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(57) ABSTRACT

A regularized multi-metric active learning (AL) image clas-
sification system which includes three main parts. First, a
regularized multi-metric learning process is utilized to
jointly learn distinct metrics for different types of image
features from remotely sensed image data. The regularizer
incorporates the unlabeled data based on the neighborhood
relationship, which helps avoid overfitting at early stages of
AL, when the quantity of training data is particularly small.
Then, as AL proceeds, the regularizer is also updated
through similarity propagation, thus taking advantage of
informative labeled samples. Finally, multiple features are
projected into a common feature space, in which a batch-
mode AL strategy combining uncertainty and diversity is
utilized in conjunction with k-nearest neighbor (kNN) clas-
sification to enrich the set of labeled samples.
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REGULARIZED MULTI-METRIC ACTIVE
LEARNING SYSTEM FOR IMAGE
CLASSIFICATION

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62/732,375 filed Sep. 17, 2018,
which is hereby incorporated by reference in its entirety.

GOVERNMENT RIGHTS CLAUSE

[0002] This invention was made with government support
under DE-AR0000593 awarded by the Department of
Energy. The government has certain rights in the invention.

BACKGROUND

[0003] Hyperspectral sensors have enabled the collection
of remotely sensed image data having hundreds of narrow,
contiguous bands of the electromagnetic spectrum, thus
providing rich spectral detail. The recent development of
advanced hyperspectral sensors increases the availability of
high spectral and spatial resolution hyperspectral imagery
via space-based, airborne, and unmanned aerial vehicle
(UAV) platforms. Such imagery has been particularly useful
in the field of remote image sensing for land cover classi-
fication, since the detailed spectral information enables
better discrimination of different land cover types as com-
pared to natural color images or multispectral data. Integra-
tion of disparate features (e.g., spectral and spatial features)
often provides complementary information that improves
classification performance. However, the further increased
dimensionality of the input image data exacerbates the high
dimensionality problem of hyperspectral data for developing
a robust supervised image classifier. Therefore, improve-
ments are needed in the field.

SUMMARY

[0004] According to one aspect, a method of processing
remotely sensed input image data is provided, comprising
receiving remotely sensed input image data, the input image
data comprising a plurality of image features, regularizing
the input image data by applying a multimetric heteroge-
neous multimetric learning (HMML) active learning process
which incorporates unlabeled data in the input data based on
neighborhood relationships within the input data, and updat-
ing similarity matrices in the HMML active learning process
by incorporating supervised information in the dataset and
iterating said regularizing to again regularize the input
image data, revising the image data wherein a set of unla-
beled samples having a maximum degree of uncertainty are
first considered based on an uncertainty criterion, after
which a diversity criterion is applied to select the most
informative samples from a resulting contention pool.
[0005] This summary is provided to introduce the selec-
tion of concepts in a form that is easy to understand the
detailed embodiments of the descriptions. The embodiments
are then brought together in a final embodiment which
described an environment, thereby stressing that each of the
embodiments may be viewed in isolation, but also the
synergies among them are very significant. This summary is
not intended to identify key subject matter or key features or
essential features thereof.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The above and other objects, features, and advan-
tages of various examples will become more apparent when
taken in conjunction with the following description and
drawings wherein identical reference numerals have been
used, where possible, to designate identical features that are
common to the figures, and wherein:

[0007] FIG. 1 is a flow diagram illustrating a process for
processing remotely sensed image data according to one
embodiment.

[0008] FIG. 2 is a summarized description of the steps
performed in the diagram of FIG. 1.

[0009] FIG. 3 illustrates a system for processing remotely
sensed image data using the process of FIG. 1 according to
one embodiment.

DETAILED DESCRIPTION

[0010] The term “drawings” used herein refers to draw-
ings attached herewith and to sketches, drawings, illustra-
tions, photographs, or other visual representations found in
this disclosure. The terms “I,” “we,” “our” and the like
throughout this disclosure do not refer to any specific

individual or group of individuals.

[0011] The present disclosure provides and system and
method for processing remotely sensed input image data to
produce high quality output image maps. The sensed input
image data is typically high dimensional data, such as
multi/hyperspectral, LIDAR, or RGB+Texture data. The
method comprises three main parts, which are illustrated in
the flow diagram of FIG. 1. As shown, multi-feature input
image data 102 is received and directed to a regularized
heterogeneous multimetric learning (HMML) processing
block 104. After being processed by the block 104, the data
is directed to a kNN classifier block 106. Block 106 refines
the regularizer using a kNN classifier using an updated set
of similarity matrices which incorporates supervised infor-
mation from the data set to reflect the real similarity between
data pairs. The data is then processed by block 108 which
applies an active learning (AL) process wherein a set of
unlabeled samples having a maximum degree of uncertainty
are first considered based on an uncertainty criterion, after
which a diversity criterion is applied to select the most
informative samples from a resulting contention pool. The
output of block 108 is directed to block 110 where training
samples are incorporated and directed again to block 104
and 106, in addition to block 112 which updated the regu-
larizer as shown and discussed further below.

[0012] LetX={[x,', x> ..., x2]}_," and denote a set of
n samples with Q different types of features, where xinqu
represents the ith sample from the qth feature type and d? is
the dimensionality of the corresponding feature space. Simi-
larly, let L={[x,", x2, . . ., x,2], y,},_,” be a set of training
samples, which is constructed by selecting 1 samples from
the set X, with corresponding class labels, and U=be the set
of the remaining unlabeled samples, where U={[x,", x/?, . .
., %2}, To deal with high dimensional input data X,
LMNN, a single type feature strategy, was adapted to a
multi-type feature setting and referred to as HMML. The
distance between two training samples is defined by con-
sidering all the features:
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where U7ER"™*¥ corresponds to a transformation matrix for
the qgth feature type, and r? and d? are the input and output
of the dimensionality of the qth feature type respectively.
Also, for a labeled sample (x;, y;), we denote (x;, y,) as one
of the kNNs of x, with label y =y,, and (x,, y;) as any sample
with label y,#y,. Therefore, the two term loss function can be
formulated as

e= (1 — pepuy + e,y (2)
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[0013] where [-],=max(-,0) is the hinge loss. The term ¢,,,,,;
acts to pull neighboring samples with the same label closer,
while the term ¢, pushes differently labeled samples
further apart. The two terms are combined using a weighting
parameter .. The multiple metrics are coupled via the hinge
loss and learned jointly from the training data, thus allowing
the information from multiple features to be fused. Note that
HMML degenerates to LMNN when Q=1. HMML only
exploits the labeled information for feature reduction, which
is likely to overfit with a small training set. Incorporating the
abundant unlabeled samples into the learning process is
important since they can provide information on the under-
lying data distribution and thus help avoid overfitting. For
multi-metric learning, an unsupervised regularizer is con-
structed as follows:

14 & R “
reg=3 >, WilU G~
=1 ij=1
0
= Z r(XTLIXTYT )
g=1
q q 5
W-Z={1’ xeNuxD) 5
! 0, otherwise

[0014] For the qth type of feature, in equation (4), tr refers
to the trace operator; X?=[x7, . . ., x,7]JER™" represents the
sample matrix; L9=D7-W¥ is a Laplacian matrix; D? is a
diagonal matrix whose diagonal elements are computed by

q. — q
ZW we = (WiT |

is the kNN graph matrix, which represents the similarities
between all sample pairs, and N(x,7) denotes the neighbor-
hood of data point X,? based on the Euclidean metric. Note
that W? is asymmetric and W,?=t. The loss function in
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equation (2) is augmented by including the proposed relu-
larizer into HMML, and the objective function of
RegHMML is then defined as:

€57 (1~ L)€ it HE s Areg (6)

where A is a tradeoff parameter between the loss function
and the regularizer.

[0015] In a metric-active learning framework, an impor-
tant step is to obtain a reduced feature space at each AL
iteration. For this purpose, Eq. (6) should be minimized with
respect to {U?}__, €, and the projection matrix U? should be
constrained to be rectangular of size r7xd? with r<<d?. At
each AL iteration, the gradient descendent approach is use d
to solve this optimization problem. The gradient with respect
to U? is

Oeonj @]
auT ~
21 —ﬂ)qu CL+2uU7 Y (Ch - Ch+20UTXILIXT
ij=1 (G, DEN,
Where C,*=(x,7-x9)(x,7=x q) and N, .+ Tepresents a set of

triples (4, J, DEN,,, that trlggers the hlnge loss in equatlon
(3). After learning the projection matrix set {U?},_, €, KNN
classification is performed based on the distance metric
defined in equation (1). Therefore, having obtained the
projection matrix, a sample with different types of features
can be represented in a lower dimensional feature space as
%,=Ux,, where U is a block diagonal matrix with {U?}__,©
as the block entries. The resulting feature space, in which the
AL query is applied, is then x,=[U'x,", U*x 2, . . ., U%x“].
[0016] Next, the regularizer is refined via similarity propa-
gation as follows. In the regularizer, KNN graph based
similarities {W?} _ ,€ for all feature types are constructed to
provide a smoothness measure for data neighborhoods and
help avoid overfitting. However, in an AL framework, the
fixed unsupervised similarities may not be suitable for the
classification task. This is because 1) they may not connect
the actual similar sample pairs, e.g., sample within the same
class; and 2) unsupervised information becomes less impor-
tant as more labeled samples are iteratively added into the
training set Therefore, instead of using fixed similarities
{W?}__,€, the system learns a new set of similarity matrices
{Wq} 2 which can reflect the real similarity between data
pairs %y incorporating supervised information. Supervised
information is information which has been selected by a user
as representative as suitable training data. A strong similarity
matrix constructed based on the labeled information, is
defined as SR [text missm% or illegible when filed],
where S 9=1 for any I and S,™=1 for samples within the
same class and zero to all other elements. Therefore, we
have the same S for all types of features. Then, for each
feature type, we regard the 1-elements as original positive
energies and try to propagate these energies to the 0-ele-
ments in S, following the path built in the feature specific
weak 51m11ar1ty matrices {W?} _, €, For the qth feature type,
for example, the similarity propagatlon can be formulated as

=1y

n
(i+1) (8)
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+0) =1
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Where S, [text missing or illegible when filed]denotes
the ith row of matrix S? at the tth time stamp, and a,
restricted by 0<a<l, is a parameter indicating the relative
amount of the information from its neighbors and its super-
vised information. Equation (8) can be written in matrix
form as

59 2 (1 - )5 + oPrs?” )

Where P?=(D7)"'W7 is the transition probability matrix
widely used in Markov random walk models. Since 0<a<1,
and the eigenvalues of P? are in [-1, 1], S? " converges and
its limit can be directly calculated as

597 = limS7 = (1 - a)(f — aP?)"L5O 10
1—>oco

Then, the new similarity matrix for the qth feature type can
be built by exploiting symmetry in the converged similarity
matrix S[text missing or illegible when filed]and
removing small values (absolute values are smaller than a
pre-defined threshold 6). The resulting similarity matrix is

an

Wq Sq+ i Sq+1
2

+n

However, since the computational overhead for the inver-
sion problem is O(n?), it is very time consuming to calculate
(I-aP)™* with direct methods for large scale images. Con-
sidering

we approximate the matrix inverse by using the first order
term, which becomes (I-aP)™'=I+aP with O(n?) computa-
tional complexity.

[0017] Finally, the regularizer in equation (4) is refined by
updating {L7}__,© based on the new set of similarity matrice
{Wa} q:1g at every update_step iteration as AL proceeds
(when update_step=1, the regularizer is updated at every
iteration), which exploits the increasing labeled information
provided by the user.

[0018] After learning a low dimensional feature space, an
active sampling strategy is needed to enrich the training set
iteratively. In a batch-mode AL, both uncertainty and diver-
sity need to be considered. The system quantifies the uncer-
tainty of a pixel by considering a committee of classifiers,
and the samples that exhibit the maximum disagreement
between different models are selected. An uncertainty cri-
terion is applied, in which the unlabeled samples are pre-
dicted using a committee of kNN classifiers, and each
member is characterized by a different number of nearest
neighbors, k.

[0019] The system also applies a diversity criterion to
reduce the redundancy among the new queried samples. At
a given AL iteration, we consider the following restrictions
for sample selection: 1) samples that have completely iden-
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tical label predictions from all the committee members with
any already selected sample in the batch cannot be queried;
and 2) any class cannot have more than S samples, where S
is a user-defined parameter, and the class label is decided
using majority voting based on the committee predictions. A
schematic illustration of the proposed diversity criterion is
shown in Table 1. In this example, assume that the committee
classifiers are defined as k={1, 3, 5}, the class labels are A,
B, and C, and S is set to 2. Suppose in the current iteration,
candidate samples {xj}jzlg have the same degree of uncer-
tainty. After selecting samples x,, X,, and x;, sample x, and
X5 cannot be selected ,,,..1) X, has the same label predictions
as sample x, from all the three calssifiers; and 2) x5 has the
same majority voting label (label A) as x; and x;. Sample x4
can still be selected as it does not conflict with either of the
two restrictions. Note that this criterion does not require
clustering or other complicated techniques, but is simply
based on the outputs of the committee kNN classifiers which
can be accessed directly. Therefore, the final AL strategy
includes two steps: uncertainty and diversity. A set of
candidate unlabeled samples with the maximum degree of
uncertainty are first considered based on the uncertainty
criterion. Then, the diversity criterion is applied to select the
most informative samples from the resulting contention
pool.

TABLE 1

Example of diversity criterion

Query
Predicted Labels Decision
Candidate PA$BEC v query
Samples k=1 k=3 k=5 X not query
Xy & @ & v
X2 & ] & v
X3 : & : v
X4 & & & X
s & : & X
%g & @ & 4
[0020] Throughout this description, some aspects are

described in terms that would ordinarily be implemented as
software programs. Those skilled in the art will readily
recognize that the equivalent of such software system 1040
are constructed in hardware, firmware, or micro-code.
Because data-manipulation algorithms and systems are well
known, the present description is directed in particular to
algorithms and systems forming part of, or cooperating more
directly with, systems and methods described herein. Other
aspects of such algorithms and systems, and hardware or
software for producing and otherwise processing signals or
data involved therewith, not specifically shown or described
herein, are selected from such systems, algorithms, compo-
nent, and elements known in the art. Given the systems and
methods as described herein, software not specifically
shown, suggested, or described herein that is useful for
implementation of any aspect is conventional and within the
ordinary skill in such arts.

[0021] FIG. 3 is a high-level diagram showing the com-
ponents of the exemplary system 1000 for analyzing the
image data and performing other analyses described herein,
and related components. The system 1000 includes a pro-
cessor 1086, a peripheral system 1020, a user interface
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system 1030, and a data storage system 1040. The peripheral
system 1020, the user interface system 1030 and the data
storage system 1040 are communicatively connected to the
processor 1086. Processor 1086 can be communicatively
connected to network 1050 (shown in phantom), e.g., the
Internet or a leased line, as discussed below. The image data
may be received using image sensor 202 (via electrodes 204)
and/or displayed using display units (included in user inter-
face system 1030) which can each include one or more of
systems 1086, 1020, 1030, 1040, and can each connect to
one or more network(s) 1050. Image sensor 202 may com-
prise a digital imaging device, such as a digital camera, or
the like. Processor 1086, and other processing devices
described herein, can each include one or more micropro-
cessors, microcontrollers, field-programmable gate arrays
(FPGAs), application-specific integrated circuits (ASICs),
programmable logic devices (PLDs), programmable logic
arrays (PLAs), programmable array logic devices (PALs), or
digital signal processors (DSPs).

[0022] Processor 1086 can implement processes of vari-
ous aspects described herein. Processor 1086 can be or
include one or more device(s) for automatically operating on
data, e.g., a central processing unit (CPU), microcontroller
(MCU), desktop computer, laptop computer, mainframe
computer, personal digital assistant, digital camera, cellular
phone, smartphone, or any other device for processing data,
managing data, or handling data, whether implemented with
electrical, magnetic, optical, biological components, or oth-
erwise. Processor 1086 can include Harvard-architecture
components, modified-Harvard-architecture components, or
Von-Neumann-architecture components.

[0023] The phrase “communicatively connected” includes
any type of connection, wired or wireless, for communicat-
ing data between devices or processors. These devices or
processors can be located in physical proximity or not. For
example, subsystems such as peripheral system 1020, user
interface system 1030, and data storage system 1040 are
shown separately from the data processing system 1086 but
can be stored completely or partially within the data pro-
cessing system 1086.

[0024] The peripheral system 1020 can include one or
more devices configured to provide digital content records to
the processor 1086. For example, the peripheral system 1020
can include digital still cameras, digital video cameras,
cellular phones, or other data processors. The processor
1086, upon receipt of digital content records from a device
in the peripheral system 1020, can store such digital content
records in the data storage system 1040.

[0025] The user interface system 1030 can include a
mouse, a keyboard, another computer (connected, e.g., via a
network or a null-modem cable), or any device or combi-
nation of devices from which data is input to the processor
1086. The user interface system 1030 also can include a
display device, a processor-accessible memory, or any
device or combination of devices to which data is output by
the processor 1086. The user interface system 1030 and the
data storage system 1040 can share a processor-accessible
memory.

[0026] In various aspects, processor 1086 includes or is
connected to communication interface 1015 that is coupled
via network link 1016 (shown in phantom) to network 1050.
For example, communication interface 1015 can include an
integrated services digital network (ISDN) terminal adapter
or a modem to communicate data via a telephone line; a
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network interface to communicate data via a local-area
network (LAN), e.g., an Ethernet LAN, or wide-area net-
work (WAN); or a radio to communicate data via a wireless
link, e.g., WiFi or GSM. Communication interface 1015
sends and receives electrical, electromagnetic or optical
signals that carry digital or analog data streams representing
various types of information across network link 1016 to
network 1050. Network link 1016 can be connected to
network 1050 via a switch, gateway, hub, router, or other
networking device.

[0027] Processor 1086 can send messages and receive
data, including program code, through network 1050, net-
work link 1016 and communication interface 1015. For
example, a server can store requested code for an application
program (e.g., a JAVA applet) on a tangible non-volatile
computer-readable storage medium to which it is connected.
The server can retrieve the code from the medium and
transmit it through network 1050 to communication inter-
face 1015. The received code can be executed by processor
1086 as it is received, or stored in data storage system 1040
for later execution.

[0028] Data storage system 1040 can include or be com-
municatively connected with one or more processor-acces-
sible memories configured to store information. The memo-
ries can be, e.g., within a chassis or as parts of a distributed
system. The phrase “processor-accessible memory” is
intended to include any data storage device to or from which
processor 1086 can transfer data (using appropriate compo-
nents of peripheral system 1020), whether volatile or non-
volatile; removable or fixed; electronic, magnetic, optical,
chemical, mechanical, or otherwise. Exemplary processor-
accessible memories include but are not limited to: registers,
floppy disks, hard disks, tapes, bar codes, Compact Discs,
DVDs, read-only memories (ROM), erasable programmable
read-only memories (EPROM, EEPROM, or Flash), and
random-access memories (RAMs). One of the processor-
accessible memories in the data storage system 1040 can be
a tangible non-transitory computer-readable storage
medium, i.e., a non-transitory device or article of manufac-
ture that participates in storing instructions that can be
provided to processor 1086 for execution.

[0029] In an example, data storage system 1040 includes
code memory 1041, e.g., a RAM, and disk 1043, e.g., a
tangible computer-readable rotational storage device such as
a hard drive. Computer program instructions are read into
code memory 1041 from disk 1043. Processor 1086 then
executes one or more sequences of the computer program
instructions loaded into code memory 1041, as a result
performing process steps described herein. In this way,
processor 1086 carries out a computer implemented process.
For example, steps of methods described herein, blocks of
the flowchart illustrations or block diagrams herein, and
combinations of those, can be implemented by computer
program instructions. Code memory 1041 can also store
data, or can store only code.

[0030] Various aspects described herein may be embodied
as systems or methods. Accordingly, various aspects herein
may take the form of an entirely hardware aspect, an entirely
software aspect (including firmware, resident software,
micro-code, etc.), or an aspect combining software and
hardware aspects These aspects can all generally be referred
to herein as a “service,” “circuit,” “circuitry,” “module,” or
“system.”
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[0031] Furthermore, various aspects herein may be
embodied as computer program products including com-
puter readable program code stored on a tangible non-
transitory computer readable medium. Such a medium can
be manufactured as is conventional for such articles, e.g., by
pressing a CD-ROM. The program code includes computer
program instructions that can be loaded into processor 1086
(and possibly also other processors), to cause functions, acts,
or operational steps of various aspects herein to be per-
formed by the processor 1086 (or other processor). Com-
puter program code for carrying out operations for various
aspects described herein may be written in any combination
of one or more programming language(s), and can be loaded
from disk 1043 into code memory 1041 for execution. The
program code may execute, e.g., entirely on processor 1086,
partly on processor 1086 and partly on a remote computer
connected to network 1050, or entirely on the remote
computer.

[0032] Those skilled in the art will recognize that numer-
ous modifications can be made to the specific implementa-
tions described above. The implementations should not be
limited to the particular limitations described. Other imple-
mentations may be possible.
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What is claimed is:

1. A method of processing remotely sensed digital images,
comprising:

receiving remotely sensed input image data, the input
image data comprising a plurality of image features;

regularizing the input image data by applying a multim-
etric HMML active learning process which incorpo-
rates unlabeled data in the input data based on neigh-
borhood relationships within the input data; and

updating similarity matrices in the HMML active learning
process by incorporating supervised information in the
dataset and iterating said regularizing to again regular-
ize the input image data;

further processing the image data to output an image
classification map, wherein said a set of unlabeled
samples having a maximum degree of uncertainty are
first considered based on an uncertainty criterion, after
which a diversity criterion is applied to select the most
informative samples from a resulting contention pool.
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