US 20150169377A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0169377 A1l

Norton et al. 43) Pub. Date: Jun. 18, 2015
(54) ABSTRACTING A MULTITHREADED Publication Classification
PROCESSOR CORE TO A SINGLE
THREADED PROCESSOR CORE (1) Int. Cl.
GOG6F 9/50 (2006.01)
(71) Applicant: HEWLETT-PACKARD (52) US.CL
DEVELOPMENT COMPANY, L.P., CPC o GO6F 9/5044 (2013.01)
Houston, TX (US)
57 ABSTRACT
(72) - Inventors: Scott J. .Norton, San Jose, CA (US); An operating system provides instructions for execution by
Hyun Kim, Sunnyvale, CA (US) plural hardware threads of a multithreaded core of a proces-
(21) Appl. No.: 14/631,286 sor, the plural hardware threads appearing as separate logical
processors to the operating system. An abstraction layer con-
(22) Filed: Feb. 25, 2015 verts respective identifiers of the plural hardware threads to a

core identifier representing the core. The abstraction layer

presents the core identifier to a user application to hide the

plural hardware threads from the user application, and to

(63) Continuation of application No. 11/700,748, filed on present the core as a single-threaded core to the user applica-
Jan. 30, 2007, now Pat. No. 9,003,410. tion.

Related U.S. Application Data

Application software
110

B3

Operating 175 .
system 176 177
120 177)T T?nhz
Y Vv v
16,

»
166\ o
L CPU1 ID‘] l CPUZI‘]-\

D
167

Abstraction layer 160

Scheduler
Run queue [177771 ===
(taskqueue) | 1 152 (1 153 | Run queue
1S 22
150 | I | 151
145 LA
r 4 pad
Kernellayer 115 4’[\7 7/
Hardware Processor \ 130 /
ayer
125 CPIL” CPU2 Core 140
h 4]
CPU3
HW thread HW thread |
HW thread

Coreresources 13

141
cachi Instruction HW thread
139

processing
engine

CPU4

Core 135

Patent Application Publication Jun. 18,2015 Sheet 1 of 3 US 2015/0169377 A1

Application software ATTR
110 \J 180
_Userlayer 105 = —— ey s R
Operating 175
system 176 177
120 4% 171%2
6 Y Vv v
t CorelD <« »| 168
166\
CPU1TID CPU21ID —
167
Abstraction layer 160
A
) 4
Scheduler
Run queue {‘—__} '—_—_:
task queue 1 | Run queue
(task queue) | 1 157 11 153 | 'y
150 | I] 151
145 Lt 1
Yy Vad
Kernellayer 115 4! \‘ /
Hlardware Processor \ 130 /
ayer :
125 cpur | CPU2 Core 140
CPU3
HW thread HW thread !
HW thread
Coreresources 136
/—141 /
cache Instructi.on HW thread
I processing
139 engine |
CPU4
Core 135

Patent Application Publication Jun. 18, 2015 Sheet 2 of 3

US 2015/0169377 Al

Application software
: 110
_Userlayer 105 ‘tm—rrrrr—o—J
Operating
system
120
Abstraction layer 160

Scheduler 145

Run queue
150
/A
A
- Kernellayer 115 7[XY f 231
2
Hardward Processor / \ 230
layer
125 CPIU1 CPIU2 Core
235
— HW thread HW thread }—
] I
Timeout Timeout
value value
255 258
Priority Priority
L | value value —
256 257

FIG. 2

Patent Application Publication Jun. 18,2015 Sheet 3 of 3 US 2015/0169377 A1

(Start) o 300

Y

Viewing, by an operating system, a first
hardware thread and a second hardware
thread in a processor core

!

Converting the CPU1 ID of the first hardware
thread and CPU2 ID of the second hardware
thread into the CORE ID of a single CPU object

310

305

y

Viewing, by an application in the user layer (user
application), the first hardware thread and the
second hardware thread, as the single CPU object

315

FIG. 3

US 2015/0169377 Al

ABSTRACTING A MULTITHREADED
PROCESSOR CORE TO A SINGLE
THREADED PROCESSOR CORE

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This is a continuation of U.S. application Ser. No.
11/700,748, filed Jan. 30, 2007, which is hereby incorporated
by reference.

TECHNICAL FIELD

[0002] Embodiments of the invention relate generally to
abstracting a multithreaded processor core to a single
threaded processor core.

BACKGROUND

[0003] A multi-core processor architecture is implemented
by a single processor that plugs directly into a single proces-
sor socket, and that single processor will have one or more
“processor cores”. Those skilled in the art also refer to pro-
cessor cores as “CPU cores”. The operating system perceives
each processor core as a discrete logical processor. A multi-
core processor can perform more work within a given clock
cycle because computational work is spread over to the mul-
tiple processor cores.

[0004] Hardware threads are the one or more computa-
tional objects that share the resources of a core but architec-
turally look like a core from an application program’s view-
point. As noted above, a core is the one or more computational
engines in a processor. Hardware multithreading (also known
as HyperThreading) is a technology that allows a processor
core to act like two or more separate “logical processors” or
“computational objects” to the operating system and the
application programs that use the processor core. In other
words, when performing the multithreading process, a pro-
cessor core executes, for example, two threads (streams) of
instructions sent by the operating system, and the processor
core appears to be two separate logical processors to the
operating system. The processor core can perform more work
during each clock cycle by executing multiple hardware
threads. Each hardware thread typically has its own thread
state, registers, stack pointer, and program counter.

[0005] Operating systems today treat each hardware thread
of'a multithreaded CPU core as an individual processor. This
causes many applications to be re-written or modified in order
to manage the additional processors and to also ensure that the
application tasks are scheduled appropriately on the threads
so that they optimize the benefits of hardware multithreading.

[0006] Additionally, there are certain operations such as
real-time scheduling and real-time application response that
are not well suited to multithreaded CPU cores. Applications
with this type of behavior cannot tolerate the hardware con-
text switching to another application when the application is
in the middle of a critical section. If each hardware thread is
treated as an independent CPU, it is not reasonable to yield
the alternate hardware thread for long periods of time while
the first hardware thread is running a critical real-time appli-
cation. Operating system vendors currently treat each hard-
ware thread of a multithreaded CPU core as an independent
CPU. As aresult, the problems discussed above exist in all of
these prior implementations.

Jun. 18, 2015

[0007] Therefore, the current technology is limited in its
capabilities and suffers from at least the above constraints and
deficiencies.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Non-limiting and non-exhaustive embodiments of
the present invention are described with reference to the fol-
lowing figures, wherein like reference numerals refer to like
parts throughout the various views unless otherwise speci-
fied.

[0009] FIG.1 is a block diagram of a system (apparatus) in
accordance with an embodiment of the invention.

[0010] FIG. 2 is a block diagram of a system (apparatus) in
accordance with another embodiment of the invention.
[0011] FIG. 3 is a flow diagram of a method in accordance
with an embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0012] In the description herein, numerous specific details
are provided, such as examples of components and/or meth-
ods, to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize,
however, that an embodiment of the invention can be prac-
ticed without one or more of the specific details, or with other
apparatus, systems, methods, components, materials, parts,
and/or the like. In other instances, well-known structures,
materials, or operations are not shown or described in detail to
avoid obscuring aspects of embodiments of the invention.
[0013] FIG. 1 is a block diagram of a system (apparatus)
100 in accordance with an embodiment of the invention. The
system 100 is typically a computer system that is in a com-
puting device. A user layer 105 will have an application
software 110 that will run in the system 100. A kernel layer
115 includes an operating system 120 with various features as
described below. A hardware layer 125 includes a processor
130. The processor 130 includes a core 135. Alternatively, the
processor 130 can be multi-core processor by having with
multiple processor cores 130 and 140, although the cores in
the processor 130 may vary in number in other examples.
Since the core 135 includes the hardware threads CPU1 and
CPU2, the core 135 is a multithreaded core. The number of
hardware threads in a core 135 can vary. A core 135 also has
resources 136 which include, for example, a cache 139,
instruction processing engine 141, and other known core
resources.

[0014] Hardware threads CPU1 and CPU2 will be used to
discuss the following example operation, although this
example operation also applies to hardware threads CPU3
and CPU4 in core 140 as well. Threads CPU1 and CPU2 are
sibling hardware threads because they are in the core 135,
while CPU3 and CPU4 are sibling hardware threads because
they are in the core 140. Typically, the operating system (OS)
120 is booted with hardware multithreading enabled in the
hardware layer 125 for the cores. As the OS 120 boots, the OS
120 views each hardware thread CPU1 and CPU2 as multiple
CPUs. The OS 120 will continue to boot with threads CPU1
& CPU2 as CPUs. The OS scheduler 145 will treat each set of
sibling hardware threads (e.g., CPU1 and CPU2) from the
same CPU core as being a single CPU (i.e., as a single hard-
ware thread), by use of an abstraction layer 160 as discussed
below. In one embodiment of the invention, the scheduler 145
uses a single run queue (i.e., task queue) for all of the sibling

US 2015/0169377 Al

threads from the same CPU core. For example, sibling threads
CPU1 and CPU2 will choose/remove software threads from
the run queue 150 while the sibling threads CPU3 and CPU 4
will choose/remove software threads from the run queue 151.
Alternatively, the scheduler 145 allows the coordination of
multiple run queues for each core so that each hardware
thread is associated with its own run queue. For example, in
this alternative embodiment, the run queues 152 and 153 are
associated with the hardware threads CPU1 and CPU2,
respectively. When multiple run queues are associated with a
core, standard thread stealing methods can be used to steal a
software thread in a run queue associated with another hard-
ware thread. Alternatively, all hardware threads will choose/
remove software threads from a single run queue in the OS
120. Therefore, in the run queue-to-hardware thread configu-
ration, the run queues and the hardware threads can vary in
numbers. As each hardware thread becomes ready to execute
an application, the hardware thread will choose a software
thread of the application from this run queue and execute that
software thread.

[0015] Inthe example of FIG. 1, the kernel views the hard-
ware threads CPU1 and CPU2 in core 135. The abstraction
layer 160 will cause the hardware threads CPU1 and CPU2 to
be viewed by the user application 110 as a single CPU object
168 that has the identifier CORE ID 165. The abstraction
layer 160 also converts a user-specified hardware thread to a
set of hardware threads as viewed by the kernel. The abstrac-
tion layer 160 gives a CPU identifier (CORE ID 165) for each
set of sibling thread identifiers. The CORE 1D 165 is exposed
to user applications 110 so that the user applications 110
views only one CPU object 168 (with a CORE ID 165) for a
core 135. As a result, a user application 110 views the core
130 as a single-threaded core due to the single CPU object ID
168 (with CORE ID 165). Therefore, since a user application
110 does not view the CPU1 ID and CPU2 ID, the user
application 110 does not view the core 130 as a multithreaded
core. This CORE ID 165 exposes, to a user application, only
the CPU core 130 of sibling threads CPU1 and CPU2, and all
hardware multithreading support are hidden within the ker-
nel. The sibling thread identifiers (CPU1 ID 166 and CPU2
1D 167) are identifiers of sibling threads (CPU1 and CPU2,
respectively) from the same CPU core 135. The CORE ID
165 can be given with the unique identifier (e.g., CORE ID).
Alternatively, the CORE ID 165 can be given an identifier of
an associated sibling thread (e.g., CPU1 ID or CPU2 ID).
Therefore, the abstraction layer 160 converts (translates) the
CPU1 ID and CPU2 ID into the CORE ID 165 that is viewed
by the user application 110. The abstraction layer 165 also
converts (translates) the CORE ID 165 into the CPU1 ID and
CPU2 ID that is viewed by the kernel. Therefore, the CPU1
1D and CPU2 ID are mapped with the CORE ID 165.

[0016] TheOS 120 exposes CPU IDs outward to user-space
applications 110. For example, these CPU IDs are exposed in
features such as, but not limited to, topology information 170
(e.g., mpctl() calls in the HP-UX OS), application to proces-
sor binding features 171 (e.g., mpctl() calls in HP-UX), and
system runtime information 172 (e.g., pstat() calls in HP-
UX).

[0017] As an example, assume that the sibling threads on a
multithreaded CPU core 130 contain two hardware threads
CPU1 and CPU2 as viewed by the kernel. After conversion by
the CPU abstraction layer 160, these threads CPU1 and CPU2
are exposed as a single CPU object 168 (which has the CORE
ID 165 in the FIG. 1 example). When an application-to-

Jun. 18, 2015

processor binding request 175 is made to single CPU object
with CORE ID 165, the kernel will place the application
binding on both the sibling threads CPU1 and CPU2 of core
130. The specified application is allowed to run on either of
the two hardware threads CPU1 or CPU2.

[0018] As another example, an application 110 that is try-
ing to find out the topology of the system will make the
appropriate call 176 to find out the IDs of each of the CPUs.
When this application 110 is obtaining a CORE 1D 165,
internally the kernel will see that both CPU1 1D and CPU2 ID
identify the hardware threads that belong to the same CPU
core 130 and will thus only return one CORE ID 165 to the
application to represent the CPU core 130. In this example the
CORE ID 165 will contain the per-core attributes instead of
the per-thread attributes.

[0019] As another example, an application 110 that is try-
ing to find out how much time a CPU has spent executing in
user-space will make a call 177 that will put the CORE 1D 165
through the CPU abstraction layer 165 which determines the
CORE ID 165 is actually represented by the sibling threads
CPU1 and CPU2. The call 177 will then collect information
about the user-space from both CPU1 and CPU2 and combine
these information into a single number or aggregated value.
This single number or aggregated value is then returned to the
application 110 that requested the data. This single number
indicates, for example, the core utilization for the entire core
130.

[0020] Since the abstraction layer 160 completely hides the
hardware multithreading from user-space applications, the
kernel is free to enable or disable the usage of multithreaded
CPUs as is needed for improved performance or correctness.
Disabling a single hardware thread for a long period of time
has no negative effect on applications. Suitable methods can
be used for the disabling of hardware threads.

[0021] Another example in which an embodiment of the
invention is beneficial is with real-time applications which
may not want to have the hardware automatically context
switching between a high priority application and a low pri-
ority application. This can lead to starvation of the high pri-
ority application and can violate Unix standards compliance
with real-time scheduling. In other words, when a low-prior-
ity application is scheduled on one hardware thread and a
high-priority application is scheduled on another hardware
thread, the context switching will give each of the two threads
an equal amount of processor time. As aresult, the thread with
the low priority application prevents the best possible
progress of the high priority application on the other thread
because both hardware threads will consume an equal amount
of'execution resources of the core. To overcome this problem,
when one of the hardware threads starts executing a software
thread of a real-time application, the OS 120 can temporarily
disable the other sibling hardware threads on the core so that
the sibling threads are not able to impact the best possible
progress of the real-time application that is being executed.
Various methods can be used to temporarily disable the other
sibling threads. One method to temporarily disable a sibling
thread is to dynamically disable hardware multithreading in a
core by removing the sibling thread(s) from the view of the
OS 120 to allow the real-time application to consume the full
core resources, as similarly described in U.S. patent applica-
tion entitled “DYNAMIC HARDWARE MULTITHREAD-
ING AND PARTITIONED HARDWARE MULTI-
THREADING”, now U.S. Pat. No. 7,698,540, which is
hereby fully incorporated herein by reference. Another

US 2015/0169377 Al

method to temporarily disable a sibling thread is by placing
the thread in a yield loop (such as hint@pause or PAL_
HALT_LIGHT on the Intel Montecito processor) to allow the
real-time application to consume the full core resources.
Once the real-time application is no longer executing, the
sibling threads can go back to their normal scheduling.

[0022] Some applications may still desire to be able to see
the real topology within the system and to be able to control
scheduling at the hardware thread level. As an option, an
application-level attribute 180 can be set for an application to
bypass the kernel abstraction layer 160. This application-
level attribute (switch) 180 switch can be implemented in a
number of ways such as, for example, by a chatr bit that is set
in the executable file or via an environment variable that is
read by a library in the OS 120 when the application starts
executing. If this switch 180 is set, the user application 110
will bypass kernel CPU abstraction layer 160 and the user
application 110 will see the exact information about each of
the hardware threads on a per-thread level. This switch 180
also permits, for example, processor binding directly to the
individual hardware threads. As known to those skilled in the
art, a chatr bit is used for setting attribute information on a
per-application basis and the kernel reads the chatr bit when
the process of the applications starts to execute.

[0023] Hardware multithreading and its impacts to user-
space applications are completely hidden within the operat-
ing system by use of the above method. By hiding the hard-
ware multithreading within an operating system, the
operating system has great flexibility in how to utilize the
hardware features. Many operating system features have
problems with providing correct behavior in the presence of
hardware multithreading, such as real-time scheduling and
fair share scheduling. The above-discussed method allows
those features to temporarily disable hardware multithread-
ing (through, for example, the hardware yield operations) so
that correct behavior can be guaranteed without having
impacts to applications in user-space. Exposing hardware
threads from multithreaded CPU cores as CPU objects causes
a significant impact to a number of application products that
may need to be made thread aware. The above method com-
pletely hides all aspects of hardware multithreading from
user-space applications, yet still takes advantage of the per-
formance benefit that hardware multithreading provides.

[0024] FIG. 2 is a block diagram of a system (apparatus)
200 in accordance with another embodiment of the invention.
As discussed above, the abstraction layer 160 exposes to the
user-space 105 only one single hardware thread which repre-
sents all hardware threads contained on a CPU core.

[0025] A CPU core 235 is configured to containing one
high priority hardware thread (e.g., CPU1) and one or more
low priority hardware threads (e.g., CPU2). Software threads
(tasks) executing on the high priority hardware thread CPU1
will take precedence over tasks executing on the low priority
hardware thread(s) CPU2. Low priority hardware threads will
only use the execution pipeline (to execute software threads)
when the high priority hardware thread CPU1 is servicing a
cache miss event.

[0026] The scheduler 145 is aware about the multiple hard-
ware threads CPU1/CPU2 on the CPU core 235, but would
still only maintain one run queue 140 for the entire CPU core
235. The scheduler 145 schedules a task on each of the hard-
ware threads on a CPU core. The high priority (primary)
hardware thread CPU1 will consume most of the resources of

Jun. 18, 2015

the CPU core 235. All other hardware threads are low priority
(secondary) threads (e.g., CPU2 in this example).

[0027] Each CPU core 235 will have a set of backup kernel
threads or backup user application software threads to run in
the event that the CPU core 235 has some spare cycles. These
backup (low priority) software threads 250 are scheduled on
the low priority hardware threads CPU2. Examples of backup
(low priority) software threads 250 include kernel daemons
that execute in the background of the kernel and gather, for
example, statistical data. The high priority software threads
251 are scheduled on the high priority thread CPU1. For
example, the OS 120 will schedule tasks primarily to the high
priority thread CPU1. While the primary hardware thread
CPU1 switches out to services events such as cache miss
events, the secondary (low priority) thread (or threads) CPU2
consumes the execution resources of the core 235. When a
cache miss event occurs, the high priority thread CPU1 will
go to, for example, a memory area to service the cache miss
event and that thread CPU1 will stall in that memory area.
Since the thread CPU1 is stalled, the low priority thread
CPU2 is able to consume the execution resources of the core
235. Once the high priority thread CPU1 has resolved its
cache miss event, the core 235 hardware will context switch
back to the high priority thread CPU1 to consume the execu-
tion resources of the core 235.

[0028] The thread CPU1 is set as a high priority thread by
setting a priority value 256 to a high value. As a result,
whenever a timeout or other event resulting in hardware
scheduling decisions occur, the CPU core 235 chooses the
high priority thread CPU1 to run next (if both threads CPU1
and CPU2 are ready to run). The timeout value 255 for the
high priority thread CPU1 is set to a large value (e.g., approxi-
mately 4096 cycles or greater). For example, a timeout value
255 similar to the OS 120 scheduling time-slice is the maxi-
mum desired timeout value 255 for a high priority hardware
thread, although this value is not required. The effect of this
timeout value setting is that the high priority thread CPU1
will execute and consume the CPU core 235 resources when-
ever the thread is able to execute (i.e., the thread is not ser-
vicing a cache miss event).

[0029] For a low priority thread CPU2, the priority value
257 is set low. As a result, whenever a timeout or other event
resulting in hardware scheduling decisions occurs, the CPU
core 235 chooses the other high priority thread CPU1 to run
next instead of choosing the low priority thread CPU2 (if
threads CPU1 and CPU2 are ready to run). The timeout value
258 is set to a small value (e.g., approximate 256 cycles) for
the low priority thread CPU2. This low timeout value could,
for example, be the approximate time that it takes a hardware
thread to service a cache miss, although this particular time
value is not required.

[0030] Note that a when low priority thread is executing in
the kernel, the thread may acquire kernel resources such as
locks. Since this is a low priority thread, there is a chance the
core 235 would context switch out the low priority thread
while it is holding a kernel resource, potentially resulting in a
negative effect on scalability of the kernel. This potential
problem can be solved if the scheduler 145 does not schedule
a software application thread that is executing in the kernel on
the low priority hardware threads. The scheduler 145 checks
on entry to the kernel by the software thread to determine if
the CPU is a low priority hardware thread. If so, then the

US 2015/0169377 Al

kernel should context switch out the software application
thread and find another software application thread that is
executing in user-space.

[0031] The scheduler 145 may use several approaches to
scheduling on the secondary (low-priority) threads. Some
example approaches are: (1) scheduling the next highest pri-
ority software application thread to give the thread a head start
and to allow the thread to start filling the local cache with
needed data, and/or (2) only schedule low priority software
threads to consume core resources during the CPU idle time
while the primary hardware thread is servicing cache misses
to ensure all software application threads make better forward
progress.

[0032] The high priority (primary) hardware thread is
treated like a normal CPU. Tasks will be scheduled as is
normally done in the kernel. This high priority hardware
thread will consume all of the CPU core’s execution
resources whenever it is able to execute (for example, when
not servicing a cache miss event). Because of this behavior,
when high priority real-time software application threads are
scheduled to run on the primary hardware thread, they will not
be context switched out by the CPU core to allow other lower
priority software application threads to execute.

[0033] FIG. 3 is a flow diagram of a method 300 in accor-
dance with an embodiment of the invention. The method
permits abstracting a multithreaded processor core to single
threaded processor core. Block 305 includes the step of view-
ing, by an operating system, a first hardware thread and a
second hardware thread in a processor core.

[0034] Block 310 includes the step of converting (translat-
ing) the CPU1 ID (identifier) of the first hardware thread and
the CPU2 ID (identifier) of the second hardware thread into
the CORE ID 165 (identifier) of a single CPU object 168.
[0035] Block 315 includes the step of viewing, by a user
application (application in the user layer 105), the first hard-
ware thread and the second hardware thread as the single CPU
object 168.

[0036] Itis also within the scope of the present invention to
implement a program or code that can be stored in a machine-
readable or computer-readable medium to permit a computer
to perform any of the inventive techniques described above,
or a program or code that can be stored in an article of
manufacture that includes a computer readable medium on
which computer-readable instructions for carrying out
embodiments of the inventive techniques are stored. Other
variations and modifications of the above-described embodi-
ments and methods are possible in light of the teaching dis-
cussed herein.

[0037] Theabovedescription ofillustrated embodiments of
the invention, including what is described in the Abstract, is
not intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illustra-
tive purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognize.

[0038] These modifications can be made to the invention in
light of the above detailed description. The terms used in the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed in the specification
and the claims. Rather, the scope of the invention is to be
determined entirely by the following claims, which are to be
construed in accordance with established doctrines of claim
interpretation.

Jun. 18, 2015

What is claimed is:
1. A method comprising:
providing, by an operating system, instructions for execu-
tion by plural hardware threads of a multithreaded core
of a processor, the plural hardware threads appearing as
separate logical processors to the operating system;

converting, by an abstraction layer, respective identifiers of
the plural hardware threads to a core identifier represent-
ing the core;

presenting, by the abstraction layer, the core identifier to a

user application to hide the plural hardware threads from
the user application, and to present the core as a single-
threaded core to the user application.

2. The method of claim 1, further comprising:

executing instructions of the user application on any one of

the plural hardware threads.

3. The method of claim 1, further comprising:

in response to a request from the user application for a

topology of the processor, sending the core identifier to
the user application instead of the respective identifiers
of the plural hardware threads.

4. The method of claim 1, wherein presenting the core
identifier to the user application instead of the respective
identifiers of the plural hardware threads is performed in
response to an attribute of the user application being set to a
first value, the method further comprising:

detecting that an attribute of a second user application is set

to a second value different from the first value;

in response to the detecting, presenting the respective iden-

tifiers of the plural hardware threads to the second user
application to enable the second user application to view
the plural hardware threads.

5. The method of claim 1, further comprising:

receiving, from the user application, a request for a metric

of the core;

in response to the request, aggregating respective values of

the metric for the plural hardware threads to form an
aggregate metric value; and

presenting the aggregate metric value to the user applica-

tion.

6. The method of claim 1, wherein the processor comprises
a second multithreaded core that includes plural hardware
threads, the plural hardware threads of the second multi-
threaded core appearing as separate logical processors to the
operating system, the method further comprising:

converting, by the abstraction layer, respective identifiers

of the plural hardware threads of the second multi-
threaded core to a second core identifier representing the
second multithreaded core;

presenting, by the abstraction layer, the second core iden-

tifier to the user application to hide the plural hardware
threads of the second multithreaded core from the user
application, and to present the second multithreaded
core as a single-threaded core to the user application.

7. The method of claim 1, further comprising:

executing a software thread of a higher priority application

on a first hardware thread of the plural hardware threads;
and

in response to executing the software thread of the higher

priority application on the first hardware thread, dis-
abling a second hardware thread of the plural hardware
threads to prevent the second hardware thread from
executing a software thread of a lower priority applica-
tion.

US 2015/0169377 Al

8. The method of claim 1, wherein a first hardware thread
of the plural hardware threads has a higher priority than a
second hardware thread of the plural hardware threads, the
first hardware thread consuming more resources of the core
than the second hardware thread.

9. The method of claim 8, further comprising:

scheduling instructions to run on the second hardware

thread in response to a stall occurring during execution
of instructions by the first hardware thread,

wherein the second hardware thread is prevented from

execute instructions when the first hardware thread is
actively executing instructions.

10. A system comprising:

a processor comprising a multithreaded core that includes

plural of hardware threads;

an operating system, the plural hardware threads appearing

as plural logical processors to the operating system; and

an abstraction layer to:

convert respective identifiers of the plural hardware
threads to a core identifier representing the core, and

present the core identifier to auser application to hide the
plural hardware threads from the user application, and
to present the core as a single-threaded core to the user
application.

11. The system of claim 10, wherein the abstraction layer is
part of the operating system.

12. The system of claim 10, wherein the abstraction layer is
part of the operating system.

13. The system of claim 10, wherein the abstraction layer is
to:

in response to a request from the user application for a

topology of the processor, send the core identifier to the
user application instead of the respective identifiers of
the plural hardware threads.
14. The system of claim 10, wherein presenting the core
identifier to the user application instead of the respective
identifiers of the plural hardware threads is performed in
response to an attribute of the user application being set to a
first value, and wherein the abstraction layer is to further:
detect that an attribute of a second user application is set to
a second value different from the first value;

in response to the detecting, present the respective identi-
fiers of the plural hardware threads to the second user
application to enable the second user application to view
the plural hardware threads.

15. The system of claim 10, wherein the abstraction layer is
to:

receiving, from the user application, a request for a metric

of the core;

in response to the request, aggregate respective values of

the metric for the plural hardware threads to form an
aggregate metric value; and

present the aggregate metric value to the user application.

Jun. 18, 2015

16. The system of claim 10, wherein the processor com-
prises a second multithreaded core that includes plural hard-
ware threads, the plural hardware threads of the second mul-
tithreaded core appearing as plural logical processors to the
operating system, wherein the abstraction layer is to further:
convert respective identifiers of the plural hardware threads
of the second multithreaded core to a second core iden-
tifier representing the second multithreaded core;

present the second core identifier to the user application to
hide the plural hardware threads of the second multi-
threaded core from the user application, and to present
the second multithreaded core as a single-threaded core
to the user application.
17. The system of claim 10, wherein a firsthardware thread
of'the plural hardware threads is to execute a software thread
of'a higher priority application on, and wherein the operating
system is to, in response to executing the software thread of
the higher priority application on the first hardware thread,
disable a second hardware thread of the plural hardware
threads to prevent the second hardware thread from executing
a software thread of a lower priority application.
18. A non-transitory machine-readable storage medium
storing program code that upon execution cause a system to:
provide, by an operating system, instructions for execution
by plural hardware threads of a multithreaded core of a
processor, the plural hardware threads appearing as
separate logical processors to the operating system;

convert, by an abstraction layer, respective identifiers of the
plural hardware threads to a core identifier representing
the core; and

present, by the abstraction layer, the core identifier to a user

application to hide the plural hardware threads from the
user application, and to present the core as a single-
threaded core to the user application.

19. The non-transitory machine-readable storage medium
of claim 18, wherein the program code upon execution cause
the system to further:

in response to a request from the user application for a

topology of the processor, send the core identifier to the
user application instead of the respective identifiers of
the plural hardware threads.

20. The non-transitory machine-readable storage medium
of claim 18, wherein the program code upon execution cause
the system to further:

receive, from the user application, a request for a metric of

the core;

in response to the request, aggregate respective values of

the metric for the plural hardware threads to form an
aggregate metric value; and

present the aggregate metric value to the user application.

#* #* #* #* #*

