United States Patent

US011907182B2

(12) ao) Patent No.: US 11,907,182 B2
Portisch et al. 45) Date of Patent: Feb. 20, 2024
(54) SCHEMA-BASED DATA RETRIEVAL FROM 10,157,226 B1* 12/2018 Costabello GO6N 5/022
2005/0234889 Al* 10/2005 Fox GOGF 16/2471
KNOWLEDGE GRAPHS 2006/0167927 Al* 7/2006 Edelstein GOGF 16/25
. . 707/999.102
(71) Applicant: SAP SE, Walldorf (DE) 2007/0185868 Al* 82007 Roth GOGF 16/81
2011/0093469 Al1* 4/2011 B’Far GOGF 16/254
(72) Inventors: Jan Portisch, Bruchsal (DE); Sandra 707/754
Bracholdt, Dielheim (DE); Volker 2012/0179644 Al 7/2012 Miranker
Saggau, Bensheim (DE) 2012/0226716 Al* 9/2012 Yeh ..cccoovevviiecnnns GO6N 5/02
’ 707/E17.012
. 2013/0318070 Al 112013 Wu et al.
(73) Assignee: SAP SE, Walldorf (DE) 2014/0059043 Al 22014 Sundara et al.
2015/0169709 Al 6/2015 Kara et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 156 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 17/470,988 EP 2755148 Al 7/2014
WO W02021/0126154 Al 6/2021
(22) Filed: Sep. 9, 2021
OTHER PUBLICATIONS
(65) Prior Publication Data
Hertling et al., “MELT—Matching Evaluation Toolkit,” M. Acosta
US 2023/0073312 A1~ Mar. 9, 2023 et al. (Eds.): SEMANTICS 2019, LNCS 11702, pp. 231-245, 2019.
Available at: https://doi.org/10.1007/978-3-030-33220-4_17.
(51) Int. CL (Continued)
GO6F 1621 (2019.01)
GO6F 16/28 (2019.01) Primary Examiner — Robert W Beausoliel, Jr.
(52) US. CL Assistant Examiner — Cheryl M Shechtman
CPC GO6F 16/211 (2019.01); GO6F 16/285 (74) Attorney, Agent, or Firm — Klarquist Sparkman,
(2019.01) LLP
(58) Field of Classification Search
CPC .. GO6F 16/211; GO6F 16/2423; GO6F 16/248; (57) ABSTRACT
GOGF 16/285; GOGF 16/332; GOG6F A computer-implemented method includes receiving a
16/3338; GOGF 16/367; GOOF 16/9024; request of data records for a data schema, obtaining a
o GO6N 5/02; GQ6N 5/022 schema alignment which maps the data schema to a subset
See application file for complete search history. of'an ontology of a knowledge graph, generating at least one
. query based on the subset of the ontology of the knowledge
(56) References Cited graph, obtaining a list of data records by executing the at

U.S. PATENT DOCUMENTS

7,558,791 B2* 7/2009 Wahlcoovne. GO6F 16/258
8,631,048 B1* 1/2014 Davisoceeveerenns GOGF 16/211
707/803
Data Schema 600
Company 810 -.. | { ¢ T i
I
.
Name 612 sepep i

Country 6§14

Industry 816

Employee 620 -...

Given name 822

Family name 624

Scheme
atignment
660

Gender 626

least one query on the knowledge graph to obtain a list of
data records, and persisting the list of data records to the data
schema.

18 Claims, 15 Drawing Sheets

... Rdfstlabel”

-+ https:/www. wikidata org/wiki/Property: P17 {c/oumry)
3

o https://wwwamkidata.org/kab’Pmpeﬂy:PtlSzfx};dustry)

1 https:fiwww. wikidata org/wiki/ Q891 723((/Company)

g hﬁns://wwu\.cwikidata.org/wiki/Property:P?éS (given name}
844
-
.. hitps #eww. wikidata.orgiveikiProperty:P7 34 {famity name)

_ hitps:/www. wikidata.org/wikiProperty:P21 @ or gender)
: 648

-
- hitps:havww.wikidata. orgiwikifProperty P108" (employer)

KNOWLEDGE GRAPH ONTOLOGY 650
- 632

534

636

, 842

US 11,907,182 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2016/0224645 Al* 8/2016 Dang GOG6F 16/254
2016/0283527 Al* 9/2016 i HO4L 63/20
2020/0349129 Al 11/2020 Bracholdt et al.
2020/0349130 Al 11/2020 Bracholdt et al.
2020/0409931 Al* 12/2020 Zang GOGF 16/2365

OTHER PUBLICATIONS

Heiko Paulheim, “Knowledge Graph Refinement: A Survey of
Approaches and Evaluation Methods,” Semantic Web, 8 (3). pp.
489-508. I0S Press. 2016. Available at: http://www.semantic-web-
journal.net/system/files/swj1167.pdf.

Portisch et al., “Wiktionary Matcher Results for OAEI 2020,” In:
The Fifteenth International Workshop on Ontology Matching col-
located with the 19th International Semantic Web Conference
ISWC. 2020. Available at: http://ceur-ws.org/Vol-2788/0aei20_
paperl14.pdf.

“Communication—FExtended European Search Report” from the
European Patent Office for European Application No. EP22194498.
6-1203, dated Feb. 6, 2023, 10 pages.

Krause, et al., “An SQL-Based Query Language and Engine for
Graph Pattern Matching,” SAT 2015 18th International Conference,
Austin, Texas, Sep. 24-27, 2015, Springer, Berlin Heidelberg,
Germany, Jun. 22, 2016, pp. 153-169.

* cited by examiner

US 11,907,182 B2

Sheet 1 of 15

Feb. 20, 2024

U.S. Patent

L "Old

Rurengras o FIRYE

Ragsnentong

KO IWHTIVPWTT 1 oap

sdAy ey

Obt

Kuedusn s ogp

WEEL w.J.,%wm,.\i\.w."..\.% R //

och

001 HJVYO 3D0FTMONM

A

051 WALSAS TWATIMLIIY vivd
HdVH9O 3903 TMONY 3SvE-YINFHOS

US 11,907,182 B2

Sheet 2 of 15

Feb. 20, 2024

U.S. Patent

¢ 9ld

0G¢ SHAVHD dOUITMONM

Nmm\ zze
- ¥22
0S¢ AMOLISOd3Y <
ININNOITY ~ > 022 WALSAS
TWAIIMLIY VIV
AN A
922
e 4 o2z z12
o e
02 IWLLNNY
NOLLND3IXI Y3HOLVIN 0TZ WALSAS ¥3sSN

00C

US 11,907,182 B2

Sheet 3 of 15

Feb. 20, 2024

U.S. Patent

€ Old

00t anO10

0re
FOIAHES NOILVEINTO VAVA

yasul
BjEp pajewony

Spl0O8l Ble(

00¢€

{

0v¢
ASvavivda

Josuel Jejowesed
Q |jBO sj0way

APPLICATION 330

0ce
WILSAS H3WOLSNO

US 11,907,182 B2

Sheet 4 of 15

Feb. 20, 2024

U.S. Patent

v Ol

T

(SIHdVYD
IOATTMONM

\\l\\\\llllllﬂ
~N—

(0]%7
HOLNO3IX3 AY3IND

8cy
NOILLVHNDIANOD

457
SL11NS3Y AY3NO

9y
HOLVHIANTID AH3IN0O

ey
HISOdNOO GHOOFH

2474
HIANIH ININNOIV

097

9cy
HO1VHIdO ONIMNYY

ZCy OVAHIALNI Off

INIFWNNOITV
VNZHOS

/

ch WALSAS TWAIIH LAY V1VQa

/

(11%7
1S3N03Y ¥3sN

US 11,907,182 B2

Sheet 5 of 15

Feb. 20, 2024

U.S. Patent

G Old

00T ‘ewsyos ejep oy 0} SPJ0D8i BIEp JO Isi| 8yl 1SIsied

PGS "ydesb abpsmouy ayy uo Aienb suo 1sE9) 1B a1 Bunndoxas AQ spiodal Biep 40 1Si 8 UIRIq0

A

0TG "ydeib abpasmouy ayy jo ABoIOUC BU] JO 19SgNSs By} U0 paseq Aianb auo jSe9| jB SlBIsuUaD

025 'ydeib abpamowny
e Jo ABOJ0oJUO UB JO 19Sgns B 0} Buisyos Blep sy} sdew yoiym juswubije ewsyos e ueiq0

!

0LC "ewayos ejep e 40} Spiodal elep Jo jsonbal e aae00)y

00

US 11,907,182 B2

Sheet 6 of 15

Feb. 20, 2024

U.S. Patent

9 'Old

099 _
wewubie |
BLWayog [

(19hojdwa) 9o | g AuedoidpimBio Bleppim mam//sdpy .

8V9 ~

(19pusb 1o x8s8) L Zd:Aladold/piinBio eieppim mmmys sdpy i

o9

(sweu Ajwey) v£ 2 d:Aledoid/biim/Bio eiepipm mmmy/sdiy -

o ~

(sweu usaib) gg s d:Ausdoidgmim/Bio eiepim mmm//sdiy - -

Zv9 ~

58&@& L6SO/bi/DIO BIRPDIM MMM//:SdlY

8¢9

(Ansnput) 26y d-Auadold/pimBio eieppim mmmy/:sdpy -

99
(Anunog) /L d:Ausdold/pim/Bio eieppim mmmysdny -+
€9~
[2qe}sipy
289

GO ADOTOLNO HdVHO FO0TTMONM

.
.

Ve
$

PR
.t

et
et

........

R}

929 Jepuen

$20 sweu Ajwe

220 ‘.U UsAlD

075 safoidwg

919 Ansnpuy

¥19 Anunon

210 awieN

019 Auedwon

09 ewayos ejeq

US 11,907,182 B2

Sheet 7 of 15

Feb. 20, 2024

U.S. Patent

,Z Old

Hnsai NYN13Y
(juswee)ppe Ynsai
4S714d
((uswejd)seInqLyV|vieb)vyppe ynsal
:(Yaunmonuigsiuswae 4|
'S NI JUsWge ¥O4
()198 mau = Jnsal <SvINQLIIVY>19S
(s aunonig)seNquIY|Iviel <seinquiy>19s AOHLIN

Hnsal NdN13y
(()seinguny|vieb ainjonis)ivppe ynsas
:()iuspusadapu|si-ainionns 4|
:()sainionigleb s Ni 8inons HO4
()18 mou = }nsal <SvINQLIY>18S

(s ewaYoG)seingunyiuepuadapujieb <sengupy>19s AOHLIN

0LL

004

US 11,907,182 B2

Sheet 8 of 15

Feb. 20, 2024

U.S. Patent

8 ©Old

008

¥

g0g — OF LINITH
909 —— («8. = (19GBIL)ONYT) ¥3 LTI
209 eqele feqerSpIoe
1O YELIPMSE T

} IHIHM 1egelé, LONILSIA 10373S

e

US 11,907,182 B2

Sheet 9 of 15

Feb. 20, 2024

U.S. Patent

6 Old

oL LI L6
{ K

(U8, = (Ansnpulg)ONVY YL L
(U8, = (ABUNOD)ONYTYIL IS
(U8, = (BWENZ)ONYTHIL A
T OWEeN/, [9ge|isipl 8¢
* Alsnpuls, [9qe|:sipd apouAnsnpuls,

" 9pouAnsSnpul;, ZSrdIpm S¢, —— 816

Zi6 -
* AIUNOD), [9ge):SIPd SPOUAIIUNOD,, L6
T OPOUAUNGDY, L diIPM S
16

© £Z/L6SDPM LEIPM S, —
} IHIHM Aisnpule, Anunodg¢ sweN¢ 103138

US 11,907,182 B2

Sheet 10 of 15

Feb. 20, 2024

U.S. Patent

0001

[oABL] Jiy utedg dnouc) sauljly jeuoheuIBU
 usnpwewssoepn | weder | opuemm
vvv m o;mao._mvmcmo>m\s:mmoc_omacm__omcmo
,,, mc_c_s_ mvmcmo - m_mmm-oo_pm,«,,ﬁ
... mo_co:om_m cmamwomz
,,, mc:EoEzcmEcmamﬁoazﬁ_
>mo_occom“ co:mEuo“_c_cmo_m_,omz
.. \Ew:nc_?mmz v pmgm_, mm_bm:nc_mn:
.. >:w:nc5>;oEoS<cmam_, - - cmwm_z
... >:w:_osm>:oE8:<cmam_, m_ocoI

Ansnpuj Aljunon aueN

US 11,907,182 B2

Sheet 11 of 15

Feb. 20, 2024

U.S. Patent

Ll Ol

¥

((spiooaypaieiauab)piodeyidoquiopurl)ppe splooaypajeisuab
:JaquINNpPJoD8al > ()ezis spiosaypalelsuab FIIHM

: JIBQUINNPI0D8I > ()8zis spiooaypalelauab NV sa1eoiidngio4moiie 44

0oLt

US 11,907,182 B2

Sheet 12 of 15

Feb. 20, 2024

U.S. Patent

¢l "Old

ojelia uiopy dijrud uver
ST yostiod dijiiud uer
SJE UBSLIYD VEDY
ajewo yoaipuag auiges
ispuen aweu Ajjwe SR USAID

askojdwiz

US 11,907,182 B2

Sheet 13 of 15

Feb. 20, 2024

U.S. Patent

€l old

goct

ogeL — ¥ AiSnpul 91emyos Auewieg 3S dvS
e — .332 ... \Emc.tmw ,,, mm<m ,,,,,,,,,
e U B ——
Aisnpuj Aliunon Uik
Auedwon

U.S. Patent Feb. 20, 2024 Sheet 14 of 15 US 11,907,182 B2

COMPUTING ENVIRONMENT 1400] coOMMUNICATION
r 430 ~ CONNECTION(S) 1470

Y (graphics or)

[

I

I | |

' central | |

| | processing co- 'y |INPUT DEVICE(S) 1450 |
|| unit 1410 | | Procesee I

b il) unit 1415 J |

| | { MEMORY Y { MEMORY) | OUTPUL%%V'CE(S) :

| || ...1420 1425 || |

| e SR N | i~ STORAGE ||

| \. .\ X | b 1440 |

SOFTWARE 1480 IMPLEMENTING TECHNOLOGIES

FIG. 14

U.S. Patent Feb. 20, 2024 Sheet 15 of 15 US 11,907,182 B2

1500

CLOUD COMPUTING SERVICES

COMPUTING Y COMPUTING
DfVZ'CE COMPUTING DEVSE
1520 DEVICE
1522

FIG. 15

US 11,907,182 B2

1
SCHEMA-BASED DATA RETRIEVAL FROM
KNOWLEDGE GRAPHS

BACKGROUND

Data is essential for enterprises. For example, machine
learning and/or artificial intelligence often require a large
amount of realistic or real data to train, tune, and/or improve
the underlying algorithms. Although data scientists know
what kind of data they need, they may have to spend a lot
of effort to find and obtain such data. As another example,
realistic or real data is often essential for testing software
systems and for creating demonstrations. Although enter-
prises may have access or even “own” a lot of data, such data
is often not broadly accessible internally. For example, a
bank is unlikely to use its own customer database to test
scale-out scenarios on a newly acquired enterprise database.
Similarly, internal data may not be easily used for public
purposes (e.g., preparing demonstrations, etc.) due to pri-
vacy concerns. Thus, room for improvements exists for
automatic retrieval of realistic or real data from online data
sources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an example diagram illustrating a portion of an
example knowledge graph and a schema-based knowledge
graph data retrieval system interacting with the knowledge
graph.

FIG. 2 is an overall block diagram of an example com-
puting system configured to implement schema-based data
retrieval from knowledge graphs.

FIG. 3 is a block diagram illustrating an example cloud-
based schema-based data generation service in communica-
tion with a software application running on a customer
system.

FIG. 4 is a block diagram illustrating components of an
example data retrieval system.

FIG. 5 is a flowchart illustrating an example overall
method of implementing schema-based data retrieval from
knowledge graphs.

FIG. 6 is a diagram illustrating an example schema
alignment that matches a data schema to a subset of an
ontology of a knowledge graph.

FIG. 7 depicts an example pseudo-code implementation
of a method that determines value-independent attributes in
a data schema.

FIG. 8 depicts an example value-independent query that
is automatically generated to retrieve corresponding data
records from a knowledge graph.

FIG. 9 depicts an example value-dependent query that is
automatically generated to retrieve corresponding data
records from a knowledge graph.

FIG. 10 depicts an example list of query results obtained
after executing a value-dependent query on a knowledge
graph.

FIG. 11 depicts an example pseudo-code implementation
of a method of generating duplicates of data records
obtained after executing a value-dependent query.

FIG. 12 depicts an example list of composed data records
obtained after executing value-independent queries on a
knowledge graph.

FIG. 13 depicts an example list of ranked data records
obtained after executing a query on a knowledge graph.

FIG. 14 is a block diagram of an example computing
system in which described technologies can be imple-
mented.

10

15

20

25

30

40

45

50

55

60

65

2

FIG. 15 is a block diagram of an example cloud comput-
ing environment that can be used in conjunction with the
technologies described herein.

DETAILED DESCRIPTION
Example 1—Overview of Data Retrieval

Real and/or realistic data records are essential for enter-
prises. As described herein, real data records refer to data
records obtained by direct measurement of real-world
objects (e.g., physical objects) and realistic data records
refer to synthetic data records that are algorithmically gen-
erated to simulate measurements of the real-world objects.

In one scenario, developers often need a large amount of
real or realistic data records to test products they develop.
For example, a product under development may require a
validation process that checks the existence of address data.
Thus, when the existing test data set is small, for testing
purposes, the developers may have to crawl the web (e.g.,
via Google Maps or other applications) to manually enter
real life addresses into the test data set.

In another scenario, demonstration of a developed product
often requires real data records. For example, an enterprise
software may present its users with a table filled with various
information (e.g., name, address, phone, email, website,
products, etc.) of many real clients (e.g., companies). To
demonstrate such a feature to a potential customer, it may be
necessary to create a large client list for the potential
customer by manually searching and entering relevant infor-
mation to a demonstration database.

In yet another scenario, machine learning and/or artificial
intelligence often require a large amount of realistic or real
data records to train, tune, and/or improve the underlying
algorithms. For example, a data scientist may want to test an
algorithm to predict market capitalizations of companies.
The data scientist may have an input schema (e.g., attributes
and class labels, etc.) that is fully defined but only a limited
number of data records corresponding to the input schema.
Thus, to test and refine the algorithm, the data scientist may
have to search the web for real-world data records and build
a test dataset manually.

There are many other scenarios where realistic and/or real
data records are lacking. There are multiple reasons con-
tributing to this. For example, although a large amount of
real data records are freely available on the web, it can be
labor-intensive and error-prone (thus expensive) to retrieve
relevant data records and then enter the data records into
database tables that are organized according to a specific
data schema (e.g., with predefined class labels, attributes,
etc.). As another example, even if an enterprise may have
access or even “own” a lot of real data records, such data
records may not be broadly accessible internally due to
privacy concerns or other reasons.

Accordingly, it is advantageous to implement a technol-
ogy, as described herein, to automatically retrieve realistic
and/or real data records matched to a desired data schema
from available knowledge bases, such as knowledge graphs.

Example 2—Overview of Knowledge Graphs

Generally, a knowledge graph is a special type of database
that maintains knowledge or information in a graph form.
Knowledge graphs can be publicly available and free (e.g.,
DBpedia, Wikidata, BabelNet, DBkWik, DBnary, etc.) or
privately built and proprietary.

US 11,907,182 B2

3

A typical knowledge graph includes a plurality of nodes
representing objects (also referred to as “entities”) and a
plurality of edges (also referred to as “properties™) connect-
ing the nodes. The edges represent relationship between the
objects (e.g., is a parent of, is located in, etc.). One common
type of knowledge graph is based on the resource descrip-
tion framework (RDF), which models statements of facts or
web resources in expressions of the form subject-predicate-
object, known as triples. For example, two nodes connected
by an edge can describe a fact, which can be represented as
(subject, predicate, object) triples.

As an example, FIG. 1 shows a portion of a DBpedia
knowledge graph 100 containing four nodes 110 respec-
tively represent objects of “SAP_SE,” “Germany,” “Com-
pany,” and “Country.” A string “1972-01-01" can also be
deemed as a node 130. The knowledge graph 100 also
includes edges or properties 120, such as “type,” “founda-
tionPlace,” and “foundingYear,” which represent relation-
ships between the nodes 110. As shown, several facts can be
contained in this knowledge graph, such as (SAP_SE, is a
type of, Company), (SAP_SE, has foundation place, Ger-
many), (Germany, is a, Country), and (SAP_SE, has found-
ing year, Jan. 1, 1972).

In some knowledge graphs (e.g., RDF knowledge graphs),
it is also possible to apply reasoning to the (subject, predi-
cate, object) triples (e.g., rather than stating explicitly that
“Germany” is a country as exemplified in FIG. 1). For
example, according to a preconstructed reasoning rule, every
object of “dbo:foundationPlace” is a country (by setting the
property range). Thus, through reasoning, the triple (Ger-
many, type, Country) can be “reasoned” or “materialized”
into a statement of fact: “Germany is a country.” Other
reasoning rules can be similarly constructed. In addition,
some reasoning rules can include restrictions to certain
entities and/or edges. For example, one restriction can be
that the entity “Company” must not be a person. Another
restriction can be that the starting point of the edge “found-
ingYear” must be an organization and the target of the edge
“foundingYear” must be a string; etc. The technology
described herein also applies to such reasoning-based
knowledge graphs.

Typically, an object represented by a node contains an
identifier (ID) and a label representing name of the object.
The node can also have an associated uniform resource
identifier (URI) (sometimes also referred to as uniform
resource locator, or URL). The relationships represented by
edges can be characterized by a set of edge properties that
are specific to the knowledge graph. Each edge property can
also have a unique URI.

Some of the nodes may represent more specific objects
and can be deemed as instances contained in the knowledge
graph. For example, “SAP_SE” can be an instance repre-
senting a specific company, and “Germany” can be an
instance representing a specific country. The strings (e.g.,
“Jan. 1, 1972”) can also be deemed as instances. Some of the
nodes may represent more generic objects and can be
deemed as classes. For example, “Company” is a class that
captures the common concept shared by many individual
companies including “SAP_SE,” and “Country” is a class
that captures the common concept shared by many indi-
vidual countries including “Germany.”

For a given knowledge graph, an ontology can be created
by describing the classes with a list of properties represented
by the edges. In other words, the aggregation of all classes
and edges in a knowledge graph can define an ontology. For
example, the DBpedia ontology currently covers over 600

5

10

15

20

25

30

40

45

50

55

60

65

4

class objects which form a subsumption hierarchy and are
described by over 2,000 different edge properties.

As described herein, the ontology of a knowledge graph
can contain the schema or common vocabulary that defines
edges or properties of the nodes that are available in the
knowledge graph. For example, the ontology of the knowl-
edge graph depicted in FIG. 1 defines at least the following
properties of the instance “SAP_SE”: “type,” “foundation-
Place,” and “foundingYear.” In addition, the ontology of the
knowledge graph depicted in FIG. 1 also defines at least the
following two classes: “Company” and “Country.”

There can be different ways to differentiate between
instances and classes. For example, a knowledge graph can
have predefined property prefixes, which can indicate
whether a node is an instance or a class (e.g., a node can be
deemed as a class if it has a prefix “dbo,” which represents
DBpedia ontology, and a node can be deemed as an instance
if it has a prefix “dbr,” which represents DBpedia resource).
In certain cases, a knowledge graph can use URI design to
differentiate between instances and classes. In certain cases,
a knowledge graph can include statements which explicitly
indicates certain nodes are classes. In certain cases, whether
a specific node represents an instance or a class can depend
on the underlying model or concept. For example, in DBpe-
dia, whether a node is a class (thus belongs to an ontology
of the knowledge graph) or an instance (thus not included in
the ontology of the knowledge graph) can be determined by
checking the rdf: type property: If the type is owl:Class, then
it is a class and belongs to the ontology; otherwise it is
deemed as an instance and not belongs to the ontology.

Compared to relational databases, the knowledge graph
has a more flexible data structure because the types of data
provided by the knowledge graph can vary. For example,
properties associated with different instances can differ even
though these instances share the same class (e.g., “SAP_SE”
and “BASF_SE” can have different property data available
although they share the same class “Company”). On the
other hand, a relational database can be represented in a
knowledge graph format, i.e., the knowledge graph can be a
higher-level abstraction of the relational database.

In certain examples, the nodes in a knowledge graph can
be organized in a hierarchical structure where a lower-level
node (representing a more specific object) may be connected
to a higher-level node (representing a more generic object)
by one or more edges. The lower-level node (or the lower-
level object it represents) can be called a descendant of the
higher-level node (or the higher-level object it represents),
and the higher-level node (or the higher-level object it
represents) can be called an ancestor of the lower-level node
(or the lower-level object it represents).

Since knowledge graphs contain many real-world entities/
objects/instances and their corresponding properties, they
can be valuable data sources where realistic or real data
records can be retrieved. The technology described herein
can support schema-based automatic data retrieval from
knowledge graphs. For example, FIG. 1 shows that a
schema-based knowledge graph data retrieval system 150,
which is described more fully below, can retrieve data
records corresponding to a specific data schema from the
knowledge graph 100. In other words, the technology
described herein can automatically retrieve realistic or real
data records from the knowledge graphs and match the
retrieved data to a desired schema. Such schema-based
automatic data retrieval technologies can be applied across
a wide variety of enterprise software environments.

US 11,907,182 B2

5

Example 3—FExample Overview of a Computing
System Configured to Implement Schema-Based
Data Retrieval from Knowledge Graphs

FIG. 2 shows an overall block diagram of an example
computing system 200 supporting schema-based data
retrieval from knowledge graphs. Thus, the computing sys-
tem 200 (which represents an example embodiment of 150)
can also be referred to as a schema-based knowledge graph
data retrieval system.

As shown, the computing system 200 includes a user
system 210, a data retrieval system 220, an alignment
repository 230, and a matcher execution runtime 240 (also
referred to as “schema matcher”). In certain examples, the
computing system 200 also includes one or more knowledge
graphs 250. In certain examples, the knowledge graphs 250
can be external to the computing system 200. As described
herein, the knowledge graphs 250 can include public knowl-
edge graphs that are freely accessible from the Web and/or
proprietary knowledge graphs owned by private entities.

In certain cases, some components of the computing
system 200 can be integrated. As an example, the user
system 210, the data retrieval system 220, the alignment
repository 230, and the matcher execution runtime 240 can
be integrated in one host machine. As another example, the
user system 210 can be located in one host machine, whereas
the data retrieval system 220, the alignment repository 230,
and the matcher execution runtime 240 can be integrated in
another host machine.

In certain cases, components of the computing system 200
can be independent of each other and deployed in a distrib-
uted network as separate services. For example, the user
system 210, the data retrieval system 220, the alignment
repository 230, and the matcher execution runtime 240 can
be respectively deployed in separate host machines that are
distributed across multiple sites and communicate with each
other via a computer network.

In FIG. 2, interactions between components of the com-
puting system 200 are represented by arrows, and such
interactions can follow a sequential order. For example, the
arrow 212 represents that a user on the user system 210 can
send a request (also referred to as “user request”) to the data
retrieval system 220, requesting data for a specific data
schema.

After receiving the request, the data retrieval system 220
can check or search the alignment repository 230, as indi-
cated by the arrow 224, to determine whether a schema
alignment corresponding to the data schema is available in
the alignment repository 230. As described further below, a
schema alignment corresponding to the data schema refers
to an alignment that matches the data schema to a subset of
an ontology of at least one knowledge graph 250.

The arrow 232 indicates that the alignment repository 230
can return an empty or a filled schema alignment to the data
retrieval system 220. For example, if a schema alignment
corresponding to the data schema is available in the align-
ment repository 230, such schema alignment will be
returned. Otherwise, an empty alignment is returned.

If an empty alignment is returned, as indicated by the
arrow 226, the data retrieval system 220 can send a request
to the matcher execution runtime 240, requesting the
matcher execution runtime 240 to perform a specified
schema matching operation.

After receiving such a request, the matcher execution
runtime 240 can perform the schema matching operation to
obtain a schema alignment which maps the data schema to
a subset of an ontology of a knowledge graph. As indicated

10

15

20

25

30

35

40

45

50

55

60

65

6

by the arrow 244, the matcher execution runtime 240 can
write the result (i.e., the obtained schema alignment) to the
alignment repository 230. As a result, future requests of data
for the same data schema can find the corresponding schema
alignment in the alignment repository 230. In other words,
it can avoid the need of requesting the matching execution
runtime 240 to run the schema matching operation again,
thus improving the operation efficiency.

In addition to writing the result to the alignment reposi-
tory 230, the matcher execution runtime 240 can also return
the obtained schema alignment to the data retrieval system
220, as indicated by the arrow 242.

Based on the schema alignment, which can be received
from the alignment repository 230 or the matcher execution
runtime 240, the data retrieval system 220 can generate one
or more queries. As indicated by the arrow 222, the data
retrieval system 220 can run those queries on one or more
pre-specified knowledge graphs 250.

As indicated by the arrow 252, the data retrieval system
220 can receive the query results. The query results can be
saved, at least temporarily, in a storage media (e.g., memory,
disk, etc.). In certain cases, the data retrieval system 220 can
process the query results (e.g., composing and/or ranking) to
generate a list of data records corresponding to the data
schema.

Then, as indicated by the arrow 228, the list of data
records can be returned to the user system 200. The user
system 200 can then persist the list of data records to the data
schema. In certain cases, the data retrieval system 220 can
directly persist the list of data records to the data schema.

Depending on the application areas of the disclosed
technology, multiple downstream scenarios of using the
retrieved data records are possible. For example, the
retrieved data records can be displayed for manual review,
automatically inserted into database tables (e.g., for testing
and/or demonstration purposes), stored in a local cache for
further refinement, and/or exported/downloaded in a specific
format (e.g., CSV, etc.) for other applications (e.g., for data
science applications), etc.

In practice, the systems shown herein, such as system 200,
can vary in complexity, with additional functionality, more
complex components, and the like. For example, there can
be additional functionality within the data retrieval system
220. Additional components can be included to implement
security, redundancy, load balancing, report design, and the
like.

The described computing systems can be networked via
wired or wireless network connections, including the Inter-
net. Alternatively, systems can be connected through an
intranet connection (e.g., in a corporate environment, gov-
ernment environment, or the like).

The system 200 and any of the other systems described
herein can be implemented in conjunction with any of the
hardware components described herein, such as the com-
puting systems described below (e.g., processing units,
memory, and the like). In any of the examples herein, the
data schema, the schema alignment, the attributes, the que-
ries, the query results, the data records, and the like can be
stored in one or more computer-readable storage media or
computer-readable storage devices. The technologies
described herein can be generic to the specifics of operating
systems or hardware and can be applied in any variety of
environments to take advantage of the described features.

Example 4—Fxample Cloud-Based Data Retrieval
Services

In certain examples, the schema-based knowledge graph
data retrieval system described above can be implemented in

US 11,907,182 B2

7

a customer computer, for example, as a stand-alone on-
premises software installed on a company’s local computers
or servers. In other examples, a part of or the complete
schema-based knowledge graph data retrieval system can be
implemented in a cloud which is hosted on a vendor’s
servers and can be accessed through a web browser.

For example, FIG. 3 shows a data generation service 310
located on a cloud 300. The data generation service 310 can
include the data retrieval system 220. The data generation
service 310 can also include the alignment repository 230
and/or the matcher execution runtime 240. Alternatively, the
alignment repository 230 and/or the matcher execution
runtime 240 can be external to the data generation service
310 (e.g., such components can be located in another cloud
and communicate with the data generation service 310). The
data generation service 310 can access one or more knowl-
edge graphs (e.g., 250), which can reside in the cloud 300 or
elsewhere.

A customer system 320 (similar to the user system 210)
can run a software application 330, which includes an
application programming interface (API) that can commu-
nicate with the cloud-based data generation service 310.
Specifically, the application 330 can make remote calls and
transfer parameters including a desired data schema to the
data generation service 310. Responsive to the remote calls,
the data generation service 310 can retrieve relevant data
from the knowledge graphs and generate a list of data
records corresponding to the desired data schema. The
generated list of data records can be returned from the data
generation service 310 to the application 330. In certain
examples, when the application 330 requests data records
for a database 340 having a specific data schema, the data
generation service 310 can automatically insert the gener-
ated data records to the database 340.

In certain examples, the application 330 can also run as a
service on the cloud 300 and a customer can subscribe to
such a service. In such circumstances, all components of the
schema-based knowledge graph data retrieval system can be
implemented on the cloud.

Example 5—FExample Data Retrieval System

FIG. 4 is a block diagram illustrating components of an
example data retrieval system 420, which can be an example
embodiment of 220. In the depicted example, the data
retrieval system 420 includes an input/output (I/O) interface
422, an alignment finder 424, a query generator 426, a
configuration file 428, a query executor 430, a storage place
(e.g., cache memory) for query results 432, a record com-
poser 434, and a ranking operator 436. Some of these
components can be integrated. For example, in certain cases,
the record composer 434 and a ranking operator 436 can be
combined into one unit. In certain examples, additional
components can be included in the data retrieval system 420.

The I/O interface 422 can be configured to receive a user
request 410. The user request 410 can request data records
according to a specific data schema. The user request 410
can also specify how many data records are desired for the
data schema. In some examples, the user request 410 can
include additional parameters that affect the data retrieval
process. In certain examples, some of the additional param-
eters can override one or more default parameters stored in
the configuration file 428.

After receiving the user request 410 of data records for the
data schema, the I/O interface 422 can active the alignment
finder 424, which is configured to obtain a schema alignment
460 which maps the data schema to a subset of an ontology

10

15

20

25

30

35

40

45

50

55

60

65

8

of a knowledge graph 450. The subset can include classes
and/or properties defined in the ontology of the knowledge
graph 450. In certain cases, multiple schema alignments 460
can be obtained and these schema alignments 460 can map
the data schema to respective ontology of multiple knowl-
edge graphs 450.

As described above, in certain examples, the alignment
finder 424 can check an alignment repository (e.g., 230) and
retrieve the schema alignment(s) 460 from the alignment
repository if the schema alignment(s) 460 are found in
alignment repository. In certain examples, the alignment
finder 424 can request a schema matcher (e.g., 240) to
generate the schema alignment(s) 460 at the runtime based
on the data schema and the ontology of the knowledge
graph. This can occur if the schema alignment(s) 460 are not
found in the alignment repository, or the user request 410
has a parameter specifying not to check the alignment
repository (i.e., always generating the schema alignment(s)
460 by the schema matcher at the runtime).

Based on the schema alignment(s) 460, the query gen-
erator 426 can generate one or more queries (e.g., SPARQL
queries), as described more fully below. The method of
generating the queries can be controlled by some default
parameters stored in the configuration file 428. In some
examples, additional parameters specified in the user request
410 can override the parameters stored in the configuration
file 428, thus affecting how the queries are generated.

The query executor 430 can execute the generated queries
on the knowledge graph(s) 450. The query results 432
returned after executing the queries can be processed to
generate a list of data records corresponding to the data
schema. The list of data records can be generated based on
querying one knowledge graph or multiple knowledge
graphs.

For example, in certain cases, the record composer 434
can be configured to compose the list of data records by
combining the query results returned after executing differ-
ent queries. As another example, when the number of
generated data records is smaller than the desired number of
data records specified in the user request 410, the record
composer 434 can be configured to duplicate one or more of
the data records. Whether duplicating data records is
allowed or not can be controlled by a parameter specified in
the configuration file 428 and/or the user request 410. Other
approaches for increasing the number of generated data
records (e.g., relaxing the query by using subtypes of classes
or properties defined in the ontology) can also be imple-
mented by the record composer 434.

The generated list of data records can be returned to the
user and persisted to the data schema via the /O interface
422. Optionally, the generated data records can be ranked by
the ranking operator 436. Whether ranking should be per-
formed or not can be controlled by a parameter specified in
the configuration file 428 and/or the user request 410. In
some cases, when the generated data records are more than
the desired number of data records specified in the user
request 410, only the desired number of data records ranked
high on the list can be returned and persisted to the data
schema. The ranked data records can also be used for
evaluating the performance of the data generation service or
other purposes.

Example 6—FExample Overall Method of
Implementing Schema-Based Data Retrieval from
Knowledge Graphs

FIG. 5 is a flowchart of an example overall method 500
of implementing schema-based data retrieval from knowl-
edge graphs and can be performed, for example, by the
system of FIG. 1.

US 11,907,182 B2

9

At 510, the method 500 can receive a request (e.g., 410)
of data records for a data schema. The request can specify
the data schema (e.g., structures and attributes), as well as
the desired number of data records. The request can also
include additional parameters that affect the data retrieval
process.

At 520, the method 500 can obtain a schema alignment
(e.g., via the alignment finder 424) which maps the data
schema to a subset of an ontology of a knowledge graph. As
described above, the schema alignment(s) can be retrieved
from an alignment repository (e.g., 230) or generated at the
runtime by a schema matcher (e.g., 240).

At 530, the method 500 can generate at least one query
(e.g., via the query generator 426) using the subset of the
ontology of the knowledge graph. As described more fully
below, generating the at least one query can include con-
structing a basic graph pattern. The basic graph pattern can
include a triple pattern including a class or property defined
in the subset of the ontology of the knowledge graph,
wherein the schema alignment can map an attribute of the
data schema to the class or property. In certain examples, the
basic graph pattern can include a plurality of triple patterns
including respective classes or properties defined in the
subset of the ontology of the knowledge graph, wherein the
schema alignment can map a plurality of attributes of the
data schema to the respective classes or properties.

At 540, the method 500 can execute the at least one query
(e.g., via the query executor 430) on the knowledge graph to
obtain a list of data records. In certain examples, the method
500 can compose the list of data records (e.g., via the record
composer 434) by combining query results returned after
executing a plurality of queries. The plurality of queries can
be configured to return respective query results correspond-
ing to different attributes of the data schema, wherein the
schema alignment can map different attributes of the data
schema to respective classes or properties defined in the
subset of the ontology of the knowledge graph.

At 540, the method 500 can persist the list of data records
to the data schema. In certain examples, the method 500 can
duplicate one or more data records (e.g., via the record
composer 434) before persisting the list of data records to
the data schema. In certain examples, the method 500 can
rank the list of data records (e.g., via the ranking operator
436) before persisting the list of data records to the data
schema.

The method 500 and any of the other methods described
herein can be performed by computer-executable instruc-
tions (e.g., causing a computing system to perform the
method) stored in one or more computer-readable media
(e.g., storage or other tangible media) or stored in one or
more computer-readable storage devices. Such methods can
be performed in software, firmware, hardware, or combina-
tions thereof. Such methods can be performed at least in part
by a computing system (e.g., one or more computing
devices).

The illustrated actions can be described from alternative
perspectives while still implementing the technologies. For
example, “receive” can also be described as “send” from a
different perspective.

Example 7—Example User Request and
Configurable Parameters

In any of the examples herein, the user request (e.g., 410)
can specify a desired number of data records to be retrieved
and a data schema corresponding to which the data records
are organized. Generally, a data schema describes the data

10

15

20

25

30

35

40

45

55

60

10

structure in which data is held. The data schema can be of
different types. For example, the data schema can define the
data structure in a relational database, a conceptual data
model, an application interface, or others.

In certain examples, the user request can take the form of
a method call. One example method call (in Java notation)
can be represented as:

List<Records>getData(Schema S, int recordNumber)
Here, the input parameters of the method call getData
includes the data schema (5) and the desired number of data
records (recordNumber), and the output of the method call
includes a list of data records (or instances) that fulfill the
provided data schema (5).

In any of the examples herein, elements of a data schema
can include structures (e.g., entities, tables, objects, etc.) and
attributes. In certain examples, a structure in the data schema
can include attributes (e.g., columns in a database table,
etc.). Attributes in a structure can carry respective values
(e.g., column values in a database table, etc.). In certain
examples, a structure in the data schema can include sub-
structures so as to form a nested structure.

As an example, FIG. 6 shows a data schema 600 con-
taining at least two structures: the structure “company” 610
and the structure “Employee” 620. The structure “company”
610 includes at least the following attributes: “Name” 612
(i.e., the name of a company), “Country” 614 (i.e., the
country where the company is located), and “Industry” 616
(i.e., the industry to which the company belongs). In addi-
tion, the structure “Employee” 620 includes at least the
following attributes: “Given name” 622 (i.e., the given name
of an employee), “Family name” 624 (i.e., the family name
of the employee), and “Gender” 626 (i.e., the gender of the
employee).

As described above, the data retrieval system (e.g., 420)
can have a configuration file (e.g., 428) containing default
parameters that control the query-based data retrieval pro-
cess.

As an example, the configuration file can include a lookup
list for knowledge graphs. In certain cases, the lookup list
can take the form of: Map<K, Access Data>, where K
represents one or more knowledge graphs, and Access Data
represents information that is required to access the knowl-
edge graphs. For example, in the case of public knowledge
graphs, the Access Data can be as simple as the SPARQL
endpoint URL, whereas in the case of internal (e.g., enter-
prise) knowledge graphs or commercial knowledge graphs,
the Access Data can include user credentials that are
required to gain access to the knowledge graphs.

As another example, the configuration file can specify an
alignment repository (e.g., AR) where all alignments are
stored. The data retrieval system can then check the align-
ment repository and retrieve a schema alignment corre-
sponding to the specified data schema if such schema
alignment is found in the alignment repository.

As yet another example, the configuration file can include
a list of matching operation implementations, e.g.,
List<Match System>, where the List contains different
schema matching algorithms that can be performed by a
designated schema matcher (e.g., 240). As described herein,
the schema matcher is a runtime that can execute any one of
the schema matching algorithms included in the List to
obtain a schema alignment. In certain cases, the schema
matcher can be a server providing the execution capabilities
such as the Ontology Matching Eval.uation Toolkit (MELT),
which is an open-source toolkit (see, e.g., https:/
github.com/dwslab/melt) for ontology matcher develop-
ment, fine-tuning, submission, and evaluation.

US 11,907,182 B2

11

As a further example, the configuration file can include a
parameter specifying a default language, which can limit the
data retrieval process to return only data records that are
compatible or consistent with the specified language.

Optionally, the user request (e.g., the method call getData)
can include additional parameters to customize the data
retrieval service request. Such additional input parameters
can change one or more default parameters defined in the
configuration file.

For example, certain input parameters can include a set of
schema alignment, e.g., Set<A>, indicating that the data
retrieval service shall not use the alignment repository (or
the schema matcher) to obtain a schema alignment.

As another example, certain input parameters can specify
one or more ranking criteria for ranking the returned data
records.

As yet another example, certain input parameters can
include a set of schema elements, e.g.,
Set<SchemaElements>, which indicate whether the corre-
sponding element of the data schema (e.g., structure or
attribute) is value-independent or value-dependent, as
described further below.

As a further example, certain input parameters can include
a Boolean value (e.g., allowForDuplicates) which indicates
whether duplicate data records are allowed.

Example 8—FExample Schema Alignment

In any of the examples herein, a schema matching opera-
tion performed by a schema matcher (e.g., 240) can align a
data schema with an ontology of a knowledge graph. More
specifically, the schema matcher can map the data schema to
a subset of the ontology of the knowledge graph.

Denote P, a set of properties in the knowledge graph (K)
and C a set of classes in K. Further denote match (S, K) the
operator that aligns the data schema (S) with the ontology of
K, ie., Py and Cg. The result of the schema matching
operation (e.g., match (S, K)) is a schema alignment,
denoted as A. In any of the examples described herein, a
schema alignment includes a set of correspondences, where
a correspondence can be defined as a triple: <ng, n,, R>,
where ng refers to an element in the data schema S and n,
refers to a class or property defined in the ontology of K, and
R is the relation that holds between the two elements ng and
n,. In most cases, R can be equivalence (=).

It is to be understood that the schema-based data retrieval
technology described herein is not limited to any specific
schema matching operation. Any automatic and/or semi-
automatic schema matching algorithms can be employed to
map the data schema (S) to a subset of the ontology of the
knowledge graph (K). In certain cases, match (S, K) can be
manually carried out by humans. The result of the schema
matching operation, i.e., the schema alignment (A) can then
be used to create a query as described further below.

To illustrate, FIG. 6 shows an example schema matching
result, i.e., the schema alignment 660, which aligns the data
schema 600 with an ontology 650 of the Wikidata knowl-
edge graph. As shown, elements in the data schema 600,
including structures and attributes, are mapped to respective
classes or properties defined in the ontology 650.

Specifically, in the depicted example, the structure “com-
pany” 610 is mapped to a company class 638 represented by
a specific URI as shown. The attributes “Name” 612, “Coun-
try” 614, and “Industry” 616, are respectively mapped to a
label 632, a country property 634, and an industry property
636 defined in the ontology 650. Similarly, the structure
“Employee” 620 is mapped to an employer property 648,

20

25

40

45

60

12

and the attributes “Given name” 622, “Family name” 624,
and “Gender” 626 are respectively mapped to properties
642, 644, and 646 defined in the ontology 650 represented
by specific URIs as indicated. The collection of all corre-
spondences between the matched pairs (as indicated by the
dashed dotted lines) constitutes the schema alignment 660 in
this example.

In certain cases, a schema alignment containing only
equivalences can be used to obtain further correspondences
via reasoning. For example, assume in a knowledge graph it
is stated that “Bank” is equivalent to “Financial Institution,”
and it is further annotated that a “Bank” is a (ie., its
superclass is:) “Company.” If a schema alignment maps a
structure “Bank™ contained in a data schema to an object
“Bank” defined in the knowledge graph, then the following
correspondences can be derived via reasoning: (a) the data
schema’s “Bank” is also mapped to the “Financial Institu-
tion” of the knowledge graph, and (b) the data schema’s
“Bank” is a subclass of “Company” defined in the knowl-
edge graph.

Example 9—FExample Value-Dependent and
Value-Independent Attributes

As described above, the schema alignment, whether it is
retrieved from an alignment repository, or generated in
runtime by a schema matcher, can be used to generate
queries which can be executed on the knowledge graphs to
obtain data records corresponding to the data schema.

In certain examples, depending on whether attributes in
the data schema are value-independent or value-dependent,
the generated queries can be respectively called value-
independent queries or value-dependent queries. As
described more fully below, the value-independent queries
can be used to retrieval realistic data records from the
knowledge graphs, and the value-dependent queries can be
used to retrieve real data records from the knowledge
graphs.

As described herein, a value-dependent attribute refers to
an attribute in the data schema which must be combined with
one or more other attributes to form a valid data record. In
other words, a valid data record requires a combination of
values corresponding to multiple attributes, wherein the
validity of the values are dependent from each other. If one
of such attributes has a value that is invalid in view of (or
incompatible with) other attribute values, the resulting data
record is deemed invalid. For example, assume a data
schema has two value-dependent attributes “Company” and
“Country” respectively containing company names and
countries where the headquarters of those companies are
located. Thus, a data record containing values “SAP” and
“Germany” is deemed valid because SAP is a valid company
and Germany is a valid country where SAP is headquartered.
In contrast, a data record containing values “SAP” and
“Canada” is deemed invalid because SAP is not headquar-
tered in Canada. As described further below, a value-depen-
dent query (see, e.g., FIG. 9) can be generated based on
multiple value-dependent attributes.

As described herein, a value-independent attribute refers
to an attribute in the data schema which does not need to be
combined with other attributes to form a valid data record.
In other words, a valid data record can contain a combina-
tion of values corresponding to multiple attributes, wherein
the validity of the values are independent from each other.
If one of such attributes has a value that is invalid in view
of (or incompatible with) other attribute values, the resulting
data record can still be deemed valid. For example, assume

US 11,907,182 B2

13

a data schema has two value-independent attributes “Com-
pany” and “Country” respectively containing company
names and countries where the headquarters of those com-
panies are located. In this case, a data record containing
values “SAP and “Canada” is deemed valid because SAP is
a valid company and Canada is a valid country, i.e., the
validity of the data record is not undercut by the fact that
SAP is not headquartered in Canada because the attributes
“Company” and “Country” are value-independent from each
other. As described further below, for each value-indepen-
dent attribute, a value-independent query (see, e.g., FIG. 8)
can be generated.

As described above, the user request can include param-
eters that indicate corresponding element of a data schema
(e.g., structure or attribute) is value-independent or value-
dependent. If a structure is value-independent, then all
attributes contained in the structure can also be deemed
value-independent. As an example, FIG. 7 depicts a pseudo-
code implementation of a method that determines value-
independent attributes in a data schema. In this example, the
method call getlndependentAttributes 700 is configured to
obtain all value-independent attributes contained in a struc-
ture that is determined to be value-independent, and the
method call getAll Attributes 710 is configured to recursively
determine all value-independent attributes contained in the
data schema by going through all substructures and attri-
butes.

Example 10—Example Queries Generated Using
Schema Alignment

In any of the examples herein, queries can be automati-
cally generated (e.g., by the query generator 426) to retrieve
corresponding data records from a knowledge graph. Gen-
eration of the queries can use the schema alignment which
maps attributes of the data schema to corresponding classes
or properties defined in the ontology that are represented by
respective URIs.

For each attribute in the data schema, a corresponding
URI mapped by the schema alignment can be derived. For
example, as shown in FIG. 6, the attributes “Given name”
622, “Family name” 624, and “Gender” 626 can be respec-
tively mapped to properties 642, 644, 646 represented by the
following three URIs in the Wikidata knowledge graph:

https://www.wikidata.org/wiki/Property:P735

https://www.wikidata.org/wiki/Property:P734
https://www.wikidata.org/wiki/Property:P21

In certain examples, a single query can be generated for
each value-independent attribute. As an example, FIG. 8
shows one value-independent SPARQL query 800 that is
automatically generated based on the value-independent
attribute “Family name” 624, which is mapped to the
property 642 (URI https://www.wikidata.org/wiki/Property:
P734) defined in the ontology of the Wikidata knowledge
graph.

Generally, a SPARQL query can include a set of triple
patterns called a basic graph pattern. Triple patterns are like
RDF subject-predicate-object triples except that each of the
subject, predicate and object can be a variable. A basic graph
pattern matches a subgraph of the RDF data when RDF
terms from that subgraph may be substituted for the vari-
ables and the result is an RDF graph that is equivalent to the
subgraph.

As shown in FIG. 8, the SPARQL query 800 includes a
basic graph pattern 802, which includes a triple pattern 804
in which the predicate is wdt:P734, referring to the property
642 defined in the ontology of the Wikidata knowledge

10

15

20

25

30

35

40

45

50

55

60

65

14

graph. When executed on the Wikidata knowledge graph, if
no restriction is applied, the query 800 will return query
results which include the labels of all nodes contained in
Wikidata that have the property 644 (i.e., family names).

In certain examples, the query 800 can include a filter 806
which restricts the query results, e.g., the query results are
limited to English language in this example. As noted above,
the default language used for the queries can be specified in
a configuration file, and may be modified by a parameter
contained in the user request. In certain examples, the query
800 can specify an upper limit 808 (e.g., 10 in the depicted
example) that limits the number of returned results to
improve the performance of the data retrieval (e.g., reduce
the query search runtime).

In certain examples, a single query can be generated that
corresponds to multiple value-dependent attributes. As an
example, FIG. 9 shows one value-dependent SPARQL query
910 that is automatically generated based on three value-
dependent structure or attributes “Company” 610, “Coun-
try” 614, and “Industry” 616, which are respectively mapped
to the class 638 or properties 634 and 636 represented by the
following URIs in the Wikidata knowledge graph (see, e.g.,
FIG. 6):

https://www.wikidata.org/wiki/Q891723

https://'www.wikidata.org/wiki/Property:P17

https://'www.wikidata.org/wiki/Property:P452

As shown in FIG. 9, the SPARQL query 910 includes a
basic graph pattern 912, which includes a triple pattern 914
in which the object is Q891723 referring to the class 638
(note: the predicate wdt:P31 is “instance of™), a triple pattern
916 in which the predicate is wdt:P17 referring to the
property 634, and a triple pattern 918 in which the predicate
is wdt:P452 referring to the property 636. These triple
patterns are combined or work in conjunction when execut-
ing the query 910. Thus, when executed on the Wikidata
knowledge graph, if no restriction is applied, the query 910
will return query results which include the labels of all nodes
contained in Wikidata which respectively represent the
company name, the country where the company is located,
and the industry to which the company belongs. Similarly, in
certain examples, the query 910 can also include filters
which restrict the query results (e.g., limiting the query
results to English language) and/or specify an upper limit
that limits the number of returned query results.

As an example, FIG. 10 shows a list of query results
obtained after executing the value-dependent query 910 on
the Wikidata knowledge graph. As shown, the query results
can be organized into a data table 1000, which corresponds
to a data schema comprising attributes of the three depicted
columns (i.e., Name, Country, Industry). Thus, each row in
the table 1000 can constitute a data record matched to the
data schema. Because the query 910 is value-dependent, the
data records contained in the table 1000 can be considered
real. For example, the first row of table 1000 represents a
real data record because the values of all attributes are valid
and consistent with each other: Honda is a company head-
quartered in Japan and it belongs to the automotive industry.

In certain cases, the data records returned after executing
a value-dependent query may contain NULL values, indi-
cating empty query result for certain attributes. In other
words, the query may return valid values corresponding to
some, but not all, attributes. For example, a record in the
table 1000 may include valid values for the attributes
“Name” and “Country,” but a NULL value for the attribute
“Industry.” This can happen when the knowledge graph does
not contain relevant data (e.g., the knowledge graph may
contain the name and country information of a company, but

US 11,907,182 B2

15
contain no information on the industry of the company). In
SPARQL queries, NULL values can occur when SPARQL
OPTIONAL is used. In certain examples, whether or not
NULL values are allowed can be determined based on the
settings in the configuration file and/or parameters specified
in the user request.

Example 11—FExample Methods of Broadening
Queries

As noted above, the user request can specify a desired
number of data records for a data schema. If the number of
data records retrieved from the knowledge graphs after
executing the queries is smaller than the desired number of
data records, one or more additional steps can be taken to
generate more data records for the data schema.

In certain examples, when an original query does not
return enough data records, the original query can be auto-
matically reformulated to generate one or more new queries,
which are configured to broaden the search of the knowledge
graph (i.e., query expansion) and return more data records.
Reformulation of the query can be based on reasoning rules
contained in the knowledge graph. As described above,
certain knowledge graphs can have preconstructed reason-
ing rules, which can be exploited to broaden the query in a
logical way.

For example, assuming the original query is configured to
search the knowledge graph for all instances associated with
a class or property “car brand” defined in the ontology of the
knowledge graph. Further assuming that the ontology of the
knowledge graph has a preconstructed reasoning rule which
states that “sport car brand is a car brand.” In other words,
the rule indicates that “sport car brand” is a subtype of the
“car brand.” Thus, if the original query does not return
sufficient search results, the original query can be reformu-
lated to a new query which is configured to search the
knowledge graph for all instances associated with the “sport
car brand.” If the “car brand” has other subtypes (e.g.,
“foreign car brand,” “luxury car brand,” etc.) defined in the
ontology, these subtypes can also be used to automatically
generate new queries to obtain additional search results. In
other words, the schema alignment can be dynamically
modified by mapping attributes of the data schema to a
different subset of the ontology (i.e., changed from “car
brand” to “sport car brand” or other subtypes).

Example 12—Example Methods of Composing
Data Records

In certain examples, when a value-dependent query does
not return enough data records, at least some of the returned
data records can be duplicated if record duplication is
allowed (e.g., based on the settings in the configuration file
and/or parameters specified in the user request). As an
example, FIG. 11 depicts a pseudo-code implementation
1100 of a method of generating duplicates of data records
obtained after executing a value-dependent query. In certain
examples, the returned data records can be randomly
selected and copied until the total number of data records
equals to the desired number of data records.

In any of the examples described herein, the disclosed
technology can compost the list of data records by combin-
ing query results returned after executing a plurality of
queries. For example, when a plurality of value-independent
queries are configured to return respective query results
corresponding to different attributes of the data schema, the
returned query results can be randomly combined in order to

10

25

35

40

45

55

60

16

generate the desired number of data records. If all combi-
nations are still not enough to obtain the desired number of
data records, duplicate records (if allowed) can be generated
as described above.

As an example, FIG. 12 depicts a table 1100 containing a
list of composed data records (in rows) obtained after
executing value-independent queries on a knowledge graph.
In this example, instead of executing a value-dependent
query to obtain complete data records containing all three
attributes (i.e., “Given name,” “Family name,” and “Gen-
der”) according to a data schema, three value-independent
queries are executed independently to obtain three separate
sets of query results respectively corresponding to the three
attributes. For example, one value-independent query for the
attribute “Given name” can return query results including
“Sabine,” “Klein,” and “Jan Philipp.” A second value-
independent query for the attribute “Family name” can
return query results including “Bendieck,” “Christian,” and
“Portisch.” A third value-independent query for the attribute
“Gender” can return query results including “Male” and
“Female.” Then, the returned query results can be randomly
combined to generate data records corresponding to the data
schema. Such generated data records may be realistic but not
real. For example, the fourth row in the table 1100 represents
a composed data record where the given name is “Jan
Philipp,” the family name is “Klein” (which is also a given
name returned after executing the first query), and the
gender is “Female” despite the fact that “Jan Philipp”
typically indicates a male’s name in German.

Example 13—Example Methods of Ranking Data
Records

In certain cases, especially when the returned data records
are too many, a user may want to have a ranked list of data
records so that the user can quickly review those data
records that are ranked high on the list to check if they are
satisfactory before persisting the data records to the data
schema. There can be other rationales that data records that
follow certain sorted order are desired, and various sorting/
ranking criteria can be used depending on particular appli-
cations. The sorting/ranking criteria and relevant parameters
can be specified in the configuration file and/or the user
request.

In certain examples, the returned data records can be
ranked based on completeness of the data records and/or
duplicate status of the data records. As described above, a
returned data record (e.g., after executing a value-dependent
query) may contain NULL values. Thus, a record complete-
ness index c€[0, 1] can be calculated as the share of
attributes (within a generated record) that are not NULL. For
duplicate records, the record completeness index ¢ can be set
to zero.

As an example, FIG. 13 shows a table 1300 containing
three data record (i.e., 1310, 1320, and 1330) returned after
executing a query on a knowledge graph. In this example,
similar to the data table 1000, the returned data records
correspond to a data schema having three attributes related
to a company: “Name,” “Country,” and “Industry.” The data
record 1310 contains valid values for all three attributes,
thus its record completeness index c is calculated as 1. The
data record 1320 contains valid values for attributes “Name”
and “Country,” but has a NULL value for the attribute
“Industry.” Thus, its record completeness index c is calcu-
lated as %4. Although the data record 1330 contain valid
values for all three attributes, it is considered as a duplicate
of'the data record 1310. Thus, its record completeness index

US 11,907,182 B2

17
¢ is set to 0. As a result, the returned data records can be
ranked in the following descending order:
1310>1320>1330.

Although a specific ranking method is described above, it
is to be understood that other ranking methods can be used
based on specific applications and/or other considerations,
e.g., the alphabetic orders of certain attributes, the quality or
trustworthiness of the knowledge graphs, etc.

Example 14—Example Advantages

A number of advantages can be achieved via the tech-
nologies described herein. For example, a developer can
easily generate and scale realistic or real test data from
knowledge graphs by simply submitting a user request
specifying a desired number of data records for a desired
data schema. The schema-based knowledge graph data
retrieval system described herein can then generate queries
and execute such queries on knowledge graphs to return a
desired list of data records for the data schema. The com-
plete process (after submitting the user request) can be
performed automatically without human intervention. Simi-
larly, a user can use the technologies described herein to
generate realistic or real (and appealing) data records, e.g.,
from the publicly available knowledge graphs, for customer
demonstration purposes without privacy-related concerns.
Likewise, a data scientist can use the technologies described
herein to easily obtain realistic or real data records matched
to a desired data schema for machine learning and/or arti-
ficial intelligence purposes.

Example 15—Example Computing Systems

FIG. 14 depicts an example of a suitable computing
system 1400 in which the described innovations can be
implemented. The computing system 1400 is not intended to
suggest any limitation as to scope of use or functionality of
the present disclosure, as the innovations can be imple-
mented in diverse computing systems.

With reference to FIG. 14, the computing system 1400
includes one or more processing units 1410, 1415 and
memory 1420, 1425. In FIG. 14, this basic configuration
1430 is included within a dashed line. The processing units
1410, 1415 can execute computer-executable instructions,
such as for implementing the features described in the
examples herein. A processing unit can be a general-purpose
central processing unit (CPU), processor in an application-
specific integrated circuit (ASIC), or any other type of
processor. In a multi-processing system, multiple processing
units can execute computer-executable instructions to
increase processing power. For example, FIG. 14 shows a
central processing unit 1410 as well as a graphics processing
unit or co-processing unit 1415. The tangible memory 1420,
1425 can be volatile memory (e.g., registers, cache, RAM),
non-volatile memory (e.g., ROM, EEPROM, flash memory,
etc.), or some combination of the two, accessible by the
processing unit(s) 1410, 1415. The memory 1420, 1425 can
store software 1480 implementing one or more innovations
described herein, in the form of computer-executable
instructions suitable for execution by the processing unit(s)
1410, 1415.

A computing system 1400 can have additional features.
For example, the computing system 1400 can include stor-
age 1440, one or more input devices 1450, one or more
output devices 1460, and one or more communication con-
nections 1470, including input devices, output devices, and
communication connections for interacting with a user. An

10

20

30

35

40

45

55

18

interconnection mechanism (not shown) such as a bus,
controller, or network can interconnect the components of
the computing system 1400. Typically, operating system
software (not shown) can provide an operating environment
for other software executing in the computing system 1400,
and coordinate activities of the components of the comput-
ing system 1400.

The tangible storage 1440 can be removable or non-
removable, and can include magnetic disks, magnetic tapes
or cassettes, CD-ROMs, DVDs, or any other medium which
can be used to store information in a non-transitory way and
which can be accessed within the computing system 1400.
The storage 1440 can store instructions for the software or
method 500 implementing one or more innovations
described herein.

The input device(s) 1450 can be an input device such as
a keyboard, mouse, pen, or trackball, a voice input device,
a scanning device, touch device (e.g., touchpad, display, or
the like) or another device that provides input to the com-
puting system 1400. The output device(s) 1460 can be a
display, printer, speaker, CD-writer, or another device that
provides output from the computing system 1400.

The communication connection(s) 1470 can enable com-
munication over a communication medium to another com-
puting entity. The communication medium can convey infor-
mation such as computer-executable instructions, audio or
video input or output, or other data in a modulated data
signal. A modulated data signal is a signal that has one or
more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media can use an elec-
trical, optical, RF, or other carrier.

The innovations can be described in the context of com-
puter-executable instructions, such as those included in
program modules, being executed in a computing system on
a target real or virtual processor (e.g., which is ultimately
executed on one or more hardware processors). Generally,
program modules or components include routines, pro-
grams, libraries, objects, classes, components, data struc-
tures, etc. that perform particular tasks or implement par-
ticular abstract data types. The functionality of the program
modules can be combined or split between program modules
as desired in various embodiments. Computer-executable
instructions for program modules can be executed within a
local or distributed computing system.

For the sake of presentation, the detailed description uses
terms like “determine” and “use” to describe computer
operations in a computing system. These terms are high-
level descriptions for operations performed by a computer,
and should not be confused with acts performed by a human
being. The actual computer operations corresponding to
these terms vary depending on implementation.

Example 16—Computer-Readable Media

Any of the computer-readable media herein can be non-
transitory (e.g., volatile memory such as DRAM or SRAM,
nonvolatile memory such as magnetic storage, optical stor-
age, or the like) and/or tangible. Any of the storing actions
described herein can be implemented by storing in one or
more computer-readable media (e.g., computer-readable
storage media or other tangible media). Any of the things
(e.g., data created and used during implementation)
described as stored can be stored in one or more computer-
readable media (e.g., computer-readable storage media or
other tangible media). Computer-readable media can be
limited to implementations not consisting of a signal.

US 11,907,182 B2

19

Any of the methods described herein can be implemented
by computer-executable instructions in (e.g., stored on,
encoded on, or the like) one or more computer-readable
media (e.g., computer-readable storage media or other tan-
gible media) or one or more computer-readable storage
devices (e.g., memory, magnetic storage, optical storage, or
the like). Such instructions can cause a computing device to
perform the method. The technologies described herein can
be implemented in a variety of programming languages.

Example 17—Example Cloud Computing
Environment

FIG. 15 depicts an example cloud computing environment
1500 in which the described technologies can be imple-
mented, including, e.g., the system disclosed above and
other systems herein. The cloud computing environment
1500 can include cloud computing services 1510. The cloud
computing services 1510 can comprise various types of
cloud computing resources, such as computer servers, data
storage repositories, networking resources, etc. The cloud
computing services 1510 can be centrally located (e.g.,
provided by a data center of a business or organization) or
distributed (e.g., provided by various computing resources
located at different locations, such as different data centers
and/or located in different cities or countries).

The cloud computing services 1510 can be utilized by
various types of computing devices (e.g., client computing
devices), such as computing devices 1520, 1522, and 1523.
For example, the computing devices (e.g., 1520, 1522, and
1524) can be computers (e.g., desktop or laptop computers),
mobile devices (e.g., tablet computers or smart phones), or
other types of computing devices. For example, the com-
puting devices (e.g., 1520, 1522, and 1524) can utilize the
cloud computing services 1510 to perform computing opera-
tions (e.g., data processing, data storage, and the like).

In practice, cloud-based, on-premises-based, or hybrid
scenarios can be supported.

Example 18—Example Implementations

Although the operations of some of the disclosed methods
are described in a particular, sequential order for convenient
presentation, such manner of description encompasses rear-
rangement, unless a particular ordering is required by spe-
cific language set forth herein. For example, operations
described sequentially can in some cases be rearranged or
performed concurrently.

As described in this application and in the claims, the
singular forms “a,” “an,” and “the” include the plural forms
unless the context clearly dictates otherwise. Additionally,
the term “includes” means “comprises.” Further, “and/or”
means “and” or “or,” as well as “and” and “or.”

Example 19—Example Embodiments

Any of the following embodiments can be implemented.

Clause 1. A computer-implemented method comprising:
receiving a request of data records for a data schema;
obtaining a schema alignment which maps the data schema
to a subset of an ontology of a knowledge graph; generating
at least one query based on the subset of the ontology of the
knowledge graph; obtaining a list of data records, wherein
the obtaining comprises executing the at least one query on
the knowledge graph to obtain a list of data records; and
persisting the list of data records to the data schema.

10

30

40

45

50

55

20

Clause 2. The method of clause 1, wherein obtaining the
schema alignment comprises checking an alignment reposi-
tory; and responsive to finding the schema alignment in the
alignment repository, retrieving the schema alignment from
the alignment repository.

Clause 3. The method of clause 2, wherein obtaining the
schema alignment comprises: running a schema matching
operation to determine the schema alignment if the request
specifies not to check the alignment repository; and storing
the schema alignment in the alignment repository.

Clause 4. The method of any one of clauses 1-3, wherein
generating the at least one query comprises constructing a
basic graph pattern, wherein the basic graph pattern com-
prises a triple pattern comprising a class or property defined
in the subset of the ontology of the knowledge graph,
wherein the schema alignment maps an attribute of the data
schema to the class or property.

Clause 5. The method of clause 4, wherein the basic graph
pattern comprises a plurality of triple patterns comprising
respective classes or properties defined in the subset of the
ontology of the knowledge graph, wherein the schema
alignment maps a plurality of attributes of the data schema
to the respective classes or properties.

Clause 6. The method of any one of clauses 1-5, further
comprising composing the list of data records, wherein the
composing comprises combining query results returned after
executing a plurality of queries, wherein the plurality of
queries are configured to return respective query results
corresponding to different attributes of the data schema,
wherein the schema alignment maps different attributes of
the data schema to respective classes or properties defined in
the subset of the ontology of the knowledge graph.

Clause 7. The method of any one of clauses 1-6, further
comprising duplicating one or more data records before
persisting the list of data records to the data schema.

Clause 8. The method of any one of clauses 1-7, further
comprising ranking the list of data records before persisting
the list of data records to the data schema.

Clause 9. The method of clause 8, wherein ranking the list
of data records is based on completeness of the data records
and/or duplicate status of the data records.

Clause 10. The method of any one of clauses 1-9, further
comprising: when a count of the data records is smaller than
a desired number specified in the request, determining a new
subset of the ontology of the knowledge graph, wherein at
least one class or property defined in the new subset of the
ontology is a subtype of a class or property defined in the
subset of the ontology; generating at least one new query
based on the new subset of the ontology of the knowledge
graph; executing the at least one new query on the knowl-
edge graph to obtain a new list of data records; and persist-
ing the new list of data records to the data schema.

Clause 11. A computing system comprising: memory; one
or more hardware processors coupled to the memory; and
one or more computer readable storage media storing
instructions that, when loaded into the memory, cause the
one or more hardware processors to perform operations
comprising: receiving a request of data records for a data
schema; obtaining a schema alignment which maps the data
schema to a subset of an ontology of a knowledge graph;
generating at least one query based on the subset of the
ontology of the knowledge graph; obtaining a list of data
records, wherein the obtaining comprises executing the at
least one query on the knowledge graph to obtain a list of
data records; and persisting the list of data records to the data
schema.

US 11,907,182 B2

21

Clause 12. The system of clause 11, further comprising an
alignment repository which stores previously generated
schema alignments which map a plurality of data schemas to
respective subsets of ontologies of one or more knowledge
graphs.

Clause 13. The system of any one of clauses 11-12, further
comprising a schema matcher configured to generate the
schema alignment at runtime based on the data schema and
the ontology of the knowledge graph.

Clause 14. The system of any one of clauses 11-13,
wherein the at least one query comprises a basic graph
pattern, wherein the basic graph pattern comprises a triple
pattern comprising a class or property defined in the subset
of'the ontology of the knowledge graph, wherein the schema
alignment maps an attribute of the data schema to the class
or property.

Clause 15. The system of clause 14, wherein the basic
graph pattern comprises a plurality of triple patterns com-
prising respective classes or properties defined in the subset
of'the ontology of the knowledge graph, wherein the schema
alignment maps a plurality of attributes of the data schema
to the respective classes or properties.

Clause 16. The system of any one of clauses 11-15,
wherein the operations further comprise composing the list
of data records, wherein the composing comprises combin-
ing query results returned after executing a plurality of
queries, wherein the plurality of queries are configured to
return respective query results corresponding to different
attributes of the data schema, wherein the schema alignment
maps different attributes of the data schema to respective
classes or properties defined in the subset of the ontology of
the knowledge graph.

Clause 17. The system of any one of clauses 11-16,
wherein the operations further comprise duplicating one or
more data records before persisting the list of data records to
the data schema.

Clause 18. The system of any one of clauses 11-17,
wherein the operations further comprise ranking the list of
data records before persisting the list of data records to the
data schema

Clause 19. The system of clause 18, wherein ranking the
list of data records is based on completeness of the data
records and/or duplicate status of the data records.

Clause 20. One or more computer-readable media having
encoded thereon computer-executable instructions causing
one or more processors to perform a method comprising:
receiving a request of data records for a data schema;
obtaining a schema alignment which maps the data schema
to a subset of an ontology of a knowledge graph, wherein the
schema alignment is obtained from an alignment repository
or generated at runtime by a schema matcher; generating at
least one query with the subset of the ontology of the
knowledge graph; obtaining a list of data records, wherein
the obtaining comprises executing the at least one query on
the knowledge graph to obtain a list of data records; and
persisting the ranked list of data records to the data schema;
wherein generating the at least one query comprises con-
structing a basic graph pattern, wherein the basic graph
pattern comprises a triple pattern including a class or prop-
erty defined in the subset of the ontology of the knowledge
graph, wherein the schema alignment maps an attribute of
the data schema to the class or property.

Example 20—Example Alternatives

The technologies from any example can be combined
with the technologies described in any one or more of the

10

15

20

25

30

35

40

45

50

55

60

65

22

other examples. In view of the many possible embodiments
to which the principles of the disclosed technology can be
applied, it should be recognized that the illustrated embodi-
ments are examples of the disclosed technology and should
not be taken as a limitation on the scope of the disclosed
technology. Rather, the scope of the disclosed technology
includes what is covered by the scope and spirit of the
following claims.

The invention claimed is:

1. A computer-implemented method comprising:

receiving a request of data records for a data schema;

obtaining a schema alignment which maps the data
schema to a subset of an ontology of a knowledge
graph;

generating one or more queries based on the subset of the

ontology of the knowledge graph;

executing the one or more queries on the knowledge

graph;

composing a list of data records by combining query

results returned after executing the one or more queries;
and

persisting the list of data records to the data schema,

wherein a selected query comprises a triple pattern includ-

ing a class or property defined in the subset of the
ontology of the knowledge graph, wherein the schema
alignment maps an attribute of the data schema to the
class or property,

wherein the one or more queries are configured to return

respective query results corresponding to one or more
attributes of the data schema, wherein the schema
alignment maps the one or more attributes of the data
schema to respective classes or properties defined in the
subset of the ontology of the knowledge graph.

2. The method of claim 1, wherein obtaining the schema
alignment comprises checking an alignment repository; and
responsive to finding the schema alignment in the alignment
repository, retrieving the schema alignment from the align-
ment repository.

3. The method of claim 2, wherein obtaining the schema
alignment comprises:

running a schema matching operation to determine the

schema alignment if the request specifies not to check
the alignment repository; and

storing the schema alignment in the alignment repository.

4. The method of claim 1, wherein the triple pattern
comprises a subject, a predicate, and an object, at least one
of which is a variable.

5. The method of claim 1, wherein the selected query
comprises a plurality of triple patterns comprising respective
classes or properties defined in the subset of the ontology of
the knowledge graph, wherein the schema alignment maps
a plurality of attributes of the data schema to the respective
classes or properties.

6. The method of claim 1, further comprising duplicating
one or more data records before persisting the list of data
records to the data schema.

7. The method of claim 1, further comprising ranking the
list of data records before persisting the list of data records
to the data schema.

8. The method of claim 7, wherein ranking the list of data
records is based on completeness of the data records or
duplicate status of the data records.

9. The method of claim 1, further comprising: when a
count of the data records is smaller than a desired number
specified in the request,

determining a new subset of the ontology of the knowl-

edge graph, wherein at least one class or property

US 11,907,182 B2

23

defined in the new subset of the ontology is a subtype
of a class or property defined in the subset of the
ontology;

generating at least one new query based on the new subset

of the ontology of the knowledge graph;

executing the at least one new query on the knowledge

graph to obtain a new list of data records; and
persisting the new list of data records to the data schema.

10. A computing system comprising:

memory;

one or more hardware processors coupled to the memory;

and

one or more computer readable storage media storing

instructions that, when loaded into the memory, cause
the one or more hardware processors to perform opera-
tions comprising:

receiving a request of data records for a data schema;

obtaining a schema alignment which maps the data

schema to a subset of an ontology of a knowledge
graph;

generating one or more queries based on the subset of the

ontology of the knowledge graph;

executing the one or more queries on the knowledge

graph;

composing a list of data records by combining query

results returned after executing the one or more queries;
and

persisting the list of data records to the data schema,

wherein a selected query comprises a triple pattern includ-

ing a class or property defined in the subset of the
ontology of the knowledge graph, wherein the schema
alignment maps an attribute of the data schema to the
class or property,

wherein the one or more queries are configured to return

respective query results corresponding to one or more
attributes of the data schema, wherein the schema
alignment maps the one or more attributes of the data
schema to respective classes or properties defined in the
subset of the ontology of the knowledge graph.

11. The system of claim 10, further comprising an align-
ment repository which stores previously generated schema
alignments which map a plurality of data schemas to respec-
tive subsets of ontologies of one or more knowledge graphs.

12. The system of claim 10, further comprising a schema
matcher configured to generate the schema alignment at
runtime based on the data schema and the ontology of the
knowledge graph.

10

15

20

30

35

40

45

24

13. The system of claim 10, wherein the triple pattern
comprises a subject, a predicate, and an object, at least one
of which is a variable.

14. The system of claim 10, wherein the selected query
comprises a plurality of triple patterns comprising respective
classes or properties defined in the subset of the ontology of
the knowledge graph, wherein the schema alignment maps
a plurality of attributes of the data schema to the respective
classes or properties.

15. The system of claim 10, wherein the operations further
comprise duplicating one or more data records before per-
sisting the list of data records to the data schema.

16. The system of claim 10, wherein the operations further
comprise ranking the list of data records before persisting
the list of data records to the data schema.

17. The system of claim 16, wherein ranking the list of
data records is based on completeness of the data records or
duplicate status of the data records.

18. One or more non-transitory computer-readable media
having encoded thereon computer-executable instructions
causing one or more processors to perform a method com-
prising:

receiving a request of data records for a data schema;

obtaining a schema alignment which maps the data

schema to a subset of an ontology of a knowledge
graph, wherein the schema alignment is obtained from
an alignment repository or generated at runtime by a
schema matcher;

generating one or more queries based on the subset of the

ontology of the knowledge graph;

executing the one or more queries on the knowledge

graph;

composing a list of data records by combining query

results returned after executing the one or more queries;
and

persisting the list of data records to the data schema;

wherein a selected query comprises a triple pattern includ-

ing a class or property defined in the subset of the
ontology of the knowledge graph, wherein the schema
alignment maps an attribute of the data schema to the
class or property,

wherein the one or more queries are configured to return

respective query results corresponding to one or more
attributes of the data schema, wherein the schema
alignment maps the one or more attributes of the data
schema to respective classes or properties defined in the
subset of the ontology of the knowledge graph.

#* #* #* #* #*

