US 20160173266A1

a2y Patent Application Publication o) Pub. No.: US 2016/0173266 A1

a9 United States

Yang et al.

43) Pub. Date: Jun. 16, 2016

(54) DESKEW FIFO BUFFER WITH SIMPLIFIED
INITIALIZATION

(71) Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

(72) Inventors: Suwen Yang, Mountain View, CA (US);
Mark R. Greenstreet, Vancouver (CA);
Tarik Ono, Redwood City, CA (US)

(73) Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

(21) Appl. No.: 14/965,389
(22) Filed: Dec. 10, 2015

Related U.S. Application Data

(60) Provisional application No. 62/090,221, filed on Dec.

10, 2014.

Publication Classification

IDLE

(51) Int.CL
HO4L 7/00 (2006.01)
HO4L 29/06 (2006.01)
HO4L 7/033 (2006.01)
®r1/dnt
WAIT FOR A

Pr1/up?

FIRE

(up | - dnl);

(52) US.CL
CPC oo HO4L 7/005 (2013.01); HO4L 7/033
(2013.01); HO4L 69/08 (2013.01)
(57) ABSTRACT

A source-synchronization interface circuit includes: a sender
synchronous-to-asynchronous protocol converter that
receives sender data and a sender clock and that has regen-
erative gain to resolve metastability during phase synchroni-
zation of the sender clock and a receiver clock; an asynchro-
nous FIFO buffer with multiple stages that conveys phase
information and data from the sender synchronous-to-asyn-
chronous protocol converter to a receiver synchronous-to-
asynchronous protocol converter; and a receiver synchro-
nous-to-asynchronous protocol converter that receives the
receiver clock and that has regenerative gain to resolve meta-
stability during the phase synchronization. Moreover, the
source-synchronization interface circuit includes control
logic that initializes the source-synchronization interface cir-
cuit by operating the stages in the asynchronous FIFO buffer
in a slow mode having a cycle time less than a data-transfer
period for a predetermined number of clock cycles, and sub-
sequently operating the stages in a normal mode having a
cycle time that is less than that for the slow mode.

@rt/up?

£l Px 1
WAIT FOR B
Py |

®p1/dn 1

Patent Application Publication Jun. 16, 2016 Sheet 1 of 8 US 2016/0173266 A1
SOURCE-
SYNCHRONIZATION
/~ INTERFACE
CONTROL CIRCUIT
LOGIC 100
124 DIGITAL
- DATA BUFFER

/ /
Co C1
........ / 116-1
SSTAPC ** " """ "

110

114

FIG. 1

/ / /
Cs Cs C,
116.2 116.3 Lt /
..... / L R STA PC
ASYNCHRONOUS 118
FIFO CONTROL
PATH

Patent Application Publication Jun. 16, 2016 Sheet 2 of 8 US 2016/0173266 A1

IDLE

Pr1/dn1 brt/upt

£l Px T
(up | - dn));
®x |

WAIT FOR A WAIT FOR B

Pr1/upt Pr1/dn 1

FIRE

FIG. 2

Patent Application Publication Jun. 16, 2016 Sheet 3 of 8 US 2016/0173266 A1

SELECTABLE
DELAY

D1 e D;
/ 1 /
do—D Q Q d

A
init ' I 1)
[T 1) ! é Rf ! é t_qb_ﬁ eoe

R
full,o 6 Q 6 Q empty,-+1
/ /

empty., CH fulln empty, C full,

FIG. 3

Patent Application Publication Jun. 16, 2016 Sheet 4 of 8 US 2016/0173266 A1

A go ready to
e - - respond to

! /(SasF‘* > /6asP* =! /6asP* N cp.’_ T
I /

S N G W
G I AV
S o

qy ready to
< -« - respond to

Oasp* Oasp+ Oasp+
! , as t! , as F! ; as >|/ Pr1

Q-1

Patent Application Publication

FAIL FLAKY
4 REGION , REGION |
prl 212 L 318
—
2D
o I
I
O I
2
o I
T -
|_ (I\/[(SasP*]max)-1 :
I
|

Jun. 16,2016 Sheet 5 of 8

US 2016/0173266 Al

SAFE FLAKY FAIL
REGION | REGION REGION
510 518 514

<+
(' N[6asP*]min)-1

|

| <«

I (-N[0asr max)-1
|

|

Am/n/P

Amax/P N
OCCUPANCY
FLAKY .
REGIONS EAST (-Masp]max)

MODE /610\ MODE \ (-M[&asp-Jmin)”
SLOW
| , 17 N
/7~ MODE \Q
e o= T TN LN
5 7] '\
o ol P I
0 | g
™ : : DRIFT : :
= TOLERANCE
- L+]
> | 1
| | | | >
Amin AI As Mg
LATENCY
(N [6asP*] max_slow mode)-1 ('N [6asP*]max_slow mode)-1

(N [6asP*]min_sIow mode)-1

('N[6asP*]min_slow mode)-1

FIG. 6

Patent Application Publication Jun. 16, 2016 Sheet 6 of 8 US 2016/0173266 A1

SELECTABLE
DELAY

s
" D, B
}DO—DO—DO—...—DO—l_

SLOW

o

FIG. 7

Patent Application Publication Jun. 16, 2016 Sheet 7 of 8 US 2016/0173266 A1

SYSTEM

/’ 800

SOURCE-
SYNCHRONIZATION
INTERFACE
CIRCUIT
100

1

PROCESSING MEMORY
SUBSYSTEM SUBSYSTEM
810 812

FIG. 8

Patent Application Publication

[OPERATE SOURCE-SYNCHRONOUS
INTERFACE CIRCUIT IN A SLOW
MODE
910

Jun. 16,2016 Sheet 8 of 8

v

[OPERATE THE OPERATE SOURCE- |
SYNCHRONOUS INTERFACE
CIRCUIT IN A FAST MODE
912

FIG. 9

US 2016/0173266 Al

~— 900

US 2016/0173266 Al

DESKEW FIFO BUFFER WITH SIMPLIFIED
INITIALIZATION

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority under 35 U.S.C.
§119(e) to U.S. Provisional Application Ser. No. 62/090,221,
entitled “Simple Deskew FIFOs with Even Simpler Initial-
ization,” by Suwen Yang and Mark Greenstreet, filed on Dec.
10, 2014, the contents of which are herein incorporated by
reference.

BACKGROUND

[0002] 1. Field

[0003] The present disclosure relates to the design of a
deskew first-in, first-out (FIFO) buffer. More specifically, the
present disclosure relates to the design of a FIFO buffer
having simplified initialization.

[0004] 2. Related Art

[0005] Modern ASIC and CPU designs are often parti-
tioned into multiple communicating clock domains. The
throughput and latency of the synchronizing blocks that form
the interfaces between these clock domains can be critical for
overall performance and robust operation. Often, these clocks
are generated from the same source and have the same fun-
damental frequency but an unknown phase offset because of
the partitioning of the design. In other cases, the clock fre-
quencies may have known rational ratios. In these cases,
mesochronous (matched frequency) implementations can
accommodate unknown or large clock skews with the advan-
tage that metastable behavior is excluded after initialization.
[0006] In one existing circuit, a single-stage, handshaking
first-in, first-out (FIFO) is used as an efficient mesochronous
interface. However, it may be difficult to adopt this existing
circuit in typical design flows. In particular, the existing cir-
cuit may use custom, dynamic logic to implement edge-
triggered C-elements. Moreover, the initialization procedure
used with the existing circuit may involve continuously
sweeping the power supply voltage to the interface. Further-
more, the existing circuit may be limited to a single FIFO
stage. While this architecture may be sufficient to accommo-
date arbitrary phase offsets for a wide variety of applications,
it may not be able to tolerate substantial drifts in skew during
the operation of the interface.

[0007] Hence, what is needed is an interface for use
between clock domains without the above-described prob-
lems.

SUMMARY

[0008] One embodiment of the present disclosure provides
a source-synchronization interface circuit. This source-syn-
chronization interface circuit includes a sender synchronous-
to-asynchronous protocol converter that, during operation,
receives sender data and a sender clock having a first period
and a sender phase, where the sender synchronous-to-asyn-
chronous protocol converter has regenerative gain to resolve
metastability during phase synchronization of the sender
clock and a receiver clock. Moreover, the source-synchroni-
zation interface circuit includes an asynchronous first-in,
first-out (FIFO) buffer electrically coupled to the sender syn-
chronous-to-asynchronous protocol converter, where the
asynchronous FIFO buffer includes multiple stages and, dur-
ing operation, conveys data from the sender synchronous-to-

Jun. 16, 2016

asynchronous protocol converter to a receiver synchronous-
to-asynchronous protocol converter. Furthermore, the
source-synchronization interface circuit includes the receiver
synchronous-to-asynchronous protocol converter, electri-
cally coupled to the asynchronous FIFO buffer, which, during
operation, receives a receiver clock having a period, which is
the first period or a rational multiple of the first period, and a
receiver phase, where the receiver synchronous-to-asynchro-
nous protocol converter has regenerative gain to resolve
metastability during the phase synchronization. Note that the
asynchronous FIFO buffer conveys information correspond-
ing to the sender phase to the receiver synchronous-to-asyn-
chronous protocol converter and information corresponding
to the receiver phase to the sender synchronous-to-asynchro-
nous protocol converter. Moreover, the data is transferred
from the sender to the source-synchronization interface cir-
cuit, and from the source-synchronization interface circuit to
the receiver with a data-transfer period that is the same as the
first period or the rational multiple of the first period. Addi-
tionally, the source-synchronization interface circuit includes
control logic, electrically coupled to the asynchronous FIFO
buffer. During operation, the control logic initializes the
source-synchronization interface circuit by: operating at least
some of the stages in the asynchronous FIFO buffer in a slow
mode having a cycle time less than the data-transfer period for
a predetermined number of clock cycles (such as N or more
clock cycles); and subsequently operating at least some of the
stages in the asynchronous FIFO buffer in a normal mode
having a cycle time that is less than that for the slow mode.
[0009] Note that, during the initialization, the control logic
may operate all of the stages in the asynchronous FIFO buffer
in the slow mode for the predetermined number of clock
cycles.

[0010] Moreover, the initialization may ensure that a digital
data bufter in the asynchronous FIFO buffer is approximately
half full.

[0011] Furthermore, the source-synchronization interface
circuit may include FIFO buffers between the sender syn-
chronous-to-asynchronous protocol converter and the
receiver synchronous-to-asynchronous protocol converter.
[0012] In some embodiments, the sender synchronous-to-
asynchronous protocol converter and the receiver synchro-
nous-to-asynchronous protocol converter are each half of a
phase-frequency detector.

[0013] Additionally, the asynchronous FIFO buffer may
include an asynchronous ripple FIFO buffer.

[0014] Note that the asynchronous FIFO buffer may
include an asynchronous symmetric pulse (asP*) protocol
FIFO buffer.

[0015] Moreover, the slow mode may have multiple cycle
times that are less than the data-transfer period and that are
selectable by the control logic during operation.

[0016] Furthermore, the initialization may ensure that
dropped edges in at least one of the sender clock and the
receiver clock are avoided during the normal mode.

[0017] Another embodiment provides a computer-readable
medium that contains data representing the source-synchro-
nization interface circuit.

[0018] Another embodiment provides an integrated circuit
that includes the source-synchronization interface circuit.
[0019] Another embodiment provides a computer system
that includes the integrated circuit.

[0020] Another embodiment provides a method for operat-
ing the source-synchronization interface circuit.

US 2016/0173266 Al

[0021] This Summary is provided merely for purposes of
illustrating some exemplary embodiments, so as to provide a
basic understanding of some aspects of the subject matter
described herein. Accordingly, it will be appreciated that the
above-described features are merely examples and should not
be construed to narrow the scope or spirit of the subject matter
described herein in any way. Other features, aspects, and
advantages of the subject matter described herein will
become apparent from the following Detailed Description,
Figures, and Claims.

BRIEF DESCRIPTION OF THE FIGURES

[0022] FIG. 1 is a block diagram illustrating a source-syn-
chronization interface circuit in accordance with an embodi-
ment of the present disclosure.

[0023] FIG. 2 is a state diagram for a phase-frequency
detector in the source-synchronization interface circuit of
FIG. 1 in accordance with an embodiment of the present
disclosure.

[0024] FIG. 3 is a drawing illustrating initialization of the
source-synchronization interface circuit of FIG. 1 in accor-
dance with an embodiment of the present disclosure.

[0025] FIG. 4 is a timing diagram for the source-synchro-
nization interface circuit of FIG. 1 in accordance with an
embodiment of the present disclosure.

[0026] FIG. 5 is a drawing illustrating operating regions of
the source-synchronization interface circuit of FIG. 1 in
accordance with an embodiment of the present disclosure.
[0027] FIG. 6 is a drawing illustrating operating regions of
the source-synchronization interface circuit of FIG. 1 in
accordance with an embodiment of the present disclosure.
[0028] FIG. 7 is a block diagram illustrating a selectable
delay line for use in the source-synchronization interface
circuit of FIG. 1 in accordance with an embodiment of the
present disclosure.

[0029] FIG. 8 is a block diagram illustrating a system that
includes the source-synchronization interface circuit of FIG.
1 in accordance with an embodiment of the present disclo-
sure.

[0030] FIG.9is aflow chart illustrating a method for oper-
ating a source-synchronization interface circuitinaccordance
with an embodiment of the present disclosure.

[0031] Note that like reference numerals refer to corre-
sponding parts throughout the drawings. Moreover, multiple
instances of the same part are designated by a common prefix
separated from an instance number by a dash.

DETAILED DESCRIPTION

[0032] Embodiments of a source-synchronization interface
circuit (which is sometimes referred to as a ‘deskew first-in,
first-out or FIFO buffer’), an integrated circuit that includes
the source-synchronization interface circuit, a system that
includes the source-synchronization interface circuit and a
technique for operating the source-synchronization interface
circuit are described. The source-synchronization interface
circuit includes: a sender synchronous-to-asynchronous pro-
tocol converter that receives sender data and a sender clock
and that has regenerative gain to resolve metastability during
phase synchronization of the sender clock and a receiver
clock; an asynchronous FIFO buffer with multiple stages that
conveys phase information and data from the sender synchro-
nous-to-asynchronous protocol converter to a receiver syn-
chronous-to-asynchronous protocol converter; and the

Jun. 16, 2016

receiver synchronous-to-asynchronous protocol converter
that receives the receiver clock and that has regenerative gain
to resolve metastability during the phase synchronization.
Moreover, the source-synchronization interface circuit
includes control logic. The control logic initializes the
source-synchronization interface circuit by operating at least
some of the stages in the asynchronous FIFO buffer in a slow
mode having a cycle time less than a data-transfer period for
the predetermined number of clock cycles, and subsequently
operating at least some of the stages in a normal mode having
a cycle time that is less than that for the slow mode.

[0033] By phase synchronizing the sender clock and the
receiver clock, the source-synchronization interface circuit
ensures that dropped edges in at least one of the sender clock
and the receiver clock are avoided during the normal mode.
More generally, the source-synchronization interface circuit
may resolve metastability between the sender clock and the
receiver clock over a wide range of clock periods and phases.
In addition, the source-synchronization interface circuit
eliminates the need for custom, dynamic logic and continu-
ously adjustable delay lines. Consequently, the source-syn-
chronization interface circuit may improve the performance
of systems that include the source-synchronization interface
circuit and may reduce the cost of these systems.

[0034] We now describe embodiments of the source-syn-
chronization interface circuit. FIG. 1 presents a block dia-
gram illustrating a source-synchronization interface circuit
100. This source-synchronization interface circuit includes a
sender synchronous-to-asynchronous protocol converter (S
STA PC) 110 that, during operation, receives a sender clock
(®,) 112 having a first period and a sender phase, where
sender synchronous-to-asynchronous protocol converter 110
has regenerative gain (positive feedback) to resolve metasta-
bility during phase synchronization of sender clock 112 and a
receiver clock (@) 120.

[0035] Moreover, source-synchronization interface circuit
100 includes an asynchronous FIFO control path 114 electri-
cally coupled to sender synchronous-to-asynchronous proto-
col converter 110, where asynchronous FIFO control path
114 includes multiple stages (C,-C;) 116. Furthermore,
source-synchronization interface circuit 100 includes a
receiver synchronous-to-asynchronous protocol converter (R
STA PC) 118, electrically coupled to asynchronous FIFO
control path 114, which, during operation, receives a receiver
clock 120 having a second period, which is one of the first
period and a rational multiple of the first period, and a receiver
phase, where receiver synchronous-to-asynchronous proto-
col converter 118 has regenerative gain to resolve metastabil-
ity during the phase synchronization. Note that asynchronous
FIFO control path 114 conveys information corresponding to
the sender phase to receiver synchronous-to-asynchronous
protocol converter 118 and information corresponding to the
receiver phase to sender synchronous-to-asynchronous pro-
tocol converter 110. Moreover, data is transferred from the
sender to source-synchronization interface circuit 100, and
from source-synchronization interface circuit 100 to the
receiver with a data-transfer period that is the same as one of
the first period and the rational multiple of the first period.
[0036] Additionally, source-synchronization interface cir-
cuit 100 includes: a digital data buffer 122, electrically
coupled to asynchronous FIFO control path 114, which, dur-
ing operation, conveys data based on output signals from
stages 116 in asynchronous FIFO control path 114; and con-
trol logic 124, electrically coupled to asynchronous FIFO

US 2016/0173266 Al

control path 114. (Note that a FIFO buffer may include FIFO
control path 114 and digital data buffer 122. The asynchro-
nous FIFO control path 114 produces derived clock signals
(9, P,, §5,and ¢, in FIG. 1) that control transfer of data values
between registers in digital data buffer 122. More generally,
the control path may produce N such clock signals, and digital
data bufter 122 may hold up to N distinct values in addition to
any values held in the sender’s output register D, and the
receiver’s input register D in the FIG. 1 (and, more generally
Dy,1). We say that such a source-synchronization interface
circuit includes an N stage FIFO.) During operation, control
logic 124 initializes source-synchronization interface circuit
100 by: operating stages 116 in asynchronous FIFO control
path 114 in a slow mode having a cycle time less than a
data-transfer period for a predetermined number of clock
cycles (such as N or more clock cycles and, more generally, a
sufficient number of clock cycles to ensure proper operation
of source-synchronization interface circuit 100); and subse-
quently operating stages 116 in asynchronous FIFO control
path 114 in a normal mode having a cycle time that is less than
that for the slow mode.

[0037] Note that, during the initialization, control logic 124
may operate all of stages 116 in asynchronous FIFO control
path 114 in the slow mode for N or more clock cycles. More-
over, the initialization may ensure that digital data buffer 122
is approximately half full. Then, during normal operation,
source-synchronization interface circuit 100 may operate to
avoid overflow or underflow.

[0038] Furthermore, source-synchronization interface cir-
cuit 100 may include FIFO buffers (such as stages 116)
between sender synchronous-to-asynchronous protocol con-
verter 110 and receiver synchronous-to-asynchronous proto-
col converter 118. Note that stages 116 may increase the skew
tolerance of source-synchronization interface circuit 100.
[0039] In some embodiments, sender synchronous-to-
asynchronous protocol converter 110 and receiver synchro-
nous-to-asynchronous protocol converter 118 are each half of
a phase-frequency detector.

[0040] Note that asynchronous FIFO control path 114 may
include an asynchronous symmetric pulse (asP*) protocol
FIFO buffer. However, source-synchronization interface cir-
cuit 100 may include or use another self-timed pipelining
technique. Additionally, asynchronous FIFO control path 114
may include an asynchronous ripple FIFO buffer other than
the asP* protocol FIFO buffer.

[0041] Moreover, the slow mode may have multiple cycle
times that are less than the data-transfer period and that are
selectable by control logic 124 during operation.

[0042] Furthermore, the initialization may ensure that
dropped edges in at least one of sender clock 112 and receiver
clock 120 are avoided during the normal mode.

[0043] In source-synchronization interface circuit 100,
each of stages 116 includes a control flip-flop and a data
register. During operation, if the control flip-flop is set, then
the data register holds a value, and the stage is said to be full.
Conversely, if the control flip-flop is reset, then the stage is
said to be empty. A full stage may be referred to as ‘holding a
token’ and an empty stage may be referred to as ‘holding a
bubble.” If stage i—1 holds a token and stage i holds a bubble,
then @i goes high, loading the value from D,_, into D,, setting
control flip-flop C,, and resetting C,_, . Thus, the token moves
from stage i-1 to stage 1, and the bubble moves from stageito
stage i-1. In this design, the sender attempts to insert a token
into (and remove a bubble from) source-synchronization

Jun. 16, 2016

interface circuit 100 at each rising edge of @, by setting
control flip-flop C,. (Note, if the period of the sender clock,
@, is a rational multiple of the period of the receiver clock,
@, then these insert or remove operations may be performed
only on a certain fraction of the clock events in accordance
with the rational ratio of these periods.) Similarly, the receiver
attempts to remove a token from (and insert a bubble into)
source-synchronization interface circuit 100 at each rising
edge of @ by resetting control flip-flop C,. If source-syn-
chronization interface circuit 100 neither overflows nor
underflows, all of these operations succeeded.

[0044] Note that stages 116 in source-synchronization
interface circuit 100 include phase-frequency detectors
(PFDs) that function as edge-triggered C-elements. For
example, a given phase-frequency detector can be imple-
mented using two edge-triggered flip-flops and a NAND gate.
For correct operation, the right flip-flop of PFD, should
always be in the opposite state as the left flip-flop of PFD, ;.
In other words, half of the flip-flops are redundant. Conse-
quently, these redundant flip-flops are removed from source-
synchronization interface circuit 100.

[0045] FIG. 2 presents a state diagram for a phase-fre-
quency detector in source-synchronization interface circuit
100 (FIG. 1). Starting from the idle state, the phase-frequency
detector may wait until it has seen rising edges on @ and @,
at which point it may generate a rising edge on @, and return
to the idle state, resetting the up, dn, and @, signals as it does
s0. Thenotation up 1*dn? indicates that the two signals make
their downward transitions concurrently. The labels inside
each state circle in FI1G. 2 (e.g., ‘00’ for state idle) indicate the
state of up and dn signals in a phase-frequency detector in a
stage in source-synchronization interface circuit 100 (FIG.
1). Note that the names up and dn arise from the traditional
use of phase-frequency detectors in phase-locked loops. In
particular, up indicates that a phase-locked loop oscillator
increases in frequency, and dn indicates that it decreases.

[0046] In order to initialize source-synchronization inter-
face circuit 100 (FIG. 1), each of stages 116 (FIG. 1) may be
modified to include a variable delay line with at least two
settings, fast and slow. For example, the variable delay line
can be implemented using a multiplexer and a chain of buft-
ers. This is shown in FIG. 3, which presents a drawing illus-
trating initialization of source-synchronization interface cir-
cuit 100 (FI1G. 1). In particular, the slow mode may be used for
initialization, and the fast mode may be used for normal
operation. Note that the slow mode may restrict the range of
latencies that are feasible for source-synchronization inter-
face circuit 100. If this range is wider than one clock period,
then source-synchronization interface circuit 100 can be
operated initially in the slow mode and, given sufficient time,
it will reach a latency in this latency range. However, source-
synchronization interface circuit 100 may be at the very edge
of this range (i.e., nearly empty or nearly full), and any sub-
sequent change in the delays may cause a failure. For normal
operation, the extra delay is removed. This increases the
latency range of source-synchronization interface circuit 100
by both lowering the minimum latency (i.e., the fall-through
time for an empty FIFO) and increasing the maximum latency
(i.e., the maximum occupancy times the clock period), and
ensures that source-synchronization interface circuit 100 can
tolerate subsequent timing variations. Moreover, this allows
the initialized source-synchronization interface circuit 100 to
tolerate changes in the relative skew between the sender and
receiver equal to the total decrease in the delays for all of

US 2016/0173266 Al

stages 116 (FI1G. 1). Thus, by running source-synchronization
interface circuit 100 in the slow mode, it can find the operat-
ing conditions that ensure tolerance of timing variations in the
normal mode.

[0047] In an exemplary embodiment, the source-synchro-
nization interface circuit provides a mesochronous deskew
FIFO. This deskew FIFO may be implemented using an all-
digital, multi-stage design (e.g., using standard components
in circuit-design libraries) that can be simply initialized. In
particular, the deskew FIFO may be operated with increased
delay in the handshake circuitry for a predetermined number
of cycles, and this delay may be bypassed for normal opera-
tion. For example, the initialization may be implemented by a
multiplexer that chooses between a normal, direct path for the
control signals and a delayed version of the control signals.
Moreover, very little coordination may be required between
the sender and receiver to perform the initialization. Instead,
it is sufficient that the sender clock operates at the intended
frequency during initialization and onward.

[0048] Moreover, the deskew FIFO addresses metastability
issues that can arise during the initialization such that the
deskew FIFO can have guaranteed tolerance of skew drift
under worst-case conditions. The deskew FIFO may be suit-
able for global interconnect applications and ratiochronous
interfaces in which the sender and receiver clock frequencies
are rational multiples of each other. Furthermore, for the
common case where the sender and receiver clocks have
identical frequency but arbitrary skew, the mesochronous
deskew FIFO can achieve deskew with a smaller FIFO and
lower latency than existing source-synchronization interface
circuits.

[0049] We now discuss the timing constraints that deter-
mine the range of relative phase offsets between the sender
clock and the receiver clock for correct operation of the
source-synchronization interface circuit. This interval of
acceptable phase offsets may be determined by the round-trip
latency of the source-synchronization interface circuit, e.g.,
N+1 clock periods when an N-stage asP* FIFO is used, minus
the sum of the forward and backward fall-through times of the
FIFO. If this interval is wider than one clock period, then the
source-synchronization interface circuit can be initialized to
work with any initial phase offset. Wider skew-tolerance win-
dows may allow the source-synchronization interface circuit
to operate robustly even if the relative phase offset changes
after initialization. First, we derive these bounds and present
the notation used throughout the timing analysis. Then, we
discuss a simple initialization technique that avoids analog
delay lines. In particular, as discussed previously, a digitally
controlled delay in each stage can be set to one of two differ-
ent values. This may be sufficient to achieve a guaranteed
worst-case tolerance of skew drift. While a continuously
adjustable delay-line can achieve greater tolerance of drift in
non-worst-case scenarios, the worst-case is usually the con-
cern of designers, and the all-digital approach disclosed may
be roughly equivalent to the analog one for tolerance of skew
drift given the worst-case initial skew. Next, we discuss issues
of' metastability, including analyzing the timing requirements
for the control path. Note that it is assumed that the source-
synchronization interface circuit satisfies the timing con-
straints. Consequently, in the discussion that follows, the
focus is on the timing constraints required for proper opera-
tion in a mesochronous context.

[0050] In order to establish the skew tolerance of the
source-synchronization interface circuit, the minimum and

Jun. 16, 2016

maximum latencies of the source-synchronization interface
circuit are determined assuming that the sender inserts one
datum and the receiver removes one datum every clock
period. In this discussion, the delay model for the source-
synchronization interface circuit and constraints for the clock
period (Eqn. 1) and latency (Eqn. 4) are defined. As described
further below with reference to Theorem 1, if these con-
straints are satisfied, there is a valid schedule of operations for
the source-synchronization interface circuit such that all data
values are successfully transferred from the sender, through
the source-synchronization interface circuit, to the receiver.
Note that Theorem 1 assumes that the source-synchronization
interface circuit has been initialized to have an occupancy that
satisfies the latency bounds.

[0051] Source-synchronization interface circuit source-
synchronization interface circuit 100 (FIG. 1) has six data
registers, Dy, . . . Ds, and five control flip-flops, C,, . . . C,.
More generally, a source-synchronization interface circuit
with N FIFO stages may have N+2 data registers and N+1
control flip-flops. The following analysis focuses on the con-
trol path.

[0052] The Q output of flip-flop C, is denoted by qi. If qi is
true, then stage 1 is said to be “full,” and data register D, holds
the associated data value. Conversely, if qi is false, then stage
iis said to be ‘empty,” indicating that the value in data register
D, has already propagated to stage i+1 or further. It can be
helpful to identify a correspondence between transmitter and
receiver clock events. In order to do this, imagine that the
transmitter sends an ascending sequence of consecutive inte-
gers,e.g.,0,1,2, ... andlet T(k) denote the time of the rising
edge of the transmitter clock that loads the value k into D,,.
Similarly, let R(k) denote the time of the rising edge of the
receiver clock that loads the value k into Dy, ;.

[0053] As shown in FIG. 4, which presents a timing dia-
gram for source-synchronization interface circuit 100 (FIG.

1), let gasp* denote the forward delay of an asP* stage. This
is the delay from a rising edge of q, through the NAND gate to
the rising subsequent edge of q,,,, assuming that q,,, was
false when q, made its low-to-high transition. In addition,
there are special delays at the transmitter and receiver ends of

the control path. Let ?as - denote the time from a rising edge
of @ ,to the rising edge of q,. When a token arrives at the final
stage and sets q, the stage may need time to complete its
reset cycle and recover before the next rising edge of ®p.

=
Moreover, let 0 , - denote the time to complete this reset
and recovery. Note that the delays for the reverse path can be
defined similarly.

[0054] Before defining the delays used in the analysis, note
that when stage C,_, is full and stage C, is empty, the source-
synchronization interface circuit may trigger a concurrent
resetting of C,_, to empty and setting of C, to full. Further-
more, there are many ‘little’ events that happen in this process
to form a low-going pulse on ®,, along with internal signal
transitions in the flip-flops. While modeling these events may
not change the main line of reasoning in the following dis-
cussion, such modeling would make the arguments much
more tedious and may restrict the analysis to a particular
implementation. Instead, in the following discussion the fir-
ing of an asP* stage is viewed as an atomic event. In particu-
lar, the control path is modeled as if g, goes high and q,_, goes
low at the same time.

US 2016/0173266 Al

[0055] Let &,,.. denote the reverse delay of a stage, i.e., the
time from q, going low (or, equivalently, q,, , going high) until
goes low (or, equivalently, q, goes high) assuming that q,_,
was high when g, made its high-to-low transition. Note that

qy,; 18 reset by arising edge of . Moreover, let 5., denote
the time from a rising edge of @ to the falling edge of q,, ;-

Furthermore, let §P denote the minimum delay from a fall-
ing transition on ¢, until a subsequent rising edge of ®,,
which can be captured by setting q, high again.

[0056] We now present bounds for the cycle time and
latency of the source-synchronization interface circuit. Theo-
rem 1 then shows that these bounds are sufficient to allow safe
operation of the source-synchronization interface circuit, i.e.,
operation where every insert operation by the sender and
every remove operation by the receiver succeeds.

[0057] Unless otherwise noted, delays of circuit compo-
nents refer to their upper bounds. If an expression involving
delays of circuit components is written [:::]min, then the
lower bounds for circuit element delays are used. Conversely,
the clock period (P) denotes by default the minimum, cycle-
to-cycle period, and [P]max indicates the maximum possible

s
value. Moreover, J ,.p+ and J,,. are both assumed to be

- IS
positive (i.e., causality). Furthermore, 6 , . and §,,. are
both assumed to be positive because that is reasonable and it
avoids special cases.

[0058] The cycle-time for an asP* stage, gaspﬁ 3, must
be less than the clock period. Otherwise, the source-synchro-
nization interface circuit may be unable to keep up with the
flow of data. Moreover, an extra constraint occurs at each end.
When the transmitter inserts a token into stage C,, this token
must propagate to stage C,, and stage C, must ‘recover’ from
the reset before the next rising edge of ®,. This yields the

- = 2 . .
constraint P> 98 , g+ 8 , pw+3, .. . A similar constraint occurs

P

at the receiver. These cycle-time constraints are summarized
by

— - =~ - S = -
Pomax(8 et Goe Oure + 8 gopuct Oy, D + O +

Bupe). e

[0059] Furthermore, a token that is inserted into an empty

pipeline at time T(k) sets q, no later than T(k)+ 5., and sets

q, ho later than T(k) 5‘,, +i~§asp* for 0=i=N. Likewise,

.. time units after q, is set, flip-flop C, is ready to respond
to the next rising edge of ®, and deliver token k to the
receiver. These bounds are tight if every stage incurs the
maximum delay for each operation and yield a lower bound
on the source-synchronization interface circuit latency of

RUED-TU)= Guse +N°D ot Oy g @

[0060] Additionally, a rising edge of @ inserts a bubble
into the control path. Consider the propagation of such a
bubble when inserted into the full source-synchronization
interface circuit. In response to @, going high at time R(K),

q-may go low no later than R(k)+ 5.+ . For N>i20, the bubble
inserted at time R(K) enables g, to go low no later than R(k)+
5o wsprH(N=1) 6, v, and this falling edge of q, occurs
with the rising edge of q,, , that receives token k+N-i. Thus,

Jun. 16, 2016

the bubble inserted at time R(k) may reset q, no later than
R&)+ 5,, +N-§_,. . When the reset cycle is complete, control
flip-flop C, will be ready to receive token k+N+1. Therefore,

RUK=TR)<PAN-P= dap)= = O ®

[0061] Let A=R(k)-T(k) denote the latency of the source-
synchronization interface circuit. After combining Eqns. 2
and 3, proper operation of the source-synchronization inter-
face circuit requires

A ARy @
g = 2 .
where A,,;,=0 ,pet0p+0,,. and A, =P+N-(P-4,.)-
é:‘rl(l“‘ - 3(\P‘ *
[0062] In order to show that the source-synchronization

interface circuit can operate properly if the period bounds
from Eqn. 1 and the latency bounds from Eqn. 4 are satisfied,
a ‘schedule’ (sched) for operation of the source-synchroniza-
tion interface circuit is proposed. We will then prove that it is
maintained by the transmitter and the receiver in the source-
synchronization interface circuit. In the discussion that fol-
lows, a simplified initialization process that brings the source-
synchronization interface circuit to a state satistying this
schedule is described. For O<i<N, lett,(k) denote the time that
q;, goes high in response to the k” token from the transmitter.

Define tN+1(k):R(k)+§M . Moreover, note that, intuitively,
ty,; (K) is the time that a fictitious stage N+1 acquires the k”
token from the transmitter. Furthermore, let

sched (i, Dymax(e ++ & papeshet Ouups —(N=(i=1))-
(P- G0,)

where A is taken to be clear from the context.

[0063] Theorem 1 below shows that the schedule defined
by Eqn. 5 is an invariant of the source-synchronization inter-
face circuit, sender and receiver. Stated differently, if the
source-synchronization interface circuit ever reaches a state
where this schedule is satisfied, it will continue to satisfy it
from then on. Furthermore, Theorem 1 shows that when this
schedule is satisfied, all insert operations by the sender, and
all remove operations by the receiver will succeed.

[0064] Theorem 1: Given a clock period P that satisfies
Eqn. 1, and an integer k, and latency A, with A=R(k,)-T(k,)
and where A satisfies Eqn. 4, such that

VOsisN:t(kg)=sched(i ko,).

Then, Vk=k,,
[0065]
VOsisN:t(K)ssched (i, k1),

1,06+ 0, pe <T(+1) and

)+ 8 <R,

[0066] The first clause of Theorem 1 says that the source-
synchronization interface circuit maintains the proposed
schedule. The second clause says that stage C, completes its
reset operation in time to receive the next token from the
transmitter. The third clause says that stage C,, completes its
set operation in time to receive the next bubble from the
receiver.

[0067] Moreover, Theorem 1 shows that if the source-syn-
chronization interface circuit ever reaches a state satisfying

US 2016/0173266 Al

the schedule from Eqn. 5, then the source-synchronization
interface circuit is guaranteed to operate properly from then
on. The discussion that follows presents a simplified initial-
ization technique that ensures the source-synchronization
interface circuit may reach such a state. In particular, run the
source-synchronization interface circuit with some extra
delays for a small number of cycles, and then run it at full
speed after that.

[0068] This approach is illustrated in FIG. 5, which pre-
sents a drawing showing different operating regions of the
source-synchronization interface circuit. Note that the
throughput of a handshaking ring can be expressed in terms of
the forward and backward delays of the handshake, the num-
ber of stages in the ring, and the occupancy in the ring.
Therefore, for the source-synchronization interface circuit,
the throughput may be fixed by the clock period, and the
occupancy is the same as the latency divided by the clock
period. Consequently, the source-synchronization interface
circuit can be characterized by the intersection of the afore-
mentioned throughput with line throughput equal to P~

[0069] Note that FIG. 5 illustrates the operation of the
source-synchronization interface circuit without the switch-
able delays. (In FIG. 5, note that the lines are labeled with
their slopes.) Safe region 510 is where the source-synchroni-
zation interface circuit can operate correctly with any delays,
including the maximums. Ifthe width of safe region 510 at the
throughput equal to P~! is at least one (i.e., A, ,.—A,..,,=P),
then there will be some latency for which the source-synchro-
nization interface circuit can operate correctly. However, in
fail region 512 remove operations will fail because there are
not enough tokens in the source-synchronization interface
circuit to propagate from the sender to the receiver, even if all
operations complete with their minimum delays. For each
cycle that a remove fails but the insert succeeds, the occu-
pancy of the source-synchronization interface circuit will
increase by one, thus moving the source-synchronization
interface circuit out of fail region 514. Similarly, fail region
514 is where insert operations will fail because there are
insufficient bubbles in the source-synchronization interface
circuit, and such failures move the occupancy to the left.
Flaky regions 516 and 518 are where insert and remove opera-
tions may succeed or fail, depending on the actual delays of
the stages in the source-synchronization interface circuit. One
concern is that during initialization, the source-synchroniza-
tion interface circuit may settle in one of flaky regions 516 and
518 because the source-synchronization interface circuit
exhibits fast operations (e.g., because of a relatively high
Vdd). Note that, after initialization, these operating condi-
tions may change, and one or more insert or remove opera-
tions may fail.

[0070] FIG. 6, which presents a drawing showing different
operating regions of the source-synchronization interface cir-
cuit with switchable delays, illustrates an approach that
ensures that the source-synchronization interface circuit is
operating in safe region 510 (FIG. 5) at the end of the initial-
ization process. In particular, operating the source-synchro-
nization interface circuit with extra delay shifts flaky regions
516 and 518 in FIG. 5 inwards. In FIG. 6, the flaky regions for
the slow mode are flaky regions 610. The safe region for the
slow mode of the source-synchronization interface circuit has
A,=h=h;. [fthis region is at least as wide as the clock period,
then for any initial skew between the sender and receiver,
there is a valid latency for the slow mode of the source-
synchronization interface circuit, and initialization procedure

Jun. 16, 2016

will succeed. At the end of initialization, the source-synchro-
nization interface circuit is guaranteed to have a latency, A
with A, <h=<),. As described previously, this does not guaran-
tee safe operation in the slow mode. However, when the
source-synchronization interface circuit switches to the fast
mode, then the source-synchronization interface circuit will
be safely inside its operating region. The gap between A.,,;,,
and A, and the gap between A, and A, provide a safety
margin for any drift in the skew after initialization.

[0071] Therefore, source-synchronization interface circuit
100 (FIG. 1) is extremely simple to initialize. First, operate it
in the slow mode for 2-N clock cycles, then operate it in the
normal mode for N+M cycles, where M is the number of
cycles allocated for metastability resolution (as described
below). In the first N cycles in the slow mode, the sender will
attempt to insert N new data values into the FIFO. If an insert
does not succeed, this means that stage 0 is full or had been

full within the past 5‘,, time units. Thus, there was already a
token in the FIFO. Similar arguments show that, if the i”
insert does not succeed, there is a chain of i tokens in the FIFO
that caused the blockage, with the observation that some of
these may have already reached the far end of the FIFO and
been removed by operations of the receiver. At the end of
these N cycles, there may be one token whose insertion was
delayed by one clock period because of an earlier token that

had moved from stage O to stage 1 in the previous §P time
units. This creates a ‘gap’ in the FIFO that could cause a
remove to fail. Any such failure must occur within the next N
cycles. Similar observations apply for bubbles. Therefore,
2-N cycles are sufficient to ensure that the FIFO holds suffi-
cient tokens and bubbles to operate in the slow mode if the
delays for operations had no variation.

[0072] When the FIFO is switched to the normal mode, it
may be the case that some tokens had propagated at a faster

rate than others due to the gap between [5“‘,“] and [

min

S.opr | ma- AN €xtreme scenario would be if one token had been
propagating across the FIFO at the fastest possible rate for the
slow mode, and the remaining tokens propagated at the slow-
est possible rate for the slow mode. This could cause large
gaps between tokens such that a subsequent remove operation
could fail. Note that there are enough tokens in the FIFO for
correct operation in the normal mode, but some have not
propagated far enough because the FIFO had been operating
in the slow mode. Because there are at most N tokens in the
FIFO, all of these ‘slow mode’ tokens are removed within N
cycles. If a remove fails, then the number of tokens in the
FIFO will increase and the number of bubbles will each
decrease by one, but the numbers of tokens and bubbles will
continue to satisfy the conditions for a valid schedule. Within
N cycles, all tokens and bubbles in the FIFO will have been
inserted during normal-mode operation, and they will satisfy
all the requirements for Theorem 1, so the FIFO will be
properly initialized.

[0073] Because a small FIFO can achieve skew and drift
tolerances of several clock periods, N may typically be small,
and the initialization can be performed quickly. Note that very
little coordination is needed between circuits in different
clock domains. The initialization time needs to be long
enough to account for any difference of when the two clocks
start at the source-synchronization interface circuit. Because
the initialization works from any state, there is no need to gate
these clocks. They can initially be ill-defined. The receiver

US 2016/0173266 Al

just needs to operate its source-synchronization interface cir-
cuit in the slow mode long enough to ensure that it has had at
least 2-N good cycles of both clocks. (However, note that this
is a bound and it may be possible to operate in the slow mode
for fewer cycles.) Furthermore, the sender may wait a little
longer than that before sending valid data to ensure that the
receiver is listening. Once the source-synchronization inter-
face circuit is initialized, it can tolerate an advance of @, with
respect to @, compared with their relation during initializa-
tion of up to

[P+N-P= Gt = B M pmii= Do

s slow

time units or equivalently a delay of @, with respect to @ of
up to

[5mu +N-€)asp*+ e | A,

i stow Pominlmas

time units after any initial conditions and any initial phase
offset. Thus, a designer can increase the tolerance to changes
in operating conditions and the resulting changes of clock
skew by increasing the amount of extra delay in the slow
mode and/or by increasing the number of stages in the source-
synchronization interface circuit.

[0074] In terms of metastability, assume that the flip-flops
in stages 0 and N have metastable behaviors that are mani-
fested as delayed output transitions. This means that the asP*
stages see metastability as a delayed transition. Thus, the asP*
stages may operate correctly, even in the presence of meta-
stability. The failure mode is that an asP* handshake may
reset g, or set g,, late enough so as to overlap the next sender
or receiver clock event. Each such failure cycle is a low
probability event, and waiting S clock cycles is similar to
using an S flip-flop synchronizer. Consequently, it may be
sufficient to wait a small number of cycles after switching the
source-synchronization interface circuit to the fast mode, and
metastability may resolve with a very low probability of
failure. Note that, after initialization, metastability is pre-
cluded.

[0075] Another metastability scenario is quite contrived,
although not impossible. The extra delay from a metastable
flip-flop for q, could propagate through the source-synchro-
nization interface circuit to cause a metastability failure in g,
The delay for the second event could propagate back to q, and
so on. This can only occur if i, —A,,;,,<2P. Again, waiting a
small number of clock cycles after switching the source-
synchronization interface circuit to the fast mode should
resolve such metastability with high probability.

[0076] The preceding discussion presented a source-syn-
chronization interface circuit. The design may be all-digital,
and may be implemented using standard flip-flops and logic
gates without any special ‘asynchronous’ cells, such as C-el-
ements. Being based on an asP* pipeline, the source-synchro-
nization interface circuit may be able to achieve high through-
puts. Moreover, the source-synchronization interface circuit
may be a mesochronous design, so the sender and receiver
clocks operate at the same frequency. This allows the source-
synchronization interface circuit to operate at low latency and
without any metastability issues after initialization.

[0077] Furthermore, the initialization technique may be
simple. In particular, each stage in the source-synchroniza-
tion interface circuit may include a delay line with two set-
tings, slow and fast. FIG. 7, which presents a block diagram of
a selectable delay line 700, shows one possible implementa-
tion. In this delay line, a slow path consumes no dynamic
power during normal operation. The source-synchronization

Jun. 16, 2016

interface circuit operates in the slow mode for initialization
and in the fast mode for normal operation. This approach
requires very little coordination between the sender and
receiver. [tis simply required that both clocks are operating at
their nominal frequency for a moderate number of clock
cycles during initialization before switching the source-syn-
chronization interface circuit to the fast mode. This can be
achieved by broadcasting an init signal to all clock domains
that is locally synchronized and is used to indicate that ini-
tialization should be performed. Unlike existing source-syn-
chronization interface circuits, the performance of this design
is independent of mismatches on delays for the init signal. A
mismatch of M cycles would simply require adding M cycles
to the initialization time, and the source-synchronization
interface circuit would achieve full performance with low
latency during normal operation. After initialization, the
source-synchronization interface circuit can tolerate changes
in the relative clock skew between the sender and receiver.
The amount of drift tolerance is equal to the sum over all of
the stages of the delay differences between the slow and fast
modes. For applications such as a global interconnect, the
drift tolerance can be designed to be quite large at a cost of
increasing the nominal latency by the drift tolerance.

[0078] Theorem 1 applies to a mesochronous design in
which the skew tolerance is determined by finding the mini-
mum and maximum latencies of the source-synchronization
interface circuit for a given throughput. The source-synchro-
nization interface circuit may converge to a valid operating
state from any initial condition. The basic approach is to
construct a schedule for token propagation in the source-
synchronization interface circuit for which the actual timings
converge to satisty the schedule. The challenge is that the
occupancy of the source-synchronization interface circuit
and, thus, the latency can change because of failed insert or
remove operations during initialization. While the preceding
discussion used an asP* design as an illustration, the
approach is based on the forward and reverse delays of the
stages in the source-synchronization interface circuit. Thus,
the approach can be implemented using other self-timed pipe-
lining techniques.

[0079] The source-synchronization interface circuit can be
used in a wide variety of systems and applications. FIG. 8
presents a block diagram illustrating a system 800 (such as a
computer system) that includes source-synchronization inter-
face circuit 100. In particular, source-synchronization inter-
face circuit 100 may be included in an integrated circuit in
system 800. In some embodiments, system 800 includes pro-
cessing subsystem 810 (with one or more processors) and
memory subsystem 812 (with memory).

[0080] In general, functions of the integrated circuit and
system 800 may be implemented in hardware and/or in soft-
ware. Thus, system 800 may include one or more program
modules or sets of instructions stored in memory subsystem
812 (such as DRAM or another type of volatile or non-
volatile computer-readable memory), which may be executed
by processing subsystem 810. Note that the one or more
computer programs may constitute a computer-program
mechanism. Furthermore, instructions in the various modules
in memory subsystem 812 may be implemented in: a high-
level procedural language, an object-oriented programming
language, and/or in an assembly or machine language. Note
that the programming language may be compiled or inter-
preted, e.g., configurable or configured, to be executed by
processing subsystem 810.

US 2016/0173266 Al

[0081] Components in system 800 may be coupled by sig-
nal lines, links or buses. These connections may include elec-
trical, optical, or electro-optical communication of signals
and/or data. Furthermore, in the preceding embodiments,
some components are shown directly connected to one
another, while others are shown connected via intermediate
components. [n each instance, the method of interconnection,
or ‘coupling,’ establishes some desired communication
between two or more circuit nodes, or terminals. Such cou-
pling may often be accomplished using a number of circuit
configurations, as will be understood by those of skill in the
art; for example, AC coupling and/or DC coupling may be
used.

[0082] In some embodiments, functionality in these cir-
cuits, components and devices may be implemented in one or
more: application-specific integrated circuits (ASICs), field-
programmable gate arrays (FPGAs), and/or one or more digi-
tal signal processors (DSPs). Furthermore, functionality in
the preceding embodiments may be implemented more in
hardware and less in software, or less in hardware and more in
software, as is known in the art. In general, system 800 may be
at one location or may be distributed over multiple, geo-
graphically dispersed locations.

[0083] System 800 may include: a VLSI circuit, a switch, a
hub, a bridge, a router, a communication system (such as a
wavelength-division-multiplexing communication system), a
storage area network, a data center, a network (such as a local
area network), and/or a computer system (such as a multiple-
core processor computer system). Furthermore, the computer
system may include, but is not limited to: a server (such as a
multi-socket, multi-rack server), a laptop computer, a com-
munication device or system, a personal computer, a work
station, a mainframe computer, a blade, an enterprise com-
puter, a data center, a tablet computer, a supercomputer, a
network-attached-storage (NAS) system, a storage-area-net-
work (SAN) system, a media player (such as an MP3 player),
an appliance, a subnotebook/netbook, a tablet computer, a
smartphone, a cellular telephone, a smartwatch a network
appliance, a set-top box, a personal digital assistant (PDA), a
toy, a controller, a digital signal processor, a game console, a
device controller, a computational engine within an appli-
ance, a consumer-electronic device, a portable computing
device or a portable electronic device, a personal organizer,
and/or another electronic device. Note that a given computer
system may be at one location or may be distributed over
multiple, geographically dispersed locations.

[0084] Furthermore, the embodiments of source-synchro-
nization interface circuit 100 and/or system 800 may include
fewer components or additional components. Although these
embodiments are illustrated as having a number of discrete
items, these optical components, integrated circuits and the
system are intended to be functional descriptions of the vari-
ous features that may be present rather than structural sche-
matics of the embodiments described herein. Consequently,
in these embodiments two or more components may be com-
bined into a single component, and/or a position of one or
more components may be changed. In addition, functionality
in the preceding embodiments of source-synchronization
interface circuit 100 and/or system 800 may be implemented
more in hardware and less in software, or less in hardware and
more in software, as is known in the art.

[0085] We now describe embodiments of a method. FIG. 9
is a flow chart illustrating a method 900 for operating a
source-synchronization interface circuit, such as source-syn-

Jun. 16, 2016

chronization interface circuit 100 (FIG. 1). During operation,
the source-synchronization interface circuit is operated in a
slow mode (operation 910) to initialize the source-synchro-
nization interface circuit. Then, after the initialization, the
source-synchronization interface circuit is operated in a fast
mode (operation 912).
[0086] Insome embodiments of method 900, there may be
additional or fewer operations. For example, operation 912
may be conditionally performed after sufficient time with the
source-synchronous interface circuit operated in the slow
mode (i.e., operation 910) has elapsed to ensure robust opera-
tion. Moreover, the order of the operations may be changed,
and/or two or more operations may be combined into a single
operation.
[0087] In the preceding description, we refer to ‘some
embodiments.” Note that ‘some embodiments’ describes a
subset of'all of the possible embodiments, but does not always
specify the same subset of embodiments.
[0088] While the preceding discussion illustrated embodi-
ments of a source-synchronization interface circuit, more
generally the disclosed techniques may be used in a synchro-
nization block with handshaking protocol converters. For
example, a circuit that provides a synchronous-to-asynchro-
nous protocol converter and that has regenerative gain to
resolve metastability can be used. Thus, while the source-
synchronization interface circuit was illustrated with an asP*
protocol FIFO buftfer, more generally an asynchronous FIFO
implemented using a variety of circuit protocols may be used.
Furthermore, note that the selectable delay element in the
source-synchronization interface circuit may be included in
some or all of the stages in the asynchronous FIFO buffer.
[0089] The foregoing description is intended to enable any
person skilled in the art to make and use the disclosure, and is
provided in the context of a particular application and its
requirements. Moreover, the foregoing descriptions of
embodiments of the present disclosure have been presented
for purposes of illustration and description only. They are not
intended to be exhaustive or to limit the present disclosure to
the forms disclosed. Accordingly, many modifications and
variations will be apparent to practitioners skilled in the art,
and the general principles defined herein may be applied to
other embodiments and applications without departing from
the spirit and scope of the present disclosure. Additionally, the
discussion of the preceding embodiments is not intended to
limit the present disclosure. Thus, the present disclosure is not
intended to be limited to the embodiments shown, but is to be
accorded the widest scope consistent with the principles and
features disclosed herein.
What is claimed is:
1. A source-synchronization interface circuit, comprising:
a sender synchronous-to-asynchronous protocol converter
that, during operation, receives sender data and a sender
clock having a first period and a sender phase, wherein
the sender synchronous-to-asynchronous protocol con-
verter has regenerative gain to resolve metastability dur-
ing phase synchronization of the sender clock and a
receiver clock;
an asynchronous first-in, first-out (FIFO) buffer electri-
cally coupled to the sender synchronous-to-asynchro-
nous protocol converter, wherein the asynchronous
FIFO buffer includes multiple stages and, during opera-
tion, conveys data from the sender synchronous-to-
asynchronous protocol converter to a receiver synchro-
nous-to-asynchronous protocol converter;

US 2016/0173266 Al

the receiver synchronous-to-asynchronous protocol con-
verter, electrically coupled to the asynchronous FIFO
buffer, which, during operation, receives a receiver
clock having a second period, which is one of the first
period and a rational multiple of the first period, and a
receiver phase, wherein the receiver synchronous-to-
asynchronous protocol converter has regenerative gain
to resolve metastability during the phase synchroniza-
tion, and

wherein the asynchronous FIFO buffer conveys informa-

tion corresponding to the sender phase to the receiver
synchronous-to-asynchronous protocol converter and
information corresponding to the receiver phase to the
sender synchronous-to-asynchronous protocol con-
verter; and wherein the data is transferred from the
sender to the source-synchronization interface circuit,
and from the source-synchronization interface circuit to
the receiver with a data-transfer period that is the same
as one of the first period and the rational multiple of the
first period; and

control logic, electrically coupled to the asynchronous

FIFO buffer, which, during operation, initializes the

source-synchronization interface circuit by:

operating at least some ofthe stages in the asynchronous
FIFO buffer in a slow mode having a cycle time less
than the data-transfer period for a predetermined
number of clock cycles; and

subsequently operating at least some of the stages in the
asynchronous FIFO buffer in a normal mode having a
cycle time that is less than that for the slow mode.

2. The source-synchronization interface circuit of claim 1,
wherein, during the initialization, the control logic operates
all of the stages in the asynchronous FIFO buffer in the slow
mode for the predetermined number of clock cycles.

3. The source-synchronization interface circuit of claim 1,
wherein the initialization ensures that a digital data buffer in
asynchronous FIFO buffer is approximately half full.

4. The source-synchronization interface circuit of claim 1,
wherein the source-synchronization interface circuit includes
FIFO buffers between the sender synchronous-to-asynchro-
nous protocol converter and the receiver synchronous-to-
asynchronous protocol converter.

5. The source-synchronization interface circuit of claim 1,
wherein the sender synchronous-to-asynchronous protocol
converter and the receiver synchronous-to-asynchronous pro-
tocol converter are each half of a phase-frequency detector.

6. The source-synchronization interface circuit of claim 1,
wherein the asynchronous FIFO bufter includes an asynchro-
nous ripple FIFO buffer.

7. The source-synchronization interface circuit of claim 1,
wherein the asynchronous FIFO bufter includes an asynchro-
nous symmetric pulse (asP*) protocol FIFO buffer.

8. The source-synchronization interface circuit of claim 1,
wherein the slow mode has multiple cycle times that are less
than the data-transfer period and that are selectable by the
control logic during operation.

9. The source-synchronization interface circuit of claim 1,
wherein the initialization ensures that dropped edges in at
least one of the sender clock and the receiver clock are
avoided during the normal mode.

10. A computer-readable medium containing data repre-
senting a source-synchronization interface circuit, wherein
the source-synchronization interface circuit includes:

Jun. 16, 2016

a sender synchronous-to-asynchronous protocol converter
that, during operation, receives sender data and a sender
clock having a first period and a sender phase, wherein
the sender synchronous-to-asynchronous protocol con-
verter has regenerative gain to resolve metastability dur-
ing phase synchronization of the sender clock and a
receiver clock;
an asynchronous first-in, first-out (FIFO) buffer electri-
cally coupled to the sender synchronous-to-asynchro-
nous protocol converter, wherein the asynchronous
FIFO buffer includes multiple stages and, during opera-
tion, conveys data from the sender synchronous-to-
asynchronous protocol converter to a receiver synchro-
nous-to-asynchronous protocol converter;
the receiver synchronous-to-asynchronous protocol con-
verter, electrically coupled to the asynchronous FIFO
buffer, which, during operation, receives a receiver
clock having a second period, which is one of the first
period and a rational multiple of the first period, and a
receiver phase, wherein the receiver synchronous-to-
asynchronous protocol converter has regenerative gain
to resolve metastability during the phase synchroniza-
tion, and
wherein the asynchronous FIFO buffer conveys informa-
tion corresponding to the sender phase to the receiver
synchronous-to-asynchronous protocol converter and
information corresponding to the receiver phase to the
sender synchronous-to-asynchronous protocol con-
verter; and wherein the data is transferred from the
sender to the source-synchronization interface circuit,
and from the source-synchronization interface circuit to
the receiver with a data-transfer period that the same as
one of the first period and the rational multiple of the first
period; and
control logic, electrically coupled to the asynchronous
FIFO buffer, which, during operation, initializes the
source-synchronization interface circuit by:
operating at least some of stages in the asynchronous
FIFO buffer in a slow mode having a cycle time less
than the data-transfer period for a predetermined
number of clock cycles; and

subsequently operating at least some of the stages in the
asynchronous FIFO buffer in a normal mode having a
cycle time that is less than that for the slow mode.

11. The computer-readable medium of claim 10, wherein
during the initialization, the control logic operates all of the
stages in the asynchronous FIFO buffer in the slow mode for
the predetermined number of clock cycles.

12. The computer-readable medium of claim 10, wherein
the initialization ensures that a digital data buffer in asynchro-
nous FIFO buffer is approximately half full.

13. The computer-readable medium of claim 10, wherein
the source-synchronization interface circuit includes FIFO
buffers between the sender synchronous-to-asynchronous
protocol converter and the receiver synchronous-to-asyn-
chronous protocol converter.

14. The computer-readable medium of claim 10, wherein
the sender synchronous-to-asynchronous protocol converter
and the receiver synchronous-to-asynchronous protocol con-
verter are each half of a phase-frequency detector.

15. The computer-readable medium of claim 10, wherein
the asynchronous FIFO buffer includes an asynchronous
ripple FIFO buffer.

US 2016/0173266 Al

16. The computer-readable medium of claim 10, wherein
the asynchronous FIFO buffer includes an asynchronous
symmetric pulse (asP*) protocol FIFO buffer.

17. The computer-readable medium of claim 10, wherein
the slow mode has multiple cycle times that are less than the
data-transfer period and that are selectable by the control
logic during operation.

18. The computer-readable medium of claim 10, wherein
the initialization ensures that dropped edges in at least one of
the sender clock and the receiver clock are avoided during the
normal mode.

19. A computer system comprising an integrated circuit,
wherein the integrated circuit includes a source-synchroniza-
tion interface circuit that includes:

a sender synchronous-to-asynchronous protocol converter
that, during operation, receives sender data and a sender
clock having a first period and a sender phase, wherein
the sender synchronous-to-asynchronous protocol con-
verter has regenerative gain to resolve metastability dur-
ing phase synchronization of the sender clock and a
receiver clock;

an asynchronous first-in, first-out (FIFO) buffer electri-
cally coupled to the sender synchronous-to-asynchro-
nous protocol converter, wherein the asynchronous
FIFO buffer includes multiple stages and, during opera-
tion, conveys data from the sender synchronous-to-
asynchronous protocol converter to a receiver synchro-
nous-to-asynchronous protocol converter;

the receiver synchronous-to-asynchronous protocol con-
verter, electrically coupled to the asynchronous FIFO
buffer, which, during operation, receives a receiver
clock having a second period, which is one of the first

Jun. 16, 2016

period and a rational multiple of the first period, and a
receiver phase, wherein the receiver synchronous-to-
asynchronous protocol converter has regenerative gain
to resolve metastability during the phase synchroniza-
tion, and
wherein the asynchronous FIFO buffer conveys informa-
tion corresponding to the sender phase to the receiver
synchronous-to-asynchronous protocol converter and
information corresponding to the receiver phase to the
sender synchronous-to-asynchronous protocol con-
verter; and wherein the data is transferred from the
sender to the source-synchronization interface circuit,
and from the source-synchronization interface circuit to
the receiver with a data-transfer period that is the same
as one of the first period and the rational multiple of the
first period; and
control logic, electrically coupled to the asynchronous
FIFO buffer, which, during operation, initializes the
source-synchronization interface circuit by:
operating at least some of the stages in the asynchronous
FIFO buffer in a slow mode having a cycle time less
than the data-transfer period for a predetermined
number of clock cycles; and
subsequently operating at least some of the stages in the
asynchronous FIFO buffer in a normal mode having a
cycle time that is less than that for the slow mode.
20. The computer system of claim 19, wherein, during the
initialization, the control logic operates all of the stages in the
asynchronous FIFO buffer in the slow mode for the predeter-
mined number of clock cycles.

#* #* #* #* #*

