

US011912337B2

(12) United States Patent Kinsman et al.

(54) SIDE-BY-SIDE ALL TERRAIN VEHICLE

(71) Applicant: **Polaris Industries Inc.**, Medina, MN (US)

(72) Inventors: Anthony J. Kinsman, Wyoming, MN (US); Angus M. Morison, Blaine, MN (US); Keith A. Hollman, Osceola, WI (US); Adam J. Schlangen, Rush City, MN (US); Richard D. Ripley, Rush City, MN (US); Brent A. Erspamer, Blaine, MN (US); Phillip Nowacki,

(73) Assignee: Polaris Industries Inc., Medina, MN

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 146 days.

White Bear Lake, MN (US)

(21) Appl. No.: 17/402,116

(22) Filed: Aug. 13, 2021

(65) Prior Publication Data

US 2022/0033004 A1 Feb. 3, 2022

Related U.S. Application Data

- (63) Continuation of application No. 16/576,962, filed on Sep. 20, 2019, now Pat. No. 11,104,384, which is a (Continued)
- (51) Int. Cl.

 B60P 7/08 (2006.01)

 B62D 21/18 (2006.01)

 (Continued)

(Continued)

(10) Patent No.: US 11,912,337 B2

(45) **Date of Patent:** Feb. 27, 2024

(58) Field of Classification Search

CPC B62D 21/183; B62D 21/12; B62D 23/005; B62D 27/065; B62D 33/02; B62D 33/06; (Continued)

(56) References Cited

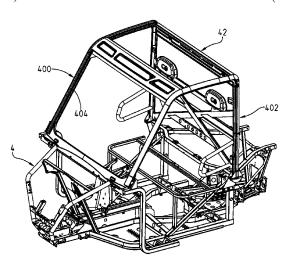
U.S. PATENT DOCUMENTS

3,422,918 A 1/1969 Musser et al. 4,046,403 A 9/1977 Yoshida (Continued)

FOREIGN PATENT DOCUMENTS

CA 2416802 A1 10/2003 CA 2825896 A1 8/2012 (Continued)

OTHER PUBLICATIONS


"FIAT 500 Owner Handbook", Jul. 2001 (Jul. 2001), Fiat Group Automobiles S.p.A, Turin (IT).

(Continued)

Primary Examiner — Toan C To (74) Attorney, Agent, or Firm — Faegre Drinker Biddle & Reath LLP

(57) ABSTRACT

A side by side vehicle is disclosed having a vehicle frame having frame tubes extending from a front to a rear. A vehicle seat frame is positioned in a mid portion of the frame, and positions a seat frame at a raised position relative to the frame tubes. A powertrain is positioned rearward of the vehicle seat frame and is coupled to the vehicle frame. Side by side seats are supported by the seat frame; and one or more storage units are positioned under the side by side seats. The side by side vehicle also has a rear suspension comprising at least one rear alignment arm coupled to each side of a rear of the vehicle frame, where the alignment arms are coupled to the vehicle frame at front and rear connection points. A distance between the front connection points is greater than a distance between the rear connection points, (Continued)

	t least a portion of the powertrain is positioned between	6,334,364 B1*	1/2002	Suzuki B60L 58/21
the f	ont connection points of the alignment arms.	D467,200 S	12/2002	180/444 Luo et al.
	44 CI 1 4 C D 1 CI 4	6,530,730 B2		Swensen
	22 Claims, 36 Drawing Sheets	6,533,348 B1		Jaekel et al.
		6,582,004 B1		Hamm
		6,652,020 B2	11/2003	Few
		D497,324 S		Chestnut et al. Kinouchi et al.
	Related U.S. Application Data	6,805,217 B2 D498,435 S		Saito et al.
	continuation of application No. 15/494,296, filed on	6,871,895 B2		Kiester et al.
	Apr. 21, 2017, now Pat. No. 10,450,006, which is a	D503,657 S	4/2005	
	continuation of application No. 13/370,139, filed on	D503,905 S		Saito et al.
	Feb. 9, 2012, now Pat. No. 9,650,078.	D504,638 S		Tanaka et al.
		6,892,847 B2 6,926,350 B2	5/2005 8/2005	Gabbianelli et al.
(60)	Provisional application No. 61/442,071, filed on Feb.	D511,317 S		Tanaka et al.
	11, 2011.	7,014,241 B2		Toyota et al.
		7,281,753 B2		Curtis et al.
(51)	Int. Cl.	D555,036 S 7,322,106 B2	11/2007	Marando et al.
	$B60G \ 3/20 $ (2006.01)	D578,433 S		Kawaguchi et al.
	B60G 7/00 (2006.01)	D578,934 S		Tanaka et al.
	B60G 7/02 (2006.01)	7,431,024 B2		Buchwitz et al.
	$B60N\ 2/01$ (2006.01)	7,481,610 B1		Egigian
	B60N 2/015 (2006.01)	7,488,022 B2 7,503,737 B2	3/2009	Belwafa et al. Sherman
	B62D 23/00 (2006.01)	7,510,199 B2 *		Nash B60K 6/52
	$B62D \ 21/12 \tag{2006.01}$, ,		180/311
	B62D 27/06 (2006.01)	D592,998 S		Woodard et al.
	B62D 33/02 (2006.01)	D595,613 S 7,578,544 B1	8/2009	Lai et al. Shimamura et al.
	B62D 33/06 (2006.01)	7,581,780 B2		Shimamura et al.
(50)	B60G 21/055 (2006.01)	D604,201 S	11/2009	Kawaguchi et al.
(52)	U.S. Cl. CPC <i>B60G 21/055</i> (2013.01); <i>B60N 2/012</i>	D605,555 S D606,900 S	12/2009 12/2009	Tanaka et al.
		D607,377 S		Shimomura et al.
	(2013.01); B60N 2/015 (2013.01); B60P	7,677,343 B2		Kitai et al.
	7/0807 (2013.01); B62D 21/12 (2013.01); B62D 23/005 (2013.01); B62D 27/065	7,677,646 B2		Nakamura
		7,717,495 B2		Leonard et al.
	(2013.01); B62D 33/02 (2013.01); B62D 33/06 (2013.01); B60G 2300/124 (2013.01);	D621,423 S D622,631 S		Nakanishi et al. Lai et al.
	B60G 2300/13 (2013.01); B60Y 2200/20	7,775,311 B1*		Hardy B60L 50/71
	(2013.01)			180/68.5
(58)	Field of Classification Search	7,795,602 B2		Leonard et al.
(50)	CPC . B60G 3/20; B60G 7/008; B60G 7/02; B60G	D624,848 S D625,662 S	10/2010	Shimomura
	21/055; B60G 2300/124; B60G 2300/13;	7,815,246 B2		Nakamura et al.
	B60N 2/012; B60N 2/015; B60P 7/0807;	7,819,220 B2		Sunsdahl et al.
	B60Y 2200/20	7,841,815 B1	11/2010	Lane Tandrup et al.
	See application file for complete search history.	D631,395 S 7,874,606 B2		Yamamura et al.
		D633,006 S		Sanschagrin et al.
(56)	References Cited	7,913,505 B2		Nakamura
	H.C. DAMENTE DOCLIN CENTRO	D636,704 S D640,598 S	4/2011 6/2011	Yoo et al.
	U.S. PATENT DOCUMENTS	D641,288 S	7/2011	
	4,133,574 A 1/1979 Martin	D642,493 S	8/2011	Goebert et al.
	4,344,718 A 8/1982 Taylor	7,988,210 B2		Shibata et al.
	4,650,210 A 3/1987 Hirose et al.	8,016,339 B2 8,052,202 B2		Hamaguchi et al. Nakamura
	4,660,345 A 4/1987 Browning 4,691,818 A 9/1987 Weber	8,100,434 B2	1/2012	
	4,772,065 A 9/1988 Nakata et al.	8,136,857 B2		Shimizu et al.
	4,817,985 A 4/1989 Enokimoto et al.	8,136,859 B2		Morita et al.
	5,203,135 A 4/1993 Bastian	8,235,443 B2 8,328,235 B2		Kokawa et al. Schneider et al.
	5,203,601 A 4/1993 Guillot 5,327,989 A 7/1994 Furuhashi et al.	8,376,441 B2		Nakamura et al.
	5,465,929 A 11/1995 Dooley	8,511,732 B2		Inoue et al.
	5,642,957 A 7/1997 Lange	D689,396 S 8,556,324 B1	9/2013	Wang Yamamoto et al.
	5,738,471 A 4/1998 Zentner et al.	8,585,088 B1		Kaku et al.
	5,752,791 A 5/1998 Ehrlich 5,816,650 A 10/1998 Lucas, Jr.	8,596,405 B2	12/2013	Sunsdahl et al.
	5,895,063 A 4/1999 Hasshi et al.	8,613,337 B2		Kinsman et al.
	5,947,519 A 9/1999 Aloe et al.	8,640,814 B2		Deckard et al.
	5,975,624 A 11/1999 Rasidescu et al. 6,113,328 A 9/2000 Claucherty	8,668,236 B1 8,672,387 B1		Yamamoto et al. Kaku et al.
	6,113,328 A 9/2000 Claucherty 6,134,841 A 10/2000 Schneider	D711,778 S		Chun et al.
	6,257,797 B1 7/2001 Lange	D716,693 S	11/2014	Higashikawa
	6,293,617 B1 9/2001 Sukegawa	D716,694 S	11/2014	Higashikawa

US 11,912,337 B2 Page 3

(56)	Referen	nces Cited		1/0155087 A1		Wenger et al.	
U.S.	PATENT	DOCUMENTS		1/0156438 A1 1/0298189 A1		Ichihara et al. Schneider et al.	
0.0.		2000IIIII (10		2/0031693 A1		Deckard et al.	
D717,695 S		Matsumura		2/0073527 A1		Oltmans et al.	
8,905,168 B2*	12/2014	Kaku B60K 20/02		2/0073537 A1		Oltmans et al.	
D724.007. C	2/2015	180/293		2/0160589 A1		Tsumiyama et al.	
D724,997 S 8,973,691 B2		Brew et al. Morgan et al.		2/0212013 A1		Ripley et al. Kinsman et al.	
8,973,693 B2 *		Kinsman B60R 21/13		2/0217078 A1 2/0223500 A1		Kinsman et al.	
-,, ——		296/202		3/0033070 A1		Kinsman et al.	
8,979,123 B1*	3/2015	Takahashi B62D 23/005		3/0087397 A1		Yamamoto et al.	
0.00 7 .000 D2	4/2015	280/756	2013	3/0087398 A1		Kotani et al.	
8,997,908 B2 9,004,532 B1		Kinsman et al. Hirooka		4/0000174 A1		Minagawa et al.	
D730,239 S		Gonzalez		1/0049067 A1		Kasuya et al.	
D736,118 S	8/2015	Hashimoto et al.		1/0060954 A1		Smith et al. Schlangen et al.	
9,150,182 B1		Schlangen et al.		1/0062048 A1 1/0065936 A1		Smith et al.	
9,216,777 B2		Nakamura et al.		1/0067215 A1		Wetterlund et al.	
9,242,680 B2 9,266,417 B2		Schwab Nadeau et al.		4/0109627 A1		Lee et al.	
9,279,234 B1		Gielda et al.	2014	4/0265285 A1	9/2014	Erspamer	
9,365,241 B1*		Taracko B62D 21/155	2015	5/0274212 A1*	10/2015	Karube	B62D 25/082
D764,972 S	8/2016	Gonzalez					296/193.11
D767,444 S		Chun et al.	2015	5/0274215 A1*	10/2015	Karube	
9,650,078 B2		Kinsman et al. Erspamer et al.	2014	5/02010 <i>56</i> 1 *	10/2015	Nozaki	296/193.07
9,789,909 B2 9,789,922 B2		Dosenbach et al.	2013	5/0291036 A1*	10/2015	Nozaki	BOUK 1/04 180/65.1
10,450,006 B2		Kinsman et al.	2014	5/0367891 A1*	12/2015	Deschamps	
11,066,105 B2		Lutz et al.	201.	7/030/031 711	12/2013	Deschamps	280/781
2001/0031185 A1		Swensen	2016	5/0176449 A1	6/2016	Kazakoff et al.	2007.01
2003/0231926 A1	12/2003		2018	3/0022391 A1	1/2018	Lutz et al.	
2005/0077098 A1 2005/0173177 A1		Takayanagi et al. Smith et al.	2018	8/0326843 A1*		Danielson	B60G 15/062
2005/0279330 A1		Okazaki et al.		D/0010120 A1		Kinsman et al.	
2006/0006696 A1		Umemoto et al.	202	1/0269096 A1	9/2021	Erspamer et al.	
2007/0170683 A1		Shimizu et al.		EODEIG	ONT DATED	NIT DOOLINGENIT	G.
2007/0176386 A1		Schlangen et al.		FOREIG	JN PALE	NT DOCUMENT	S
2007/0210617 A1 2007/0214818 A1		Nakamura Nakamura	CA	282	6756 A1	8/2012	
2007/0267837 A1		Sanville	CA		1541 A1	9/2014	
2008/0000849 A1		Zhang et al.	CA		0026 A1	12/2014	
2008/0023240 A1		Sunsdahl et al.	CA		1360 A1	2/2015	
2008/0023249 A1 2008/0084091 A1		Sunsdahl et al. Nakamura et al.	CA		3980 A1	6/2015	
2008/0093883 A1		Shibata et al.	CN CN		6159 Y .1664 A	7/2009 8/2009	
2008/0179853 A1		Kuwabara et al.	CN		8146 A	11/2010	
2008/0256738 A1		Malone	CN		6825 A	11/2011	
2008/0308334 A1		Leonard et al.	DE		7435	10/1886	
2009/0000849 A1 2009/0071737 A1		Leonard et al. Leonard et al.	DE DE		9787 A1	4/2000	
2009/0071737 A1 2009/0071739 A1		Leonard et al.	EP	10200805 056	8251 A1	4/2010 11/1993	
2009/0091101 A1		Leonard et al.	EP		3624 A1	1/2005	
2009/0108632 A1		Wen et al.	EP		0326 A1	11/2005	
2009/0121518 A1		Leonard et al. Yamamura et al.	EP		2523 A2	12/2005	
2009/0183937 A1 2009/0183938 A1*		Cover B60N 2/06	EP EP		7060 A2 6395 A1	5/2009 10/2010	
2009/0103930 711	112005	180/291	FR		4597 A1	10/2018	
2009/0184534 A1	7/2009	Smith et al.	FR		6028 A1	3/2010	
2009/0184536 A1		Kubota	GB		6659 A	7/1980	
2009/0184537 A1		Yamamura et al.	GB		6091 A	9/2007	
2009/0184541 A1 2009/0200823 A1*		Yamamura et al. Vertanen B60R 13/01	JP JP	63-02	2525 A 25977	2/1984 5/1988	
2009/0200023 AT	0,2007	296/26.08	JP		.5977 A	11/1994	
2009/0301830 A1*	12/2009	Kinsman F16F 9/0218	JP		0783 A	2/1995	
		188/289	JP		1637 A	4/1999	
2009/0302590 A1		Van et al.	JP		0304 A	5/2001	
2010/0012412 A1*	1/2010	Deckard B62D 25/20	JP JP		7530 A 95106 A	8/2003 4/2010	
2010/0155170 41*	C/2010	180/90.6	WO		0430 A1	7/1998	
2010/0155170 A1*	0/2010	Melvin F16H 57/0489 180/339	WO	03/4	2026 A1	5/2003	
2010/0194086 A1	8/2010	Yamamura et al.	WO		5716 A1	7/2003	
2010/0194080 A1 2010/0201156 A1		Nakamura	WO WO		6377 A2	2/2008	
2010/0314184 A1		Stenberg et al.	WO		7579 A1 8014 A1	11/2009 12/2010	
2010/0317485 A1*		Gillingham B60K 17/356	wo		0553 A2	3/2012	
0011/00050:-	A (A - :	180/242	WO	2012/10	9546 A1	8/2012	
2011/0025012 A1		Nakamura	WO		4793 A1	12/2012	
2011/0143113 A1	6/2011	Hatta et al.	WO	2013/16	6310 A1	11/2013	

(56) References Cited FOREIGN PATENT DOCUMENTS WO 2014/039432 A2 3/2014 WO 2014/039433 A2 3/2014 WO 2014/059258 A1 4/2014

OTHER PUBLICATIONS

2008 Dealer Expo Top UTV Products-Rhino, Ranger and RZRs were everything at the . . . , dated Feb. 18, 2008, 6 pages.

Artic Cat, Company Website, Prowler XT650 H1, undated; 9 pages. BRP Can-Am Commander photo, undated; 1 page.

Buyer'S Guide Supplement, 2006 Kart Guide, Powersports Business Magazine; 6 pages.

Club Car, Company Website, product pages for XRT 1500 SE, undated; 2 pages.

Communication Pursuant to Article 34(3) EPC issued by the European Patent Office, dated Oct. 30, 2018, for European Patent Application 14726795.9; 8 pages.

European Search Report and Search Opinion Received for EP Application No. 17150711.4, dated Jun. 7, 2017, 7 pages.

Examination Report issued by Intellectual Property India, dated Mar. 12, 2019, for Indian Patent Application No. 7003/DELNP/2013; 7 pages.

Examination Report No. 1 issued by the Australian Government IP Australia, dated Nov. 29, 2018, for Australian Patent Application No. 2018204263; 4 pages.

Honda Hippo 1800 New Competition for Yamaha's Rhino, Dirt Wheels Magazine, Apr. 2006; pp. 91-92.

International Preliminary Report on Patentability issued by the European Patent Office, dated Jul. 6, 2015, for International Patent Application No. PCT/US2014/039824; 12 pages.

International Preliminary Report on Patentability issued by the European Patent Office, dated Mar. 8, 2013, for International PCT Application No. PCT/US2012/024664; 24 pages.

International Preliminary Report on Patentability issued by the European Patent Office, dated Sep. 2, 2009, for related International Patent Application No. PCT/US2010/038709, 45 pages.

International Preliminary Report on Patentability issued by the European Patent Office, dated Jun. 11, 2015, for International Patent Application No. PCT/US2014/028152; 35 pages.

International Preliminary Report on Patentablility issued by the European Patent Office, dated Nov. 4, 2014, for International PCT Application No. PCT/US2013/039304; 7 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jul. 25, 2014, for related International Application No. PCT/US2014/028152; 21 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jul. 23, 2013, for International PCT Application No. PCT/US2013/039304; 11 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Jun. 28, 2012, for International PCT Application No. PCT/US2012/024664; 19 pages.

International Search Report and Written Opinion issued by the European Patent Office, dated Sep. 9, 2014, for related International Application No. PCT/US2014/039824; 10 pages.

International Search Report issued by the European Patent Office, dated Sep. 14, 2010, for related International Application No. PCT/2010/038709, 5 pages.

Kawasaki Mule the Off-Road Capable 610 4×4 Brochure 2011, (Copyrights) 2010; 6 pages.

Kawasaki Mule Utility Vehicle Brochure 2009, (Copyrights) 2008; 10 pages.

Kawasaki Teryx 750 FL 4×4 Sport Brochure 2011, (Copyrights) 2010; 6 pages.

Kawasaki Teryx Recreation Utility Vehicle Brochure 2009, (Copyrights) 2008; 8 pages.

Office Action issued by the Canadian Intellectual Property Office, dated Jun. 15, 2020, for Canadian Patent Application No. 2,901,541; 6 pages.

Office Action issued by the Canadian Intellectual Property Office, dated Oct. 16, 2019, for Canadian Patent Application No. 2,901,541; 7 pages.

Office Action issued by the Canadian Patent Office, dated Mar. 22, 2018, for related Canadian Patent Application No. 2,870,867, 6 pages.

Office Action issued by the European Patent Office, dated Jun. 15, 2018, for related European Patent Application No. 17150711.4; 4 pages.

Office Action dated Sep. 18, 2020, for Mexican Patent Application No. MX/a/2016/000762; 5 pages.

Office Action received for European Application No. 13722652.8, dated May 11, 2016, 4 pages.

Office Action received for European Application No. 14726795.9, dated Mar. 9, 2018, 6 pages.

Pictures of Vehicle publicly disclosed in Jul. 2008, 3 pages.

Polaris Industries, Ranger Catalog, 2007, 28 pages.

Polaris Industries, Ranger RZR Catalog, 2008, 12 pages. Polaris Ranger Brochure 2009, (Copyrights) 2008; 32 pages.

P. 1 . D. D. 1 . 2011 (C. . 14) 2010 22

Polaris Ranger Brochure 2011, (Copyright) 2010, 22 pages.

Polaris Ranger Brochure ATVs and Side × Sides Brochure 2010, (Copyrights) 2009; 26 pages.

Polaris Ranger Off-Road Utility Vehicles Brochure 2004, (Copyrights) 2003; 20 pages.

Polaris Ranger RZR Brochure 2011, (Copyrights) 2010; 16 pages. Polaris Ranger Welcome to Ranger Country Brochure 2006, (Copyrights) 2005; 24 pages.

Polaris Ranger Work/Play Only Brochure 2008, (Copyrights) 2007; 28 pages.

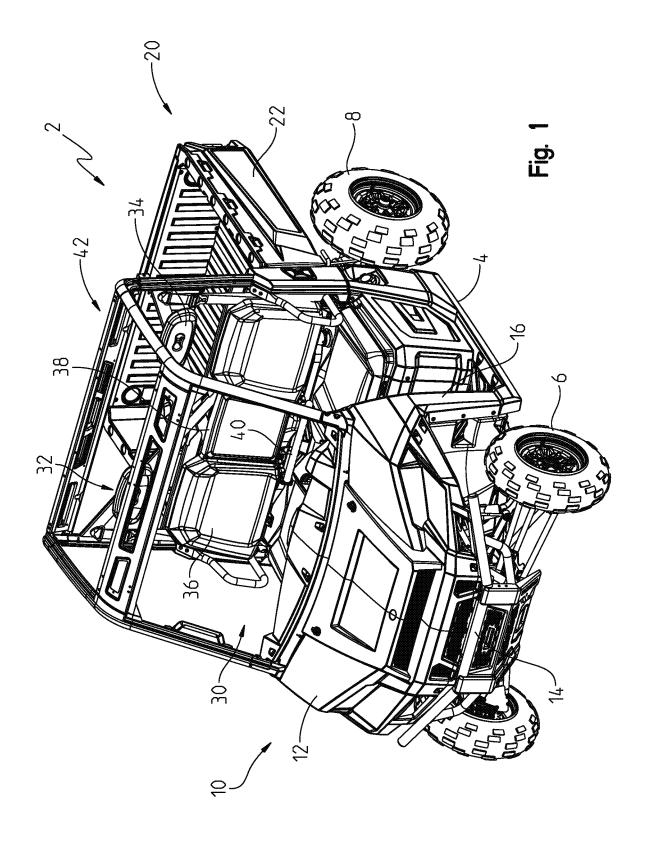
Ray Sedorchuk, New for 2004, Yamaha Rhino 660 4×4, ATV Connection Magazine, (Copyrights) 2006; 3 pages.

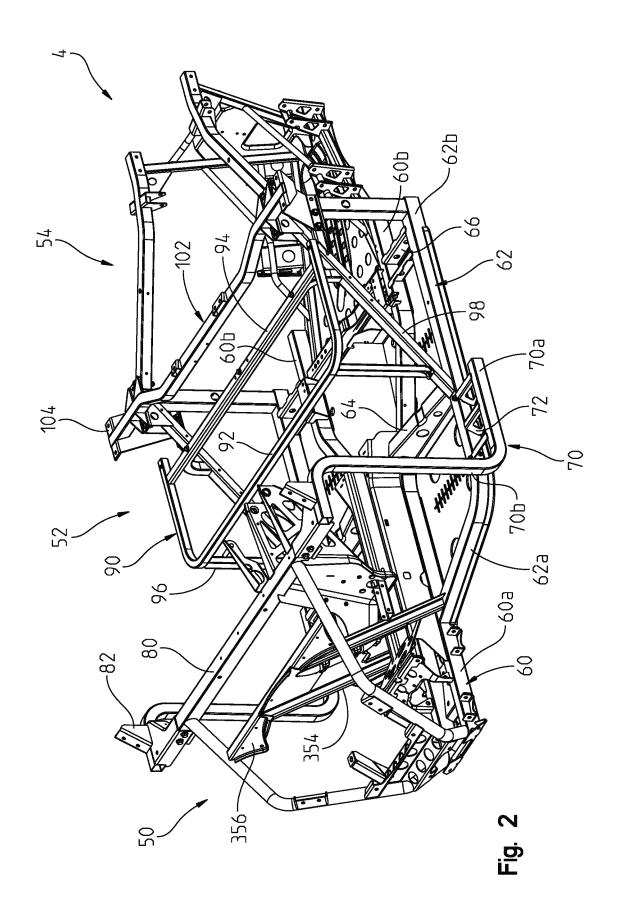
Robby Gordon's RZR-S 4 seater-Yamaha Rhino Forum-Rhino Forums.net, dated Nov. 11, 2009, 14 pages.

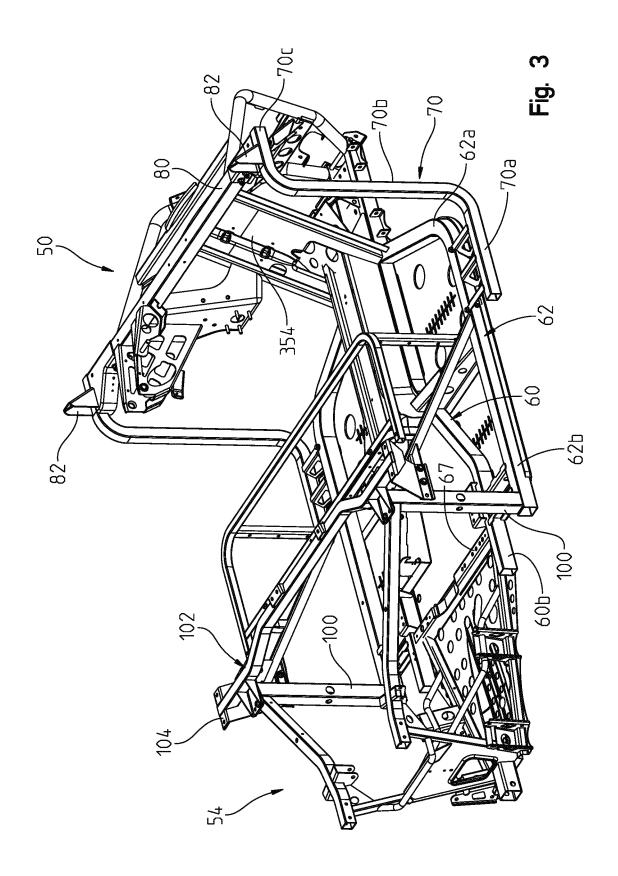
Side by Side Sports.com, Polaris Ranger Rear Cage Extension and Seat Set, available at www.sidebysidesports.com/porarecaexan. html, last accessed on Mar. 29, 2011.

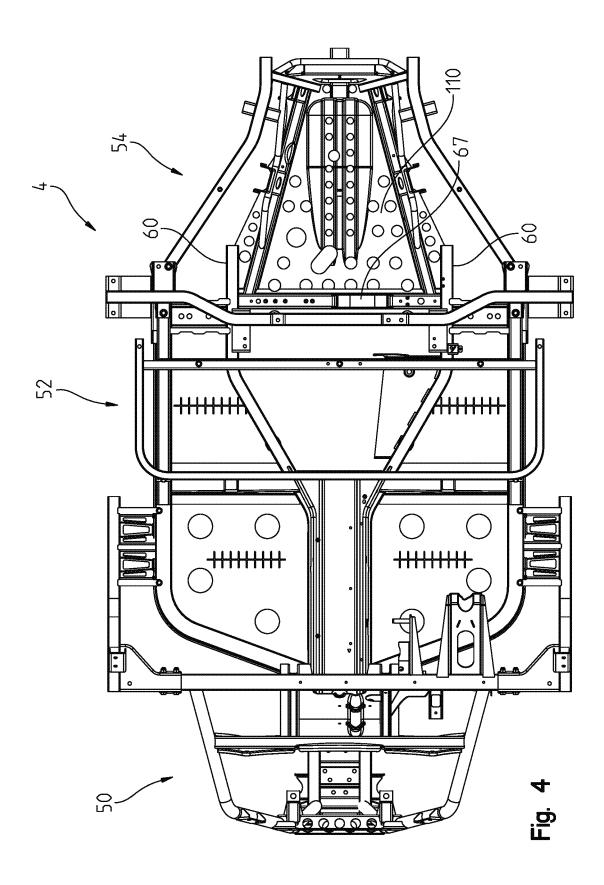
Tellico 4x4.com, Polaris Ranger Accessories and Ranger Parts for Crew 500, 700, 800, XP, available at www.tellico4x4.com/index. php/cPath/3523, last accessed on Mar. 29, 2011.

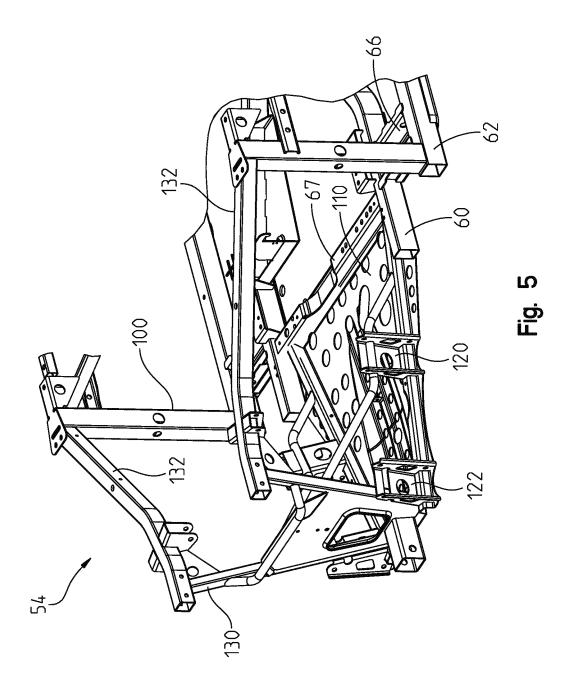
Written Opinion of the International Search Authority issued by the European Patent Office, dated Sep. 14, 2009, for related International Application No. PCT/US2010/038709, 6 pages.

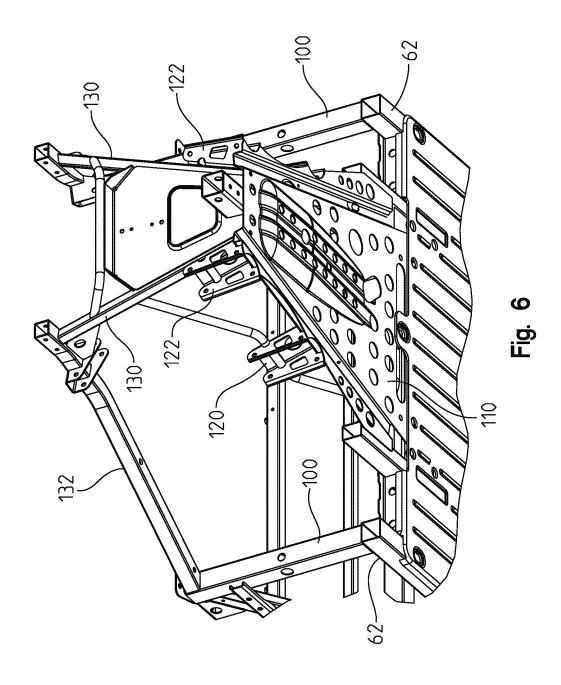

Yamaha Company Website, 2006 Rhino 450 Auto 4×4, copyright 2006; 4 pages.

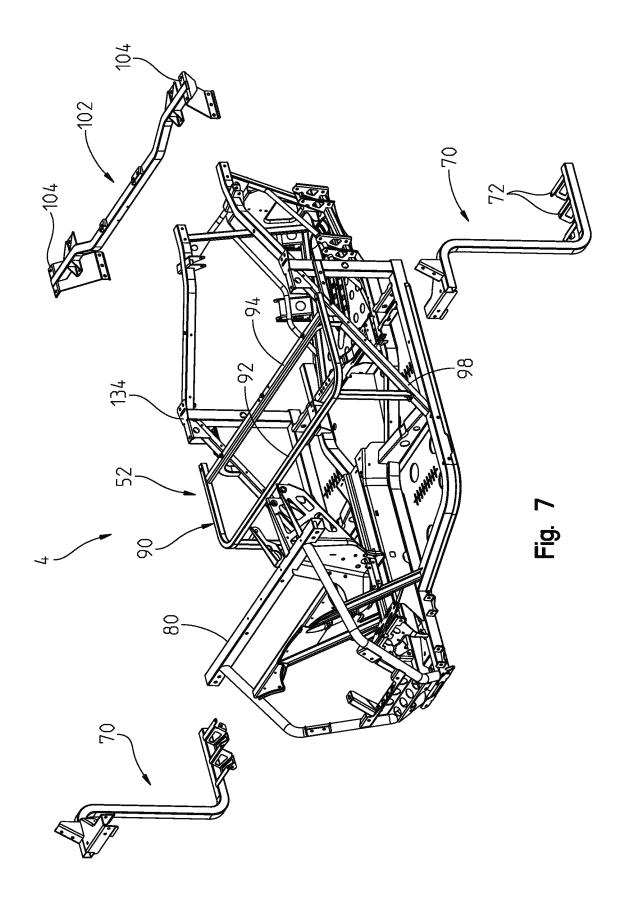

Yamaha, Company Website, 2006 Rhino 450 Auto 4x4, (Copyrights) 2005; 3 pages.

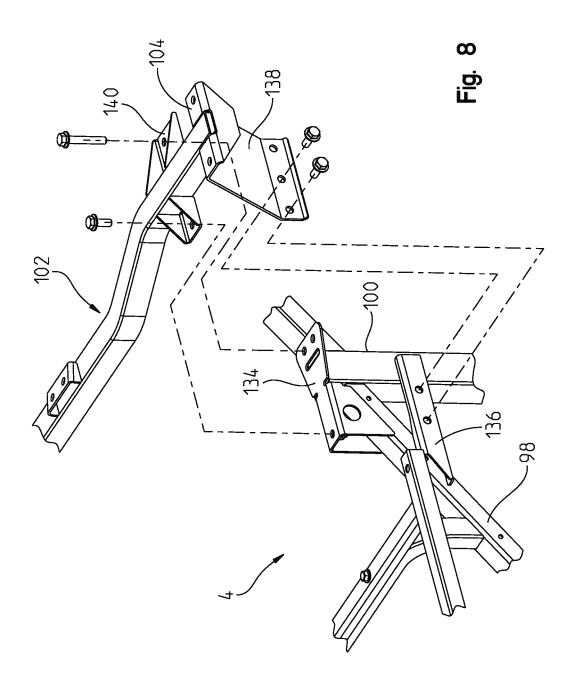

Yamaha, Company Website, Rhino 660 Auto 4×4 Exploring Edition Specifications, (Copyrights) 2006; 3 pages.

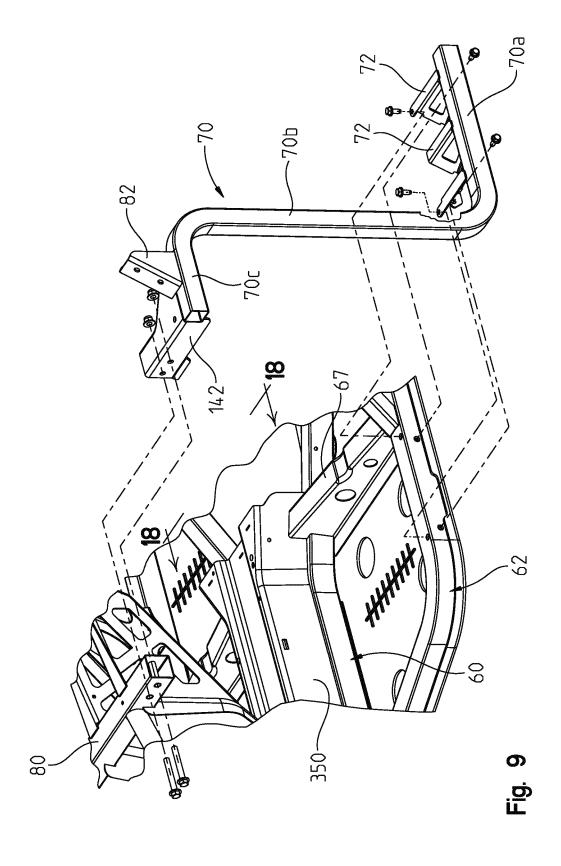

Office Action issued by the Canadian Intellectual Property Office, dated Oct. 5, 2023, for Canadian Patent Application No. 3,167,426; 6 pages.

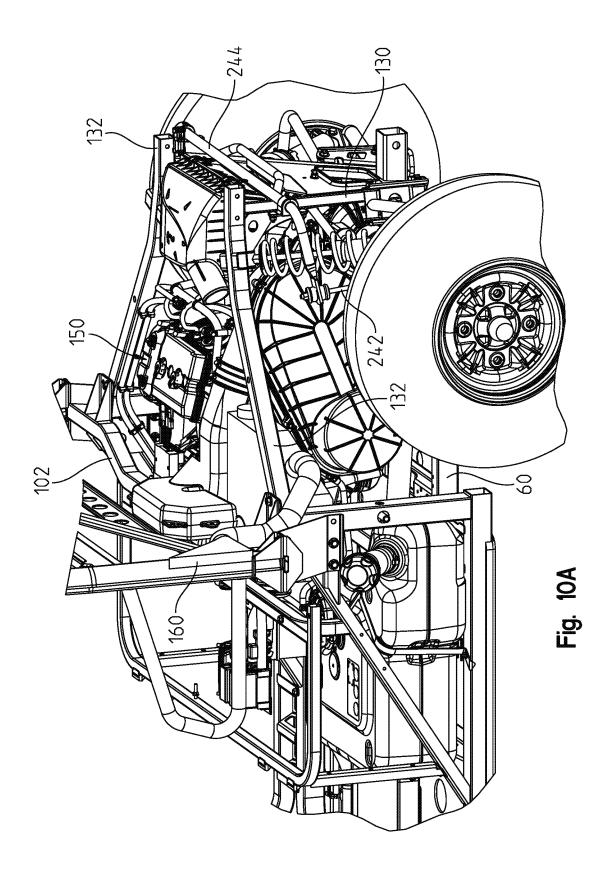

^{*} cited by examiner

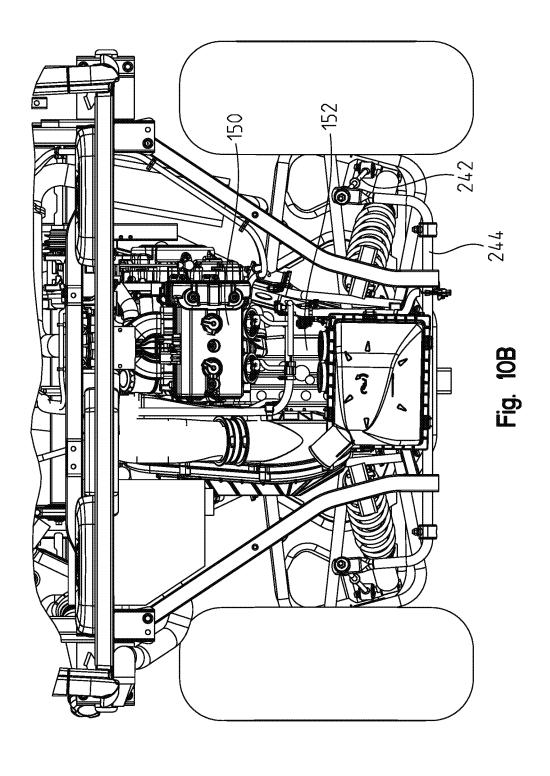


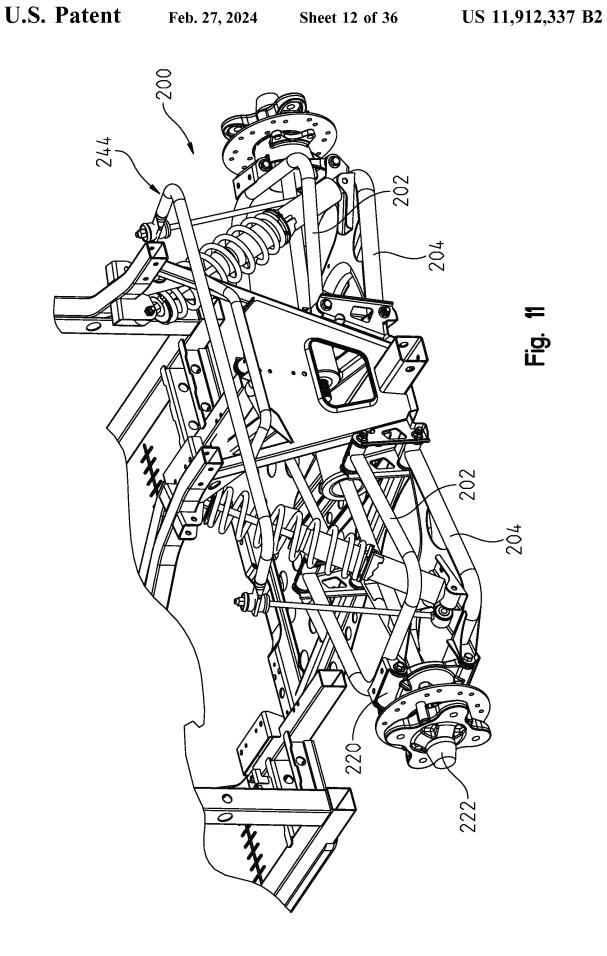


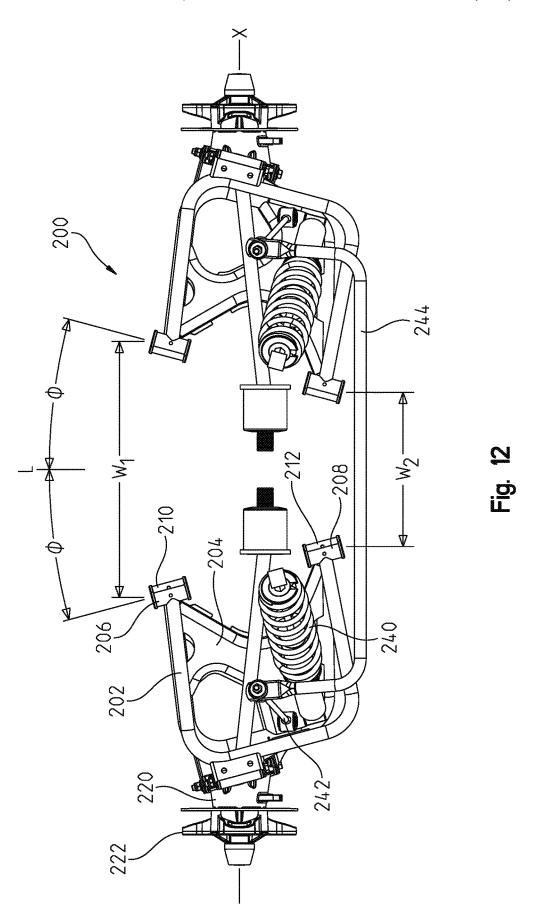


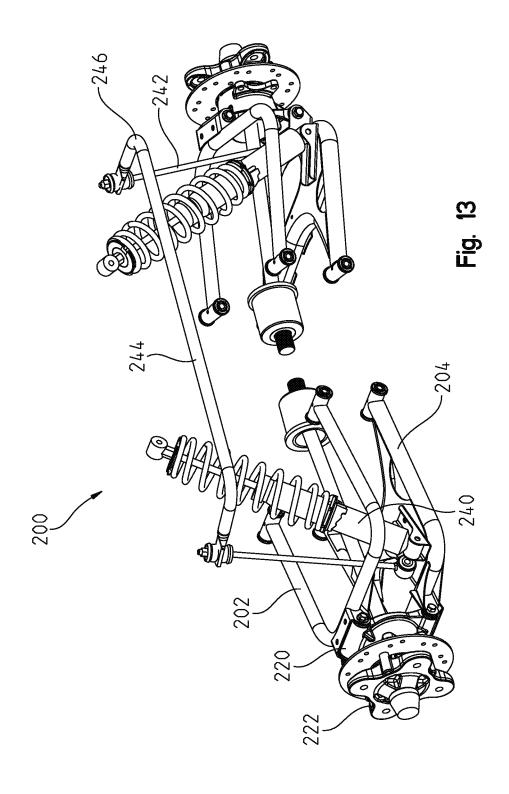


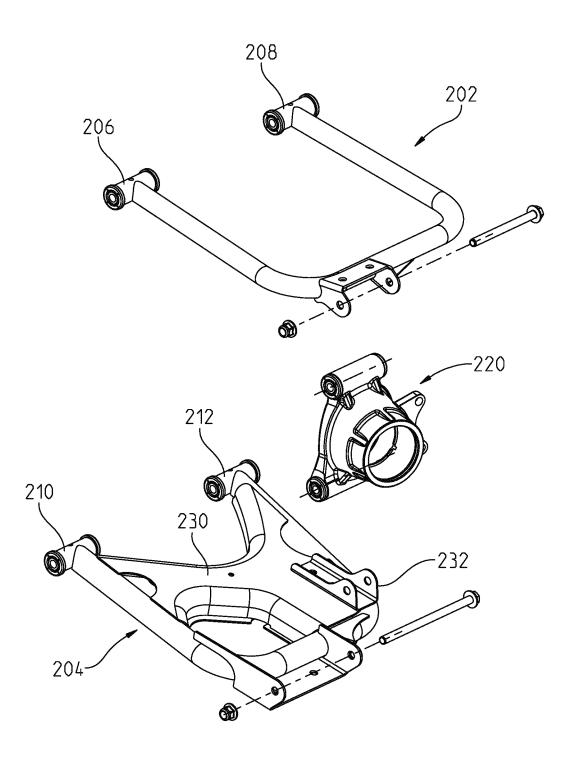
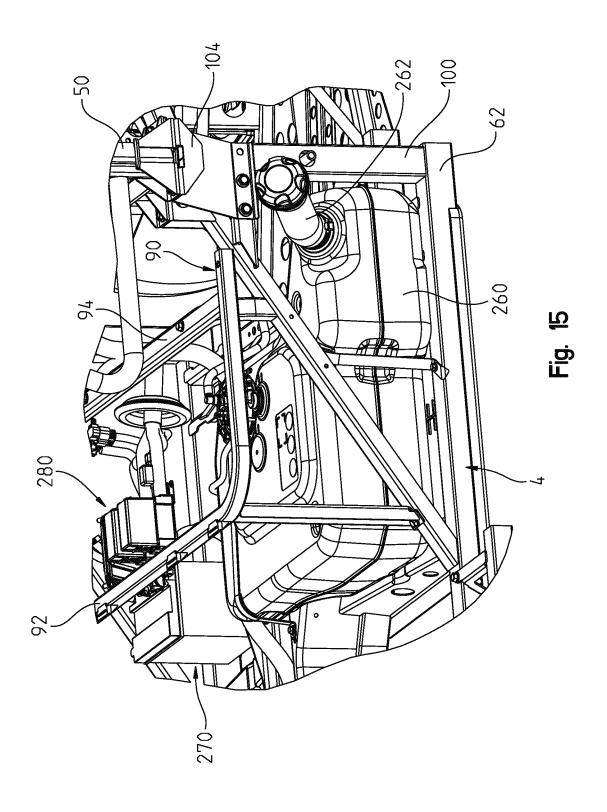
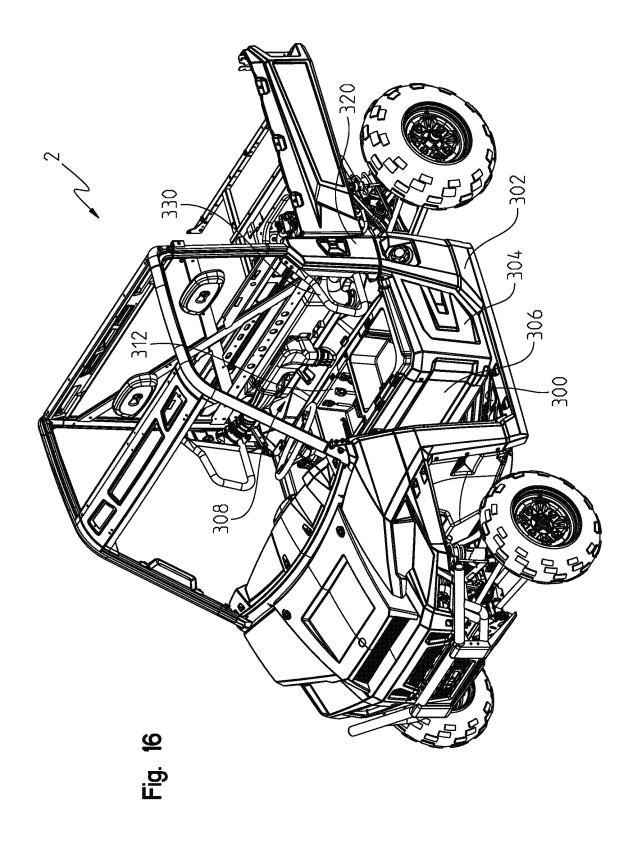
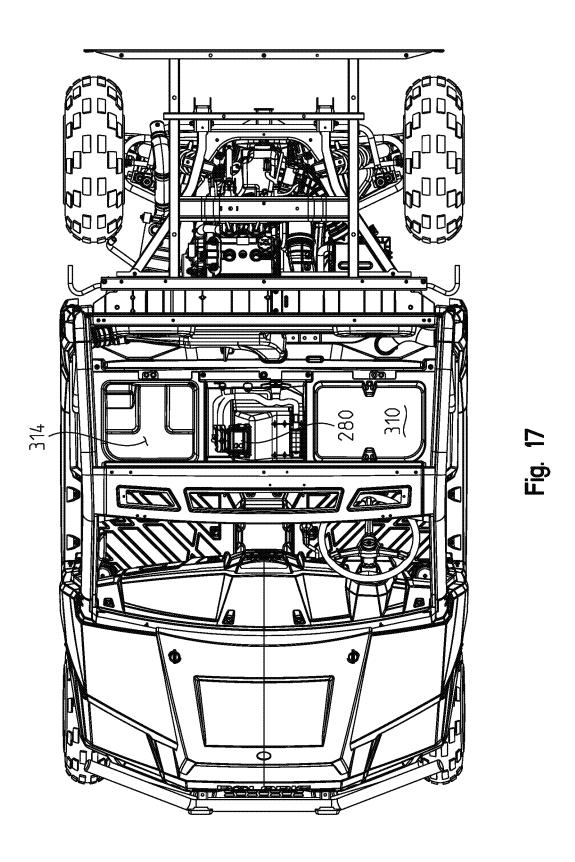
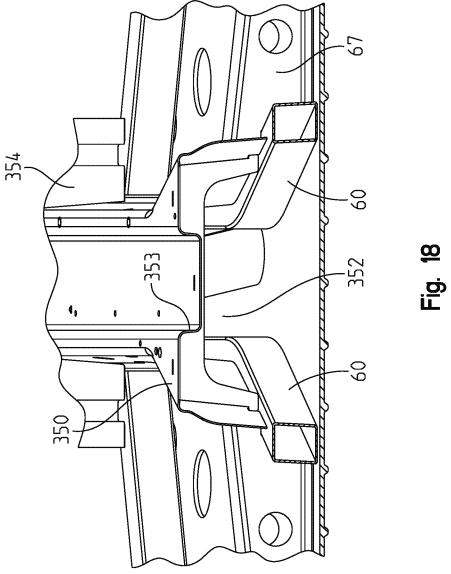


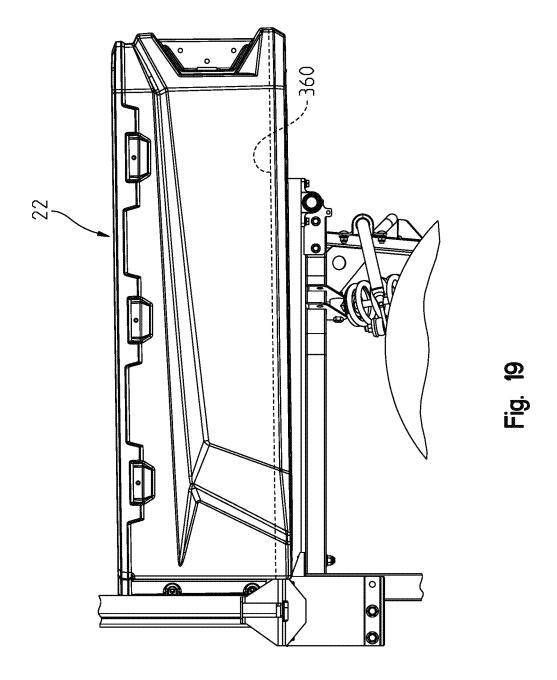


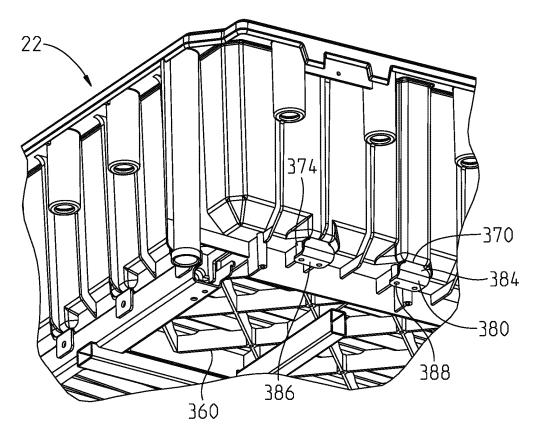


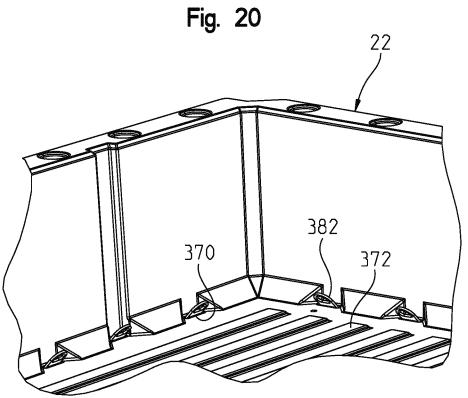
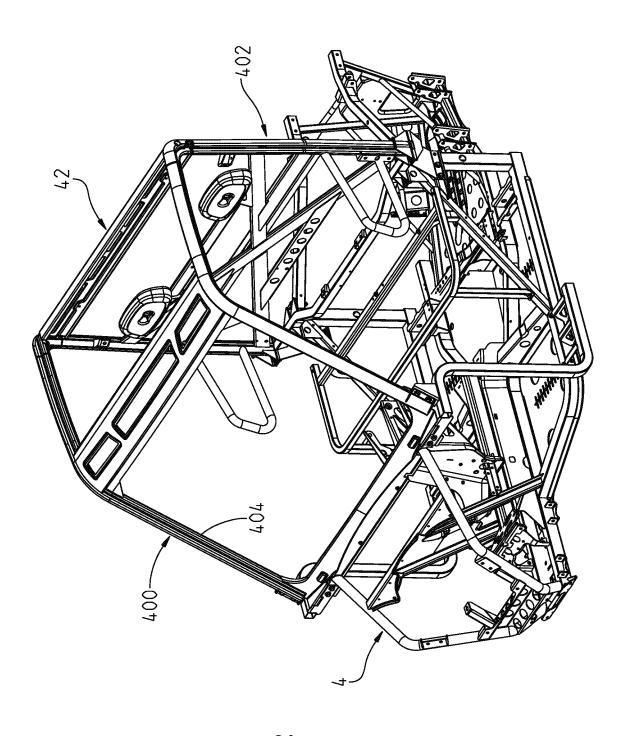
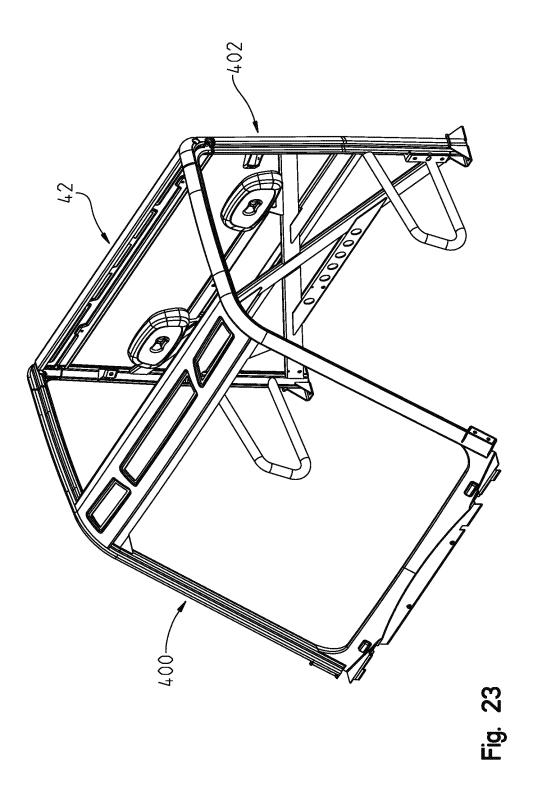
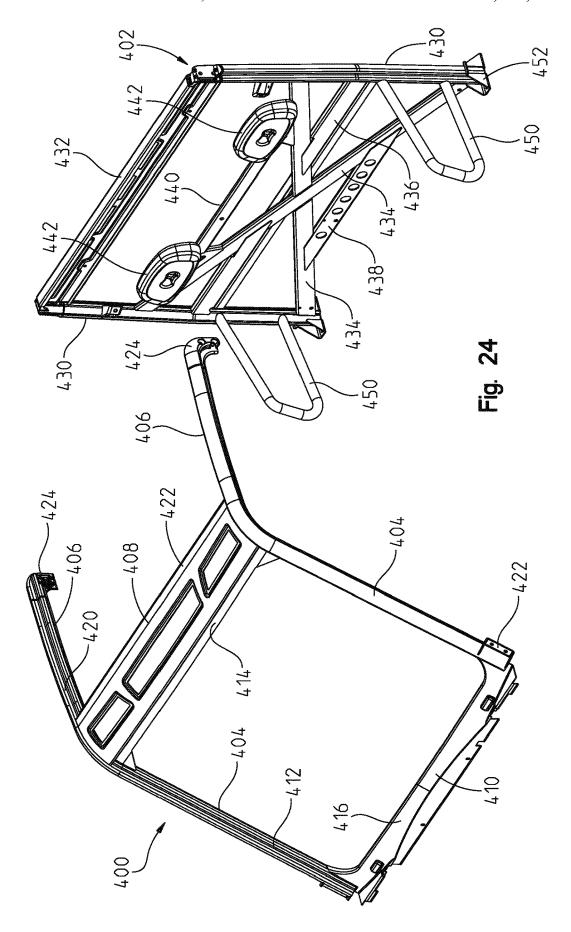


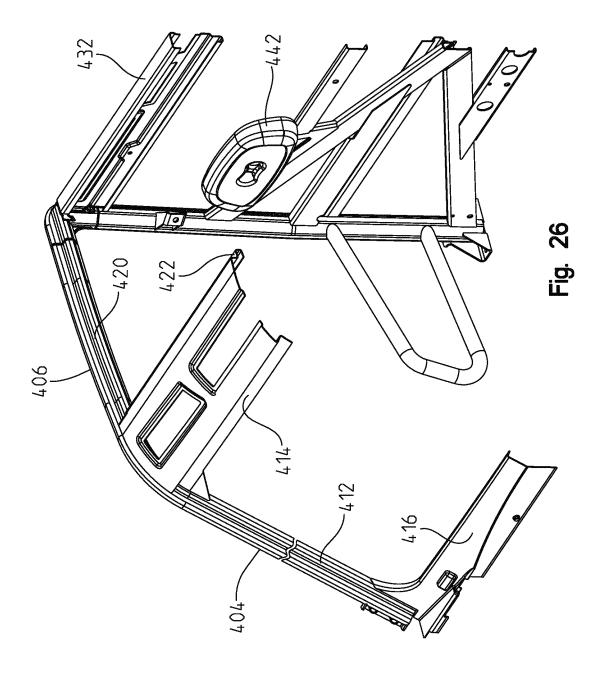


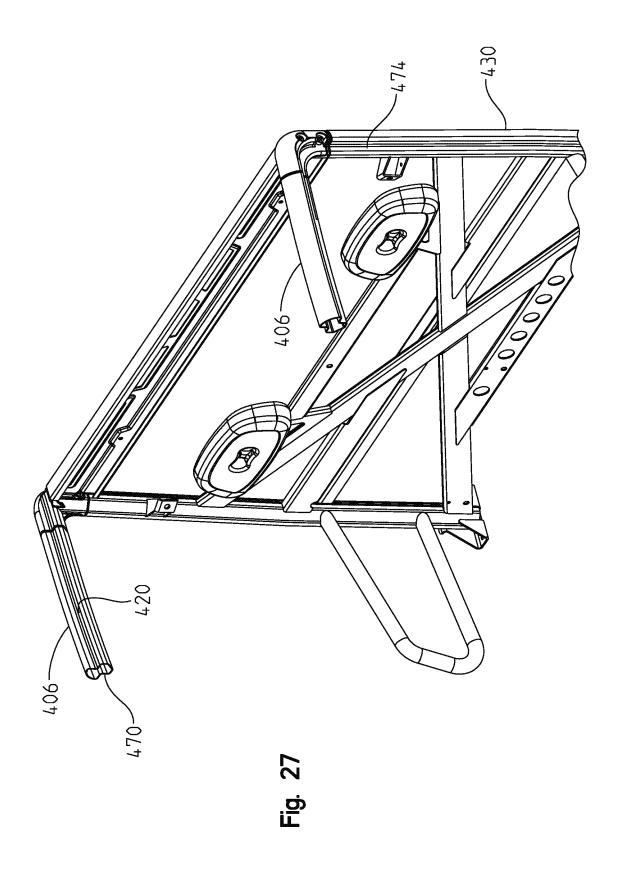






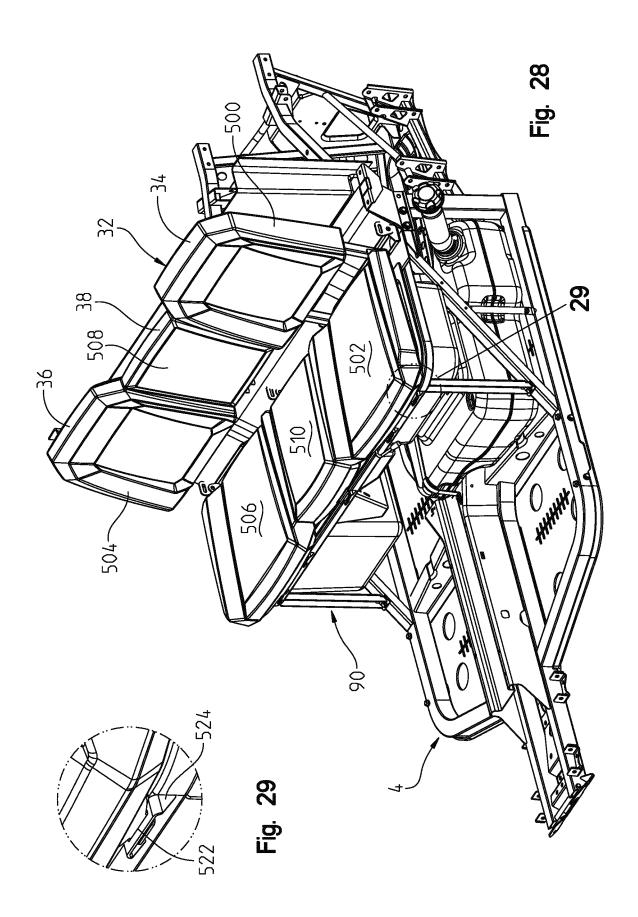

Fig. 14

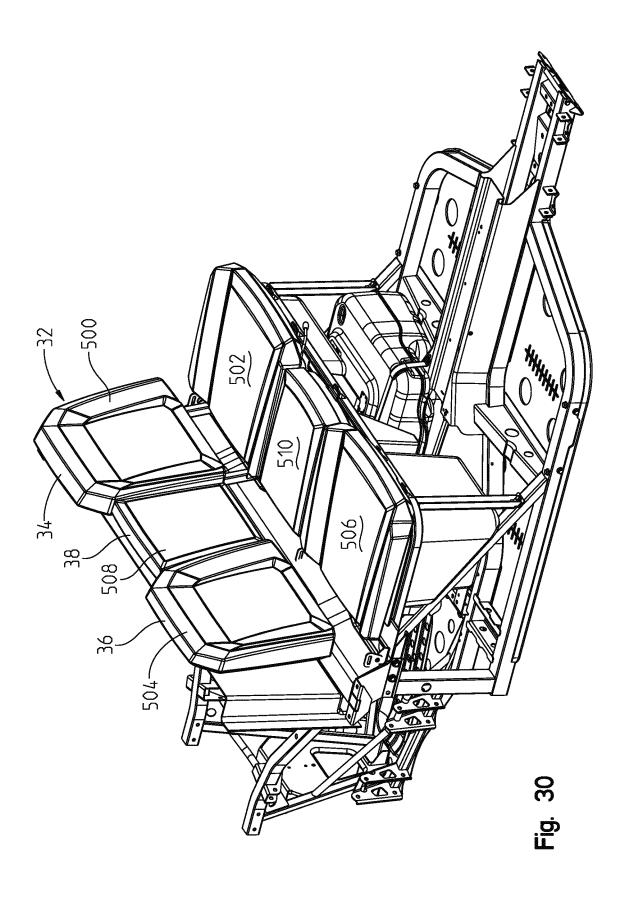


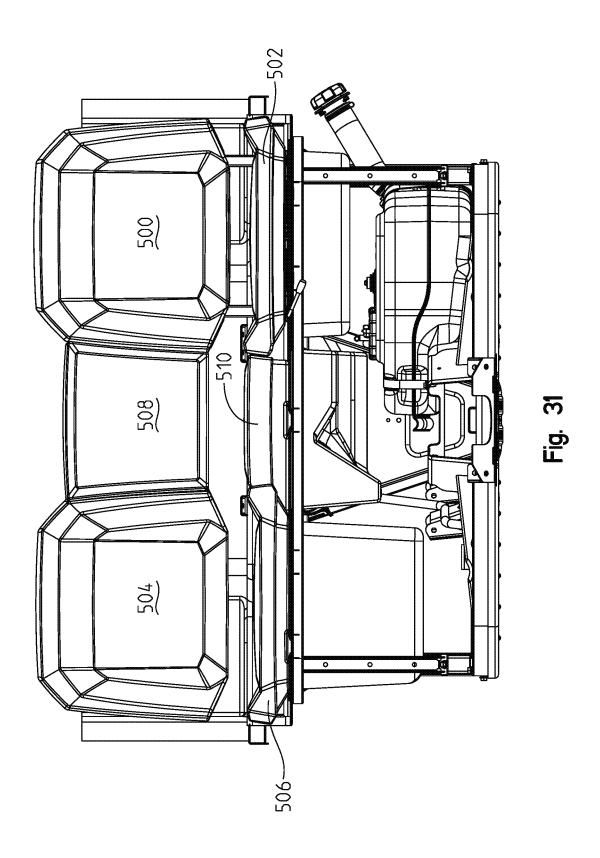





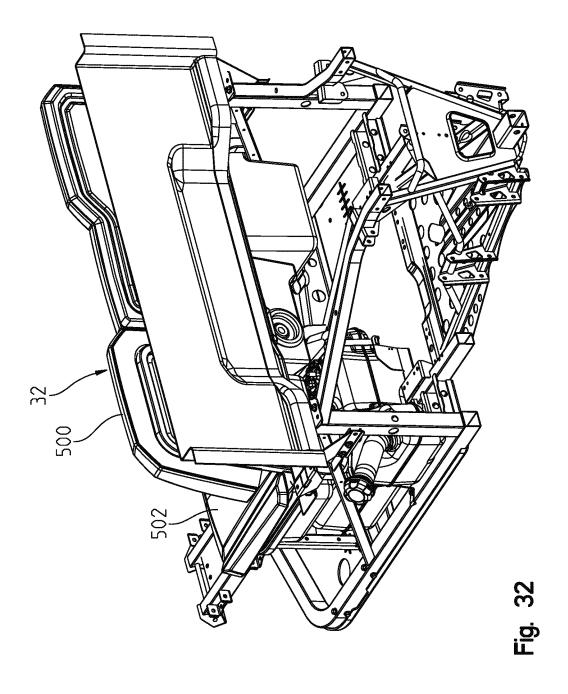


Fig. 21

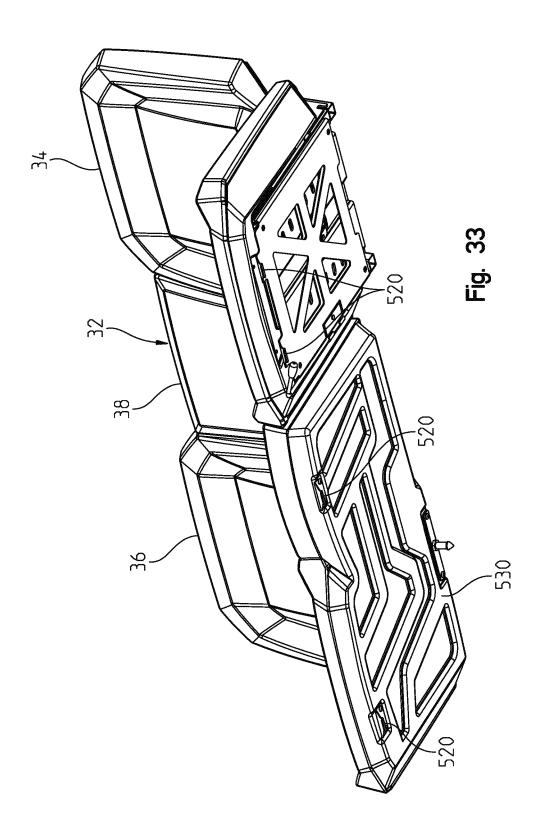


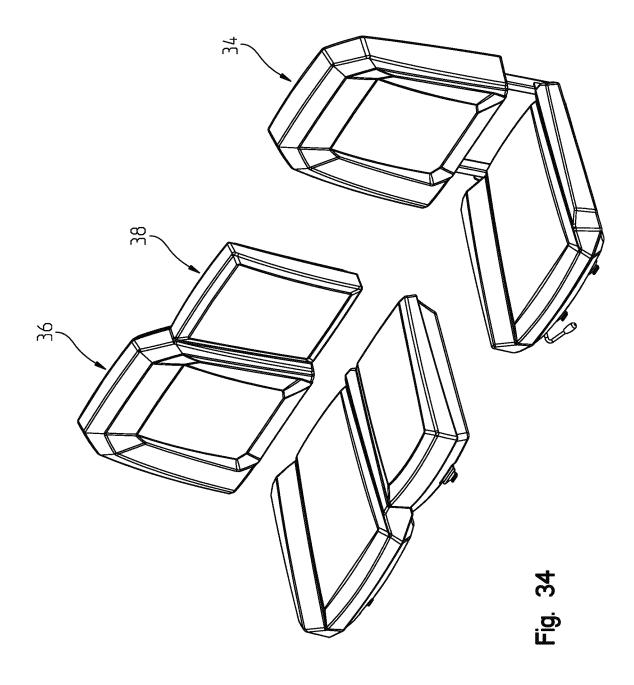


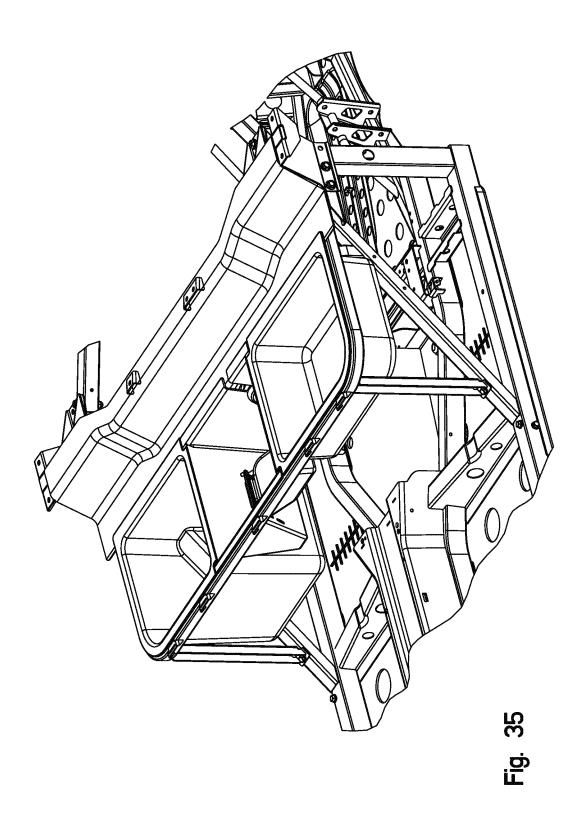












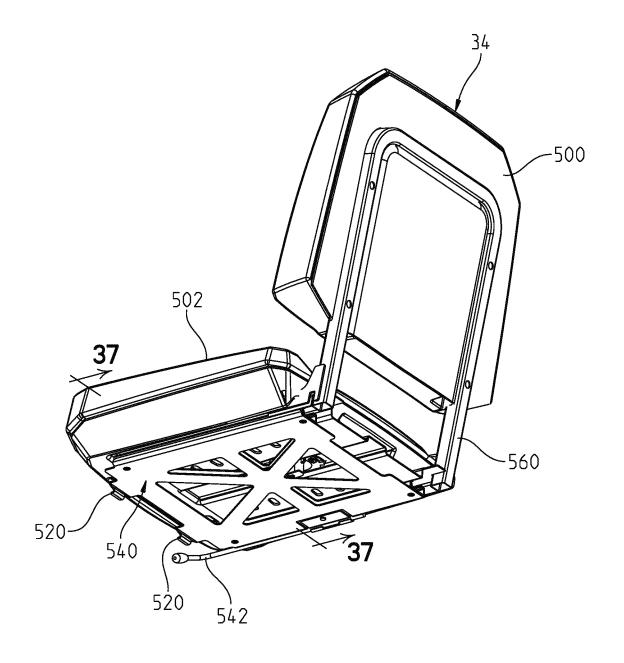
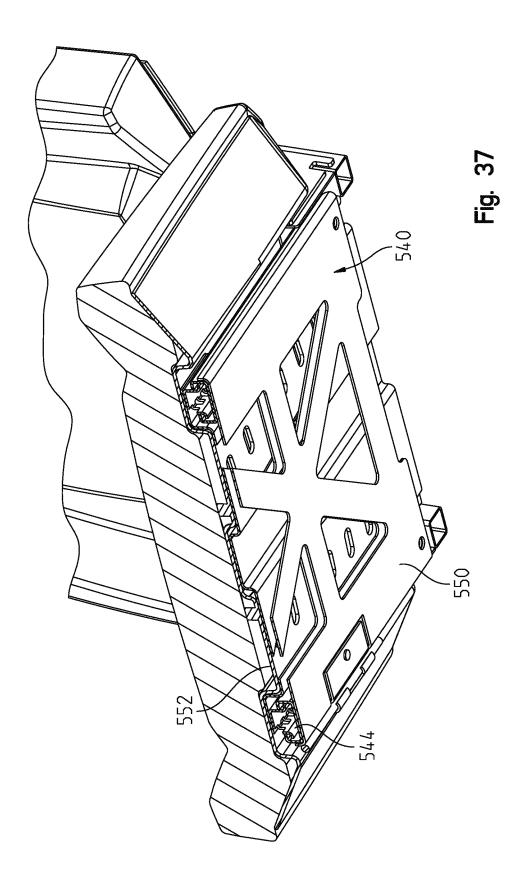



Fig. 36

SIDE-BY-SIDE ALL TERRAIN VEHICLE

The present application is a continuation of U.S. patent application Ser. No. 16/576,962, filed on Sep. 20, 2019, which is a continuation of U.S. patent application Ser. No. 515/494,296, filed on Apr. 21, 2017, which is a continuation of U.S. patent application Ser. No. 13/370,139, filed on Feb. 9, 2012, which claims priority to U.S. Provisional Patent Application Ser. No. 61/442,071, filed on Feb. 11, 2011, the subject matter of which are incorporated herein by reference. 10

SUMMARY

The subject disclosure is generally related to side by side all terrain vehicles.

Generally, all terrain vehicles ("ATVs") and utility vehicles ("UVs") are used to carry one or two passengers and a small amount of cargo over a variety of terrains. Due to increasing recreational interest in side by side vehicles, such as those used for trail riding, recreational use, and cargo 20 hauling have entered the market place.

Most side by side vehicles include seating for two to three passengers. Side-by-side vehicles, in which the driver and passenger are seated beside each other on laterally spaced apart seats, have become popular because of the ability to allow the passenger to share the driver's viewpoint and riding experience instead of being positioned behind the driver. Two styles of vehicle are known in the marketplace; a first sportive version is known where the driver sits low in the vehicle, and one such vehicle is shown in U.S. Pat. No. 7,819,220 (and counterpart EP2057060), the subject matter of which is incorporated herein by reference. The second version has the driver seated higher in the vehicle, and one such vehicle is shown in US patent application publication number 20090301830, the subject matter of which is incorporated herein by reference.

In one embodiment described herein, a side by side vehicle is disclosed having a vehicle frame having frame tubes extending from a front to a rear. A vehicle seat frame is positioned in a mid portion of the frame, and positions a 40 seat frame at a raised position relative to the frame tubes. A powertrain is positioned rearward of the vehicle seat frame and is coupled to the vehicle frame. Side by seats are supported by the seat frame; and one or more storage units are positioned under the side by side seats.

In another embodiment, a side by side vehicle comprises a vehicle frame having frame tubes extending from a front to a rear. A vehicle seat frame is positioned in a mid portion of the frame, and positions a seat frame at a raised position relative to the frame tubes. A powertrain is positioned rearward of the vehicle seat frame and is coupled to the vehicle frame. Side by side seats are supported by the seat frame, where the alignment arms are coupled to the vehicle frame, where the alignment arms are coupled to the vehicle frame at front and rear connection points. A distance between the front connection points is greater than a distance between the rear connection points, and at least a portion of the powertrain is positioned between the front connection points of the alignment arms.

present di FIG. 10 the transmodisclosure FIG. 11 assembly;

In another embodiment, a side by side vehicle comprises a vehicle frame, a vehicle seat frame positioned in a mid portion of the frame, and positioned at a raised position relative to the frame tubes. A powertrain is positioned rearward of the vehicle seat frame and is coupled to the 65 vehicle frame. Side by side seats are supported by the seat frame and one or more storage units positioned under the

2

side by side seats. A rear suspension has at least one first connection point to the frame, wherein at least a portion of the powertrain is positioned rearward of the first connection point.

In another embodiment, a side by side vehicle comprises a vehicle frame; and a vehicle seat frame positioned in a mid portion of the frame, with the seat frame at a raised position relative to the frame tubes. Side by side seats are supported by the seat frame. A powertrain is positioned rearward of the vehicle seat frame and is supported by the vehicle frame. At least one storage unit is positioned under the side by side seats; and the storage bin houses an electronic assembly of the vehicle.

In yet another embodiment, a side by side vehicle comprises a vehicle frame, side by side seats supported by the frame, a powertrain supported by the vehicle frame; a cargo storage device supported by the frame, the storage area device having apertures extending therethrough; and tie down members extending through the apertures to an upper side of the cargo storage device, and coupled to an opposite side.

The embodiments will now be described by way of the drawings, where:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a front left perspective view of the vehicle of the present disclosure;

FIG. 2 is a front left perspective view of the frame of the present vehicle;

FIG. 3 is a right rear perspective view of the vehicle of the present disclosure;

FIG. 4 is a plan view of the frame of FIGS. 2-3;

FIG. 5 is a partial rear perspective view of the frame of the present disclosure:

FIG. **6** is an underside perspective view of the frame of FIG. **5**;

FIG. 7 is a perspective view showing removable frame components of the frame exploded away from the vehicle frame;

FIG. 8 shows a detailed view of a portion of the removable component;

FIG. 9 shows another portion of a removable component;

FIG. 10A shows a rear perspective view showing the 45 engine and the transmission positioned in the frame of the present disclosure;

FIG. 10B shows a top plan view showing the engine and the transmission positioned in the frame of the present disclosure;

FIG. 11 shows a rear perspective view of the rear suspension;

FIG. 12 shows a top view of the A-arms of the present disclosure;

FIG. 13 shows a rear perspective view of the suspension assembly:

FIG. 14 shows an exploded view of a portion of the suspension of the present disclosure;

FIG. 15 shows components positioned under the seat frame of the present disclosure;

FIG. 16 shows a partially assembled vehicle showing chassis components positioned over the vehicle's seat frame;

FIG. 17 is a top plan view of the vehicle of FIG. 16;

FIG. 18 is a cross sectional view through lines 18-18 of FIG. 9;

FIG. 19 shows a side view of the utility dump box;

FIG. 20 shows an underside perspective view of a side of the utility dump box;

FIG. 21 shows integrated tie downs positioned in the utility dump box.

FIG. 22 is a left front perspective view of the roll cage attached to the frame;

FIG. 23 is a left front perspective view of the roll cage; 5 FIG. 24 shows the roll cage of FIG. 23 in an exploded fashion:

FIG. 25 shows an enlarged view of the connection points of the collapsible roll cage;

FIG. 26 shows a cross section of the roll cage showing the 10 configuration of the components;

FIG. 27 shows a lateral cross section showing a cross section configuration of the lateral roll cage members;

FIG. **28** is a left front perspective view of the seating assembly of the present vehicle as assembled to the frame; ¹⁵ FIG. **29** is an enlarged view of the portion denoted in FIG. **28**:

FIG. 30 is a right front perspective view of the seating assembly of FIG. 28;

FIG. **31** is a front view of the seating assembly of FIG. **28**; ²⁰ FIG. **32** is a left rear perspective view of the seating assembly of FIG. **28**;

FIG. 33 is an underside perspective view of the seating assembly removed from the vehicle;

FIG. **34** shows the seating assembly of FIG. **33** exploded 25 from one another:

FIG. 35 shows the seat frame of the vehicle;

FIG. 36 shows an underside perspective view of the driver's seat; and

FIG. **37** shows a cross sectional view through lines **37-37** ³⁰ of FIG. **36**.

DETAILED DESCRIPTION OF THE EMBODIMENTS

With reference to FIG. 1, the utility vehicle is shown generally at 2 to include a frame 4 supported by front wheels 6 and rear wheels 8. Utility vehicle 2 includes a front end 10 having a hood 12, bumper 14 and side body panel 16. Utility vehicle 2 also includes a rear end 20 having a utility cargo 40 box 22 as described further herein. Utility vehicle 2 also includes an operator area at 30 comprising a bench seat assembly 32 having a driver's seat 34, a passenger seat 36 and a center passenger seat at 38. Operator controls such as a steering wheel is provided at 40. A roll cage 42 surrounds 45 the entire operator area 30.

With reference now to FIGS. 2 through 6, the frame will be described in greater detail. With reference first to FIG. 2, frame 4 generally includes a frame front portion 50, a frame mid portion 52 and a frame rear portion at 54. Central frame 50 tubes 60 extend generally lengthwise between the front frame portion 50 and the rear frame portion 54 having a front portion at 60a and a flared out portion towards the rear at 60b. An outer frame tube member is provided at 62 which is connected to frame tube portion 60a; by tube portion 62a 55 adjacent a front, and spaced apart from frame tube 60b by frame tube portion 62b. A cross tube such as 64 integrates the frame tubes 60 and 62 towards a center of the vehicle and frame channels 66 and 67 (FIG. 3) integrate the frame tubes 60 and 62 adjacent a rear of the vehicle.

A removable frame portion **70** is attached to frame tube **62** by way of brackets **72**, as further described herein. As shown best in FIG. **7**, removable frame portion **70** has a lower frame portion **70***a*, a vertically upstanding portion at **70***b* and an upper horizontally extending portion **70***c*. Removable 65 frame portion **70** further includes gussets at **82** as described herein. A transverse brace **80** extends between the two

4

portions 70c. Frame 4 further includes a seat frame portion at 90 having transversely extending frame tubes at 92 and 94 supported by upstanding braces 96 and diagonal braces 98. As shown best in FIG. 3, support posts 100 upstand from frame tubes 62 and support a transverse beam 102. Transverse beam 102 is removable from post 100 and also includes an upper mounting area or flange at 104, as further described herein.

With respect now to FIGS. 4-6, a rear engine pan 110 is provided extending from channel 67 and frame tubes 60. Pan 110 defines the support platform for the drivetrain of the vehicle as will be described herein. Vertically extending channels 120, 122 (FIGS. 5, 6) extend from each side of the pan 10 and define locations for mounting alignment arms (A-arms) as described herein. Vertically extending tubes 130 extend upwardly from pan 110 and support upper frame arms 132

With respect now to FIGS. 7 and 8, frame 4 further includes an upper mounting flange 134 attached to diagonal tube 98 and a side tube 136 (FIG. 8) extending between diagonal tube 98 and post 100. As shown in FIG. 8, transverse beam 102 is provided with a bracket 138 and a flange 140, where flange 140 attaches to flange 134 and where bracket 138 attaches to side tube 136 by way of fasteners as shown. As shown in FIG. 9, removable frame portion 70 includes a bracket 142 attached to horizontally extending portion 70c which is removably attached to transverse brace 80 by way of fasteners as shown. Lower frame portion 70a is also attached to frame tube 62 by way of fasteners through brackets 72 as shown.

With reference now to FIGS. 10A and 10B, engine 150 is shown mounted on pan 110 together with transmission 152. It should be noted that engine 150 is of the type shown and described in assignee's Ser. No. 61/385,802 filed Sep. 23, 2010, and corresponding PCT application PCT/US2011/52914; the subject matter of which are incorporated herein by reference. Transmission 152, the mounting of the engine 150 and transmission 152 together, as well as the mounting of the engine 150 and the transmission 152 to frame 4, is similar to that shown in either of U.S. patent application Ser. No. 12/849,480 or 12/849,516, both of which were filed on Aug. 3, 2010, and corresponding PCT application PCT/US2011/46395; the subject matter of which are incorporated herein by reference.

As shown, an air intake 160 is shown which would be mounted to a cover which surrounds the roll cage 50.

A re-designed suspension is shown generally as 200 in FIGS. 11-14. The suspension is re-designed to provide a space for the engine and transmission 150, 152 when the engine and transmission is mounted rearward of the seats as shown herein. More particularly, the rear suspension is provided by upper alignment arms 202 and lower alignment arms 204 whereby forward connections 206 of upper alignment arms 204 are spaced apart by a greater distance than their respective rearward connections 208; that is $W_1 > W_2$ (FIG. 12). This provides a lateral distance or width W_1 between the alignment arms which can receive the transmission, or at least a portion of the powertrain, there between. In a like manner, lower alignment arms 204 have forward connections 210 spaced apart at a greater distance than lower connections 212.

As shown, both upper and lower alignment arms 202, 204 are rectangular in configuration, and connect to a hub 220 at a forward and outer corner of the alignment arms. As shown in FIG. 12, the alignment arms extend at oblique angles \varnothing relative to a longitudinal axis L, and each of the hubs 220 includes a spindle 222 which rotates along an axis X

transverse to the longitudinal axis L. As shown in FIG. 14, lower alignment arms 204 further comprise a lower plate portion 230 which provides a bracket 232 for both a shock absorber 240 and a mounting arm 242 of torsion bar 244. Torsion bar 244 is shown in FIGS. 10-13 rotationally mounted to upright 130, and with torsion bar arms 246 extending forwardly. The location of the hubs 220 provides room for the shock absorbers 240 and mounting arm 242 of the torsion bar 244, as best shown in FIG. 12.

5

With reference now to FIG. 15, due to the location of the engine rearward of the seat 32, the area beneath the seat frame 90 is now available for other system components. As shown, fuel tank 260 is shown positioned below the seat frame 90 with a filler tube 262 extending out from the driver's side and beyond the frame formed by frame tube 62 15 and post 100. Battery 270 is shown positioned below a passenger side of the seat frame 90. Meanwhile an electronic assembly 280 is positioned below the center seat of frame 90, and the electronic assembly may comprise an engine control unit, a vehicle control unit, relays and the like.

With respect now to FIGS. 16-17, vehicle 2 is finished off by floor board 300, side panel 302, seat side cover 304 and seat front cover 306. Storage pan 308 is positioned over frame 90 and over transverse bar 102 (FIG. 10) and includes three separate storage areas, namely storage area 310 25 directly below driver's seat, center storage area 312 accommodating the electronic assembly 280, and storage area 314 (FIGS. 12 and 17) positioned below passenger seating area. Panel 320 surrounds the intersection of rear roll cage portion 402 and plate 104 (FIG. 10) and a sound/heat shield 330 30 (FIG. 16) is positioned behind seat 32 and forward of engine 150 to prevent heat and noise from the engine 150 into the operator's area.

With reference now to FIGS. 9 and 18, a channel member 350 is positioned over frame tubes 60 from a position from 35 the front 50 of the vehicle to a position extending over truss member 67 defining an opening 352 (FIG. 18). The channel member 350 defines an opening or tunnel between the front of the vehicle to a position under the seats for receiving the drive shaft that extends from the rear of the vehicle to the 40 front of the vehicle for driving a front differential. The channel member 350 is coupled to the main frame tubes 60, 62 to define a rigid member resistant to torsion. The top of the channel 350 defines a passageway 353 for receiving other essentials extending from the front of the vehicle to the 45 rear of the vehicle, such as a wiring harness (lights, electronic throttle control wiring, etc), cooling tubes, brake lines, etc. As shown best in FIGS. 3 and 18, a shear plate 354 also extends upwardly from frames tubes 62 to upper frame portion 356 also provided to resist torsion to the vehicle 50 frame 4. Shear plate 354 also allows for the mounting of accessories thereto.

With reference now to FIGS. 19-21, the rear utility box 22 is shown in greater detail. As shown in FIG. 19, the utility box 22 has an underside surface 360 which inclines 55 upwardly and forwardly providing a small draft angled surface on the inside of the utility box. This provides for easier dumping of the contents of the utility box, as well as raises the inside surface of the utility box for clearance purposes due to the rearwardly adjusted engine 150 and 60 transmission 152. Furthermore as shown in FIG. 21, the side edges of the utility box include a plurality of molded in slots 370 which extend downwardly through a floor 372 of the box, the slots extending outwardly of inwardly molded posts 374 (FIG. 20). Tie downs 380 are provided having an 65 upwardly extending portion 382 for extending through slots 370, a shank portion 384 for extending downwardly through

6

the slot, and a flange portion **386** for positioning against the post **374**. Fasteners may be positioned through apertures **388** of the tie downs **382** fastening the tie downs to the utility box in a semi-fixed fashion. It should be understood that the tie downs may be positioned in alternate orientations as decided by the owner/user.

With reference now to FIGS. 22-26, the roll cage 50 will be described in greater detail. As shown, cage 50 includes a front cage portion 400 and a rear cage portion 402. As shown best in FIG. 24, front cage portion 400 includes upright portions 404, horizontal portions 406, crossbeam 408 and lower crossbeam 410. As defined, front cage portion 400 defines surfaces 412 of uprights 404, surface 414 of crossbeam 408 and surface 416 of lower crossbeam 410 all arranged in a plane for receiving an accessory windshield. In a like manner, surfaces 420 are defined on portions 406 and surface 422 is defined on overhead beam 408 to define a planar surface for receiving either an accessory overhead roof piece or see through moon roof. As shown, upright portions 404 include brackets 422 for connection to gussets 82 (FIG. 9). Finally, cage portion 400 includes rear connectors 424 for connection to rear cage portion 402 as described

As shown best in FIG. 24, rear cage portion 402 includes uprights 430, cross member 432, diagonal braces 434, cross members 436 and 438 and cross member 440 retaining head rests 442. Side supports 450 extend forwardly from uprights 430. Rear portion 402 includes brackets 452 for attachment to upper flange 104 (FIG. 8). As shown best in FIG. 25, the intersection of upright 430 and cross member 432 defines a profile 460 for the receipt of connector 424. Thus, the front and rear cage portions 400, 402 are easily connectable by way of fasteners 462. As also shown in FIG. 25, cage portion 406 includes an outwardly facing surface or lip at 470 which is planar with a surface 472 on connector 424 and with surface 474 (FIG. 27) of rear upright 430. This allows for the addition of an accessory door. The exact configuration of the cross section of cage portion 406 is shown in FIG. 27 which is somewhat hourglass or a figure eight configuration.

With respect now to FIGS. 28-37, the seating assembly of the present disclosure will be described in greater detail. With reference first to FIG. 28, the seating assembly 32 is shown in an installed position in the seat frame 90. As shown, driver's seat 34 includes a seat back 500 and a seat bottom 502, passenger seat 36 includes a seat back 504 and a seat bottom 506; and center seat 38 includes a seat back 508 and a seat bottom 510.

As shown best in FIGS. 33, 34 and 36, the front edges of the seating assembly includes hooks 520 which are pivotally clipped into an opening 522 of a bracket 524 (FIG. 29) clipping the seats into the seat frame 90. It should be appreciated then that the seat can tip forward towards the steering wheel and/or the dash board of the vehicle for removal of the seats and for access to the storage bins under the seat.

As shown best in FIGS. 33 and 34, driver's seat 34 and the combined passenger seat 36 and center seat 38 are separate assemblies. As shown, the passenger seat 36 and center seat 38 would include a lower structural frame 530 upon which the seat bottom would be constructed, and to which hooks 520 would be assembled or integrated.

As shown best in FIGS. 36 and 37, driver's seat 34 includes a lower slide assembly 540 to which hooks are provided. Seat 34 further includes an adjustment mechanism 542 as well as an inner slide track 544 (FIG. 37) allowing sliding movement between a lower track member 550 and an upper track member 552 of track assembly 540. Frame 560

of seat back 500 is attached to the lower track assembly 540, and thus when upper track portion 552 moves relative to lower track portion 550, seat back moves with seat bottom 502

While the power source of the present disclosure is shown 5 as a combustion engine, illustratively a combustion engine, the engine could also take on the form of a multi-fuel engine capable of utilizing various fuels. An exemplary multifuel engine capable of utilizing various fuels is disclosed in U.S. patent application Ser. No. 11/445,731 filed Jun. 2, 2006, 10 (and counterpart PCT application number PCT/US07/ 70220), the disclosure of which is expressly incorporated by reference herein. In another embodiment, the power source could be a hybrid electric engine. In another embodiment, the power source could be an electric engine, where the 15 spacing under the seats is utilized for the battery packs. An illustrative electric vehicle is shown in any one of assignee's applications, Ser. No. 12/484,921 filed Jun. 15, 2009 (and counterpart PCT application number PCT/US2010/38711) or Ser. No. 12/816.004 filed Dec. 16, 2010 the subject matter 20 of which is incorporated herein by reference.

The vehicle could also include a range extender of the type disclosed in application Ser. No. 12/928,479 filed Dec. 13, 2010 (and counterpart PCT application number PCT/US2010/049167).

While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general 30 principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practices in the art to which this invention pertains.

The invention claimed is:

- 1. A utility vehicle, comprising:
- a vehicle frame assembly including main frame tubes extending generally along a longitudinal axis and a seat frame positioned in a mid-portion of the vehicle frame 40 assembly, and positioned at a raised position relative to the main frame tubes;
- a cargo portion supported by the vehicle frame assembly, the cargo portion having a floor extending substantially parallel to the longitudinal axis, a plurality of side 45 panels each having an upper extent and a lower extent, and the lower extent of each side panel of the plurality of side panels being joined to the floor; and
- wherein at least one side panel of the plurality of side panels defines at least one indentation extending vertically from the upper extent to the lower extent.
- 2. The utility vehicle of claim 1, wherein a first side panel of the plurality of side panels is positioned opposite a second side panel of the plurality of side panels, and wherein the indentation of each of the first and second side panels are 55 laterally aligned.
- 3. The utility vehicle of claim 1, wherein the floor defines at least one aperture at an intersection between the at least one side panel and the floor.
- **4**. The utility vehicle of claim **1**, wherein the floor defines 60 at least one aperture and at least one tie-down member extends through the at least one aperture.
- 5. The utility vehicle of claim 1, wherein the floor defines at least one aperture and the at least one aperture is positioned at least partially within the indentation.
- **6**. The utility vehicle of claim **1**, wherein each indentation has a depth at least equal to a width of the indentation.

8

- 7. The utility vehicle of claim 6, wherein the depth of each indentation is less than a thickness of each side panel.
- 8. The utility vehicle of claim 1, wherein the cargo portion has an underside surface having an incline extending in a direction along the longitudinal axis, and the incline increasing along a forward direction towards the mid-portion of the frame.
- **9**. The utility vehicle of claim **8**, wherein the incline of the underside surface increases the space below the cargo portion available for accommodating the engine and the transmission
- 10. The utility vehicle of claim 9, wherein an uppermost surface of the engine is positioned adjacent a forward extent of the cargo portion.
 - 11. A utility vehicle, comprising:
 - a vehicle frame assembly including main frame tubes extending generally longitudinally and a seat frame positioned in a mid-portion of the vehicle frame assembly and at a raised position relative to the main frame tubes;
 - a cargo portion supported by the vehicle frame assembly, the cargo portion having a floor and a plurality of side panels extending vertically upward from the floor and each of the plurality of side panels having an upper end, a lower end, and an upper surface extending laterally from the upper end of each side panel; and
 - wherein the upper surface of each side panel defines at least one opening extending through the upper surface.
- 12. The utility vehicle of claim 11, wherein the at least one opening extends into a cylindrical body that extends from the upper surface vertically downward and substantially parallel to the plurality of side panels.
- 13. The utility vehicle of claim 12, wherein the cylindrical body extends from the upper surface to the floor.
- 14. The utility vehicle of claim 12, wherein the cylindrical body extends a length that is less than a length of each side panel
- 15. The utility vehicle of claim 11, wherein the at least one opening includes a first opening and a second opening extending through the upper surface of each side panel.
- 16. The utility vehicle of claim 15, wherein each of the plurality of side panels comprises an indentation that extends vertically along each side panel of the plurality of side panels.
- 17. The utility vehicle of claim 16, wherein the indentation is positioned between the first opening and the second opening on each side panel.
 - 18. A utility vehicle, comprising:
 - a vehicle frame assembly including main frame tubes extending generally
 - longitudinally and a seat frame positioned in a midportion of the vehicle frame assembly and at a raised position relative to the main frame tubes;
 - a cargo portion supported by the vehicle frame assembly and coupled to a rear portion of the vehicle seat frame, the cargo portion having a floor and at least a first side panel and a second side panel extending vertically upwards from the floor, the first and second side panels each having an upper end and an upper surface extending laterally outward from an upper end, and a junction defining an intersection between the first and second side panels; and
 - wherein each upper surface comprises an angled portion positioned adjacent one another such that the angled portions define an open volume adjacent the junction.

19. The utility vehicle of claim 18, wherein the open volume is configured for receiving the rear portion of the vehicle seat frame.

9

- 20. The utility vehicle of claim 18, wherein the first side panel is positioned at a front end of the cargo portion and 5 includes two angled portions, such that the cargo portion includes two open volumes configured to interface with the rear portion of the vehicle seat frame.
- 21. The utility vehicle of claim 18, wherein the upper surface of each side panel defines a plurality of openings. 10
- 22. The utility vehicle of claim 21, wherein a first opening of the plurality of openings is positioned on a first side of the open volume and a second opening of the plurality of openings is positioned on a second side of the open volume, the first side positioned opposite the second side.

* * * * *