
US 20190220617A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0220617 A1

Harriman et al . (43) Pub . Date : Jul . 18 , 2019

(54) DATA RELEASE CONTROL BASED ON
AUTHENTICATION AND LINK
PROTECTION

Related U . S . Application Data
(60) Provisional application No . 62 / 778 , 807 , filed on Dec .

12 , 2018
(71) Applicant : Intel Corporation , Santa Clara , CA

(US)

(72) Inventors : David J . Harriman , Portland , OR
(US) ; Ioannis T . Schoinas , Portland ,
OR (US) ; Kapil Sood , Portland , OR
(US) ; Raghunandan Makaram ,
Northborough , MA (US) ; Yu - Yuan
Chen , Chandler , AZ (US)

Publication Classification
(51) Int . CI .

G06F 21 / 62 (2006 . 01)
G06F 21 / 64 (2006 . 01)

(52) U . S . CI .
CPC GO6F 21 / 6218 (2013 . 01) ; G06F 21 / 64

(2013 . 01)

(73) Assignee : Intel Corporation , Santa Clara , CA
(US)

(57) ABSTRACT
First data is stored . A request for the first data is received
from a communication device over a link established with a
communication device . An access control engine comprising
circuitry is to control access to the first data to the commu
nication device based on an authentication state of the
communication device and a protection state of the link .

(21) Appl . No . : 16 / 367 , 204
(22) Filed : Mar . 27 , 2019

Processor
105

132
131 118 Controller

Hub
115

117 Graphics Accelerator 130

119

121

System memory
110

150
126

I / O Device 125

Patent Application Publication Jul . 18 , 2019 Sheet 1 of 10 US 2019 / 0220617 A1

00L
WARN Processor

105

106

132 131 118 Controller
Hub
115

116 UULUULUVULLULULUULUVULLULLULUVULULAULULAUL WWWWWWWWWWWWWWWWWWWWWWWWWWWWW Graphics Accelerator 130

WWWWWWWWWWWWWWWWWWWWW 121
120 System memory

110 122 VAJUNUWUWVuLWLWWW

1 / 0 Device 125
FIG . 1

Patent Application Publication Jul . 18 , 2019 Sheet 2 of 10 US 2019 / 0220617 A1

Lavered Protocol Stack 200

To Processing Core

Transaction Layer 205
Packet Header
Payload 206

Link Layer 210 206 212

Physical Layer 220

Logical Sub Block 221
| 223 | 211 | 206 212 223 |

Electrical Sub - Block 222

To External Device

FIG . 2

Patent Application Publication Jul . 18 , 2019 Sheet 3 of 10 US 2019 / 0220617 A1

Global ID 302 Attribute Bits 304 300

Local
Trans
ID 308

Source
ID 310

Priority
312

Reserved Reserved Ordering
316

No - Snoop
318 Channel ID 306 314 ??

FIG . 3

400

415

416
406 1

418
407

419

405 410

FIG . 4

Patent Application Publication Jul . 18 , 2019 Sheet 4 of 10 US 2019 / 0220617 A1

DEVICE 502A

DATA 508

ACCESS CONTROL
ENGINE 510

506

IMMUTABLE
COMPONENT INFO 512

MUTABLE COMPONENT
INFO 514

USER CREDENTIALS 516

DEVICE 502B

HOST 504

FIG . 5

Patent Application Publication Jul . 18 , 2019 Sheet 5 of 10 US 2019 / 0220617 A1

DEVICE 502A

ACCESS CONTROL ENGINE
510 AUTHENTICATION

MODULE 602

LINK PROTECTION
MODULE 604 POLICY MODULE 608

???

MODULE 606

DATA 508
REQUEST PROCESSOR

610

506

FIG . 6

700

ENDPOINT DEVICE 702

ENDPOINT DEVICE 704

Patent Application Publication

SECURITY ENGINE 712A

708

SECURITY ENGINE 712B

LINK FIRMWARE 714

AUTHENTICATION ; KEY EXCHANGE ; CONFIG PARAMETERS

LINK DRIVER 716

CONFIG REGISTERS 720A

CONFIG REGISTERS 720B

706

PROTOCOL SECURITY STATE MACHINE 718A
ENCRYPTION ENGINE 722A

PROTOCOL SECURITY STATE MACHINE 718B

ENCRYPTION ENGINE 722B

Jul . 18 , 2019 Sheet 6 of 10

ENCRYPTED LINK TRAFFIC

PACKET ENGINE 724A

PACKET ENGINE 724B

710

PROCESSOR 726A

PROCESSOR 726B

MEMORY 728A

MEMORY 728B

FIG . 7

US 2019 / 0220617 A1

Patent Application Publication Jul . 18 , 2019 Sheet 7 of 10 US 2019 / 0220617 A1

805
Second Device First Device

Show your identity : : : : : : : : : : : posteriori *

SUS I ' m from vendor A , running
firmware version X WW

SLIKA

23

.

. net
Prove your
identity

I ' m genuine , running
software version X ,
and I have proof

WILL

Mutual Authentication -

Prove your
identity

I ' m genuine , running
software version X ,
and I have proof

27 .

.

www . .

825 .

Key Exchange and / or Link Encryption Wwwww
www :

PAPPA . < < something > > -
< < something > >

.

805
810

FIG . 8

Patent Application Publication Jul . 18 , 2019 Sheet 8 of 10 US 2019 / 0220617 A1

STORING FIRST DATA 9021

9041
RECEIVING A REQUEST FOR THE FIRST DATA

FROM A COMMUNICATION DEVICE OVER A LINK
ESTABLISHED WITH A COMMUNICATION

DEVICE

CONTROLLING ACCESS TO THE FIRST DATA TO
THE COMMUNICATION DEVICE BASED ON AN

AUTHENTICATION STATE OF THE
COMMUNICATION DEVICE AND A PROTECTION

STATE OF THE LINK
906d

FIG . 9

Patent Application Publication Jul . 18 , 2019 Sheet 9 of 10 US 2019 / 0220617 A1

Power Control 1060

1002

Arch Reg Arch Reg
10016

Arch Reg
10020

Arch Reg
1002b 10019

BTB and I - TLB 1020 BTB and I - TLB 1021

Decode 1025 Decode 1026

Rename / Allocater 1030 Rename / Allocater 1031

Scheduler / Execution
Unit (s) 1040

Scheduler / Execution
Unit (s) 1041

Reorder / Retirement
Unit 1035

Reorder / Retirement
Unit 1036

Lower level D - Cache
and D - TLB 1050

Lower level D - Cache
and D - TLB 1051

On - Chip Interface 1010

1000

1005

1076 1077 System memory 1075
Device 1080

FIG . 10

1 1100

PROCESSOR

PROCESSOR
.

MEMORY

MEMORY

Patent Application Publication

INMODO

IMC

IMC

1132

1134

1 151154

1172 - 176 1178 1150 11881186 1182
1170 el ppt PP 1180

1 1152

P - P 1194 CHIPSET 1198P - P
VE1192 VE 1196 1190

HIGH - PERF GRAPHICS 1138

1139 WANAN

1116

Jul . 18 , 2019 Sheet 10 of 10

BUS BRIDGE 1118

1 / 0 DEVICES
1114

AUDIO 1 / 0 1124
1120

.

KEYBOARD / MOUSE

DATA STORAGE

COMM DEVICES
11127

1130

CODE AND
| | DATA

1128

US 2019 / 0220617 A1

FIG . 11

US 2019 / 0220617 A1 Jul . 18 , 2019

DATA RELEASE CONTROL BASED ON
AUTHENTICATION AND LINK

PROTECTION

RELATED APPLICATIONS
[0001] This application claims the benefit of priority to
U . S . Provisional Patent Application Ser . No . 62 / 778 , 807 ,
filed Dec . 12 , 2018 and titled “ PCI EXPRESS DEVICE
DATA RELEASE CONTROL BASED ON PCI EXPRESS
LINK PROTECTION AND AUTHENTICATION ” .

DETAILED DESCRIPTION
[0015] In the following description , numerous specific
details are set forth , such as examples of specific types of
processors and system configurations , specific hardware
structures , specific architectural and micro architectural
details , specific register configurations , specific instruction
types , specific system components , specific measurements /
heights , specific processor pipeline stages and operation etc .
in order to provide a thorough understanding of the present
invention . It will be apparent , however , to one skilled in the
art that these specific details need not be employed to
practice all embodiments of the present disclosure . In other
instances , well known components or methods , such as
specific and alternative processor architectures , specific
logic circuits / code for described algorithms , specific firm
ware code , specific interconnect operation , specific logic
configurations , specific manufacturing techniques and mate
rials , specific compiler implementations , specific expression
of algorithms in code , specific power down and gating
techniques / logic and other specific operational details of
computer system haven ' t been described in detail in order to
avoid unnecessarily obscuring the embodiments disclosed

BACKGROUND
100021 Advances in semi - conductor processing and logic
design have permitted an increase in the amount of logic that
may be present on integrated circuit devices . As a corollary ,
computer system configurations have evolved from a single
or multiple integrated circuits in a system to multiple cores ,
multiple hardware threads , and multiple logical processors
present on individual integrated circuits , as well as other
interfaces integrated within such processors . A processor or
integrated circuit typically comprises a single physical pro
cessor die , where the processor die may include any number
of cores , hardware threads , logical processors , interfaces ,
memory , controller hubs , etc .
[0003] Aprocessor may include or be coupled to logic that
may couple two devices together via a link . For example , a
processor may include an interconnect fabric architecture ,
such as a Peripheral Component Interconnect (PCI) Express
(PCIe) architecture . A primary goal of PCIe is to enable
various components and devices (e . g . , from different ven
dors) to inter - operate in an open architecture , spanning
multiple market segments .

herein .

BRIEF DESCRIPTION OF THE DRAWINGS
[0004] FIG . 1 illustrates an embodiment of a computing
system including an interconnect architecture .
[0005] FIG . 2 illustrates an embodiment of an interconnect
architecture including a layered stack .
[0006] FIG . 3 illustrates an embodiment of a request or
packet to be generated or received within an interconnect
architecture .
[0007] FIG . 4 illustrates an embodiment of a transmitter
and receiver pair for an interconnect architecture .
10008] FIG . 5 illustrates a block diagram of a first device
and second device coupled via a link in accordance with
certain embodiments .
[0009 FIG . 6 illustrates a block diagram of a first device
in accordance with certain embodiments .
[0010] FIG . 7 illustrates a system for communicating
encrypted data over a protected link in accordance with
certain embodiments .
[0011] FIG . 8 illustrates a flow for device authentication in
accordance with certain embodiments .
[0012] FIG . 9 illustrates a flow for data release control
based on authentication and link protection in accordance
with certain embodiments .
[0013] . FIG . 10 illustrates a block diagram for a computing
system including a multicore processor in accordance with
certain embodiments .
[0014] FIG . 11 illustrates a block diagram of a computing
system including multiple processors in accordance with
certain embodiments .

[0016] Although the following embodiments may be
described with reference to computer security enhancements
in specific computing systems , such as in computing plat
forms , storage devices , or microprocessors , other embodi
ments are applicable to other types of integrated circuits and
logic devices . Similar techniques and teachings of embodi
ments described herein may be applied to other types of
circuits or semiconductor devices , such as handheld devices ,
tablets , other thin notebooks , systems on a chip (SOC)
devices , and embedded applications . Some examples of
handheld devices include cellular phones , Internet protocol
devices , digital cameras , personal digital assistants (PDAs) ,
and handheld PCs . Embedded applications typically include
a microcontroller , a digital signal processor (DSP) , a system
on a chip , network computers (NetPC) , set - top boxes , net
work hubs , wide area network (WAN) switches , or any other
system that can perform the functions and operations taught
below . Moreover , the apparatuses , methods , and systems
described herein are not limited to physical computing
devices , but may also relate to software optimizations for
energy conservation and efficiency .
[0017] As computing systems are advancing , the compo
nents therein are becoming more complex . As a result , the
interconnect architecture to couple and communicate
between the components is also increasing in complexity to
ensure bandwidth requirements are met for optimal compo
nent operation . Furthermore , different market segments
demand different aspects of interconnect architectures to suit
the market ' s needs . For example , servers require higher
performance , while the mobile ecosystem is sometimes able
to sacrifice overall performance for power savings . Yet , it ' s
a singular purpose of most fabrics to provide highest pos
sible performance with maximum power saving . Below , a
number of interconnects are discussed , which would poten
tially benefit from various embodiments described herein .
[00181 One interconnect fabric architecture includes the
Peripheral Component Interconnect (PCI) Express (PCIe)
architecture . A primary goal of PCIe is to enable components
and devices from different vendors to inter - operate in an
open architecture , spanning multiple market segments ; Cli
ents (Desktops and Mobile) , Servers (Standard , Rack Scale ,

US 2019 / 0220617 A1 Jul . 18 , 2019

are

and Enterprise) , and Embedded and Communication
devices . PCI Express is a high performance , general purpose
I / O interconnect defined for a wide variety of future com
puting and communication platforms . Some PCI attributes ,
such as its usage model , load - store architecture , and soft
ware interfaces , have been maintained through its revisions ,
whereas previous parallel bus implementations have been
replaced by a highly scalable , fully serial interface . The
more recent versions of PCI Express take advantage of
advances in point - to - point interconnects , Switch - based tech
nology , and packetized protocol to deliver new levels of
performance and features . Power Management , Quality Of
Service (QoS) , Hot - Plug / Hot - Swap support , Data Integrity ,
and Error Handling are among some of the advanced fea
tures supported by PCI Express .
[0019] Referring to FIG . 1 , an embodiment of a fabric
composed of point - to - point links that interconnect a set of
components is illustrated . System 100 includes processor
105 and system memory 110 coupled to controller hub 115 .
Processor 105 includes any processing element , such as a
microprocessor , a host processor , an embedded processor , a
co - processor , or other processor . Processor 105 is coupled to
controller hub 115 through a link 106 (e . g . , a front - side bus
(FSB)) . In one embodiment , link 106 is a serial point - to
point interconnect as described below . In another embodi
ment , link 106 includes a serial , differential interconnect
architecture that is compliant with different interconnect
standard . In some implementations , the system may include
logic to implement multiple protocol stacks and further logic
to negotiation alternate protocols to be run on top of a
common physical layer , among other example features .
[0020] System memory 110 includes any memory device ,
such as random access memory (RAM) , volatile memory ,
non - volatile (NV) memory , or other memory accessible by
devices in system 100 . System memory 110 is coupled to
controller hub 115 through memory interface 116 . Examples
of a memory interface include a double - data rate (DDR)
memory interface , a dual - channel DDR memory interface ,
and a dynamic RAM (DRAM) memory interface .
[0021] In one embodiment , controller hub 115 is a root
hub , root complex , or root controller in a Peripheral Com
ponent Interconnect Express (PCIe or PCIE) interconnection
hierarchy . Examples of controller hub 115 include a chipset ,
a memory controller hub (MCH) , a northbridge , an inter
connect controller hub (ICH) , a southbridge , and a root
controller / hub . Often the term chipset refers to two physi
cally separate controller hubs , e . g . , a memory controller hub
(MCH) coupled to an interconnect controller hub (ICH) .
Note that current systems often include the MCH integrated
with processor 105 , while controller 115 is to communicate
with I / O devices , in a similar manner as described below . In
some embodiments , peer - to - peer routing is optionally sup
ported through controller hub (e . g . , root complex) 115 .
[0022] Here , controller hub 115 is coupled to switch /
bridge 120 through serial link 119 . Input / output modules 117
and 121 , which may also be referred to as interfaces / ports
117 and 121 , include / implement a layered protocol stack to
provide communication between controller hub 115 and
switch 120 . In one embodiment , multiple devices are
capable of being coupled to switch 120 .
[0023] Switch / bridge 120 routes packets / messages from
device 125 upstream , e . g . , up a hierarchy towards a root
complex , to controller hub 115 and downstream , e . g . , down
a hierarchy away from a root controller , from processor 105

or system memory 110 to device 125 . Switch 120 , in one
embodiment , is referred to as a logical assembly of multiple
virtual PCI - to - PCI bridge devices . Device 125 includes any
internal or external device or component to be coupled to an
electronic system , such as an I / O device , a Network Inter
face Controller (NIC) , an add - in card , an audio processor , a
network processor , a hard - drive , a storage device , a
CD / DVD ROM , a monitor , a printer , a mouse , a keyboard ,
a router , a portable storage device , a Firewire device , a
Universal Serial Bus (USB) device , a scanner , an accelera
tor , and other input / output devices . Often in the PCIe
vernacular , such a device is referred to as an endpoint .
Although not specifically shown , device 125 may include a
PCIe to PCI / PCI - X bridge to support legacy or other version
of PCI devices . Endpoint devices in PCIe are often classified
as legacy , PCIe , or root complex integrated endpoints .
[0024] Graphics accelerator 130 is also coupled to con
troller hub 115 through serial link 132 . In one embodiment ,
graphics accelerator 130 is coupled to an MCH , which is
coupled to an ICH . Switch 120 , and accordingly I / O device
125 , is then coupled to the ICH . I / O modules 131 and 118
are also to implement a layered protocol stack to commu
nicate between graphics accelerator 130 and controller hub
115 . Similar to the MCH discussion above , a graphics
controller or the graphics accelerator 130 itself may be
integrated in processor 105 . Further , one or more links (e . g . ,
123) of the system can include one or more extension
devices (e . g . , 150) , such as retimers , repeaters , etc .
[0025] Turning to FIG . 2 an embodiment of a layered
protocol stack is illustrated . Layered protocol stack 200
includes any form of a layered communication stack , such as
a Quick Path Interconnect (QPI) stack , a PCIe stack , a next
generation high performance computing interconnect stack ,
or other layered stack . Although the discussion immediately
below in reference to FIGS . 1 - 4 are in relation to a PCIe
stack , the same concepts may be applied to other intercon
nect stacks . In one embodiment , protocol stack 200 is a PCIe
protocol stack including transaction layer 205 , link layer
210 , and physical layer 220 . An interface , such as interfaces
117 , 118 , 121 , 122 , 126 , and 131 in FIG . 1 , may be
represented as communication protocol stack 200 . Repre
sentation as a communication protocol stack may also be
referred to as a module or interface implementing / including
a protocol stack .
(0026] PCI Express uses packets to communicate infor
mation between components . Packets are formed in the
Transaction Layer 205 and Data Link Layer 210 to carry the
information from the transmitting component to the receiv
ing component . As the transmitted packets flow through the
other layers , they are extended with additional information
necessary to handle packets at those layers . At the receiving
side the reverse process occurs and packets get transformed
from their Physical Layer 220 representation to the Data
Link Layer 210 representation and finally (for Transaction
Layer Packets) to the form that can be processed by the
Transaction Layer 205 of the receiving device .
[0027] Transaction Layer
[0028] In one embodiment , transaction layer 205 is to
provide an interface between a device ' s processing core and
the interconnect architecture , such as data link layer 210 and
physical layer 220 . In this regard , a primary responsibility of
the transaction layer 205 is the assembly and disassembly of
packets (i . e . , transaction layer packets , or TLPs) . The trans
action layer 205 typically manages credit - based flow control

US 2019 / 0220617 A1 Jul . 18 , 2019

for TLPs . PCIe implements split transactions , e . g . transac
tions with request and response separated by time , allowing
a link to carry other traffic while the target device gathers
data for the response .
[0029] In addition PCIe utilizes credit - based flow control .
In this scheme , a device advertises an initial amount of credit
for each of the receive buffers in Transaction Layer 205 . An
external device at the opposite end of the link , such as
controller hub 115 in FIG . 1 , counts the number of credits
consumed by each TLP . A transaction may be transmitted if
the transaction does not exceed a credit limit . Upon receiv
ing a response an amount of credit is restored . An advantage
of a credit scheme is that the latency of credit return does not
affect performance , provided that the credit limit is not
encountered .
0030] In one embodiment , four transaction address

spaces include a configuration address space , a memory
address space , an input / output address space , and a message
address space . Memory space transactions include one or
more of read requests and write requests to transfer data
to / from a memory - mapped location . In one embodiment ,
memory space transactions are capable of using two differ
ent address formats , e . g . , a short address format , such as a
32 - bit address , or a long address format , such as a 64 - bit
address . Configuration space transactions are used to access
configuration space of the PCIe devices . Transactions to the
configuration space include read requests and write requests .
Message space transactions (or , simply messages) are
defined to support in - band communication between PCIe
agents .
[0031] In one embodiment , transaction layer 205
assembles packet header / payload 206 . Format for current
packet headers / payloads may be found in the PCIe specifi
cation at the PCIe specification website (indeed any refer
ence herein to a portion of the PCIe specification may
contemplate any past , current , or future PCIe specification
currently available or available in the future at the PCIe
specification website or through other means) .
[0032] Quickly referring to FIG . 3 , an embodiment of a
PCIe transaction descriptor is illustrated . In one embodi
ment , transaction descriptor 300 is a mechanism for carrying
transaction information . In this regard , transaction descrip
tor 300 supports identification of transactions in a system .
Other potential uses include tracking modifications of
default transaction ordering and association of transaction
with channels .
10033] Transaction descriptor 300 includes global identi
fier field 302 , attributes field 304 and channel identifier field
306 . In the illustrated example , global identifier field 302 is
depicted comprising local transaction identifier field 308 and
source identifier field 310 . In one embodiment , global trans
action identifier 302 is unique for all outstanding requests .
[0034] According to one implementation , local transaction
identifier field 308 is a field generated by a requesting agent ,
and it is unique for all outstanding requests that require a
completion for that requesting agent . Furthermore , in this
example , source identifier 310 uniquely identifies the
requestor agent within a PCIe hierarchy . Accordingly ,
together with source ID 310 , local transaction identifier 308
field provides global identification of a transaction within a
hierarchy domain .
[0035] Attributes field 304 specifies characteristics and
relationships of the transaction . In this regard , attributes field
304 is potentially used to provide additional information that

allows modification of the default handling of transactions .
In one embodiment , attributes field 304 includes priority
field 312 , reserved field 314 , ordering field 316 , and no
snoop field 318 . Here , priority sub - field 312 may be modi
fied by an initiator to assign a priority to the transaction .
Reserved attribute field 314 is left reserved for future , or
vendor - defined usage . Possible usage models using priority
or security attributes may be implemented using the reserved
attribute field .
[0036] In this example , ordering field 316 is used to supply
optional information conveying the type of ordering that
may modify default ordering rules . According to one
example implementation , an ordering attribute of “ 0 ”
denotes default ordering rules are to apply , wherein an
ordering attribute of “ 1 ” denotes relaxed ordering , wherein
writes can pass writes in the same direction , and read
completions can pass writes in the same direction . Snoop
attribute field 318 is utilized to determine if transactions are
snooped . As shown , channel ID Field 306 identifies a
channel that a transaction is associated with .
00371 Link Layer
[0038] Link layer 210 , also referred to as data link layer
210 , acts as an intermediate stage between transaction layer
205 and the physical layer 220 . In one embodiment , a
responsibility of the data link layer 210 is providing a
reliable mechanism for exchanging Transaction Layer Pack
ets (TLPs) between two components over a link . One side of
the Data Link Layer 210 accepts TLPs assembled by the
Transaction Layer 205 , applies packet sequence identifier
211 , e . g . an identification number or packet number , calcu
lates and applies an error detection code , e . g . CRC 212 , and
submits the modified TLPs to the Physical Layer 220 for
transmission across a physical medium to an external
device .
[0039] Physical Layer
[0040] In one embodiment , physical layer 220 includes
logical sub block 221 and electrical sub - block 222 to physi
cally transmit a packet to an external device . Here , logical
sub - block 221 is responsible for the " digital ” functions of
Physical Layer 221 . In this regard , the logical sub - block
includes a transmit section to prepare outgoing information
for transmission by physical sub - block 222 , and a receiver
section to identify and prepare received information before
passing it to the Link Layer 210 .
[0041] Physical block 222 includes a transmitter and a
receiver . The transmitter is supplied by logical sub - block
221 with symbols , which the transmitter serializes and
transmits onto to an external device . The receiver is supplied
with serialized symbols from an external device and trans
forms the received signals into a bit - stream . The bit - stream
is de - serialized and supplied to logical sub - block 221 . In one
embodiment , an 8b / 10b transmission code is employed ,
where ten - bit symbols are transmitted / received . Here , spe
cial symbols are used to frame a packet with frames 223 . In
addition , in one example , the receiver also provides a
symbol clock recovered from the incoming serial stream .
10042] As stated above , although transaction layer 205 ,
link layer 210 , and physical layer 220 are discussed in
reference to a specific embodiment of a PCIe protocol stack ,
a layered protocol stack is not so limited . In fact , any layered
protocol may be included / implemented . As an example , a
port / interface that is represented as a layered protocol
includes : (1) a first layer to assemble packets , i . e . a trans
action layer ; a second layer to sequence packets , i . e . a link

m

US 2019 / 0220617 A1 Jul . 18 , 2019

layer ; and a third layer to transmit the packets , i . e . a physical
layer . As a specific example , a common standard interface
(CSI) layered protocol is utilized .
[0043] Referring next to FIG . 4 , an embodiment of a PCIe
serial point - to - point fabric is illustrated . Although an
embodiment of a PCIe serial point - to - point link is illus
trated , a serial point - to - point link is not so limited , as it
includes any transmission path for transmitting serial data .
In the embodiment shown , a basic PCIe link includes two ,
low - voltage , differentially driven signal pairs : a transmit
pair 406 / 411 and a receive pair 412 / 407 . Accordingly , device
405 includes transmission logic 406 to transmit data to
device 410 and receiving logic 407 to receive data from
device 410 . In other words , two transmitting paths , e . g . paths
416 and 417 , and two receiving paths , e . g . paths 418 and
419 , are included in a PCIe link .
[0044] A transmission path refers to any path for trans
mitting data , such as a transmission line , a copper line , an
optical line , a wireless communication channel , an infrared
communication link , or other communication path . A con
nection between two devices , such as device 405 and device
410 , is referred to as a link , such as link 415 . A link may
support one lane each lane representing a set of differential
signal pairs (one pair for transmission , one pair for recep
tion) . To scale bandwidth , a link may aggregate multiple
lanes denoted by XN , where N is any supported link width ,
such as 1 , 2 , 4 , 8 , 12 , 16 , 32 , 64 , or wider .
[0045] A differential pair refers to two transmission paths ,
such as lines 416 and 417 , to transmit differential signals . As
an example , when line 416 toggles from a low voltage level
to a high voltage level , i . e . a rising edge , line 417 drives from
a high logic level to a low logic level , i . e . a falling edge .
Differential signals potentially demonstrate better electrical
characteristics , such as better signal integrity , e . g . cross
coupling , voltage overshoot / undershoot , ringing , etc . This
allows for better timing window , which enables faster trans
mission frequencies .
[0046] In some implementations , a high - performance
interconnect and corresponding interconnect protocol (e . g . ,
such as a next generation PCIe - based interconnect) may be
provided that is capable of operating at high speeds such as
25 GT / s and / or 32 GT / s . In one example , two speeds may be
defined for the high performance interconnect , one at 25
GT / s and 32 GT / s , based on the characteristics determined
for the channel (e . g . , during link training) . The interconnect ,
in one implementation , may be backwards compatible with
existing PCIe generations and speeds provided for these
generations (e . g . , 8 GT / s , 16 GT / s , etc .) .
[0047] FIG . 5 illustrates a block diagram of a first device
502A and second device 502B coupled via a link 506 in
accordance with certain embodiments . In a particular
embodiment , the first device 502A and second device 502B
are PCI Express endpoints (e . g . , devices that may commu
nicate in accordance with a PCI express protocol) and the
link is a PCI express link that is physically protected (where
a physically protected link may refer to a link between
endpoints that have agreed upon at least one cryptographic
key to be used to protect messages over the link) .
[0048] The first device 502A may store protected data 508
that is subject to access control . For example , the protected
data 508 may include user data , configuration data , or other
private information . Access control engine 510 may com
prise circuitry to monitor an authentication state of the
second device 502B and a protection state of link 506 and to

control access to data 508 based on the monitored states . In
a particular embodiment , first device 502A is a storage
device and at least a portion of data 508 is stored in an
encrypted state .
(0049] In some systems , a storage device may release data
to another hardware device over a link based on mere
authentication of a user of the hardware device , regardless of
whether the authentication is integrated inside the storage
device or outside on another device (e . g . , on a host com
puting machine) . One common authentication mechanism
includes password - based authentication to unlock a PCI
Express device , in order for the PCI Express device to
release data . However , an adversary with physical access to
the data link between the first and the second device may
compromise the secrecy , data confidentiality , and integrity
of the data after the other device successfully authenticates
to the PCI Express hardware device , and thus the data
released over the link by the PCI Express hardware device
may comprise unprotected data . Moreover , a password
based scheme may prove to be an inadequate security
mechanism .

[0050] In various embodiments of the present disclosure ,
device 502A enforces PCI Express device data release
control implementing a policy based on both PCI Express
data link protection and authentication . In some embodi
ments , the PCI Express data link protection may include one
or more of confidentiality , replay , and integrity protection ;
and the authentication may include one or more of immu
table component authentication , mutable component authen
tication , and user authentication . A data release control
determination may be based on both the authentication
results and the state of the data link protection . In an
embodiment , if authentication fails or if the PCI Express link
protection (e . g . , confidentiality , integrity , replay protection
or combination of these) is disabled , has encountered an
error , or has been disrupted , the data 508 stored on the first
PCI Express device 502A is not released on the data link 506
outside of the first device ' s physical boundary . In some
embodiments , re - authentication and re - enablement of the
data link protection must occur when either the first or the
second device transitions its power state in a manner that
disrupts the link protection or when the cryptographic mate
rial that is used to protect the link has been lost on either
device .
10051] Upon a detection that data 508 is not to be released
over the link 506 outside of the device 502 A due to authen
tication failure or link protection anomaly , the device 502A
may either maintain the communication link 506 with the
second device 502B and report the policy decision made on
the first device (e . g . , by causing one or more architectural
registers of or associated with the first device 502A to be
written to) or tear down the communication link with the
second device . Responsive to determining that access to the
data 508 is denied , the second device 502B may reinitiate
the authentication and reestablish the PCI Express link
protection with the first device 502A and again request
release of data 508 .
[0052] In an example usage scenario , a hardware device
502B embedded within or coupled to a host computing
device 504 may write data 508 (e . g . , secret information) into
device 502A (e . g . , a PCI Express encrypted storage device)
that can be retrieved later . The device 502B first authenti
cates itself to the storage device 502A , including authenti
cation of of the device 502B ' s operating environment (e . g . ,

US 2019 / 0220617 A1 Jul . 18 , 2019

immutable component information 512 and / or mutable com
ponent information 514) and user credentials 516 . The two
devices 502A and 502B use the authentication results to set
up PCI Express link protection , such that the data link 506
between the devices is considered private and protected . The
device 502B can securely read the status of the link 506 and
if that indicates that the security level is appropriate , it may
then store secret information onto the device 502A . If and
when the data link protection is disabled or disrupted , the
device 502B shall re - authenticate its operating environment
and re - enable the link protection , such that the device 502A
may ensure that the secret information stored in data 508 is
released to the same entity (e . g . , user of device 502B) that
stored the information and no adversary can compromise the
confidentiality and integrity when the secret information
travels on the link 506 .
[0053] Various embodiments may offer certain technical
advantages , such as strong mitigation against physical
adversaries . In addition , various embodiments may improve
privacy protections on various computing platforms by
binding release of protected data to the security level of the
PCIe link over which that data will be transported .
[0054] The first device 502A may be any suitable com
puting device to store protected data 508 , authenticate a
second computing device 502B , and communicate with the
second computing device 502B over a secure link 506 . As
examples , first device 502A may comprise an encrypted
storage device , a SmartNIC , an artificial intelligence (AI)
accelerator , a graphics processing unit accelerator , or other
suitable computing device .
[0055] The second device 502B may be any suitable
computing device to request protected data 508 , authenticate
with a first computing device 502A , and communicate with
the first computing device 502A over a secure link 506 . For
example , the second device 502B may be a host computing
machine 504 , a device on a host computing machine 504 , a
device coupled to device 502A through host computing
machine 504 , or other suitable device .
[0056] In various embodiments , device 502A and device
502B may communicate with each other in a manner com
pliant with a PCI express protocol , whether a current or
future protocol . In other embodiments , device 502A and
device 502B may be compliant with other suitable protocol
that provides protection against physical link attacks . In
some embodiments , the first and second devices may be two
accelerators connected via the (e . g . , PCIe) link or two host
computing devices connected by the (e . g . , PCIe) link .
[0057] Data 508 may comprise any suitable data . In vari
ous embodiments data 508 may include data of privacy
concern , such as control or management data , or any general
data that a user of the first device may store or provision on
the first hardware device 502A . In various embodiments , all
data persistently stored by the first device 502A (excluding
particular types of data , e . g . , data which must be shared
across an unprotected link , such as data used to setup the
protected link) may be deemed protected data and subject to
access controls described herein . In one embodiment , all
data stored by the device 502A on a particular memory
device or drive of device 502A may be protected data . In
another embodiment , data may be selectively tagged as
protected data or stored in a location that stores protected
data (e . g . , based on an indication by the second device 502B
that such data should be protected) and the non - protected

data is not subject to the access controls described herein (or
subject to a lesser degree of access control than the protected
data) .
10058] As described above , multiple aspects of device
502B may be authenticated by the first device 502A prior to
allowing access to data 508 . For example , one or more of
immutable component information 512 , mutable component
information 514 , or user credentials 516 of the second
device 502B may be authenticated by the first device 502A
[0059] Immutable component information 512 may
include information about hardware components of device
502B , such as a Device ID , a Vendor ID (e . g . , an ID of the
manufacturer of the device) , an ID of an organization that
owns or has certified the device 502B or a component of
device 502B , an ID of a hardware component (e . g . , micro
controller , logic circuit , memory , programmable fuse , etc .)
of device 502B , or other suitable information regarding a
hardware component of device 502B . In some embodiments ,
the immutable components information may indicate one or
more capabilities of the hardware of device 502B , such as
cryptographic capabilities for data communicated over the
link .
10060] Mutable components information 514 may include
information about software and firmware installed on the
device 502B . For example , such information may include a
version number or vendor of software or firmware (e . g . ,
firmware of a microcontroller) of device 502B . In particular
embodiments , mutable components information 514 may
include identifiers of static configuration data stored in
non - volatile or volatile memory , bit streams for field pro
grammable gate arrays (FPGAs) , or any software running on
the hardware device . In some embodiments , the mutable
components information 514 may indicate one or more
capabilities of the software of device 502B , such as cryp
tographic capabilities for data communicated over the link .
[0061] User credentials may include information to
authenticate a user of the device 502B or a computing
machine requesting the protected data through device 502B ,
such as a knowledge factor (e . g . , username , password , pin
number , etc .) , possession factor (e . g . , one - time password
tokens or information received or otherwise derived from a
key fob or other physical object) , or biometric information
(e . g . , a fingerprint , facial image , etc .) .
[0062] FIG . 6 illustrates a block diagram of a first device
502A in accordance with certain embodiments . Device
502A includes data 508 , access control engine 510 , authen
tication module 602 , link protection module 604 , and power
management module 606 .
[0063] Authentication module 602 is to perform authen
tication functions . For example , authentication module 602
may access authentication information of the second device
502B and determine whether the authentication information
of the second device matches expected authentication infor
mation . Authentication module 602 may perform a multi
phase authentication process , where multiple types of infor
mation associated with the second device is to be
authenticated by the authentication module 602 before the
device 502B is considered to have passed authentication .
For example , the authentication module 602 may authenti
cate one or more of immutable component information 512 ,
mutable component information 514 , or user credentials
516 , and if any of these authentications fail , may consider
the authentication to have failed .

US 2019 / 0220617 A1 Jul . 18 , 2019

[0064] In various embodiments , the authentication module
602 may write the results of each authentication and / or the
final authentication result (e . g . , whether all types of authen
tication information tested passed) to one or more registers
accessible to policy module 608 or may otherwise notify
policy module 608 of the results of the authentication
process .
[0065] Link protection module 604 may perform functions
to set up physical link protection over link 506 (such as the
functions described below) . Various protections may be set
up over the link independently or mutually . For example , a
first link protection procedure may establish confidentiality
protection for data transmitted over the link 506 between the
first device 502A and the second device 502B , a second link
protection procedure may establish replay attack protection
for data transmitted over the link 506 , and a third link
protection procedure may establish integrity protection for
data transmitted over the link 506 . Integrity protection
provides protection against the unauthorized modification of
data within transmissions prior to reception . Replay attack
protection protects against attacks in which a valid trans
mission across link 506 is captured and then maliciously
repeated . Confidentiality protection provides protection
(e . g . , through encryption) against an unauthorized party
obtaining access to private information conveyed by a
transmission .
[0066] In one embodiment , in order to protect the traffic
flowing through PCIe links against confidentiality and integ
rity attacks , an authenticated encryption scheme based on
Advanced Encryption Standard operating in Galois / Counter
Mode (AES - GCM) with 256 - bit keys to encrypt / decrypt
data on the link is used . In other embodiments , endpoints
(e . g . , PCIe Endpoints or other computing devices) may
support additional key sizes (for example AES - 128) or other
suitable crypto - algorithms (e . g . , stream ciphers suitable for
encrypting communication channels including block ciphers
operating in counter mode) . Although various embodiments
herein are discussed with reference to AES - GCM , such
embodiments may be implemented using any suitable
crypto - algorithms . In such cases , the endpoints may provide
flexible and agile cryptography mechanisms including the
ability to enumerate the cryptographic capabilities of the
endpoints and may provide authenticated mechanisms to
determine the status of the cryptographic algorithm selected .
[0067] When physical protection over a link is desired , a
key exchange may be performed over the link by the
endpoint devices . In one embodiment , key exchange is
performed through logical PCIe Protection Management
Entities . In some embodiments , this may involve utilization
of an in - band register set (e . g . , mailbox) mechanism for
authentication & measurement procedures . In some embodi -
ments , before the key exchange is performed , authentication
of both immutable characteristics of the endpoint devices
and mutable characteristics may be performed . Additionally ,
during this initialization process , support for encryption at
both Upstream and Downstream Ports may be discovered . In
one embodiment , the key exchange is performed as part of
the authentication flow . In another embodiment , the key
exchange is performed as a separate flow . Alternatively , an
in - band messaging mechanism may be used , provided there
is a way to securely establish the correspondence between
the specific link and the out - of - band connection . Key
exchange can also be done through hardware - driven means ,
for example by using PCIe Messages (e . g . , Management

Component Transport Protocol (MCTP) tunneling messages
or messages with new formats designed specifically for this
purpose) . In this case , the key exchange may be triggered
and managed by the setup / management mechanisms dis
cussed below , which , in various embodiments , may operate
partly or completely independently of software running on
the endpoints . In various embodiments , the key exchange
may be performed in any suitable implementation - specific
manner . In a particular embodiment , the key exchange may
result in a shared secret being established between the
endpoints which will be used to create a key chain com
prising multiple derived keys . The key exchange may pro
vide confidentiality for the link as the data sent over the link
may be encrypted based on the key (s) setup during the key
exchange .
[0068] The setup of a physically protected link would start
with a trigger , e . g . , via a new control bit (" e . g . , Link
Encryption On ") added to the Downstream Port . For
example , a bit to indicate this trigger may be included in the
Link Control 3 Register of the Secondary PCI Express
Extended Capability Structure . In various embodiments , any
of the reserved (RsvdP) bits (such as bit 2 as indicated in
FIG . 7 - 69) of the Link Control 3 Register may be used as the
control bit to trigger link protection . In other embodiments ,
any suitable message passed between the endpoints may
trigger the configuration of a physically protected link .
[0069] Before triggering the setup , optional parameters
such as the activation and configuration of the integrity
protection may be communicated between link partners . For
example , the size of an integrity check value (ICV) and , if
the ICVs are not applied on a per TLP basis (i . e . , if a single
ICV is computed over multiple TLPs) , the frequency / win
dow of ICV application may be communicated . The ICV
may provide integrity protection for the link .
[0070] Once triggered , the Downstream Port sends an
" Initiate Secure Link ” Message to the Upstream Port , and all
TLP link traffic is blocked (e . g . , by hardware) in both
directions until the protected link has been established . If the
key exchange has not already been performed at the time of
the triggering , then the key exchange may be performed at
this time . In various embodiments , the information associ
ated with the key exchange may be communicated through
a message - based mechanism . For example , a Message
Request with data payload (MsgD) as defined in PCI
Express may be used to carry the information associated
with the key exchange in its payload . In various embodi
ments , the key exchange may be performed without soft
ware interaction .
10071] Since run - time key exchange may be required
depending on the implementation , in various embodiments
it is desirable to support this message - based mechanism and
to use the same mechanism for both the initial key exchange
and all subsequent key exchanges . Once the initial key
exchange has been completed , each Port transmits a " Secure
Link Established ” message to the other Port . This message
may itself be encrypted (along with all subsequent link
traffic) . TLP traffic may then be unblocked and normal
operation of the (now protected) link begins (or resumes if
this process was performed to reestablish protection) . The
link key management protocols described herein may also
be used for integrity protected synchronization of any pro
tocol parameters , such as counters (e . g . , initialization vec
tors used as part of the encryption scheme , such as in
AES - GCM or other stream cipher suitable for protecting the

US 2019 / 0220617 A1 Jul . 18 , 2019

link) , other operational parameters identified herein , or other
suitable protocol parameters . In various embodiments , coun
ters that advance in a predetermined manner that are used in
associated with a particular cryptographic key) to encrypt
and decrypt messages sent across the link may provide
protection against replay attacks , as the same counter is not
allowed to be used not be used twice and detection of a
repeated counter value would indicate suspicious activity .
Other suitable replay attack protections are contemplated
herein .
[0072] If an attempt to establish an encrypted link fails
(including , e . g . , detection of any unexpected behavior
observed in the handshake) the link is forced to a Disabled
state until the trigger bit has been cleared . In an embodiment ,
clearing the “ Link Encryption On ” bit will set the “ Link
Disable ” bit , and the link is constrained to remain in the
Disabled state until the “ Link Disable ” bit is cleared to avoid
attacks in which an adversary turns off link security . Addi
tional error status information (e . g . , describing an error
encountered in the setup of the protected link) may be
provided . In one example , such error status information may
be included in the same mechanism as the trigger bit (e . g . ,
the Link Status 3 Register) .
[0073] Link protection module 604 may monitor the link
protection state of link 506 and detect changes in the
protection state of the link . In one embodiment , link pro
tection module 506 may detect that link protection is dis
abled based on a detection of a link error associated with the
authentication and verification of a packet sent over the link .
For example , link protection module 604 may detect that
link protection has been disabled based on a notification that
a checksum (e . g . , an ICV) of a message transmitted over the
link is invalid (e . g . , does not match a checksum calculated
based on contents of the received message) . In various
embodiments , link protection module 604 may determine
that link protection is disabled based on a detection of a link
down or other link error (e . g . , a link security fail error)
associated with the communication protocol used over the
link (e . g . , PCIe protocol) .
[0074] In various embodiments , the link protection mod
ule 604 may write the results of link protection procedures
to one or more registers accessible to policy module 608 or
may otherwise notify policy module 608 of the results of the
link protection process . In various embodiments , the results
may indicate which protections were set up on the link . For
example , the results may indicate that confidentiality pro
tection was established , but integrity and replay attack
protections were not able to be established . As another
example , the results may indicate that confidentiality , replay
attack , and integrity protections were each established . In
various embodiments , if the status of the link protection
changes , the link protection module 604 may change the
value of one or more registers accessible to policy module
608 or may otherwise notify policy module 608 of the
change . For example , if one or more of the confidentiality
protection , replay attack protection , or integrity protection is
lost or otherwise compromised , the link protection module
604 may notify policy module 608 .
[0075] In various embodiments , one or more registers may
store values indicative of power state of the link , which
information has been authenticated , or which protections are
established on the link and such registers may be protected
against unauthorized modification . For example , each of the
registers may be configured so that only the device 502A or

one or more components thereof (e . g . , module 602 , 604 ,
606 , or 608) may edit such registers .
[0076] The power management module 606 may monitor
a power state of link 506 and report the state (or changes to
the state) to policy module 608 . For example , when the
power management module 606 determines that the link has
transitioned from a normal state in which adequate protec
tions can be maintained over the link 506 to a lower power
state (e . g . , in which one or more protections for the link are
compromised) , the power management module 606 may
write an indication of the change of the link power state to
one or more registers accessible to policy module 608 or
may otherwise notify policy module 608 of the change in
link power state . In some embodiments , with reference to
the PCI Express protocol , such lower power states may
include the D3 cold , L2 , and L3 states , while normal / higher
power states may include DO , D1 , D2 , and D3 hot states . In
various embodiments , if the link transitions back to the
normal state , the power management module 606 may
inform the policy module accordingly . In some embodi
ments , one or more of the link setup procedures may be
performed again to establish adequate protections before
access to data 508 is again permitted .
[0077] In the embodiment depicted , policy module 608 is
coupled to authentication module 602 , link protection mod
ule 604 , and power management module 606 . Policy module
608 analyzes information received from one or more of
these modules to determine an authentication state of second
device 502B and a link protection state of the link 506 . In a
particular embodiment , policy module 608 may determine
whether the authentication state is sufficient to allow access
to the data 508 and whether the link protection state is
sufficient to allow access to the data 508 . In some embodi
ments , the indication of whether the authentication state is
sufficient is a binary indication and is positive only if all
authentication requirements are met . Similarly , in some
embodiments , the indication of whether the link protection
state is sufficient is a binary indication and is positive only
if each link protection type of a set of link protection types
(e . g . , confidentiality , replay attack , integrity) are currently in
place .

[0078] The policy module 608 may report its decision on
whether to allow access across the link 506 to data 508 in
any suitable manner . For example , the policy module 608
may update a register with a value that indicates whether or
not access to data 508 should be allowed . For example ,
architectural registers of the first device (e . g . , registers in the
PCI config space or MMIO space of the device) or any
device - specific mechanisms may be used to report the
decision .
[0079] In various embodiments , the indication of whether
data 508 may be accessed may be reported (or otherwise
made accessible) to any suitable entity , such as host com
puting device 504 , device 502B , or request processor 610 . In
various embodiments , when the policy module 608 deter
mines that access should not be allowed to data 508 , the
policy module 608 may initiate actions to restore authenti
cation of device 502B and / or protection of link 506 . For
example , policy module 608 may cause a message to be sent
to device 502B indicating that device 502B should re
authenticate with device 502A . As another example , policy
module 608 may cause link set up procedures to be repeated
so as to restore protections on link 506 .

US 2019 / 0220617 A1 Jul . 18 , 2019

[0080] Request processor 610 receives requests for data
508 over link 506 and controls access to data 508 based on
an indication from policy module 608 as to whether access
should be granted . If the policy module 608 allows access ,
request processor 610 may retrieve the requested data and
send the data over the protected link 506 . If the policy
module 608 does not allow access , request processor 610
may ignore the request , may respond with an error indicating
that access is not allowed , or may take other appropriate
action .
10081] FIG . 7 illustrates a system 700 for communicating
data (e . g . , 508) over a protected link 506 in accordance with
certain embodiments . System 700 includes and endpoint
computing device 702 and an endpoint computing device
704 coupled via link 706 . Device 702 may have any suitable
characteristics of device 502A , device 704 may have any
suitable characteristics of device 502B , and link 706 may
have any suitable characteristics of link 506 .
[0082] Each endpoint device includes a security engine
712 , a protocol security state machine 718 , configuration
registers 720 , encryption engine 722 , packet engine 724 ,
processor 726 , and memory 728 (though each component is
not necessarily the same at each endpoint) . Endpoint device
702 includes link firmware 714 and endpoint 704 includes
link driver 716 . In some embodiments , endpoint 704 may be
a host computing device , such as an SoC or other processing
device .
[0083] In order to set up protection on the link 706 , the
endpoints 702 and 704 may , through their respective security
engines 712 , exchange various information 708 , such as
authentication data , cryptographic key information , and
other configuration parameters . Once the link has been
protected , packets may be generated by packet engines 724
(which in some embodiments may implement some or all of
the protocol layers described herein) , encrypted by encryp
tion engines 722 to generate encrypted link traffic 710 which
is then communicated between the endpoint 702 and end
point 704 .
[0084] In a particular embodiment , security engine 712A
implements authentication module 602 , link protection mod
ule 604 , and access control engine 510 to protect data stored
in memory 728 A from transmission over an unprotected
link .
[0085] Protocol layer logic may be provided (e . g . , in one
or more ports of the endpoint devices) to implement a link
and stack of a particular protocol (e . g . , PCIe , Gen - ZTM , UPI ,
Cache Coherent Interconnect for Accelerators (CCIXTM) ,
Advanced Micro DeviceTM ' s (AMDTM) InfinityTM , Common
Communication Interface (CCI) , Qualcomm TM ' s CentrigTM '
etc .) over link 706 .
[0086] In some examples , the device 704 may be inte
grated with a host computing device , and / or the device may
have its own computing capability with local firmware !
software independent of the host , and / or a single processor
may be operating on behalf of a complex device that is
exposed through multiple functions (e . g . , a switch) and / or
even multiple logical devices (e . g . a switch with one or more
additional devices logically appearing below the switch ,
among other example implementations) .
[0087] Encryption engines 722A and 722B may include
hardware circuitry , firmware , and / or software to perform
cryptographic operations and other tasks relating to man
agement and use of certificates and corresponding crypto -
graphic keys (e . g . , the decryption and encryption of signed

manifest , verification of hashes , and other cryptographic
tasks) in connection with authentication and verification
tasks performed in an example device authentication archi
tecture .
[0088] In some implementations , such as in the example
of a PCIe device , a set of registers (e . g . , 720) may be
provided on each of the devices and the registers may be
populated and read (e . g . , using an authentication engine) to
allow the communication of messages or instructions with
the other device in an authentication architecture . In one
example , the registers 720 may include registers defined and
provisioned on the devices as extended capability registers
under PCIe . For instance , the registers 720 may include
registers to indicate characteristics of the respective device ,
including its model , vendor , the authentication protocols it
supports , the cryptographic technologies it supports , to
indicate its certificate authority (e . g . , associated with a
certificate and private key) , and other features of the device .
[0089] FIG . 8 illustrates a flow for device authentication in
accordance with certain embodiments . A second device 805
(which may have any characteristics of second device 502B
or 704) , such as a PCIe device , may be connected to a first
device 810 (which may have any characteristics of first
device 502A or 704) (e . g . , via a port) . Before granting access
to certain host resources (e . g . , data 508) , the first device may
first utilize an authentication architecture to ensure that the
second device is of a particular type , from a particular
manufacture , has particular characteristics , is certified ,
endorsed , or owned by a particular organization , or other
suitable checks before applying certain policies to the sec
ond device 805 ' s interaction with the first device 810 . For
instance , the first device 810 can query the second device
805 ' s firmware version through a firmware measurement .
The first device 810 can also query a second device ' s
hardware and firmware through device authentication 520 .
The second device 805 , in some implementations , may
likewise query the first device ' s identity (e . g . , through
authentication 820) . In some cases , mutual authentication
830 may be achieved through device authentications 820
and 825 . After verifying identity (and capabilities , when
desired) , the devices can exchange secrets (e . g . , at 835) for
link encryption or other security purposes through key
exchange . As illustrated in the example of FIG . 8 , device
authentication may be utilized to allow trust decisions to be
made between devices via an interconnect (e . g . , a PCIe
compliant interconnect) . In some implementations , device
firmware measurement may be utilized in connection with
device authentication to enable the trustworthiness of the
device authentication .
[0090] In some implementations , device authentication
(e . g . , 820) may borrow from existing authentication
schemes , protocols , and paradigms . In one example , a PCIe
device authentication scheme may borrow from and at least
partially follow the authentication architecture of a different
interconnect protocol . For instance , at least a portion of the
authentication scheme set forth in the Universal Serial Bus
(USB) Authentication Specification may be utilized during
authentication of the PCIe device (over PCIe registers and
links) . For instance , principles and flows defined in the
Authentication Architecture , Authentication Protocol and
Authentication Messages of the USB Authentication Speci
fication may be used . Leveraging existing authentication
schemes (e . g . , of other interconnects) may be beneficial , for
instance , because the same software implementation can be

US 2019 / 0220617 A1 Jul . 18 , 2019

used for both authentication in not only the intended pro -
tocol , but other protocols (e . g . , both USB and PCIe Device
Authentication) , the same silicon hardware implementation
block can be used for authentication of multiple protocols
(e . g . , for both USB and PCIe devices) , among other example
benefits .
[0091] FIG . 9 illustrates a flow for data release control
based on authentication and link protection in accordance
with certain embodiments . The flow of FIG . 9 may be
executed by a computing device , such as 502A 702 , or other
suitable computing device .
[0092] 902 includes storing first data . 904 includes receiv
ing a request for the first data from a communication device
(e . g . , any suitable computing device operable to communi
cate data with another computing device) over a link estab
lished with a communication device . 906 includes control
ling access to the first data to the communication device
based on an authentication state of the communication
device and a protection state of the link .
10093] . Some of the blocks illustrated in FIG . 9 may be
repeated , combined , modified or deleted where appropriate ,
and additional blocks may also be added to the flowchart .
Additionally , blocks may be performed in any suitable order
without departing from the scope of particular embodiments .
10094] While some of the embodiments discussed herein
were described with reference to PCIe or PCIe - based pro
tocols , it should be appreciated that similar , corresponding
enhancements may be made to other interconnect protocols ,
such OpenCAPITM , Gen - ZTM , UPI , Universal Serial Bus ,
(USB) , Cache Coherent Interconnect for Accelerators
(CCIXTM) , Advanced Micro DeviceTM ' s (AMDTM) Infin
ityTM , Common Communication Interface (CCI) , or Qual
commTM ' s CentrigTM interconnect , among others .
[0095] Note that the apparatuses , methods , and systems
described above may be implemented in any electronic
device or system as aforementioned . As specific illustra
tions , the figures below provide exemplary systems for
utilizing the invention as described herein . As the systems
below are described in more detail , a number of different
interconnects are disclosed , described , and revisited from
the discussion above . And as is readily apparent , the
advances described above may be applied to any of those
interconnects , fabrics , or architectures . For instance , first
and second computing devices may be implemented , which
are equipped with functionality to implement authentication ,
link protection , and data access control architectures as
discussed in the examples above , in any one of a variety of
computing architectures (e . g . , using any one of a variety of
different interconnects or fabrics) . For instance , the devices
may communicate within a personal computing system (e . g . ,
implemented in a laptop , desktop , mobile , smartphone ,
Internet of Things (IoT) device , smart appliance , gaming
console , media console , etc .) . In another example , the
devices may communicate within a server computing system
(e . g . , a rack server , blade server , tower server , rack scale
server architecture or other disaggregated server architec
ture) , among other examples .
[0096] Referring to FIG . 10 , an embodiment of a block
diagram for a computing system including a multicore
processor is depicted . Processor 1000 includes any proces
sor or processing device , such as a microprocessor , an
embedded processor , a digital signal processor (DSP) , a
network processor , a handheld processor , an application
processor , a co - processor , a system on a chip (SOC) , or other

device to execute code . Processor 1000 , in one embodiment ,
includes at least two cores — core 1001 and 1002 , which may
include asymmetric cores or symmetric cores (the illustrated
embodiment) . However , processor 1000 may include any
number of processing elements that may be symmetric or
asymmetric .
10097] In one embodiment , a processing element refers to
hardware or logic to support a software thread . Examples of
hardware processing elements include : a thread unit , a
thread slot , a thread , a process unit , a context , a context unit ,
a logical processor , a hardware thread , a core , and / or any
other element , which is capable of holding a state for a
processor , such as an execution state or architectural state . In
other words , a processing element , in one embodiment ,
refers to any hardware capable of being independently
associated with code , such as a software thread , operating
system , application , or other code . A physical processor (or
processor socket) typically refers to an integrated circuit ,
which potentially includes any number of other processing
elements , such as cores or hardware threads .
[0098] A core often refers to logic located on an integrated
circuit capable of maintaining an independent architectural
state , wherein each independently maintained architectural
state is associated with at least some dedicated execution
resources . In contrast to cores , a hardware thread typically
refers to any logic located on an integrated circuit capable of
maintaining an independent architectural state , wherein the
independently maintained architectural states share access to
execution resources . As can be seen , when certain resources
are shared and others are dedicated to an architectural state ,
the line between the nomenclature of a hardware thread and
core overlaps . Yet often , a core and a hardware thread are
viewed by an operating system as individual logical proces
sors , where the operating system is able to individually
schedule operations on each logical processor .
50099] Physical processor 1000 , as illustrated in FIG . 10 ,
includes two cores core 1001 and 1002 . Here , core 1001
and 1002 are considered symmetric cores , e . g . cores with the
same configurations , functional units , and / or logic . In
another embodiment , core 1001 includes an out - of - order
processor core , while core 1002 includes an in - order pro
cessor core . However , cores 1001 and 1002 may be indi
vidually selected from any type of core , such as a native
core , a software managed core , a core adapted to execute a
native Instruction Set Architecture (ISA) , a core adapted to
execute a translated Instruction Set Architecture (ISA) , a
co - designed core , or other known core . In a heterogeneous
core environment (e . g . asymmetric cores) , some form of
translation , such a binary translation , may be utilized to
schedule or execute code on one or both cores . Yet to further
the discussion , the functional units illustrated in core 1001
are described in further detail below , as the units in core
1002 operate in a similar manner in the depicted embodi
ment .
[0100] As depicted , core 1001 includes two hardware
threads 1001a and 1001b , which may also be referred to as
hardware thread slots 1001a and 10016 . Therefore , software
entities , such as an operating system , in one embodiment
potentially view processor 1000 as four separate processors ,
e . g . , four logical processors or processing elements capable
of executing four software threads concurrently . As alluded
to above , a first thread is associated with architecture state
registers 1001a , a second thread is associated with architec
ture state registers 1001b , a third thread may be associated

US 2019 / 0220617 A1 Jul . 18 , 2019

with architecture state registers 1002a , and a fourth thread
may be associated with architecture state registers 1002b .
Here , each of the architecture state registers (1001a , 1001b ,
1002a , and 1002b) may be referred to as processing ele
ments , thread slots , or thread units , as described above . As
illustrated , architecture state registers 1001a are replicated
in architecture state registers 1001b , so individual architec
ture states / contexts are capable of being stored for logical
processor 1001a and logical processor 1001b . In core 1001 ,
other smaller resources , such as instruction pointers and
renaming logic in allocator and renamer block 1030 may
also be replicated for threads 1001a and 1001b . Some
resources , such as re - order buffers in reorder / retirement unit
1035 , ILTB 1020 , load / store buffers , and queues may be
shared through partitioning . Other resources , such as general
purpose internal registers , page - table base register (s) , low
level data - cache and data - TLB 1015 , execution unit (s) 1040 ,
and portions of out - of - order unit 1035 are potentially fully
shared .
[0101] Processor 1000 often includes other resources ,
which may be fully shared , shared through partitioning , or
dedicated by / to processing elements . In FIG . 10 , an embodi
ment of a purely exemplary processor with illustrative
logical units / resources of a processor is illustrated . Note that
a processor may include , or omit , any of these functional
units , as well as include any other known functional units ,
logic , or firmware not depicted . As illustrated , core 1001
includes a simplified , representative out - of - order (000)
processor core . But an in - order processor may be utilized in
different embodiments . The 000 core includes a branch
target buffer 1020 to predict branches to be executed / taken
and an instruction - translation buffer (I - TLB) 1020 to store
address translation entries for instructions .
[0102] Core 1001 further includes decode module 1025
coupled to fetch unit 1020 to decode fetched elements . Fetch
logic , in one embodiment , includes individual sequencers
associated with thread slots 1001a , 1001b , respectively .
Usually core 1001 is associated with a first ISA , which
defines / specifies instructions executable on processor 1000 .
Often machine code instructions that are part of the first ISA
include a portion of the instruction (referred to as an
opcode) , which references / specifies an instruction or opera
tion to be performed . Decode logic 1025 includes circuitry
that recognizes these instructions from their opcodes and
passes the decoded instructions on in the pipeline for pro
cessing as defined by the first ISA . For example , as dis
cussed in more detail below decoders 1025 , in one embodi
ment , include logic designed or adapted to recognize
specific instructions , such as transactional instruction . As a
result of the recognition by decoders 1025 , the architecture
or core 1001 takes specific , predefined actions to perform
tasks associated with the appropriate instruction . It is impor
tant to note that any of the tasks , blocks , operations , and
methods described herein may be performed in response to
a single or multiple instructions , some of which may be new
or old instructions . Note decoders 1026 , in one embodiment ,
recognize the same ISA (or a subset thereof) . Alternatively ,
in a heterogeneous core environment , decoders 1026 recog
nize a second ISA (either a subset of the first ISAor a distinct
ISA) .
[0103] In one example , allocator and renamer block 1030
includes an allocator to reserve resources , such as register
files to store instruction processing results . However , threads
1001a and 1001b are potentially capable of out - of - order

execution , where allocator and renamer block 1030 also
reserves other resources , such as reorder buffers to track
instruction results . Unit 1030 may also include a register
renamer to rename program / instruction reference registers
to other registers internal to processor 1000 . Reorder / retire
ment unit 1035 includes components , such as the reorder
buffers mentioned above , load buffers , and store buffers , to
support out - of - order execution and later in - order retirement
of instructions executed out - of - order .
[0104] Scheduler and execution unit (s) block 1040 , in one
embodiment , includes a scheduler unit to schedule instruc
tions / operation on execution units . For example , a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit . Register
files associated with the execution units are also included to
store information instruction processing results . Exemplary
execution units include a floating point execution unit , an
integer execution unit , a jump execution unit , a load execu
tion unit , a store execution unit , and other known execution
units .
[0105] Lower level data cache and data translation buffer
(D - TLB) 1050 are coupled to execution unit (s) 1040 . The
data cache is to store recently used / operated on elements ,
such as data operands , which are potentially held in memory
coherency states . The D - TLB is to store recent virtual / linear
to physical address translations . As a specific example , a
processor may include a page table structure to break
physical memory into a plurality of virtual pages .
[0106] Here , cores 1001 and 1002 share access to higher
level or further - out cache , such as a second level cache
associated with on - chip interface 1010 . Note that higher
level or further - out refers to cache levels increasing or
getting further way from the execution unit (s) . In one
embodiment , higher - level cache is a last - level data cache
last cache in the memory hierarchy on processor 1000
such as a second or third level data cache . However , higher
level cache is not so limited , as it may be associated with or
include an instruction cache . A trace cache - a type of
instruction cache _ instead may be coupled after decoder
1025 to store recently decoded traces . Here , an instruction
potentially refers to a macro - instruction (e . g . a general
instruction recognized by the decoders) , which may decode
into a number of micro - instructions (micro - operations) .
[0107] In the depicted configuration , processor 1000 also
includes on - chip interface module 1010 . Historically , a
memory controller , which is described in more detail below ,
has been included in a computing system external to pro
cessor 1000 . In this scenario , on - chip interface 1010 is to
communicate with devices external to processor 1000 , such
as system memory 1075 , a chipset (often including a
memory controller hub to connect to memory 1075 and an
1 / O controller hub to connect peripheral devices) , a memory
controller hub , a northbridge , or other integrated circuit . And
in this scenario , bus 1005 may include any known intercon
nect , such as multi - drop bus , a point - to - point interconnect ,
a serial interconnect , a parallel bus , a coherent (e . g . cache
coherent) bus , a layered protocol architecture , a differential
bus , and a GTL bus .
[0108] Memory 1075 may be dedicated to processor 1000
or shared with other devices in a system . Common examples
of types of memory 1075 include DRAM , SRAM , non
volatile memory (NV memory) , and other known storage
devices . Note that device 1080 may include a graphic
accelerator , processor or card coupled to a memory control

US 2019 / 0220617 A1 Jul . 18 , 2019

ler hub , data storage coupled to an I / O controller hub , a
wireless transceiver , a flash device , an audio controller , a
network controller , or other known device .
10109] Recently however , as more logic and devices are
being integrated on a single die , such as SOC , each of these
devices may be incorporated on processor 1000 . For
example in one embodiment , a memory controller hub is on
the same package and / or die with processor 1000 . Here , a
portion of the core (an on - core portion) 1010 includes one or
more controller (s) for interfacing with other devices such as
memory 1075 or a graphics device 1080 . The configuration
including an interconnect and controllers for interfacing
with such devices is often referred to as an on - core (or
un - core configuration) . As an example , on - chip interface
1010 includes a ring interconnect for on - chip communica
tion and a high - speed serial point - to - point link 1005 for
off - chip communication . Yet , in the SOC environment , even
more devices , such as the network interface , co - processors ,
memory 1075 , graphics processor 1080 , and any other
known computer devices / interface may be integrated on a
single die or integrated circuit to provide small form factor
with high functionality and low power consumption .
[0110] In one embodiment , processor 1000 is capable of
executing a compiler , optimization , and / or translator code
1077 to compile , translate , and / or optimize application code
1076 to support the apparatus and methods described herein
or to interface therewith . A compiler often includes a pro
gram or set of programs to translate source text / code into
target text / code . Usually , compilation of program / applica
tion code with a compiler is done in multiple phases and
passes to transform hi - level programming language code
into low - level machine or assembly language code . Yet ,
single pass compilers may still be utilized for simple com
pilation . A compiler may utilize any known compilation
techniques and perform any known compiler operations ,
such as lexical analysis , preprocessing , parsing , semantic
analysis , code generation , code transformation , and code
optimization .
[0111] Larger compilers often include multiple phases , but
most often these phases are included within two general
phases : (1) a front - end , e . g . generally where syntactic pro
cessing , semantic processing , and some transformation / op
timization may take place , and (2) a back - end , e . g . generally
where analysis , transformations , optimizations , and code
generation takes place . Some compilers refer to a middle ,
which illustrates the blurring of delineation between a
front - end and back end of a compiler . As a result , reference
to insertion , association , generation , or other operation of a
compiler may take place in any of the aforementioned
phases or passes , as well as any other known phases or
passes of a compiler . As an illustrative example , a compiler
potentially inserts operations , calls , functions , etc . in one or
more phases of compilation , such as insertion of calls /
operations in a front - end phase of compilation and then
transformation of the calls / operations into lower - level code
during a transformation phase . Note that during dynamic
compilation , compiler code or dynamic optimization code
may insert such operations / calls , as well as optimize the
code for execution during runtime . As a specific illustrative
example , binary code (already compiled code) may be
dynamically optimized during runtime . Here , the program
code may include the dynamic optimization code , the binary
code , or a combination thereof .

(0112] Similar to a compiler , a translator , such as a binary
translator , translates code either statically or dynamically to
optimize and / or translate code . Therefore , reference to
execution of code , application code , program code , or other
software environment may refer to : (1) execution of a
compiler program (s) , optimization code optimizer , or trans
lator either dynamically or statically , to compile program
code , to maintain software structures , to perform other
operations , to optimize code , or to translate code ; (2) execu
tion of main program code including operations / calls , such
as application code that has been optimized / compiled ; (3)
execution of other program code , such as libraries , associ
ated with the main program code to maintain software
structures , to perform other software related operations , or to
optimize code ; or (4) a combination thereof .
(0113] Referring now to FIG . 11 , shown is a block dia
gram of another system 1100 in accordance with an embodi
ment of the present invention . As shown in FIG . 11 , multi
processor system 1100 is a point - to - point interconnect
system , and includes a first processor 1170 and a second
processor 1180 coupled via a point - to - point interconnect
1150 . Each of processors 1170 and 1180 may be some
version of a processor . In one embodiment , 1152 and 1154
are part of a serial , point - to - point coherent interconnect
fabric , such as a high - performance architecture . As a result ,
the invention may be implemented within the QPI architec
ture .
[0114] While shown with only two processors 1170 , 1180 ,
it is to be understood that the scope of the present invention
is not so limited . In other embodiments , one or more
additional processors may be present in a given processor .
[0115] Processors 1170 and 1180 are shown including
integrated memory controller units 1172 and 1182 , respec
tively . Processor 1170 also includes as part of its bus
controller units point - to - point (PPP) interfaces 1176 and
1178 ; similarly , second processor 1180 includes P - P inter
faces 1186 and 1188 . Processors 1170 , 1180 may exchange
information via a point - to - point (PPP) interface 1150 using
P - P interface circuits 1178 , 1188 . As shown in FIG . 11 .
IMCs 1172 and 1182 couple the processors to respective
memories , namely a memory 1132 and a memory 1134 ,
which may be portions of main memory locally attached to
the respective processors .
101161 Processors 1170 , 1180 each exchange information
with a chipset 1190 via individual P - P interfaces 1152 , 1154
using point to point interface circuits 1176 , 1194 , 1186 ,
1198 . Chipset 1190 also exchanges information with a
high - performance graphics circuit 1138 via an interface
circuit 1192 along a high - performance graphics interconnect
1139 .
[0117] A shared cache (not shown) may be included in
either processor or outside of both processors ; yet connected
with the processors via P - P interconnect , such that either or
both processors ' local cache information may be stored in
the shared cache if a processor is placed into a low power
mode .
[0118] Chipset 1190 may be coupled to a first bus 1116 via
an interface 1196 . In one embodiment , first bus 1116 may be
a Peripheral Component Interconnect (PCI) bus , or a bus
such as a PCI Express bus or another third generation I / O
interconnect bus , although the scope of the present invention
is not so limited .
[0119] As shown in FIG . 11 , various I / O devices 1114 are
coupled to first bus 1116 , along with a bus bridge 1118 which

US 2019 / 0220617 A1 Jul . 18 , 2019

couples first bus 1116 to a second bus 1120 . In one embodi
ment , second bus 1120 includes a low pin count (LPC) bus .
Various devices are coupled to second bus 1120 including ,
for example , a keyboard and / or mouse 1122 , communication
devices 1127 and a storage unit 1128 such as a disk drive or
other mass storage device which often includes instructions /
code and data 1130 , in one embodiment . Further , an audio
I / O 1124 is shown coupled to second bus 1120 . Note that
other architectures are possible , where the included compo -
nents and interconnect architectures vary . For example ,
instead of the point - to - point architecture of FIG . 11 , a
system may implement a multi - drop bus or other such
architecture .
[0120] While the present invention has been described
with respect to a limited number of embodiments , those
skilled in the art will appreciate numerous modifications and
variations therefrom . It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention .
[0121] A design may go through various stages , from
creation to simulation to fabrication . Data representing a
design may represent the design in a number of manners .
First , as is useful in simulations , the hardware may be
represented using a hardware description language or
another functional description language . Additionally , a cir
cuit level model with logic and / or transistor gates may be
produced at some stages of the design process . Furthermore ,
most designs , at some stage , reach a level of data represent
ing the physical placement of various devices in the hard
ware model . In the case where conventional semiconductor
fabrication techniques are used , the data representing the
hardware model may be the data specifying the presence or
absence of various features on different mask layers for
masks used to produce the integrated circuit . In any repre
sentation of the design , the data may be stored in any form
of a machine readable medium . A memory or a magnetic or
optical storage such as a disc may be the machine readable
medium to store information transmitted via optical or
electrical wave modulated or otherwise generated to trans
mit such information . When an electrical carrier wave
indicating or carrying the code or design is transmitted , to
the extent that copying , buffering , or re - transmission of the
electrical signal is performed , a new copy is made . Thus , a
communication provider or a network provider may store on
a tangible , machine - readable medium , at least temporarily ,
an article , such as information encoded into a carrier wave ,
embodying techniques of embodiments of the present inven
tion .
10122] A module or engine as used herein refers to any
combination of hardware , software , and / or firmware . As an
example , a module or engine includes hardware , such as a
micro - controller , associated with a non - transitory medium
to store code adapted to be executed by the micro - controller .
Therefore , reference to a module or engine , in one embodi
ment , refers to the hardware , which is specifically config
ured to recognize and / or execute the code to be held on a
non - transitory medium . Furthermore , in another embodi
ment , use of a module or engine refers to the non - transitory
medium including the code , which is specifically adapted to
be executed by the microcontroller to perform predeter
mined operations . And as can be inferred , in yet another
embodiment , the term module or engine (in this example)
may refer to the combination of the microcontroller and the
non - transitory medium . Often module or engine boundaries

that are illustrated as separate commonly vary and poten
tially overlap . For example , a first and a second module or
engine may share hardware , software , firmware , or a com
bination thereof , while potentially retaining some indepen
dent hardware , software , or firmware . In one embodiment ,
use of the term logic includes hardware , such as transistors ,
registers , or other hardware , such as programmable logic
devices .
(0123] Use of the phrase " configured to , ' in one embodi
ment , refers to arranging , putting together , manufacturing ,
offering to sell , importing and / or designing an apparatus ,
hardware , logic , or element to perform a designated or
determined task . In this example , an apparatus or element
thereof that is not operating is still ' configured to perform
a designated task if it is designed , coupled , and / or intercon
nected to perform said designated task . As a purely illustra
tive example , a logic gate may provide a 0 or a 1 during
operation . But a logic gate ' configured to ' provide an enable
signal to a clock does not include every potential logic gate
that may provide a 1 or 0 . Instead , the logic gate is one
coupled in some manner that during operation the 1 or 0
output is to enable the clock . Note once again that use of the
term ' configured to ' does not require operation , but instead
focus on the latent state of an apparatus , hardware , and / or
element , where in the latent state the apparatus , hardware ,
and / or element is designed to perform a particular task when
the apparatus , hardware , and / or element is operating .
[0124] Furthermore , use of the phrases “ to , ' capable of / to , '
and or ' operable to , ' in one embodiment , refers to some
apparatus , logic , hardware , and / or element designed in such
a way to enable use of the apparatus , logic , hardware , and / or
element in a specified manner . Note as above that use of to ,
capable to , or operable to , in one embodiment , refers to the
latent state of an apparatus , logic , hardware , and / or element ,
where the apparatus , logic , hardware , and / or element is not
operating but is designed in such a manner to enable use of
an apparatus in a specified manner .
[0125] A value , as used herein , includes any known rep
resentation of a number , a state , a logical state , or a binary
logical state . Often , the use of logic levels , logic values , or
logical values is also referred to as 1 ’ s and O ' s , which simply
represents binary logic states . For example , a 1 refers to a
high logic level and 0 refers to a low logic level . In one
embodiment , a storage cell , such as a transistor or flash cell ,
may be capable of holding a single logical value or multiple
logical values . However , other representations of values in
computer systems have been used . For example the decimal
number ten may also be represented as a binary value of
1010 and a hexadecimal letter A . Therefore , a value includes
any representation of information capable of being held in a
computer system .
[0126] Moreover , states may be represented by values or
portions of values . As an example , a first value , such as a
logical one , may represent a default or initial state , while a
second value , such as a logical zero , may represent a
non - default state . In addition , the terms reset and set , in one
embodiment , refer to a default and an updated value or state ,
respectively . For example , a default value potentially
includes a high logical value , e . g . reset , while an updated
value potentially includes a low logical value , e . g . set . Note
that any combination of values may be utilized to represent
any number of states .
[0127] The embodiments of methods , hardware , software ,
firmware or code set forth above may be implemented via

US 2019 / 0220617 A1 Jul . 18 , 2019

instructions or code stored on a machine - accessible ,
machine readable , computer accessible , or computer read
able medium which are executable by a processing element .
A non - transitory machine - accessible / readable medium
includes any mechanism that provides (e . g . , stores and / or
transmits) information in a form readable by a machine , such
as a computer or electronic system . For example , a non
transitory machine - accessible medium includes random - ac
cess memory (RAM) , such as static RAM (SRAM) or
dynamic RAM (DRAM) ; ROM ; magnetic or optical storage
medium ; flash memory devices ; electrical storage devices ;
optical storage devices ; acoustical storage devices ; other
form of storage devices for holding information received
from transitory (propagated) signals (e . g . , carrier waves ,
infrared signals , digital signals) ; etc . , which are to be dis
tinguished from the non - transitory mediums that may
receive information there from .
[0128] Instructions used to program logic to perform
embodiments of the invention may be stored within a
memory in the system , such as DRAM , cache , flash
memory , or other storage . Furthermore , the instructions can
be distributed via a network or by way of other computer
readable media . Thus a machine - readable medium may
include any mechanism for storing or transmitting informa
tion in a form readable by a machine (e . g . , a computer) , but
is not limited to , floppy diskettes , optical disks , Compact
Disc , Read - Only Memory (CD - ROMs) , and magneto - opti
cal disks , Read - Only Memory (ROMs) , Random Access
Memory (RAM) , Erasable Programmable Read - Only
Memory (EPROM) , Electrically Erasable Programmable
Read - Only Memory (EEPROM) , magnetic or optical cards ,
flash memory , or a tangible , machine - readable storage used
in the transmission of information over the Internet via
electrical , optical , acoustical or other forms of propagated
signals (e . g . , carrier waves , infrared signals , digital signals ,
etc .) . Accordingly , the computer - readable medium includes
any type of tangible machine - readable medium suitable for
storing or transmitting electronic instructions or information
in a form readable by a machine (e . g . , a computer) .
[0129] The following examples pertain to embodiments in
accordance with this Specification . Example 1 is an appa
ratus including a memory to store first data and an access
control engine comprising circuitry . The access control
engine is to receive a request for the first data from a
communication device over a link established with the
communication device ; and control access to the first data to
the communication device based on an authentication state
of the communication device and a protection state of the
link .
[0130] Example 2 may include the subject matter of
example 1 , wherein the access control engine is to block
access to the first data to the communication device respon
sive to a determination that the protection state of the link
indicates that one or more of confidentiality , replay , and
integrity protections are not enabled for the link .
[0131] Example 3 may include the subject matter of
example 1 , wherein the access control engine is to provide
access to the first data to the communication device respon
sive to a determination that the protection state of the link
indicates that confidentiality , replay , and integrity protec
tions are enabled for the link .
10132] Example 4 may include the subject matter of any
one of examples 1 - 3 , wherein the authentication state indi

cates whether immutable components of the communication
device have been authenticated .
[0133] Example 5 may include the subject matter of any
one of examples 1 - 4 , wherein the authentication state indi
cates whether mutable components of the communication
device have been authenticated .
[0134] Example 6 may include the subject matter of any
one of examples 1 - 5 , wherein the authentication state indi
cates whether credentials of a user associated with the first
data have been authenticated .
10135] Example 7 may include the subject matter of any
one of examples 1 - 6 , wherein the access control engine is to
control access to the first data to the communication device
based on the authentication state and the protection state of
the link responsive to a determination that the first data is to
be protected
0136] Example 8 may include the subject matter of any
one of examples 1 - 7 , wherein the access control engine is to
provide access to second data over the link to the commu
nication device without checking the protection state of the
link responsive to a determination that the data is not
protected
10137] Example 9 may include the subject matter of any
one of examples 1 - 8 , wherein , upon a determination that the
protection state of the link has degraded , the access control
engine is to deny access to the first data over the link to the
communication device until the protection state of the link
is restored .
[0138] Example 10 may include the subject matter of
example 9 , wherein the determination that the protection
state of the link has degraded is made responsive to a
notification that the link is to transition to a low power state .
[0139] Example 11 may include the subject matter of
example 9 , wherein the determination that the protection
state of the link has degraded is made responsive to a
notification that a checksum of a message transmitted over
the link is invalid .
[0140] Example 12 may include the subject matter of
example 9 , wherein responsive to the determination that the
protection state of the link has degraded , the access control
engine is to deny access to the first data over the link until
authentication is performed again .
[0141] Example 13 may include the subject matter of any
one of examples 1 - 12 , wherein responsive to a determina
tion that the authentication state or the protection state of the
link is insufficient to provide access to the first data , the
access control engine is to cause a register accessible by the
communication device to be written to , the register to
indicate that the first data is inaccessible over the link .
[0142] Example 14 may include the subject matter of any
one of examples 1 - 13 , wherein responsive to a determina
tion that the authentication state or the protection state of the
link is insufficient to provide access to the first data , the
apparatus is to tear down the link .
[0143] Example 15 may include the subject matter of any
one of examples 1 - 14 , further comprising a host computing
device and the second communication device .
[0144] Example 16 is a method comprising storing first
data ; receiving a request for the first data from a commu
nication device over a link established with a communica
tion device ; and controlling , by an access control engine
comprising circuitry , access to the first data to the commu
nication device based on an authentication state of the
communication device and a protection state of the link .

US 2019 / 0220617 A1 Jul . 18 , 2019
14

[0145] Example 17 may include the subject matter of
example 16 , wherein controlling access to the first data
comprises blocking access to the first data to the commu
nication device responsive to a determination that the pro
tection state of the link indicates that one or more of
confidentiality , replay , and integrity protections are not
enabled for the link .
[0146] Example 18 may include the subject matter of
example 16 , wherein controlling access to the first data
comprises providing access to the first data to the commu
nication device responsive to a determination that the pro
tection state of the link indicates that confidentiality , replay ,
and integrity protections are enabled for the link .
[0147] Example 19 may include the subject matter of any
one of examples 16 - 18 , wherein the authentication state
indicates whether immutable components of the communi
cation device have been authenticated .
[0148] Example 20 may include the subject matter of any
one of examples 16 - 19 , wherein the authentication state
indicates whether mutable components of the communica
tion device have been authenticated .
[0149] Example 21 may include the subject matter of any
one of examples 16 - 20 , wherein the authentication state
indicates whether credentials of a user associated with the
first data have been authenticated .
[0150] Example 22 may include the subject matter of any
one of examples 16 - 21 , further comprising controlling
access to the first data to the communication device based on
the authentication state and the protection state of the link
responsive to a determination that the first data is to be
protected
[0151] Example 23 may include the subject matter of any
one of examples 16 - 22 , further comprising providing access
to second data over the link to the communication device
without checking the protection state of the link responsive
to a determination that the data is not protected .
[0152] Example 24 may include the subject matter of any
one of examples 16 - 23 , further comprising , responsive to a
determination that the protection state of the link has
degraded , denying access to the first data over the link to the
communication device until the protection state of the link
is restored .
[0153] Example 25 may include the subject matter of
example 24 , wherein the determination that the protection
state of the link has degraded is made responsive to a
notification that the link is to transition to a low power state .
[0154] Example 26 may include the subject matter of
example 24 , wherein the determination that the protection
state of the link has degraded is made responsive to a
notification that a checksum of a message transmitted over
the link is invalid .
[0155] Example 27 may include the subject matter of
example 24 , wherein responsive to the determination that
the protection state of the link has degraded , the access
control engine is to deny access to the first data over the link
until authentication is performed again .
[0156] Example 28 may include the subject matter of any
one of examples 16 - 27 , further comprising , responsive to a
determination that the authentication state or the protection
state of the link is insufficient to provide access to the first
data , causing a register accessible by the communication
device to be written to , the register to indicate that the first
data is inaccessible over the link .

[0157] Example 29 may include the subject matter of any
one of examples 16 - 28 , further comprising , responsive to a
determination that the authentication state or the protection
state of the link is insufficient to provide access to the first
data , tearing down the link .
[0158] Example 30 is at least one non - transitory machine
accessible storage medium having instructions stored
thereon , the instructions when executed on a machine , cause
the machine to store first data ; receive a request for the first
data from a communication device over a link established
with a communication device ; and control access to the first
data to the communication device based on an authentication
state of the communication device and a protection state of
the link .
(0159] Example 31 may include the subject matter of
example 30 , wherein controlling access to the first data
comprises blocking access to the first data to the commu
nication device responsive to a determination that the pro
tection state of the link indicates that one or more of
confidentiality , replay , and integrity protections are not
enabled for the link .
[0160] Example 32 may include the subject matter of
example 30 , wherein controlling access to the first data
comprises providing access to the first data to the commu
nication device responsive to a determination that the pro
tection state of the link indicates that confidentiality , replay ,
and integrity protections are enabled for the link .
[0161] Example 33 may include the subject matter of any
one of examples 30 - 32 , wherein the authentication state
indicates whether immutable components of the communi
cation device have been authenticated .
[0162] Example 34 may include the subject matter of any
one of examples 30 - 33 , wherein the authentication state
indicates whether mutable components of the communica
tion device have been authenticated .
[0163] Example 35 may include the subject matter of any
one of examples 30 - 34 , wherein the authentication state
indicates whether credentials of a user associated with the
first data have been authenticated .
[0164] Example 36 may include the subject matter of any
one of examples 30 - 35 , further comprising controlling
access to the first data to the communication device based on
the authentication state and the protection state of the link
responsive to a determination that the first data is to be
protected
[0165] Example 37 may include the subject matter of any
one of examples 30 - 36 , further comprising providing access
to second data over the link to the communication device
without checking the protection state of the link responsive
to a determination that the data is not protected .
[0166] Example 38 may include the subject matter of any
one of examples 30 - 37 , further comprising , responsive to a
determination that the protection state of the link has
degraded , denying access to the first data over the link to the
communication device until the protection state of the link
is restored .
[0167] Example 39 may include the subject matter of
example 38 , wherein the determination that the protection
state of the link has degraded is made responsive to a
notification that the link is to transition to a low power state .
[0168] Example 40 may include the subject matter of
example 38 , wherein the determination that the protection

US 2019 / 0220617 A1 Jul . 18 , 2019
15

state of the link has degraded is made responsive to a
notification that a checksum of a message transmitted over
the link is invalid .
[0169] Example 41 may include the subject matter of
example 38 , wherein responsive to the determination that
the protection state of the link has degraded , the access
control engine is to deny access to the first data over the link
until authentication is performed again .
101701 Example 42 may include the subject matter of any
one of examples 30 - 41 , further comprising , responsive to a
determination that the authentication state or the protection
state of the link is insufficient to provide access to the first
data , causing a register accessible by the communication
device to be written to , the register to indicate that the first
data is inaccessible over the link .
[0171] Example 43 may include the subject matter of any
one of examples 30 - 42 , further comprising , responsive to a
determination that the authentication state or the protection
state of the link is insufficient to provide access to the first
data , tearing down the link .
[0172] Reference throughout this specification to “ one
embodiment ” or “ an embodiment ” means that a particular
feature , structure , or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention . Thus , the appearances of the
phrases “ in one embodiment ” or “ in an embodiment ” in
various places throughout this specification are not neces
sarily all referring to the same embodiment . Furthermore ,
the particular features , structures , or characteristics may be
combined in any suitable manner in one or more embodi
ments .
[0173] In the foregoing specification , a detailed descrip
tion has been given with reference to specific exemplary
embodiments . It will , however , be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the invention
as set forth in the appended claims . The specification and
drawings are , accordingly , to be regarded in an illustrative
sense rather than a restrictive sense . Furthermore , the fore
going use of embodiment and other exemplarily language
does not necessarily refer to the same embodiment or the
same example , but may refer to different and distinct
embodiments , as well as potentially the same embodiment .
What is claimed is :
1 . An apparatus comprising :
a memory to store first data ; and
an access control engine comprising circuitry , the access

control engine to :
receive a request for the first data from a communica

tion device over a link established with the commu
nication device ; and

control access to the first data to the communication
device based on an authentication state of the com
munication device and a protection state of the link .

2 . The apparatus of claim 1 , wherein the access control
engine is to block access to the first data to the communi
cation device responsive to a determination that the protec
tion state of the link indicates that one or more of confiden
tiality , replay , and integrity protections are not enabled for
the link .

3 . The apparatus of claim 1 , wherein the access control
engine is to provide access to the first data to the commu -
nication device responsive to a determination that the pro

tection state of the link indicates that confidentiality , replay ,
and integrity protections are enabled for the link .

4 . The apparatus of claim 1 , wherein the authentication
state indicates whether immutable components of the com
munication device have been authenticated .

5 . The apparatus of claim 1 , wherein the authentication
state indicates whether mutable components of the commu
nication device have been authenticated .

6 . The apparatus of claim 1 , wherein the authentication
state indicates whether credentials of a user associated with
the first data have been authenticated .

7 . The apparatus of claim 1 , wherein the access control
engine is to control access to the first data to the commu
nication device based on the authentication state and the
protection state of the link responsive to a determination that
the first data is to be protected .

8 . The apparatus of claim 7 , wherein the access control
engine is to provide access to second data over the link to the
communication device without checking the protection state
of the link responsive to a determination that the data is not
protected .

9 . The apparatus of claim 1 , wherein , upon a determina
tion that the protection state of the link has degraded , the
access control engine is to deny access to the first data over
the link to the communication device until the protection
state of the link is restored .

10 . The apparatus of claim 9 , wherein the determination
that the protection state of the link has degraded is made
responsive to a notification that the link is to transition to a
low power state .

11 . The apparatus of claim 9 , wherein the determination
that the protection state of the link has degraded is made
responsive to a notification that a checksum of a message
transmitted over the link is invalid .

12 . The apparatus of claim 9 , wherein responsive to the
determination that the protection state of the link has
degraded , the access control engine is to deny access to the
first data over the link until authentication is performed
again .

13 . The apparatus of claim 1 , wherein responsive to a
determination that the authentication state or the protection
state of the link is insufficient to provide access to the first
data , the access control engine is to cause a register acces
sible by the communication device to be written to , the
register to indicate that the first data is inaccessible over the
link .

14 . The apparatus of claim 1 , wherein responsive to a
determination that the authentication state or the protection
state of the link is insufficient to provide access to the first
data , the apparatus is to tear down the link .

15 . The apparatus of claim 1 , further comprising a host
computing device and the second communication device .

16 . A method comprising :
storing first data ;
receiving a request for the first data from a communica

tion device over a link established with a communica
tion device ; and

controlling , by an access control engine comprising cir
cuitry , access to the first data to the communication
device based on an authentication state of the commu
nication device and a protection state of the link .

17 . The method of claim 16 , wherein the access control
engine is to provide access to the first data to the commu
nication device responsive to a determination that the pro

US 2019 / 0220617 A1 Jul . 18 , 2019

tection state of the link indicates that confidentiality , replay ,
and integrity protections are enabled for the link .

18 . At least one non - transitory machine accessible storage
medium having instructions stored thereon , the instructions
when executed on a machine , cause the machine to :

store first data ;
receive a request for the first data from a communication

device over a link established with a communication
device ; and

control access to the first data to the communication
device based on an authentication state of the commu
nication device and a protection state of the link .

19 . The storage medium of claim 18 , wherein controlling
access to the first data comprises blocking access to the first
data to the communication device responsive to a determi
nation that the protection state of the link indicates that one
or more of confidentiality , replay , and integrity protections
are not enabled for the link .

20 . The storage medium of claim 18 , wherein controlling
access to the first data comprises providing access to the first
data to the communication device responsive to a determi
nation that the protection state of the link indicates that
confidentiality , replay , and integrity protections are enabled
for the link .

* * * * *

