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DECOUPLING DYNAMIC PROGRAM
ANALYSIS FROM EXECUTION IN VIRTUAL
ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
patent application Ser. No. 12/239,590, filed Sep. 26, 2008,
entitled “Decoupling Dynamic Program Analysis from
Execution in Virtual Environments,” which claims the ben-
efit of U.S. provisional patent application Ser. No. 61/074,
236, filed on Jun. 20, 2008, and entitled “Decoupling
Dynamic Program Analysis From Execution In Virtual Envi-
ronments,” which is hereby incorporated by reference in its
entirety. The present application also incorporates by refer-
ence the following: U.S. patent application Ser. No. 12/239,
648, entitled “Decoupling Dynamic Program Analysis From
Execution Across Heterogeneous Systems” and filed on Sep.
26, 2008 (Attorney Docket No.: A269), U.S. patent appli-
cation Ser. No. 12/239,674, entitled “Synchronous
Decoupled Program Analysis In Virtual Environments™ and
filed on Sep. 26, 2008 (Attorney Docket No.: A270), and
U.S. patent application Ser. No. 12/239,691, entitled “Accel-
erating Replayed Program Execution To Support Decoupled
Program Analysis” and filed on Sep. 26, 2008 (Attorney
Docket No.: A271).

BACKGROUND OF THE INVENTION

[0002] Dynamic program analysis involves the analysis of
a computer program while it is executing in real-time. It may
be used for various applications including intrusion detec-
tion and prevention, bug discovery and profiling, corruption
detection and identifyinig non-fatal memory leaks.

[0003] Dynamic program analysis adds overhead to the
execution of the computer program because it is executed
“inline” with program execution. It requires the dynamic
loading of special libraries or recompiling the computer
program to insert analysis code into the program’s execut-
able. Some dynamic program analysis (e.g., instrumentation
and probing functionality, etc.) can add sufficient overhead
to the execution of the program to perturb the processor
workload and even cause “heisenbugs,” i.e., where the
phenomena under observation is changed or lost due to the
measurement itself. For example, dynamic program analysis
commonly used for detecting buffer overflows or use of
undefined memory routinely incur overheads on the order of
10-40x%, rendering many production workloads unusable.
Even in nonproduction settings, such as program develop-
ment or quality assurance, this overhead may dissuade use
in longer more realistic tests. As such, to minimize perfor-
mance costs, dynamic program analysis tools today perform
a minimal set of checks, meaning that many critical software
flaws can remain overlooked.

SUMMARY OF THE INVENTION

[0004] In one or more embodiments of the invention,
dynamic program analysis is decoupled from execution in
virtual computer environments so that program analysis can
be performed on a running computer program without
affecting or perturbing the workload of the system on which
the program is executing. Decoupled dynamic program
analysis is enabled by separating execution and analysis into
two tasks: (1) recording, where system execution is recorded

Jun. 14, 2018

with minimal interference, and (2) analysis, where the
execution is replayed and analyzed.

[0005] A method according to an embodiment of the
invention is used in analyzing a computer program while the
computer program is being executed in real-time. This
method comprises the steps of accessing a log recorded by
a main workload virtual machine, replaying the execution
behavior of the main workload virtual machine on an
analysis virtual machine using the log, and executing pro-
gram analysis code on the analysis virtual machine while the
execution behavior of the main workload virtual machine is
replayed on the analysis virtual machine.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a schematic diagram of computer systems
implementing a virtualized computer platform.

[0007] FIG. 2 is a block diagram depicting one embodi-
ment of a homogeneous record and replay platform.
[0008] FIG. 3 is a flow chart depicting a method for
recording and replaying execution behavior on a homoge-
neous record and replay platform.

[0009] FIG. 4 is a block diagram depicting one embodi-
ment of a heterogenous record and replay platform.

[0010] FIG. 5 is a flow chart depicting a method for
recording and replaying execution behavior on a heteroge-
neous record and replay platform.

[0011] FIG. 6 is a schematic diagram of dynamic analysis
platforms according to one or more embodiments of the
invention.

[0012] FIG. 7 is a block diagram depicting one embodi-
ment of a heterogeneous record and replay platform using a
relog file to improve performance.

[0013] FIGS. 8A and 8B are flow charts depicting a
method for recording and replaying execution behavior on a
heterogeneous record and replay platform using a relog file
to improve performance.

[0014] FIG. 9A is a flow chart of a method for synchro-
nizing a record and replay platform.

[0015] FIG. 9B is a flow chart of another method for
synchronizing a record and replay platform.

[0016] FIG. 10A is a flow chart of a method for acceler-
ating replay on an analysis platform.

[0017] FIG. 10B is a flow chart of another method for
accelerating replay on an analysis platform.

DETAILED DESCRIPTION

A. Virtualization Platform Architecture

[0018] FIG. 1 depicts functional block diagrams of virtu-
alized computer systems in which one or more embodiments
of the invention may be practiced. A computer system 100
may be constructed on a typical desktop or laptop hardware
platform 102 such as the x86 architecture platform. Such a
hardware plaform may include a CPU 104, RAM 106,
network card 108, hard drive 110 and other I/O devices such
as mouse and keyboard (not shown in FIG. 1). A host
operating system 112 such as Microsoft Windows, Linux or
NetWare runs on top of hardware platform 102. A virtual-
ization software layer 114 is installed on top of host oper-
ating system 112 and provides a virtual machine execution
space 116 within which multiple virtual machines (VMs)
118, -118,, may be concurrently instantiated and executed. In
particular, virtualization layer 114 maps the physical
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resources of hardware platform 102 (e.g., CPU 104, RAM
106, network card 108, hard drive 110, mouse, keyboard,
etc.) to the “virtual” resources of each virtual machine
118,-118,,, such that each virtual machine 118,-118,, has its
own virtual hardware platform 120 with its own emulated
CPU 122, RAM 124, network card 126, hard drive 128 and
other emulated 1/O devices. For example, virtual hardware
platform 120 may function as the equivalent of a standard
x86 hardware architecture such that any x86 supported
operating system such as Microsoft Windows, Linux, Solaris
x86, NetWare, FreeBSD, etc. may be installed as the guest
operating system 130 in order to execute applications 132
for an instantiated virtual machine such as 118,. As part of
virtualization layer 114, virtual machine monitors (VMM)
134 ,-134,, implement the virtual system support needed to
coordinate operation between the host operating system 112
and their corresponding virtual machines 118,-118,. An
example of software implementing virtualization layer 114
for a desktop or laptop hardware platform 102 is VMware
Workstation 6™, which is available from VMware™ Inc. of
Palo Alto, Calif.

[0019] A computer system 150 is an alternative system in
which one or more embodiments of the invention may be
practiced. Computer system 150 may be constructed on a
conventional server-class, hardware platform 152 including
host bus adapters (HBA) 154 in addition to conventional
platform processor, memory, and other standard peripheral
components (not separately shown). Hardware platform 152
may be coupled to an enterprise-class storage system 182.
Examples of storage systems 182 may be a network attached
storage (NAS) device, storage area network (SAN) arrays,
or any other similar disk arrays known to those with ordinary
skill in the art. Those with ordinary skill in the art will also
recognize that enterprise-level implementations of the fore-
going may have multiple computer systems similar to com-
puter system 150 that may be connected through various
different known topologies and technologies (e.g., switches,
etc.) to multiple storage systems 182. A virtualization soft-
ware layer (also sometimes referred to as a hypervisor) such
as, for example, VMware’s VMkernel™ 156 in its server-
grade VMware ESX™ product, is installed on top of hard-
ware platform 152 and supports a virtual machine execution
space 158 within which multiple VMs 160,-160,, may be
concurrently instantiated and executed. Each such virtual
machine 160,-160,, implements a virtual hardware (HW)
platform 162 that supports the installation of a guest oper-
ating system 164 which is capable of executing applications
166. Similar to guest operating system 130, examples of
guest operating system 164 may be Microsoft Windows,
Linux, Solaris x86, NetWare, FreeBSD or any other oper-
ating system known to those with ordinary skill in the art. In
each instance, guest operating system 164 includes a native
file system layer (not shown), for example, either an NTFS
or an ext3 type file system layer. These file system layers
interface with virtual hardware platform 162 to access, from
the perspective of guest operating systems 164, a data
storage HBA, which in reality, is a virtual HBA 168 imple-
mented by virtual hardware platform 162 that provides the
appearance of disk storage support (i.e., virtual disks 170 -
170,) to enable execution of guest operating system 164
transparent to the virtualization of the system hardware.

[0020] Although, from the perspective of guest operating
systems 164, file system calls to initiate file system-related
data transfer and control operations appear to be routed to
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virtual disks 170 ,-170,, in reality, such calls are processed
and passed through virtual HBA 168 to adjunct virtualiza-
tion software layers (for example, VMM layers 172 ,-172,))
that implement the virtual system support needed to coor-
dinate operation with VMkernel 156. In particular, a host
bus emulator 174 functionally enables the guest operating
system file system calls to be correctly handled by VMkernel
156 which passes such operations through to true HBAs 154
that connect to storage system 182. For example, VMkernel
156 receives file system calls from VMM layers 172 ,-172,,
and converts them into file system operations that are
understood by a virtual machine file system (VMFS) 176
which in general, manages creation, use, and deletion of files
stored on storage system 182. VMFS 176, in turn, converts
the file system operations to volume block operations, and
provides the volume block operations to a logical volume
manager (LVM) 178, which supports volume oriented vir-
tualization and management of the disk volumes in storage
system 182. LVM 178 converts the volume block operations
into raw disk operations for tranmission to a device access
layer 180. Device access layer 180, including device drivers
(not shown), applies command queuing and scheduling
policies to the raw disk operations and sends them to HBAs
154 for delivery to storage system 182.

B. Deterministic VM Record and Replay Functionality

[0021] One or more embodiments of the invention lever-
age the capability of certain virtual machine platforms to
record and subsequently replay the execution behavior of
virtual machines. An example of a virtual machine with such
record and replay features in which embodiments of the
invention can be implemented is VMware Workstation 6,
which is available from VMware Inc. of Palo Alto, Calif. To
support replay, inputs to the CPU that are not included in the
state of the guest operating system memory, registers or disk
are supplied to the CPU of the replaying virtual machine. As
depicted in FIG. 2, in one embodiment, a VM (the “record-
ing VM”) 200 records information corresponding to the
non-deterministic events that occur within its instruction
stream in a log file 260. Examples of such non-deterministic
events include reads from external devices (e.g., network,
keyboard or timer, etc.) (see, e.g., 225 and 230) and virtual
machine interrupts (e.g., indication after a data read instruc-
tion that DMA transfer from disk has been completed and is
ready to be read, etc.). A VM 235 replaying (the “replaying
VM?”) the instruction stream of recording VM 200 consumes
the recorded information in log file 260. Recording VM 200
and replaying VM 235 are instantiated from the same type
of virtualization layer 205 and 245 (although they may be
hosted on different hardware platforms 210 and 240) and
share the same types of emulated resources and devices (see
215 and 250). Given a particular input to a particular
emulated resource or device, both recording VM 200 and
replaying VM 235 will therefore deterministically output the
same result. As such, non-deterministic inputs into recording
VM’s 200 emulated devices 215 (e.g., network data and user
input) are recorded 265 into log file 260 such that they can
be delivered 270 to the corresponding emulated devices 250
of replaying VM 235. If recording VM 200 and replaying
VM 235 begin from the same initial VM state (e.g., same
guest operating systems, see 220 and 255, memory, regis-
ters, disk, etc.) and replaying VM 235 knows when to insert
the next non-deterministic event occurring in recording
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VM’s 200 instruction stream, then replaying VM 235 will
accurately recreate recording VM’s 200 instruction stream.

[0022] The record and replay functionality, as imple-
mented in one or more embodiments of the invention, is
depicted in the flowchart of FIG. 3. First, the VMM of
recording VM 324 enables the recording feature (step 300),
takes a snapshot of the VM state (e.g., guest memory,
registers, disks, etc.) (step 302), and begins tracking system
behavior (including CPU and device activity) as recording
VM 324 executes (step 304). When non-deterministic events
such as device interrupts or other asynchronous events occur
(step 306), information relating to such events are recorded
in a log file (step 308). Such information includes the timing
(e.g., placement within the instruction stream, such as the n”
instruction in the stream) of the occurrence so that a replay-
ing VM 326 can execute the event at the same time within
its own instruction stream. For example, the timing of a
virtual machine interrupt indicating that DMA transfer from
an emulated hard drive has been completed may be recorded
in the log file. However, the data value of the DMA transfer
itself may not necessarily be recorded because the same type
of hard drive is emulated on both recording VM 324 and
replaying VM 326 such that replaying VM’s 326 emulated
hard drive can deterministically output the correct data upon
replaying the interrupt at the right time. For other non-
deterministic events, additional data may be recorded in
addition to timing information. For example, for emulated
devices that support external inputs such as a keyboard,
mouse, or network card, data values such as user key press,
mouse movement and clicks, network data, etc. are recorded
in the log file in addition to timing information since
replaying VM’s 326 own corresponding emulated devices
cannot deterministically recreate such external inputs. Simi-
larly, reads of a recording VM’s timer may also record the
value of the timer since such a value cannot be determinis-
tically obtained from the replaying VM’s timer. After such
events are recorded in step 308, the flow then returns to step
304.

[0023] Replaying VM 326 is instantiated from the snap-
shot taken in step 302 (step 312) and tracks the timing of the
execution of its instruction stream in step 314. If the log file
recorded by recording VM 324 indicates the occurrence of
a non-deterministic event (step 316), the VMM of replay
VM 326 feeds the non-deterministic event into the instruc-
tion stream of replay VM 326 at the same point in time when
it occurred during the original execution (step 318). Replay-
ing VM 326 executes the event, for example, by timely
delivering external input data recorded in the log file such as
key presses, mouse movements and network data to the
appropriate emulated devices (e.g., keyboard, mouse, net-
work card, etc.) to be deterministically replayed by such
devices or timely inserting interrupts into the CPU instruc-
tion stream in order to retrieve outputs deterministically
made available by emulated devices (e.g., hard drive data
output responses after CPU read requests) (step 320). The
flow then returns to step 314 to handle subsequent non-
deterministic events in the log file, if any.

[0024] FIG. 4 is a block diagram depicting one embodi-
ment of a “heterogenous” record and replay platform. In this
embodiment, the execution behavior of a workload is
recorded on one platform, such as a virtual machine platform
400, and then replayed on a different (i.e., heterogeneous)
platform that does not share the same types of emulated
devices as the first platform, such as a processor simulator
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430. An example of processor simulator 430 in which
embodiments of the invention can be implemented is the
open source x86 simulator QEMU. Similar to the virtual
machine platforms of FIG. 1, recording virtual machine
platform 400 has a virtualization layer 405 that maps physi-
cal hardware 410 of the actual computer system to emulated
hardware 415, which may be different from the physical
hardware, that is exposed to a guest operating system 420.
Guest operating system 420 and emulated hardware 415
interact with each other through emulated hardware inter-
faces 425 (e.g., hardware port accesses, memory mapped
1/0, etc.) which format requests to and responses from the
emulated devices into data packages specific for such emu-
lated devices. Similarly, replaying processor simulator plat-
form 430 has a processor simulator layer 435 that maps
physical hardware 440 of its computer system to its emu-
lated hardware 445, which are different from emulated
hardware 415 of virtual machine platform 400, that is
exposed to guest operating system 450 (i.e., same operating
system as guest operating system 420) through an emulated
hardware interface 455.

[0025] Because processor simulator platform 430 does not
emulate the same hardware as virtual machine platform 400,
instructions from the instruction stream of virtual machine
platform 400 that involve requests made to emulated devices
415 (e.g., reads of the hard drive, etc.) cannot be determin-
istically replayed by a corresponding emulated device as in
the embodiment of FIG. 3. As such, instead of recording the
non-deterministic external inputs to emulated devices, vir-
tual machine platform 400 records (see 460) in a log file 465
the outputs from emulated devices 415 to the CPU as well
as the corresponding specific emulated device data format-
ting information (e.g., data formatting packet structures,
etc.) from emulated device interface 425, in addition to
timing information. In turn, replaying processor simulator
430 is modified such that the device data outputs and
formatting are consumed directly from log file 465 rather
than from emulated device layer 445, as indicated by arrow
485.

[0026] A flowchart depicting record and replay between
the heterogeneous platforms of FIG. 4 is depicted in FIG. 5.
First, the VMM of recording VM 524 enables the record
feature (step 500), takes a snapshot of the VM state (e.g.,
guest memory, registers, disks, etc.) (step 502), and begins
tracking system behavior (including CPU and device activ-
ity) as recording VM 524 executes (step 504). When non-
deterministic events such as device interrupts or other asyn-
chronous events occur (step 506), information relating to
such events are recorded in a log file (step 508). Such
information includes the timing (e.g., placement within the
instruction stream) of the occurrence and device data outputs
to the CPU (as specifically formatted by the emulated
devices of recording VM 524) so that replaying simulator
526 can execute the event at the same place within its own
instruction stream and simulate any data outputs from
recording VM’s 524 associated emulated device by trans-
mitting to the simulated processor system the data output
recorded in the log file (in the format that would have been
transmitted by the emulated device). Unlike step 320 in FIG.
3, the recording of external inputs to emulated devices such
as user key presses, mouse movements and clicks, network
data, etc. are not necessary in the embodiment of FIG. 5
because the data outputs of these emulated devices that are
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recorded in the log file already capture such information.
After recording such events, the flow then returns to step
504.

[0027] Replaying simulator 526 is instantiated based upon
information in the snapshot taken in step 502 (step 512) and
tracks the timing of the execution of its instruction stream in
step 514. If the log file recorded by recording VM 524
indicates the occurrence of a non-deterministic event (step
516), replaying simulator 526 feeds the non-deterministic
event into its instruction stream at the same point in time
when it occurred during the original execution of recording
VM 524 (step 518). Processor simulator 526 executes the
event, for example, by timely delivering any related device
data output (in the proper emulated device format) in the log
file for access by the emulated CPU of processor simulator
526 (step 520). The flow then returns to step 514.

[0028] Those with ordinary skill in the art will recognize
variations on the heterogeneity of the recording and replay-
ing platforms may be implemented in an embodiment with-
out departing from the spirit of the invention. For example,
rather than a replaying simulator as in FIGS. 4 and 5, a
different virtual machine platform supporting different emu-
lated devices may be used to replay the recording VM’s
execution behavior.

C. Decoupling Analysis from Workload

[0029] FIG. 6 is a schematic diagram of dynamic analysis
platforms according to one or more embodiments of the
invention. Dynamic program analysis is performed by
decoupling the analysis from the main workload while still
providing the analysis with the identical and complete
sequence of states from the main workload. Such decoupling
allows the analysis to be added to a running system without
fear of breaking the main workload. Furthermore, because
the analysis is run on a separate system from the main
workload, new analyses can be carried out without changing
the running applications, operating system or VMM of the
main workload.

[0030] In one embodiment, the record feature is enabled
on a VM running a main workload 600, creating a replay log
605 that is fed into a different instantiated VM 610 that has
been loaded with the initial recorded snapshot of main
workload VM 600. VMM 615 of replay VM 610 includes a
dynamic program analysis platform 620 that is executed
during replay. A similar decoupled dynamic program analy-
sis platform 625 can be built in a simulation layer 630 of a
replaying heterogeneous platform such as processor simu-
lator 635. In these systems, when analysis code is executed,
the order of recorded and replayed instructions streams are
not affected because dynamic program analysis platform 620
or 625 is implemented at the level of VMM 615 or simu-
lation layer 630, which are able to programmatically ignore
or otherwise remove instructions relating to the analysis
code when generating the virtual machine or simulated
processor instruction streams.

[0031] The decoupling of analysis from the main work-
load as described herein further enables embodiments to
scale and run multiple analyses as depicted in 650 and 655
for the same workload. In one embodiment, the decoupled
analyses are run in parallel with the main workload. In
another embodiment, the decoupled analyses are run in
parallel with each other. Without decoupling, running mul-
tiple analyses would require separate execution runs per
analysis and would therefore suffer from the likelihood of
divergent runs and inconsistent analyses. Furthermore,
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decoupling enables optimization techniques to be separately
applied to main workload VM 600 and the analysis plat-
forms (e.g., 610 and 635). For example, main workload VM
600 can be optimized for real-time performance and respon-
siveness while the analysis platforms (e.g., 610 and 635) can
be separately optimized for ease of instrumentation during
analysis.

[0032] Those with ordinary skill in the art will recognize
that dynamic analysis may be implemented in VMM layer
615 or simulation layer 630 of a replay system in a variety
of ways. For example, in one embodiment, ad-hoc hooks
that supply callbacks when events of interest happen may be
built into the replaying environment OS. Similarly, dynamic
analysis may be implemented through dynamic binary trans-
lation (BT), which dynamically translates a set of instruc-
tions into an alternative set of instructions on the fly, when
are then executed. Performing dynamic analysis at the level
of VMM 615 or simulation layer 630 provides visibility at
all layers of the software stack, thereby enabling embodi-
ments to analyze operating systems, applications, and inter-
actions across components. For example, any individual
process running in guest operating system as well as the
guest OS kernel itself can be a target of analysis.

[0033] Those with ordinary skill in the art will further
recognize that decoupling analysis according to one or more
embodiments of the invention may treat the timing of the
analysis/replay system differently in order to achieve certain
results in performance and safety. For example, for situa-
tions where timely analysis results are critical, such as
intrusion detection and prevention, the analysis/replay sys-
tem may be executed in parallel with the main workload
VM, with the output of the workload synchronized with the
analysis. For situations that can tolerate some lag between
analysis and workload, the analysis/replay system may be
run in parallel with the workload, but with no synchroniza-
tion between the output of the workload and analysis. For
situations where analyses are not known beforehand or are
not time critical, such as debugging, the analysis/replay
system can be run offline. For example, system administra-
tors can use intensive checks for data consistency, taint
propagation, and virus scanning on their production systems.
Developers can run intensive analyses for memory safety
and invariant checking as part of their normal debugging, or
as additional offline checks that augment testing that must
already be performed in a quality-assurance department.
Computer architects can capture the execution of a produc-
tion system with little overhead, then analyze the captured
instruction stream on a timing-accurate, circuit-level simu-
lator. Because decoupling can be done offline, analysis that
was not foreseen during the original run can be performed
with users iteratively developing and running new analysis
on the original execution behavior of the main workload
VM.

D. Improving Heterogeneous Replay

[0034] As previously discussed in the context of FIGS. 4
and 5, heterogeneous record and replay systems require the
recording VM to monitor and record more information into
the replay log file than systems that utilize the same virtual
machine platform (i.e., “homogeneous™ systems), such as
the systems of FIGS. 2 and 3. For example, the heteroge-
neous record and replay systems of FIGS. 4 and 5 record the
data outputs from emulated devices to the CPU, correspond-
ing emulated device data formatting information (e.g., data
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formatting packet structures, etc.) from emulated device
interface 425 and timing information into the log file while
the homogenous record and replay embodiment of FIGS. 2
and 3 record only the timing of non-deterministic events and
external inputs to emulated devices. The increased level of
recording in heterogeneous systems can affect the overall
execution behavior of the main workload in the recording
VM, for example, by slowing it down.

[0035] FIG. 7 is a block diagram depicting one embodi-
ment of a heterogeneous record and replay platform using a
relog file to improve performance. An intermediary homo-
geneous replay VM 725 is placed in between a main
workload recording VM 700 and a heterogeneous replay and
analysis simulator 755 in order to reduce the level of
recording responsibilities on main workload recording VM
700. Similar to recording VM 200 in FIG. 2, recording VM
700 assumes that a virtual machine instantiated on the same
virtual machine platform replays its log file 785. External
inputs to physical devices 710 such as incoming network
data 702 and user interaction with a keyboard and mouse
704 are mapped by a virtualization layer 705 into external
inputs to corresponding emulated devices 715. The timing
and values of these external inputs are recorded into log file
785 (see 742), in addition to timing for other non determin-
istic events such as interrupts.

[0036] In order to replay the execution behavior of record-
ing VM 700, replaying VM 725 consumes the recorded
information in log file 785. In particular, a virtualization
layer 730 delivers the external input values and related
timing information in log file 785 (from 744) to correspond-
ing emulated devices 740 of replaying VM 725 (i.e., any
external inputs to physical layer 735 of replaying VM 725
are ignored during a replay session). Replaying VM’s 725
corresponding emulated devices 740 are thus able to deter-
ministically replay the receiving of external inputs and
format the data inputs into a data package understandable by
a guest operating system 750 through an emulated device
interface 745. In order to support heterogeneous replay,
virtualization layer 730 further records the data format
packet structures supported by emulated device interface
745 as well as the data values themselves and timing
information (i.e., timing of the device interrupts) into a relog
file 790 (see 782).

[0037] The analysis platform 755 of FIG. 7 is a processor
simulator that does not share the same emulated devices as
recording VM 700 and replaying VM 725. For example,
while recording VM 700 and replaying VM 725 are each
virtual machines running the same type of guest operating
system 720 and 750 (such as Microsoft Windows) on top of
emulated x86 virtual platforms 705 and 730 (such as
VMware Workstation 6) with the same emulated devices
715 and 740 running on top of Microsoft Windows as their
hosted operating systems (not shown) on top of an actual
x86 architecture platform 710 and 735, analysis simulator
755 is implemented on an AMD hardware platform 765
running Linux as its hosted operating system (not shown)
with the open source emulator QEMU as simulator layer 760
running on top of Linux with a set of emulated devices 770
that are different from emulated devices 715 and 740. A
guest operating system 775 running on top of a simulator
layer 760 in such an embodiment would also be Microsoft
Windows in order to replay recording VM’s 700 execution
behavior. To replay recording VM’s 700 execution behavior,
simulator layer 760 consumes the information in relog file
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790 to recreate recording VM’s 700 instruction stream. In
one embodiment, simulator layer 760 is modified (e.g., a
modified QEMU) such that its original emulated device
interfaces 780 are removed or otherwise supplanted by the
delivery of device outputs recorded in the proper emulated
device format to the simulated processor (and ultimately to
be acted upon by guest operating system 775) through relog
file 790 represented by arrow 784.

[0038] FIGS. 8A and 8B are flow charts for recording and
replaying execution behavior on a heterogeneous record and
replay platform using a relog file to improve performance.
Recording VM 800 executes and records the main workload
of the system and consumes the same amount of computing
resources as recording VM 324 of FIG. 3 to provide a
recording log file (steps 300 to 308 in FIG. 8) for a replaying
VM 805 that is instantiated from the same virtual platform
as recording VM 800 and that has the same emulated devices
as recording VM 800.

[0039] Replaying VM 805 can be thought of as a combi-
nation of replaying VM 326 of FIG. 3 and recording VM 524
of FIG. 5. In particular, replaying VM 805 consumes the
contents of the log file created by recording VM 800 to
recreate the execution behavior of recording VM 800 in a
similar manner as replaying VM 326 of FIG. 3 (see steps 312
to 320 in FIG. 8) but additionally has recording steps similar
to recording VM 524 to further support replay on a hetero-
geneous platform. In particular, the VMM of replaying VM
805 turns on the recording feature in step 810 (analogous to
step 500 of FIG. 5) and subsequently monitors the execution
behavior for non-deterministic events such as device inter-
rupts in step 815 (analogous to step 506 of FIG. 5) which
have been inserted into the instruction stream in step 320
through the log file created by recording VM 800. Similar to
step 508 of FIG. 5, upon the occurrence of such non-
deterministic events within the instruction stream, in step
820, the VMM records the timing (e.g., placement within the
instruction stream) of the occurrence and device data outputs
to the CPU (as specifically formatted by the emulated
devices of the replaying VM 805, which are the same types
of emulated devices of recording VM 800) into a second
“relog” file such as 790 of FIG. 7 such that replaying
simulator 825 can execute the event at the same place within
its own instruction stream and simulate any data outputs
from replaying VM’s 805 associated emulated device by
transmitting to the simulated processor system the data
output recorded in the relog file (in the format that would
have been transmitted by the emulated device).

[0040] To replay the recording, replaying simulator 825
may be created based upon information in the snapshot
taken in step 300 (step 512 in FIG. 8). By tracking the timing
of the execution of its instruction stream in step 514 (in FIG.
8), replay simulator 825 delivers the non-deterministic
events recorded in the relog file (step 830) into the instruc-
tion stream of the replay simulator 825 at the same point in
time (i.e., within recording VM’s 800 instruction stream)
when they occurred during the original execution (step 518
in FIG. 8). Replaying simulator 825 thereby recreates
recording VM’s 800 instruction stream by executing the
event and delivering any related device data output (in the
proper emulated device format) in the relog file to the CPU
(step 835). The flow then returns to step 514.

[0041] Those with ordinary skill in the art will recognize
that the particular embodiments of FIGS. 7, 8A and 8B are
merely exemplary and that variations in certain flows or
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components may be made without departing from the spirit
of'the invention. For example, while FIGS. 7, 8A and 8B (as
well as the previous figures) depict embodiments having log
and relog files stored persistently on disk, those with ordi-
nary skill in the art will recognize that the non-deterministic
event information of such files may also be stored and
consumed at the RAM level or through a shared cache
between the record and replay platforms without necessarily
storing such files in persistent storage (e.g., analysis can take
place by reading the log over the network without saving to
disk).

E. Synchronizing Analysis and Workload

[0042] In certain embodiments, the decoupled analysis
system runs in a synchronized fashion with the main work-
load. In one example, the decoupled analysis system
executes analysis relating to security checks and upon
identifying an intrusion, halts the main workload. In such
embodiments, a feedback channel is used to provide com-
munication between the main workload and the decoupled
analysis system.

[0043] FIGS. 9A and 9B are flowcharts of methods of
synchronizing a main workload recording VM and a het-
erogeneous replay analysis simulator. Those with ordinary
skill in the art will readily recognize that the same tech-
niques may be used in an homogeneous embodiment using
record and replay VMs, similar to FIG. 3. In the embodiment
of 9A, main workload VM 900 performs the same recording
and logging features as recording VM 524 (see steps 500 to
508). However, whenever main workload VM 900 generates
data outputs (e.g., data to be output to the network, etc.) (step
905), the VMM intercepts such data output (step 910) and
blocks the execution of main workload VM 900 (step 915).
In FIG. 9A, main workload VM 900 requests a confirmation
from replay analysis simulator 935 that it has reached the
same point in its replay of the instruction stream of main
workload VM 900 and has completed its analytics (e.g., for
a intrusion detection embodiment, it has found no intru-
sions) (step 920). When replay analysis simulator 935
receives such a request and has reached such a point, it will
transmit a confirmation to main workload VM 900 (step
940). When main workload VM 900 receives such a con-
firmation (step 925), it then releases the data output (e.g., to
the network) (step 930). Those with ordinary skill in the art
will recognize that slight variations in the flow of FIG. 9A
do not detract from the scope or spirit of the invention. For
example, in an alternative embodiment, main workload VM
900 does not transmit a request for confirmation to replay
analysis simulator 925 as in step 920; instead, main work-
load VM 900 blocks and waits for a communication of such
confirmation from replay analysis simulator 925 which
transmits such confirmations every time it generates a cor-
responding data output.

[0044] In FIG. 9B, a main workload VM 945 does not
block its execution when it has data to output. Instead, after
main workload VM 945 generates data outputs (step 950)
and the VMM intercepts such data output (step 955), the
VMM places the data outputs in a queue for release (step
960) but continues execution of main workload VM’s 945
instruction stream. In the embodiment of FIG. 9B, a replay
analysis simulator 975 periodically transmits to main work-
load VM 945 the current timing of its instruction stream (and
confirmation that is has conducted its program analysis up to
that point) (step 980). When main workload VM 945
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receives such timing information (step 965), it releases those
data outputs in the queue that occurred up to that same time
in main workload VM’s 945 instruction stream (step 970).
[0045] Alternative embodiments may further enhance the
synchronization between the main workload VM and analy-
sis platform by limiting how far the main workload VM is
allowed to run ahead of the analysis platform. For example,
the analysis platform may transmit its current time in the
replay of the main workload’s instruction stream such that
the main workload VM is able to verify that its own timing
in the instruction stream is no greater than a predetermined
time interval after the current time of the analysis platform.
If the main workload VM is too far ahead, it may block until
its timing falls within the predetermined time interval.
Limiting the lag between the main workload VM and
analysis platform limits the amount of time that the main
workload’s outputs are deferred, which in turn limits the
amount of timing perturbation the main workload may
observe (e.g., when it measures the round-trip time of a
network).

F. Improving Performance of Analysis System

[0046] Because an analysis VM executes the same instruc-
tions as the primary workload VM in addition to performing
the work of analysis, the analysis VM can become a bottle-
neck and slow down the primary VM’s execution, for
example, when running in a synchronous fashion as dis-
cussed in Section E. Optimizations may be made to the
analysis platform to improve its execution performance. One
such optimization, according to an embodiment of the
invention, is based upon the observation that during replay
on an analysis VM, interrupt delivery is or can be made
immediate. For example, in x86 operating systems, the hit
instruction is used to wait for interrupts; this saves power
compared to idle spinning. One hlt invocation waiting for a
10 ms timer interrupt can consume equal time to tens of
millions of instructions on modern 1+GHz processors. Dur-
ing analysis, hlt time passes instantaneously. As an example,
the primary workload VM may be a typical interactive
desktop workload with a user surfing the web. Idle times
during which the user may be reading on the web or where
human reaction times on the desktop are slow (e.g., opening
applications, selecting menus, etc.) enable the execution of
the analysis VM to catch up to the primary workload VM.
As such, idle time can be deliberately increased in many
run-time environments to assist the analysis VM in keeping
up with the main workload VM. For example, idle time can
be increased in server farms by adding more servers and
balancing load across them.

[0047] Additionally, device /O can be accelerated during
replay. For example, in one embodiment, network writes
need not be sent and network data is recorded in the replay
log (similar to a heterogeneous system) such that network
reads can use the network data from the replay log. This
frees the analysis VM from waiting for network round-trip
times, because disk throughput (to access the log) is often
greater than end-to-end network throughput. Disk reads can
similarly be satisfied from the replay log rather than the
analysis VM’s emulated hard disk, and this can accelerate
the analysis VM because the replay log is always read
sequentially. This optimization can also free the analysis
VM from executing disk writes during replay, which frees
up physical disk bandwidth and allows completion inter-
rupts to be delivered as soon as the instruction stream arrives
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at an appropriate spot to receive them. Disk reads done by
the primary VM may also prefetch data and thereby accel-
erate subsequent reads by the analysis VM.

[0048] FIG. 10A depicts a flowchart of a method for
accelerating replay. First, the VMM of a recording VM 1024
enables the record feature (step 1000), takes a snapshot of
the VM state (step 1002), and begins tracking system
behavior as recording VM 1024 executes (step 1004). When
non-deterministic events such as device interrupts or other
asynchronous events occur (step 1006), information relating
to such events are recorded in a log file (step 1008). Such
information includes the timing of the occurrence and device
data outputs to the CPU (e.g., disk reads, network reads, etc.)
so that analysis VM 1026 can consume the data directly
from the log and avoid waiting for device /O round trip
times during replay. The flow then returns to step 1004.
[0049] Analysis VM 1026 is instantiated based upon infor-
mation in the snapshot taken in step 1002 (step 1012) and
tracks the timing of the execution of its instruction stream in
step 1014. If the log file recorded by recording VM 1024
indicates the occurrence of a non-deterministic event (step
1016), analysis VM 1026 feeds the non-deterministic event
into its instruction stream at the same point in time when it
occurred during the original execution of the recording VM
1024 (step 1018). Analysis VM 1026 executes the event and
delivers any related device data output in the log file to its
virtual processor thereby avoiding any device /O round trip
times during replay (step 1020). The flow then returns to step
1014.

[0050] In another embodiment, operations that are
executed during record are not replayed. One such example
of this is exception checking. For example, x86 systems
often check for exceptional conditions. Although these
checks rarely raise exceptions, executing them adds over-
head to an embodiment’s emulated CPU. For example, with
segment limit checks, every memory reference or instruction
fetch must be checked that it is within bounds for an
appropriate segment. Most accesses do not raise exceptions
and interrupts are utilized to replay any exceptions that do
occur. Decoupled analysis enables one to reduce the over-
head of exception checking on the analysis VM by lever-
aging the exception checking that has already occurred on
the main workload VM. During logging, the time and
location in the instruction stream of any exceptions are
recorded, and these exceptions are delivered during replay
just like other asynchronous replay events. This strategy
frees the analysis VM from the overhead of explicitly
checking for exceptions during replay. Skipping these
checks on the analysis VM makes the CPU simulator faster
and less complex, while still guaranteeing proper replay of
a workload that contains violations of any checks (as
reflected by the exceptions recorded in the log file). Those
with ordinary skill in the art will recognize that many checks
can be similarly skipped in embodiments of the invention,
including debug exceptions, control transfer checks for
segment changes, the alignment check (which when
enabled, ensures all memory accesses are performed through
pointers aligned to appropriate boundaries) and others.
[0051] FIG. 10B depicts a flowchart of a method for
accelerating replay where analysis VM 1026 skips exception
checking that has already been performed by recording VM
1024. Recording VM 1024 takes the same initial steps 1000
to 1004 as the embodiment of FIG. 10A. When non-
deterministic events such as device interrupts or other asyn-
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chronous events occur (step 1006), information relating to
such events are recorded in a log file (step 1009). Such
events include exceptions that are generated pursuant to
exception checking, because exceptions are non-determin-
istic events. The flow then returns to step 1004.

[0052] Analysis VM 1026 is instantiated based upon infor-
mation in the snapshot taken in step 1002 (step 1012), turns
off exception checking (step 1013), and tracks the timing of
the execution of its instruction stream in step 1014. By
turning off exception checking, analysis VM 1026 is able to
utilize computing resources that would have been allocated
for exception checking to accelerate execution. If the log file
recorded by recording VM 1024 indicates the occurrence of
a non-deterministic event (step 1016), analysis VM 1026
feeds the non-deterministic event into its instruction stream
at the same point in time when it occurred during the original
execution of the recording VM 1024 (step 1018). As noted
previously, exceptions are non-deterministic events and
would be recorded in the log file. In step 1021, analysis VM
1026 executes events (including exceptions) and delivers
external input data recorded in the log file such as key
presses, mouse movements and network data to the appro-
priate emulated devices (e.g., keyboard, mouse, network
card, etc.) to be deterministically replayed by such devices
or timely inserting interrupts into the CPU instruction stream
in order to retrieve outputs deterministically made available
by emulated devices (e.g., hard drive data output responses
after CPU read requests). The flow then returns to step 1014.
[0053] Those with ordinary skill in the art will recognize
that the techniques of FIGS. 10A and 10B can be combined
into a single embodiment of the invention which both
accelerates device 1/0 and skips exception checking at the
analysis VM. Similarly, in an alternative embodiment, a
CPU simulator is the analysis platform rather than an
analysis VM.

[0054] The invention has been described above with ref-
erence to specific embodiments. Persons skilled in the art,
however, will understand that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The foregoing description and drawings
are, accordingly, to be regarded in an illustrative rather than
a restrictive sense. For example, while the foregoing dis-
cussions have generally discussed recording and replay VMs
having the same emulated devices, those with ordinary skill
in the art will recognize that many of the teachings herein
can also be performed at the hardware level, so long as the
recording and replay VMs have the same physical hardware
devices as well. Similarly, the foregoing discussions have
discussed timing of the instruction stream in a general sense.
Those with ordinary skill in the art will recognize that such
timing may be measured at the instruction level (i.e., the n”
instruction in the instruction stream) but that other measure-
ments of time may be implemented in certain embodiments,
for example, clock cycles, assuming certain guarantees of
timing in the hardware platform.

[0055] The various embodiments described herein may
employ various computer-implemented operations involv-
ing data stored in computer systems. For example, these
operations may require physical manipulation of physical
quantities usually, though not necessarily, these quantities
may take the form of electrical or magnetic signals where
they, or representations of them, are capable of being stored,
transferred, combined, compared, or otherwise manipulated.
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Further, such manipulations are often referred to in terms,
such as producing, identifying, determining, or comparing.
Any operations described herein that form part of one or
more embodiments of the invention may be useful machine
operations. In addition, one or more embodiments of the
invention also relate to a device or an apparatus for per-
forming these operations. The apparatus may be specially
constructed for specific required purposes, or it may be a
general purpose computer selectively activated or config-
ured by a computer program stored in the computer. In
particular, various general purpose machines may be used
with computer programs written in accordance with the
teachings herein, or it may be more convenient to construct
a more specialized apparatus to perform the required opera-
tions.

[0056] The various embodiments described herein may be
practiced with other computer system configurations includ-
ing hand-held devices, microprocessor systems, micropro-
cessor-based or programmable consumer electronics, mini-
computers, mainframe computers, and the like.

[0057] One or more embodiments of the present invention
may be implemented as one or more computer programs or
as one or more computer program modules embodied in one
or more computer readable media. The term computer
readable medium refers to any data storage device that can
store data which can thereafter be input to a computer
system computer readable media may be based on any
existing or subsequently developed technology for embody-
ing computer programs in a manner that enables them to be
read by a computer. Examples of a computer readable
medium include a hard drive, network attached storage
(NAS), read-only memory, random-access memory (e.g., a
flash memory device), a CD (Compact Discs) CD-ROM, a
CD-R, or a CD-RW, a DVD (Digital Versatile Disc), a
magnetic tape, and other optical and non-optical data storage
devices. The computer readable medium can also be dis-
tributed over a network coupled computer system so that the
computer readable code is stored and executed in a distrib-
uted fashion.

[0058] Although one or more embodiments of the present
invention have been described in some detail for clarity of
understanding, it will be apparent that certain changes and
modifications may be made within the scope of the claims.
Accordingly, the described embodiments are to be consid-
ered as illustrative and not restrictive, and the scope of the
claims is not to be limited to details given herein, but may
be modified within the scope and equivalents of the claims.
In the claims, elements and/or steps do not imply any
particular order of operation, unless explicitly stated in the
claims.

[0059] In addition, while described virtualization methods
have generally assumed that virtual machines present inter-
faces consistent with a particular hardware system, persons
of ordinary skill in the art will recognize that the methods
described may be used in conjunction with virtualizations
that do not correspond directly to any particular hardware
system. Virtualization systems in accordance with the vari-
ous embodiments, implemented as hosted embodiments,
non-hosted embodiments, or as embodiments that tend to
blur distinctions between the two, are all envisioned. Fur-
thermore, various virtualization operations may be wholly or
partially implemented in hardware. For example, a hardware
implementation may employ a look-up table for modifica-
tion of storage access requests to secure non-disk data.
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[0060] Many variations, modifications, additions, and
improvements are possible, regardless the degree of virtu-
alization. The virtualization software can therefore include
components of a host, console, or guest operating system
that performs virtualization functions. Plural instances may
be provided for components, operations or structures
described herein as a single instance. Finally, boundaries
between various components, operations and data stores are
somewhat arbitrary, and particular operations are illustrated
in the context of specific illustrative configurations. Other
allocations of functionality are envisioned and may fall
within the scope of the invention(s). In general, structures
and functionality presented as separate components in exem-
plary configurations may be implemented as a combined
structure or component. Similarly, structures and function-
ality presented as a single component may be implemented
as separate components. These and other variations, modi-
fications, additions, and improvements may fall within the
scope of the appended claims(s).

1. A method for replaying a virtual machine, the method
comprising:

executing a first virtual machine on a first system;

creating a snapshot of the first virtual machine;

recording a log comprising non-deterministic events
occurring during execution of the first virtual machine;
and
at the second system, replaying an instruction stream of
the first virtual machine in the second virtual machine
while consuming the log at points in the instruction
stream where the non-deterministic events occurred;

wherein data outputs during execution of the first virtual
machine on the first system are held until a correspond-
ing confirmation is received by the first system from the
second system, the confirmation indicating that the
second virtual machine has reached a particular point in
the instruction stream of the first virtual machine.

2. The method of claim 1, further comprising:

intercepting a data output from the first virtual machine at

a time t, in the instruction stream of the first virtual
machine; and

suspending further execution of the first virtual machine

until the confirmation is received from the second
system.

3. The method of claim 2, further comprising:

receiving the confirmation from the second system; and

resuming execution of the first virtual machine upon

receipt of the confirmation.

4. The method of claim 3, wherein the second system
issues the confirmation when the instruction stream of the
first virtual machine is replayed up to time t, in the second
virtual machine.

5. The method of claim 1, further comprising:

intercepting data outputs from the first virtual machine

and queuing the data outputs for release;

receiving a confirmation from the second system that the

instruction stream of the first virtual machine is
replayed up to time t; in the second virtual machine;
and

releasing those data outputs that have been intercepted at

time tst, in the instruction stream of the first virtual
machine.

6. The method of claim 1, further comprising:
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receiving a confirmation from the second system that the
instruction stream of the first virtual machine is
replayed up to time t, in the second virtual machine;

continuing further execution of the first virtual machine
upon detecting that a difference between a current time
t, in the instruction stream of the first virtual machine
that is being executed by the first virtual machine, and
t, is less than a threshold value; and

suspending further execution of the first virtual machine
upon detecting that the difference is greater than the
threshold value.

7. A computer program product stored in a non-transitory
computer readable storage medium, the computer program
product comprising instructions executed in a first system
and second system to carry out a method for replaying a first
virtual machine executed on the first system in a second
virtual machine executed on the second system, said method
comprising:

creating a snapshot of the first virtual machine;

instantiating the second virtual machine from the snapshot

on the second system;

recording a log comprising non-deterministic events

occurring during execution of the first virtual machine;
and
at the second system, replaying an instruction stream of
the first virtual machine in the second virtual machine
while consuming the log at points in the instruction
stream where the non-deterministic events occurred,

wherein data outputs during execution of the first virtual
machine on the first system are held until a correspond-
ing confirmation is received by the first system from the
second system, the confirmation indicating that the
second virtual machine has reached a particular point in
the instruction stream of the first virtual machine.

8. The computer program product of claim 7, wherein the
method further comprises:

intercepting a data output from the first virtual machine at

a time t, in the instruction stream of the first virtual
machine; and

suspending further execution of the first virtual machine

until the confirmation is received from the second
system.

9. The computer program product of claim 8, wherein the
method further comprises:

receiving the confirmation from the second system; and

resuming execution of the first virtual machine upon

receipt of the confirmation.

10. The computer program product of claim 9, wherein
the second system issues the confirmation when the instruc-
tion stream of the first virtual machine is replayed up to time
t, in the second virtual machine.

11. The computer program product of claim 7, wherein the
method further comprises:

intercepting data outputs from the first virtual machine

and queuing the data outputs for release;

receiving a confirmation from the second system that the

instruction stream of the first virtual machine is
replayed up to time t; in the second virtual machine;
and

releasing those data outputs that have been intercepted at

time t<t, in the instruction stream of the first virtual
machine.

12. The computer program product of claim 7, wherein
the method further comprises:
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receiving a confirmation from the second system that the
instruction stream of the first virtual machine is
replayed up to time t, in the second virtual machine;

continuing further execution of the first virtual machine
upon detecting that a difference between a current time
t, in the instruction stream of the first virtual machine
that is being executed by the first virtual machine, and
t, is less than a threshold value; and

suspending further execution of the first virtual machine
upon detecting that the difference is greater than the
threshold value.

13. A computer system for replaying a virtual machine,

comprising:

a first virtual machine platform having a processor pro-
grammed to (a) execute a first virtual machine, (b)
create a snapshot of the first virtual machine, and (c)
generate a log comprising non-deterministic events
occurring during execution of the first virtual machine;
and

a second virtual machine platform having a processor
programmed to (a) instantiate a second virtual machine
from the snapshot, and (b) replay an instruction stream
of the first virtual machine in the second virtual
machine while consuming the log at points in the
instruction stream where the non-deterministic events
occurred,

wherein data outputs during execution of the first virtual
machine on the first system are held until a correspond-
ing confirmation is received by the first system from the
second system, the confirmation indicating that the
second virtual machine has reached a particular point in
the instruction stream of the first virtual machine.

14. The system of claim 13, wherein the processor of the

first virtual machine platform is further configured to:

intercept a data output from the first virtual machine at a
time t, in the instruction stream of the first virtual
machine; and

suspend further execution of the first virtual machine until
the confirmation is received from the second system.

15. The system of claim 14, wherein the processor of the
first virtual machine platform is further configured to:

receive the confirmation from the second system; and

resume execution of the first virtual machine upon receipt
of the confirmation.

16. The system of claim 15, wherein the second system
issues the confirmation when the instruction stream of the
first virtual machine is replayed up to time t, in the second
virtual machine.

17. The system of claim 13, wherein the processor of the
first virtual machine platform is further configured to:

intercept data outputs from the first virtual machine and
queue the data outputs for release;

receive a confirmation from the second system that the
instruction stream of the first virtual machine is
replayed up to time t; in the second virtual machine;
and

release those data outputs that have been intercepted at
time t<t, in the instruction stream of the first virtual
machine.

18. The system of claim 13, wherein the processor of the

first virtual machine platform is further configured to:
receive a confirmation from the second system that the
instruction stream of the first virtual machine is
replayed up to time t, in the second virtual machine;
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continue further execution of the first virtual machine
upon detecting that a difference between a current time
t, in the instruction stream of the first virtual machine
that is being executed by the first virtual machine, and
t, is less than a threshold value; and

suspend further execution of the first virtual machine
upon detecting that the difference is greater than the
threshold value.



