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Table 1. Exemplary CTU syntax for signaling whether a CTU is coded in lossless mode

coding tree unit{ ) {

Breseriptor

xCib = CthAddrX. << Ciblog2SizeY

oo woc won ok mou o muo Do mem o wm oo X

3

cty_fosstess_flag] CibAddrX JT CthAddrY |

if{ shice_sac_hmma_flag {| slice_sao_chroma flag)

sao{ CibAddrX, CihAddrY )

if shice_alf enabled flag }{

alf cth_flag| 0 || CibAddrX || CtbAddrY |

ae(vy

i alf cth flag] ¢ 1f CHAAIEX 1 ChAddrY ) ¢

i slice num_ alf aps ids luma > 0)

alf use_aps flag

ac{v}

i alf use aps flag ) {

H{ slice num alf aps wds luma> 1)

alf_lewma_prev_filter uix

as(v)

Yelse

alf loma_fixed filter idx

ae{v}

—

FIG. 5
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Table 2: Exemplary SPS syntax table for sps_ctu_lossless present flag

sps_sao_enabled flag 8{1}
sps_all_enabled flag u{l}

601 : - sp;‘z c?u_iﬁn;si‘;ss “pr'ese*;s}:ﬁ(;_g mmmmm T mEmmmT u‘(l)u “:
; ifisps_ctu_lossless_present flag == 0 ;
sps_transiorm_skip_enabled_flag w 1)

if{ sps_transform_skip_enabled flag)
sps_bdpem_enabled fiag u{1)
if{ sps_bdpem _enabled flag && chroma format ide == 3)
spa_bhdpem_chrema_enabled flag u(l)
FIG. 6
Table 3. Exemplary CTU syntax table when sps_ctu lossless present flag is signaled
coding_tree_uoit{ } { Descripter
xCth = CbAddrX << CtbLogZSizeY
yCib = CibAddrY << CtbLog2SizeY
701 ifisps ctu fossless presemt flog) 7
A L R R — U
if{ shce_sao_luma flag || slice_sac_chioma flag )
sacd{ CthaddrX, CihAddrY )
if stice alf enabled flag ¥
alf_eth flag] 0 H CthADAX H{ CibAddrY § ae(v)
if{ alf cth flag{ 6 }{ ChAddX §f ChAddrY §) {
i shee_nom alf aps ids fuma>0)
alf use aps flag ag(v)
H{ alf_use aps flag ) {
i#{ slice num_alf aps_ids loma> 1)
alf luma_prev_filier_ idx ae(v)
Yelse
alf_huma_fixed filter idx ag(v})

Ny

FIG. 7
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801

[e2]
-
%)

Table 4. Exemplary slice_header syniax of slice level lossless flag

stice header( ) { Descriptoy
slice_pic_order_cng ish BV}
“’I?,Z'é"?}f&;?;“:?;;“““"’“""’"“”“““““““““"""’““"’""”"“ w1
: sl Jossless flag 7= 0 & sps_sao_enabled flag && Ipic_sao cvabled present flag) 1 L b
{
slice_sao_luma flag u{l}
iff ChromaArrayType 1= 0)
slice sac_chroma_flag u{l}
){
§1 i(stice lossless flag == 0 & sps_all_enabled Hag && Ipic_alf enabled present_fag) | B
b f i
slice_alf enabled flag w1} -
if( stice alf cnabled flag) {
stice_pum_alf aps ids_homa a3}
for(i =01 <slice_num_alf_aps_ids luma; i++)
shice_alf aps id_Jamafi} u{3}
if{ ChromaArrayType = 0)
slice_alf chroma_idc w2y
Y shice_alf chroma ide)
slice_alf aps id chroma u{3)
¥
¥
R ) N —— -
Ipic_deblocking filter_overnde present. ﬂag, && slice lossiess jlag == 0% §
slice_deblocking filter override flag u(h} -
if{ slice deblocking filter overnde flag ) {
stice_deblocking filter disabled flag u{1)
Y tslice_deblocking filter disabled flag) {
slice_beta_offset_div2 se{v}
shice_te_offset div2 selv)
}
H

FIG. 8
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Table 5. Exemplary coding tree unit syntax of a method in which CTU fevel lossless flag is
conditionally signaled if slice lossless flagis equal to O

coding froe_onit ) {

Beseriptor
xCib = CibAddrX << CthLog2SizeY
yCib = CibAddrY << CibLog2SieeY
N g ifisiice lossless flag == 0} H
901 e - — H
i ctu_lossless flag] CtbAddrX Jf CtbAdary uid} ;

if{ shice_sao_luma flag {| slice sao chroma flag)
sao{ CibAddrX, ChAddrY )

i shice alf enabled flag ){

alf_eth flag] 0 || CthbAddeX | ChAddrY | ae(vy

i alf otb flag] 6 H CHAdEX | CihAddrY 1) {
i stice_pum_alf aps ids_huma>§}

alf use_aps flag ae(vy
i alf wse aps flag) |
Hf stice_pum_alf aps ids_huma> 11}
alf mma prev_filter idx ae(v)
elge
alf juma_fixed filter idx ae{v}

e

FiG. 9
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Table 6 Exemplary picture header syntax table of picture level lossless coding <Part I

picture_header_rbsp{ ) { Descripter
ron_vefercnce picture flag v{l)
gdr_pic_flag w1y
no_outpui_of prier pics flag u(l)
H{ gdr_pic_flag)
reCovery_poc cnt ue(v})
ph_pic_parameter_set id ae{v)
if{ sps_poc _msb flag) {
ph_poc_msb_present flag u(l)
if{ ph poc owh present flag)
poc_msh_val u{v)
}
1001 ; pic_fossless flag all)
. if{ sps_sac_enabled flag && pic lossless flag == () {
pic_sas_enabled present flag u(l}
if( pic_sao_cnabled present flag) {
pic_sac_luma enabled flag a(l)
H{CheomaArmayType 1= 0)
pic_sao_chroma_enabled_flag u(l)
3
¥
1002 ifY sps_alf enabled flag && pic lossless flag == 03 {
pic_alf enabled present flag uii}
if{ pic_alf cnabled present flag ) {
pic_alf enabled_flag u(1)
if( pic_alf enabled flag ) {
pic_mum_alf aps ids luma 83}
for(1=0; i <pic_nuwm_alf aps_ids_luma; i++)
pic_a¥f aps id lumali] u{3)
if{ ClwomaArrayType = )
pic_alf chroma_ide w2y
if( pic_alf_chroma idc)
pic_alf aps_id chyroma 8(3}

ot

FIG. 10
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Table 6: Exemplary picture header syntax table of picture level fossless coding <Part IT>

1003 4| i deblocking filter override enabled flag && pic lossless flag —=O)4 | !
pic_debloclang filter override present flag (i}
if{ pic_debloclung filler overnde present flag) {
pic_deblocking filter override_flag (i}
i pic_deblocking filter_overnde flag) {
pic_deblocking filter disabled flag u(1}
i tpic deblocking filter disabled flag) {
pic_beta offset div2 Se{v)
pic_te_offset div2 se(v)
}
}
}
1004 | i ops s crablod flag 4 pic losless Jig - )L S R
pic_kmes_enabled flag u{l}y

#{ pic_lmes_enabled flag ) {

pic_lmes aps id u(2)

H{ ChromaArrayType = 0

pic_chroma_residual_scale_flag wi)

o

(o

12 ‘i»@s %@ {continued)
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Table 7. Bxemplary slice header syntax table when pic_lossless flag is signaled

shice header(} { Descriptor
shice pic order cut Ish HIY]
1101 ! if (pic_lossless flag == ) Ty
stice_lossless flog u(l) :
H
FIG. 11
Table 8 Exemplary PPS syntax table with pps_lossless flag
pic_parameter_set rbsp() { Descriptor
pps_pic_parameter set id ue(v}y
pps_seq parameter set id u{4)
pic_width_in_bhuna_samples ae{v})
pic_height_in luma_samples ue{vy
1201 :" _ppslesslessfiog “3@““2
; if (pps ltossless flag) .
deblocking filter_control _present_flag i}
if{ deblocking filter_control_present_flag) {
deblocking filter_override_enabled flag u(l)
pps_deblocking filter disabled flag u(1}
i{ tpps_deblocking filter disabled flag) {
pps_beta_offset_divl se{v)
pps_tc_offvet div2 se{v)
H
¥
;

FIG. 12
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Table ¢ Exemplary picture header syntax table when pps lossless flag is signaled <Part >

picture_beader_rbsp( ) { Deseripter
ron_refercnce picture flag v{l)
gdy_pic_flag wly
no_outpui_of prier pics flag u(ly

iH{ gdr pic flag)

recovery_poc_omt ue(v)

ph_pic_parameter set id ug{v)

if{ sps_poc_msb flag) {

ph_poc_msb_present flag u(1)

{#f{ ph poc owh present flag)

poc_msh val u{v}

ES
3

if (pps_lossless_flag == G}

t i
1301 ; pic_lossless_flag uii} ;
H H{ sps_sao_enabled_flag &4 pic_lossless flag ==& { H
pic_sao_enabled present flag wiy
if{ pic_sac_enabled_present flag ) {
pic_sae lma_enabled flag uil)
H{ChromaArmayiype t= 0)
pic_sas_chroma enabled flag ufi)
3
3
3
4 won
1302 if{ sps_alf cnabled flag &% pic lossfess flug == 1 H
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm o

pic_all enabled present flag uii)

i pic_alf enabled present flag ) {

pic_alf enabled flag w(i)

i pic_slf enabled flag ) {

pic_oum_alf aps ids howa a(3)

for( 1=0; i <pic_pum_alf aps ids_lnma; i++)

pic_alf aps id homali] w3}
H{ ChromaArmayType 1= 0}
pic_alf chroma_ide w2}
i pic_alf chroma ide)
pic_al aps id chroma ui3}
3
h
h

FIG. 13
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Table 9. Exemplary picture header syniax table when pps_lossless flag is signaled <Part 11>

i#f{ deblocking filter override enabled_flag && pic_lossless flag == &) { i
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm SRR IR of
pic_deblocking filter_pverride present_flag w1}
if{ pic_deblocking filier_overnde present flag ) {
pic_deblocking filier overvide flag u(ly
t{ pic_deblocking filer overnde flag) {
pic_deblocking filter_disabled_flag u{l}
i tpic_deblocking filter disabled flag) {
pic_beta_offset div2 se{v)
pic_te_offset divi se(v)
}
3
5
o .. 5 . . 195 S T 0 TSI
if{ sps_Imcs cnabled flag &4 pic lpssless flag==8) { §
ol
pic_tmes enabled flag a(l)
#{ pic_lmes enabled flag ) {
pic_Imes aps id w2y
H{ ChromaAstayType = 0}
pic_chroma residual scale flag ully
}
k3
1
k3
3

F g{;, §3 {continued)
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Table 18 Exemplary SPS syntax table for sequence level lossless coding <Part >

seq_parameter set tbsp() { Descriptor
sps_decoding parameter set id u(4)
sps_video paramecter set id u($)
sps_max sublavers minugl u(3}
sps_rescrved _zero_4bits w4}
sps_pil dpb _hrd params present flag a(l)
i#{ sps_ptl dpb hrd params present flag)
profile tier level{ 1, sps_mas sublayers minusi )
gdr_caabled_flag wy
sps_seq parameter_set id w4}
chroma_format ide a2}
f{ chroma format ide == 3)
separate_colour plane flag w1}
ref pic resampling enabled flag w1y
pic_width_max_in loma_samples ue{v)
pic_height max_in_luma_samples ue{v)
sps_log? cte size minasS (2}
subpics present flag (1)
iff subpics present flag) {
sps_num_sebpics minual w8
for( i=0;1 <= sps_num_subpics_minusi; i++} {
subpic_ctu_top left x{i] a{v}
subpic ctu_top deft vli}] v}
subpic_width_minusif i} vy
subpic_helght minusifi] u{v}
subpic_ireated as pic flagli] w1
foop filter across_subpic_enabled flag{i (1}
}
B
sps_subpic_id present flag w1y
if{ sps_subpics_id present flag) {
sps_subpic_id_signalling present_flag w1}
H{( sps_subpics i1 signalling present flag) {
sps_subpic 14 len_minust ae{v)
for(1=10;1 <= sps numm_subpics minosi; i++)
sps_ subpic i8] wv)
3
5

FIG. 14
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Table 16 Exemplary SPS syntax table for sequence level lossless coding <Part 1>

bit_depth minus8 ge{v)
win_gp prime ts_minasd ue(v)
sps_weighted pred flag w1}
sps_weighted bipred flap w1}
log2 max_pic_order_¢nt Ish_minusd w4}
sps_poc_msh flag a1}

if{ sps_poc _msb_flag )

poc_msh_len minusi ve{v)

if{ sps_max_ sublayers minusi > 0)

sps_sublayer_dpb_params_flag w( )

i sps_ptl dpb hrd params present flag)

dpb parameters{ 0, sps_max_sublavers punssi, sps_soblaver dpb params flag)

fong term_yef pics flag w1}
inter layer ref pics present flag w1y
spe_idr_rpl_present flag w1}y
rpil_same as_rpib_flag w(l)

for i=0; 1 <lpl] _smme as rpl0 flag 7201, i++)

num_ref_pic Isis in_spsfi] ge{v)

for{ =0, <mum_ref pic Hsts in sps{if i+

ref pic list stroct(i.})

k]

5
if{ ChromaAmrayType I=0)

gtbtt_dual tree indra flag w1
feg? min lwma ceding block size minus2 ve{v)
partition constraings override_enabled flag u(1)
sps_log? &iff min gt min cb_intra_slice hnma ue(v)
sps_log? diff min_gf min ob_inter slice uelv)
sps_max it hierarchy depth inter slice 1e{v)
sps_max_miti bierarchy_depth intra_slice luma ve{v)
if{ sps_max_mit hierarchy depth intra slice luma = 0 ) {

sps_log? diff max bt min_g¢ intra_slice lnma ue(v)

sps_log2 diff max tt min_ gt intra_slice Juma ue{v)

R
s

i sps_max_mit hicrarchy depth inter shice = 0){

sps_log? diff max bt _min_gt_ister slice ue(v)

sps_lop? 4T max ft min gt jater slice ue(v)

et

FIG. 14 (continued)
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14061

1402

Table 10 Exemplary 8PS syntax table for sequence level lossless coding <Part 11>

Y gtbtt dual tree intra flag) {

sps_log? diff min gt min ch indra_slice chroma ae(v)
sps_max_ it bierarchy_depth intra shice chroma ue(v)
Y sps max_mit hierarchy depth intra shee chroma 1= 0} {
sps_log? diff meax bt min_gf intra_slice chroma ue{v)
sps_log? diff max f min gt istra shice chroma ue(vy
4
K
0 spelossless flag T T T TT T T T WL T T
i if(sps_losstess_flag == 6} { §
sps_max_huma transform_size 64 flag a(l)
sps_joint_cher enabled flag a(l)
if{ ChremaArmayType =03 {
same_qp_table_for chroma w(l)
num{JpTables = same _gp_fable for chroma? 1 : (sps_joint_cher enabled flag73:2)
for(1 =0, i <numQpTables; i++ ) §
gp_table_start_minus26{i] se(v}
num_points_in_gp table_minusifi} ue{vy
for(j=10; § <= num_points_in gp table minusifi} j++ ) {
delta_gp_in_val minusifijfi] ue(v)
delta_gp & valli13ij] ue{vy
3
}

} e
I A ——— !
sps_sae_cnabled flag u(l)
sps_all enabled flag a1}
sps_transform_skip_enabled_flag (1)
I —————— .

#{ sps_transform skip enabled flag

sps_bdpem_enabled flag (i)
i sps_bdpem enabled flag && chroma format ide == 3}

sps_bdpem_chroma_enabled flag (1)
sps_ref wraparound enabled flag Wl
if{ sps ref wraparound ecuabled flag)

sps_ref_wraparound _offset_minusi ue(vy
sps_temporal_mvp enabled flag (i)

FIG. 14 {continued)
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Table 16 Exemplary SPS syntax table for sequence level lossless coding <Part 1V>

{ sps_temporal mvp enabled flag )

sps_sbtmvp _enabled flag w(l)
sps_amvr_enabled fiag w1
sps_bdeof _enabled flag w(l)
if{ sps_bdof cnabled flag)

sps_bdof pic_present flag w1y
sps_smvd_enabled flag {1}
sps_dmvr_enabled flag u(l)
if{ sps dmve enabled flagy

sps_dmvy_pic_presend_flag w(i}
sps_mumve_enabled flag u(1)

1404 iisps_fossless flag == @) i
sps_isp_enabled flag (1) -
§
sps_mrl enabled flag w
sps_mip_enabled flag wl)
iff ChromaArray Type 1= 0)

sps_cclm_enabled flag u{l)
if{ chroma_format_idec == 1} {

sps_chrowa_horivontal_colocated flag w)

sps_chroma_vertical_collocated flag w1}
¥

S g o g o et b N
sps_orts_enabled flag w1y
i sps mis enabled flag ) {

sps_exphcit_mis_intra_enabled flag w

sps_explicit_mits_inter _enabled _flag a{l}y
}

1406 ; ifisps lossless _flag ==8) { j

sps_sbi_enabled flag u(1)
sps_affine_enabled flag w1y
1 sps_affine_cnabled flag) {

sps_affine_type flag a(ly

sps_affine_amvy_enabled_flag w1}

sps_affine pref cnabled flag wh

Y sps_affine_prof enabled flag)

sps_prof_pic_present flag wi)

(-

FIG. 14 {continued)
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Table 10 Exemplary 8PS syntax table for sequence level lossless coding <Part V>

it chroma_format 3de == 3){
sps_palette enabled_flag a1}
sps_act_enabled_flag u( 1)
}
sps_boew_enabled_flag wi)
sps_ibe_enabled flag u(l)
sps_chip enabled flag {1}
if{ sps_mmvd _cnabled flag)
sps_fpel mmvd enabled flag u(1)
sps_triangle enabled flag w1
1907 | _Wopslowless flag =0 :
sps_lmes_cnabled flag u{l)
sps_ifnst_enabled flag wh
1408 il L S j
sps_ladf enabled flag w1
i sps ladf enabled flag ) {
sps_sum ladf intervals minus2 {2}
sps_Iadf lowest imterval gp_offset se{v}
for( i=0;1<sps_pum_ladf intervals_mimus2 + 1;1++ ) {
sps_ladf gp offset{ 1} 8e{v)
sps_ludf delta threshold minusiii] ue(v)
}
3
sps_scaling list enabled_flag (1)
sps_loop filter_across_virtual boundaries disabled present flag (1)
#{ sps_loop filler across virtal boundaries disabled present flag) {
sps_num_ver_virtual boundaries w(2)
for(1=0;1 <sps_mum_ver_virtoal boundaries; t++ )}
sps_virtual_beundaries _pos _x{i} w(13)
sps_num_hor virtual_boundaries w2y

for{ 1=0; i <sps nom hor vicual boundaries; H+ )

sps_virtual_boundaries_pos_y{ i} u(13}

[

FIG. 14 {continued)
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Table 10 Exemplary SPS syntax table for sequence level lossless coding <Part VI

i sps_ptl dpb hrd params present flag ) {

sps_general_bed params_present flag w1}

i#{ sps_general hrd params present flag ) {

general hed parameters( )

if{ sps_max_sublayers minusi > 0 )

sps_sublayver cpb_params present flag a1}

firstSubLaver = sps_sublayer cpb_params presert flag 74
sps_raax_sublayers roinusi

ols_hrd paramcters{ firstSubLayer, sps_max sublavers minusi )

¥
3
field seq flag a1}
vl pargmeters prosent flag (i}

i vui_parameters _present flag )
vui_paramcters( ) /* Specified in ITU-T H.SEI | ISO/IEC 230027 #/
sps_extension_fiag w1}

H{ sps_extension_flag)
while{ more rbsp data( } )

sps_extension_data flag (1)

thep trailing bits()

Fgﬁe i4 {continued)
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Table 11: Exemplary coding tree unit syntax table of CTU level residual coding flag

coding,_tree_umit{ } { Bescripter
xCib = CibAddX << Ciblog2SizeY
yCib = CtbAddrY << CtbLog2SizeY

1501 : ctu_losstess _flagf CibAddrX i CtbAddrY | u{l) H
; iffcru lossiess flagi CtbAddrX [f CihAddrY [ :
i ctu_rre flag{ CthdddrX {f CtbAddrY ] uihs §

if{ sEicem:sas)_iuma_ﬂag";w; i st ice‘sao_c‘gmma_ﬂag')
saof CihAddrX, ChAddrY )
if{ slice_alf enabled flag ¥
aif_cth_flag] 0 | ClhAddrX 1 ChALdrY § ae(v)
i alf ctb flag{ 0 ] CibAddrX I CibAddrY 1) {
i shice_num alf aps ids tuma>0)

alf_use_aps_flag ae{v)

Y alf use aps flag ) {

H{ slice_pum_alf aps_ids_loma> 1)

alf luma_prev_filter idx ae{v}
Y else
alf_homa_fized_filter idx ae{v)

-

FIG. 15
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Table 12. Exemplary tansform_unit syntax of CTU level residual coding flag

transform_unit{ 20, v0, tbWidth, thHeight, reeType, subTulndex, chType ) { Bescriptor

i tn cbf omal 0 y0 ] && tecType = DUAL TREE CHROMA) {
if{ sps_transform_skip enabled_flag && Bdpcaflapi xCH{v0H O] &&
thWidth <= MaxTsSize && tbHeiglt <= MaxTsSize &&
{ IntraSubPartittonsSplt] x0 I y0 ] == I8P WO SPLIT ) && lcu sbt flag)
fransform skip flag] x0 fv0 H O} ae{v)
1601 il Hransform skip flagl <0 YvO HO 1 || e sre flagl CrbAddrX J| CthAddyY J) i
vesidual coding x0, v0, Log2({ hbWidth ), Log2(tbHeight ), 0)
clse
residual_ts coding( x0, y0, Log2( thWidth ), Log2( thHeight ), 0}

¥
(1o cbf cb{xCHyC] && weeType 1= DUAL TREE LUMA Y {
if{ sps_transform_skip cnabled flag && BdpemFlagi x0OHv0 [ 1] &&
wio <= MaxTs8ize && hC <= MaxTsNize && lcu sbt flag)
transform skip flag{ xCHyCH 1] ac{vy
1602 H{ Hransform_skip flag] xCHyC Y U1 | etse_sre flag] CtbAddrX }f CibAdarY [y :
residual_codingd xC, yC, Log2(wC ). Log2( hC), 1)

else

residual_ts coding( xC, vC, Log2{w(), Log2{ hC), 1)

b}
H

i o cbf crf xCH yCl && weeType = DUAL TREE LUMA &&
Wt obf cbixCHyC ] && tu joint cher residual flagi xCHyC11) {
f{ sps_transform_skip_enabled flag && 'BdponFlagf x0Hy01{ 2] &&
wiC <= MaxTsSize && BT <= MaxTsSize && 'cn <bt flag)
transform_skip flag{xCHyCH 21 ae{v)
1603 if{ Mransforra skip flagl xCHyC I 211 | et _rre flagl CibdddrX Jf CtbAddrY ] i
residual_coding( xC, yC, Log2{wC }, Log2{ h(C), 2
clse
restdual s codingd xC, vC, Log2(wC ), Log2(hC )y, 2)

ot

FIG. 16
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Edges that are at the boundary of the picture,

- FEdges that coincide with the boundaries of a sobpicture for  which
foop filter across subpic enabled flagl SubPicldx 1is equal 10 0,

Fdges that coincide with the wvirmmal ‘tboundaries of the picture when
Virtual BoundariesDisabledFlag is equal to 1,

Fdges that coincide with tile boundaries when loop filter across tiles enabled flag is equal
100,

Edges that ceoincide with slice boundaries when loop filter across slices enabled flag is
equal to 0,

- Edges that coincide with  upper or left  boundaries of slices with
slice deblocking filter disabled flag equalto 1,

—  Edges within slices with slice deblocking filter disabled flag equal to 1,

oo o o e e o o s o o o b ¢
1701 8  Edges that coincide with upper or left boundaries of coding tree wnit with ctu lossiess flagy
: eqgual to 1, :

i

i Edges within a coding ree unit with ctu lossless flag equal to 1. ;

Fdges that do not correspond to 4x4 sample grid boundaries of the luma component,
—  Edges that do not correspond to 8§28 sample grid boundaries of the chroma component,

Edges within the luma component for which both sides of the edge have
intra_bdpem homa flag equal to 1,

Edges within the chroma components for which both sides of the edge have
intra_bdpem _chroma flag equal to 1,

Edges of chroma subblocks that are not edges of the associated transform unit,

FIG. 17
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Table 13 Exemplary coding tree unit syntax table to disable SAQ

coding teoe unit{ 3 { Degeriptar
xCib = CtbAddrX << CibLog2RizeY

i cti_lossless_flagl CibAddrX Jf CibAddrY | ey H

= IR, b §

1801 ! iffcin lossless flag] CtbAddyX Jf CthbAddry i ;
g ofy_sre_flapl CthAday X Jf CthAddrY | ufl} i

§

§ E

sao{ CibAddeX, CthAddrY )
if{ slice_alf enabled flag }{
alf cth flag| 0 || CthAddeX }] ChAddrY | ae{v)
Half ctb flag] 0 1 ChASX | CibAddrY 1) {
if( slice_oum_alf_aps_ids_luma >0}

alf use aps flag ae(v})

i aff_use_aps_flag ) §

i slice_mum_alf aps ids luma> 1)

alf hima prev_filter_idx ae(v)
i else
alf tuma_ fixed filter idx ac(v)

S

FIG. 18
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Table 14: Exemplary coding_tree umit syntax to disable ALF

coding troe anit{ ) { Degeriptor
xCib = CihAddrX << CibLog28izeY
vCib = CibAddrY << CibLog2SizeY

, ctu_losstess fagl CibAddrX jf CibAddrY | uil) §
o i iffcin lossless flag) CtbAddrX JT CtbAddrY [ §
1901 ! oty _rre flag] CithAddrX JI CtbAddrY ] uil} i
:m ng c;?:z ;io.s.siiﬁi: ;‘Zczgi C fbmj ajﬁ’ri ,Z CthAddrY | == 0 && { slice_sac _luma flag || j
shicE Sag chnfima gy - romemeemeemeememeememememee e eeeemeeEememememer 1
sao{ CibAddrX, CthAddrY )
1902 1 iff stice_alf enabled flag & & otu lossless flagf CthAddeX J CthAddrY ] == 0¥ %

alf_cth flag| 0 }] ChAddeX |} ChAddrY | ae{v)
Y alf ctb {lag] 0 }f CthAddrX H CibAddrY 13 ¢{
if{ slice_oum_alf_aps_ids luma >0}

alf usc_aps flag ae(v)
Y alf use aps flag) {
i slice_num_alf ape ids luma> 1)

alf luma prev_filter idx ae(v)
b else
alf juma fixed filter idx as(v}
h
if{ slice_alf chroma_idc == 1 |} shice alf clhwoma_idec == 33 {
alf otb Hag] 1 | CihAddrX |} CihAddrY | ae(v)

Al ctb flag] 1 1] ChAddX H CibAddrY §
&& aps_alf chroma nmm alt filters minesl > 0)

alf_cth filter alt_idx{ 0 { ChHALDX ] CihAddrY | ae(v)
}
H{ slice_alf chroma_ide == 2 || slice_alf chroma idc == 3 ){
alf ¢th flag] 2 | CihAddrX | CibAddrY | ae(v)

H{ alf ctb flag] 2 1 CibAddsX [ CibAddrX ]
&& aps all chroma num all {filters minus? > 0)

alf cth_filter_alt_idx{ 1 }{ ChASDX | CihAddrX ] as{v)

-

FIG. 19
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Vand ctu losstess Ctb = (bl Cih > CtbLogldSizeY [is equal {0 zero, the

following ordered steps apply:

1. ThevariableidxYlov is derived by invoking the identitication of piece-wise function tndex
process for a luma sample as specified in clause 8.8.2.3 with lumaSample as the input and
ids Yinv as the cutput.

2. The vartable invSample is derived as follows:

invSample = InputPivot] idxYinv |+ ( InvScaleCoeff] idxYinv 1 *
(lumaSample ~ LmosPivot] ideYlov 1)+ {1 <<10 ) ) >> 1

3. The inverse mapped tuma sample inviumaSample is derived as follows:
invLumaSample = Clipl{ invSample )

—  Otherwise, invLumaSample is set equal to lumaSample.

FIG. 20

— If one of the following conditions is true, chroma residual coding do not apply:
pic_chroma residual scale flagisequal to 0.
- aCurrSw * uCurrSh is less than or eugal to 4.
i cbf ob { xCurr § yCusr Tisequal to G and tu_obf or | xCurr i yCurr Jisequalto 0.

2101 ;i ctu_fosstess flagf xCtb >> CitbLog2SizeY]f yCth > Ctblog2SizeY] is equal to 1. :

Otherwise, chroma residual scaling is applied.

FIG. 21



Patent Application Publication  Jun. 24, 2021 Sheet 28 of 34  US 2021/0195251 A1

Table 15 Exemplary coding unit syntax of 2 method to disable SBT for lossless OTU

i CoPredModef chType [ xG I v0 ] == MODE INTER && sps_sbt enabled flag
&& tctip fagf x0 1 v0 | && MergeTrangleFlag] x0 }{ v0 ]
— L ShWidih MaxTbSireY && cbHeipht <= MaxThSizeY Q80 o o o o o e e o o e o o "
2201 T G dowst flaef Cib g g
T T ilowsbiVerH = chWidth =8 o e mmm—m—m—
allowShtVer3 = cbWidth >= 16
atfowShitorH = cbHeight >= 8
allowSbtHorQ = cbHeight >= 16
i alfowSbtVerH || allowSbhtHort )
cu_sht flag ae(v)
if{ ¢u sbt flag
i { alowSbtVerH || allowShiHorH ) && (allowShiVer( || allowhbtHor(Q )
cu sbi guad flag ag{v)
H{ {cu sbi quad flag && allowShtVer(y && allowSbtHor(Q) ||
{ icu sbt guad flag && allowSbtVerH && allowShiHorH )
oy shi horizontal flag ae(v}
cu_sht pos flag ac{v)
}
FIG. 22
Table 16 Exemplary coding unit syntax to disable MTS of the lossless CTU
i weeType = DUAL TREE CHROMA && lnst idx == § &&
trancform skip flagf x0 {yO0H O] == 0 && Max(chWidth, cbHeight) <= 32 &&
IntraSubParttionsSplit] x0 [ v0 ] == ISP _NO _SPLIT && cu sbt flag == § &&
MisZeroOutSigCociFlag == 1 && m ¢bf hmal x8 Hy0 1} {
H((( CaPredMode] chType I x0 {{v0 } == MODE INTER &&
sps_explicit_ots_iuter enabled flag)y ||
mmmmm {CuFredModel ehTvpe XONY0 ] == MODE INTRA && o e e e o b
2301 :ﬂ o sps_explictd_mis_intra enabled flag )y && o fossless flagf CibAddeX J{ CeéhAddrY ] §
., §
mis_idy ac(y}

FIG. 23
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2401

2501

Table 17 Exemplary coding unit syniax o disable LENST for a {ossless CTU

HustWidth = (treeType == DUAL TREE CHROMA ) ? cbWidth / SubWidihC
C{(( IntraSubPartitionsSplitType == ISP_VER SPLIT ;7 cbWidth/
MNumintraSobPartitions ; cbWidth )

HostHeight = (treeType == DUAL TREE CHROMA ) 7 cbHeight / SubHeightC
C({ IntraSubPariitionsSplitType == ISP_HOR SPLIT) 7 chHeight /
NumintraSubPartitions : cbHeight )

H{ Mind EnstWidth, HostHeight ) >= 4 && sps Hust enabled flag == 1 &&
CaPredModef ehType } 0 H v0 MODE INTRA &&
transform skip fapf x0H{ vOH 0] 0 &&
{(teeType = DUAL TREE CHROMA || tintra_mip fapf x0 {01 ||
Min{ HustWidth, hﬁnstﬂughi} >= 16} &
Iv_{ax\_gb‘»‘/idah cbﬂrsfom: <= MaxThoingY&&
- ( g\ .

{{ im:rabubPaa“tmeSp iType 1= ISP NO _SPLIT || LinstDeOnly == 0) &&

LinstZeroOuSigloeffFlag == 1)
gt idx ag{v)
X
b
¥ 5l
FIG. 24
Table 18 Part of transform unit syntax table to disable joint_cr_cr mode
if{ sps_joind_cher enabled flag && ({ LuPu.d\/Endc{ C'uypc H«0Hv0]==MODE_INTRA
f&& (tu cbf »b[_x(* ‘iwCl‘ _L i} cbf AR ORI VR B B R -
5O }{x(‘} ) && c%zom&m atlable &&
=)
ag{v}
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Table 19 Exemplary coding unit syntax table to disable I8P mode for a lossless CTU

o wem N weR oW AWT R w6 ww R oox o ek we e moo o wow o ol o oo s b

intra_tuma_ref 3dx{ x(}}{y(}”? == { &
{ chWidth <= MaxTbSize¥Y && cbHeight <= MaxThSizeY ) &&
{ chWidth * chHeight > MinTbSizeY * MinTbSizeY ) && lcu_act_onabled flag)

intra_subpartitions_mede_flagl x0 }{ y0 ] ae{v)
i intra_subpartitions_mode flag] x0J[v0 ] == ty

frtva_subpartitions splt flagl x0 1] vy0 ] ac{v}
HY intra_fuma sef dx[x0J{v0] == 0)

intra foma mpm flagl x0 [ v0 ] ae{v)

i intra_tuma_mpm _flag{ x0H v0 [ {

i intra_juma rel wdx{x0 {0 ] == 0)
intra_huma ot planar flagl x0 1 v0 } ae(vy
if{ infra_lnma not planar flagf s0 }{y0 1)
intra_luma_mpm idx{ x0 }{y0 1] aefv)
}else
intra_homa mpm_remainder] <0 y0 | ae(v)

FIG. 26
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Table 20: Exemplary transform unit syntax of transform_skip flag signaling

transform it x0, v0, thWidth, thHeight, reeType, subTuloadex, chTvpe ) { Descriptor

2701

QUA“ ERLL CHROM»’&) ;

]I( sps_transform_skip _cnabled flag && BdpemPlagi sO0{v0 1 0] &&
HWidth <= MayTsSize && thHeight <= MaxTsSize &&
{ IntraSubPartitionsSplit] x0 I v0 ] == ISP NO SPLIT) && !cu sbt flag)
iransform_skip flagi x0 I vO O] ae{(v)
777 3 iansform_siip fag] x0 1 v0 1101 || cru_rre flag] CO0Addry jl CBAddY [y TN
residual coding{ x0, v0, Log2{ thWidth ), L‘;g?( thHeight }, 0)
clse
vesidual ts coding( x0, y0, Log2{ tbWidih ), Log2(tbHeight ), 0)

2702

o

i
o iﬁafu Imsiﬂss ila
tmwT*»pc T="DUAL T _»_I YT

if{ sps_jr(msi0ﬁnﬂ_skipl__enabied_“ﬂag && BdpemFlagf x0 {v0] 1] &&
w( <= MaxTsBize && hC <= MaxTsSize && lcu sbt fag)
sransform skip flag{ xCH yCH 1 ac(v)
2704} ] Hransform skip flag] xCHvC 1) 1] ctw_rre flag) CibAdarX J] CthAdarY [ ¥
residual_coding(xC, vC, Log2(w(, Lcrg?.( RCH, 13
clse
residual 18 coding( xC, yC, Log2{ wC )}, Log2( (), 1}

’iz{'f!

2
~3
<
L3
y
§
Li”
o~
(‘\

LA
B’“

\

i
<
o
=3
o
=
[¢]
=
=
2
Sort

)
el

=
(‘4
[

-
g
Oe
o §

H
27065 i ugwm lossless flag| CibAddeX J] CibAddy
TreeType 1= DUAL TREE LUMA &&
I tu_obf cbi <0 }Ey(‘i && tu joint chor residual flagl <CHyCi)) {
iff sps_transform skip cnabled flag && BdpomFlagf <0 {y0H 2] &&
wiC <= MaxTs8ize && bC <= MaxTsSize && icu sbt flag)

transform_skip flag{xCHyCH 2] ag{v) _
2706 ¢ i Hransform skip flagf xCHyCH 211 | atu rre flag] CihAddrX [f CthAddrY 1) i
residual coding( xC, yC, Log2(w{(), chz( hC) 2
else

e

FIG. 27
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2801

Recelve a bitstream including a plurality of coding /
tree unit (CTUs) in a picture

Determine wheather lossless coding is applied to / 2803

the plurality of CTUs, based on a plurality of flags,
raspectively, wherein the plurality of flags include
a first flag associated with a frst CTU

in response to a determination that lossless / 2805

coding is applied o the first CTU, performing
lossless coding to the first CTU

FIG. 28
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Table 21: Hxemplary CTU syntax tabie of the proposed method

coding_tree_unit( )} { Bescripior

xCth = ChAddrX << CibLog2SizeY

yCily = ClbAddrY << CtbLoglSizeY

if{ slice_saoc_luma flag || slice sao _chroma_flag)
sao{ CtbAddrX, ChAddrY )

H{ shice_alf enabled flag }{
aif eth flag] 0 | ChAddeX || ChAddrY } ae{v)
Y alf ctb flag] 0 Y CHAGEX H CHAdEY 1) {

M slice_oum_alf aps ids_ama >0}

alf use aps flag as(v}

if( alf_use_aps flag ) {

if{ slice pum_alf aps ids luma> 1}

aff luma_ prev_filter idx ae{v)
telse
alf fuma fixed filter jdx ae(v)
B
H{ slice_alf cheoma_ide == 1 || slice_alf chioma_ide == 3 )¢
alf cth flag] 1 || CibAddrX } CibAddrY | ae(v)
i alf ¢t flagl 1 H{ ChOAMdX ] CihAddrY |
&& aps_alf chroma num alt fillers minusl >0)
alf_cth_filter_alt_ids{ 0 }{ ChASIX [ CibAddrY § ac{vy
3
if{ slice_alf’ chroma ide == 2 || slice alf chroma ide == 3} {
alf cth flag] 2 I CibAddrX {] CthAddrY | ag(v)
i{ alf ctb flag] 2 {{ CihAddrX }f CthbAddrX §
&& aps_alf chroma num alt filters minusl > 0)
alf_cth_fter_alt_idx| 1 {{ CHAIX I ChAddrY ] ac(v)
!
i 3
; if (pic_lmcs_enabled flag){ :
f Imos_cth Iuma_flag] CibAddrX ] CtbAddrY | aefvi §
001 : iftpic_chroma_residual_scole flag){ :
i Imcs_cth _chroma residual scale flag] CibAddrX J{ CibAddrY | aeiv; i
o ;
i i i

FIG. 29
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Table 22 Exemplary slice header syntax of the proposed method

stice_header( ) { Descriptor
if {pic_lmes_enabled flagy{
stice Imes luma_cnabled fiag ull}
if (pic_chroma residual scale flag)
slice_tmes_chromsa_residual scale fiag ul}
3

FIG. 30
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METHOD AND APPARATUS FOR LOSSLESS
CODING OF VIDEO DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present disclosure claims priority to U.S. Pro-
visional Application No. 62/953.466, filed on Dec. 24, 2019.
and U.S. provisional application No. 62/959,220, tiled on
Jan. 10, 2020, both of which are incorporated herein by
reference in their entireties.

TECHNICAL FIELD

[0002] The present disclosure generally relates to video
processing, and more particularly, to methods and appara-
tuses for performing lossless coding of a code tree unit
(CTU).

BACKGROUND

[0003] A video is a set of static pictures (or “frames™)
capturing the visual information. To reduce the storage
memory and the transmission bandwidth, a video can be
compressed before storage or transmission and decom-
pressed before display. The compression process is usually
referred to as encoding and the decompression process is
usually referred to as decoding. There are various video
coding formats which use standardized video coding tech-
nologies, most commonly based on prediction, transform,
quantization, entropy coding and in-loop filtering. The video
coding standards, such as the High Efficiency Video Coding
(HEVC/H.265) standard, the Versatile Video Coding (VVC/
H.266) standard AVS standards, specifying the specific
video coding formats, are developed by standardization
organizations. With more and more advanced video coding
technologies being adopted in the video standards, the
coding efficiency of the new video coding standards get
higher and higher.

SUMMARY OF THE DISCLOSURE

[0004] In some embodiments, an exemplary video pro-
cessing method includes: receiving a bitstream comprising a
plurality of coding tree unit (CTUs) in a picture, and
determining whether lossless coding is applied to the plu-
rality of CTUs, based on a plurality of flags, respectively.
The plurality of flags comprise a first flag associated with a
first CTU. The method further includes: in response to a
determination that lossless coding is applied to the first
CTU, performing lossless coding to the first CTU.

[0005] In some embodiments, an exemplary video pro-
cessing apparatus includes at least one memory for storing
instructions and at least one processor. The at least one
processor is configured to execute the instructions to cause
the apparatus to perform: receiving a bitstream comprising
a plurality of coding tree unit (CTUs) in a picture, and
determining whether lossless coding is applied to the plu-
rality of CTUs, based on a plurality of flags, respectively.
The plurality of flags comprise a first flag associated with a
first CTU. The at least one processor is configured to execute
the instructions to cause the apparatus to further perform: in
response to a determination that lossless coding is applied to
the first CTU, performing lossless coding to the first CTU.
[0006] In some embodiments, an exemplary non-transi-
tory computer readable storage medium stores a set of
instructions. The set of instructions are executable by one or
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more processing devices to cause a video processing appa-
ratus to perform: receiving a bitstream comprising a plural-
ity of coding tree unit (CTUs) in a picture, and determining
whether lossless coding is applied to the plurality of CTUs,
based on a plurality of flags, respectively. The plurality of
flags comprise a first flag associated with a first CTU. The
set of instructions are executable by one or more processing
devices to cause a video processing apparatus to perform: in
response to a determination that lossless coding is applied to
the first CTU, performing lossless coding to the first CTU.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Embodiments and various aspects of the present
disclosure are illustrated in the following detailed descrip-
tion and the accompanying figures. Various features shown
in the figures are not drawn to scale.

[0008] FIG. 1 is a schematic diagram illustrating struc-
tures of an example video sequence, according to some
embodiments of the present disclosure.

[0009] FIG. 2A is a schematic diagram illustrating an
exemplary encoding process of a hybrid video coding sys-
tem, consistent with embodiments of the disclosure.

[0010] FIG. 2B is a schematic diagram illustrating another
exemplary encoding process of a hybrid video coding sys-
tem, consistent with embodiments of the disclosure.
[0011] FIG. 3A is a schematic diagram illustrating an
exemplary decoding process of a hybrid video coding sys-
tem, consistent with embodiments of the disclosure.
[0012] FIG. 3B is a schematic diagram illustrating another
exemplary decoding process of a hybrid video coding sys-
tem, consistent with embodiments of the disclosure.
[0013] FIG. 4 is a block diagram of an exemplary appa-
ratus for encoding or decoding a video, according to some
embodiments of the present disclosure.

[0014] FIG. 5 illustrates an exemplary Table 1 showing
exemplary coding tree unit (CTU) syntax for signaling
whether a CTU is coded in lossless mode, according to some
embodiments of the present disclosure.

[0015] FIG. 6 illustrates an exemplary Table 2 showing
exemplary sequence-parameter-set (SPS) syntax using syn-
tax element sps_ctu_lossless_present_flag, according to
some embodiments of the present disclosure.

[0016] FIG. 7 illustrates an exemplary Table 3 showing
exemplary CTU syntax for using syntax element sps_ctu_
lossless_present_flag, according to some embodiments of
the present disclosure.

[0017] FIG. 8 illustrates an exemplary Table 4 showing
exemplary slice_header syntax of slice level lossless flag,
according to some embodiments of the present disclosure.
[0018] FIG. 9 illustrates an exemplary Table 5 showing
exemplary coding_tree unit syntax, according to some
embodiments of the present disclosure.

[0019] FIG. 10 illustrates an exemplary Table 6 showing
exemplary picture header syntax for picture level lossless
coding, according to some embodiments of the present
disclosure.

[0020] FIG. 11 illustrates an exemplary Table 7 showing
exemplary slice header syntax using pic_lossless_flag,
according to some embodiments of the present disclosure.
[0021] FIG. 12 illustrates an exemplary Table 8 showing
exemplary PPS syntax using pps_lossless_flag, according to
some embodiments of the present disclosure.
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[0022] FIG. 13 illustrates an exemplary Table 9 showing
exemplary picture header syntax using pps_lossless_flag,
according to some embodiments of the present disclosure.

[0023] FIG. 14 illustrates an exemplary Table 10 showing
exemplary SPS syntax table sequence level lossless coding,
according to some embodiments of the present disclosure.

[0024] FIG. 15 illustrates an exemplary Table 11 showing
exemplary coding_tree_unit syntax using CTU level
residual coding flag, according to some embodiments of the
present disclosure.

[0025] FIG. 16 illustrates an exemplary Table 12 showing
exemplary transform_unit syntax using CTU level residual
coding flag, according to some embodiments of the present
disclosure.

[0026] FIG. 17 illustrates exemplary types of edges to
which deblocking filter process is not applied, according to
some embodiments of the present disclosure.

[0027] FIG. 18 illustrates an exemplary Table 13 showing
exemplary coding_tree_unit syntax for disabling sample
adaptive offset (SAO), according to some embodiments of
the present disclosure.

[0028] FIG. 19 illustrates an exemplary Table 14 showing
exemplary coding_tree_unit syntax for disabling adaptive
loop filter (ALF), according to some embodiments of the
present disclosure.

[0029] FIG. 20 illustrates an exemplary derivation of
variable invLLumaSample, according to some embodiments
of the present disclosure.

[0030] FIG. 21 illustrates exemplary conditions to enable/
disable chroma residual scaling, according to some embodi-
ments of the present disclosure.

[0031] FIG. 22 illustrates an exemplary Table 15 showing
exemplary coding unit syntax for disabling sub-block trans-
form (SBT) for a lossless CTU, according to some embodi-
ments of the present disclosure.

[0032] FIG. 23 illustrates an exemplary Table 16 showing
exemplary coding unit syntax for disabling multiple-trans-
form selection (MTS) of a lossless CTU, according to some
embodiments of the present disclosure.

[0033] FIG. 24 illustrates an exemplary Table 17 showing
exemplary coding unit syntax for disabling low frequency
non-separable transform (LFNST) for a lossless CTU,
according to some embodiments of the present disclosure.

[0034] FIG. 25 illustrates an exemplary Table 18 showing
exemplary transform unit syntax for disabling a joint_cr_cr
mode, according to some embodiments of the present dis-
closure.

[0035] FIG. 26 illustrates an exemplary Table 19 showing
exemplary coding unit syntax for disabling Intra Subparti-
tion (ISP) mode for a lossless CTU, according to some
embodiments of the present disclosure.

[0036] FIG. 27 illustrates an exemplary Table 20 showing
exemplary transform unit syntax for transform_skip_flag
signaling, according to some embodiments of the present
disclosure.

[0037] FIG. 28 illustrates a flowchart of an exemplary
video processing method, according to some embodiments
of the present disclosure.

[0038] FIG. 29 illustrates an exemplary Table 21 showing
exemplary syntax for controlling llama mapping with
chroma scaling (LMCS) at the CTB level, according to some
embodiments of the present disclosure.
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[0039] FIG. 30 illustrates an exemplary Table 22 showing
exemplary slice header syntax for signaling LMCS control
flags, according to some embodiments of the present dis-
closure.

DETAILED DESCRIPTION

[0040] Reference will now be made in detail to exemplary
embodiments, examples of which are illustrated in the
accompanying drawings. The following description refers to
the accompanying drawings in which the same numbers in
different drawings represent the same or similar elements
unless otherwise represented. The implementations set forth
in the following description of exemplary embodiments do
not represent all implementations consistent with the inven-
tion. Instead, they are merely examples of apparatuses and
methods consistent with aspects related to the invention as
recited in the appended claims. Particular aspects of the
present disclosure are described in greater detail below. The
terms and definitions provided herein control, if in conflict
with terms and/or definitions incorporated by reference.
[0041] The Joint Video Experts Team (JVET) of the
ITU-T Video Coding Expert Group (ITU-T VCEG) and the
ISO/IEC Moving Picture Expert Group (ISO/IEC MPEG) is
currently developing the Versatile Video Coding (VVC/H.
266) standard. The VVC standard is aimed at doubling the
compression efficiency of its predecessor, the High Effi-
ciency Video Coding (HEVC/H.265) standard. In other
words, VVC’s goal is to achieve the same subjective quality
as HEVC/H.265 using half the bandwidth.

[0042] In order to achieve the same subjective quality as
HEVC/H.265 using half the bandwidth, the JVET has been
developing technologies beyond HEVC using the joint
exploration model (JEM) reference software. As coding
technologies were incorporated into the JEM, the JEM
achieved substantially higher coding performance than
HEVC.

[0043] The VVC standard has been developed recent, and
continues to include more coding technologies that provide
better compression performance. VVC is based on the same
hybrid video coding system that has been used in modern
video compression standards such as HEVC, H.264/AVC,
MPEG2, H.263, etc.

[0044] A video is a set of static pictures (or “frames™)
arranged in a temporal sequence to store visual information.
A video capture device (es., a camera) can be used to capture
and store those pictures in a temporal sequence, and a video
playback device (e.g., a television, a computer, a smart-
phone, a tablet computer, a video player, or any end-user
terminal with a function of display) can be used to display
such pictures in the temporal sequence. Also, in some
applications, a video capturing device can transmit the
captured video to the video playback device (e.g., a com-
puter with a monitor) in real-time, such as for surveillance,
conferencing, or live broadcasting.

[0045] For reducing the storage space and the transmission
bandwidth needed by such applications, the video can be
compressed before storage and transmission and decom-
pressed before the display. The compression and decom-
pression can be implemented by software executed by a
processor (e.g., a processor of a generic computer) or
specialized hardware. The module for compression is gen-
erally referred to as an “encoder,” and the module for
decompression is generally referred to as a “decoder.” The
encoder and decoder can be collectively referred to as a
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“codec.” The encoder and decoder can be implemented as
any of a variety of suitable hardware, software, or a com-
bination thereof. For example, the hardware implementation
of'the encoder and decoder can include circuitry, such as one
or more microprocessors, digital signal processors (DSPs),
application-specific integrated circuits (ASICs), field-pro-
grammable gate arrays (FPGAs), discrete logic, or any
combinations thereof. The software implementation of the
encoder and decoder can include program codes, computer-
executable instructions, firmware, or any suitable computer-
implemented algorithm or process fixed in a computer-
readable medium. Video compression and decompression
can be implemented by various algorithms or standards,
such as MPEG- 1, MPEG-2, MPEG-4, H.26x series, or the
like. In some applications, the codec can decompress the
video from a first coding standard and re-compress the
decompressed video using a second coding standard, in
which case the codec can be referred to as a “transcoder.”
[0046] The video encoding process can identify and keep
useful information that can be used to reconstruct a picture
and disregard unimportant information for the reconstruc-
tion. If the disregarded, unimportant information cannot be
fully reconstructed, such an encoding process can be
referred to as “lossy.” Otherwise, it can be referred to as
“lossless.” Most encoding processes are lossy, which is a
tradeoff to reduce the needed storage space and the trans-
mission bandwidth.

[0047] The useful information of a picture being encoded
(referred to as a “current picture”) include changes with
respect to a reference picture (e.g., a picture previously
encoded and reconstructed). Such changes can include posi-
tion changes, luminosity changes, or color changes of the
pixels, among which the position changes are mostly con-
cerned. Position changes of a group of pixels that represent
an object can reflect the motion of the object between the
reference picture and the current picture.

[0048] A picture coded without referencing another pic-
ture (i.e., it is its own reference picture) is referred to as an
“I-picture.” A picture coded using a previous picture as a
reference picture is referred to as a “P-picture.” A picture
coded using both a previous picture and a future picture as
reference pictures (i.e., the reference is “bi-directional”) is
referred to as a “B-picture.”

[0049] FIG. 1 illustrates structures of an example video
sequence 100, according to some embodiments of the pres-
ent disclosure. Video sequence 100 can be a live video or a
video having been captured and archived. Video 100 can be
a real-life video, a computer-generated video (e.g., computer
game video), or a combination thereof (e.g., a real-life video
with augmented-reality effects). Video sequence 100 can be
inputted from a video capture device (e.g., a camera), a
video archive (e.g., a video file stored in a storage device)
containing previously captured video, or a video feed inter-
face (e.g., a video broadcast transceiver) to receive video
from a video content provider.

[0050] As shown in FIG. 1, video sequence 100 can
include a series of pictures arranged temporally along a
timeline, including pictures 102, 104, 106, and 108. Pictures
102-106 are continuous, and there are more pictures between
pictures 106 and 108. In FIG. 1, picture 102 is an I-picture,
the reference picture of which is picture 102 itself. Picture
104 is a P-picture, the reference picture of which is picture
102, as indicated by the arrow. Picture 106 is a B-picture, the
reference pictures of which are pictures 104 and 108, as
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indicated by the arrows. In some embodiments, the reference
picture of a picture (e.g., picture 104) can be not immedi-
ately preceding or following the picture. For example, the
reference picture of picture 104 can be a picture preceding
picture 102. It should be noted that the reference pictures of
pictures 102-106 are only examples, and the present disclo-
sure does not limit embodiments of the reference pictures as
the examples shown in FIG. 1.

[0051] Typically, video codecs do not encode or decode an
entire picture at one time due to the computing complexity
of such tasks. Rather, they can split the picture into basic
segments, and encode or decode the picture segment by
segment. Such basic segments are referred to as basic
processing units (“BPUs”) in the present disclosure. For
example, structure 110 in FIG. 1 shows an example structure
of a picture of video sequence 100 (e.g., any of pictures
102-108). In structure 110, a picture is divided into 4x4 basic
processing units, the boundaries of which are shown as dash
lines. In some embodiments, the basic processing units can
be referred to as “macroblocks” in some video coding
standards (e.g., MPEG family, H.261, H.263, or H.264/
AVC(C), or as “coding tree units” (“CTUs”) in some other
video coding standards (e.g., H265/HEVC or H.266/VVC).
The basic processing units can have variable sizes in a
picture, such as 128x128, 64x64, 32>32, 16x16, 4x8,
16x32, or any arbitrary shape and size of pixels. The sizes
and shapes of the basic processing units can be selected for
apicture based on the balance of coding efficiency and levels
of details to be kept in the basic processing unit.

[0052] The basic processing units can be logical units,
which can include a group of different types of video data
stored in a computer memory (e.g., in a video frame buffer).
For example, a basic processing unit of a color picture can
include a luma component (Y) representing achromatic
brightness information, one or more chroma components
(e.g., Cb and Cr) representing color information, and asso-
ciated syntax elements, in which the luma and chroma
components can have the same size of the basic processing
unit. The luma and chroma components can be referred to as
“coding tree blocks” (“CTBs”) in some video coding stan-
dards (e.g., H.265/HEVC or H.266/VVC). Any operation
performed to a basic processing unit can be repeatedly
performed to each of its luma and chroma components.

[0053] Video coding has multiple stages of operations,
examples of which are shown in FIGS. 2A-2B and FIGS.
3A-3B. For each stage, the size of the basic processing units
can still be too large for processing, and thus can be further
divided into segments referred to as “basic processing
sub-units” in the present disclosure, in some embodiments,
the basic processing s units can be referred to as “blocks™ in
some video coding standards (e.g., MPEG family, H.261,
H.263, or H.264/AVC), or as “coding units” (“CUs™) in
some other video coding standards (e.g., H.265/HEVC or
H.266/VVC). A basic processing sub-unit can have the same
or smaller size than the basic processing unit. Similar to the
basic processing units, basic processing sub-units are also
logical units, which can include a group of different types of
video data (e.g., Y, Cb, Cr, and associated syntax elements)
stored in a computer memory (e.g., in a video frame buffer).
Any operation performed to a basic processing sub-unit can
be repeatedly performed to each of its lura and chroma
components. It should be noted that such division can be
performed to further levels depending on processing needs.
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It should also be noted that different stages can divide the
basic processing units using different schemes.

[0054] For example, at a mode decision stage (an example
of which is shown in FIG. 2B), the encoder can decide what
prediction mode (e.g., intra-picture prediction or inter-pic-
ture prediction) to use for a basic processing unit, which can
be too large to make such a decision. The encoder can split
the basic processing unit into multiple basic processing
sub-units (e.g., CUs as in H.265/HEVC or H.266/VVC), and
decide a prediction type for each individual basic processing
sub-unit.

[0055] For another example, at a prediction stage (an
example of which is shown in FIGS. 2A-2B), the encoder
can perform prediction operation at the level of basic
processing sub-units (e.g., CUs). However, in some cases, a
basic processing sub-unit can still be too large to process.
The encoder can further split the basic processing sub-unit
into smaller segments (e.g., referred to as “prediction
blocks” or “PBs” in H.265/HEVC or H.266/VVC), at the
level of which the prediction operation can be performed.
[0056] For another example, at a transform stage (an
example of which is shown in FIGS. 2A-2B), the encoder
can perform a transform operation for residual basic pro-
cessing sub-units (e.g., CUs). However, in some cases, a
basic processing sub-unit can still be too large to process.
The encoder can further split the basic processing sub-unit
into smaller segments (e.g., referred to as “transform blocks”
or “TBs” in H.265/HEVC or H266/VVC), at the level of
which the transform operation can be performed. It should
be noted that the division schemes of the same basic
processing sub-unit can be different at the prediction stage
and the transform stage. For example, in H.265/HEVC or
H266/VVC, the prediction blocks and transform blocks of
the same CU can have different sizes and numbers.

[0057] In structure 110 of FIG. 1, basic processing unit
112 is further divided into 3x3 basic processing sub-units,
the boundaries of which are shown as dotted lines. Different
basic processing units of the same picture can be divided
into basic processing sub-units in different schemes.
[0058] In some implementations, to provide the capability
of parallel processing and error resilience to video encoding
and decoding, a picture can be divided into regions for
processing, such that, for a region of the picture, the encod-
ing or decoding process can depend on no information from
any other region of the picture. In other words, each region
of the picture can be processed independently. By doing so,
the codec can process different regions of a picture in
parallel, thus increasing the coding efficiency. Also, when
data of a region is corrupted in the processing or lost in
network transmission, the codec can correctly encode or
decode other regions of the same picture without reliance on
the corrupted or lost data, thus providing the capability of
error resilience. In some video coding standards, a picture
can be divided into different types of regions. For example,
H.265/HEVC and H.266/VVC provide two types of regions:
“slices” and “tiles.” It should also be noted that different
pictures of video sequence 100 can have different partition
schemes for dividing a picture into regions.

[0059] For example, in FIG. 1, structure 110 is divided
into three regions 114, 116, and 118, the boundaries of which
are shown as solid lines inside structure 110. Region 114
includes four basic processing units. Each of regions 116 and
118 includes six basic processing units. It should be noted
that the basic processing units, basic processing sub-units,
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and regions of structure 110 in FIG. 1 are only examples, and
the present disclosure does not limit embodiments thereof.
[0060] FIG. 2A illustrates a schematic diagram of an
example encoding process 200A, consistent with embodi-
ments of the disclosure. For example, the encoding process
200A can be performed by an encoder. As shown in FIG. 2A,
the encoder can encode video sequence 202 into video
bitstream 228 according to process 200A. Similar to video
sequence 100 in FIG. 1, video sequence 202 can include a
set of pictures (referred to as “original pictures”) arranged in
a temporal order. Similar to structure 110 in FIG. 1, each
original picture of video sequence 202 can be divided by the
encoder into basic processing units, basic processing sub-
units, or regions for processing. In some embodiments, the
encoder can perform process 200A at the level of basic
processing units for each original picture of video sequence
202. For example, the encoder can perform process 200A in
an iterative manner, in which the encoder can encode a basic
processing unit in one iteration of process 200A. In some
embodiments, the encoder can perform process 200A in
parallel for regions (e.g., regions 114-118) of each original
picture of video sequence 202.

[0061] InFIG. 2A, the encoder can feed a basic processing
unit (referred to as an “original BPU”) of an original picture
of video sequence 202 to prediction stage 204 to generate
prediction data 206 and predicted BPU 208. The encoder can
subtract predicted BPU 208 from the original BPU to
generate residual BPU 210. The encoder can feed residual
BPU 210 to transform stage 212 and quantization stage 214
to generate quantized transform coefficients 216. The
encoder can feed prediction data 206 and quantized trans-
form coefficients 216 to binary coding stage 226 to generate
video bitstream 228. Components 202. 204, 206, 208, 210,
212, 214, 216, 226, and 228 can be referred to as a “forward
path.” During process 200A, after quantization stage 214,
the encoder can feed quantized transform coefficients 216 to
inverse quantization stage 218 and inverse transform stage
220 to generate reconstructed residual BPU 222. The
encoder can add reconstructed residual BPU 222 to pre-
dicted BPU 208 to generate prediction reference 224, which
is used in prediction stage 204 for the next iteration of
process 200A. Components 218, 220, 222, and 224 of
process 200A can be referred to as a “reconstruction path.”
The reconstruction path can be used to ensure that both the
encoder and the decoder use the same reference data for
prediction.

[0062] The encoder can perform process 200A iteratively
to encode each original BPU of the original picture (in the
forward path) and generate predicted reference 224 for
encoding the next original BPU of'the original picture (in the
reconstruction path). After encoding all original BPUs of the
original picture, the encoder can proceed to encode the next
picture in video sequence 202.

[0063] Referring to process 200A, the encoder can receive
video sequence 202 generated by a video capturing device
(e.g., a camera). The term “receive” used herein can refer to
receiving, inputting, acquiring, retrieving, obtaining, read-
ing, accessing, or any action in any manner for inputting
data.

[0064] At prediction stage 204, at a current iteration, the
encoder can receive an original BPU and prediction refer-
ence 224, and perform a prediction operation to generate
prediction data 206 and predicted BPU 208. Prediction
reference 224 can be generated from the reconstruction path
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of the previous iteration of process 200A. The purpose of
prediction stage 204 is to reduce information redundancy by
extracting prediction data 206 that can be used to reconstruct
the original BPU as predicted BPU 208 from prediction data
206 and prediction reference 224.

[0065] Ideally, predicted BPU 208 can be identical to the
original BPU. However, due to non-ideal prediction and
reconstruction operations, predicted BPU 208 is generally
slightly different from the original BPU. For recording such
differences, after generating predicted BPU 208, the encoder
can subtract it from the original BPU to generate residual
BPU 210. For example, the encoder can subtract values
(e.g., greyscale values or RGB values) of pixels of predicted
BPU 208 from values of corresponding pixels of the original
BPU. Each pixel of residual BPU 210 can have a residual
value as a result of such subtraction between the correspond-
ing pixels of the original BPU and predicted BPU 208.
Compared with the original BPU, prediction data 206 and
residual BPU 210 can have fewer bits, but they can be used
to reconstruct the original BPU without significant quality
deterioration. Thus, the original BPU is compressed.
[0066] To further compress residual BPU 210, at trans-
form stage 212, the encoder can reduce spatial redundancy
of residual BPU 210 by decomposing it into a set of
two-dimensional “base patterns,” each base pattern being
associated with a “transform coefficient.” The base patterns
can have the same size (e.g., the size of residual BPU 210).
Each base pattern can represent a variation frequency (e.g.,
frequency of brightness variation) component of residual
BPU 210. None of the base patterns can be reproduced from
any combinations (e.g., linear combinations) of any other
base patterns. In other words, the decomposition can decom-
pose variations of residual BPU 210 into a frequency
domain. Such a decomposition is analogous to a discrete
Fourier transform of a function, in which the base patterns
are analogous to the base functions (e.g., trigonometry
functions) of the discrete Fourier transform, and the trans-
form coefficients are analogous to the coefficients associated
with the base functions.

[0067] Different transform algorithms can use different
base patterns. Various transform algorithms can be used at
transform stage 212, such as, for example, a discrete cosine
transform, a discrete sine transform, or the like. The trans-
form at transform stage 212 is invertible. That is, the encoder
can restore residual BPU 210 by an inverse operation of the
transform (referred to as an “inverse transform”). For
example, to restore a pixel of residual BPU 210, the inverse
transform can be multiplying values of corresponding pixels
of the base patterns by respective associated coeflicients and
adding the products to produce a weighted sum. For a video
coding standard, both the encoder and decoder can use the
same transform algorithm (thus the same base patterns).
Thus, the encoder can record only the transform coefficients,
from which the decoder can reconstruct residual BPU 210
without receiving the base patterns from the encoder. Com-
pared with residual BPU 210, the transform coefficients can
have fewer bits, but they can be used to reconstructresidual
BPU 210 without significant quality deterioration. Thus,
residual BPU 210 is further compressed.

[0068] The encoder can further compress the transform
coefficients at quantization stage 214. In the transform
process, different base patterns can represent different varia-
tion frequencies (e.g., brightness variation frequencies).
Because human eyes are generally better at recognizing
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low-frequency variation, the encoder can disregard infor-
mation of high-frequency variation without causing signifi-
cant quality deterioration in decoding. For example, at
quantization stage 214, the encoder can generate quantized
transform coefficients 216 by dividing each transform coef-
ficient by an integer value (referred to as a “quantization
parameter”) and rounding the quotient to its nearest integer.
After such an operation, some transform coefficients of the
high-frequency base patterns can be converted to zero, and
the transform coefficients of the low-frequency base patterns
can be converted to smaller integers. The encoder can
disregard the zero-value quantized transform coefficients
216, by which the transform coefficients are further com-
pressed. The quantization process is also invertible, in which
quantized transform coeficients 216 can be reconstructed to
the transform coefficients in an inverse operation of the
quantization (referred to as “inverse quantization™).

[0069] Because the encoder disregards the remainders of
such divisions in the rounding operation, quantization stage
214 can be loss-. Typically, quantization stage 214 can
contribute the most information loss in process 200A. The
larger the information loss is, the fewer bits the quantized
transform coefficients 216 can need. For obtaining different
levels of information loss, the encoder can use different
values of the quantization parameter or any other parameter
of the quantization process.

[0070] At binary coding stage 226, the encoder can encode
prediction data 206 and quantized transform coefficients 216
using a binary coding technique, such as, for example,
entropy coding, variable length coding, arithmetic coding,
Huffman coding, context-adaptive binary arithmetic coding,
or any other lossless or lossy compression algorithm. In
some embodiments, besides prediction data 206 and quan-
tized transform coeflicients 216, the encoder can encode
other information at binary coding stage 226, such as, for
example, a prediction mode used at prediction stage 204,
parameters of the prediction operation, a transform type at
transform stage 212, parameters of the quantization process
(e.g., quantization parameters), an encoder control param-
eter (e.g., a bitrate control parameter), or the like. The
encoder can use the output data of binary coding stage 226
to generate video bitstream 228. In some embodiments,
video bitstream 228 can be further packetized for network
transmission.

[0071] Referring to the reconstruction path of process
200A, at inverse quantization stage 218, the encoder can
perform inverse quantization on quantized transform coef-
ficients 216 to generate reconstructed transform coefficients.
At inverse transform stage 220, the encoder can generate
reconstructed residual BPU 222 based on the reconstructed
transform coefficients. The encoder can add reconstructed
residual BPU 222 to predicted BPU 208 to generate predic-
tion reference 224 that is to be used in the next iteration of
process 200A.

[0072] It should be noted that other variations of the
process 200A can be used to encode video sequence 202. In
some embodiments, stages of process 200A can be per-
formed by the encoder in different orders. In some embodi-
ments, one or more stages of process 200A can be combined
into a single stage. In some embodiments, a single stage of
process 200A can be divided into multiple stages. For
example, transform stage 212 and quantization stage 214
can be combined into a single stage. In some embodiments,
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process 200A can include additional stages. In some
embodiments, process 200A can omit one or more stages in
FIG. 2A.

[0073] FIG. 2B illustrates a schematic diagram of another
example encoding process 200B, consistent with embodi-
ments of the disclosure. Process 200B can be modified from
process 200A. For example, process 2008 can be used by an
encoder conforming to a hybrid video coding standard (e.g.,
H.26x series). Compared with process 200A, the forward
path of process 200B additionally includes mode decision
stage 230 and divides prediction stage 204 into spatial
prediction stage 2042 and temporal prediction stage 2044.
The reconstruction path of process 200B additionally
includes loop filter stage 232 and buffer 234.

[0074] Generally, prediction techniques can be catego-
rized into two types: spatial prediction and temporal predic-
tion. Spatial prediction (e.g., an intra-picture prediction or
“intra prediction”) can use pixels from one or more already
coded neighboring BPUs in the same picture to predict the
current BPU. That is, prediction reference 224 in the spatial
prediction can include the neighboring BPUs. The spatial
prediction can reduce the inherent spatial redundancy of the
picture. Temporal prediction (e.g., an inter-picture predic-
tion or “inter prediction”) can use regions from one or more
already coded pictures to predict the current BPU. That is,
prediction reference 224 in the temporal prediction can
include the coded pictures. The temporal prediction can
reduce the inherent temporal redundancy of the pictures.
[0075] Referring to process 200B, in the forward path, the
encoder performs the prediction operation at spatial predic-
tion stage 2042 and temporal prediction stage 2044, For
example, at spatial prediction stage 2042, the encoder can
perform the intra prediction. For an original BPU of a
picture being encoded, prediction reference 224 can include
one or more neighboring BPUs that have been encoded (in
the forward path) and reconstructed (in the reconstructed
path) in the same picture. The encoder can generate pre-
dicted BPU 208 by extrapolating the neighboring BPUs. The
extrapolation technique can include, for example, a linear
extrapolation or interpolation, a polynomial extrapolation or
interpolation, or the like in some embodiments, the encoder
can perform the extrapolation at the pixel level, such as by
extrapolating values of corresponding pixels for each pixel
of predicted BPU 208. The neighboring BPUs used for
extrapolation can be located with respect to the original BPU
from various directions, such as in a vertical direction (e.g.,
on top of the original BPU), a horizontal direction (e.g., to
the left of the original BPU), a diagonal direction (e.g., to the
down-left, down-right, up-left, or up-right of the original
BPU), or any direction defined in the used video coding
standard. For the intra prediction, prediction data 206 can
include, for example, locations (e.g., coordinates) of the
used neighboring BPUs, sizes of the used neighboring
BPUs, parameters of the extrapolation, a direction of the
used neighboring BPUs with respect to the original BPU, or
the like.

[0076] For another example, at temporal prediction stage
2044, the encoder can perform the inter prediction. For an
original BPU of a current picture, prediction reference 224
can include one or more pictures (referred to as “reference
pictures™) that have been encoded (in the forward path) and
reconstructed (in the reconstructed path). In some embodi-
ments, a reference picture can be encoded and reconstructed
BPU by BPU. For example, the encoder can add recon-
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structed residual BPU 222 to predicted BPU 208 to generate
a reconstructed BPU. When all reconstructed BPUs of the
same picture are generated, the encoder can generate a
reconstructed picture as a reference picture. The encoder can
perform an operation of “motion estimation” to search for a
matching region in a scope (referred to as a “search win-
dow™) of the reference picture. The location of the search
window in the reference picture can be determined based on
the location of the original BPU in the current picture. For
example, the search window can be centered at a location
having the same coordinates in the reference picture as the
original BPU in the current picture and can be extended out
for a predetermined distance. When the encoder identifies
(e.g., by using a pel-recursive algorithm, a block-matching
algorithm, or the like) a region similar to the original BPU
in the search window, the encoder can determine such a
region as the matching region. The matching region can
have different dimensions (e.g., being smaller than, equal to,
larger than, or in a different shape) from the original BPU.
Because the reference picture and the current picture are
temporally separated in the timeline (e.g., as shown in FIG.
1), it can be deemed that the matching region “moves” to the
location of the original BPU as time goes by. The encoder
can record the direction and distance of such a motion as a
“motion vector.” When multiple reference pictures are used
(e.g., as picture 106 in FIG. 1), the encoder can search for
a matching region and determine its associated motion
vector for each reference picture. In some embodiments, the
encoder can assign weights to pixel values of the matching
regions of respective matching reference pictures.

[0077] The motion estimation can be used to identify
various types of motions, such as, for example, translations,
rotations, zooming, or the like. For inter prediction, predic-
tion data 206 can include, for example, locations (e.g.,
coordinates) of the matching region, the motion vectors
associated with the matching region, the number of refer-
ence pictures, weights associated with the reference pictures,
or the like.

[0078] For generating predicted BPU 208, the encoder can
perform an operation of “motion compensation.” The
motion compensation can be used to reconstruct predicted
BPU 208 based on prediction data 206 (e.g., the motion
vector) and prediction reference 224. For example, the
encoder can move the matching region of the reference
picture according to the motion vector, in which the encoder
can predict the original BPU of the current picture. When
multiple reference pictures are used (e.g., as picture 106 in
FIG. 1), the encoder can move the matching regions of the
reference pictures according to the respective motion vectors
and average pixel values of the matching regions. In some
embodiments, if the encoder has assigned weights to pixel
values of the matching regions of respective matching
reference pictures, the encoder can add a weighted sum of
the pixel values of the moved matching regions.

[0079] In some embodiments, the inter prediction can be
unidirectional or bidirectional. Unidirectional inter predic-
tions can use one or more reference pictures in the same
temporal direction with respect to the current picture. For
example, picture 104 in FIG. 1 is a unidirectional inter-
predicted picture, in which the reference picture (i.e., picture
102) precedes picture 104. Bidirectional inter predictions
can use one or more reference pictures at both temporal
directions with respect to the current picture. For example,
picture 106 in FIG. 1 is a bidirectional inter-predicted
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picture, in which the reference pictures (i.e., pictures 104
and 108) are at both temporal directions with respect to
picture 104.

[0080] Still referring to the forward path of process 200B,
after spatial prediction 2042 and temporal prediction stage
2044, at mode decision stage 230, the encoder can select a
prediction mode (one of the intra prediction or the inter
prediction) for the current iteration of process 200B. For
example, the encoder can perform a rate-distortion optimi-
zation technique, in which the encoder can select a predic-
tion mode to minimize a value of a cost function depending
on a bit rate of a candidate prediction mode and distortion of
the reconstructed reference picture under the candidate
prediction mode. Depending on the selected prediction
mode, the encoder can generate the corresponding predicted
BPU 208 and predicted data 206.

[0081] In the reconstruction path of process 200B, if intra
prediction mode has been selected in the forward path, after
generating prediction reference 224 (e.g., the current BPU
that has been encoded and reconstructed in the current
picture), the encoder can directly feed prediction reference
224 to spatial prediction stage 2042 for later usage (e.g., for
extrapolation of a next BPU of the current picture). If the
inter prediction mode has been selected in the forward path,
after generating prediction reference 224 (e.g., the current
picture in which all BPUs have been encoded and recon-
structed), the encoder can feed prediction reference 224 to
loop filter stage 232, at which the encoder can apply a loop
filter to prediction reference 224 to reduce or eliminate
distortion (e.g., blocking artifacts) introduced by the inter
prediction. The encoder can apply various loop filter tech-
niques at loop filter stage 232, such as, for example,
deblocking, sample adaptive offsets, adaptive loop filters, or
the like. The loop-filtered reference picture can be stored in
buffer 234 (or “decoded picture buffer”) for later use (e.g.,
to be used as an inter-prediction reference picture for a
future picture of video sequence 202). The encoder can store
one or more reference pictures in buffer 234 to be used at
temporal prediction stage 2044. In some embodiments, the
encoder can encode parameters of the loop filter (e.g., a loop
filter strength) at binary coding stage 226, along with
quantized transform coefficients 216, prediction data 206,
and other information.

[0082] FIG. 3A illustrates a schematic diagram of an
example decoding process 300A, consistent with embodi-
ments of the disclosure. Process 300A can be a decompres-
sion process corresponding to the compression process
200A in FIG. 2A. In sonic embodiments, process 300A can
be similar to the reconstruction path of process 200A. A
decoder can decode video bitstream 228 into video stream
304 according to process 300A. Video stream 304 can be
very similar to video sequence 202. However, due to the
information loss in the compression and decompression
process (e.g., quantization stage 214 in FIGS. 2A-2B),
generally, video stream 304 is not identical to video
sequence 202. Similar to processes 200A and 200B in FIGS.
2A-2B, the decoder can perform process 300A at the level
of basic processing units (BPUs) for each picture encoded in
video bitstream 228. For example, the decoder can perform
process 300A in an iterative manner, in which the decoder
can decode a basic processing unit in one iteration of process
300A. In some embodiments, the decoder can perform
process 300A in parallel for regions (e.g., regions 114-118)
of each picture encoded in video bitstream 228.
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[0083] InFIG. 3A, the decoder can feed a portion of video
bitstream 228 associated with a basic processing unit (re-
ferred to as an “encoded BPU”) of an encoded picture to
binary decoding stage 302. At binary decoding stage 302,
the decoder can decode the portion into prediction data 206
and quantized transform coefficients 216. The decoder can
feed quantized transform coefficients 216 to inverse quan-
tization stage 218 and inverse transform stage 220 to gen-
erate reconstructed residual BPU 222. The decoder can feed
prediction data 206 to prediction stage 204 to generate
predicted BPU 208. The decoder can add reconstructed
residual BPU 222 to predicted BPU 208 to generate pre-
dicted reference 224. In some embodiments, predicted.
reference 224 can be stored in a buffer (e.g., a decoded
picture buffer in a computer memory). The decoder can feed
predicted reference 224 to prediction stage 204 for perform-
ing a prediction operation in the next iteration of process
300A.

[0084] The decoder can perform process 300A iteratively
to decode each encoded BPU of the encoded picture and
generate predicted reference 224 for encoding the next
encoded BPU of the encoded picture. After decoding all
encoded BPUs of the encoded picture, the decoder can
output the picture to video stream 304 for display and
proceed to decode the next encoded picture in video bit-
stream 228.

[0085] At binary decoding stage 302, the decoder can
perform an inverse operation of the binary coding technique
used by the encoder (e.g., entropy coding, variable length
coding, arithmetic coding, Huffman coding, context-adap-
tive binary arithmetic coding, or any other lossless com-
pression algorithm). In some embodiments, besides predic-
tion data 206 and quantized transform coefficients 216, the
decoder can decode other information at binary decoding
stage 302, such as, for example, a prediction mode, param-
eters of the prediction operation, a transform type, param-
eters of the quantization process (e.g., quantization param-
eters), an encoder control parameter (e.g., a bitrate control
parameter), or the like. In some embodiments, if video
bitstream 228 is transmitted over a network in packets, the
decoder can depacketize video bitstream 228 before feeding
it to binary decoding stage 302.

[0086] FIG. 3B illustrates a schematic diagram of another
example decoding process 300B, consistent with embodi-
ments of the disclosure. Process 300B can be modified from
process 300A. For example, process 300B can be used by a
decoder conforming to a hybrid video coding standard (e.g.,
H.26x series). Compared with process 300A, process 300B
additionally divides prediction stage 204 into spatial predic-
tion stage 2042 and temporal prediction stage 2044, and
additionally includes loop filter stage 232 and buffer 234.
[0087] In process 300B, for an encoded basic processing
unit (referred to as a “current BPU”) of an encoded picture
(referred to as a “current picture”) that is being decoded,
prediction data 206 decoded from binary decoding stage 302
by the decoder can include various types of data, depending
on what prediction mode was used to encode the current
BPU by the encoder. For example, if intra prediction was
used by the encoder to encode the current BPU, prediction
data 206 can include a prediction mode indicator (e.g., a flag
value) indicative of the intra prediction, parameters of the
intra prediction operation, or the like. The parameters of the
intra prediction operation can include, for example, loca-
tions (e.g., coordinates) of one or more neighboring BPUs
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used as a reference, sizes of the neighboring BPUs, param-
eters of extrapolation, a direction of the neighboring BPUs
with respect to the original BPU, or the like. For another
example, if inter prediction was used by the encoder to
encode the current BPU, prediction data 206 can include a.
prediction mode indicator (e.g., a flag value) indicative of
the inter prediction, parameters of the inter prediction opera-
tion, or the like. The parameters of the inter prediction
operation can include, for example, the number of reference
pictures associated with the current BPU, weights respec-
tively associated with the reference pictures, locations (e.g.,
coordinates) of one or more matching regions in the respec-
tive reference pictures, one or more motion vectors respec-
tively associated with the matching regions, or the like.

[0088] Based on the prediction mode indicator, the
decoder can decide whether to perform a spatial prediction
(e.g., the intra prediction) at spatial prediction stage 2042 or
a temporal prediction (e.g., the inter prediction) at temporal
prediction stage 2044. The details of performing such spatial
prediction or temporal prediction are described in FIG. 2B
and will not be repeated hereinafter. After performing such
spatial prediction or temporal prediction, the decoder can
generate predicted BPU 208. The decoder can add predicted
BPU 208 and reconstructed residual BPU 222 to generate
prediction reference 224, as described in FIG. 3A.

[0089] In process 300B, the decoder can feed predicted
reference 224 to spatial prediction stage 2042 or temporal
prediction stage 2044 for performing a prediction operation
in the next iteration of process 300B. For example, if the
current BPU is decoded using the intra prediction at spatial
prediction stage 2042, after generating prediction reference
224 (e.g., the decoded current BPU), the decoder can
directly feed prediction reference 224 to spatial prediction
stage 2042 for later usage (e.g., for extrapolation of a next
BPU of the current picture) If the current BPU is decoded
using he inter prediction at temporal prediction stage 2044,
after generating prediction reference 224 (e.g., a reference
picture in which all BPU have been decoded), the encoder
can feed prediction reference 224 to loop filter stage 232 to
reduce or eliminate distortion (e.g., blocking artifacts). The
decoder can apply a loop filter to prediction reference 224,
in a way as described in FIG. 2B. The loop-filtered reference
picture can be stored in buffer 234 (e.g., a decoded picture
buffer in a computer memory) for later use (e.g., to be used
as an inter-prediction reference picture for a future encoded
picture of video bitstream 228). The decoder can store one
or more reference pictures in buffer 234 to be used at
temporal prediction stage 2044. In some embodiments,
when the prediction mode indicator of prediction data 206
indicates that inter prediction was used to encode the current
BPU, prediction data can further include parameters of the
loop filter (e.g., a loop filter strength).

[0090] FIG. 4 is a block diagram of an example apparatus
400 for encoding or decoding a video, consistent with
embodiments of the disclosure. As shown in FIG. 4, appa-
ratus 400 can include processor 402. When processor 402
executes instructions described herein, apparatus 400 can
become a specialized machine for video encoding or decod-
ing. Processor 402 can be any type of circuitry capable of
manipulating or processing information. For example, pro-
cessor 402 can include any combination of any number of a
central processing unit (or “CPU”), a graphics processing
unit (or “GPU”), a neural processing unit (“ITU), a micro-
controller unit (“MCU”), an optical processor, a program-
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mable logic controller, a microcontroller, a microprocessor,
a digital signal processor, an intellectual property (IP) core,
a Programmable bogie Array (PIA), a Programmable Array
Logic (PAL), a Generic Array Logic (GAL), a Complex
Programmable Logic Device (CPLD), a Field-Program-
mable Gate Array (FPGA), a System On Chip (SoC), an
Application-Specific Integrated Circuit (ASIC), or the like.
In some embodiments, processor 402 can also be a set of
processors grouped as a single logical component. For
example, as shown in FIG. 4, processor 402 can include
multiple processors, including processor 402a, processor
4025, and processor 402n.

[0091] Apparatus 400 can also include memory 404 con-
figured to store data (e.g., a set of instructions, computer
codes, intermediate data, or the like). For example, as shown
in FIG. 4, the stored data can include program instructions
(e.g., program instructions for implementing the stages in
processes 200A, 200B, 300A, or 300B) and data for pro-
cessing (e.g., video sequence 202, video bitstream 228, or
video stream 304). Processor 402 can access the program
instructions and data for processing (e.g., via bus 410), and
execute the program instructions to perform an operation or
manipulation on the data for processing. Memory 404 can
include a high-speed random-access storage device or a
non-volatile storage device. In some embodiments, memory
404 can include any combination of any number of a
random-access memory (RAM), a read-only memory
(ROM), an optical disc, a magnetic disk, a hard drive, a
solid-state drive, a flash drive, a security digital (SD) card,
a memory stick, a compact flash (CF) card, or the like.
Memory 404 can also be a group of memories (not shown in
FIG. 4) grouped as a single logical component.

[0092] Bus 410 can be a communication device that
transfers data between components inside apparatus 400,
such as an internal bus (e.g., a CPU-memory bus), an
external bus (e.g., a universal serial bus port. a peripheral
component interconnect express port or the like.

[0093] For ease of explanation without causing ambiguity,
processor 402 and other data processing circuits are collec-
tively referred to as a “data processing circuit” in this
disclosure. The data processing circuit can be implemented
entirely as hardware, or as a combination of software,
hardware, or firmware. In addition, the data processing
circuit can be a single independent module or can be
combined entirely or partially into any other component of
apparatus 400.

[0094] Apparatus 400 can further include network inter-
face 406 to provide wired or wireless communication with
a network (e.g., the Internet, an intranet, a local area
network, a mobile communications network, or the like). In
some embodiments, network interface 406 can include any
combination of any number of a network interface controller
(NIC), a radio frequency (RF) module, a transponder, a
transceiver, a modem, a router, a gateway, a wired network
adapter, a wireless network adapter, a Bluetooth adapter, an
infrared adapter, an near-field communication (“NFC”)
adapter, a cellular network chip, or the like.

[0095] In some embodiments, optionally, apparatus 400
can further include peripheral interface 408 to provide a
connection to one or more peripheral devices. As shown in
FIG. 4, the peripheral device can include, but is not limited
to, a cursor control device (e.g., a mouse, a touchpad, or a
touchscreen), a keyboard, a display (e.g., a cathode-ray tube
display, a liquid crystal display, or a light-emitting diode
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display), a video input device (e.g., a camera or an input
interface coupled to a video archive), or the like.

[0096] It should be noted that video codecs (e.g., a codec
performing process 200A, 200B, 300A, or 300B) can be
implemented as any combination of any software or hard-
ware modules in apparatus 400. For example, some or all
stages of process 200A, 200B, 300A, or 300B can be
implemented as one or more software modules of apparatus
400, such as program instructions that can be loaded into
memory 404. For another example, some or all stages of
process 200A, 200B, 300A, or 300B can be implemented as
one or more hardware modules of apparatus 400, such as a
specialized data processing circuit (e.g., an FPGA, an ASIC,
an NPU, or the like).

[0097] In the quantization and inverse quantization func-
tional blocks (e.g., quantization 214 and inverse quantiza-
tion 218 of FIG. 2A or FIG. 2B, inverse quantization 218 of
FIG. 3A or FIG. 3B), a quantization parameter (QP) is used
to determine the amount of quantization (and inverse quan-
tization) applied to the prediction residuals. Initial QP values
used for coding of a. picture or slice may be signaled at the
high level, for example, using init_qp_minus26_syntax ele-
ment in the Picture Parameter Set (PPS) and using slice_
qp_delta syntax element in the slice header. Further, the QP
values may be adapted at the local level for each CU using
delta QP values sent at the granularity of quantization
groups.

[0098] According to some embodiments, lossless coding
can be achieved at sequence level by selecting the trans-
form-skip mode for all of the coding blocks. In order to
achieve the lossless coding at sequence level, several coding
tools need to be configured as the following:

[0099] Set maximum transform size to 32x32

[0100] Enable chroma transform skip

[0101] Disable dependent quantization

[0102] Disable sub-block transform (SBT)

[0103] Disables lura mapping with chroma scaling
(LMCS)

[0104] Disables de-blocking filer (DF)

[0105] Disables sample adaptive offset (SAO)

[0106] Disables adaptive loop filter (ALF)

[0107] Disable multiple-transform selection (NITS)

[0108] Disable low frequency non-separable transform
(LFNST)

[0109] Disable joint Cb-Cr mode

[0110] InternalBitDepth=0 (Input=Internal Bit Depth)

[0111] However, in the current design of lossless coding of

VVC 7, the above coding tools are configured at sequence
level, and thus the coding efficiency is compromised in
mixed coding scenario where one part of the image is coded
as lossless mode and another part of the image is coded as
lossy mode.

[0112] To achieve efficient compression in mixed coding
(e.g., lossy and lossless coding) scenario, the present dis-
closure provides methods that signal a flag for each coding
tree unit (CTU) of an image frame to indicate whether the
CTU is coded in in a lossless mode or a lossy mode.
[0113] According to some embodiments, a CTU level
lossless flag can be used to signal whether lossless coding is
applied to a CTU. Specifically, a flag is signaled at each
CTU to indicate if the CTU is coded as lossless mode or not.
The following are the semantics of the disclosed CTU level
lossless flag, consistent with the present embodiments:
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ctu_lossless_flag[ xCtb >> CtbLog2SizeY ][ yCtb >> CtbLog2SizeY |
equal to 1 specifies that the coding tree unit at luma location

( xCtb, yCtb ) is losslessly coded.

ctu_losslessflag[ xCtb >> CtbLog2SizeY ][ yCtb >> CtbLog2SizeY ]
equal to O specifies that the coding tree unit at luma location

( xCtb, yCtb ) is not coded as lossless mode.

When ctu_lossless_flag[ xCtb >> CtbLog2SizeY ][ yCtb >>
CtbLog2SizeY ] is not present, it is inferred to be equal to 0.

The variable CtbLog2SizeY is derived as: folCtbLog2SizeY =
sps_log2_ctu_size _minus5 + 5.

[0114] FIG. 5 illustrates an exemplary Table 1 showing
exemplary CTU syntax for signaling whether a CTU is
coded in lossless mode, according to some embodiments of
the present disclosure. Referring to Table 1, the CTU level
lossless flag (e.g., ctu_lossless_flag[CtbAddrX][Ct-
bAddrY]) is signaled at the beginning of each CTU. The
italicized syntax elements in box 501 show the difference of
the proposed method with current VVC 7 syntax table.
[0115] According to some embodiments, an SPS level flag
is signaled to indicate whether the CTU level lossless flags
are present in the bit-stream or not. The following are the
semantics of the disclosed SPS flag, consistent with the
present embodiments:

sps_ctu_lossless_present_flag equal to 1 specifies that ctu_lossless_flag
is present in the bitstream. If sps_ctu_lossless_present flag is equal to
1, sps_transform_skip_enabled_flag is inferred to be 1.
sps_ctu_lossless_present_flag equal to O specifies that ctu_lossless_flag
is not present in the bitstream.

If sps_ctu_lossless_present_flag is not presents, it is inferred to be 0.

[0116] FIG. 6 illustrates an exemplary Table 2 showing
exemplary SPS syntax for syntax element sps_ctu_lossless_
present_{flag, according to some embodiments of the present
disclosure. Table 2 shows an exemplary SPS syntax table
when sps_ctu_lossless_present_flag is signaled in the SPS
(emphases shown in box 601 and in italics). In the disclosed
method, syntax element sps_transform_skip_enabled_flag is
signaled only when syntax element sps_ctu_lossless_pre-
sent_flag is equal to 0. FIG. 7 illustrates an exemplary Table
3 showing exemplary CTU syntax table when syntax ele-
ment sps_ctu_lossless_present_flag is signaled, according to
some embodiments of the present disclosure. Table 3 shows
the coding_tree_unit syntax table where the syntax element
ctu_lossless_flag is conditionally signaled if SPS level syn-
tax element sps_ctu_lossless_present_flag is 1 (emphases
shown in box 701 and in italics).

[0117] According to some embodiments, a slice level
lossless flag can be used to signal whether lossless coding is
applied, Specifically, the lossless flag is signaled in the slice
header. The following are the semantics of the disclosed
slice level lossless flag, consistent with the present embodi-
ments:

slice_lossless_flag equal to 1 specifies that all of the CTUs of the slice
are coded as lossless mode.

slice_lossless_flag equal to 0 specifies that the CTU level lossless flag
of the slices are signaled.

[0118] Ifslice_lossless_flag is equal to 1, the lossy coding
tools such as de-blocking filter, adaptive loop filter, sample
adaptive offset, Luma mapping with chroma scaling
(LMCS) are disabled, as follows:
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[0119] Disable de-blocking: If slice_lossless_flag is
equal to 1, slice_deblocking_filter disabled_flag is
inferred to be 1.

[0120] Disable SAO and ALF: If slice_lossless_flag is
equal to 1, slice_sao_luma_flag, slice_sao_chroma_
flag, slice_alf_enabled_flag are inferred to be 0.

[0121] Disable LMCS and other coding tools: If slice_
lossless_flag is equal to 1, the CTU level lossless flags
ctu_lossless_flag of all of the CTUs of the slice are
inferred to be 1 and LMCS (since there is no slice level
control flag to disable LMCS) and other required
coding tools are disabled at CTU level.

[0122] FIG. 8 illustrates an exemplary Table 4 showing
exemplary slice_header syntax of slice level lossless flag
(emphases shown in boxes 801-803 and in italics), accord-
ing to some embodiments of the present disclosure. FIG. 9
illustrates an exemplary Table 5 showing exemplary coding_
tree_unit syntax of slice level lossless coding (emphases
shown in box 901 and in italics), according to some embodi-
ments of the present disclosure. In Table 5, it is shown that
the CTU level lossless flag is conditionally signaled if
syntax element slice_lossless_flag is equal to 0. If the syntax
element slice_lossless_flag is equal to 1, the CTU level
lossless flags ctu_lossless_flag is inferred to be 1.

[0123] According to some embodiments, a picture header
can be used to signal whether lossless coding is applied.
Specifically, the lossless flag is signaled in the picture header
(PH). The following are the semantics of the disclosed
picture level lossless flag, consistent with the present
embodiments:

pic_lossless_flag equal to 1 specifies that all of the slices associated
with the PH are coded as lossless mode. If pic_lossless_flag equal to
1, the slice level lossless flags slice_lossless_flag of all of the slices
associated with the PH are inferred to be 1.

pic_lossless_flag equal to O specifies slice_lossless_flag may be
present in the bit-stream.

[0124] If pic_lossless_flag is equal to 1, the following
applies:
[0125] Disable de-blocking: If pic_lossless_flag is

equal to 1, pic_deblocking filter_disabled_flag is
inferred to be 1.

[0126] Disable SAO: If pic_lossless_flag is equal to 1,
pic_sao_enabled_present_flag, pic_sao_luma_en-
abled_flag, pic_sao_chroma_enabled_flag are inferred
to be 0.

[0127] Disable ALF: If pic_lossless_flag is equal to 1,
pic_alf_enabled_present_flag and pic_alf_enabled_flag
are inferred to be 0.

[0128] Disable LMCS: Ifpic_lossless_flagis equalto 1,
pic_lmces_enabled_flag and pic_chroma_residual_
scale_flag are inferred to be O.

[0129] Disable other coding tools: If pic_lossless_flag
is equal to 1, the slice level flags of all of the slices
associated with the PH are inferred to be 1. In addition,
all of the CTU level lossless flags are also inferred to
be 1. The other necessary coding tools are disabled at
CTU level.

[0130] FIG. 10 illustrates an exemplary Table 6 showing
exemplary picture header syntax table of picture level loss-
less coding (emphases shown in boxes 1001-1004 and in
italics), according to some embodiments of the present
disclosure. FIG. 11 illustrates an exemplary Table 7 showing

10
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exemplary slice header syntax table of picture level lossless
coding when pic_lossless_flag is signaled (emphases shown
in box 1101 and in italics), according to some embodiments
of the present disclosure.

[0131] According to some embodiments, picture param-
eter set can be used to signal whether lossless coding is
applied. Specifically, the lossless flag can be signaled in
picture parameter sets (PPS). The following are the seman-
tics of the disclosed PPS level lossless flag, consistent with
the present embodiments:

pps_lossless_flag equal to 1 specifies that all of the slices referring to
the PPS is coded as lossless mode. If pps_lossless_flag is equal to 1, the
pps_deblocking filter_disabled_flag is inferred to be 1.
pps_lossless_flag equal to O specifies that the slices referring to the

PPS is not coded as lossless mode.

[0132] If syntax element pps_lossless_flag is equal to 1,
both the picture level lossless flags pic_lossless_flag and the
slice level lossless flags slice_lossless_flag of all of the
slices referred to that PPS are inferred to be 1. The CTU
level lossless flags associated with that PPS are also inferred
to be 1. Therefore, other coding tools may be disabled at
CTU level.

[0133] FIG. 12 illustrates an exemplary Table 8 showing
exemplary PPS syntax table with pps_lossless_flag of PPS
level lossless coding (emphases shown in box 1201 and in
italics), according to some embodiments of the present
disclosure. FIG. 13 illustrates an exemplary Table 9 showing
exemplary picture header syntax table of PPS level lossless
coding when pps_lossless_flag is signaled (emphases shown
in boxes 1301-4304 and in italics), according to some
embodiments of the present disclosure.

[0134] According to some embodiments, the lossless flag
is signaled in sequence parameter sets (SPS). The following
are the semantics of the disclosed SPS level lossless flag.
consistent with the present embodiments:

sps_lossless_flag is equal to 1 specifies that the entire sequence is
coding as lossless mode.

sps_lossless_flag is equal to O specifies that the entire sequence is
not coding as lossless mode.

If sps_lossless_flag is equal to 1, the following SPS flags are not
signaled and inferred to be as follows:

— Disable LMCS: sps_lmecs_enabled_flag is inferred to be 0

— Disable LFNST: sps_lfnst_enabled_flag is inferred to be 0

— Set transform size = 32: sps_max_luma_transform_size_64_flag
is inferred to be 0

— Disable joint Cb-Cr mode: sps_joint_cber_enabled_flag is
inferred to be 0

— Disable SAO: sps_sao_enabled_flag is inferred to be 0

— Disable ALF: sps_alf enabled_flag is inferred to be 0

— Allow transform skip: sps_transform_skip_enabled_flag is
inferred to be 1

— Disable MTS: sps_mts_enabled_flag is inferred to be 0

— Disable SBT: sps_sbt_enabled_flag is inferred to be 0

— Disable LFNST: sps_ltnst_enabled_flag is inferred to be 0

— Disable ISP: sps_isp_enabled_flag is inferred to be 0

[0135] FIG. 14 illustrates an exemplary Table 10 showing
exemplary SPS syntax table for sequence level lossless
coding (emphases shown in box 1401-1408 and in italics),
according to some embodiments of the present disclosure.
VVC 7 supports two residual coding methods: (a) regular
residual coding (RRC) (b) transform skip residual coding
(TSRC). In VVC 7 lossless coding, all of the coding blocks



US 2021/0195251 Al

select TSRC. However, the RRC may achieve more coding
gain as compared to TSRC especially in case of camera
capture contents, e.g., when lossless coding is used on the
current CTU. To maximize the coding gain, in some embodi-
ments, another CTU level flag is used to signal the residual
coding method of a CTU. The CTU level residual coding
flag may be signaled if (and only if) the syntax element
ctu_lossless_flag is 1. Following are the semantics of the
disclosed CTU residual coding flag, consistent with the
present embodiments:

ctu_rrc_flag[ xCtb >> CtbLog2SizeY ][ yCtb >> CtbLog2SizeY | equal
to 1 specifies that all of the transform blocks of the coding tree unit at
luma location ( xCtb, yCtb ) select regular residual coding method.
ctu_rrc_flag[ xCtb >> CtbLog2SizeY ][ yCtb >> CtbLog2SizeY | equal
to 0 specifies that the transform blocks of the coding tree unit at luma
location ( xCtb, yCtb ) select residual coding method based on

the value of transform_skip_flag. If transform_skip_flag is equal 1, the
transform block selects TSRC. If transform_skip_flag is equal to 0, the
transform block selects RRC.

When ctu_lossless_flag [ xCtb >> CtbLog2SizeY ][ yCtb >>
CtbLog28SizeY ]

is 0, ctu_rrc_flag [ xCtb >> CtbLog28SizeY ][ yCtb >> CtbLog28SizeY ] is
inferred to be equal to 0.

When ctu_rrc_flag [ xCtb >> CtbLog2SizeY ][ yCtb >> CtbLog2SizeY ]
is not present, it is inferred to be equal to 0.

[0136] FIG. 15 illustrates an exemplary Table 11 showing
exemplary coding free unit syntax table of CTU level
residual coding flag (emphases shown in box 1501 and in
italics), according to some embodiments of the present
disclosure. FIG. 16 illustrates an exemplary Table 12 show-
ing exemplary transform_unit syntax of CTU level residual
coding flag (emphases shown in boxes 1601-1603 and in
italics), according to some embodiments of the present
disclosure.

[0137] In some embodiments, both syntax elements ctu_
lossless_flag and ctu_rrc_flag may be by-pass coded. In
some embodiments, one of or both of syntax elements
ctu_lossless_flag and ctu_rrc_flag may be context coded.
[0138] The present disclosure also provides methods for
configuring the interaction between the lossless coding and
various other coding tools. The details are described as
follows.

[0139] According to some embodiments, if a CTU is
coded as lossless mode, de-blocking filtering process of that
CTU is skipped. According to some embodiments, the
deblocking filter process is applied to all coding subblock
edges and transform block edges of a picture, except for
some types of edges. FIG. 17 illustrates exemplary types of
edges to which deblocking filter process is not applied (the
portions in box 1701 and in italics show the changes of the
disclosed methods as compred to VVC7 draft), according to
some embodiments of the present disclosure.

[0140] According to some embodiments, sample adaptive
offset (SAO) is disabled for a CTU if lossless coding is used.
SAO is the process of adding offset to de-blocked pixel
values according to SAO type—e.g., based on edge direc-
tion/shape (Edge Offset) and pixel level (Band Offset) or
unchanged (OFF). The SAO process is not mathematically
lossless. Therefore, for lossless CTU, it is proposed to
disable SAO. If the syntax element ctu_lossless_flag is equal
to 1, all of the SAO related syntaxes of that CTU (such as
syntax elements sao_merge_left_flag, sao_merge_up_{flag,
sao_type_idx_luma, sao_type_idx_chroma) are inferred to
be 0. FIG. 18 illustrates an exemplary Table 13 showing
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exemplary coding tree_unit syntax table to disable SAO
(emphases shown in box 1801 and in italics), according to
some embodiments of the present disclosure.

[0141] According to some embodiments, an adaptive loop
filter (ALF) process is disabled for a CTU if lossless coding
is used. In VVC, an ALF with block-based filter adaption is
applied. Similar to de-blocking and SAO, ALF process is not
mathematically lossless. Therefore, in order to achieve loss-
less coding of a CTU, it is proposed to disable ALF. FIG. 19
illustrates an exemplary Table 14 showing exemplary coding
tree unit syntax to disable ALF (emphases shown in boxes
1901-1902 and in italics), according to some embodiments
of'the present disclosure. If syntax element ctu_lossless_flag
of a CTU is equal to 1, syntax element alf ctb_flag of all
color components of that CTU are inferred to be zeros.

[0142] According to some embodiments, luma mapping
with chroma scaling (LMCS) is disabled for a CTU if
lossless coding is used. In VVC, a coding tool called the
luma mapping with chroma scaling (LMCS) is added as a
new processing block before the loop filters. LMCS has two
main components: 1) in-loop mapping of the luma compo-
nent based on adaptive piecewise linear models; 2) for the
chroma components, luma-dependent chroma residual scal-
ing is applied.

[0143] In some embodiments, if a CTU is coded as loss-
less mode, mapping of luma and chroma residual scaling are
disabled.

[0144] FIG. 20 illustrates an exemplary derivation of
variable invLumaSample (emphases in box 2001 and in
italics), according to some embodiments of the present
disclosure.

[0145] Similarly, luma dependent chroma residual scaling
process for chroma samples is disabled for lossless CTU.
FIG. 21 illustrate. exemplary conditions to enable/disable
chroma residual scaling (emphases in box 2101 and in
italics), according to some embodiments of the present
disclosure.

[0146] According to some embodiments, sub block trans-
form (SBT) is disabled for a CTU if lossless coding is used.
In VVC, SBT is introduced for an inter-predicted CU. In this
transform mode, only a sub-part of the residual block is
coded for the CU. When inter-predicted CU with cu_cbf
equal to 1, cu_sbt_flag may be signaled to indicate whether
the whole residual block or a sub-part of the residual block
is coded. In the proposed method, if the coding tree unit
lossless flag ctu_lossless_flag is equal to 1, SBT is not
allowed for a coding unit belongs to that CTU. FIG. 22
illustrates an exemplary Table 15 showing exemplary coding
unit syntax of a method to disable SBT for lossless CTU
(emphases shown in box 2201 and in italics), according to
some embodiments of the present disclosure.

[0147] According to some embodiments, signaling of
Multiple Transtform Selection (MTS) index is disabled for a
CTU if lossless coding is used. In VVC7, in addition to
DCT-II, an MTS scheme is used for residual coding both
inter and intra coded blocks. It uses multiple selected
transforms from the DCT8/DST7. In some embodiments,
signaling of the MIS index is disabled if the current CTU is
a lossless CTU, because such signaling is redundant as no
transform is needed in the case of lossless CTU. FIG. 23
illustrates an exemplary Table 16 showing exemplary coding
unit syntax to disable MTS of the lossless CTU, according
to some embodiments of the present disclosure. Table 16
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shows the related changes in the coding unit syntax table
(emphases shown in box 2301 and in italics).

[0148] According to some embodiments, signaling of low-
frequency non-separable transform (LFNST) index is dis-
abled for a CTU if lossless coding is used. In VVC, LFNST,
which is known as reduced secondary transform, is applied
between forward primary transform and quantization (at
encoder) and between de-quantization and inverse primary
transform (at decoder side). In some embodiments, similar
to MTS, signaling of LFNST index is also disabled for a
lossless CTU. FIG. 24 illustrates an exemplary Table 17
showing exemplary coding unit syntax to disable LFNST for
alossless CTU (emphases shown in box 2401 and in italics),
according to some embodiments of the present disclosure.
[0149] According to some embodiments, joint Cb-Cr
mode is disabled for a CTU if lossless coding is used. In
VVC, joint Cb-Cr mode is not mathematically lossless.
Therefore, it is proposed to disable joint Cb-Cr mode for a
lossless CTU. FIG. 25 illustrates an exemplary Table 18
showing exemplary part of transform unit syntax table to
disable joint_cr_cr mode (emphases shown in box 2501 and
in italics), according to some embodiments of the present
disclosure.

[0150] According to some embodiments. Intra Subparti-
tion (ISP) mode is disabled for a CTU if lossless coding is
used. FIG. 26 illustrates an exemplary Table 19 showing
exemplary coding unit syntax table to disable ISP mode for
alossless CTU (emphases shown in box 2601 and in italics),
according to some embodiments of the present disclosure.
[0151] According to some embodiments, a lossless CTU
always select transform skip mode. Accordingly, ifa CTU is
lossless coded, transform_skip_flag of that CTU is not
signaled and interred to be 1. FIG. 27 illustrates an exem-
plary Table 20 showing exemplary transform unit syntax of
transform_skip_flag signaling, according to some embodi-
ments of the present disclosure. Table 20 shows the trans-
form unit syntax of a method where transform_skip_flag is
signaled if ctu_lossless_{flag is equal to 0 (emphases shown
in boxes 2701-2706 and in italics).

[0152] FIG. 28 illustrates a flowchart of an exemplary
video processing method 2800, according to some embodi-
ments of the present disclosure. In some embodiments,
method 2800, can be performed by an encoder (e.g., by
process 200A of FIG. 2A or 200B of FIG. 2B), a decoder
(e.g., by process 300A of FIG. 3A or 300B of FIG. 3B) or
performed by one or more software or hardware components
of an apparatus (e.g., apparatus 400 of FIG. 4). For example,
a processor (e.g., processor 402 of FIG. 4) can perform
method 2800. In some embodiments, method 2800 can be
implemented by a computer program product, embodied in
a computer-readable medium, including computer-execut-
able instructions, such as program code, executed by com-
puters (e.g., apparatus 400 of FIG. 4).

[0153] At step 2801, a bitstream including a plurality of
coding tree unit (CTUs) in a picture can be received. For
example, video bitstream 228 of FIG. 2A, FIG. 2B, FIG. 3A,
FIG. 3B can be received.

[0154] At step 2803, a determination can be made on
whether lossless coding is applied to the plurality of CTUs,
based on a plurality of flags, respectively. The plurality of
flags can include a first flag associated with a first CTU. In
some embodiments, each of the plurality of flags can be a
CTU level lossless flag, e.g., ctu_lossless_flag as shown in
Table 1 of FIG. 5. In some embodiments, the first flag can
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be a slice level lossless flag (e.g., slice_lossless_flag as
shown in Table 4 of FIG. 8), a picture level lossless flag (e.g.,
pic_lossless_flag as shown in Table 6 of FIG. 10), a PPS
level lossless flag (e.g., pps_lossless_flag as shown in Table
8 of FIG. 12), or a SPS level lossless flag (e.g., sps_lossless_
flag as shown in Table 10 of FIG. 14).

[0155] At step 2805, in response to a determination that
lossless coding is applied to the first CTU, lossless coding to
the first CTU can be performed. In some embodiments,
method 2800 can include in response to the first flag being
not signaled in the bitstream, determining that lossy coding
is applied to the first CTU.

[0156] In some embodiments, method 2800 can include in
response to the determination that lossless coding is applied
to the first CTU, determining a residual coding method
applied to transform blocks of the first CTU, based on a
second flag (e.g., ctu_rrc_flag as shown in Table 11 of FIG.
15, Table 12 of FIG. 16, Table 13 of FIG. 18, or Table 14 of
FIG. 19). In response to the second flag having a first value
(e.g., 1), method 2800 can determine that a first residual
coding method (e.g., regular residual coding method) is
applied to the transform blocks. In response to the second
flag having a second value (e.g., 0), method 2800 can
determine a residual coding method applied to the transform
blocks, based on a third flag (e.g., transform_skip_flag). In
response to the third flag having a third value (e.g., 0),
method 2800 can determine that the first residual coding
method (e.g., regular residual coding method) is applied to
the transform blocks. In response to the third flag having a.
fourth value (e.g., 1), determining that a second residual
coding method (e.g., transform skip residual coding method)
is applied to the transform blocks.

[0157] Insome embodiments, method 2800 can include in
response to the determination that lossless coding is applied
to the first CTU, coding the first CTU in a transform skip
mode regardless of whether a transform-skip flag for the first
CTU is signaled in the bitstream.

[0158] In some embodiments, method 2800 can include
determining whether the first flag (e.g., ctu_lossless_flag as
shown in Table 1 of FIG. 5) is signaled in the bitstream based
on a fourth flag. The fourth flag is a SPS level flag (e.g.,
sps_ctu_lossless_present_flag as shown in Table 2 of FIG.
6). In response to the fourth flag being not signaled in the
bitstream, method 2800 can determine that the bitstream
does not include the first flag.

[0159] In some embodiments, method 2800 can include:
in response to a fifth flag having a fifth value, determining
that lossless coding is applied to a picture slice including the
first CTU, or in response to the fitth flag having a sixth value,
determining that the first flag is signaled in the bitstream.
The fifth flag can be a slice level lossless flag (e.g., slice
lossless flag as shown in Table 4 of FIG. 8 and Table 5 of
FIG. 9).

[0160] In some embodiments, method 2800 can include:
in response to a sixth flag having a seventh value, deter-
mining that lossless coding is applied to a picture including
the first CTU, or in response to the sixth flag having an
eighth value, determining that the fifth flag is signaled in the
bitstream. The sixth flag can be a picture level lossless flag
(e.g., pic_lossless_flag as shown in Table 6 of FIG. 10 and
Table 7 of FIG. 11).

[0161] In some embodiments, method 2800 can include:
in response to a seventh flag having a ninth value, deter-
mining that lossless coding is applied to a picture associated
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with a PPS and including the first CTU, or in response to the
seventh flag having a tenth value, determining that the sixth
flag is signaled in the bitstream. The seventh flag can be a
PPS level lossless flag (e.g., pps_lossless_flag as shown in
Table 8 of FIG. 12 and Table 9 of FIG. 13).
[0162] In some embodiments, method 2800 can include:
in response to an eighth flag having an eleventh value,
determining that lossless coding is applied to a picture
associated with a SPS and including the first CTU, or in
response to the eighth flag having a twelfth value, deter-
mining that lossy coding is applied to one or more first CTUs
associated with the SPS. The eighth flag can be a SPS level
lossless flag (e.g., sps_lossless_flag as shown in Table 10 of
FIG. 14). In some embodiment, in response to the eighth flag
having a twelfth value, CTU level lossless flag, a slice level
lossless flag, a picture level lossless flag, or a PPS level
lossless flag can be signaled to indicate whether a first CTU,
a slice, or a picture can be coded with a lossy coding mode.
[0163] Insome embodiments, method 2800 can include in
response to the determination that lossless coding is applied
to the first CTU, disabling, for the first CTU, one or more of:
a de-clocking filtering process; an SAO process; an ALF
process; LMCS; lama dependent chroma residual scaling
process; SBT; signaling of MTS index; signaling of LFNST
index; a joint Cb-Cr mode; or an ISP mode.
[0164] To achieve mixed coding, in which one part of an
image is lossless coded and another part of the image is lossy
coded, LMCS needs to be disabled for a whole picture even
including the loss- part of the picture, because the current
VVC design does not provide a way to control the LMCS
locally. The present disclosure also provides embodiments
for controlling the LMCS locally.
[0165] In sonic embodiments, a CTB level LMCS flag can
be signaled to control LMCS in the CTB level. The seman-
tics of the proposed CTB level flag are given below.
[0166] “Imcs_ctb_luma_flag,[xCtb>>CtbLog2SizeY]
[yCtb>>CtbLog2SizeY]” equal to 1 specifies that the luma
mapping with chroma scaling is applied to the luma coding
tree block at luma location (xCtb, yCtb).
[0167] “Imes_ctb_luma_flag[cldx]
[xCtb>>CtbLog2SizeY][yCtb>>CtbLog2SizeY]” equal to 0
specifies that the luma mapping with chroma scaling is not
applied to the luma coding tree block the coding tree block
at luma location (xCtb, yCtb).
[0168] When
[0169] “Imcs_ctb_luma_flag[cldx]
[xCth>>CtbLog28SizeY|[yCth>>CtbLog2SizeY]” is not
present, it is inferred to be equal to 0.
[0170] “Imes_ctb_chroma_residual_scale_flag
[xCtb>>CtbLog2SizeY|[yCtb>>CthLog2SizeY]” equal to 1
specifies that chroma residual scaling is applied to the
chroma coding tree block at Hanna location (xCtb, yCtb).
[0171] “Imes_ctb_chroma_residual_scale_flag
[xCtb>>CtbLog2SizeY][yCtb>>CtbLog2SizeY]” equal to 0
specifies that the chroma residual scaling is not applied to
the chroma coding tree block the coding tree block at luma
location xCtb, yCtb).
[0172] When
[0173] “Imes_ctb_chroma_residual_scale_flag
[xCth>>CtbLog28SizeY|[yCth>>CtbLog2SizeY]” is not
present, it is inferred to be equal to 0.
[0174] FIG. 29 illustrates an exemplary Table 21 showing
exemplary syntax for controlling luma mapping with
chroma scaling (LMCS) at the CTB level, according to some
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embodiments of the present disclosure. Emphases of the

syntax are shown in box 2901 and in

[0175] In picture reconstruction with mapping process for

luma samples, input to this process includes the following:

current picture; a variable nCurrSw specifying the block
width; a. variable nCurrSh specifying the block height; an

(nCurrSw)x(nCurrSh) array predSamples specifying the

luma predicted samples of the current block; and an (nCurr-

Sw)x(nCurrSh) array resSamples specifying the luma

residual samples of the current block. Moreover, consistent

with the disclosed embodiment, the input to the process also
includes the following requirement: Imecs_ctb_luma_flag

[xCurr>>CtbLog2SizeY |[yCurr>>CtbLog2SizeY|of  the

luma coding tree block.

[0176] Outputs of this process is a reconstructed luma

picture sample array recSamples:

[0177] If Imcs_ctb_luma_flag[xCurr>>CtbLog2SizeY ]
[yCurr>>CtbLog2SizeY] is equal to 0, the (nCurrSw)
x(nCurrSh) block of the reconstructed samples
recSamples at location (xCurr, yCurr) is derived as
follows for i=0 . . . nCurrSw-1, j=0 . . . nCurrSh-1:
recSamples[xCurr+i][yCurr+j]=Clip1(predSamples[i]
[j]+resSamples[i][j])

[0178] Otherwise, the (nCurrSw)x(nCurrSh) array of
mapped predicted luma samples predMapSamples is
derived as follows:

[0179] If one of the following conditions is true, pred-
MapSamples[i][j] is set equal to predSamples[i][j] for
i=0 . . . nCurrSw-1, j=0 . . . nCurrSh-1:

[0180] CuPredMode[0][xCurr|[yCurr] is equal to
MODE_INTRA.

[0181] CuPredMode[0][xCurr|[yCurr] is equal to
MODE_IBC.

[0182] CuPredMode[0][xCurr|[yCurr] is equal to
MODE_PLT.

[0183] CuPredMode[0][xCurr|[yCurr] is equal to
MODE_INTER and ciip_flag[xCurr|[yCurr] is equal
to 1.

[0184] Otherwise (CuPredMode[0][xCurr|[yCurr] is
equal to MODE_INTER and ciip_flag[xCurr|[yCurr] is
equal to 0), the following applies:

idxY=predSamples[i][/]>>Log 2(0rgCW)

predMapSamples[i][/]=LmcsPivot[idxY]+ScaleCoeff
[idx¥]*(predSamples[][/]-InputPivot[idx ¥])+
(1<<10))>>11
[0185] with i=0 . .. nCurrSw-1, j=0 . . . nCurrSh-1
[0186] The reconstructed luma picture sample recSamples
is derived as follows:

recSamples[xCurr+#][yCurr+7]=Clip1 (predMap-

Samples[7][j]+resSamples[7][/]]

[0187] with i=0 . .. nCurrSw-1, j=0 . . . nCurrSh-1

[0188] In picture reconstruction with luma dependent
chroma residual scaling process for chroma samples, input
to this process includes the following: a chroma location
(xCurr, yCurr) of the top-left chroma sample of the current
chroma transform block relative to the top-left chroma
sample of the current picture; a variable nCurrSw specifying
the chroma transform block width; a variable nCurrSh
specifying the chroma transform block height; a variable
tuCbfChroma specifying the coded block flag of the current
chroma transform block; an (nCurrSw)x(nCurrSh) array
predSamples specifying the chroma prediction samples of
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the current block; an (nCurrSw)x(nCurrSh) array resSa-

mples specifying the chroma residual samples of the current

block; a location (xCtb, yCtb) specifying the top-left luma
sample of the current coding tree unit relative to the top left
sample of the current picture component;

[0189] Imcs_ctb_chroma_residual_scale_flag
[xCth>>CtbLog28SizeY|[yCth>>CtbLog2SizeY] of the
coding tree block.

[0190] Output of this process is a reconstructed chroma

picture sample array recSamples.

[0191] The variable sizeY is set equal to Min(CtbSizeY,
64).
[0192] The reconstructed chroma picture sample

recSamples is derived as follows fori=0. . . nCurrSw-1, j=0
.. nCurrSh-1.

[0193] If one of the following conditions is true,

recSamples|i][yCurr+j] is set equal to Clip1(predSamples

[1][j]+resSamples[i][j]):

[0194] pic_chroma_residual_scale_flag is equal to 0.
[0195] nCurrSw*nCurrSh is less than or equal to 4.
[0196] tu_cbf cb [xCurr][yCurr] is equal to O and

tu_cbf_cr [xCurr|[yCurr] is equal to 0.

[0197] Imcs_ctb_chroma_residual_scale_flag
[xCtb>>CtbLog28SizeY|[yCtb>>CtbLog2SizeY ] is
equal to O

[0198] Otherwise, the following applies:

[0199] The current luma location (xCurrY, yCurrY) is

derived as follows:

(xCurry, yCurr¥)=(xCurr*SubWidthC,
yCurr*SubHeightC)

[0200] The luma location (xCuCb, yCuCb) is specified as

the)p-left luma sample location of the coding unit that

contains the luma sample at (xCurrY/sizeY*sizeY, yCurrY/

sizeY*sizeY).

[0201] The variables availl. and availT are derived as
follows:

[0202] The derivation process for neighbouring block
availability as specified in clause 6.4.4 is invoked with
the location (xCurr, yCurr) set equal to (xCuCb,
yCuCb), the neighbouring luma location (xNbY,
yNbY) set equal to (xCuCb-1, yCuCb), checkPred-
ModeY set equal to FALSE, and cldx set equal to 0 as
inputs, and the output is assigned to availl..

[0203] The derivation process for neighbouring block
availability as specified in clause 6.4.4 is invoked with
the location (xCurr, yCurr) set equal to (xCuCb,
yCuCb), the neighbouring luma location (xNbY,
yNbY) set equal to (xCuCb, yCuCb-1), checkPred-
ModeY set equal to FALSE, and cldx set equal to 0 as
inputs, and the output is assigned to availT.

[0204] The variable currPic specifies the array of recon-
structed luma samples in the current picture.

[0205] For the derivation of the variable varScale the
following ordered steps apply:

[0206] 1. The variable invAvgluma is derived as follows:

[0207] The array recLumali] with i=0 . . . (2¥sizeY-1)
and the variable cnt are derived as follows:

[0208] The variable cnt is set equal to 0.

[0209] When availlL is equal to TRUE, the array
recLumali] with i=0 . . . sizeY-1 is set equal to
[0210] currPic[xCuCb-1][Min(yCuCb+i, pic_

height_in_luma_samples—1)] with i=0 . . . sizeY-
1, and cnt is set equal to sizeY,

Jun. 24, 2021

[0211] When availT is equal to TRUE, the array
recLumalcnt+i] with i=0 . . . sizeY-1 is set equal to
currPic[Min(xCuCb+i, pic _width_in_luma_
samples—1)][yCuCb-1] with i=0 . . . sizeY-1, and
cnt is set equal to (cnt+sizeY).

[0212] The variable invAvgluma is derived as fol-
lows:

[0213] if cnt is greater than 0, the following
applies:
invAvgLuma=Clip1 ((Z;_o"™ ‘recLuma[k]+(cnt>>1))
>>Log 2(cnt))

Otherwise (cnt is equal to 0), the following applies:
invAvglLuma=1<<(BitDepth-1)

[0214] 2. The variable idxYInv is derived by invoking the

identification of piece-wise function index process for a

luma sample as specified in clause 8.8.2.3 with the variable

lumaSample set equal to invAvgluma as the input and
idxYInv as the output.

[0215] 3. The variable varScale is derived as follows:
varScale=ChromaScaleCoefl[idx ¥YInv]
[0216] The reconstructed chroma picture sample array

recSamples is derived as follows:
[0217] If tuCbfChroma is equal to 1, the following
applies:

resSamples[i][/]=Clip3(-(1<<BitDepth), (1<<Bit-
Depth)-1, resSamples[7][])

recSamples[xCurr+#][yCurr+7]=Clip1(predSamples|[i]
[/]+Sign(resSamples[{][/])*((4bs(resSamples[7]
[/])*varScale+(1<<10))>>11))
[0218] Otherwise (tuCbfChroma is equal to 0), the fol-
lowing applies:

recSamples[xCurr+f][yCurr+7]=Clip1 (predSamples[i]
7))

[0219] In inverse mapping process for a luma sample,

input to this process is as below:

[0220] a luma. sample lumaSample.

[0221] a location (xCtb, yCtb) specifying the top-left
luma sample of the current coding tree unit relative to
the top left sample of the current picture component,

[0222] Imes_ctb_luma_flag[0][xCtb>>CthLog2SizeY]
[yCtb>>CtbLog2SizeY] of the coding tree unit

[0223] Output of this process is a modified luma sample

invLumaSample

[0224] The value of invLumaSample is derived as follows:

[0225] If pic_lmes_enabled_flag of the slice that contains
the luma sample lumaSample is equal to 1, and Imcs_
ctb_luma_flag[xCtb>>CtbLog2SizeY ]
[yCtb>>CtbLog2SizeY] is not equal to zero the following
ordered steps apply:

[0226] The variable idxYInv is derived by invoking the
identification of piece-wise function index process for a
luma sample as specified in clause 8.8.2.3 with
lumaSample as the input and idxYInv as the output.

[0227] The variable invSample is derived as follows:

invSample=InputPivot[idx YInv]+(InvScaleCoefl[idx ¥-

Inv]* (lumaSample-LmesPivot[idx¥YInv])+
(1<<10))>>11

[0228] The inverse mapped luma sample invL.umaSample
is derived as follows: invLumaSample=Clip1(invSample)
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[0229] Otherwise, invLumaSample is set equal to
lumaSample
[0230] Insome embodiments, the proposed LMCS control

flags are signaled at slice header. A flag called slice_Imcs_

lima_enabled_flag is signaled in each slice header to control

whether LMCS is enabled for that slice or not. FIG. 30

illustrates an exemplary Table 22 showing exemplary slice

header syntax for signaling LMCS control flags at slice
level, according to some embodiments of the present dis-
closure.

[0231] “slice_lmes_luma_enabled_flag” equal to 1 speci-

fies that luma mapping with chroma scaling is enabled for

the luma component of the slices.

[0232] “slice_lmcs_luma_enabled_flag” equal to O speci-
fies that luma mapping with chroma scaling is not applied
to the luma component of the slice. When “pic_lmcs_
enabled_flag” is not present, its value is inferred to be
equal to O.

[0233] “slice_chroma_residual_scale_flag” equal to 1

specifies that chroma residual scaling is enabled for the

slices. “slice_chroma_residual_scale_flag” equal to O speci-
fies that chroma residual scaling is disabled for the slice.

[0234] In some embodiments, the proposed slice level

LMCS control flags are signaled at slice header to control

LMCS for both luma and chroma. For instance, slice_

chroma_residual_scale_flag being equal to 1 indicate that

LMCS is enable for both luma and chroma. If slice_chroma_

residual_scale_flag is equal to 0, LMCS is disabled for both

luma and chroma of that slice.

[0235] The embodiments of the present disclosure may

further be described using the following clauses:

[0236] 1. A video processing method, comprising:

[0237] receiving a bitstream comprising a plurality of

coding tree unit (CTUs) in a picture;

[0238] determining whether lossless coding is applied to

the plurality of CTUs, based on a plurality of flags, respec-

tively,

[0239] wherein the plurality of flags comprise a first flag
associated with a first CTU, and the method further com-
prises:

[0240] in response to a determination that lossless coding

is applied to the first CTU, performing lossless coding to the
first CTU.

[0241] 2. The method of clause 1, wherein each of the
plurality of flags is a CTU level lossless flag.

[0242] 3. The method of any one of clauses 1 and 2, further
comprising:
[0243] in response to the first flag being not signaled in the

bitstream, determining that lossy coding is applied to the
first CTU.

[0244] 4. The method of any one of clauses 1-3, further
comprising:
[0245] in response to the determination that lossless cod-

ing is applied to the first CTU, determining, based on a
second flag, a residual coding method applied to transform
blocks of the first CTU.

[0246] 5. The method of clause 4, further comprising:
[0247] in response to the second flag having a first value,
determining that a first residual coding method is applied to
the transform blocks.

[0248] 6. The method of clause 4, further comprising:
[0249] in response to the second flag having a second
value, determining a value of a third flag, and
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[0250] in response to the third flag having a third value,
determining that a first residual coding method is applied to
the transform blocks, or
[0251] in response to the third flag having a fourth value,
determining that a second residual coding method is applied
to the transform blocks.

[0252] 7. The method of any one of clauses 1-6, further
comprising:
[0253] in response to the determination that lossless cod-

ing is applied to the first CTU, coding the first CTU in a
transform skip mode regardless of whether a transform-skip
flag for the first CTU is signaled in the bitstream.

[0254] 8. The method of any one of clauses 1-7, further
comprising:
[0255] determining, based on a fourth flag, whether the

first flag is signaled in the bitstream, the fourth flag being a
sequence parameter sets (SPS) level flag.

[0256] 9. The method of clause 8, further comprising:
[0257] in response to the fourth flag being not signaled in
the bitstream, determining that the bitstream does not com-
prise the first flag.

[0258] 10. The method of any one of clauses 1-9, further
comprising:
[0259] in response to a fifth flag having a fifth value,

determining that lossless coding is applied to a picture slice
including the first CTU; or

[0260] in response to the fifth flag having a sixth value,
determining that the first flag is signaled in the bitstream,

[0261] wherein the fifth flag is a slice level lossless flag.
[0262] 11. The method of clause 10, further comprising:
[0263] in response to a sixth flag having a seventh value,

determining that lossless coding is applied to a picture
including the first CTU; or

[0264] in response to the sixth flag having an eighth value,
determining that the fifth flag is signaled in the bitstream,

[0265] wherein the sixth flag is a picture level lossless flag.
[0266] 12. The method of clause 11, further comprising:
[0267] in response to a seventh flag having a ninth value,

determining that lossless coding is applied to a picture
associated with a picture parameter sets (PPS) and including
the first CTU; or

[0268] inresponse to the seventh flag having a tenth value,
determining that the sixth flag is signaled in the bitstream,

[0269] wherein the seventh flag is a PPS level lossless flag.
[0270] 13. The method of any of clauses 1-12, further
comprising:

[0271] in response to an eighth flag having an eleventh

value, determining that lossless coding is applied to a picture
associated with a SPS and including the first CTU; or
[0272] in response to the eighth flag having a twelfth
value, determining that lossy coding is applied to one or
more CTUs associated with the SPS,

[0273] wherein the eighth flag is a SPS level lossless flag.
[0274] 14. The method of clause 1, wherein the first flag
is a slice level lossless flag, a picture level lossless flag, a
PPS level lossless flag, or a SPS level lossless flag.

[0275] 15. The method of any one of clauses 1-14, further
comprising:
[0276] in response to the determination that lossless cod-

ing is applied to the first CTU, disabling, for the first CTU,
one or more of:

[0277] a de-clocking filtering process;
[0278] a sample adaptive offset (SAO) process;
[0279] an adaptive loop filter (ALF) process;
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[0280] luma mapping with chroma scaling (LMCS);
[0281] Iuma dependent chroma residual scaling process;
[0282] sub block transform (SBT);

[0283] signaling of Multiple Transform Selection (MTS)
index;

[0284] signaling of low-frequency non-separable trans-

form (LFNST) index;

[0285] a joint Cb-Cr mode; or

[0286] an Intra Subpartition (ISP) mode.

[0287] 16. A video processing apparatus, comprising:
[0288] at least one memory for storing instructions; and
[0289] at least one processor configured to execute the

instructions to cause the apparatus to perform:

[0290] receiving a bitstream comprising a plurality of
coding tree unit (CPUs) in a picture;

[0291] determining whether lossless coding is applied
to the plurality of CTUs, based on a plurality of flags,
respectively,

[0292] wherein the plurality of flags comprise a first flag
associated with a first CTU, and the method further
comprises:

[0293] in response to a determination that lossless cod-
ing is applied to the first CTU, performing lossless
coding to the first CTU.

[0294] 17. The apparatus of clause 16, wherein each of the
plurality of flags is a CTU level lossless flag.

[0295] 18. The apparatus of any one of clauses 16 and 17,
wherein the at least one processor is configured to execute
the instructions to cause the apparatus to perform:

[0296] in response to the first flag being not signaled in the
bitstream, determining that lossy coding is applied to the
first CTU.

[0297] 19. The apparatus of any one of clauses 16-18,
wherein the at least one processor is configured to execute
the instructions to cause the apparatus to perform:

[0298] in response to the determination that lossless cod-
ing is applied to the first CTU, determining, based on a
second flag, a residual coding method applied to transform
blocks of the first CTU.

[0299] 20. The apparatus of clause 19, wherein the at least
one processor is configured to execute the instructions to
cause the apparatus to perform:

[0300] in response to the second flag having a first value,
determining that a first residual coding method is applied to
the transform blocks.

[0301] 21. The apparatus of clause 19, wherein the at least
one processor is configured to execute the instructions to
cause the apparatus to perform:

[0302] in response to the second flag having a second
value, determining a value of a third flag; and

[0303] in response to the third flag having a third value,
determining that a first residual coding method is
applied to the transform blocks, or

[0304] in response to the third flag having a fourth
value, determining that a second residual coding
method is applied to the transform blocks.

[0305] 22. The apparatus of any one of clauses 16-21,
wherein the at least one processor is configured to execute
the instructions to cause the apparatus to perform: in
response to the determination that lossless coding is applied
to the first CTU, coding the first CTU in a transform skip
mode regardless of whether a transform-skip flag for the first
CTU is signaled in the bitstream.
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[0306] 23. The apparatus of any one of clauses 16-22,
wherein the at least one processor is configured to execute
the instructions to cause the apparatus to perform:

[0307] determining, based on a fourth flag, whether the
first flag is signaled in the bitstream, the fourth flag being a
sequence parameter sets (SPS) level flag.

[0308] 24. The apparatus of clause 23, wherein the at least
one processor is configured to execute the instructions to
cause the apparatus to perform:

[0309] in response to the fourth flag being not signaled in
the bitstream, determining that the bitstream does not com-
prise the first flag.

[0310] 25. The apparatus of any one of clauses 16-24,
wherein the at least one processor is configured to execute
the instructions to cause the apparatus to perform:

[0311] in response to a fifth flag having a fifth value,
determining that lossless coding is applied to a picture slice
including the first CTU; or

[0312] in response to the fifth flag having a sixth value,
determining that the first flag is signaled in the bitstream,
[0313] wherein the fifth flag is a slice level lossless flag.
[0314] 26. The apparatus of clause 25, wherein the at least
one processor is configured to execute the instructions to
cause the apparatus to perform:

[0315] in response to a sixth flag having a seventh value,
determining that lossless coding is applied to a picture
including the first CTU or

[0316] in response to the sixth flag having an eighth value,
determining that the fifth flag is signaled in the bitstream,
[0317] wherein the sixth flag is a picture level lossless flag.
[0318] 27. The apparatus of clause 26, wherein the at least
one processor is configured to execute the instructions to
cause the apparatus to perform:

[0319] in response to a seventh flag having a ninth value,
determining that lossless coding is applied to a picture
associated with a picture parameter sets (PPS) and including
the first CTU; or

[0320] inresponse to the seventh flag having a tenth value,
determining that the sixth flag is signaled in the bitstream,
[0321] wherein the seventh flag is a PPS level lossless flag.
[0322] 28. The apparatus of any one of clauses 16-27,
wherein the at least one processor is configured to execute
the instructions to cause the apparatus to perform:

[0323] in response to an eighth flag having an eleventh
value, determining that lossless coding is applied to a picture
associated with a SPS and including the first CTU; or
[0324] in response to the eighth flag having a twelfth
value, determining that lossy coding is applied to one or
more CTUs associated with the SPS,

[0325] wherein the eighth flag is a SPS level lossless
flag.
[0326] 29. The apparatus of clause 16, wherein the first

flag is a slice level lossless flag, a picture level lossless flag,
a PPS level lossless flag, or a SPS level lossless flag.
[0327] 30. The apparatus of any one of clauses 16-29,
wherein the at least one processor is configured to execute
the instructions to cause the apparatus to perform:

[0328] in response to the determination that lossless cod-
ing is applied to the first CTU, disabling, for the first CTU,
one or more of:

[0329] a de-clocking filtering process;

[0330] a sample adaptive offset (SAO) process;
[0331] an adaptive loop filter (ALF) process;

[0332] luma mapping with chroma scaling (LMCS);
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[0333] Iluma dependent chroma residual scaling process;
[0334] sub block transform (SBT);

[0335] signaling of Multiple Transform Selection (MTS)
index;

[0336] signaling of low-frequency non-separable trans-

form (LFNST) index;

[0337] a joint Cb-Cr mode; or
[0338] an Intra Subpartition (ISP) mode.
[0339] 31. A non-transitory computer readable storage

medium storing a set of instructions that are executable by
one or more processing devices to cause a video processing
apparatus to perform a method comprising:

[0340] receiving a bitstream comprising a plurality of
coding tree unit (CTUs) in a picture;

[0341] determining whether lossless coding is applied to
the plurality of CTUs, based on a plurality of flags, respec-
tively,

[0342] wherein the plurality of flags comprise a first flag
associated with a first CTU, and the method further com-
prises:

[0343] in response to a determination that lossless coding
is applied to the first CTU, performing lossless coding to the
first CTU.

[0344] 32. The non-transitory computer readable storage
medium of clause 31, wherein each of the plurality of flags
is a CTU level lossless flag.

[0345] 33. The on-transitory computer readable storage
medium of any one of clauses 31 and 32, wherein the set of
instructions are executable by the one or more processing
devices to cause the video processing apparatus to perform:
[0346] in response to the first flag being not signaled in the
bitstream, determining that lossy coding is applied to the
first CTU.

[0347] 34. The non-transitory computer readable storage
medium of any one of clauses 31-33, wherein the set of
instructions are executable by the one or more processing
devices to cause the video processing apparatus to perform:
[0348] in response to the determination that lossless cod-
ing is applied to the first CTU, determining, based on a
second flag, a residual coding method applied to transform
blocks of the first CTU.

[0349] 35. The non-transitory computer readable storage
medium of clause 34, wherein the set of instructions are
executable by the one or more processing devices to cause
the video processing apparatus to perform:

[0350] in response to the second flag having a first value,
determining that a first residual coding method is applied to
the transform blocks.

[0351] 36. The non-transitory computer readable storage
medium of clause 34, wherein the set of instructions are
executable by the one or more processing devices to cause
the video processing apparatus to perform:

[0352] in response to the second flag having a second
value, determining a value of a third flag; and

[0353] in response to the third flag having a third value,
determining that a first residual coding method is applied to
the transform blocks, or

[0354] in response to the third flag having a fourth value,
determining that a second residual coding method is applied
to the transform blocks.

[0355] 37. The non-transitory computer readable storage
medium of any one of clauses 31-36, wherein the set of
instructions are executable by the one or more processing
devices to cause the video processing apparatus to perform:
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[0356] in response to the determination that lossless cod-
ing is applied to the first CTU, coding the first CTU in a
transform skip mode regardless of whether a transform-skip
flag for the first CTU is signaled in the bitstream.

[0357] 38. The non-transitory computer readable storage
medium of any one of clauses 31-37, wherein the set of
instructions are executable by the one or more processing
devices to cause the video processing apparatus to perform:
[0358] determining, based on a fourth flag, whether the
first flag is signaled in the bitstream, the fourth flag being a
sequence parameter sets (SPS) level flag.

[0359] 39. The non-transitory computer readable storage
medium of clause 38, wherein the set of instructions are
executable by the one or more processing devices to cause
the video processing apparatus to perform:

[0360] in response to the fourth flag being not signaled in
the bitstream, determining that the bitstream does not com-
prise the first flag.

[0361] 40. The non-transitory computer readable storage
medium of any one of clauses 31-39, wherein the set of
instructions are executable by the one or more processing
devices to cause the video processing apparatus to perform:
[0362] in response to a fifth flag having a fifth value,
determining that lossless coding is applied to a picture slice
including the first CTU; or

[0363] in response to the fifth flag having a sixth value,
determining that the first flag is signaled in the bitstream,
[0364] wherein the fifth flag is a slice level lossless flag.
[0365] 41. The non-transitory computer readable storage
medium of 40, wherein the set of instructions are executable
by the one or more processing devices to cause the video
processing apparatus to perform:

[0366] in response to a sixth flag having a seventh value,
determining that lossless coding is applied to a picture
including the first CTU; or

[0367] in response to the sixth flag having an eighth value,
determining that the fifth flag is signaled in the bitstream,
[0368] wherein the sixth flag is a picture level lossless flag.
[0369] 42. The non-transitory computer readable storage
medium of clause 41, wherein the set of instructions are
executable by the one or more processing devices to cause
the video processing apparatus to perform:

[0370] in response to a seventh flag having a ninth value,
determining that lossless coding is applied to a picture
associated with a picture parameter sets (PPS) and including
the first CTU; or

[0371] inresponse to the seventh flag having a tenth value,
determining that the sixth flag is signaled in the bitstream,
[0372] wherein the seventh flag is a PPS level lossless flag.
[0373] 43. The non-transitory computer readable storage
medium of any one of clauses 31-42, wherein the set of
instructions are executable by the one or more processing
devices to cause the video processing apparatus to perform:
[0374] in response to an eighth flag having an eleventh
value, determining that lossless coding is applied to a picture
associated with a SPS and including the first CTU; or
[0375] in response to the eighth flag having a twelfth
value, determining that lossy coding is applied to one or
more CTUs associated with the SPS,

[0376] wherein the eighth flag is a SPS level lossless flag.
[0377] 44. The non-transitory computer readable storage
medium of clause 31, wherein the first flag is a slice level
lossless flag, a picture level lossless flag, a PPS level lossless
flag, or a SPS level lossless flag.
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[0378] 45. The non-transitory computer readable storage
medium of any one of clauses 31-44, wherein the set of
instructions are executable by the one or more processing
devices to cause the video processing apparatus to perform:
[0379] in response to the determination that lossless cod-
ing is applied to the first CTU, disabling, for the first CTU,
one or more of:

[0380] a de-clocking filtering process;

[0381] a sample adaptive offset (SAO) process;

[0382] an adaptive loop filter (ALF) process;

[0383] luma mapping with chroma. scaling (LMCS);
[0384] Iluma dependent chroma residual scaling process;
[0385] sub block transform (SBT);

[0386] signaling of Multiple Transform Selection (MTS)
index;

[0387] signaling of low-frequency non-separable trans-

form (LFNST) index;

[0388] a joint Cb-Cr mode; or

[0389] an Intra Subpartition (ISP) mode.

[0390] 46. A video processing method, comprising:
[0391] receiving a bitstream representing a picture

sequence, the bitstream including a parameter set for the
picture sequence;

[0392] determining whether lama mapping with chroma
scaling (LMCS) is enabled for the picture sequence;
[0393] in response to the determination that LMCS is
enabled for the picture sequence, determining if LMCS is
enabled for a coding tree block (CTB) of the picture
sequence.

[0394] 47. The method of clause 46, further comprising:
[0395] in response to the determination that LMCS is
enabled for the CTB of the picture sequence, applying
LMCS on the CTB.

[0396] In some embodiments, a non-transitory computer-
readable storage medium including instructions is also pro-
vided, and the instructions may be executed by a device
(such as the disclosed encoder and decoder), for performing
the above-described methods. Common forms of non-tran-
sitory media include, for example, a floppy disk, a flexible
disk, hard disk, solid state drive, magnetic tape, or any other
magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-
EPROM or any other flash memory, NVRAM, a cache, a
register, any other memory chip or cartridge, and networked
versions of the same. The device may include one or more
processors (CPUs), an input/output interface, a network
interface, and/or a memory.

[0397] It should be noted that, the relational terms herein
such as “first” and “second” are used only to differentiate an
entity or operation from another entity or operation, and do
not require or imply any actual relationship or sequence
between these entities or operations. Moreover, the words
“comprising,” “having,” “containing,” and “including,” and
other similar forms are intended to be equivalent in meaning
and be open ended in that an item or items following any one
of these words is not meant to be an exhaustive listing of
such item or items, or meant to be limited to only the listed
item or items.

[0398] As used herein, unless specifically stated other-
wise, the term “or” encompasses all possible combinations,
except where infeasible. For example, if it is stated that a
database may include A or B, then, unless specifically stated
otherwise or infeasible, the database may include A, or B, or
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A and B. As a second example, if it is stated that a database
may include A, B, or C, then, unless specifically stated
otherwise or infeasible, the database may include A, or B, or
C,orAand B,or Aand C, or Band C, or A and B and C.
[0399] It is appreciated that the above described embodi-
ments can be implemented by hardware, or software (pro-
gram codes), or a combination of hardware and software. If
implemented by software, it may be stored in the above-
described computer-readable media. The software, when
executed by the processor can perform the disclosed meth-
ods. The computing units and other functional units
described in this disclosure can be implemented by hard-
ware, or software, or a combination of hardware and soft-
ware. One of ordinary skill in the art will also understand
that multiple ones of the above described modules/units may
be combined as one module/unit, and each of the above
described modules/units may be further divided into a
plurality of sub-modules/sub-units.
[0400] In the foregoing specification, embodiments have
been described with reference to numerous specific details
that can vary from implementation to implementation. Cer-
tain adaptations and modifications of the described embodi-
ments can be made. Other embodiments can be apparent to
those skilled in the art from consideration of the specifica-
tion and practice of the invention disclosed herein. It is
intended that the specification and examples be considered
as exemplary only, with a true scope and spirit of the
invention being indicated by the following claims. It is also
intended that the sequence of steps shown in figures are only
for illustrative purposes and are not intended to be limited to
any particular sequence of steps. As such, those skilled in the
art can appreciate that these steps can be performed in a
different order while implementing the same method.
[0401] In the drawings and specification, there have been
disclosed exemplary embodiments. However, many varia-
tions and modifications can be made to these embodiments.
Accordingly, although specific terms are employed, they are
used in a generic and descriptive sense only and not for
purposes of limitation.
What is claimed is:
1. A video processing method, comprising:
receiving a bitstream comprising a plurality of coding tree
unit (CTUs) in a picture;
determining whether lossless coding is applied to the
plurality of CTUs, based on a plurality of flags, respec-
tively,
wherein the plurality of flags comprise a first flag asso-
ciated with a first CTU, and the method further com-
prises:
in response to a determination that lossless coding is
applied to the first CTU, performing lossless coding
to the first CTU.
2. The method of claim 1, wherein each of the plurality of
flags is a CTU level lossless flag.
3. The method of claim 1, further comprising:
in response to the first flag being not signaled in the
bitstream, determining that lossy coding is applied to
the first CTU.
4. The method of claim 1, further comprising:
in response to the determination that lossless coding is
applied to the first CTU, determining, based on a
second flag, a residual coding method applied to trans-
form blocks of the first CTU.
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5. The method of claim 4, further comprising:

in response to the second flag having a first value,
determining that a first residual coding method is
applied to the transform blocks.

6. The method of claim 4, further comprising:

in response to the second flag having a second value,
determining a value of a third flag, and

in response to the third flag having a third value, deter-
mining that a first residual coding method is applied to
the transform blocks, or

in response to the third flag having a fourth value,
determining that a second residual coding method is
applied to the transform blocks.

7. The method of claim 1, further comprising:

in response to the determination that lossless coding is
applied to the first CTU, coding the first CTU in a
transform skip mode regardless of whether a transform-
skip flag for the first CTU is signaled in the bitstream.

8. The method of claim 1, further comprising:

determining, based on a fourth flag, whether the first flag
is signaled in the bitstream, the fourth flag being a
sequence parameter sets (SPS) level flag.

9. The method of claim 8, further comprising:

in response to the fourth flag being not signaled in the
bitstream, determining that the bitstream does not com-
prise the first flag.

10. The method of claim 1, further comprising:

in response to a fifth flag having a fifth value, determining
that lossless coding is applied to a picture slice includ-
ing the first CTU; or

in response to the fifth flag having a sixth value, deter-
mining that the first flag is signaled in the bitstream,

wherein the fifth flag is a slice level lossless flag.

11. The method of claim 10, further comprising:

in response to a sixth flag having a seventh value, deter-
mining that lossless coding is applied to a picture
including the first CTU; or

in response to the sixth flag having an eighth value,
determining that the fifth flag is signaled in the bit-
stream,

wherein the sixth flag is a picture level lossless flag.

12. The method of claim 11, further comprising:

in response to a seventh flag having a ninth value,
determining that lossless coding is applied to a picture
associated with a picture parameter sets (PPS) and
including the first CTU; or

in response to the seventh flag having a tenth value,
determining that the sixth flag is signaled in the bit-
stream,

wherein the seventh flag is a PPS level lossless flag.

13. The method of claim 1, further comprising:

in response to an eighth flag having an eleventh value,
determining that lossless coding is applied to a picture
associated with a SPS and including the first CTU; or

in response to the eighth flag having a twelfth value,
determining that lossy coding is applied to one or more
CTUs associated with the SPS,

wherein the eighth flag is a SPS level lossless flag.

14. The method of claim 1, wherein the first flag is a slice

level lossless flag, a picture level lossless flag, a PPS level
lossless flag, or a SPS level lossless flag.
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15. The method of claim 1, further comprising:

in response to the determination that lossless coding is
applied to the first CTU, disabling, for the first CTU,
one or more of:

a de-clocking filtering process;

a sample adaptive offset (SAO) process;

an adaptive loop filter (ALF) process;

luma mapping with chroma scaling (LMCS);

luma dependent chroma residual scaling process;

sub block transform (SBT);

signaling of Multiple Transform Selection (MTS) index;

signaling of low-frequency non-separable transform

(LFNST) index;

a joint Cb-Cr mode; or

an Intra Subpartition (ISP) mode.

16. A video processing apparatus, comprising:

at least one memory for storing instructions; and

at least one processor configured to execute the instruc-

tions to cause the apparatus to perform:

receiving a bitstream comprising a plurality of coding
tree unit (CTUs) in a picture;

determining whether lossless coding is applied to the
plurality of CTUs, based on a plurality of flags,
respectively,

wherein the plurality of flags comprise a first flag
associated with a first CTU, and the method further
comprises:

in response to a determination that lossless coding is
applied to the first CTU, performing lossless coding
to the first CTU.

17. A non-transitory computer readable storage medium
storing a set of instructions that are executable by one or
more processing devices to cause a video processing appa-
ratus to perform a method comprising:

receiving a bitstream comprising a plurality of coding tree

unit (CTUs) in a picture;

determining whether lossless coding is applied to the

plurality of CTUs, based on a plurality of flags, respec-
tively,

wherein the plurality of flags comprise a first flag asso-

ciated with a first CTU, and the method further com-

prises:

in response to a determination that lossless coding is
applied to the first CTU, performing lossless coding
to the first CTU.

18. The non-transitory computer readable storage medium
of claim 17, wherein each of the plurality of flags is a CTU
level lossless flag.

19. The non-transitory computer readable storage medium
of'claim 17, wherein the set of instructions are executable by
the one or more processing devices to cause the video
processing apparatus to perform:

in response to the first flag being not signaled in the

bitstream, determining that lossy coding is applied to
the first CTU.

20. The non-transitory computer readable storage medium
of'claim 17, wherein the first flag is a slice level lossless flag,
a picture level lossless flag, a PPS level lossless flag, or a
SPS level lossless flag.
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