hidden layer to the
DNN model, (B2) modifying regularization parameters to
the DNN model.
19. The computerized system of claim 1,
wherein the central computer server is configured to
perform a process comprising:
determining whether a particular subject has a Leg Length
Discrepancy (LLD), by performing:
(al) receiving a training set of images of legs of patients;
(a2) receiving a validation set of images of legs of patients;
(b) operating on the training set of images by:
(b1) performing image normalization and image resizing on
said images of legs of patients;
(b2) modifying the images of the training set, by applying
one or more image transformation operations selected from
the group consisting of: image rotation, image flip, skewing,
zoom modification, isotropic scaling, shear transformation;
(b3) performing a binary-type classification of said images
of legs of patients, into exactly one of: (i) a first class of
images that includes only images that are determined to not
be associated with LLD, or (ii) a second class of images that
includes both images that are determined to be associated
with LLD and images that are determined to possibly be
associated with LLD;
(b4) passing the images of the training set of images via
convolutions and extracting a first set of unique features
from said images of the training set; and operating a Con-
volutional Neural Network (CNN) unit which applies con-
volution, kernel initialization, pooling, activation, padding,
batch normalization, and stride to the images, to detect one
or more particular image-features that are determined to be
predictive for LLD detection;
(b5) perform pooling and image traversal, through a par-
ticular path of convolutions that was passed in step (b4), and
concurrently extracting a next set of unique features from
said images of the training set by using computerized-vision
object detection and computerized-vision pattern recogni-
tion;
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(b6) stacking multiple sets of convolutions that were passed
in step (b4), and also stacking multiple pooling layers that
were pooled in step (bS), to generate reduced-size images;
(b7) feeding the reduced-size images into one or more dense
layers of said CNN unit;
(b8) applying a SoftMax classifier to reduce binary loss, and
further applying a sigmoid classifier;
(b9) adjusting a learning rate of said CNN unit for conver-
gence into a solution;
(b10) generating by said CNN unit a single-neuron output
with a sigmoid activation, which indicates a binary-type
output with regard to a particular image; wherein the binary-
type output is either (i) the particular image is not associated
with LLD, or (ii) the particular image is associated or is
possibly associated with LLD;
(c) operating on the validation set of images by:
performing steps (b1) through (b10) on the validation set
of images to verify an accuracy of classifications per-
formed by said CNN unit;
(d) performing a transfer learning process at said central
server, on a dynamically-updated dataset of images of legs
of patients; periodically generating at said central server an
upgraded DNN model; and periodically sending the
upgraded DNN model to the plurality of imaging devices.
20. A computerized method,
which is implemented by utilizing at least: one or more
processors that are configured to execute code, and that
are operably associated with one or more memory units
that are configured to execute code,
the computerized method comprising:
detecting Leg Length Discrepancy (LLD) of humans, by
applying a Machine Learning algorithm with a Deep
Neural Network (DNN) model that classifies digital
non-radiological non-X-Ray photographs of legs;
wherein the computerized method comprises:
(a) providing a plurality of distributed end-user devices,
wherein each end-user device is an electronic device
selected from the group consisting of: a smartphone, a
tablet, an electronic device comprising a processor and
an imager;
wherein each end-user device is configured to acquire
digital non-radiological non-X-Ray photographs of
legs of persons;
wherein each end-user device is configured to perform: (i)
a learn-and-predict process, (ii) a Deep Neural Network
(DNN) model upgrade process, and (iii) a database
transfer process;
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wherein each end-user device locally-stores therein, and
locally-runs therein, a local version of a DNN model
that is periodically updated by a central computer
server;
(b) providing said central computer server, that is configured
to communicate separately, over Internet-based communi-
cation links, with each one of the plurality of distributed
end-user devices;
wherein the central computer server comprises a DNN
Engine,
wherein the computerized method comprises operating
said DNN Engine
(b1) to receive an initial training set of digital non-radio-
logical non-X-Ray photographs of legs of persons,
(b2) to generate from said initial training set an initial DNN
model, that is capable of classifying a particular new digital
non-radiological non-X-Ray photograph either as manifest-
ing LLD or as non-manifesting LL.D,
(b3) to receive, from time to time, from a particular end-user
device out of said plurality of end-user devices, a copy of
additional digital non-radiological non-X-Ray photographs
that were captured by said particular end-user device and
that were already classified as manifesting LLLD or non-
manifesting LLD based on a current version of the DNN
model that is installed in said particular end-user device,
(b4) to add said additional digital non-radiological non-X-
Ray photographs to a master database utilized by said
central computer server,
(b5) to update said initial DNN model based on cumulative
DNN learning derived from said additional digital non-
radiological non-X-Ray photographs;
wherein the computerized method further comprises:
at said DNN Engine, periodically upgrading the DNN
model, and periodically distributing an upgraded DNN
model to each one of said end-user devices;
wherein at least one of: (I) an end-user device out of the
plurality of end-user devices, (II) said central computer
server, is configured to utilize said upgraded DNN
model to generate a determination for LLD diagnosis,
indicating whether or not a particular subject has a Leg
Length Discrepancy (LLD), by feeding a digital non-
radiological non-X-Ray photograph of legs of said
particular subject into said upgraded DNN model,
based on output from a sigmoid-activated single-neu-
ron of said DNN model.
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