w0 2021/086339 A 1M1 HHIL 000 100 RO A D

(31)

(21)

(22)

(25)
(26)
(71)

(72)

(74)

(81)

(54) Title: SCALING OF DISTRIBUT,

(43) International Publication Date

100 \

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2021/086339 Al

(19) World Intellectual Property
Organization
International Bureau

06 May 2021 (06.05.2021)

International Patent Classification:
GO6F 11/34 (2006.01) GO6F 15/177 (2006.01)

International Application Number:
PCT/US2019/058694

International Filing Date:
30 October 2019 (30.10.2019)

English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 10300 Energy Drive, Spring,
Texas 77389 (US).

Inventors: COUTINHO MORAES, Mauricio; Av. Ipi-
ranga, 6681, Bld. 45C, Predios 5-6, 90619-900 Porto Ale-
gre (BR). MERTZ, Jhonny Marcos Acordi; Av. Ipiranga,
6681, Bld. 45C, Predios 5-6, 90619-900 Porto Alegre (BR).
MARQUEZINI, Leonardo Dias; Av. Ipiranga, 6681, Bld.
45C, Predios 5-6, 90619-900 Porto Alegre (BR).

Agent WOODWORTH, Jeffrey C. et al.; HP Inc., 3390
E. Harmony Road, Mail Stop 335, Fort Colhns Colorado
80528 9544 (US).

Filing Language:

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

D SOFTWARE APPLICATIONS USING S

WIPO I PCT

CA, CH, CL, CN, CO, CR, CU, CZ,
EE, EG, ENS, FI, GB, GD, GE, GH, GM, GT, HN,

DZ, EC,

DE, DJ, DK,

DM, DO,

HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW,KZ, LA, LC,LK,LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, 5SG, SK, SL, SM, 8T, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84)

Designated States (unless otherwise indicated, for every

kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

™),

—4—4

European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

MC MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

KM, ML, MR, N.

Declarations under Rule 4.17:
as to the identity of the inventor (Rule 4.17(i))
as to applicant's entitlement to apply for and be granted a

<, DN, T

patent (Rule 4.17(ii))

Published:

CLF-PERC

D, TG).

with international search report (Art. 21(3))

CIVED LOAD INDICATORS

(57) Abstract: A system includes: a distributed computing subsystem to exe-
cute an adjustable number of instances of a request handling process; and a scal-

112-2
Client
computing
device

112-1
Client
computing
device

112-3
Client
computing
device

Subsystem

I

Distributed Computing
Subsystem

120
Scaling Cantrol

104

108-1

\—| Instance I
108-2

T— Instance I
108-3 '\—| Instance l

FIG. 1

ing control subsystem connected with the distributed computing subsystem to:
allocate received requests among the instances of the request handling process;
receive respective self-perceived load indicators from each of the instances of
the request handling process; generate, based on the self-perceived load indica-
tors, a total load indicator of the distributed computing subsystem; and compare
the total load indicator to a threshold to select an adjustment action; and instruct
the distributed computing subsystem to adjust the number of instances of the
request handling process, according to the selected adjustment action.

WO 2021/086339 PCT/US2019/058694

SCALING OF DISTRIBUTED SOFTWARE APPLICATIONS USING SELF-
PERCEIVED LOAD INDICATORS

BACKGROUND

[0001] A software application executable to respond to requests from client computing
devices may be deployed as multiple application instances. The number of application
INstances may be altered over time to accommodate variations in the volume of requests

recelved from the client computing devices.

BRIEF DESCRIPTIONS OF THE DRAWINGS
[0002] FIG. 1 1s a diagram of a computing system to scale distributed software

applications using self-perceived load indicators.

[0003] FIG. 2is adiagram illustrating certain internal components of the scaling control

subsystem and the distributed computing subsystem of FIG. 1.

[0004] FIG. 3 is a flowchart of a method of scaling distributed software applications

using self-perceived load indicators.

[0005] FIG. 4 is a diagram illustrating a performance of blocks 405 and 410 of the
method of FIG. 3.

[0006] FIG. 5is a flowchart of a method for performing block 320 of the method of FIG.
3.

[0007] FIG. 6 is a diagram Iillustrating a performance of block 325 of the method of
FIG. 3.

[0008] FIG. 7 is aflowchart of a method for performing block 345 of the method of FIG.
3.

[0009] FIG. 8 is a diagram illustrating the distributed computing subsystem of FIG. 2
following a performance of block 350 of the method of FIG. 3.

WO 2021/086339 PCT/US2019/058694

DETAILED DESCRIPTION

[0010] Software applications may be implemented in distributed computing systems,
IN which a plurality of sets of execution hardware (e.g. processors, memories and the like)
are available to execute an adjustable number of Instances of a given software
application. The number of instances of the software application may be controllable In

response to variations in computational load to be accommodated.

[0011] For example, a distributed software application may receive and respond to
requests from client computing devices. The distributed software application may
therefore also be referred to as a request handling process. The requests may be
requests for web pages, login or other authentication requests, or the like. An increase In
a rate of incoming requests may be accommodated by spawning additional instances of
the request handling process. Conversely, a decrease in the rate of incoming requests
may permit a reduction in the number of instances, which may release some of the above-

mentioned execution hardware for other tasks.

[0012] Adjusting the number of iInstances of a request handling process executed at a
distributed computing system may Include collecting Iinformation such as central
processing unit (CPU) usage levels, a rate at which requests are received, and the like.
Based on the collected Information, an estimate of computational resources to
accommodate the incoming requests may be generated, such as an estimated number
of Instances. The estimate may be compared to the existing number of instances, and the

number of iInstances may be modified to match the estimate.

[0013] However, some of the Information mentioned above may be difficult to correlate
accurately with computational load on the distributed software application. For example,
CPU usage can be impacted by various factors that are not related to the distributed
software application. Load estimation mechanisms can therefore be computationally
costly and/or error-prone. As a result, adjustments to the number of instances of a
distributed software application may not be made in a timely manner, or may not be made

at all, leading to reduced performance or unnecessary allocation of execution hardware.

[0014] To provide automatic scaling of a distributed software application that 1Is more

responsive while mitigating the computational cost of automatic scaling, a scaling control

2

WO 2021/086339 PCT/US2019/058694

subsystem receives self-perceived load indicators from instances of the distributed
software application themselves. The scaling control subsystem then processes the self-

percelved load indicators to select an adjustment action.

[0015] In the examples, a system Includes: a distributed computing subsystem to
execute an adjustable number of instances of a request handling process; and a scaling
control subsystem connected with the distributed computing subsystem to: allocate
received requests among the Instances of the request handling process; receive
respective self-perceived load Indicators from each of the Instances of the request
handling process; generate, based on the self-perceived load Indicators, a total load
iIndicator of the distributed computing subsystem; compare the total load indicator to a
threshold to select an adjustment action; and Instruct the distributed computing
subsystem to adjust the number of instances of the request handling process, according

to the selected adjustment action.

[0016] The distributed computing subsystem can execute each instance of the request
handling process to: generate responses to a subset of the requests allocated to the
Instance; for each response, generate at least one execution timestamp; and generate

the self-perceived load indicator based on the at least one execution timestamp.

[0017] Execution of each instance of the request handling process can cause the
distributed computing subsystem to: determine an execution time based on the at least
one execution timestamp; determine a ratio of the execution time to a stored benchmark

time; and return the ratio as the self-perceived load indicator.

[0018] The scaling control subsystem, in order to generate the total load indicator, can

generate an average of the self-perceived load indicators.

[0019] The scaling control subsystem, prior to generation of the total load indicator,
can modify each self-perceived load indicator according to a decay factor based on an

age of the self-perceived load indicator.

[0020] The scaling control subsystem, in order to compare the total load indicator to a
threshold to select an adjustment action, can: select an increment adjustment action when

the total load indicator meets an upper threshold; select a decrement adjustment action

WO 2021/086339 PCT/US2019/058694

when the total load indicator does not meet a lower threshold; and select a no-adjustment
action when the total load indicator meets the lower threshold and does not meet the

upper threshold.

[0021] The scaling control subsystem can, responsive to instruction of the distributed
computing subsystem to adqjust the number of Instances, obtain and store updated

Instance identifiers corresponding to an adjusted number of the instances.

[0022] The scaling control subsystem can include: (1) a load balancing controller to:
allocate the recelved requests among the instances and receive the self-percelived load
iIndicators; and (1) an instance management controller to: generate the total load indicator;
compare the total load indicator to the threshold; and instruct the distributed computing

subsystem to adjust the number of instances.

[0023] In the examples, a non-transitory computer-readable medium stores computer
readable Instructions executable by a processor of a scaling control subsystem to:
allocate received requests among an adjustable number of instances of a request
handling process executed at a distributed computing subsystem; receive respective self-
percelved load Indicators from each of the instances of the request handling process;
generate, based on the self-perceived load indicators, a total load indicator of the
distributed computing subsystem; compare the total load indicator to a threshold to select
an adjustment action; and; instruct the distributed computing subsystem to adjust the
number of Instances of the request handling process, according to the selected

adjustment action.

[0024] FIG. 1 shows a system 100 in which self-perceived load indicators are used to
scale a distributed software application. The system 100 includes a distributed computing
subsystem 104 that executes an adjustable number of instances of a software application,
also referred to herein as a request handling process. Three examples of instances 108-
1, 108-2 and 108-3, which are referred to collectively as the instances 108 and generically
as an instance 108, are illustrated in FIG. 1. The number of instances 108 deployed by

the distributed computing subsystem 104 can vary.

[0025] Each instance 108, as will be discussed below In greater detaill, can be

executed by dedicated execution hardware such as CPUs, memory devices and the like,

4

WO 2021/086339 PCT/US2019/058694

executing computer-readable instructions. In other examples, multiple instances 108 can
be Implemented by a common set of execution hardware, In the form of distinct request
handling processes executed by a common CPU and associated memory and/or other

suitable components.

[0026] The distributed computing subsystem 104 responds to requests from at least
one client computing device 112, of which three examples 112-1, 112-2 and 112-3 are
shown In FIG. 1. The client computing devices 112 can include any combination of
desktop computers, mobile computers, servers, and the like. The client computing
devices 112 are referred to herein as client devices because they are considered clients
of the distributed computing subsystem 104, although the client computing devices 112
may themselves be servers with downstream client devices (not shown). The client
computing devices 112 send requests for processing by the distributed computing
supbsystem 104 via a network 116, which can include any suitable combination of Local
Area Networks (LANs) and Wide Area Networks (WANSs), including the Internet.

[0027] The nature of the requests sent by the client computing devices 112 for
processing by the distributed computing subsystem 104 can vary. For example, the
distributed computing subsystem 104 can implement a web server, and the requests can
therefore be requests for web pages. The requests, for example, can be HyperTlext
Transfer Protocol (HTTP) requests. In other examples, the distributed computing
subsystem 104 can implement an access control server, and the requests can therefore
pbe authentication requests containing login information such as user identifiers and
passwords. The distributed computing subsystem 104 processes the requests received
from the client computing devices 112. Such processing can include generating
responses to the requests. That Is, each Iinstance 108 can generate responses to the

subset of iIncoming requests allocated to that particular instance 108.

[0028] Each of the Instances 108 executed by the distributed computing subsystem
104 also generates a self-percelved load indicator that represents a perception, by the
Instance 108 itself, of the timeliness with which the instance 108 can respond to requests.
Each Iinstance 108 can generate a self-perceived load indicator for each response that

the Instance 108 generates. In other examples, each instance 108 can generate a self-

WO 2021/086339 PCT/US2019/058694

percelved load Iindicator at a configurable frequency, such as once every five requests

that the iInstance 108 processes, rather than for every request.

[0029] The instances 108 can generate the self-perceived load indicators based on
execution timestamps generated during request handling, as will be discussed below In
greater detail. The Instances 108, using the execution timestamps, can determine an
execution time for a given response, representing the length of time taken to generate a
response. The instances 108 can then compare the above-mentioned execution times to
a stored benchmark execution time. The self-perceived load indicator can be expressed

as a ratio of the execution time to the benchmark execution time.

[0030] The system 100 also includes a scaling control subsystem 120 connected with
the distributed computing subsystem 104. The scaling control subsystem 120 and the
distributed computing subsystem 104 can be connected via a LAN, via the network 116,
or via a combination thereof. The scaling control subsystem 120 is illustrated in FIG. 1 as
a distinct element from the distributed computing system. As illustrated, the scaling
control subsystem 120 Is deployed on separate execution hardware from the distributed
computing subsystem 104. That Is, the scaling control subsystem 120 can be deployed
on at least one computing device distinct from the computing devices forming the
distributed computing subsystem 104. In other examples, the scaling control subsystem
120 can be deployed on the same set of computing devices as the distributed computing
subsystem 104, for example as computer-readable instructions distinct from the

computer-readable instructions that define request handling process.

[0031] The scaling control subsystem 120 allocates incoming requests from the client
computing devices 112 among the instances 108 at the distributed computing subsystem
104. To that end, the scaling control subsystem maintains, for example by storing in a list,
identifiers of currently active instances 108. The scaling control subsystem 120 also
recelves the self-perceived load indicators generated by the instances 108, for example
IN header fields of the responses. That Is, a given response can contain the self-perceived

load Indicator generated using the execution time for that response.

[0032] The scaling control subsystem generates, based on the self-perceived load

indicators, a total load indicator of the distributed computing subsystem 104. The total

6

WO 2021/086339 PCT/US2019/058694

load Indicator may be, for example, an average of the individual self-perceived load
iIndicators for respective instances 108. Prior to generating the total load indicator, the
scaling control subsystem 120 can modify some or all of the self-perceived load indicators
according to a decay factor, for example based on the age of the self-perceived load

indicators.

[0033] The scaling control subsystem 120 then selects adjustment actions by
comparing the total load indicator to at least one threshold. For example, the scaling
control subsystem 120 can compare the total load indicator to each of an upper threshold
and a lower threshold. When the total load indicator 1s below the lower threshold, the
scaling control subsystem 120 can select a decrementing adjustment action, to reduce
the number of instances 108 at the distributed computing subsystem 104. VWWhen the total
load Indicator 1s above the upper threshold, the scaling control subsystem 120 can select
an Incrementing adjustment action, to increase the number of instances 108 at the
distributed computing subsystem 104. When the total load indicator falls between the
lower threshold and the upper threshold, the scaling control subsystem 120 can select a

no-operation (NOOP), or no-adjustment, action, to retain an existing number of instances
108.

[0034] The scaling control subsystem 120 Instructs the distributed computing
subsystem 104 to adjust the number of deployed instances 108 according to the selected
adjustment actions. In other words, the scaling control subsystem 120 both distributes
Incoming requests amongst the instances 108, and controls the distributed computing
subsystem 104 to increase or decrease the number of instances 108 available to process
Incoming requests. The above-mentioned instance identifiers maintained by the scaling
control subsystem 120 are updated In response to the deployment or destruction of an

instance 108.

[0035] Turning to FIG. 2, certain internal components of the distributed computing
subsystem 104 and the scaling control subsystem 120 are illustrated. The distributed
computing subsystem 104 Includes a plurality of sets of execution hardware. For
example, each set of execution hardware can include a processor 200 such as a CPU or

the like. Four example sets of execution hardware are shown, and thus four processors

WO 2021/086339 PCT/US2019/058694

200-1, 200-2, 200-3 and 200-4 are shown. In other examples, the distributed computing
subsystem 104 can include a greater number of sets of execution hardware than shown
N FIG. 2. In further examples, the distributed computing subsystem 104 can include a
smaller number of sets of execution hardware than shown in FIG. 2. Each set of execution
hardware can be implemented in a distinct enclosure such as a rack-mounted enclosure.

In other examples, the execution hardware can be housed in a common enclosure.

[0036] Each processor 200 is interconnected with a respective memory 204-1, 204-2,
204-3 and 204-4. Each memory 204 s implemented as a suitable non-transitory
computer-readable medium, such as a combination of non-volatile and volatile memory
devices, e.g. Random Access Memory (RAM), read only memory (ROM), Electrically
Erasable Programmable Read Only Memory (EEPROM), flash memory, magnetic
computer storage, and the like. The processors 200 and the memories 204 are comprised

of at least one integrated circuit (IC).

[0037] Each processor 200 Is also interconnected with a respective communication
iInterface 208-1, 208-2, 208-3 and 208-4, which enables the processor 200 to
communicate with other computing devices, such as the scaling control subsystem 120.
The communication interfaces 208 therefore include any necessary components for such

communication, including for example, network interface controllers (NICs).

[0038] Each memory 204 can store computer-readable instructions for execution by
the corresponding processor 200. Among such computer-readable instructions are the
above-mentioned instances 108. In the example illustrated in FIG. 2, the memories 204-
1, 204-2 and 204-3 store computer-readable instructions corresponding, respectively, to
the instances 108-1, 108-2 and 108-3. The memory 204-4, as illustrated in FIG. 2, Is
currently not being used to deploy an instance 108, and the memory 204-4 |s therefore
shown as not containing an instance 108. WWhen the set of execution hardware including
the processor 200-4, the memory 204-4 and the interface 208-4 Is instructed to deploy an
additional instance 108, a copy of the computer-readable instructions corresponding to
the iInstance 108 may be deployed to the memory 204. In other examples, the memory
204 may store such computer-readable instructions even when at rest. In such examples,

the absence of an instance 108 from the memory 204-4 in FIG. 2 indicates that whether

WO 2021/086339 PCT/US2019/058694

or not the relevant computer-readable instructions are stored in the memory 204-4, such

Instructions are not currently being executed by the processor 200-4.

[0039] FIG. 2 also shows that the scaling control subsystem 120 includes a processor
220 such as a CPU or the like, interconnected with a memory 224 such as a combination
of non-volatile and volatile memory devices, e.g. Random Access Memory (RAM), read
only memory (ROM), Electrically Erasable Programmable Read Only Memory
(EEPROM), flash memory, magnetic computer storage, and the like. The processor 220
and the memory 224 are comprised of at least one integrated circuit (IC). The processor
220 1s also Interconnected with a communication interface 226, which enables the
processor 220 to communicate with other computing devices, such as the distributed

computing subsystem 104 and the client computing devices 112.

[0040] The memory 224 stores computer-readable instructions for execution by the
processor 220, Including a load balancing application 228 and an instance management
application 232. The scaling control subsystem 120, in other words, Includes a load
palancing controller and an instance management controller. In the illustrated example,
the load balancing controller 1s implemented via execution of the computer-readable
iInstructions of the load balancing application 228 by the processor 220, and the instance
management controller 1s implemented via execution of the computer-readable
Instructions of the iInstance management application 232 by the processor 220. In other
examples, the load balancing controller and the instance management controller can be
Implemented by distinct computing devices having distinct processors, with a first
processor executing the load balancing application 228 and a second processor
executing the instance management application 232. In other examples, the above-
mentioned controllers can be implemented by dedicated hardware elements, such as
Field-Programmable Gate Arrays (FPGASs), rather than by the execution of distinct sets

of computer-readable instructions by a CPU.

[0041] The memory 224 also stores, In the illustrated example, a load balancing
repository 236 containing 1dentifiers of the Instances 108 and self-perceived load
iIndicators received at the scaling control subsystem 120 from the distributed computing

subsystem 104. In addition, the memory 224 stores an instance identifier repository 240

WO 2021/086339 PCT/US2019/058694

containing identifiers corresponding to each active instance 108. The load indicator
repository 236 Is employed by the load balancing controller, as illustrated by the link
pbetween the load balancing application 228 and the load balancing repository 236, to
allocate requests among the instances 108 and collect self-perceived load indicators. The
iInstance identifier repository 240 is employed by the instance management controller, as
llustrated by the link between the instance management application 232 and the instance
identifier repository 240, to update a set of current instance identifiers when adjustments
are made to the number of active instances 108. Updates made to the instance identifier

repository 240 are propagated to the load balancing repository 236.

[0042] The components of the system 100 can implement various functionality, as
discussed In greater detall below, to allocate incoming requests and adjust the number of

the Instances 108 In response to changes In the volume of Incoming requests.

[0043] In the examples, a method Includes: allocating receilved requests among an
adjustable number of instances of a request handling process executed at a distributed
computing subsystem; receiving respective self-perceived load indicators from each of
the Instances of the request handling process; generating, based on the self-perceived
load indicators, a total load indicator of the distributed computing subsystem; comparing
the total load indicator to a threshold to select an adjustment action; and instructing the
distributed computing subsystem to adjust the number of instances of the request

handling process, according to the selected adjustment action.

[0044] Generating the total load indicator can include generating an average of the

self-perceived load indicators.

[0045] The method can include, prior to generating the total load indicator, modifying
each self-perceived load indicator according to a decay factor based on an age of the

self-percelved load indicator.

[0046] Comparing the total load indicator to a threshold to select an adjustment action
can Include: selecting an increment adjustment action when the total load indicator meets
an upper threshold; selecting a decrement adjustment action when the total load indicator
does not meet a lower threshold; and selecting a no-adjustment action when the total load

Indicator meets the lower threshold and does not meet the upper threshold.

10

WO 2021/086339 PCT/US2019/058694

[0047] The method can include, responsive to Instructing the distributed computing
subsystem to adjust the number of instances, obtaining and storing updated instance

identifiers corresponding to an adjusted number of the instances.

[0048] Each self-perceived load indicator can be a ratio of an execution time for a

corresponding one of the requests to a stored benchmark time.

[0049] FIG. 3 illustrates a flowchart of a method 300. Example performances of the
method 300 are discussed below In conjunction with the performance of the method 300
by the system 100. Certain blocks of the method 300, indicated by the dashed box 301,
are performed by the distributed computing subsystem 104. The remaining blocks of the
method 300 are performed by the scaling control subsystem 120. More specifically, the
blocks within the dashed box 302 are performed by the load balancing controller, e.g. as
Implemented via execution of the load balancing application 228, and the blocks within
the dashed box 303 are performed by the instance management controller, e.g. as
Implemented via execution of the instance management application 232. Block 355 can
Involve activities performed at each of the load balancing controller and the Instance

management controller.

[0060] At Dblock 305, the scaling control subsystem 120 receives a request from a client
computing device 112, e.g. via the network 116. The request can be received at the
processor 220, executing the load balancing application 228, via the communications
interface 226 shown in FIG. 2. As noted earlier, a variety of requests are contemplated,
INncluding requests for web pages, requests for authentication and/or access to resources,

or the like.

[0051] At block 310, the scaling control subsystem 120 allocates the request to one of
the Instances 108. In some examples, the processor 220, via execution of the load
palancing application 228, allocates the incoming request to an instance represented In
the load balancing repository 236 according to a suitable allocation mechanism. Requests

may be allocated according to a round-robin mechanism, for example.

[0052] FIG. 4 illustrates an example performance of blocks 305 and 310. A request
400 1s recelved at the scaling control subsystem 120 from the client computing device

112-1, and Is allocated to the instance 108-1, e.g. as executed by the processor 200-1

11

WO 2021/086339

PCT/US2019/058694

shown in FIG. 2. Allocation of the request 400 may be made by selecting an instance 108

from the load balancing repository 236, an example of which i1s shown below In Table 1.

Table 1: Load Balancing Repository 236

Instance ID Load Indicator Modified Load Indicator
108-1 O O
108-2 O O
108-3 O O

[0053]

As seen above, the load balancing repository 236 contains identifiers of each

active instance 108, as well as corresponding load indicators and modified load
iIndicators. It Is assumed that no self-perceived load indicators have yet been received at
the scaling control subsystem 120, and the load indicators and modified load indicators
are therefore shown as zero Iin Table 1. The load indicators and modified load Iindicators

may also be blank.

[0054]

computing subsystem 104 processes the request 400. For example, at block 3195, the

Returning to FIG. 3, following receipt of the request 400, the distributed

Instance 108-1 executed by the distributed computing subsystem 104 generates a
response to the request 400. The generation of a response can Include retrieving a
requested web page, validating authentication parameters in the request 400, or the like.
At block 320 the Instance 108-1 generates a self-perceived load indicator. The self-
percelved load Indicator can represent, for example a ratio of an execution time for
generation of the response at block 315 relative to a benchmark, or expected, execution
time. That i1s, the self-perceived load indicator can represent a length of time taken to
generate the response at block 315 compared to an expected response generation time.
The self-percelved load indicator therefore indicates, from the perspective of the instance

108 itself, a timeliness with which the instance 108 can accommodate requests.

[0055]

example method 500 of generating a self-perceived load indicator. The method 500 can

Before continuing with discussion of the method 300, FIG. 5 illustrates an

be performed by each instance 108 for each request received by the instance 108. In

other words, each instance 108 of the distributed computing subsystem 104 can generate

12

WO 2021/086339 PCT/US2019/058694

respective self-percelved load indicators for each of a subset of Incoming requests that

are allocated to that instance 108.

[0056] At block 5095, the iInstance 108 generates at least one execution timestamp for
the response generated at block 315. The generation of execution timestamps can be
simultaneous with the generation of the response. For example, the computer-readable
Instructions of the instance 108 can include instructions to generate the response and,
embedded within the instructions to generate the response, execution location markers

that cause the generation of execution timestamps.

[0067] Table 2 contains an example portion of the computer-readable instructions of
the Instance 108-1, organized Into numbered lines of Instructions. The example
iInstructions In Table 2 mplement a response generation mechanism at block 315. As
shown at line 02, the response generation mechanism includes the receipt of a request
containing a user identifier in the form of a string, as well as another input In the form of
an Integer. The response generation mechanism implements three forms of response to
Incoming requests such as the request 400. The first example behavior, shown at lines
04 to 06, returns an error code "403" If the user 1dentified In the request does not have
access rights. The second example behavior, shown at lines 09 to 11, follows successful
authentication of the user and returns an error code "400" If the Input In the request Is
invalid. The third example behavior, shown at lines 14 to 16, Is performed when the user
does have access rights and the input is valid, and returns an “OK” code 200, indicating

that the request has succeeded.

Table 2: Execution Location Markers

01: class WebApp {

02: int handleRequest(String user, Integer input) {
03 passedHere()

04: If (lhasAccess(user)) {
05 passedHere()
06: return 403

07]

08 passedHere()

09: if (isValid(input)) {

10:; passedHere()
11: return 400

12: 1

13

WO 2021/086339 PCT/US2019/058694

13; passedHere()

14: businessLogic(input)
15; passedHere()

16: return 200

17 1

18. }

[0058] The computer-readable instructions shown above also contain execution
location markers, shown In Table 2 as the "passedHere” function. Each execution location
marker, when processed by the instance 108, may return a line number corresponding to
the execution location marker, and a timestamp indicating the time that the execution
location marker was processed. In other words, the generation of execution timestamps

at block 505 can be caused by the execution location markers shown in Table 2.

[0089] For example, processing a request that includes a user identifier with access
rights but an invalid input leads to the traversal of three execution location markers,
corresponding to lines 03, 08 and 10. The instance 108, in other words, generates three
execution timestamps representing the times at which each of the above execution

location markers was processed.

[0060] In another example, processing a request that includes a user identifier with
access rights and a valid input leads to the traversal of four execution location markers,
corresponding to lines 03, 08 13 and 15. The instance 108, for such a request, generates
four execution timestamps representing the times at which each of the above execution
location markers was processed. In some examples, a given instance 108 may receive
multiple requests and process the requests In parallel. In such examples, the execution
location markers may also Include request Indicators to distinguish execution location
markers generated via processing of a first request from execution location markers

generated via contemporaneous processing of a second request.

[0061] At block 510, the instance 108 generates an execution time for the response
generated at block 315, based on the execution timestamps from block 505. The

execution time may be, for example, the time elapsed between the first and last of the

above-mentioned execution timestamps.

14

WO 2021/086339 PCT/US2019/058694

[0062] At block 515, the Instance 108 determines a ratio of the execution time to a
penchmark time. The benchmark time can be Included In the computer-readable
iInstructions of the instance 108, or stored separately, e.g. In the memory 204 that stores
the computer-readable instructions of the instance 108. The benchmark time can be
previously configured, for example at the time of deployment of the request handling
process to the distributed computing subsystem 104. The benchmark time can indicate
an expected execution time for responding to the request, as reflected in a service level
agreement (SLA) or other performance specification. A plurality of benchmark times may
also be stored. For example, a benchmark time can be stored for each of the above-
mentioned behaviors, which each correspond to a particular set of execution location
markers traversed during response generation. Thus, for the example shown in Table 2,

three benchmark times can be stored, examples of which are shown below In Table 3:

Table 3: Example Benchmark Times

Execution Location Markers Benchmark Time (ms)
Lines 03, 05 90
Lines 03, 08, 10 150
Lines 03, 08, 13, 15 200

[0063] In an example performance of the method 500, the Instance 108-1 may
traverse the execution location markers 03, 08 and 10, with a time elapsed between the
execution location markers 03 and 10 of 120ms. At block 515, therefore the instance 108-
1 determines a ratio of the execution time of 120ms to the benchmark time of 150ms. The
ratio may be expressed as a percentage, e.g. 80%. The ratio may also be expressed as

a fraction between zero and one, e.g. 0.8.

[0064] Following generation of the ratio mentioned above, the instance 108 proceeds
to block 325. Returning to FIG. 3, at block 325 the instance 108 to which the request was
allocated, which i1s the instance 108-1 In the present example performance of the method
300, returns the response and the self-perceived load indicator to the scaling control
subsystem 120. In some examples, the response and the self-perceived load indicator
are returned to the load balancing controller. The self-perceived load indicator, which Is
0.8 In the present example as discussed above, can be returned within a header field of

the response itself, such as an HT TP header field.

15

WO 2021/086339 PCT/US2019/058694

[0065] Turning to FIG. 6, an example performance of block 325 is illustrated, in which
a response 600, generated by the Instance 108-1, I1s transmitted from the distributed
computing subsystem 104 to the scaling control subsystem 120. The response 600
includes a header 604 containing the self-perceived load (SPL) indicator “0.8”, and a body
608 containing the response code “400". The header 604 can also Include other data
such as an identifier of the instance 108-1, a timestamp indicating the time the response

600 was generated, or the like.

[0066] Returning to FIG. 3, at block 330 the scaling control subsystem 120 receives
the response 600 and the self-percelved load indicator contained therein. For example,
the response 600 can be received via execution of the load balancing application 228. At
block 335, the scaling control subsystem 120 can modify the self-perceived load indicator
according to a decay factor. The decay factor can be applied by the load balancing
application 228. For example, the decay factor can be determined based on a current
time and the time at which the self-perceived load indicator was generated. The time at
which the self-perceived load indicator was generated can be indicated by the above-
mentioned timestamp In the header 604, and the current time Is the time at which block

335 Is performed at the scaling control subsystem 120.

[0067] The adjustment at block 335 can be implemented by dividing the self-perceived
load Indicator by the difference between the current time and the time at which the self-
percelved load indicator was generated. That Is, the decay factor can be the age of the
self-perceived load indicator, e.g. In milliseconds. The decay factor can also be based on
the age of the self-perceived load indicator, without being equal to the age. For example,
the decay factor can be the age of the self-perceived load indicator, normalized to a scale

pbetween the values 1 and 5. Various other forms of decay factor may also be employed.

[0068] Table 4 illustrates an updated load balancing repository 236 following an

example performance of block 335.

Table 4: Load Balancing Repository 236

Instance ID Load Indicator Modified Load Indicator
108-1 0.8 0.4
108-2 O O
108-3 O O

16

WO 2021/086339 PCT/US2019/058694

[0069] In Table 4, it 1Is assumed that the age of the self-perceived load indicator

generated by the instance 108-1 1s 2ms, and the modified self-percelved load indicator Is

therefore 0.4.

[0070] Following the performance of block 3395, the modified load indicators In the load
palancing repository 236 can be provided to the instance management controller for
further processing. The load balancing controller may update the modified self-perceived
load indicators for the entire set of instances 108 and provide the updated modified self-
percelved load Iindicators to the instance management controller each time a new self-
percelved load Indicator 1s received from an instance 108. In other examples, the load
palancing controller may update the modified self-perceived load Indicators for

transmission to the instance management controller periodically, e.g. at a configurable

frequency.

[0071] Before discussing additional blocks of the method 300, additional
performances of the request handling process described above are assumed to take
place, such that additional self-perceived load indicators are received at the scaling

control subsystem 120 from each of the instances 108. Table 5 illustrates a current set of

self-percelved load indicators and modifications thereof.

Table 5: Load Balancing Repository 236

Instance ID Load Indicator Modified Load Indicator
108-1 0.95 0.95
108-2 1.4 1.1
108-3 1.2 0.7

[0072] At block 340, the scaling control subsystem 120, e.g. via execution of the

INstance management application 232, generates a total load indicator based on the
modified load Indicators described above. The scaling control subsystem 120 can

generate the total load indicator, for example, by generating an average of the individual

modified self-perceived load indicators generated at block 335. In the example shown In

Table 5, therefore, the total load indicator 1s the average of the values 0.95, 1.1 and 0.7,

or 0.917.

17

WO 2021/086339 PCT/US2019/058694

[0073] At block 345 the scaling control subsystem 120 compares the total load
iIndicator generated at block 340 with at least one threshold to select an adjustment action.
FIG. 7 illustrates an example method 700 of implementing block 345. Referring to FIG. 7,
at block 705 the scaling control subsystem 120 (e.g. the instance management controller)
determines whether the total load Iindicator fails to meet a lower threshold. The lower
threshold, in the present example, 1s 0.2, although a wide variety of other lower thresholds
may be used In other examples. In the example performance discussed above, the total
load Indicator of 0.91/7 exceeds 0.2, and the determination at block 705 Is therefore

negative.

[0074] At block 710, the scaling control subsystem 120 determines whether the total
load Indicator meets an upper threshold. The upper threshold, in the present example, Is
0.8, although a wide variety of other upper thresholds may be used In other examples. In
the example performance discussed above, the total load indicator of 0.917 exceeds 0.8,
and the determination at block 705 Is therefore affirmative. The performance of the
method 700 therefore proceeds to block 715, at which the scaling control subsystem 120
selects an incrementing adjustment action. The incrementing adjustment action 1s an
action to increase the number of instances 108-1 by one (that Is, to spawn an additional

Instance 108 of the request handling process).

[0078] \When the determination at block 710 I1s negative, the scaling control subsystem
120 Instead proceeds to block 720, at which a no adjustment action, also referred to as
no-operation or NOOP, is selected. The NOOP action results in no change to the number

of Instances 108 at the distributed computing subsystem 104.

[0076] \WWhen the determination at block 705 Is negative, the scaling control subsystem
120 proceeds to block 725, at which a decrementing adjustment action Is selected. The
decrementing adjustment action is an action to reduce the number of instances 108-1 by
one (that Is, to destroy one instance 108 of the request handling process, releasing

execution resources for other tasks).

[0077] When an adjustment action has been selected, the scaling control subsystem
120 returns to block 350. Referring again to FIG. 3, at block 350 the scaling control

subsystem 120 instructs the distributed computing subsystem 104 to adjust the number

18

WO 2021/086339 PCT/US2019/058694

of iInstances 108 of the request handling process, according to the selected adjustment
action. In other words, at block 350 the scaling control subsystem 120 (e.g. the instance
management controller) instructs the distributed computing subsystem 104 to either
create an additional instance 108, destroy an instance 108, or make no changes to the
number of instances 108. In the event that the no adjustment action Is selected, at block
350 the scaling control subsystem 120 can omit the transmission of an explicit instruction

to the distributed computing subsystem 104.

[0078] In the example discussed above, the incrementing adjustment action was
selected, and therefore at block 350 the scaling control subsystem 120 can instruct the
distributed computing subsystem 104 to create an additional instance 108. Turning to
FIG. 8, the distributed computing subsystem 104 is shown, in which the processor 200-
4 memory 204-4 and communications interface 208-4 have been deployed to implement

a fourth instance 108-4 of the request handling process.

[0079] At block 355, responsive to any changes to the population of instances 108
deployed at the distributed computing subsystem 104, the scaling control subsystem 120
updates Instance identifiers In the Iinstance identifier repository 240 and the load
pbalancing repository 236. For example, Table 6 shows an updated instance identifier
repository 240, in which the instance 108-4 Is represented along with the instances 108-
1 to 108-3. The instance identifier repository 240 can also contain other information such

as network addresses corresponding to each of the instances 108.

Table 5: Instance identifier repository 240

108-1
108-2
108-3
108-4

[0080] Updates to the instance identifier repository 240 can be propagated to the load

balancing repository 236, as shown below In Table 6.

Table 6: Load Balancing Repository 236

Instance ID Load Indicator Modified Load Indicator
108-1 0.95 0.95

19

WO 2021/086339 PCT/US2019/058694

108-2 1.4 1.1
108-3 1.2 0.7
108-4 0, 0,

[0081] Further performances of the method 300 can follow, to continue adjusting the

number of iInstances 108 In response to changes In self-percelived load indicators.

[0082] Self-perceived load indicators generated internally by the instances 108 may
provide a more accurate assessment of computational load at the instances 108 than
externally-observable metrics such as CPU utilization. In addition, the use of incrementing
or decrementing actions by the instance management controller, selected based on
computationally inexpensive threshold comparisons, may allow the use of the above-
mentioned assessment of computational load to make automatic scaling decisions while
reducing or eliminating the need for computationally costly load estimation mechanisms

at the scaling control subsystem 120.

[0083] It should be recognized that features and aspects of the various examples
provided above can be combined Iinto further examples that also fall within the scope of
the present disclosure. In addition, the figures are not to scale and may have size and

shape exaggerated for illustrative purposes.

20

WO 2021/086339 PCT/US2019/058694

CLAIMS

1. A system comprising:
a distributed computing subsystem to execute an adjustable number of instances
of a request handling process; and
a scaling control subsystem connected with the distributed computing subsystem
(o}
allocate recelved requests among the instances of the request handling
Process;
recelve respective self-perceived load indicators from each of the
Instances of the request handling process;
generate, based on the self-perceived load indicators, a total load
iIndicator of the distributed computing subsystem:;
compare the total load indicator to a threshold to select an adjustment
action; and
iInstruct the distributed computing subsystem to adjust the number of

INstances of the request handling process, according to the selected adjustment

action.

2. The system of claim 1, wherein the distributed computing subsystem executes each
iInstance of the request handling process to:

generate responses to a subset of the requests allocated to the instance;

for each response, generate at least one execution timestamp; and

generate the self-perceived load indicator based on the at least one execution

timestamp.

3. The system of claim 2, wherein execution of each instance of the request handling
process causes the distributed computing subsystem to:
determine an execution time based on the at least one execution timestamp;
determine a ratio of the execution time to a stored benchmark time; and

return the ratio as the self-perceived load indicator.

21

WO 2021/086339 PCT/US2019/058694

4. The system of claim 1, wherein the scaling control subsystem, In order to generate

the total load Iindicator, I1s to: generate an average of the self-perceived load indicators.

S. The system of claim 4, wherein the scaling control subsystem, prior to generation of
the total load indicator, Is to: modify each self-perceived load indicator according to a

decay factor based on an age of the self-perceived load indicator.

6. The system of claim 1, wherein the scaling control subsystem, in order to compare
the total load indicator to a threshold to select an adjustment action, Is to:

select an increment adjustment action when the total load indicator meets an
upper threshold;

select a decrement adjustment action when the total load indicator does not meet
a lower threshold; and

select a no-adjustment action when the total load indicator meets the lower

threshold and does not meet the upper threshold.

/. The system of claim 1, wherein the scaling control subsystem iIs to:
responsive to instruction of the distributed computing subsystem to adjust the
number of iInstances, obtain and store updated instance identifiers corresponding to an

adjusted number of the instances.

8. The system of claim 1, wherein the scaling control subsystem Iincludes:

(1) a load balancing controller to:
allocate the recelved requests among the instances; and
recelve the self-perceived load indicators; and

(11) an Instance management controller to:
generate the total load indicator;
compare the total load indicator to the threshold; and
iInstruct the distributed computing subsystem to adjust the number of

Instances.

22

WO 2021/086339 PCT/US2019/058694

9. A method comprising:

allocating recelved requests among an adjustable number of instances of a
request handling process executed at a distributed computing subsystem;

recelving respective self-perceived load indicators from each of the instances of
the request handling process;

generating, based on the self-perceived |load indicators, a total load indicator of
the distributed computing subsystem;

comparing the total load indicator to a threshold to select an adjustment action;
and

Instructing the distributed computing subsystem to adjust the number of

Instances of the request handling process, according to the selected adjustment action.

10. The method of claim 9, wherein generating the total load indicator comprises

generating an average of the self-perceived load indicators.

11. The method of claim 9, further comprising: prior to generating the total load
iIndicator, modifying each self-perceived load indicator according to a decay factor

pbased on an age of the self-perceived load indicator.

12. The method of claim 9, wherein comparing the total load indicator to a threshold to
select an aqjustment action comprises:

selecting an increment adjustment action when the total load indicator meets an

upper thresholdq;

selecting a decrement adjustment action when the total load indicator does not

meet a lower threshold; and

selecting a no-adjustment action when the total load indicator meets the lower

threshold and does not meet the upper threshold.

23

WO 2021/086339 PCT/US2019/058694

13. The method of claim 9, further comprising: responsive to instructing the distributed
computing subsystem to adjust the number of instances, obtaining and storing updated

Instance identifiers corresponding to an adjusted number of the instances.

14. The method of claim 9, wherein each self-perceived load indicator Is a ratio of an

execution time for a corresponding one of the requests to a stored benchmark time.

15. A non-transitory computer-readable medium storing computer readable instructions
executable by a processor of a scaling control subsystem to:

allocate recelved requests among an adjustable number of instances of a
request handling process executed at a distributed computing subsystem;

recelve respective self-perceived load indicators from each of the instances of
the request handling process;

generate, based on the self-perceived load indicators, a total load indicator of the
distributed computing subsystem;

compare the total load indicator to a threshold to select an adjustment action;
and.

iInstruct the distributed computing subsystem to aqjust the number of instances of

the request handling process, according to the selected adjustment action.

24

WO 2021/086339 PCT/US2019/058694

112-1 Client
Client computing

112-3

_ _ Client
computing device

device

computing
device

120

Scaling Control
Subsystem

Distributed Computing
Subsystem 104

108-1
Instance

108-2
Instance

108-3

Instance

FIG. 1

WO 2021/086339 PCT/US2019/058694

120

22

Processor

226
Commes. Interface

240
208-1 200-1 204-1 @
Interface Processor Memory
104 208-2 200-2 204-2 @
Interface Processor Memory
208-3 200-4 204-4 @
Interface Processor Memory
t 208-4 _ { 200-4 _ $204-4
¢ Interface ; ' Processor ' Memory :

FIG. 2

WO 2021/086339

Recelve request

31

Allocate request to instance

33

Receive response, self-perceived

load indicator

Moditfy self—p?'ceived load
Indicator per decay factor

gEND G G $GEEnn $#CGEEE $GEED) G G $CGEE 2 02—

Generate total load indicator

|

|

|

|

| Compare total load indicator to
| threshold, select adjustment
| action

|

|

|

|

350
Instruct adjustment of number

of instances

335
Update instance IDs

FIG. 3

PCT/US2019/058694

Generate self-perceived load
indicator

325

Return response, self-perceived
load indicator

301

300

U

WO 2021/086339 PCT/US2019/058694

4/8

112-2

Client 112-3
computing Client

112-1
Client
computing
device

device computing
device

| 116
| Network

120
Scaling Control
Subsystem
[
108-1
108-2
108-3

Distributed Computing
Subsystem

FIG. 4

WO 2021/086339 PCT/US2019/058694

500

From Block 315

505
Generate execution timestamp(s)
510
Determine execution time

215

Determine ratio of execution time
to benchmark time

To Block 325

FIG. 5

WO 2021/086339 PCT/US2019/058694

112-2
112-1 Client 112-3
Client computing Client

computing device computing
device device

100 \

120
Scaling Control
Subsystem
604 o038
600 SPL: 0.8 | Response: 400
l
108-1
108-2
108-3

Distributed Computing
Subsystem

FIG. 6

WO 2021/086339 PCT/US2019/058694

/00

From Block 340

05

Total load indicator < lower
threshold?

Yes

No

/10

otal load indicator > upper
threshold?

Yes

No

25 /20 15

Select decrement Select no Select increment
adjustment adjustment adjustment

To Block 350

FIG. 7

WO 2021/086339 PCT/US2019/058694

8/8
208-1 200-1 204-1 @
Interface Processor Memory
104 208-2 200-2 204-2 @
Interface Processor Memory
208-3 200-4 204-4 @
Interface Processor Memory
208-4 200-4 204-4 108-4
Interface Processor Memory ——

FIG. 8

A.

B.

International application No.

INTERNATIONAL SEARCH REPORT

CLASSIFICATION OF SUBJECT MATTER

PCT/US 2019/058694

GOGF 11/34 (2006.01)
GOG6F 15/177 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

FIELLDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOOF 11/00-11/34, 15/00-15/177, 9/00-9/455

Documentation searched other than minimum documentation to the extent that such documents are included i1n the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EAPATIS, ESPACENET, PatSearch (RUPTO internal), Information Retrieval System of FIPS, USPTO, PATENTSCOPE,

Google
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 9176759 B1 (GOOGLE INC.) 03.11.2015, abstract, column 1, lines 35-42, 1-4, 6-10, 12-15

column 2, lines 6-25, column 2, line 59 — column 3, line 38, column 4, lines 1-13,
column 6, line 43 — column 7, line 2, column 7, lines 29-47, column &, lines 37-63,
column 9, lines 22-30, column 9, line 59 — column 10, line 27, column 10, line 56
—column 11, line 67, column 13, line 21 — column 14, line 20

Y 5,11
Y US 2013/0290499 A1 (ALCATEL-LURENT USA INC.) 31.10.2013, abstract, 5,11
paragraph [0010]
A US 2013/0204948 A1 (CLOUDERA INC.) 08.08.2013 1-15
D Further documents are listed in the continuation of Box C. D See patent family annex.
4 Special categories of cited documents: “T” later document published after the international filing date or priority

&GO’?

{.{.P,3

document defining the general state of the art which 1s not considered
to be of particular relevance

document cited by the applicant in the international application
earlier document but published on or after the international filing date
document which may throw doubts on priority claim(s) or which 1s
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than

the priority date claimed

Date of the actual completion of the international search

date and not 1n contlict with the application but cited to understand

the principle or theory underlying the mvention

“X” document of particular relevance; the claimed invention cannot be

considered novel or cannot be considered to involve an inventive

step when the document 1s taken alone

“Y” document of particular relevance; the claimed invention cannot be

considered to imvolve an inventive step when the document 1s
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of mailing of the international search report

30 June 2020 (30.06.2020) 23 July 2020 (23.07.2020)
Name and mailing address of the ISA/RU: Authorized officer
Federal Institute of Industrial Property,
Berezhkovskaya nab., 30-1, Moscow, G-59, A. Tokarev

GSP-3, Russia, 125993
Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37

Form PCT/ISA/210 (second sheet) (July 2019)

Telephone No. +7 (495) 531-64-81

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report

