
(19) United States
US 2016O170731A1

(12) Patent Application Publication (10) Pub. No.: US 2016/0170731 A1
Maddern et al. (43) Pub. Date: Jun. 16, 2016

(54) USE-CASE-BASED APPLICATION
INSTALLATION AND SWITCHING TO A
SECONDAPPLICATION TO PERFORMAN
ACTION

(71) Applicant: Button Inc., New York, NY (US)

(72) Inventors: Christopher James Maddern, New
York, NY (US); Wesley Duncan Smith,
Staten Island, NY (US)

(21) Appl. No.: 14/965,152

(22) Filed: Dec. 10, 2015

Related U.S. Application Data
(60) Provisional application No. 62/090,033, filed on Dec.

10, 2014.

Publication Classification

(51) Int. Cl.
G06F 9/445 (2006.01)

Application A Device f Operating System

(52) U.S. Cl.
CPC .. G06F 8/61 (2013.01)

(57) ABSTRACT

The present disclosure describes methods, systems, and com
puter program products for providing contextual ecommerce
shopping cart adjustments. An indication of an expressed
intent to perform an action not available in a first application
is received. One or more applications capable of fulfilling the
action are requested from a Service, the request to the Service
including available contextual data. A policy and a list of
applications that can fulfill the action are received. A second
application is selected to perform the action based on the
policy. A response is received from a transmitted query to an
operating system to determine if the second application is
installed, wherein the response indicates whether the second
application is installed. The second application is installed if
the second application is not installed. A deep link is executed
into the second application so that the second application can
automatically perform the action.

Application B

30

Patent Application Publication Jun. 16, 2016 Sheet 1 of 5 US 2016/0170731 A1

or,

Application A (100)

User expresses intent to
perform an action not (101)

available in Application A

Application A requests
applications that can perform (102)
the action given contextual

information

(103)

Application A receives
prioritized list of applications (104)

able to perform action

Enumerate list of
applications

(105)

Patent Application Publication

o,

Should use
application based

on policy?

Yes Yes ls application
installed?

(107)

Has time out
period elapsed?

Wait for interva

Fail and exit Yes
flow

(112)

FIG. 1B

Jun. 16, 2016 Sheet 2 of 5

/

Are there
applications
remaining? 1

NO

Select an application to
instal based on policy

(Application B)

Trigger operating
System to install
Application B

No

ls Application B
installed?

Yes

Perform action in
Application B

Stop

US 2016/0170731 A1

(106)

(109)

(110)

(111)

(115)

Patent Application Publication Jun. 16, 2016 Sheet 3 of 5 US 2016/0170731 A1

(200)

or,
Receive request from
Application A with
contextual data

Enumerate known
applications

Are there
applications
remaining?

Can next application
No perform action?

Send request with
Contextual data to
associated service

Does application have an
associated service?

Can application
perform action

YN based on service
YN response?

Receive response from
associated service

Add application to list
of applications

Respond to
Application A with
list of applications

Patent Application Publication Jun. 16, 2016 Sheet 4 of 5 US 2016/0170731 A1

Device/ Operating System Application B

FIG. 3 30

Patent Application Publication Jun. 16, 2016 Sheet 5 of 5 US 2016/0170731 A1

or,

NetWOrk430

404 406

e C)
405 Memory

Application

402

413

Computer

FIG. 4

US 2016/0170731 A1

USE-CASE-BASED APPLICATION
INSTALLATION AND SWITCHING TO A
SECONDAPPLICATION TO PERFORMAN

ACTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is claims the benefit of priority to
U.S. Provisional Patent Application Ser. No. 62/090,033,
filed on Dec. 10, 2014, the contents of which are hereby
incorporated by reference.

BACKGROUND

0002 Currently, mobile applications are installed from a
Store (e.g., an “App” or “Application' store). Once instal
lation is complete, an icon appears somewhere on a home
screen or in a list of applications. It is possible to installan
application from within another application on most plat
forms (ANDROID & IOS being the two most popular which
Support this idea), but the application is placed on a home
screen or in an application list where it must later be found
and opened. No state or intent is transferred to the newly
opened application. Applications do not commonly include
functionality that allows performance of actions in applica
tions other than an application currently in use. This is often
achieved using Deep Linking, a custom URL protocol regis
tered to an individual application that describes a specific
action to perform or content to display. Currently, the actions
of installing an application and performing a specific action
or viewing specific content within that application once
installed are separate.

SUMMARY

0003. The present disclosure relates to computer-imple
mented methods, computer-readable media, and computer
systems for binding activities Such that a user, using an appli
cation, can express intent to perform an action in another
application that is not yet installed on the user's device. The
application able to perform the expressed action will be
installed, and then the action is automatically performed in
the newly installed application.
0004 An indication of an expressed intent to performan
action not available in a first application is received. One or
more applications capable of fulfilling the action are
requested from a Service, the request to the Service including
available contextual data. A policy and a list of applications
that can fulfill the action are received. A second application is
selected to perform the action based on the policy. A response
is received from a transmitted query to an operating system to
determine if the second application is installed, wherein the
response indicates whether the second application is
installed. The second application is installed if not already
installed. A deep link is executed into the second application
so that the second application can automatically perform the
action.
0005 Implementations of this aspect include computer
systems, apparatuses, and computer programs recorded on
one or more computer storage devices, each configured to
perform the actions of the described methods. A system of
one or more computers can be configured to perform particu
lar operations or actions by virtue of having software, firm
ware, hardware, or a combination of Software, firmware, or
hardware installed on the system that in operation causes the

Jun. 16, 2016

system to perform the actions. One or more computer pro
grams can be configured to perform particular operations or
actions by virtue of including instructions that, when
executed by data processing apparatus, cause the apparatus to
perform the actions.
0006 For example, in an implementation, a computer
implemented method includes receiving an indication of an
expressed intent to perform an action not available in a first
application; requesting one or more applications capable of
fulfilling the action from a Service, wherein the request to the
Service includes available contextual data; receiving a policy
and a list of applications that can fulfill the action; selecting a
second application to perform the action based on the policy;
receiving a response from a transmitted query to an operating
system to determine if the second application is installed,
wherein the response indicated whether the second applica
tion is installed; installing the second application if the sec
ond application was not installed; and executing, by a com
puter, a deep link into the second application so that the
second application can automatically perform the action.
0007. The foregoing and other implementations can each
optionally include one or more of the following features,
alone or in combination:
0008. In a first aspect, combinable with any of the general
implementations, wherein the received list of applications
that can fulfill the action is prioritized.
0009. In a second aspect, combinable with any of the gen
eral implementations, comprising enumerating the list of
applications that can fulfill the action.
0010. In a third aspect, combinable with any of the general
implementations, comprising triggering an operating System
to install the second application.
0011. In a fourth aspect, combinable with any of the gen
eral implementations, comprising determining whether the
second application is installed.
0012. In a fifth aspect, combinable with any of the general
implementations, comprising, following the determination
whether the second application is installed, determining
whether a timeout period has elapsed.
0013. In a sixth aspect, combinable with any of the general
implementations, wherein the deep link uses a custom uni
form resource locator (URL) protocol registered to the sec
ond application that describes a specific action to perform or
content to display using the second application.
0014. The subject matter described in this specification
can be implemented in particular implementations so as to
realize one or more of the following advantages. First, a user's
expressed intent in a first application to perform an action in
a second application not installed on a user's mobile (or other)
device can automatically result in the second application
being installed and the action performed. Second, if the user's
intent can be performed on an alternate second application
installed on the user's device, the action can be performed
using the alternative second application and the user can
receive an offer to install the second application not installed
on the user's device (and even be incentivized to perform the
installation). If none of the second applications are installed
on the user's device, the first application will initiate a har
nessed install of the preferred second application (as deter
mined by the priority sent from the server, or some other
metric). For example, this could use Some mechanism likely
provided by the Operating System the first application is
currently running on—e.g., SKStoreProductViewController
on IOS or Intent on ANDROID. Note that these can vary from

US 2016/0170731 A1

platform to platform and change over time. Other advantages
will be apparent to those skilled in the art based on the fol
lowing disclosure.
0015 The details of one or more implementations of the
Subject matter of this specification are set forth in the accom
panying drawings and the description below. Other features,
aspects, and advantages of the Subject matter will become
apparent from the description, the drawings, and the claims.

DESCRIPTION OF DRAWINGS

0016 FIG. 1A is a flow chart of a method illustrating, with
respect to an application, binding activities such that a user,
using an application, can express intent to perform an action
in another application which is not yet installed on the user's
device, according to an implementation.
0017 FIG. 1B is a flow chart of a method (continuing the
method of FIG. 1A) illustrating, with respect to an applica
tion, binding activities such that a user, using an application,
can express intent to performan action in another application
which is not yet installed on the user's device, according to an
implementation.
0018 FIG. 2 is a flow chart of a method illustrating, with
respect to a service, binding activities such that a user, using
an application, can express intent to perform an action in
another application which is not yet installed on the user's
device, according to an implementation.
0019 FIG. 3 is a block diagram of an example distributed
computing system (EDCS), according to an implementation.
0020 FIG. 4 is a block diagram of an example computer
used in the EDCS of FIG.3, according to an implementation.
0021. Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

0022. The following detailed description is presented to
enable any person skilled in the art to make, use, and/or
practice the disclosed Subject matter, and is provided in the
context of one or more particular implementations. Various
modifications to the disclosed implementations will be
readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other implemen
tations and applications without departing from the scope of
the disclosure. Thus, the present disclosure is not intended to
be limited to the described and/or illustrated implementa
tions, but is to be accorded the widest scope consistent with
the principles and features disclosed herein.
0023 The present disclosure describes ONETAP
INSTALL, which includes techniques for binding activities
Such that a user, using an application, can express intent to
perform an action in another application which is not yet
installed on the user's device and able to perform the
expressed action will be installed, and then the action is
automatically performed in the newly installed application.
0024. Use-Case Example
0025. A user is in an application for reserving a table at a
restaurant and has successfully reserved their table; reserva
tion to start in 30 minutes time. Now the user needs to get to
the restaurant, and the application offers the functionality to
get a ride to the restaurant. The restaurant reservation appli
cation doesn’t know how to get the user a car to the restaurant,
so it defers to a service that knows how to find services that
can fulfill this use-case.

Jun. 16, 2016

0026. The application requests from this service a list of
all applications that know how to perform a get a ride
use-case at the user's current location. The server will
respond with a list of all such applications, along with how to
detect if they are installed, install them if necessary, and how
to transfer the intent of the use-case to that Application (e.g.,
with a deep link).
0027. The application will then determine if any of those
apps are installed. If they are, it can be configured to handle
the action using that application (e.g., if UBER & LYFT are
returned and LYFT is installed, it could perform the action
immediately by deep linking to LYFT). It could also be con
figured to offer the user to install the second application (e.g.,
in this case, UBER) and even incentivize the user to install
that second application.
0028. If none of the applications returned are installed on
the device, the application will initiate a harnessed install of
the preferred application (as determined by the priority sent
from the server, or some other metric). This will use some
mechanism (likely that provided by the Operating System the
Application is currently running on). For example, SKStore
ProductViewController on IOS or an Intent on ANDROID
(but these vary from platform to platform and change over
time).
0029. In some implementations, the application will
install the second application synchronously, and the user will
wait in some loading UI (the application can remain in this
state until the second application is installed). In some other
implementations, the application could be notified when the
second application has been installed either through some
provided notification by the OS or by polling for the existence
of the second application until it is present (the application
does not have to remain in a particular state).
0030. Once the second application is installed, the first
application will trigger the user to be moved to the second
application along with their requested action using the
method that was returned to it by the service. In one example
implementation, this could be a deep link that the first appli
cation passes to the Operating System to open. In this
example, this would mean that the user would be in a trans
portation application (e.g., UBER) with their destination pre
populated and they are ready to request their car.
0031 Generalization
0032. Application A offers to a user an action that cannot
be handled by application A. Application A requests from
some service (“the Service') a list of other applications that
can handle this action, along with how to perform the action,
and returns that list to application A.
0033. In some implementations, the Service determines
which applications to return based on context received from
application A and from other data service providers (e.g.,
external data providers). Such contextual data might include
user location, time of a reservation, weather, and/or the like.
0034. Other data can also be incorporated into the decision
from services accompanying applications that are being con
sidered to perform the users intended action. For example,
the Service might ask an UBER API service if there are any
cars available near the user's location and choose to respond
to application A with UBER as an option for fulfilling the
users intended action depending on the response from
UBER's API Service.
0035. Once application A receives the response from the
Service with the applications that can perform the action,
application Athen either opens one of those applications

US 2016/0170731 A1

(henceforth referred to as application B) with the provided
method (if installed) or chooses an application to install (i.e.,
chooses application B). Application A then synchronously
installs application B and opens application B with the pro
vided method (once installed).
0036) Application B will be opened and will receive the
request for the content or action passed by application A.
Application B will optionally report the Successful opening of
application B (with application A as the referrer). Application
B can then perform the action or show the content indicated
by the request from application A.
0037. In some instances, application B can optionally
present a way to go back to application A (e.g., either persis
tently inside of application B or once the key action has been
completed in application B). In some implementations, this
could take the form of a button or selectable (e.g., tapping,
Swiping, pinching, etc.) region.
0038 Attended Installation (ONETAP INSTALL)
0039. A synchronous way to installan application that will
be opened and context passed after installation is complete is
described. This can be achieved by triggering the installation
and then waiting for the application installation to be com
plete. Then, the application can be opened and the intended
action is passed by Some method (e.g., most commonly a deep
link, but other methods are considered to be within the scope
of this disclosure).

Compatibility

0040. This system/method can be used on any platform
that provides at least the following capabilities:

0041. The ability to trigger the installation of an appli
cation (or present the user with a screen where they can
do so) from within another application

0042. The ability to detect whether a given application
is installed

0043. The ability to open a second application from an
application.

0044 FIG. 1A is a flow chart of a method 100a illustrating,
with respect to an application, binding activities such that a
user, using an application, can express intent to perform an
action in another application that is not yet installed on the
user's device according to an implementation. For clarity of
presentation, the description that follows generally describes
method 100a in the context of FIGS. 1B and 2-4. However, it
will be understood that method 100a may be performed, for
example, by any other suitable system, environment, soft
ware, and hardware, or a combination of systems, environ
ments, software, and hardware as appropriate. In some imple
mentations, various steps of method 100a can be run in
parallel, in combination, in loops, and/or in any order.
0045. At 100, a user begins in application A. From 100,
method 100a proceeds to 101.
0046. At 101, a user taps a button or otherwise indicates a
desire to performan action not available in application A but
that requires the user to be transported to another application,
henceforth referred to as application B. From 100, method
100a proceeds to 102.
0047. At 102, application A requests from a web service a

list of applications that can perform the action requested by
the user. In some implementations, this request may be made
by means of a Software Development Kit (SDK) provided to
the developer of application A. From 102, method 100a pro
ceeds to 103.

Jun. 16, 2016

0048. At 103, the Service performs steps 200-210 (refer to
FIG. 2) and returns a structured list of applications that can be
used to perform the action requested. From 103, method 100a
proceeds to 104.
0049. At 104, application A receives the list of applica
tions generated that can be used to fulfill the action. From 104,
method 100a proceeds to 105.
0050. At 105, the application performs steps 106-108 (re
fer to FIG. 1B) for each of the applications received from the
service. From 105, method 100a proceeds to 106 (in FIG.
1B).
0051 FIG. 1B is a flow chartofa method 100b (continuing
method 100a) illustrating, with respect to an application,
binding activities such that a user, using an application, can
express intent to perform an action in another application that
is not yet installed on the user's device according to an imple
mentation. For clarity of presentation, the description that
follows generally describes method 100b in the context of
FIGS. 1A and 2-4. However, it will be understood that method
100b may be performed, for example, by any other suitable
system, environment, software, and hardware, or a combina
tion of systems, environments, software, and hardware as
appropriate. In some implementations, various steps of
method 100b can be run in parallel, in combination, in loops,
and/or in any order.
0.052 At 106, if there are remaining applications to be
processed, proceed to 107. If there are no remaining applica
tions to be processed, proceed to 109.
0053 At 107, application A determines whether the appli
cation described is installed on the device, using information
provided in the response payload. In some implementations,
this may be achieved by using a Universal Resource Locator
Scheme (URL Scheme), which application A then uses to
determine whether the Operating System can open that URL,
thus informing application A that the application is installed.
If the application described is installed, proceed to 108; oth
erwise, proceedback to 106.
0054. At 108, application A determines whether it should
choose the current application to be Application B (the appli
cation to install) based on policy provided to Application A
from the Service. This could include settings such as favoring
applications that are already installed, or those that are not.
This policy could also include a white list or black list policy
used in determining applications to select or install. If it is
determined that an application should be used based on a
policy, proceed to 115; otherwise, proceedback to 106.
0055. At 109, based on the policy described heretofore,
Application A assigns one returned application Application
B and continues with the install process. From 109, method
100b proceeds to 110.
0056. At 110, application A triggers the installation of
Application B. In some implementations, this is achieved by
requesting the Operating System to begin and manage the
installation, although other means of installing applications
are also relevant to the application. From 110, method 100b
proceeds to 111.
0057. Application A then performs steps 111-114 until
such a time that either the determination made in step 111 is
affirmative or a timeout period is reached and step 113 aborts
the flow 111.

0.058 At 111, application A determines whether applica
tion B has been Successfully installed. In some implementa
tions, this is achieved as described in step 107. If application

US 2016/0170731 A1

B has not been successfully installed, method 100 proceeds to
112; otherwise, method 100b proceeds to 115.
0059. At 112, a period of time (e.g., pre-set or dynamically
determined) is allowed to pass before checking again. In an
example implementation, this could be half a second. From
112, method 100b proceeds to 113.
0060. At 113, application A checks to ensure that the
defined timeout period has not been reached. In an example
implementation, this could be a minute but will range widely
depending on application B's size, network speed, etc. If the
defined timeout period has been reached, method 100b pro
ceeds to 114; otherwise, method 100b proceeds back to 111.
0061. At 114, if the timeout period has been reached,
application A aborts the flow and returns the user to applica
tion A's user interface.
0062. At 115, application A triggers the requested action
in application B. In some implementations, this can be
achieved using deep linking where a URL is used to pass an
action, content, and context to a receiving application. From
115, method 100b stops.
0063 FIG. 2 is a flow chart of a method 200 illustrating,
with respect to a service, binding activities such that a user,
using an application, can express intent to perform an action
in another application that is not yet installed on the user's
device according to an implementation. For clarity of presen
tation, the description that follows generally describes
method 200 in the context of FIGS. 1A-1B and 3-4. However,
it will be understood that method 200 may be performed, for
example, by any other suitable system, environment, soft
ware, and hardware, or a combination of systems, environ
ments, software, and hardware as appropriate. In some imple
mentations, various steps of method 200 can be run in
parallel, in combination, in loops, and/or in any order.
0064. At 200, application A has sent a request to the ser
vice as indicated in 103. From 200, method 200 proceeds to
201.
0065. At 201, the Service receives a request to return
applications that can provide a given service along with all
context including but not limited to the device type, operating
system, version information, location, local time, device per
mission status (e.g., push notifications available), other
installed applications, the item being displayed in the appli
cation at the time (e.g., the location, restaurant, SKU item),
network speed, etc. From 201, method 200 proceeds to 202.
0.066. At 202, the Service enumerates a list of known
applications and performs steps 203-209 for each application.
In some implementations, these may be retrieved by fetching
them from a database. From 202, method 200 proceeds to
2O3.
0067. At 203, the Service determines whetherit has passed
the last application for processing. If so, it proceeds to 210.
Otherwise, the Service proceeds to 204.
0068. At 204, the service determines whether the applica
tion being processed can perform the action requested by
application A. If no, method 200 proceeds back to 203; oth
erwise, method 200 proceeds to 205.
0069. At 205, the Service determines whether the current
application record is configured to check with an outside
service to determine whether to offer this application. For
example, in the case of an action to book a restaurant table, the
application may be configured to check with a booking Ser
vice whether or not a table at that restaurant is available
through the service. In some implementations, this is
achieved by using an Application Programming Interface

Jun. 16, 2016

(API) provided by the creator of the application being con
sidered. From 205, method 200 proceeds to 206.
0070. At 206, if there is an outside API to use to determine
whether to offer the current application to application A to
handle the desired action, the Service passes all relevant
information to that API and requests whether the condition to
include the present application is met. From 206, method 200
proceeds to 207.
(0071. At 207, the response is received from the partner's
API with whether or not the application can provide the
required action based on the context provided. In an example
implementation, this may include a particular restaurant,
venue or location, time/date, and/or other factors. From 207,
method 200 proceeds to 208.
0072 At 208, the system determines, based on the
response from the API in 207, whether the application cur
rently being processed should be added to the list to return to
application A. If so, method 200 proceeds to 209; otherwise,
method 200 proceeds back to 203.
0073. At 209, the system adds the current application to a

list of applications to be returned to application A. From 209,
method 200 proceeds to 210.
0074 At 210, the system sends the list generated in the
iterations of step 209 to application A by sending a response
to the request created in 103. After 210, method 200 stops.
0075 FIG. 3 is a block diagram of an example distributed
computing system (EDCS) 300 according to an implementa
tion. EDCS300 includes, in some implementations, a device/
operating system 302 (e.g., a mobile device executing a
mobile operating system, etc.). The device? operating system
302 can include an application A 304 and an application B
306. The device/operating system 302 can be connected to a
service (e.g., the Service 308) over a network 310. Note that
in some implementations, application A 304 and application
B 306 can be connected to the device/operating system 302
using a network (e.g., network 310) (although they are illus
trated as internal to device/operating system 302 in FIG. 3).
Note that a high-level example method flow 312 is described
in FIG. 3. In some implementations, method flow 312 is
consistent with described methods 100a/b and 200 of FIGS.
1A/B and FIG. 2, respectively, and the rest of the detailed
description. In other implementations method flow 312 can
deviate from the described methods 100a/b and 200 of FIGS.
1A/B and FIG. 2, respectively, and the rest of the

DETAILED DESCRIPTION

0076 FIG. 4 is a block diagram 400 of an example com
puter 402 used in the EDCS 300 according to an implemen
tation. The illustrated computer 402 is intended to encompass
any computing device such as a server, desktop computer,
laptop/notebook computer, wireless data port, Smartphone,
personal data assistant (PDA), tablet computing device, one
or more processors within these devices, or any other Suitable
processing device, including both physical and/or virtual
instances of the computing device. Additionally, the com
puter 402 may comprise a computer that includes an input
device. Such as a keypad, keyboard, touch screen, or other
device that can accept user information, and an output device
that conveys information associated with the operation of the
computer 402, including digital data, visual and/or audio
information, or a GUI.
0077. In general, the computer 402 can serve as a server, a
client, a network component, a database, or other persistency
of a computing system. In some implementations, the com

US 2016/0170731 A1

puter 402 can serve as the Device/Operating System 302, the
Service, and/or any other computer system used in the EDCS
300 or connected system (whether or not illustrated), and/or
any other component of the EDCS 300. The illustrated com
puter 402 is communicably coupled with a network 430 (e.g.,
network 310 in FIG. 3). In some implementations, one or
more components of the computer 402 may be configured to
operate within a cloud-computing-based environment.
0078. At a high level, the computer 402 is an electronic
computing device operable to receive, transmit, process,
store, or manage data and information associated with the
EDCS 300. According to some implementations, the com
puter 402 may also include or be communicably coupled with
an application server, e-mail server, web server, caching
server, streaming data server, business intelligence (BI)
server, and/or other server.
007.9 The computer 402 can receive requests over net
work 430 from a service, client application (e.g., executing on
another computer 402), etc. and respond to the received
requests by processing the said requests in an appropriate
Software application. In addition, requests may also be sent to
the computer 402 from internal users (e.g., from a command
console or by another appropriate access method), external or
third parties, other automated applications, as well as any
other appropriate entities, individuals, systems, or computers.
0080 Each of the components of the computer 402 can
communicate using a system bus 403. In some implementa
tions, any and/or all the components of the computer 402.
both hardware and/or software, may interface with each other
and/or the interface 404 over the system bus 403 using an
application programming interface (API) 412 and/or a ser
vice layer 413. The API 112 may include specifications for
routines, data structures, and object classes. The API 412 may
be either computer language-independent or -dependent and
refer to a complete interface, a single function, or even a set of
APIs. The service layer 413 provides software services to the
computer 402 and/or the EDCS300. The functionality of the
computer 402 may be accessible for all service consumers
using this service layer. Software services, such as those
provided by the service layer 413, provide reusable, defined
business functionalities through a defined interface. For
example, the interface may be software written in JAVA, C++,
or other Suitable language providing data in extensible
markup language (XML) format or other suitable format.
While illustrated as an integrated component of the computer
402, alternative implementations may illustrate the API 412
and/or the service layer 413 as stand-alone components in
relation to other components of the computer 402 and/or
EDCS 300. Moreover, any or all parts of the API 412 and/or
the service layer 413 may be implemented as child or sub
modules of another Software module, enterprise application,
or hardware module without departing from the scope of this
disclosure.

0081. The computer 402 includes an interface 404.
Although illustrated as a single interface 404 in FIG.4, two or
more interfaces 404 may be used according to particular
needs, desires, or particular implementations of the computer
402 and/or EDCS 300. The interface 404 is used by the
computer 402 for communicating with other systems in a
distributed environment including within the EDCS 300–
connected to the network 430 (whether illustrated or not).
Generally, the interface 404 comprises logic encoded in soft
ware and/or hardware in a suitable combination and operable
to communicate with the network 430. More specifically, the

Jun. 16, 2016

interface 404 may comprise Software Supporting one or more
communication protocols associated with communications
such that the network 430 or interface's hardware is operable
to communicate physical signals within and outside of the
illustrated EDCS 300.
I0082. The computer 402 includes a processor 405.
Although illustrated as a single processor 405 in FIG. 4, two
or more processors may be used according to particular
needs, desires, or particular implementations of the computer
402 and/or the EDCS 300. Generally, the processor 405
executes instructions and manipulates data to perform the
operations of the computer 402. Specifically, the processor
405 executes the functionality required for binding activities
Such that a user, using an application, can express intent to
perform an action in another application that is not yet
installed on the user's device.
I0083. The computer 402 also includes a memory 406 that
holds data for the computer 402 and/or other components of
the EDCS 300. Although illustrated as a single memory 406
in FIG. 4, two or more memories may be used according to
particular needs, desires, or particular implementations of the
computer 402 and/or the EDCS 300. While memory 406 is
illustrated as an integral component of the computer 402, in
alternative implementations, memory 406 can be external to
the computer 402 and/or the EDCS 300.
I0084. The application 407 is an algorithmic software
engine providing functionality according to particular needs,
desires, or particular implementations of the computer 402
and/or the EDCS 300, particularly with respect to function
ality required for binding activities such that a user, using an
application, can express intent to performan action in another
application that is not yet installed on the user's device. Fur
ther, although illustrated as a single application 407, the
application 407 may be implemented as multiple applications
407 on the computer 402. In addition, although illustrated as
integral to the computer 402, in alternative implementations,
the application 407 can be external to the computer 402
and/or the EDCS 300.

I0085. There may be any number of computers 402 asso
ciated with, or external to, the EDCS300 and communicating
over network 430. Further, the terms "client,” “user, and
other appropriate terminology may be used interchangeably
as appropriate without departing from the scope of this dis
closure. Moreover, this disclosure contemplates that many
users may use one computer 402, or that one user may use
multiple computers 402.
I0086 Implementations of the subject matter and the func
tional operations described in this specification can be imple
mented in digital electronic circuitry, in tangibly embodied
computer Software or firmware, in computer hardware,
including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or more
of them. Implementations of the subject matter described in
this specification can be implemented as one or more com
puter programs, i.e., one or more modules of computer pro
gram instructions encoded on a tangible, non-transitory com
puter-storage medium for execution by, or to control the
operation of data processing apparatus. Alternatively or in
addition, the program instructions can be encoded on an
artificially generated propagated signal, e.g., a machine-gen
erated electrical, optical, or electromagnetic signal that is
generated to encode information for transmission to Suitable
receiver apparatus for execution by a data processing appa
ratus. The computer-storage medium can be a machine-read

US 2016/0170731 A1

able storage device, a machine-readable storage substrate, a
random or serial access memory device, or a combination of
one or more of them.
0087. The terms “data processing apparatus.” “computer.”
or “electronic computer device' (or equivalent as understood
by one of ordinary skill in the art) refer to data processing
hardware and encompass all kinds of apparatus, devices, and
machines for processing data, including by way of example,
a programmable processor, a computer, or multiple proces
sors or computers. The apparatus can also be or further
include special purpose logic circuitry, e.g., a central process
ing unit (CPU), an FPGA (field programmable gate array), or
an ASIC (application-specific integrated circuit). In some
implementations, the data processing apparatus and/or spe
cial purpose logic circuitry may be hardware-based and/or
Software-based. The apparatus can optionally include code
that creates an execution environment for computer pro
grams, e.g., code that constitutes processor firmware, a pro
tocol stack, a database management system, an operating
system, or a combination of one or more of them. The present
disclosure contemplates the use of data processing appara
tuses with or without conventional operating systems, for
example, LINUX, UNIX, WINDOWS, MAC OS,
ANDROID, IOS, or any other suitable conventional operat
ing System.
0088 A computer program, which may also be referred to
or described as a program, Software, a software application, a
module, a Software module, a script, or code, can be written in
any form of programming language, including compiled or
interpreted languages, or declarative or procedural lan
guages, and it can be deployed in any form, including as a
stand-alone program or as a module, component, Subroutine,
or other unit Suitable for use in a computing environment. A
computer program may, but need not, correspond to a file in a
file system. A program can be stored in a portion of a file that
holds other programs or data, e.g., one or more scripts stored
in a markup language document, in a single file dedicated to
the program in question, or in multiple coordinated files, e.g.,
files that store one or more modules, Sub-programs, or por
tions of code. A computer program can be deployed to be
executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and
interconnected by a communication network. While portions
of the programs illustrated in the various figures are shown as
individual modules that implement the various features and
functionality through various objects, methods, or other pro
cesses, the programs may instead include a number of Sub
modules, third-party services, components, libraries, and
Such, as appropriate. Conversely, the features and function
ality of various components can be combined into single
components as appropriate.
0089. The processes and logic flows described in this
specification can be performed by one or more programmable
computers executing one or more computer programs to per
form functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implementedas, special purpose
logic circuitry, e.g., a CPU, an FPGA, or an ASIC.
0090 Computers suitable for the execution of a computer
program can be based on general or special purpose micro
processors, both, or any other kind of CPU. Generally, a CPU
will receive instructions and data from a read-only memory
(ROM) or a random access memory (RAM) or both. The
essential elements of a computer are a CPU for performing or

Jun. 16, 2016

executing instructions and one or more memory devices for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to, receive data from or
transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical
disks. However, a computer need not have such devices.
Moreover, a computer can be embedded in another device,
e.g., a mobile telephone, a personal digital assistant (PDA), a
mobile audio or video player, a game console, a global posi
tioning system (GPS) receiver, or a portable storage device,
e.g., a universal serial bus (USB) flash drive, to name just a
few.

0091 Computer-readable media (transitory or non-transi
tory, as appropriate) Suitable for storing computer program
instructions and data include all forms of non-volatile
memory, media and memory devices, including by way of
example semiconductor memory devices, e.g., erasable pro
grammable read-only memory (EPROM), electrically eras
able programmable read-only memory (EEPROM), and flash
memory devices; magnetic disks, e.g., internal hard disks or
removable disks; magneto-optical disks; and CD-ROM,
DVD+/-R, DVD-RAM, and DVD-ROM disks. The memory
may store various objects or data, including caches, classes,
frameworks, applications, backup data, jobs, web pages, web
page templates, database tables, repositories storing business
and/or dynamic information, and any other appropriate infor
mation including any parameters, variables, algorithms,
instructions, rules, constraints, or references thereto. Addi
tionally, the memory may include any other appropriate data,
Such as logs, policies, security or access data, reporting files,
as well as others. The processor and the memory can be
Supplemented by, or incorporated in, special purpose logic
circuitry.
0092. To provide for interaction with a user, implementa
tions of the Subject matter described in this specification can
be implemented on a computer having a display device, e.g.,
a CRT (cathode ray tube), LCD (liquid crystal display), LED
(Light Emitting Diode), or plasma monitor, for displaying
information to the user and a keyboard and a pointing device,
e.g., a mouse, trackball, or trackpad by which the user can
provide input to the computer. Input may also be provided to
the computer using a touchscreen, Such as a tablet computer
Surface with pressure sensitivity, a multi-touch screen using
capacitive or electric sensing, or other type of touchscreen.
Other kinds of devices can be used to provide for interaction
with a user as well; for example, feedback provided to the user
can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the
user can be received in any form, including acoustic, speech,
or tactile input. In addition, a computer can interact with a
user by sending documents to and receiving documents from
a device that is used by the user; for example, by sending web
pages to a web browser on a user's client device in response
to requests received from the web browser.
(0093. The term “graphical user interface,” or “GUI,” may
be used in the singular or the plural to describe one or more
graphical user interfaces and each of the displays of a par
ticular graphical user interface. Therefore, a GUI may repre
sent any graphical user interface including, but not limited to,
a web browser, a touch screen, or a command line interface
(CLI) that processes information and efficiently presents the
information results to the user. In general, a GUI may include
a plurality of user interface (UI) elements, some or all asso
ciated with a web browser, such as interactive fields, pull

US 2016/0170731 A1

down lists, and buttons operable by the business suite user.
These and other UI elements may be related to or represent
the functions of the web browser.
0094) Implementations of the subject matter described in

this specification can be implemented in a computing system
that includes a back-end component, e.g., as a data server, or
that includes a middleware component, e.g., an application
server, or that includes a front-end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the Subject matter described in this specification, or any com
bination of one or more suchback-end, middleware, or front
end components. The components of the system can be inter
connected by any form or medium of wireline and/or wireless
digital data communication, e.g., a communication network.
Examples of communication networks include a local area
network (LAN), a radio access network (RAN), a metropoli
tan area network (MAN), a wide area network (WAN).
Worldwide Interoperability for Microwave Access
(WIMAX), a wireless local area network (WLAN) using, for
example, 802.11a/b/g/n and/or 802.20, all or a portion of the
Internet, and/or any other communication system or systems
at one or more locations. The network may communicate
with, for example, Internet Protocol (IP) packets, Frame
Relay frames, Asynchronous Transfer Mode (ATM) cells,
voice, video, data, and/or other suitable information between
network addresses.

0095. The computing system can include clients and serv
ers. A client and server are generally remote from each other
and typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.
0096. In some implementations, any or all of the compo
nents of the computing system, both hardware and/or soft
ware, may interface with each other and/or the interface using
an application programming interface (API) and/or a service
layer. The API may include specifications for routines, data
structures, and object classes. The API may be either com
puter language-independentor-dependent and refer to a com
plete interface, a single function, or even a set of APIs. The
service layer provides Software services to the computing
system. The functionality of the various components of the
computing system may be accessible for all service consum
ers using this service layer. Software services provide reus
able, defined business functionalities through a defined inter
face. For example, the interface may be software written in
JAVA, C++, or other Suitable language providing data in
extensible markup language (XML) format or other suitable
format. The API and/or service layer may be an integral
and/or a stand-alone component in relation to other compo
nents of the computing system. Moreover, any or all parts of
the service layer may be implemented as child or sub-mod
ules of another software module, enterprise application, or
hardware module without departing from the scope of this
disclosure.
0097 While this specification contains many specific
implementation details, these should not be construed as limi
tations on the Scope of any invention or on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular implementations of particular
inventions. Certain features that are described in this specifi
cation in the context of separate implementations can also be
implemented in combination in a single implementation.

Jun. 16, 2016

Conversely, various features that are described in the context
of a single implementation can also be implemented in mul
tiple implementations separately or in any suitable Sub-com
bination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed com
bination can in Some cases be excised from the combination,
and the claimed combination may be directed to a Sub-com
bination or variation of a Sub-combination.
0.098 Particular implementations of the subject matter
have been described. Other implementations, alterations, and
permutations of the described implementations are within the
Scope of the following claims as will be apparent to those
skilled in the art. While operations are depicted in the draw
ings or claims in a particular order, this should not be under
stood as requiring that Such operations be performed in the
particular order shown or in sequential order, or that all illus
trated operations be performed (some operations may be con
sidered optional), to achieve desirable results. In certain cir
cumstances, multitasking and parallel processing may be
advantageous.
0099 Moreover, the separation and/or integration of vari
ous system modules and components in the implementations
described above should not be understood as requiring Such
separation and/or integration in all implementations, and it
should be understood that the described program components
and systems can generally be integrated together in a single
Software product or packaged into multiple Software prod
luctS.

0100. Accordingly, the above description of example
implementations does not define or constrain this disclosure.
Other changes, Substitutions, and alterations are also possible
without departing from the spirit and scope of this disclosure.
What is claimed is:
1. A computer-implemented method, comprising:
receiving an indication of an expressed intent to performan

action not available in a first application;
requesting one or more applications capable of fulfilling

the action from a Service, wherein the request to the
Service includes available contextual data;

receiving a policy and a list of applications that can fulfill
the action;

selecting a second application to perform the action based
on the policy;

receiving a response from a transmitted query to an oper
ating system to determine if the second application is
installed, wherein the response indicates whether the
second application is installed;

installing the second application if the second application
is not installed; and

executing, by a computer, a deep link into the second
application so that the second application can automati
cally perform the action.

2. The computer-implemented method of claim 1, wherein
the received list of applications that can fulfill the action is
prioritized.

3. The computer-implemented method of claim 1, com
prising enumerating the list of applications that can fulfill the
action.

4. The computer-implemented method of claim 1, com
prising triggering an operating system to install the second
application.

US 2016/0170731 A1

5. The computer-implemented method of claim 1, com
prising determining whether the second application is
installed.

6. The computer-implemented method of claim 5, com
prising, following the determination whether the second
application is installed, determining whethera timeout period
has elapsed.

7. The computer-implemented method of claim 1, wherein
the deep link uses a custom uniform resource locator (URL)
protocol registered to the second application that describes a
specific action to perform or content to display using the
second application.

8. A non-transitory, computer-readable medium storing
computer-readable instructions for providing contextual
ecommerce shopping cart adjustments, the instructions
executable by a computer and comprising:

receiving an indication of an expressed intent to performan
action not available in a first application;

requesting one or more applications capable of fulfilling
the action from a Service, wherein the request to the
Service includes available contextual data;

receiving a policy and a list of applications that can fulfill
the action;

Selecting a second application to perform the action based
on the policy;

receiving a response from a transmitted query to an oper
ating system to determine if the second application is
installed, wherein the response indicates whether the
second application is installed;

installing the second application if the second application
is not installed; and

executing a deep link into the second application so that the
second application can automatically perform the
action.

9. The non-transitory, computer-readable medium of claim
8, wherein the received list of applications that can fulfill the
action is prioritized.

10. The non-transitory, computer-readable medium of
claim8, comprising one or more instructions to enumerate the
list of applications that can fulfill the action.

11. The non-transitory, computer-readable medium of
claim 8, comprising one or more instructions to trigger an
operating system to install the second application.

12. The non-transitory, computer-readable medium of
claim 8, comprising one or more instructions to determine
whether the second application is installed.

Jun. 16, 2016

13. The non-transitory, computer-readable medium of
claim 12, comprising one or more instructions to, following
the determination whether the second application is installed,
determine whether a timeout period has elapsed.

14. The non-transitory, computer-readable medium of
claim 8, wherein the deep link uses a custom uniform
resource locator (URL) protocol registered to the second
application that describes a specific action to perform or
content to display using the second application.

15. A system, comprising:
a computer memory interoperably coupled with a hard
ware processor and configured to:

receive an indication of an expressed intent to perform an
action not available in a first application;

request one or more applications capable of fulfilling the
action from a Service, wherein the request to the Service
includes available contextual data;

receive a policy and a list of applications that can fulfill the
action;

select a second application to perform the action based on
the policy;

receive a response from a transmitted query to an operating
system to determine if the second application is
installed, wherein the response indicates whether the
second application is installed;

install the second application if the second application is
not installed; and

execute a deep link into the second application so that the
second application can automatically perform the
action.

16. The system of claim 15, wherein the received list of
applications that can fulfill the action is prioritized.

17. The system of claim 15, further configured to enumer
ate the list of applications that can fulfill the action.

18. The system of claim 15, further configured to:
trigger an operating system to install the second applica

tion; and
determine whether the second application is installed.
19. The system of claim 18, further configured to, follow

ing the determination whether the second application is
installed, determine whether a timeout period has elapsed.

20. The system of claim 15, wherein the deep link uses a
custom uniform resource locator (URL) protocol registered
to the second application that describes a specific action to
perform or content to display using the second application.

k k k k k

