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(57) ABSTRACT

A neural network is trained for use in a substrate thickness
measurement system by obtaining ground truth thickness
measurements of a top layer of a calibration substrate at a
plurality of locations, each location at a defined position for
a die being fabricated on the substrate. A plurality of color
images of the calibration substrate are obtained, each color
image corresponding to a region for a die being fabricated on
the substrate. A neural network is trained to convert color
images of die regions from an in-line substrate imager to
thickness measurements for the top layer in the die region.
The training is performed using training data that includes
the plurality of color images and ground truth thickness
measurements with each respective color image paired with
a ground truth thickness measurement for the die region
associated with the respective color image.
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SYSTEM USING FILM THICKNESS
ESTIMATION FROM MACHINE LEARNING
BASED PROCESSING OF SUBSTRATE
IMAGES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 17/359,345, filed on Jun. 25, 2021, which
claims priority to U.S. Application No. 63/045,782, filed on
Jun. 29, 2020, the disclosures of which are incorporated by
reference.

TECHNICAL FIELD

[0002] This disclosure relates to optical metrology, e.g., to
detect the thickness of a layer on a substrate using a machine
learning approach.

BACKGROUND

[0003] An integrated circuit is typically formed on a
substrate by the sequential deposition of conductive, semi-
conductive, or insulative layers on a silicon wafer. Planar-
ization of a substrate surface may be required for the
removal of a filler layer or to improve planarity for photo-
lithography during fabrication of the integrated circuit.
[0004] Chemical mechanical polishing (CMP) is one
accepted method of planarization. This planarization method
typically requires that the substrate be mounted on a carrier
or polishing head. The exposed surface of the substrate is
typically placed against a rotating polishing pad. The carrier
head provides a controllable load on the substrate to push it
against the polishing pad. An abrasive polishing slurry is
typically supplied to the surface of the polishing pad.
[0005] Various optical metrology systems, e.g., spectro-
graphic or ellipsometric, can be used to measure the thick-
ness of the substrate layer pre-polishing and post-polishing,
e.g., at an in-line or stand-alone metrology station.

[0006] As a parallel issue, advancements in hardware
resources such as Graphical Processing Units (GPU) and
Tensor Processing Units (TPU) have resulted in a vast
improvement in the deep learning algorithms and their
applications. One of the evolving fields of deep learning is
computer vision and image recognition. Such computer
vision algorithms are mostly designed for image classifica-
tion or segmentation.

SUMMARY

[0007] In one aspect, a method of training a neural net-
work for use in a substrate thickness measurement system
includes obtaining ground truth thickness measurements of
a top layer of a calibration substrate at a plurality of
locations, each location at a defined position for a die being
fabricated on the substrate. A plurality of color images of the
calibration substrate are obtained, each color image corre-
sponding to a region for a die being fabricated on the
substrate. A neural network is trained to convert color
images of die regions from an in-line substrate imager to
thickness measurements for the top layer in the die region.
The training is performed using training data that includes
the plurality of color images and ground truth thickness
measurements with each respective color image paired with
a ground truth thickness measurement for the die region
associated with the respective color image.
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[0008] In another aspect, a method of controlling polish-
ing includes obtaining a first color image of a first substrate
at an in-line monitoring station of a polishing system,
dividing the first color image into a plurality of second color
images using a die mask such that each second color image
corresponds to a region for a die being fabricated on the first
substrate, generating thickness measurements for one or
more locations, and determining a polishing parameter for
the first substrate or a subsequent second substrate based on
the thickness measurements. Each respective location of the
one more locations corresponding to a respective region for
a die being fabricated on the first substrate. To generate the
thickness measurements for a region, a second color image
corresponding to the region is processed through a neural
network that was trained using training data that included a
plurality of third color images of dies of a calibration
substrate and ground truth thickness measurements of the
calibration substrate, with each respective third color image
paired with a ground truth thickness measurement for a die
region associated with the respective third color image.

[0009] Implementations can include one or more of the
following potential advantages. Thicknesses for multiple
dies on a substrate may be measured quickly. For example,
an in-line metrology system may determine thicknesses for
a substrate based on a color images of the substrate without
impacting throughput. The estimated thickness may be
directly used in a multivariable run-to-run control scheme.

[0010] The described approach may be used to train a
model to generate thickness measurements with an error of
less than 5% ofthe actual film thickness. Although thickness
measurements can be extracted from a color image having
three color channels, a hyperspectral camera may be added
to the substrate imager system to provide higher dimensional
feature input to the model. This may facilitate the training of
a more complicated model to understand more physical
properties of the film stack.

[0011] The deep learning in the metrology system may
have high inference speed and still be able to achieve a
high-resolution measurement of the thickness profile on the
substrate. It enables the metrology system to be a fast and
low-cost pre- and post-metrology measurement tool for
memory applications with great thickness accuracy.

[0012] The details of one or more implementations are set
forth in the accompanying drawings and the description
below. Other aspects, features and advantages will be appar-
ent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0013] FIG. 1 illustrates a view of an example of an in-line
optical measurement system.

[0014] FIG. 2A illustrates an example of an exemplary
image of a substrate used for model training.

[0015] FIG. 2B is a schematic illustration of a computer
data storage system.

[0016] FIG. 3 illustrates a neural network used as a part of
the controller for the polishing apparatus.

[0017] FIG. 4 illustrates a flow chart for a method of
detecting a thickness of a layer on a substrate using a deep
learning approach.

[0018] Like reference symbols in the various drawings
indicate like elements.
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DETAILED DESCRIPTION

[0019] Thin-film thickness measurements from dry
metrology systems are used in CMP processing because of
the variability in the polishing rate that occurs in CMP
processes. Such dry metrology measurement techniques
often use a spectrographic or ellipsometric approach in
which variables in an optical model of a film stack are fit to
the collected measurements. Such measurement techniques
typically require precise alignment of a sensor to a mea-
surement spot of the substrate to ensure that the model is
applicable to the collected measurements. Therefore, mea-
suring a large number of points on the substrate can be
time-consuming, and collecting a high-resolution thickness
profile is not feasible.

[0020] However, the usage of machine learning can enable
measurement of a thickness of a film on a substrate with
reduced time. By training a deep neural network using color
images of dies from a substrate and associated thickness
measurements by other reliable metrology systems, film
thicknesses of dies can be measured by applying an input
image to the neural network. This system can be used as a
high throughput and economical solution, e.g., for low-cost
memory applications. Aside from the thickness inferences,
this technique can be used to classify levels of residue on the
substrate using the image segmentation.

[0021] Referring to FIG. 1, a polishing apparatus 100
includes one or more carrier heads 126, each of which is
configured to carry a substrate 10, one or more polishing
stations 106, and a transfer station to load substrate to and
unload substrates from a carrier head. Each polishing station
106 includes a polishing pad 130 supported on a platen 120.
The polishing pad 130 can be a two-layer polishing pad with
an outer polishing layer and a softer backing layer.

[0022] The carrier heads 126 can be suspended from a
support 128, and movable between the polishing stations. In
some implementations, the support 128 is an overhead track
and each carrier head 126 is coupled to a carriage 108 that
is mounted to the track so that each carriage 108 can be
selectively moved between the polishing stations 124 and
the transfer station. Alternatively, in some implementations,
the support 128 is a rotatable carousel, and rotation of the
carousel moves the carrier heads 126 simultaneously along
a circular path.

[0023] Each polishing station 106 of the polishing appa-
ratus 100 can include a port, e.g., at the end of an arm 134,
to dispense polishing liquid 136, such as abrasive slurry,
onto the polishing pad 130. Each polishing station 106 of the
polishing apparatus 100 can also include pad conditioning
apparatus to abrade the polishing pad 130 to maintain the
polishing pad 130 in a consistent abrasive state.

[0024] Each carrier head 126 is operable to hold a sub-
strate 10 against the polishing pad 130. Each carrier head
126 can have independent control of the polishing param-
eters, for example, pressure associated with each respective
substrate. In particular, each carrier head 126 can include a
retaining ring 142 to retain the substrate 10 below a flexible
membrane 144. Each carrier head 126 can also include a
plurality of independently controllable pressurizable cham-
bers defined by the membrane, e.g., three chambers 146a-
146c¢, which can apply independently controllable pressures
to associated zones on the flexible membrane 144 and thus
on the substrate 10. Although only three chambers are
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illustrated in FIG. 1 for ease of illustration, there could be
one or two chambers, or four or more chambers, e.g., five
chambers.

[0025] Each carrier head 126 is suspended from the sup-
port 128 and is connected by a drive shaft 154 to a carrier
head rotation motor 156 so that the carrier head can rotate
about an axis 127. Optionally each carrier head 126 can
oscillate laterally, e.g., by driving the carriage 108 on a
track, or by the rotational oscillation of the carousel itself. In
operation, the platen is rotated about its central axis, and
each carrier head is rotated about its central axis 127 and
translated laterally across the top surface of the polishing
pad.

[0026] A controller 190, such as a programmable com-
puter, is connected to each motor to independently control
the rotation rate of the platen 120 and the carrier heads 126.
The controller 190 can include a central processing unit
(CPU) 192, a memory 194, and support circuits 196, e.g.,
input/output circuitry, power supplies, clock circuits, cache,
and the like. The memory is connected to the CPU 192. The
memory is a non-transitory computable readable medium,
and can be one or more readily available memory such as
random access memory (RAM), read-only memory (ROM),
floppy disk, hard disk, or another form of digital storage. In
addition, although illustrated as a single computer, the
controller 190 could be a distributed system, e.g., including
multiple independently operating processors and memories.
[0027] The polishing apparatus 100 also includes an in-
line (also referred to as in-sequence) optical metrology
system 160. A color imaging system of the in-line optical
metrology system 160 is positioned within the polishing
apparatus 100, but does not perform measurements during
the polishing operation; rather measurements are collected
between polishing operations, e.g., while the substrate is
being moved from one polishing station to another, or pre-
or post-polishing, e.g., while the substrate is being moved
from the transfer station to a polishing station or vice versa.
In addition, the in-line optical metrology system 160 can be
positioned in a fab interface unit or a module accessible from
the fab interface unit to measure a substrate after the
substrate is extracted from a cassette but before the substrate
is moved to the polishing unit, or after the substrate has been
cleaned but before the substrate is returned to the cassette.
[0028] The in-line optical metrology system 160 includes
a sensor assembly 161 that provides the color imaging of the
substrate 10. The sensor assembly 161 can include a light
source 162, a light detector 164, and circuitry 166 for
sending and receiving signals between the controller 190
and the light source 162 and light detector 164.

[0029] The light source 162 can be operable to emit white
light. In one implementation, the white light emitted
includes light having wavelengths of 200-800 nanometers. A
suitable light source is an array of white-light light-emitting
diodes (LEDs), or a xenon lamp or a xenon mercury lamp.
The light source 162 is oriented to direct light 168 onto the
exposed surface of the substrate 10 at a non-zero angle of
incidence a. The angle of incidence a can be, for example,
about 300 to 75°, e.g., 50°.

[0030] The light source can illuminate a substantially
linear elongated region that spans the width of the substrate
10. For example, the light source 162 can include optics,
e.g., a beam expander, to spread the light from the light
source into an elongated region. Alternatively or in addition,
the light source 162 can include a linear array of light
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sources. The light source 162 itself, and the region illumi-
nated on the substrate, can elongate and have a longitudinal
axis parallel to the surface of the substrate.

[0031] A diffuser 170 can be placed in the path of the light
168, or the light source 162 can include a diffuser, to diffuse
the light before it reaches the substrate 10.

[0032] The detector 164 is a color camera that is sensitive
to light from the light source 162. The camera includes an
array of detector elements. For example, the camera can
include a CCD array. In some implementations, the array is
a single row of detector elements. For example, the camera
can be a line-scan camera. The row of detector elements can
extend parallel to the longitudinal axis of the elongated
region illuminated by the light source 162. Where the light
source 162 includes a row of light-emitting elements, the
row of detector elements can extend along a first axis
parallel to the longitudinal axis of the light source 162. A
row of detector elements can include 1024 or more elements.
[0033] The camera 164 is configured with appropriate
focusing optics 172 to project a field of view of the substrate
onto the array of detector elements. The field of view can be
long enough to view the entire width of the substrate 10, e.g.,
150 to 300 mm long. The camera 164, including associated
optics 172, can be configured such that individual pixels
correspond to a region having a length equal to or less than
about 0.5 mm. For example, assuming that the field of view
is about 200 mm long and the detector 164 includes 1024
elements, then an image generated by the line-scan camera
can have pixels with a length of about 0.5 mm. To determine
the length resolution of the image, the length of the field of
view (FOV) can be divided by the number of pixels onto
which the FOV is imaged to arrive at a length resolution.
[0034] The camera 164 can be also be configured such that
the pixel width is comparable to the pixel length. For
example, an advantage of a line-scan camera is its very fast
frame rate. The frame rate can be at least 5 kHz. The frame
rate can be set at a frequency such that as the imaged area
scans across the substrate 10, the pixel width is comparable
to the pixel length, e.g., equal to or less than about 0.3 mm.
[0035] The light source 162 and the light detector 164 can
be supported on a stage 180. Where the light detector 164 is
a line-scan camera, the light source 162 and camera 164 are
movable relative to the substrate 10 such that the imaged
area can scan across the length of the substrate. In particular,
the relative motion can be in a direction parallel to the
surface of the substrate 10 and perpendicular to the row of
detector elements of the line-scan camera 164.

[0036] In some implementations, the stage 182 is station-
ary, and the support for the substrate moves. For example,
the carrier head 126 can move, e.g., either by motion of the
carriage 108 or by rotational oscillation of the carousel, or
the robot arm holding the substrate in a factory interface unit
can move the substrate 10 past the line-scan camera 182. In
some implementations, the stage 180 is movable while the
carrier head or robot arm remains stationary for the image
acquisition. For example, the stage 180 can be movable
along a rail 184 by a linear actuator 182. In either case, this
permits the light source 162 and camera 164 to stay in a fixed
position relative to each other as the area being scanned
moves across the substrate 10.

[0037] A possible advantage of having a line-scan camera
and light source that move together across the substrate is
that, e.g., as compared to a conventional 2D camera, the
relative angle between the light source and the camera
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remains constant for different positions across the wafer.
Consequently, artifacts caused by variation in the viewing
angle can be reduced or eliminated. In addition, a line scan
camera can eliminate perspective distortion, whereas a con-
ventional 2D camera exhibits inherent perspective distor-
tion, which then needs to be corrected by an image trans-
formation.

[0038] The sensor assembly 161 can include a mechanism
to adjust vertical distance between the substrate 10 and the
light source 162 and detector 164. For example, the sensor
assembly 161 can include an actuator to adjust the vertical
position of the stage 180.

[0039] Optionally a polarizing filter 174 can be positioned
in the path of the light, e.g., between the substrate 10 and the
detector 164. The polarizing filter 174 can be a circular
polarizer (CPL). A typical CPL is a combination of a linear
polarizer and quarter-wave plate. Proper orientation of the
polarizing axis of the polarizing filter 174 can reduce haze
in the image and sharpen or enhance desirable visual fea-
tures.

[0040] Assuming that the outermost layer on the substrate
is a semitransparent layer, e.g., a dielectric layer, the color of
light detected at detector 164 depends on, e.g., the compo-
sition of the substrate surface, substrate surface smoothness,
and/or the amount of interference between light reflected
from different interfaces of one or more layers (e.g., dielec-
tric layers) on the substrate. As noted above, the light source
162 and light detector 164 can be connected to a computing
device, e.g., the controller 190, operable to control their
operation and receive their signals. The computing device
that performs the various functions to convert the color
image to a thickness measurement, can be considered part of
the metrology system 160.

[0041] Referring to FIG. 2A, an example of an image 202
of a substrate 10 collected with in-line optical metrology
system 160 is shown. The in-line optical metrology system
160 produces a high-resolution color image 202, e.g., an
image of at least 720x1080 pixels with at least three color
channels, e.g., RGB channels), e.g., an image of at least
2048x2048 pixels. The color at any particular pixel depends
on the thickness of one or more layers, including the top
layer, in the area of the substrate corresponding to the pixel.
[0042] The image 202 is divided into one or more regions
208, each region corresponding to a die 206 being fabricated
on the substrate. The portion of the image that provides a
region 208 can be a predetermined area in the image, or the
portion that provides a region 208 can be determined auto-
matically by an algorithm based on the image.

[0043] As an example of a predetermined area in the
image, the controller 190 can store a die mask that identifies
a location and area in the image for each region 208. For
example, for rectangular regions, the area can be defined by
upper right and lower left coordinates in the image. Thus, the
mask could be a data file that includes a pair of an upper
right and a lower left coordinate for each rectangular region.
In other cases, where regions are non-rectangular, more
complex functions can be used.

[0044] In some implementations, the orientation and posi-
tion of the substrate can be determined, and the die mask can
be aligned with respect to the image. The substrate orien-
tation can be determined by a notch finder, or by image
processing of the color image 202, e.g., to determine the
angle of scribe lines in the image. The substrate position can
also be determined by image processing of the color image
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202, e.g., by detecting the circular substrate edge and then
determining a center of the circle.

[0045] As an example determining the region 208 auto-
matically, an image processing algorithm can analyze the
image 202 and detects scribe lines. The image 202 can then
be divided into regions between the identified scribe lines.
[0046] By dividing the initial color image, a plurality of
color images 204 of individual regions 208 can be collected
from the substrate 10. As noted above, each color image 204
corresponds to a die 206 being fabricated on the substrate.
The color images collected can be exported as PNG images,
although many other formats, e.g., JPEG, etc., are possible.

[0047] A color images 204 can be fed to an image pro-
cessing algorithm to generate a thickness measurement for
the die shown in the color image 204. The image is used as
input data to an image processing algorithm that has been
trained, e.g., by a supervised deep learning approach, to
estimate a layer thickness based on a color image. The
supervised deep learning-based algorithm establishes a
model between color images and thickness measurements.
The image processing algorithm can include a neural net-
work as the deep learning-based algorithm.

[0048] The intensity value for each color channel of each
pixel of the color image 204 is entered into the image
processing algorithm, e.g., into the input neurons of the
neural network. Based on this input data, a layer thickness
measurement are calculated for the color image. Thus, input
of the color image 204 to the image processing algorithm
result in output of an estimated thickness. This system can
be used as high-throughput and economical solution, e.g.,
for the low-cost memory applications. Aside from the thick-
ness inferences, this technique can be used to classify levels
of residue on the substrate using the image segmentation.

[0049] In order to train the image processing algorithm,
e.g., the neural network, using the supervised deep learning
approach, calibration images of dies from one or more
calibration substrates can be obtained as discussed above.
That is, each calibration substrate can be scanned by the
line-scan camera of the in-line optical metrology system 160
to generate an initial calibration image, and the initial
calibration image can be divided into a plurality of color
images of the individual regions on the calibration substrate.

[0050] Either before or after the initial color calibration
image is collected, ground truth thickness measurements are
collected at multiple locations on the calibration substrate
using a high-accuracy metrology system, e.g., an in-line or
stand-alone metrology system. The high-accuracy metrol-
ogy system can be a dry optical metrology system. The
ground truth measurement can come from offline reflecto-
metry, ellipsometry, scatterometry or more advanced TEM
measurements, although other techniques may be suitable.
Such systems are available from Nova Measuring Instru-
ments Inc. or Nanometrics, Inc. Each location corresponds
to one of the dies being fabricated, i.e., to one of the
individual regions.

[0051] For example, referring to FIG. 2B, for each indi-
vidual region on each calibration substrate, a color calibra-
tion image 212 is collected with the in-line sensor of the
optical metrology system 160. Each color calibration image
is associated with the ground truth thickness measurement
214 for the corresponding die on the calibration substrate.
The images 212 and associated ground truth thickness
measurements 214 can be stored in a database 220. For
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example, the data can be stored as records 210 with each
record including a calibration image 212 and a ground truth
thickness measurement 214.

[0052] The deep learning-based algorithm, e.g., the neural
network, is then train using the combined data set 218. The
thickness measurements corresponding to the center of die
measured from dry metrology tool is used as a label for the
input image while training the model. For example, the
model may be trained on about 50,000 images collected
from five dies on a substrate that have a wide range of post
thicknesses.

[0053] FIG. 3 illustrates a neural network 320 used as a
part of the controller 190 for the polishing apparatus 100.
The neural network 320 can be a deep neural network
developed for regression analysis of RGB intensity values of
the input images from the calibration substrate and the
ground truth thickness measurements to generate a model to
predict the layer thickness of a region of a substrate based on
a color image of that region.

[0054] The neutral network 320 includes a plurality of
input nodes 322. The neural network 320 can include an
input node for each color channel associated with each pixel
of the input color image, a plurality of hidden nodes 324
(also called “intermediate nodes” below), and an output
node 326 that will generate the layer thickness measurement
value. In a neural network having a single layer of hidden
nodes, each hidden node 324 can be coupled to each input
node 322, and the output node 326 can be coupled to each
hidden node 320. However, as a practical matter, the neural
network for image processing is likely to have many layers
of hidden nodes 324.

[0055] In general, a hidden node 324 outputs a value that
a non-linear function of a weighted sum of the values from
the input nodes 322 or prior layers of hidden nodes to which
the hidden node 324 is connected.

[0056] Forexample, the output of a hidden node 324 in the
first layer, designated node k, can be expressed as:

tanh(0.5%ay (I))+ap L)+ . . . +aga I +b)

where tanh is the hyperbolic tangent, a, is a weight for the
connection between the k™ intermediate node and the x™
input node (out of M input nodes), and 1, is the value at the
M? input node. However, other non-linear functions can be
used instead of tanh, such as a rectified linear unit (ReL.U)
function and its variants.

[0057] The neural network 320 thus includes an input
node 322 for each color channel associated with each pixel
of the input color image, e.g., where there are J pixels and
K color channels, then [L=J*K is number of intensity values
in an input color image, and the neural network 320 will
include at least input nodes N;, N, . . . N;.

[0058] Thus, where the number of input nodes corre-
sponds to the number of intensity values in the color image,
the output H, of a hidden node 324, designated node k, can
be expressed as:

Hy=tanh(0.5%ay, (I +ao()+ . . . +a; (I)+by)

[0059] Assuming that the measured color image S is
represented by a column matrix (i, i,, . . . , i;), the output
of an intermediate node 324, designated node k, can be
expressed as:
Hy=tanh(0.5%a,, (V"S)+a;o(Vo"S)+ . . . +a (Vi -S)+
%)
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where V is avalue (v, v,, . .., v;) of weights, with V, being
the weight for the x” intensity value out of L intensity values
from the color image).

[0060] The output node 326 can generate a characteristic
value CV, e.g., thickness, that is a weighted sum of the
outputs of the hidden nodes. For example, this can be
expressed as

CV=C *H+C* ot . . . +C*H,

where C, is the weight for the output of the k* hidden node.
[0061] However, neural network 320 may optionally
include one or more other input nodes, e.g., node 322a, to
receive other data. This other data could be from a prior
measurement of the substrate by the in-situ monitoring
system, e.g., pixel intensity values collected from earlier in
the processing of the substrate, from a measurement of a
prior substrate, e.g., pixel intensity values collected during
processing of another substrate, from another sensor in the
polishing system, e.g., a measurement of a temperature of
the pad or substrate by a temperature sensor, from a polish-
ing recipe stored by the controller that is used to control the
polishing system, e.g., a polishing parameter such as carrier
head pressure or platen rotation rate use for polishing the
substrate, from a variable tracked by the controller, e.g., a
number of substrates since the pad was changed, or from a
sensor that is not part of the polishing system, e.g., a
measurement of a thickness of underlying films by a metrol-
ogy station. This permits the neural network 320 to take into
account other processing or environmental variables in the
calculation of the layer thickness measurement value.
[0062] The thickness measurement generated at the output
node 326 is fed to a process control module 330. The process
control module can adjust, based on the thickness measure-
ments of one or more regions, the process parameters, e.g.,
carrier head pressure, platen rotation rate, etc. The adjust-
ment can be performed for a polishing process to be per-
formed on the substrate or a subsequent substrate.

[0063] Before being used for, e.g., substrate measure-
ments, the neutral network 320 needs to be configured.
[0064] As part of a configuration procedure, the controller
190 can receive a plurality of calibration images. Each
calibration image has multiple intensity values, e.g., an
intensity value for each color channel, for each pixel of the
calibration image. The controller also receives a character-
izing value, e.g., thickness, for each calibration image. For
example, the color calibration image can be measured at a
particular die being fabricated on one or more calibration or
test substrates. In addition, ground truth measurements of
the thickness at the particular die locations can be performed
with dry metrology equipment, e.g., a contact profilometer
or ellipsometer. A ground truth thickness measurement can
thus be associated with the color image from the same die
location on a substrate. The plurality of color calibration
images can be generated from, for example, five to ten
calibration substrates, by dividing images of the calibration
substrates as discussed above. As of the configuration pro-
cedure for the neural network 320, the neural network 320
is trained using the color image and the characteristic value
for each die fabricated on a calibration substrate.

[0065] V corresponds to one of the color images and is
thus associated with a characteristic value. While the neural
network 320 is operating in a training mode, such as a
backpropagation mode, the values (v, v, . . ., v;) are fed
to the respective input nodes N, N, . . . N, while the
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characteristic value CV is fed to the output node 326. This
can be repeated for each row. This process sets the values for
a,,, etc., in Equations 1 or 2 above.

[0066] The system is now ready for operation. A color
image measured from a substrate using the in-line monitor-
ing system 160. The measured color image can be repre-
sented by a column matrix S=(i, i, . . . , i,), where i,
represents the intensity value at the jth intensity value out of
L intensity values, with L=3n when the image includes a
total of n pixels and each pixel includes three color channels.

[0067] While the neural network 320 is used in an infer-
ence mode, these values (S;, S,, . .., S;) are fed as inputs
to the respective input nodes N, N,, . .. N;. As a result, the
neural network 320 generates a characteristic value, e.g., a
layer thickness, at the output node 326.

[0068] The architecture of the neural network 320 can
vary in depth and width. For example, although the neural
network 320 is shown with a single column of intermediate
nodes 324, it could include multiple columns. The number
of intermediate nodes 324 can be equal to or greater than the
number of input nodes 322.

[0069] As noted above, the controller 190 can associate
the various color images with different dies (see FIG. 2) on
the substrate. The output of each neural network 320 can be
classified as belonging to one of the dies based on the
position of the sensor on the substrate at the time the image
is collected. This permits the controller 190 to generate a
separate sequence of measurement values for each die.

[0070] Insome implementations, the controller 190 can be
configured to have a neural network model structure with
composed of multiple different types of building blocks. For
example, the neural network be a residual neural network
that includes a res-block feature in its architecture. A
residual neural network may utilizing skip connections, or
shortcuts, to jump over some layers. A residual neural
network can be implemented, e.g., with a ResNet model. In
the context of residual neural networks, a non-residual
network may be described as a plain network.

[0071] Insome implementations, a neural network may be
trained to take the underlying layer thickness from the stack
into consideration during calculations, which can improve
errors due to underlying variation in thickness measure-
ments. The effect of the underlying thickness variation in the
film stack can be alleviated by feeding the intensity values
of the color images of the thicknesses of the underlying
layers as extra inputs to the model to improve the perfor-
mance of the model.

[0072] The reliability of the computed thickness measure-
ments can be evaluated by comparing them to the measured
values and then determining a difference between the com-
puted values and the original measured values. This deep
learning model may then be used for predicting the thickness
in the inference mode, immediately after a new test substrate
is scanned. This new approach enhances the throughput of
the entire system and enables the thickness measurement to
be performed on all substrates in the lot.

[0073] Referring to FIG. 4, a method of an image pro-
cessing algorithm generated by machine learning techniques
for use in a substrate thickness measurement system. Such
an image processing algorithm can receive RGB images
collected from an integrated line-scan camera inspection
system and enables film thickness estimates with much
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faster speed. The inference time for about 2000 measure-
ment points is about a few seconds, as compared to 2 hours
with dry metrology.

[0074] The method includes the controller assembling
individual image lines from the light detector 164 into a
two-dimensional color image (500). The controller can
apply an offset and/or a gain adjustment to the intensity
values of the image in each color channel (510). Each color
channel can have a different offset and/or gain. Optionally,
the image can be normalized (515). For example, the dif-
ference between the measured image and a standard pre-
defined image can be calculated. For example, the controller
can store a background image for each of the red, green, and
blue color channels, and the background image can be
subtracted from the measured image for each color channel.
Alternatively, the measured image can be divided by the
standard predefined image. The image can be filtered to
remove low-frequency spatial variations (530). In some
implementations, a luminance channel is used to generate
the filter, which is then applied to the red, green, and blue
images.

[0075] The image is transformed, e.g., scaled and/or
rotated and/or translated, into a standard image coordinate
frame (540). For example, the image can be translated so
that the die center is at the center point of the image and/or
the image can be scaled so that the edge of the substrate is
at the edge of the image, and/or the image can be rotated so
that there is a 0° angle between the x-axis of the image and
the radial segment connecting the substrate center and the
substrate orientation feature.

[0076] One or more regions on the substrate are selected
and an image is generated for each selected region (550).
This can be performed using the techniques described
above, e.g., the regions can be predetermined areas, or the
portion that provides a region 208 can be determined auto-
matically by an algorithm

[0077] The intensity values provided by each color chan-
nel for each pixel of the image is considered used as input
to the supervised deep learning-trained image processing
algorithm. The image processing algorithm outputs a layer
thickness measurement for the particular region (560).
[0078] Various deep model architectures were trained and
validated on small die test patterned substrates with a goal
of reducing errors in the measurements. The model that took
into consideration the characteristics of the underlying layer
had a lower error. In addition, preliminary tool-to-tool
matching validation was performed by training the model
with data collected on one tool and using it for inferences on
the data from other tools. Results were comparable to
training and inferencing with data from the same tool.
[0079] In general, data can be used to control one or more
operation parameters of the CMP apparatus. Operational
parameters include, for example, platen rotational velocity,
substrate rotational velocity, the polishing path of the sub-
strate, the substrate speed across the plate, the pressure
exerted on the substrate, slurry composition, slurry flow rate,
and temperature at the substrate surface. Operational param-
eters can be controlled real-time and can be automatically
adjusted without the need for further human intervention.
[0080] As used in the instant specification, the term sub-
strate can include, for example, a product substrate (e.g.,
which includes multiple memory or processor dies), a test
substrate, a bare substrate, and a gating substrate. The
substrate can be at various stages of integrated circuit
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fabrication, e.g., the substrate can be a bare wafer, or it can
include one or more deposited and/or patterned layers. The
term substrate can include circular disks and rectangular
sheets.

[0081] However, the color image processing technique
described above can be particularly useful in the context of
3D vertical NAND (VNAND) flash memory. In particular,
the layer stack used in fabrication of VNAND is so com-
plicated that current metrology methods (e.g., Nova spec-
trum analysis) may be unable to perform with sufficient
reliability in detecting regions of improper thickness. In
contrast, the color image processing technique can have
superior reliability in this application.

[0082] Embodiments of the invention and all of the func-
tional operations described in this specification can be
implemented in digital electronic circuitry, or in computer
software, firmware, or hardware, including the structural
means disclosed in this specification and structural equiva-
lents thereof, or in combinations of them.

[0083] Embodiments of the invention can be implemented
as one or more computer program products, i.e., one or more
computer programs tangibly embodied in a non-transitory
machine readable storage media, for execution by, or to
control the operation of, data processing apparatus, e.g., a
programmable processor, a computer, or multiple processors
or computers.

[0084] Terms of relative positioning are used to denote
positioning of components of the system relative to each
other, not necessarily with respect to gravity; it should be
understood that the polishing surface and substrate can be
held in a vertical orientation or some other orientations.
[0085] A number of implementations have been described.
Nevertheless, it will be understood that various modifica-
tions may be made. For example

[0086] Rather than a line scan camera, a camera that
images the entire substrate could be used. In this case,
motion of the camera relative to the substrate is not
needed.

[0087] The camera could cover less than the entire
width of the substrate. In this case, the camera would
need to undergo motion in two perpendicular direc-
tions, e.g., be supported on an X-Y stage, in order to
scan the entire substrate.

[0088] The light source could illuminate the entire
substrate. In this case, the light source need not move
relative to the substrate.

[0089] The light detector can be a spectrometer rather
than a color camera; the spectra data can then be
reduced to the RGB color space.

[0090] The sensory assembly need not an in-line system
positioned between polishing stations or between a
polishing station and a transfer station. For example,
the sensor assembly could be positioned within the
transfer station, positioned in a cassette interface unit,
or be a stand-alone system.

[0091] The uniformity analysis step is optional. For
example, the image generated by applying the thresh-
old transformation can be fed into a feed-forward
process to adjust a later processing step for the sub-
strate, or into a feed-back process to adjust the pro-
cessing step for a subsequent substrate.

[0092] Accordingly, other implementations are within the
scope of the claims.
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What is claimed is:
1. A computer program product, comprising a non-tran-
sitory computer-readable medium encoded with instructions
to cause one or more processors to:
receive a first color image of a first substrate from an
in-line monitoring station of a polishing system;
divide the first color image into a plurality of second color
images using a die mask such that each second color
image corresponds to a region for a die being fabricated
on the first substrate;
generate residue measurements for one or more locations,
each respective location of the one more locations
corresponding to a respective region for a die being
fabricated on the first substrate, wherein the instruc-
tions to generate the residue measurement for a region
include instructions to process a second color image
corresponding to the region through a neural network
that was trained using training data that included a
plurality of third color images of dies of a calibration
substrate and ground truth residue measurements of the
calibration substrate with each respective third color
image paired with a ground truth residue measurement
for a die region associated with the respective third
color image; and
determine a value for a polishing parameter for the first
substrate or a subsequent second substrate based on the
residue measurements.
2. The computer program product of claim 1, comprising
instructions to receive the first color image of the first
substrate after polishing of the first substrate at a polishing
station.
3. The computer program product of claim 2, comprising
instructions to determine the polishing parameter for the
polishing station for the subsequent second substrate based
on the residue measurements.
4. The computer program product of claim 1, comprising
instructions to receive the first color image of the first
substrate before polishing of the first substrate at a polishing
station.
5. The computer program product of claim 4, comprising
instructions to determine the polishing parameter for the
polishing station for the first substrate based on the residue
measurements.
6. The computer program product of claim 5, wherein the
polishing parameter comprises a pressure of a chamber in
the carrier head.
7. A polishing apparatus, comprising:
a polishing station including a platen to support a polish-
ing pad and a carrier head to hold a first substrate
against the polishing pad;
an in-line metrology station having a color camera to
generate a color image of the first substrate; and
a control system configured to
receive a first color image of the first substrate from an
in-line monitoring station of a polishing system,

divide the first color image into a plurality of second
color images using a die mask such that each second
color image corresponds to a region for a die being
fabricated on the first substrate;

generate residue measurements for one or more loca-
tions, each respective location of the one more
locations corresponding to a respective region for a
die being fabricated on the first substrate, wherein
the instructions to generate the residue measurement
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for a region include instructions to process a second
color image corresponding to the region through a
neural network that was trained using training data
that included a plurality of third color images of dies
of a calibration substrate and ground truth residue
measurements of the calibration substrate with each
respective third color image paired with a ground
truth residue measurement for a die region associated
with the respective third color image, and

determine a value for a polishing parameter for the first
substrate or a subsequent second substrate based on
the residue measurements;

cause the polishing station to polish the first substrate
or the subsequent second substrate using the deter-
mined polishing parameter.

8. The apparatus of claim 7, wherein the polishing param-
eter comprises a pressure of a chamber in the carrier head.

9. The apparatus of claim 7, wherein the control system is
configured to receive the first color image of the first
substrate after polishing of the first substrate at a polishing
station.

10. A method of controlling polishing, comprising:

obtaining a first color image of a first substrate at an
in-line monitoring station of a polishing system;

dividing the first color image into a plurality of second
color images using a die mask such that each second
color image corresponds to a region for a die being
fabricated on the first substrate;

generating residue measurements for one or more loca-
tions, each respective location of the one more loca-
tions corresponding to a respective region for a die
being fabricated on the first substrate, wherein gener-
ating a residue measurement for a region includes
processing a second color image corresponding to the
region through a neural network that was trained using
training data that included a plurality of third color
images of dies of a calibration substrate and ground
truth residue measurements of the calibration substrate
with each respective third color image paired with a
ground truth residue measurement for a die region
associated with the respective third color image; and

determining a value for a polishing parameter for the first
substrate or a subsequent second substrate based on the
residue measurements.

11. The method of claim 10, comprising:

obtaining ground truth residue measurements of a top
layer of a calibration substrate at a plurality of loca-
tions, each location at a defined position for a die being
fabricated on the substrate;

obtaining a plurality of color training images of the
calibration substrate, each color training image corre-
sponding to a region for a die being fabricated on the
substrate; and

training the neural network to convert color images of die
regions from the in-line monitoring station to residue
measurements for the top layer in the die region,
wherein training the neural network includes using
training data that includes the plurality of color training
images and ground truth residue measurements with
each respective color training image paired with a
ground truth residue measurement for the die region
associated with the respective color training image.
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12. The method of claim 11, wherein obtaining the
plurality of color training images includes receiving a scan
of the calibration substrate from the in-line substrate imager.

13. The method of claim 11, wherein obtaining the
plurality of color training images includes receiving a color
training image of the calibration substrate, and dividing the
color training image into the plurality of color images based
on a die mask.

14. The method of claim 11, comprising obtaining ground
truth residue measurements of top layers of a plurality of
calibration substrates, and obtaining a plurality of color
images for each of the calibration substrates.

15. The method of claim 11, wherein obtaining the ground
truth residue measurements comprises receiving a measure-
ment of residue at each of the plurality of locations.

16. The method of claim 11, wherein the defined position
is a center of the die.

17. The method of claim 11, comprising obtaining mea-
surements from all dies in a substrate.

18. The method of claim 11, comprising obtaining mea-
surements from all substrates in a lot at both pre and post
chemical mechanical planarization.
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