
US 20220247757A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0247757 A1

Bhandari et al . (43) Pub . Date : Aug. 4 , 2022

Publication Classification (54) TECHNOLOGIES FOR PROVING PACKET
TRANSIT THROUGH UNCOMPROMISED
NODES (51) Int . Ci .

H04L 9/40
H04L 69/22

(52) U.S. CI .
CPC

(2006.01)
(2006.01) (71) Applicant : Cisco Technology , Inc. , San Jose , CA

(US) H04L 63/123 (2013.01) ; H04L 69/22
(2013.01) ; H04L 63/1425 (2013.01) (72) Inventors : Shwetha Subray Bhandari , Bangalore

(IN) ; Eric Voit , Bethesda , MD (US) ;
Frank Brockners , Köln (DE) ; Carlos
M. Pignataro , Cary , NC (US) ;
Nagendra Kumar Nainar , Morrisville ,
NC (US)

(21) Appl . No .: 17 / 728,333

(22) Filed : Apr. 25 , 2022

(57) ABSTRACT

Technologies for proving packet transit through uncompro
mised nodes are provided . An example method can include
receiving a packet including one or more metadata elements
generated based on security measurements from a plurality
of nodes along a path of the packet ; determining a validity
of the one or more metadata elements based on a comparison
of one or more values in the one or more metadata elements
with one or more expected values calculated for the one or
more metadata elements , one or more signatures in the one
or more metadata elements , and / or timing information asso
ciated with the one or more metadata elements ; and based on
the one or more metadata elements , determining whether the packet traversed any compromised nodes along the path of
the packet

Related U.S. Application Data
(63) Continuation of application No. 16 / 555,869 , filed on

Aug. 29 , 2019 , now Pat . No. 11,343,261 .
(60) Provisional application No. 62 / 830,156 , filed on Apr.

5 , 2019 .

100 VERIFER SYSTEM 108

VERIFIED STATE
REPOSITORY

106A
SERVER (S) 1068

NETWORK 114

CANDIDATE CANDIDATE
NEXT - HOP

CANDIDATE
SECOND - HOP
NODE 110A NODE 1124 ATTESTATION ROUTING

ORCHESTRATOR
CANDIDATE CANDIDATE

NEXT - HOP
CANDIDATE

SECOND - HOP
NODE 1108

DESTINATION
NODE

NODE 18

: : :

SOURCE NODE CANDIDATE
NEXT - HOP
NODE (08N

CANDIDATE
SECOND - HOP
NODE WON

CANDIDATE
N - HOP

100

VERIFIER SYSTEM 106

VERIPED STATE REPOSITORY 106A

:

SERVER (S) 1068
w

Patent Application Publication

NETWORK 114
2x

CANDIDATE

NEXT - HOP NODE 108A

CANDIDATE SECOND - HOP NODE 110A

NODE 1124

MA

ATTESTATION ROUTING ORCHESTRATOR

CANDIDATE
CANDIDATE

SUB

CANDIDATE NEXT - HOP NODE 1088

DESTINATION NODE 116

Aug. 4 , 2022 Sheet 1 of 9

NODE 1108

NODE 112

:

:

CANDIDATE
CANDIDATE
CANDIDATE

SOURCE NODE 102

NODE 108N

NODE 10N

NODE 112N

US 2022/0247757 A1

FIG . 1

VERIFIER SYSTEM 100

VERIFIED STATE REPOSITORY

:

SERVERS) 1068

Patent Application Publication

{ NETWORK 114

SOURCE NODE 202

CANDDATE

CANDIDATE NEXT - HOP NODE 108A

CANDIDATE SECOND - HOP NODE 110A

NODE 1124

ATTESTATION ROUTING ORCHESTRATOR 2024

CANDIDATE

CANDIDATE NEXT - HOP NODE 108B

CANDIDATE SECOND - HOP NODE 1108

DESTINATION NODE 110

Aug. 4 , 2022 Sheet 2 of 9

NETWORK

PROCESSOR (S)
2028

:

:

CANDDATE

CANDIDATE

2020

CANDIDATE SECOND - HOP NODE 110N

NODE 108N

NODE 112N

INTERFACE

US 2022/0247757 A1

FIG . 2

VERIFIER SYSTEM 100

VERIFIED STATE REPOSITORY

:

SERVERS) 1068

Patent Application Publication

{ NETWORK 114

SOURCE NODE 202

CANDDATE

CANDIDATE NEXT - HOP NODE 108A

CANDIDATE SECOND - HOP NODE 110A

ATTESTATION

NODE 1124

ORCHESTRATOR

CANDIDATE

CANDIDATE NEXT - HOP NODE 1088

CANDIDATE SECOND - HOP NODE 1108

DESTINATION NODE 110

Aug. 4 , 2022 Sheet 3 of 9

NETWORK
NODE 1128

PROCESSOR (S)

:

:

CANDIDATE

CANDIDATE

2020

CANDIDATE SECOND - HOP NODE 110N

NODE 108N

NODE 112N

NTERFACE

US 2022/0247757 A1

FIG . 3

Patent Application Publication Aug. 4 , 2022 Sheet 4 of 9 US 2022/0247757 A1

SOURCE NODE

SYSTEM
105 PROCESSORS)
??????????

MEMORY 4048 M

ATTESTATION
ROUTING

ORCHESTRATOR
INTERFACE 404C

ATTESTATION

CANDIDATE
NEXT - HOP NODES

PACKET TO PARTICULAR CANDDATE
NEXT - HOP NODE

FIG . 4

500

108A

116 1 Destination

1 STATE

Source
Materia

Next - hop

Mint

Second - Hop

Node

Patent Application Publication

Packet

512

Add Canary Stamp Data Sign Canary Stamp Data

516

Packet (Canary Stamp Data)

Add Update Canary Stamp Data ????????

Aug. 4 , 2022 Sheet 5 of 9

Sign Canary Stamp Data Packet (Canary Stamp Data)

Validate Canary Stamp Data
9 Packet

US 2022/0247757 A1

FIG . 5

FIG . 6

110A

1124

106

wer

Nexi - Hop Node .

Second - Hop

Nhop Node .

System .

Node

Packet

Patent Application Publication

Add and Sign
Canary Stamp Data

614

Packet (Canary Stamp Data)

018

Packet (Canary Stamp Data

Verify and Sign Canary Stamp Data

Packet (Canary Stamp Data)

622

Add Update and Sign Canary Stamp Data 624 Packet (Canary Stamp Data

Aug. 4 , 2022 Sheet 6 of 9

Verify and Sign Canary Stamp Data

Packet Canary Stamp Data 032

Packet (Canary Stamp Data

12

634

Add update and Sign Canary Stamp Data
PacketCanary Stamp Data)

Validate Canary Stamp Data

Validated Packet

15

US 2022/0247757 A1

16 Packet

- 640

Patent Application Publication Aug. 4 , 2022 Sheet 7 of 9 US 2022/0247757 A1

" Am

RECEIVE A PACKET INCLUDING ONE OR MORE METADATA ELEMENTS
GENERATED BASED ON SECURITY MEASUREMENTS FROM A PLURALTY OF NODES

ALONGA PATH OF THE PACKET

un

DETERMINE A VALIDITY OF THE ONE OR MORE METADATA ELEMENTS

SW V

BASED ON THE ONE OR MORE METADATA ELEMENTS , DETERMINE WHETHER THE
PACKET TRAVERSED ANY COMPROMISED NODES ALONG THE PATH OF THE PACKET

FIG . 7

Patent Application Publication Aug. 4 , 2022 Sheet 8 of 9 US 2022/0247757 A1

INTERFACES

w

MEMORY
806 w

PROCESSOR

812 wo

FIG . 8

Patent Application Publication Aug. 4 , 2022 Sheet 9 of 9 US 2022/0247757 A1

STORAGE

SERVICE 1

C SERVICE 2

SERVICES
OUTPUT

924 11
908

926
COMMUNICATION

INTERFACE PROCESSOR

FIG . 9

US 2022/0247757 A1 Aug. 4 , 2022
1

TECHNOLOGIES FOR PROVING PACKET
TRANSIT THROUGH UNCOMPROMISED

NODES

[0010] FIG . 8 illustrates an example network device in
accordance with some examples ; and
[0011] FIG . 9 illustrates an example computing device
architecture in accordance with some examples .

CROSS - REFERENCE TO RELATED
APPLICATIONS DETAILED DESCRIPTION

[0001] This application is a Continuation of U.S. patent
application Ser . No. 16 / 555,869 , filed Aug. 29 , 2019 , which
claims the benefit of , and priority to , U.S. Provisional Patent
Application No. 62 / 830,156 , filed Apr. 5 , 2019 , entitled
“ TECHNOLOGIES FOR PROVING PACKET TRANSIT
THROUGH UNCOMPROMISED NODES ” , the contents
of which are incorporated herein by reference in their
entireties .

TECHNICAL FIELD

[0002] The present disclosure generally relates to the field
of computer networking , and more particularly to assessing
reliability and trustworthiness of devices operating within a
network .

BACKGROUND

a

[0003] Trustworthiness of a node on a network may
degrade over time after its initial deployment . If a node
becomes compromised , traffic processed by that node — and
even the network itself — can similarly become compro
mised . Thus , verifying the trustworthiness of nodes process
ing packets on a network can help reduce the likelihood of
such traffic — and the network — becoming compromised . In
some cases , certain verification checks can be implemented
to attempt to verify the integrity of a node in order to reduce
or mitigate the harm caused by the node becoming compro
mised . For example , an integrity verification application can
check a node's memory to validate the integrity of the node .
When errors are found during the check , the integrity
verification application can implement steps to return the
node to a trusted state .
[0004] However , such verification checks are expensive
and unreliable , often inaccurately assuming that a node is
likely to be in a normal or trusted state soon after being
validated and less likely to be in a normal state just before
such validation . Moreover , current security approaches are
unable to accurately or efficiently confirm the trustworthi
ness of the nodes along a path of the packet , which can leave
the data associated with the packet vulnerable to hacking ,
leaks and unauthorized use and access .

[0012] Various embodiments of the disclosure are dis
cussed in detail below . While specific implementations are
discussed , it should be understood that this is done for
illustration purposes only . A person skilled in the relevant art
will recognize that other components and configurations
may be used without parting from the spirit and scope of the
disclosure . Thus , the following description and drawings are
illustrative and are not to be construed as limiting . Numer
ous specific details are described to provide a thorough
understanding of the disclosure . However , in certain
instances , well - known or conventional details are not
described in order to avoid obscuring the description . Ref
erences to one or an embodiment in the present disclosure
can be references to the same embodiment or any embodi
ment ; and , such references mean at least one of the embodi
ments .
[0013] Reference to " one embodiment ” or “ an embodi
ment ” means that a particular feature , structure , or charac
teristic described in connection with the embodiment is
included in at least one embodiment of the disclosure . The
appearances of the phrase " in one embodiment ” in various
places in the specification are not necessarily all referring to
the same embodiment , nor are separate or alternative
embodiments mutually exclusive of other embodiments .
Moreover , various features are described which may be
exhibited by some embodiments and not by others .
[0014] The terms used in this specification generally have
their ordinary meanings in the art , within the context of the
disclosure , and in the specific context where each term is
used . Alternative language and synonyms may be used for
any one or more of the terms discussed herein , and no
special significance should be placed upon whether or not a
term is elaborated or discussed herein . In some cases ,
synonyms for certain terms are provided . A recital of one or
more synonyms does not exclude the use of other synonyms .
The use of examples anywhere in this specification includ
ing examples of any terms discussed herein is illustrative
only , and is not intended to further limit the scope and
meaning of the disclosure or of any example term . Likewise ,
the disclosure is not limited to various embodiments given
in this specification .
[0015] Without intent to limit the scope of the disclosure ,
examples of instruments , apparatus , methods and their
related results according to the embodiments of the present
disclosure are given below . Note that titles or subtitles may
be used in the examples for convenience of a reader , which
in no way should limit the scope of the disclosure . Unless
otherwise defined , technical and scientific terms used herein
have the meaning as commonly understood by one of
ordinary skill in the art to which this disclosure pertains . In
the case of conflict , the present document , including defi
nitions will control .
[0016] Additional features and advantages of the disclo
sure will be set forth in the description which follows , and
in part will be obvious from the description , or can be
learned by practice of the herein disclosed principles . The
features and advantages of the disclosure can be realized and
obtained by means of the instruments and combinations

BRIEF DESCRIPTION OF THE FIGURES

[0005] To provide a more complete understanding of the
present disclosure and features and advantages thereof ,
reference is made to the following description , taken in
conjunction with the accompanying drawings , in which :
[0006] FIGS . 1 through 3 illustrate example networking
environments in accordance with some examples ;
[0007] FIG . 4 illustrates an example of a controller orches
trated attestation - based routing , in accordance with some
examples ;
[0008] FIGS . 5 and 6 illustrate example flows for provid
ing proof of packet transit through uncompromised nodes , in
accordance with some examples ;
[0009] FIG . 7 illustrates an example method for proving a
packet transit through uncompromised nodes , in accordance
with some examples ;

US 2022/0247757 A1 Aug. 4 , 2022
2

particularly pointed out in the appended claims . These and
other features of the disclosure will become more fully
apparent from the following description and appended
claims , or can be learned by the practice of the principles set
forth herein .
[0017] Overview
[0018] Disclosed are systems , methods , and computer
readable media for proving packet transit through uncom
promised nodes . In some aspects , a method for proving
packet transit through uncompromised nodes is provided .
An example method can include receiving a packet includ
ing one or more metadata elements generated based on
security measurements from a plurality of nodes along a
path of the packet ; determining a validity of the one or more
metadata elements based on a comparison of one or more
values in the one or more metadata elements with one or
more expected values calculated for the one or more meta
data elements , one or more signatures in the one or more
metadata elements , and / or timing information associated
with the one or more metadata elements , and based on the
one or more metadata elements , determining whether the
packet traversed any compromised nodes along the path of
the packet .
[0019] In some aspects , a system for proving packet transit
through uncompromised nodes is provided . An example
system can include one or more processors and memory
having stored therein instructions which , when executed by
the one or more processors , cause the one or more proces
sors to receive a packet including one or more metadata
elements generated based on security measurements from a
plurality of nodes along a path of the packet ; determine a
validity of the one or more metadata elements based on a
comparison of one or more values in the one or more
metadata elements with one or more expected values cal
culated for the one or more metadata elements , one or more
signatures in the one or more metadata elements , and / or
timing information associated with the one or more metadata
elements ; and based on the one or more metadata elements ,
determine whether the packet traversed any compromised
nodes along the path of the packet .
[0020] In some aspects , a non - transitory computer - read
able medium for proving packet transit through uncompro
mised nodes is provided . An example non - transitory com
puter - readable medium can include instructions which ,
when executed by one or more processors , cause the one or
more processors to receive a packet including one or more
metadata elements generated based on security measure
ments from a plurality of nodes along a path of the packet ;
determine a validity of the one or more metadata elements
based on a comparison of one or more values in the one or
more metadata elements with one or more expected values
calculated for the one or more metadata elements , one or
more signatures in the one or more metadata elements ,
and / or timing information associated with the one or more
metadata elements ; and based on the one or more metadata
elements , determine whether the packet traversed any com
promised nodes along the path of the packet .
[0021] In some examples , the one or more metadata ele
ments referenced in the example method , system , and non
transitory computer - readable medium described above can
include the security measurements or one or more hash
values representing the security measurements . Moreover , in
some cases , the one or more metadata elements can include
node integrity metadata generated based on respective node

integrity information from each of the plurality of nodes
along the path of the packet , and the respective node
integrity information can be generated based on a respective
security measurement from each of the plurality of nodes
along the path of the packet .
[0022] In some aspects , the packet can be received by a
node at a hop in the path of the packet , and the example
method , system , and non - transitory computer - readable
medium described above can include updating a verification
digest in the one or more metadata elements in the packet to
yield an updated verification digest , the verification digest
being updated based on a hash of at least one security
measurement associated with the node . Moreover , in some
examples , determining whether the packet traversed any
compromised nodes along the path of the packet can be
based at least partly on the updated verification digest , and
the verification digest can be based on a respective hash
generated by a second node at previous hop in the path , the
respective hash being based on one or more security mea
surements at the second node .
[0023] In some cases , the verification digest is further
based on a second verification digest generated by a third
node at a different previous hop in the path , the second
verification digest being based on a second respective hash
of one or more additional security measurements at the third
node .
[0024] In some examples , the one or more metadata ele
ments are included in an In - Situ (or in - band) Operations ,
Administration , and Maintenance (IOAM) data field on the
packet , an Inband Network Telemetry (INT) packet header
associated with the packet , an Inband Flow Analyzer (IFA)
header associated with the packet , or a header associated
with an In - situ Flow Information Telemetry service used to
transmit the packet , the IOAM data field being associated
with an IOAM trace option or an IOAM proof - of - transit
(POT) option . In some aspects , the one or more metadata
elements can include one or more nonce values associated
with one or more nodes from the plurality of nodes .
[0025] In some examples , the timing information associ
ated with the one or more metadata elements can include a
respective timestamp associated with each of the plurality of
nodes , one or more Time - Based Uni - Directional Attestation
(TUDA) time - synchronization tokens , one or more Trusted
Platform Module (e.g. , TPM , TPM2 , or any current or future
version of TPM) counters , and / or one or more packet trace
timestamps defined by an IOAM telemetry scheme .
[0026] In some examples , a data element in the one or
more metadata elements and / or the one or more signatures
in the one or more metadata elements can be generated by
one or more TPMs implemented by one or more nodes from
the plurality of nodes and / or one or more cryptoprocessors
implemented by the one or more nodes . Moreover , the
security measurements can include information identifying a
respective firmware at each of the plurality of nodes , what
software has been loaded at each of the plurality of nodes ,
a respective sequence of software loaded at each of the
plurality of nodes , hardware information associated with the
plurality of nodes , and / or any operating system changes at
the plurality of nodes .
[0027] In some aspects , determining whether the packet
traversed any compromised nodes along the path of the
packet can include identifying each hop traversed by the
packet and / or providing a proof - of - transit of the packet .

US 2022/0247757 A1 Aug. 4 , 2022
3

[0028] This overview is not intended to identify key or
essential features of the claimed subject matter , nor is it
intended to be used in isolation to determine the scope of the
claimed subject matter . The subject matter should be under
stood by reference to appropriate portions of the entire
specification of this patent application , any or all drawings ,
and each claim .
[0029] The foregoing , together with other features and
embodiments , will become more apparent upon referring to
the following specification , claims , and accompanying
drawings .

Example Embodiments
[0030] The technologies herein can provide proof of
packet transit through uncompromised network nodes , to
ensure that packets have not traversed untrusted or compro
mised nodes that can harm or improperly access the packets
and associated data . In some examples , the technologies
herein can implement proof - of - transit (POT) and attestation
techniques to confirm the integrity of a node , verify that
traffic traverses a defined set of nodes , and verify that such
nodes have not been compromised . In some cases , such POT
and attestation techniques can implement canary stamps
(e.g. , tokens or metadata elements containing or reflecting
security measures taken at one or more nodes) .
[0031] Disclosed herein are systems , methods and com
puter - readable storage media for proving packet transit
through uncompromised nodes . The present technologies
will be described in more detail in the following disclosure
as follows . The disclosure begins with an initial discussion
of systems and technologies for providing explicit verifiable
proof of integrity of network nodes traversed by packets . A
description of example systems , methods and environments
for providing verifiable proof of integrity of network nodes
traversed by packets , as illustrated in FIGS . 1 through 7 , will
then follow . The discussion concludes with a description of
an example network device and an example computing
device architecture , as illustrated in FIGS . 8 and 9 , including
example hardware components suitable for performing vari
ous networking and computing operations described herein .
[0032] The disclosure now turns to an initial discussion of
example concepts and technologies for providing verifiable
proof of integrity of network nodes traversed by packets .
[0033] A computer network can include different nodes
(e.g. , network devices , client devices , sensors , and any other
computing devices) interconnected by communication links
and segments for sending data between end nodes . Many
types of networks are available , including , for example ,
local area networks (LANs) , wide area networks (WANs) ,
software - defined networks (SDNs) , wireless networks , core
networks , cloud networks , the Internet , etc. When data traffic
is transmitted through one or more networks , the data traffic
typically traverses a number of nodes that route the traffic
from a source node to a destination node .
[0034] While having numerous nodes can increase net
work connectivity and performance , it also increases secu
rity risks as each node that a packet traverses introduces a
risk of unauthorized data access and manipulation . For
example , when a packet traverses a node , there is a security
risk that is introduced which can result from the node being
potentially compromised (e.g. , hacked , manipulated , cap
tured , etc.) . As a result , compliance , security , and audit
procedures can be implemented to verify that network users ,

devices , entities and their associated network traffic comply
with specific business and / or security policies .
[0035] When sensitive information is transmitted through
nodes in a network , such as in battlefield , banking settings ,
and healthcare settings , such traffic should be sent through
uncomprised nodes to prevent access to , leakage of , or
tampering with the data and sensitive information carried by
that traffic . If an attacker gains access to a device via some exploit , previous protection and encryption approaches for
network interfaces are generally ineffective at mitigating or
addressing such unauthorized access and resulting damage .
[0036] Proving that network traffic complies with specific
policies can involve proving in a secure way that the traffic
has traversed a well - defined set of network nodes (e.g. ,
firewalls , switches , routers , etc.) and that such network
nodes have not been modified or compromised . This can
help ensure that the network nodes have performed their
expected or intended actions (e.g. , packet processing , secu
rity or policy compliance verification , routing , etc.) on the
packet and that the packet has traversed the network nodes .
[0037] Some security approaches can aim at removing any
implied trust in the network used for connecting applications
hosted on devices to cloud or enterprise hosted services .
Moreover , some security approaches can be implemented to
verify the trustworthiness (e.g. , the integrity , identity , state ,
etc.) of the network and / or nodes traversed by packets . In
some cases , certain verification checks can be implemented
to validate or verify that traffic has traversed a specific set of
nodes and that such nodes are trusted and uncompromised .
In some examples , certain Proof - of - Transit (POT) , Trusted
Platform Module (TPM) , attestation , or proof of integrity
approaches can be implemented to verify or validate the
trustworthiness of a node in a network .
[0038] POT can enable a network user or entity to verify
whether traffic traversed a defined set of network nodes .
Attestation , as further described below , can also be used to
verify the integrity of a node . In some cases , the approaches
herein can integrate both to offer a secure approach that
allows network users or entities to verify that traffic has
traversed a defined set of nodes and that such nodes have not
been compromised .
[0039] In some cases , TPM can be implemented to collect
and report the identity of hardware and software components
in a platform to establish trust for that platform . A TPM used
in a computing system can report on the hardware and
software of the system in a manner that allows verification
of expected behavior associated with that system and , from
such expected behavior , establishment of trust . The TPM
can be a system component containing state that is separate
from the host system on which the TPM reports identity
and / or other information . TPMs can be implemented on
physical resources (indirectly or directly) of the host system .
In some examples , a TPM component can have a processor
and memory such as RAM , ROM and / or flash memory . In
other implementations of a TPM , a host processor can run
TPM code while the processor is in a particular execution
mode . Parts of system memory can be partitioned by hard
ware to ensure that memory used by the TPM is not
accessible by the host processor unless the host processor is
in the particular execution mode .
[0040] In some cases , trusted computing (TC) implemen
tations , such as TPM , can rely on Roots of Trust . Roots of
Trust can be system elements that should be trustworthy
because misbehavior by such system elements may not be

US 2022/0247757 A1 Aug. 4 , 2022
4

a

a

detectable . A set of roots can provide a minimum function
ality that can sufficiently describe characteristics that affect
a platform's trustworthiness . In some cases , determining if
a Root of Trust is behaving properly may not be possible ;
however , it may be possible to determine how roots are
implemented . For example , certificates can provide assur
ances that the root has been implemented in a way that
renders it trustworthy .
[0041] To illustrate , a certificate may identify the manu
facturer and evaluated assurance level (EAL) of a TPM .
Such certification can provide a level of confidence in the
Roots of Trust used in the TPM . Moreover , a certificate from
a platform manufacturer may provide assurance that the
TPM was properly installed on a system that is compliant
with specific requirements so the Root of Trust provided by
the platform may be trusted . Some implementations can rely
on three Roots of Trust in a trusted platform , including Root
of Trust for Measurement (RTM) , Root of Trust for Storage
(RTS) , and Root of Trust for Reporting (RTR) .
[0042] The RTM can send integrity information , such as
integrity measurements , to the RTS . Generally , the RTM can
be a processor controlled by a Core Root of Trust for
Measurement (CRTM) . The CRTM is the first set of instruc
tions executed when a new chain of trust is established .
When a system is reset , the processor (e.g. , RTM) can
execute the CRTM , which can then send values that indicate
its identity to the RTS . Thus , in some cases , the starting point
for a chain of trust can be established in this manner .
[0043] As previously noted , the TPM memory can be
shielded from access by an entity other than the TPM . Since
the TPM can be trusted to prevent unauthorized access to its
memory , the TPM can act as an RTS . Moreover , the RTR can
report on the contents of the RTS . An RTR report can be a
digitally signed digest of the contents of one or more values
in a TPM .

[0044] Attestation is another example trusted computing
approach that can be used to verify the integrity of a node .
Attestation can be applied to a node , such as a router or
switch , to review logs from connected devices , such as
Layer 1 (L1) or Layer (L2) connected devices , and maintain
these logs in trusted storage . These logs can be protected by
embedding a private key into every trust anchor produced
for a hardware device , and publishing the device's public
key as a certificate to adjacent devices . This peering device
can then push log updates from trusted storage periodically
and / or on some log entry event . Reviewing any provided
signed logs can provide an understanding of the current
trustable state of a peer device . Moreover , by looking back
at the set of transactions which have occurred since boot
time , a determination can be made regarding the trustwor
thiness of the information which that peer device is assert
ing .
[0045] In some examples , canary stamps , which can refer
to tokens or metadata elements containing security measure
ments or evidence , can be used to provide verifiable evi
dence of device trustworthiness (e.g. , integrity , state , etc.) .
Such verifiable evidence can be appended or included in
packets transmitted by nodes on a network . The canary
stamps can thus be used to evaluate the trustworthiness of a
node (s) and react accordingly . For example , a device or
entity can review a canary stamp associated with a node to
determine that the node should not be trusted and adjust a
network policy to mitigate possible damage .

[0046] In some implementations , dedicated cryptoproces
sors , such as a processor in TPM platform , can take mea
surements to attest to the trustworthiness (e.g. , identity ,
integrity , etc.) of a node and its environment (e.g. , software ,
hardware , operating system , running binaries , firmware ,
etc.) . These measurements include evidence that the node is
in a safe state . In some cases , these measurements can be
provided through canary stamps , as previously described .
However , a receiver of such evidence should be able to
certify that the evidence is fresh , as the evidence can become
stale thereby potentially reducing its effectiveness in reflect
ing the current trustworthiness of a node . For example ,
without ensuring freshness of such evidence , an attacker has
an opening to inject previously recorded measurements and
asserting what is replayed as being current .
[0047] Some approaches can detect the replaying of old
evidence via a " nonce ” . A nonce is a random number that
can be used to introduce randomness . In some cases , a nonce
can passed into a TPM and / or incorporated into a canary
stamp . In some cases , a result provided by the TPM can
include a signature based on the nonce . Since the nonce can
be grounded in a transactional challenge / response interac
tion model , in some cases the nonce may be less effective
with unidirectional communications originating from an
attesting device . For example , a nonce may less effective
with an asynchronous push , multicast , or broadcast message .
[0048] However , there are numerous use cases where a
platform assessing whether its peers are trustworthy is
advantageous . Being able to perform a unidirectional attes
tation using an asynchronous push , multicast , or broadcast
message in conjunction with trusted binaries opens many
possibilities for platforms to assess whether their peers are
trustworthy . Detection of invalid attestations can trigger
alarms or events , reduction of network access from a suspect
device , or can become a part of Admission Control (e.g. ,
IEEE 802.1X) . Some platforms can be configured to support
the unidirectional attestation mechanism .
[0049] Other freshness approaches can be based on trusted
computing capabilities , such as TPM . For example , a token
can be generated which allows external entities to validate
freshness of asserted data based on the state of internal
counters within the TPM . This token can be used to detect
replay attacks , and provide attestation for asynchronous
push , multicast , and broadcast messages . In some cases ,
such tokes can include canary stamps . Such tokens can be
referred to as canary stamps because each signed measure
ment is like a stamp proving its authenticity , and like a
canary in a coal mine they indicate an early sign of trouble .
[0050] Various of the foregoing approaches can be com
bined with TPM - integrated capabilities aimed at verifying
that valid compute components , such as binary processes ,
are running on a node . These capabilities can include , for
example , Trusted Execution Environments (TEE) which
provide runtime malware protections , Authenticated Code
Modules (ACM) which ensure that only digitally - signed
code modules can be loaded into a processor , and the like .
These technologies can validate that a processor is running
known software with a valid chain of binary signatures .
[0051] In some cases , canary stamps (e.g. , tokens or
metadata elements) can be created by extracting current
counters (e.g. , clock , reset , restart) from a node's TPM , and
incorporating such counters and security measures taken
from the node into a packet . In some examples , the current
counters and / or security measures can be hashed with infor

a

a

US 2022/0247757 A1 Aug. 4 , 2022
5

mation within an external TPM . The canary stamp can
thereby provide a non - spoofable token or metadata element ,
which can bind continuously incrementing counters on an
attestee with a known external state . Any resetting of the
TPM counters is visible in any subsequent TPM queries , and
any restarting of a platform is also exposed in subsequent
TPM queries . Within these bounds of reset and restart , the
TPM's time ticks counter continuously increments . There
fore , any push of attestee TPM information which includes
these counters can be determined to have occurred subse
quent to any previously - received measurement . Also , if the
reset and restart counters have not changed , the incremental
time since any previous measurement can also be known .
[0052] In some cases , a large amount of information that
should be trusted by network peers may not be contained
within the TPM's Program Configuration Registers (PCR) .
As a result , indirect methods of validating that a node has not
been compromised can be applied .
[0053] The receipt of canary stamps can mean that a
receiver should have the option of verifying the information .
In many cases , such verification can be performed without
the need of supplementary evidence being sent with the
canary stamp . Moreover , in non - controller based or central
ized implementations , the verification steps do not have to
occur at the receiver .
[0054] In some integrity verification implementations , a
controller or device can implement an integrity verification
application . The integrity verification application can be
designed to recognize change events and evaluate known
good values , which allow evaluation of a boot - integrity
stamp and a running process binary signature stamp based
on , for example , TPM counters , timestamps , nonces , and / or
time tokens . On any discrepancy , a controller or centralized
device can isolate a compromised node from its network
peers by shutting down the interfaces of the node .
[0055] In some examples , one or more canary stamps
(e.g. , tokens or metadata elements) and / or verifications for
integrity can be implemented , such as a measured - boot
stamp (e.g. , SHA1 hash over PCRs 0-7) , a verified - boot
stamp (e.g. , which can verify that only recognized binaries
were executed when booting) , a process - stamp (e.g. , root
of - trust validated through a process which is asserting a
particular protocol or protocols) , a file - system stamp (e.g. ,
all files within a vendor determined set of directories) , a
log - integrity stamp (e.g. , used to augment existing integrity
analytics and forensics) , a configuration stamp (e.g. , State of
the current device configuration) , etc. Some implementa
tions can achieve all or some of these stamps , depending on
the implementation . Moreover , in some implementations , all
or some of these stamps can be implemented or achieved
using a single or multiple stamps .
[0056] As previously explained , TPM provides methods
for collecting and reporting the identity of hardware and
software components in a platform to establish trust for that
platform . TPM functionality can be embedded in a variety of
devices including mobile phones , personal computers , net
work nodes (e.g. , switches , routers , firewalls , servers , net
work appliances , etc.) , and / or any other computing devices .
Further , attestation can describe how the TPM can be used
as a hardware root of trust and offer proof of integrity of a
node . Such integrity can include hardware integrity , soft
ware integrity (e.g. , micro loader , firmware , boot loader ,
kernel , operating system , binaries , files , etc.) , and runtime
integrity .

[0057] In some cases , TPM and attestation can be imple
mented as described herein to provide proof of integrity and
proof of transit through uncompromised nodes . In some
examples , canary stamps (e.g. , tokens or metadata elements
containing or reflecting security measures) are used as
previously mentioned to validate the integrity of a node and
perform continuous evaluation of node integrity . Thus , the
canary stamps described herein can be used to provide proof
of transit through uncompromised nodes .
[0058] In some examples , the canary stamp can be added
as additional metadata to packets that traverse a network
where proof of transit via uncompromised nodes is desired .
Various strategies can be implemented for transporting a
canary stamp in a packet . In some cases , a canary stamp can
be carried within an In - Situ (or in - band) Operations , Admin
istration and Management (IOAM) data field .
[0059] In some implementations , a canary stamp can be
carried IOAM trace data . For example , the canary stamp
(e.g. , the token or metadata) can be carried as part of an
IOAM data field in a variety of encapsulation protocols such
as , for example and without limitation , IPv4 , IPv6 , NSH
(Network Service Header) , etc. In some cases , the canary
stamp can be carried in an IOAM data field as an IOAM
Trace option data element (e.g. , with an IOAM Trace type
for node integrity canary stamp) . A canary stamp or canary
stamp digest can be added in the IOAM trace option of a
packet by each node that forwards the packet .
[0060] When the packet reaches a node (e.g. , the destina
tion node and / or an intermediate node) that removes IOAM
metadata (e.g. , an IOAM decapsulating node) , the validity of
a canary stamp in the packet can be verified to determine that
the packet traversed uncompromised nodes . In some
examples , since canary stamps are time bound , the packet
trace timestamps defined in IOAM can be used to validate
the canary stamp in the time window the packet traversed
that node .
[0061] Verification can be performed without placing a
large transactional load on the verifier or a device , such as
a controller , that will ultimately validate the security mea
surements associated with the canary stamp . This is because
canary stamp measurement values can often change infre
quently . The verifier may only need to validate a canary
stamp or canary stamp digest carried within an IOAM data
trace whenever the security measurements associated with
the canary stamp or canary stamp change (e.g. , a verifier
may only need to check with a controller whenever it sees
a node's TPM extends a Platform Configuration Register
(PCR) value which was not previously confirmed by the
verifier) .
[0062] In some cases , when only the time ticks within a
signed canary stamp increases , only the signature of the
canary stamp is validated . To do this , the verifier may use the
public key of any node which can place a canary stamp .
Such signature validation can be done without using a
controller to verify stamp measurements .
[0063] In another example , a packet can carry IOAM POT
data with space optimization of canary stamp values . This
example can leverage a new IOAM POT data field , which
can carry canary stamp or a hash extend of a canary stamp
and which can also carry canary stamp data across nodes . In
some cases , a canary stamp hash extend can be a similar
method as a Platform Configuration Registers (PCRs)
extend operation performed by TPMs .

US 2022/0247757 A1 Aug. 4 , 2022
6

[0064] In some cases , the canary stamp hash extend can
provide a one - way hash so that canary stamp recorded by
any node cannot be removed or modified without detection .
IOAM proof of transit option data for a canary stamp digest
can be defined by a hash algorithm (e.g. , 20 octets with
SHA1 , 32 octets with SHA 256 , etc.) . In some implemen
tations , each node along a path of the packet can forward the
packet with a new or updated canary stamp digest . In some
examples , the new or updated canary stamp digest can be
generated by a node as follows : IOAM canary stamp digest
new value = Digest of (IOAM canary stamp digest old val
ue | hash (canary stamp of the node)) , where the IOAM canary
stamp digest old value can refer to the canary stamp digest
included in the packet by one or more previous hops .
[0065] Moreover , in some cases , a Per Packet Nonce
(PPN) , where PPN changes per packet and is carried as
another field within the IOAM metadata option , can be
added to provide robustness against replay attacks . To
illustrate , in some examples , a PPN can be added as follows :
IOAM canary stamp digest new value = Digest of (IOAM
canary stamp digest old value | hash (canary stamp of the
node || PPN)) . A node creating the new value for the IOAM
canary stamp digest can thus take the value of any previous
IOAM canary stamp digest , and extend / hash that value with
the node's current canary stamp . The result of the concat
enation and hashing can then be written into IOAM POT
data (or other IOAM data fields) as the new IOAM canary
stamp digest .
[0066] At the verifier (e.g. , the device verifying the canary
stamp data) , the same operation can be performed over
expected canary stamp values calculated for the nodes that
are traversed in the time window when the packet was
forwarded . In some cases , a verifier can be an inline device
or a centralized device . Moreover , in some examples , nodes
that are expected to be traversed can be identified using
IOAM tracing , routing state or by sending active probes . A
match between the value of POT data carrying a canary
stamp digest and the expected canary stamp value can prove
that the packet traversed through trusted or uncompromised
nodes .
[0067] In some examples , one or more strategies can be
implemented to optimize canary stamp validation . For
example , canary stamps can detect attempts of a replay
attack by embedding a nonce as well as TPM or TPM2
counters (e.g. , clock , reset , restart) . In some cases , this nonce
can be part of the canary stamp and different from the PPN
described above .
[0068] The nonce is relevant to a receiver as the interval
from the nonce's creation time to the first stamp received by
the verifier can define the interval of freshness (e.g. , the
measurement is no older than this interval of freshness) .
From there , the TPM2 time ticks counter can be used to
maintain that initial gap of freshness even without the
delivery of a new nonce .
[0069] In some implementations , to optimize canary
stamp validation across nodes , the following approaches can
be implemented to deliver synchronization information from
a central component to each node and the verifier . For
example , a central server can broadcast or multicast cen
tralized nonce values (e.g. , tracked random numbers) . Each
node can pick up the latest nonce and use it to attest a stamp
value . A verifier can know the freshness of a stamp it
receives from each node . This freshness can be the delta in
time since that particular nonce was issued . Subsequent

attestations can use the incrementing time ticks to prove
freshness from that initial time gap . In some cases , the
issuing of new nonces can reset the time gap to a potentially
shorter interval .
[0070] Moreover , in some cases , each node can embed
attested time within its canary stamp . To get attested time , a
TUDA (Time - Based Uni - Directional Attestation) scheme
such as the TUDA scheme described in https : // datatracker .
ietf.org/doc/draft-birkholz-i2nsf-tuda/ , the contents of which
are incorporated herein by reference in their entirety , can be
used . This can result in the availability of both the attested
time at a node , as well as the value of the TPM2 counters at
this node when a TUDA time - synchronization token was
created . This can eliminate the use of a central nonce
authority , but can increase the size of the canary stamp as the
nonce can be replaced by the TUDA time - synchronization
token . This approach may also implement a central time
stamp authority as per TUDA . In some examples , for each
hop , a canary stamp digest value can be : IOAM canary
stamp digest new value = Digest of (IOAM canary stamp
digest old value hash (canary stamp of the node || TUDA
time - synchronization token of the node)) .
[0071] This approach can provide numerous benefits . For
example and without limitation , with this approach , a veri
fier can limit the number of verifications by verifying the
signature of a hop's time - synchronization token only when
it changes . Moreover , with this approach , there may not be
a time gap nonce changeover freshness when a first mea
surement is received . Further , in some cases , this approach
can be implemented without also carrying a PPN or without
synchronizing a nonce across nodes as previously described .
[0072] Having provided an initial discussion of example
concepts and technologies for providing explicit verifiable
proof of integrity of network nodes traversed by packets , the
disclosure now turns to FIG . 1 .
[0073] FIG . 1 is a block diagram of an example of
networking environment 100 in accordance with some
implementations . While pertinent features are shown , those
of ordinary skill in the art will appreciate from the present
disclosure that various other features have not been illus
trated for the sake of brevity and so as not to obscure aspects
of the example implementations disclosed herein .
[0074] In this example , the networking environment 100
can include a network 114 of interconnected nodes (e.g. ,
108A - N , 110A - N , and 112A - N) . The network 114 can
include a private network , such as a local area network
(LAN) , and / or a public network , such as a cloud network , a
core network , and the like . In some implementations , the
network 114 can also include one or more sub - networks ,
such as sub - network 114A . Sub - network 114A can include ,
for example and without limitation , a LAN , a virtual local
area network (VLAN) , a datacenter , a cloud network , a wide
area network (WAN) , etc. In some examples , the sub
network 114A can include a WAN , such as the Internet . In
other examples , the sub - network 114A can include a com
bination of nodes included within a LAN , VLAN , and / or
WAN .
[0075] The networking environment 100 can include a
source node 102. The source node 102 can be a networking
device (e.g. , switch , router , gateway , endpoint , etc.) associ
ated with a data packet that is destined for a destination node
116. The source node 102 can communicate with candidate
next - hop nodes 108A - 108N on the network 114. Each of the
candidate next - hop nodes 108A - 108N can be included

a

US 2022/0247757 A1 Aug. 4 , 2022
7

9

within a respective route between the source node 102 and
the destination node 116. Moreover , in some cases , each of
the candidate next - hop nodes 108A - 108N can communicate
with candidate second hop nodes 110A - 110N in the network
114. Each of the candidate second hop nodes 110A - 110N
can similarly communicate with candidate N - hop nodes
112A - 112N in the network 114 .
[0076] The networking environment 100 can also include
an attestation routing orchestrator 104. The attestation rout
ing orchestrator 104 can communicate with the candidate
next - hop nodes 108A - 108N . In some implementations , the
attestation routing orchestrator 104 can obtain attestation
data (e.g. , canary stamps , security measures , signatures ,
and / or metadata) or vectors from the candidate next - hop
nodes 108A - 108N . In some examples , the attestation routing
orchestrator 104 can obtain additional information from
candidate second - hop nodes 110A - 110N and / or candidate
N - hop nodes 112A - 112N , and utilize the additional infor
mation in selecting a particular candidate next - hop node for
a packet . In some implementations , the attestation routing
orchestrator 104 can also obtain additional information from
nodes that are more than two hops away (e.g. , candidate
third hop nodes , candidate fourth hop nodes , etc.) .
[0077] The attestation routing orchestrator 104 can com
municate with a verifier system 106. In some implementa
tions , the attestation routing orchestrator 104 can obtain
trusted state , such as a trusted image vector , from the verifier
system 106. The verifier system 106 can include a verified
state repository 106A and one or more servers 106B . In
some examples , the verified state in the verified state reposi
tory 106A can include one or more verified images , verified
security measurements , verified settings , verified node data ,
and / or any other verified trust or integrity data . In some
implementations , the verified state in the verified state
repository 106A can include one or more trusted states or
image vectors that are known with a degree of confidence to
represent uncompromised states or images (e.g. , states or
images that have not been hacked , attacked , improperly
accessed , etc.) .
[0078] As will be described in great detail with reference
to FIG . 4 , in some cases , the attestation routing orchestrator
104 can select and direct a data packet to a particular
candidate next - hop node of the candidate next - hop nodes
108A - 108N based on a trusted state or image vector and the
attestation states or vectors . Moreover , the attestation rout
ing orchestrator 104 can direct the data packet destined for
the destination node 116 to the particular candidate next - hop
node .
[0079] FIG . 2 is a block diagram of another example
networking environment 200 in accordance with some
implementations . In this example , the networking environ
ment 200 includes a source node 202 that implements an
attestation routing orchestrator 202B . In some implementa
tions , the attestation routing orchestrator 202B can be simi
lar to , or adapted from , the attestation routing orchestrator
104 in FIG . 1 .
[0080] The source node 202 can include one or more
processors 202B . In some implementations , the one or more
processors 202B can provide processing resources for gen
erating a confidence scores for the candidate next - hop nodes
108A - 108N . In some implementations , the one or more
processors 202B can provide processing resources for
selecting a particular confidence score , from the confidence
scores , that satisfies one or more selection criteria .

[0081] In some examples , the source node 202 can include
a memory 202C . The memory 202C can be , for example and
without limitation , a non - transitory memory , such as RAM
(random - access memory) , ROM (Read - only memory) , etc.
The memory 202C can store the data , such as the packet
destined for the destination node 116. In some implemen
tations , the memory 202C can store a trusted state or image
vector obtained from the verifier system 106. In some
implementations , the memory 202C can store attestation
states or vectors obtained from the candidate next - hop nodes
108A - 108N and optionally attestation states or vectors
obtained from the candidate second hop nodes 110A - 110N
and / or the candidate N - hop nodes 112A - 112N . The source
node 202 can also include a network interface 202D for
obtaining , receiving , and transmitting the data packets and
states or vectors .

[0082] In some implementations , the source node 202 can
select and direct a data packet to a particular candidate
next - hop node based a trusted state or image vector and the
attestation states or vectors .
[0083] FIG . 3 is a block diagram of another example
networking environment 300 in accordance with some
implementations . In this example , one or more of the
candidate next - hop nodes 108A - 108N can relay a trusted
state or image vector from the verifier system 106 to the
source node 302. In some implementations , the attestation
routing orchestrator 302A can be similar to , or adapted from ,
the attestation routing orchestrator 104 in FIG . 1 and / or the
attestation routing orchestrator 202A in FIG . 2 .
[0084] In some implementations , the verifier system 106
can sign the trusted state or image vector and provide the
signed trusted state or image vector to a particular candidate
next hop node , which in turn can provide the signed trusted
state or image vector to the source node 302. In some
implementations , having the particular candidate next hop
node provide the signed trusted state or image vector can
reduce attestation time (e.g. , the time to determine trustwor
thiness of the particular candidate next hop node) because
the source node 302 may not need to contact a remote node
(verifier system 106) . In some implementations , attestation
time can be further reduced because a single attestation
process (e.g. , the verifier system 106 signing the trusted state
or image vector) facilitates the attesting of multiple source
nodes . In other words , trusted states or image vectors may
not be generated and evaluated on a per source node basis .
[0085] Moreover , in implementations in which the source
node 302 is not connected to the verifier system 106 (e.g. ,
link down) , obtaining the trusted state or image vector from
the particular candidate next hop provides an alternative
mechanism for node attestation . In some implementations ,
the verifier system 106 appends a time - stamped response to
the trusted state or image vector as part of the signing
process , which can be referred to as stapling . Consequently ,
the source node 302 may not contact the verifier system 106
in order to attest a particular candidate next hop node .
[0086] FIG . 4 is a block diagram of an example controller
orchestrated attestation - based routing 400 , in accordance
with some implementations . In some examples , the source
node 402 is similar to , or adapted from , the source node 102
in FIG . 1. As illustrated in FIG . 4 , the attestation routing
orchestrator 104 is separate from , but coupled (e.g. , con
nected) to , the source node 402. In some examples , the
attestation routing orchestrator 104 can include a controller
with knowledge of the network 114 that includes the can

a

US 2022/0247757 A1 Aug. 4 , 2022
8

didate next - hop nodes 108A - N and optionally the candidate
second - hop nodes 110A - N and / or the candidate N - hop
nodes 112A - N .
[0087] For example , in some implementations , the attes
tation routing orchestrator 104 can be a network manage
ment system (NMS) . As another example , in some imple
mentations , the attestation routing orchestrator 104 can be
an intent - based networking system , such as Cisco's Digital
Network Architecture (DNA) . As yet another example , in
some implementations , the attestation routing orchestrator
104 can be a wireless LAN controller (WLC) , and the
candidate next - hop nodes 108A - 108N and optionally the
candidate second hop nodes 110A - N and / or the candidate
N - hop nodes 112A - N can be networking devices such as
access points , user devices , switches , routers , firewalls , etc.
[0088] The attestation routing orchestrator 104 can obtain
attestation data (e.g. , canary stamps) from the candidate
next - hop nodes 108A - 108N . Each of the candidate next - hop
nodes 108A - 108N can be included within a respective route
between the source node 402 and a destination node (e.g. ,
114) . In some implementations , the respective routes are
independent of each other .
[0089] The attestation routing orchestrator 104 can deter
mine confidence scores based on the attestation data . For
example , in some cases , each of the confidence scores can be
based on a comparison between a corresponding one of the
attestation data and a trusted state or image vector . In some
implementations , the attestation routing orchestrator 104 can
obtain the trusted state or image vector from the verifier
system 106 .
[0090] In some examples , the attestation routing orches
trator 104 can obtain attestation data from candidate second
hop nodes (e.g. , 110A - N) and / or candidate N - hop nodes
(112A - N) . Each of the candidate second - hop nodes and / or
the candidate N - hop nodes can be included within a respec
tive route between a corresponding one of the candidate
next - hop nodes 108A - 108N and the destination node . More
over , each of the confidence scores can additionally be based
on a comparison between a corresponding one of the atten
tion data and the trusted state or image vector in combination
with a comparison between another corresponding one of
the attestation data from the candidate next - hop nodes
108A - N and the trusted state or image vector .
[0091] The attestation routing orchestrator 104 can select ,
from the confidence scores , a particular confidence score
that satisfies one or more selection criteria . The particular
confidence score is associated with a particular candidate
next - hop node of the candidate next - hop nodes 108A - 108N .
[0092] The attestation routing orchestrator 104 can directs ,
to the particular candidate next - hop node , a data packet
destined for the destination node . For example , in some
cases , the attestation routing orchestrator 104 can provide
attested route information (e.g. , validated canary stamp data ,
security measurements , etc.) to an attested route manager
402D of the source node 402 in order to facilitate the source
node 402 sending the data packet to the particular candidate
next - hop node . The attested route information can be indica
tive of the trustworthiness of each of the candidate next - hop
nodes 108 A - 108N .
[0093] For example , in some implementations , the attested
route information includes an identifier (e.g. , an IP address ,
a MAC address , an SSID , etc.) identifying a secure candi
date next - hop node of the candidate next - hop nodes 108A
108N . In this example , the source node 402 can provide the

data packet based on the identifier in order to route the data
packet to the secure , particular candidate next - hop node .
[0094] As another example , in some implementations , the
attested route information can include confidence scores
associated with the candidate next - hop nodes 108A - 108N .
In this example , the attested route manager 402D can select
a particular candidate score based on one or more selection
criteria . Moreover , the attested route manger 402D can
provide the data packet to the particular next - hop node
associated with the particular candidate score . In some
examples , the attestation routing orchestrator 104 can cease
to direct additional data packets to the particular candidate
next - hop node in response to determining that the particular
confidence score falls below a confidence threshold .
[0095] In some cases , the source node 402 can include one
or more processors 402A . The one or more processors 402A
can provide processing resources for managing attested
route information obtained from the attestation routing
orchestrator 104. The source node 402 can also include a
memory 402B . The memory 402B can include , for example ,
a non - transitory memory such as RAM , ROM , etc. In some
examples , the memory 402B can store data such as the
obtained attested route information and data packets to be
transmitted . The source node 402 can also include a network
interface 402C for obtaining the attested route information
and sending / receiving other data .
[009] In some cases , whether a network device has been
compromised can be determined based on indicators asso
ciated with the network device and time information . The
indicators can include , but are not limited to , a set of security
measurements or evidence footprints which indicate
whether a particular device is compromised . Such indicators
can come from one or more sources such as , for example and
without limitation , TPM , canary stamps , Syslog , YANG
Push , EEM , peer devices , traffic counters , and other sources .
Visibility can be a method of identifying a compromise in a
timely manner .
[0097] When there are no indicators (i.e. , no security
measurements or footprints available) , the probability of a
device being compromise can be a function of the time
which has passed since a last validation that the device is in
a known good state . In some cases , with the foregoing
indicators , a formula can be provided for estimating prob
ability or chance of a compromise on any given device
operating within a network .
[0098] For example , P_V , can be defined as a probability
for compromise of type 1 when there is a specific set of
events / signatures existing which correspond to the compro
mise . P_V2 can be defined as probability for compromise of
type 2 and P_Vx can be defined as probability for compro
mise of type x . Assuming each of these compromises (P_V1
through P_vx) are independent , the following equation can
provide the probability of a compromise based on recog
nized signatures (P_v) :

P_v = 1 - ((1 - P_v1) (1 - P_v3) (1 - P_vx)) Equation (1) .

[0099] Other type of equations can be used instead of , or
in conjunction with , equation (1) when there are interde
pendencies between different types of evaluated compro
mises (P_V1 , P_V2 , P_vx) .
[0100] Furthermore , in some cases , a given probability
(e.g. , P_V2 - P_vx) can be determined based on evidence of
events from a device for which the probability of a com
promise is being calculated (e.g. , via equation (1)) and / or

a

a

1

US 2022/0247757 A1 Aug. 4 , 2022
9

i

evidence obtained from one or more devices adjacent to the
device for which the probability of a compromise is being
calculated (e.g. , via equation (1)) .
[0101] In some cases , a probability that an invisible com
promise has occurred at a device in the deployment envi
ronment can be expressed by the equation :

P = 1 - ((1 - chance of invisible compromise in time
period t) ̂ number of t intervals since a last veri
fication of a good / uncompromised system state) Equation (2) .

[0102] Effectively knowing P ; can imply that an operator
knows the half - life which should be expected before a
device should be considered compromised independently of
any concrete evidence . It should be noted that a probability
of an invisible compromise does not have to be static .
Real - time modification based on current knowledge of
viruses / attacks may be allowed .
[0103] With formulates for visible and invisible factors as
described above (equation (1) and equation (2)) , an overall
probability of a compromise for a given device may be given
by :

Pe = 1 - ((1 - P) * (1 - P ;)) Equation (3) .

[0104] Equation (3) provides an indicator of trustworthi
ness of a given device . This metric considers both time
based entropy and any available evidence which can be
correlated to known compromises .
[0105] If P. can be calculated (or roughly estimated) ,
various functions can be efficiently prioritized . For example ,
a controller may schedule when to do deeper validation (or
perhaps direct refresh) of a device . This scheduling could
include determining when to perform active checks to
validate device memory locations (locations possibly con
taining executable code which might have been compro
mised) . These can be used to return the system to a known
good state (and reset the entropy timer) . Local configuration
repositories can be refreshed based on evidence of security /
trustworthiness issues underway , rather than being based
just on time . Beyond the scheduling of system checks , there
can be forwarding implications based on the value of Pc . For
example , routing or switching behavior might be adjusted
impacted based on the relative trustworthiness of a remote
device . Where a higher P. values exist , sensitive data traffic
flows can be routed around that device .
[0106] As a further advantage of the present disclosure , it
should be noted that encryption alone may be insufficient to
protect sensitive flows since there are scenarios where even
the fact that a flow is occurring between endpoints might be
considered information to be protected (e.g. , in a battlefield) .
[0107] FIG . 5 illustrates an example flow 500 for provid
ing proof of packet transit through uncompromised nodes . In
this example , the source node 502 first sends (510) a packet
destined to the destination node 116. The source node 502
can be similar to , or adapted from , source node 102 , 202 , or
302 shown in FIGS . 1 , 2 , and 3 respectively .
[0108] The packet from the source node 502 is received by
a next - hop node 108A along a route to the destination node
116. When the next - hop node 108A receives the packet , it
can add (512) canary stamp data to the packet . In some
examples , the next - hop node 108A can include the canary
stamp data in an IOAM data field on the packet . For
example , in some implementations , the next - hop node 108A
can add the canary stamp data in an IOAM data field as an
IOAM Trace option data element which can be used to carry
the canary stamp data in the packet . In other implementa

tions , the next - hop node 108A can add the canary stamp data
in a new IOAM POT (proof - of - transit) data field which can
be used to carry the canary stamp data in the packet .
[0109] In other examples , the next - hop node 108A can
include the canary stamp data in an Inband Network Telem
etry (INT) header in the packet , an Inband Flow Analyzer
(IFA) header in the packet , or a header associated with an
In - situ Flow Information Telemetry (IFIT) service used to
transmit the packet .
[0110] The canary stamp data added to the packet can be
used to verify or prove that the next - hop node 108A is a
trusted or uncompromised node . For example , a receiving
device , such as a verifier system (e.g. , 106) or a node along
the path of the packet , can analyze the canary stamp data
carried in the packet to assess whether the next - hop node
108A is trustworthy and / or compromised . The canary stamp
data can include security measurements taken at the next
hop node 108A or a hash / digest of the security measure
ments . The security measurements can evidence the trust
worthiness or integrity state of the next - hop node 108A . For
example , the security measurements can include information
about a current state of hardware , software , firmware , a
runtime environment , etc. , at the next - hop node 108A .
[0111] Such information can indicate whether the next
hop node 108A has been compromised (e.g. , hacked ,
attacked , accessed / modified without permission , etc.) ;
whether the next - hop node 108A has any unauthorized or
untrusted hardware or software components , whether a state
(e.g. , firmware , hardware , software , boot files , sequence of
loaded software , runtime environment , etc.) of the next - hop
node 108A has been modified since deployment and / or a
previous known state , which could indicate that the next - hop
node has been compromised ; etc. Non - limiting examples of
security measurements can include a hardware state or
integrity measurement , a runtime state or integrity measure
ment , a firmware state or integrity measurement , a software
integrity measurement , information identifying what soft
ware has been loaded at the node , information identifying a
sequence of software loaded at the node , any operating
system changes at the node , any application log entries , an
identity of the node , and / or any information that can be
measured / captured to determine whether the node has been
compromised and / or whether the node has had any unveri
fied / suspicious changes .
[0112] In some examples , the security measurements can
be obtained by a cryptoprocessor on the next - hop node
108A . The cryptoprocessor can provide secure storage and
measurement capabilities for the next - hop node 108A . For
example , the cryptoprocessor can measure what software
was loaded at the next - hop node 108A during and / or since
it was booted . As new software is loaded at the next - hop
node 108A , the cryptoprocessor can measure the new loaded
software . The cryptoprocessor in this example can thus
obtain a picture of what software and files have been loaded
at the next - hop node 108A and a particular sequence in
which the software and files were loaded . The loaded
software and files and the load sequence can be used to
detect any unexpected or unusual software and files loaded
in the next - hop node 108A or an unexpected or unusual load
sequence , which can be used to determine whether the
next - hop node 108A is trustworthy and / or has been com
promised .
[0113] In some implementations , the cryptoprocessor can
provide the raw security measurements for use as part (or

a

US 2022/0247757 A1 Aug. 4 , 2022
10

a

a

2

all) of the canary stamp data . In other implementations , the
cryptoprocessor can hash the security measurements and
provide the hash result for use as part (or all) of the canary
stamp data . Moreover , in some cases , the cryptoprocessor
can sign the security measurements or a hash of the security
measurements to validate the security measurements and / or
protect the information against tampering .
[0114] In some cases , the canary stamp data can also
include a time or counter value which can be used to indicate
a freshness of the canary stamp data . For example , the
next - hop node 108A can include a time or counter value in
the canary stamp data to indicate when the security mea
surements associated with the canary stamp data were taken
and / or an interval between the time when the current secu
rity measurements were taken and the time when previous
security measurements were taken .
[0115] The freshness information can allow a device
reviewing or verifying the canary stamp data to determine
whether the associated security measurements are suffi
ciently fresh to be reliable and / or to prevent a malicious
actor from simply re - using old data to trick a verifying
device . In some cases , the time or counter value can include ,
for example and without limitation , one or more TPM
counters (e.g. , clock , reset , restart) , a timestamp , or a TUDA
time - synchronization token .
[0116] In some cases , the canary stamp data can also
include one or more nonce values . The one or more nonce
values can be used to insert randomness into the canary
stamp data to prevent potential replay attacks . In some
examples , the one or more nonce values can be provided to
the next - hop node 108A by a remote or centralized system ,
such as the verifier system 106 , for example . The remote or
centralized system can provide such nonce values to nodes
for use in respective canary stamp data in order to insert
randomness into such data , as previously described . In such
examples , since the nonce values used in canary stamp data
are provided and known by the remote or centralized system ,
the remote or centralized system (and / or a separate verifier
system) knows what the values in the canary stamp data
and / or the nonce values in the canary stamp data should be
or are expected to be , which can allow the remote or
centralized system (and / or the separate verifier system) to
validate such data and prevent replay attacks .
[0117] In some cases , in addition to adding the canary
stamp data to the packet , the next - hop node 108A can also
cryptographically sign the canary stamp data . In some
examples , the next - hop node 108A can sign some or all of
the canary stamp data using an encryption algorithm and / or
an encryption key , such as a public key provided by a remote
or centralized system (e.g. , verifier system 106) . Moreover ,
in some examples , the next - hop node 108A can sign some or
all of the canary stamp data using a cryptoprocessor on the
next - hop node 108A , as previously explained .
[0118] Once the next - hop node 108A has added the canary
stamp data to the packet , the next - hop node 108A can send
(516) the packet with the canary stamp data to the second
hop node 110A . In some implementations , the second - hop
node 110A can receive the packet and add / update (518) the
canary stamp data in the packet to include canary stamp data
associated with the second - hop node 110A . For example , in
some cases , the second - hop node 110A can add additional
canary stamp data to the packet so the packet includes
canary stamp data from both the next - hop node 108A and the
second - hop node 110A . Similar to the canary stamp data

associated with the next - hop node 108A , the additional
canary stamp data associated with the second - hop node
110A can include security measurements taken from the
second - hop node 110A .
[0119] In other cases , the second - hop node 110A can
update the canary stamp data in the packet with new canary
stamp data representative of the canary stamp data from the
next - hop node 108A and canary stamp data from the second
hop node 110A . To illustrate , in some cases , the canary
stamp data in the packet received by the second - hop node
110A can include a canary stamp digest from the next - hop
node 108A . The canary stamp digest from the next - hop node
108A can include a hash of the security measurements taken
at the next - hop node 108A . The second - hop node 110A can
then create a hash of security measurements taken from the
second - hop node 110A to create a canary stamp for the
second - hop node 110A . The second - hop node 110A can then
update or replace the canary stamp data in the packet with
a new canary stamp digest , which can be a digest of the
canary stamp digest from the next - hop node 108A and the
canary stamp of the second - hop node 110A (e.g. , the hash of
the security measurements taken from the second - hop node
110A) .
[0120] This way , the new canary stamp digest included in
the packet by the second - hop node 110A can represent both
the canary stamp digest (and the security measurements)
from the next - hop node 108A and the canary stamp digest
(and the security measurements) from the second - hop node
110A . In some examples , each hop that receives the packet
can similarly update the canary stamp data in the packet to
include a new canary stamp digest . The final version of the
canary stamp digest in the packet to the destination node 116
can thus reflect or represent the canary stamp digest (and the
security measurements) from each node along the path of the
packet . A verifier system (e.g. , 106) or an inline node can
compare that final version of the canary stamp digest in the
packet with an expected canary stamp digest calculated
based on expected security measures for each of the nodes
in the path , to validate (or invalidate) the final version of the
canary stamp digest .
[0121] In some cases , the second - hop node 110A can also
sign (520) some or all of the canary stamp data added or
updated by the second - hop node 110A , as previously
explained . The second - hop node 110A can then send (522)
the packet with the new or updated canary stamp data , along
the path to the N - hop node 112A . The N - hop node 112A can
receive the packet and validate (524) the canary stamp data
in the packet .
[0122] In some examples , when validating the canary
stamp data , the N - hop node 112A can check any signatures ,
nonce values , and / or time or counter values in the canary
stamp data to verify that the canary stamp data has not been
tampered with and is sufficiently fresh to be reliable . More
over , in some cases , to validate the canary stamp data , the
N - hop node 112A can compare the canary stamp data in the
packet with an expected canary stamp data value (s) calcu
lated based on the nodes traversed by the packet and
associated security measurements (or expected security
measurements) .
[0123] For example , the N - hop node 112A can create a
digest of a known or previous state (e.g. , known or previous
security measurements) of each node traversed by the packet
and compare the resulting digest with a canary stamp digest
in the packet . If the digests match , the N - hop node 112A can

US 2022/0247757 A1 Aug. 4 , 2022
11

a

a

2

determine that the nodes traversed by the packet have not
have had changes in state and / or are not compromised . In
some cases , if the digests do not match , the N - hop node
112A can check the security measurements from one or
more nodes along the path of the packet to determine which
node has had a change in state and / or is potentially com
promised .
[0124] If the N - hop node 112A determines that a node is
compromised or is unable to verify that the node is not
compromised , the N - hop node 112A report such findings or
otherwise trigger a remediation action to avoid a potential
compromise of data and / or network resources . For example ,
if a node is determined to be compromised or its trustwor
thiness / integrity cannot be confirmed , a policy can be imple
mented on the network to avoid routing traffic through that
node until that node can be returned to a normal state or
confirmed to not be compromised . As another example , if a
node is determined to be compromised or its trustworthi
ness / integrity cannot be confirmed , the node can be powered
off or removed from the network until the node can be
returned to a normal state or confirmed to not be compro
mised .
[0125] In other cases , to validate the canary stamp data ,
the N - hop node 112A can check security measurements
included in the canary stamp data and associated with each
node along the path of the packet to determine if any of the
nodes have had a change in state and / or have unusual ,
unexpected , and / or potentially problematic security mea
surements . For example , the N - hop node 112A can compare
a security measurement (s) from each node with an expected
security measurement (s) or previous known good security
measurement (s) from each node to determine if any node
has had a change in state and / or is potentially compromised .
[0126] In some cases , to validate the canary stamp data ,
the N - hop node 112A can check if the canary stamp data
matches a previous version of the canary stamp data to
determine if any state changes have occurred on any of the
nodes along the path of the packet . The N - hop node 112A
can also check a nonce and / or time or counter value to verify
that the canary stamp data is fresh and is not part of a replay
attack . If the canary stamp data matches the previous version
of the canary stamp data , the canary stamp data is fresh , and
there are no indications of a possible replay attack , the
N - hop node 112A can determine that none of the nodes have
had a change in state and validate the canary stamp data . The
validated canary stamp data can indicate that the nodes
along the path of the packet are not currently compromised .
[0127] The N - hop node 112A can then send (526) the
packet to the destination node 116. In some cases , prior to
sending the packet to the destination node 116 , the N - hop
node 112A can add / update the canary stamp data to include
canary stamp data from the N - hop node 112A and / or reflect
security measurements from the N - hop node 112A . The
N - hop node 112A can send the packet to the destination node
116 with the current version of the canary stamp data to
allow the destination node 116 itself verify that the packet
traversed only through uncompromised nodes . Moreover , in
some cases , prior to sending the packet , the N - hop node
112A can also sign the canary stamp data as previously
described .
[0128] In some cases , in validating the canary stamp data
as described herein , the N - hop node 112A can determine or
verify whether the packet traversed through uncompromised
nodes or whether the packet traversed through one or more

compromised nodes . Moreover , in some implementations , in
addition to , or in lieu of , validating the canary stamp data ,
the N - hop node 112A can send the packet with the canary
stamp data to a separate device for validation / verification .
For example , the N - hop node 112A can send the packet with
the canary stamp data to a verifier system (e.g. , 106) to have
the verifier system validate the canary stamp data and
confirm or determine that the packet has or has not traversed
through compromised and / or uncompromised nodes .
[0129] In some cases , every hop in the chain of hops
traversed by the packet can provide canary stamp data and
sign such canary stamp data so that all hops in the chain can
be verified to be uncompromised . For example , in addition
to the nodes along the path of the packet providing or
updating canary stamp data as previously described , if the
packet is sent to a separate verifier system for verification ,
the verifier system can similarly modify the packet to add or
update canary stamp data to include or reflect its own canary
stamp data (and / or security measurements) and prove that
the verifier system is not compromised .
[0130] While FIG . 5 shows the canary stamp data in the
packet being validated by the last hop (e.g. , the N - hop node
112A) before the destination node 116 , it should be noted
that the canary stamp data can also or alternatively be
validated by one or more other nodes in the path and / or a
remote verifier system (e.g. , 106) . For example , in some
cases , the canary stamp data in the packet can be validated
by a centralized verifier system (e.g. , at each hop or at one
or more hops along the path) and / or by one or more
intermediate nodes along the path (e.g. , as the packet tra
verses those nodes) . In FIG . 5 , the validation performed by
the N - hop node 112A is one illustrative example provided
for explanation purposes .
[0131] FIG . 6 illustrates another example flow 600 for
providing proof of packet transit through uncompromised
nodes , where a verifier system 106 verifies and signs canary
stamp data at each hop along the path of the packet . It should
be noted that this is one illustrative example implementation
provided for explanation purposes , and in other examples
the verifier system 106 may only verify and sign canary
stamp data at one or more hops along the path of the packet .
[0132] In this example , the source node 602 first sends
(610) a packet for the destination node 116 to the next - hop
node 108A . The next - hop node 108A receives the packet and
adds and signs (612) canary stamp data generated based on
security measurements taken at the next - hop node 108A
(e.g. , via a cryptoprocessor) . The next - hop node 108A can
add canary stamp data containing the security measurements
or a digest of the canary stamp data (e.g. , the security
measurements) , as previously explained .
[0133] The next - hop node 108A can then send (614) the
packet with the canary stamp data to the verifier system 106
for validation . In some examples , the verifier system 106 can
be a centralized system , such as a centralized server or
controller , configured to analyze and verify canary stamp
data from nodes . In other examples , the verifier system 106
can be a distributed system including multiple verifiers
configured to analyze and verify canary stamp data from
nodes .
[0134] The verifier system 106 can receive the packet
from the next - hop node 108A and verify and sign (616) the
canary stamp data in the packet . In some cases , the verifier
system 106 can check that the canary stamp data in the
packet from the next - hop node 108A is fresh (e.g. , based on

a

US 2022/0247757 A1 Aug. 4 , 2022
12

a a nonce and / or a time value or counter on the packet) and use
the canary stamp data to verify that the next - hop node 108A
is not compromised . The verifier system 106 can also check
that the canary stamp data in the packet is not part of a replay
attack . For example , the verifier system 106 can verify that
the canary stamp data is not simply a copy of old canary
stamp data added to the packet by an attacker or compro
mised component to trick the verifier system 106 into
determining that the canary stamp data is valid and the
next - hop node 108A has not been compromised . In some
examples , the verifier system 106 can use , or check for ,
nonce values that introduce randomness into the data , to
identify and / or protect against such replay attacks .
[0135] In some cases , when verifying and signing the
canary stamp data in the packet , the verifier system 106 can
add its own signed canary stamp data to the packet or update
the canary stamp data with its own canary stamp data as
previously explained . This way , every hop that processes the
packet can be verified , and other nodes can verify that the
verifier system 106 itself is not compromised .
[0136] The verifier system 106 can then send (618) the
packet with the canary stamp data back to the next - hop node
108A . At this point , the canary stamp data in the packet
received by the next - hop node 108A is validated and signed
by the verifier system 106. The next - hop node 108A can then
send (620) the packet with the canary stamp data to the
second - hop node 110A . The canary stamp data in the packet
can include the canary stamp and signature from the next
hop node 108A . In some cases , the canary stamp data in the
packet can also reflect canary stamp data and signature data
from the verifier system 106 , as previously explained .
[0137] The second - hop node 110A then add / update and
sign (622) the canary stamp data in the packet . In some
examples , the second - hop node 110A can add new canary
stamp data generated based on security measurements taken
at the second - hop node 110A . Here , the packet can include
the canary stamp data from the next - hop node 108A and the
new canary stamp data from the second - hop node 110A . In
other examples , the second - hop node 110A can take the
canary stamp data from the next - hop node 108A and update
it to also reflect new canary stamp data (and / or security
measurements) from the second - hop node 110A .
[0138] For example , the second - hop node 110A can hash
the security measurements taken at the second - hop node
110A and generate a digest based on a hash value or digest
from the next - hop node 108A (e.g. , the canary stamp data
from the next - hop node 108A) and the hash of the security
measurements taken at the second - hop node 110A . To
illustrate , the second - hop node 110A can generate a new
canary stamp digest as follows : New canary stamp
digest = Digest of (canary stamp data from the next - hop node
108A hash (canary stamp data from the second - hop node
110A)) .
[0139] In some cases , the second - hop node 110A can also
implement a nonce value and / or a time value or token when
calculating the new canary stamp data . For example , in some
cases , the second - hop node 110A can generate the new
canary stamp digest as follows : New canary stamp
digest = Digest of (canary stamp data from the next - hop node
108A || hash (canary stamp data from the second - hop node
110A || PPN)) , where PPN represents a per - packet nonce
(PPN) assigned to the current packet and which changes per
packet . As another example , in some cases , the second - hop
node 110A can generate the new canary stamp digest as

follows : New canary stamp digest = Digest of (canary stamp
data from the next - hop node 108A || hash (canary stamp data
from the second - hop node 110A || TUDA time - synchroniza
tion token associated with the second - hop node 110A)) ,
where the TUDA time - synchronization token is provided by
a central timestamp authority .
[0140] In some cases , when adding / updating canary stamp
data , the second - hop node 110A can concatenate or combine
canary stamp data from the next - hop node 108A and the
second - hop node 110A . For example , in some cases , the
canary stamp data from the next - hop node 108A can include
one or more security measurements taken at the next - hop
node 108A . To add / update canary stamp data , the second
hop node 110A can concatenate or combine such security
measurements with one or more other security measure
ments taken at the second - hop node 110A . This can result in
canary stamp data that includes and / or reflects security
measurements from both the next - hop node 110A and the
second - hop node 110A .
[0141] Once the added / updated and signed the canary
stamp data , the second - hop node 110A can send (624) the
packet with the new / updated canary stamp data to the
verifier system 106. The verifier system 106 can then verify
and sign (626) the canary stamp data as previously
explained . After verifying and signing the canary stamp
data , the verifier system 106 can send (628) the packet with
the canary stamp data back to the second - hop node 110A . In
some cases , when verifying the canary stamp data , the
verifier system 106 can also add / update the canary stamp
data with its own canary stamp data generated based on
security measurements taken at the verifier system 106 , and
sign the result prior to sending the packet with the canary
stamp data to the verifier system 106 .
[0142] The second - hop node 110A can receive the packet
with the canary stamp data and send (630) it to the N - hop
node 112A . The N - hop node 112A can receive the packet
with the canary stamp data and add / update and sign (632)
the canary stamp data as previously described with respect
to the second - hop node 110A . The N - hop node 112A can
then send (634) the packet with the new or updated canary
stamp data to the verifier system 106. The verifier system
106 can receive the packet with the canary stamp data from
the N - hop node 112A , and validate (636) the canary stamp
data in the packet .
[0143] When validating the canary stamp data , the verifier
system 106 can use the canary stamp data in the packet to
verify that none of the nodes (e.g. , 108A , 110A , 112A)
traversed by the packet are compromised . The verifier
system 106 can verify the integrity or trustworthiness of
each of the nodes based on the value (s) in the canary stamp
data (e.g. , the associated security measures , the associated
digest values , etc.) . Since the canary stamp data can contain
security measures from each of the nodes or reflect security
measures from each of the nodes (e.g. , the canary stamp data
can be updated at each hop based on security measures at
that hop or a digest of security measures at that hop) , the
canary stamp data can provide an indication of the state and
integrity / trustworthiness of each hop in the chain , which the
verifier system 106 can use to validate (or invalidate) the
canary stamp data in the packet .
[0144] In some implementations , when validating the
canary stamp data , the verifier system 106 can also verify
that the canary stamp data is fresh (e.g. , was generated
within a certain period of time from the time it was received

US 2022/0247757 A1 Aug. 4 , 2022
13

9

by the verifier system 106) and / or that the canary stamp data
is not a replay attack . The verifier system 106 can make such
determinations based on timing information (e.g. , one or
more TUDA time - synchronization tokens , a time or counter
value such as a TPM counter value , etc.) included in the
canary stamp data and / or associated with the nodes in the
path , one or more nonce values used to introduce random
ness in the canary stamp data , etc.
[0145] Moreover , in some examples , when validating the
canary stamp data , the verifier system 106 can also add its
own signed canary stamp data to the packet or update the
canary stamp data in the packet based on its own canary
stamp data . Once the verifier system 106 has validated the
canary stamp data , the verifier system 106 can send (638) the
packet with the validated canary stamp data back to the
N - hop node 112A , which can then send (640) the packet to
the destination node 116 .
[014] In some cases , rather than sending the packet to the
N - hop node 112A , the verifier system 116 can deliver the
packet to the destination node 116 , thereby reducing the
amount of traffic (e.g. , by eliminating the communication of
the packet back to the N - hop node 112A for subsequent
delivery to the destination node 116) . Moreover , in some
cases , the packet delivered (e.g. , by the N - hop node 112A or
the verifier system 106) to the destination node 116 can
include the current version of the canary stamp data to allow
the destination node 116 to perform its own verification that
the packet traversed only through uncompromised nodes .
[0147] Having described example systems and concepts ,
the disclosure now turns to the example method 700 for
providing proof of packet transit through uncompromised
nodes , as illustrated in FIG . 7. For the sake of clarity , the
method 700 is described in terms of verifier system 116 , as
shown in FIGS . 1-3 , configured to practice the method 700 .
The steps outlined herein are examples and can be imple
mented in any combination thereof , including combinations
that exclude , add , or modify certain steps .
[0148] At step 702 , the verifier system 116 can receive a
packet including one or more metadata elements (e.g. ,
canary stamp data) generated based on security measure
ments from a plurality of nodes (e.g. , 108 , 110 , 112) along
a path of the packet . The one or more metadata elements can
include or refer to canary stamp data as previously
described . In some examples , the canary stamp data (e.g. ,
the one or more metadata elements) can include a digest
created based on the security measurements . In some cases ,
the digest can be created using a one - way hash that ensures
that the canary stamp data (e.g. , the one or more metadata
elements) recorded by any node cannot be removed or
modified without detection .
[0149] Moreover , in some examples , the one or more
metadata elements (e.g. , the canary stamp data) can include
the security measurements from the plurality of nodes . In
some examples , the security measurements can include
information identifying a respective firmware at each of the
plurality of nodes , what software has been loaded at each of
the plurality of nodes , a respective sequence of software
loaded at each of the plurality of nodes , hardware informa
tion associated with the plurality of nodes , any operating
system changes at the plurality of nodes , a runtime state at
the plurality of nodes , etc.
[0150] In some examples , the one or more metadata ele
ments can also include one or more nonce values . For
example , in some cases , the one or more metadata elements

can one or more per - packet nonce values ; one or more
signatures ; and / or one or more time values , such as one or
more packet trace timestamps , time counters (e.g. , TPM
counters) , TUDA time - synchronization tokens , etc.
[0151] The verifier system 116 can receive the packet from
a particular node in the path of the packet . For example , the
verifier system 116 can receive the packet from the last - hop
node before the destination node or the destination node
itself . In some examples , the verifier system 116 can receive
the packet from each hop along the path as the packet
traverses the hops in the path . The packet from each hop can
include one or more new or updated metadata elements
provided by that hop . In such examples , the verifier system
116 can validate the one or more metadata elements as it
traverses each hop in the path .
[0152] At step 704 , the verifier system 116 can determine
a validity of the one or more metadata elements in the
packet . In some cases , the verifier system 116 can analyze
the contents of the one or more metadata elements and
determine a validity of the one or more metadata elements
by comparing one or more values in the one or more
metadata elements with one or more expected values cal
culated for the one or more metadata elements (e.g. , based
on known , expected , or predicted security measurements
associated with the plurality of nodes) , checking one or more
signatures (e.g. , one or more respective node or cryptopro
cessor signatures) in the one or more metadata elements ,
verifying timing information (e.g. , one or more timestamps ,
counter values , TUDA time - synchronization tokens , etc.)
associated with the one or more metadata elements , and / or
verifying one or more nonce values implemented by the one
or more metadata elements .
[0153] In some cases , the verifier system 116 can also
update the one or more metadata elements based on meta
data (e.g. , canary stamp data) from the verifier system 116 ,
or add new metadata (e.g. , canary stamp data) from the
verifier system 116. Moreover , if the verifier system 116 is
able to validate the one or more metadata elements , the
verifier system 116 can sign the one or more metadata
elements in the packet to indicate that the verifier system 116
has validated the one or more metadata elements and / or
provide protection against unauthorized tampering with the
one or more metadata elements .
[0154] At step 706 , the verifier system 116 can determine ,
based on the one or more metadata elements , whether the
packet traversed any compromised nodes along the path of
the packet . In some cases , the verifier system 116 can make
such determination based on a determined validity of the one
or more metadata elements in the packet . Moreover , in some
cases , the verifier system 116 can analyze the contents of the
one or more metadata elements and make such determina
tion based on the contents of the one or more metadata
elements .
[0155] For example , in some cases , if the one or more
metadata elements include the security measurements from
the plurality of nodes , the verifier system 116 can analyze
the security measurements to verify that none of the nodes
are compromised . The verifier system 116 can review state
information (e.g. , hardware state , firmware state , software
state , runtime state , etc.) captured by the security measure
ments to determine if the state of any nodes has changes
and / or appears compromised , suspicious , unexpected , or
abnormal . To illustrate , if the security measurements indi
cate that the operating system (OS) or a sequence of soft

US 2022/0247757 A1 Aug. 4 , 2022
14

ware loaded at a node has changed since a previous known
state of the node or is different than expected , the verifier
system 116 flag that node as potentially (or actually) com
promised . In some cases , the verifier system 116 can analyze
the specific changes to the OS or sequence of software
loaded to determine whether the node is indeed compro
mised or should be deemed compromised .
[0156] In other examples , if the one or more metadata
elements include a digest of the security measurements from
the plurality of nodes , the verifier system 116 can compare
the digest with a digest it calculates for the plurality of nodes
based on expected , normal , and / or predicted security mea
surements . For example , the verifier system 116 can calcu
late a digest (e.g. , using the same algorithm used to generate
the digest included in the one or more metadata elements)
based on expected security measurement values for the
plurality of nodes , previous known security measurement
values associated with the plurality of nodes , or security
measurement values considered to be desirable or normal
(e.g. , not indicative of a compromised node) . The verifier
system 116 can then compare the calculated digest with the
digest associated with (e.g. , included in or reflected by) the
one or more metadata elements to determine if they match .
A mismatch between the digests can indicate that one or
more nodes are potentially compromised .
[0157] In some cases , the digest of the security measure
ments from the plurality of nodes (e.g. , the digest included
in or reflected by the one or more metadata elements) can be
generated using one or more nonce values used to introduce
randomness to protect against replay attacks . In such cases ,
the verifier system 116 can also implement such one or more
nonce values when calculating the digest that the verifier
system 116 compares with the digest in the packet . For
example , in some cases , a nonce can be provided to the
plurality of nodes for use in creating or updating a respective
digest at each hop . The nonce can be a nonce specifically
defined for the packet (e.g. , a per - packet nonce which
changes for every packet) or a nonce specifically defined for
one or more of the plurality of nodes . The verifier system
116 can thus know the value (s) of the nonce and use such
value (s) to calculate the digest it compares with the digest in
the packet it receives .
[0158] In some cases , each node along the path of the
packet can similarly perform a validity check and / or a
verification check of the one or more metadata elements in
the packet , as described with respect to steps 704 and 706 .
Moreover , in some cases , each node can modify the one or
more metadata elements in the packet as the node processes
the packet . For example , when a node receives the packet
with the one or more metadata elements , the node can add
its own metadata (e.g. , its own canary stamp data) to the one
or more metadata elements or update the one or more
metadata elements based on its own metadata (e.g. , its own
canary stamp data) . Each node can also sign (e.g. , via TPM
or a cryptoprocessor) the one or more metadata elements in
the packet prior to forwarding the packet to the next hop
and / or a centralized verification system (e.g. , verifier system
116) .
[0159] In some implementations , the one or more meta
data elements can be carried by the packet in an IOAM data
field on the packet . In some examples , the one or more
metadata elements can be carried in an IOAM trace option .
In other examples , the one or more metadata elements can
be carried in an IOAM proof - of - transit (POT) option . More

over , in some cases , the packet can be transmitted and / or
processed using one or more encapsulating protocols such
as , for example and without limitation , IPv4 , IPv6 , NSH
(network service header) , segment routing , Geneve ,
VXLAN , VXLAN - GPE , GRE , MPLS , SRv6 , etc. In other
cases , the one or more metadata elements can be carried by
the packet in an Inband Network Telemetry packet header ,
an Inband Flow Analyzer (IFA) header , or a header associ
ated with an In - situ Flow Information Telemetry service
used to transmit the packet .
[0160] In some aspects , a data element in the one or more
metadata elements , such as a signature or canary stamp data
value (s) , can be generated by one or more TPMs (e.g. , TPM ,
TPM2 , or any current or future version of TPM) imple
mented by one or more nodes from the plurality of nodes
and / or one or more cryptoprocessors implemented by the
one or more nodes .
[0161] In some cases , determining whether the packet
traversed any compromised nodes along the path of the
packet can include identifying each hop traversed by the
packet and providing a proof - of - transit of the packet . In
some examples , the hops traversed by the packet can be
identified using IOAM tracing , using routing state informa
tion , or sending active probes .
[0162] In some implementations , the one or more meta
data elements can include one or more trace timestamps
defined in IOAM . Since the one or more metadata elements
can be time bound , the packet trace timestamps can be used
to validate the one or more metadata elements in the time
window the packet visited a particular node .
[0163] In some cases , when determining whether the
packet traversed any compromised nodes , the verifier sys
tem 116 can check a public key of one or more nodes that
added / updated the one or more metadata elements , a portion
of the one or more metadata elements , and / or a previous
version of the one or more metadata elements .
[0164] The disclosure now turns to FIGS . 8 and 9 , which
illustrate example network nodes and computing devices ,
such as switches , routers , client devices , endpoints , servers ,
and so forth .
[0165] FIG . 8 illustrates an example network device 800
suitable for performing switching , routing , and other net
working operations . Network device 800 includes a central
processing unit (CPU) 804 , interfaces 802 , and a connection
810 (e.g. , a PCI bus) . When acting under the control of
appropriate software or firmware , the CPU 804 is respon
sible for executing packet management , error detection ,
and / or routing functions . The CPU 804 can accomplish these
functions under the control of software including an oper
ating system and any appropriate applications software .
CPU 804 may include one or more processors 808 , such as
a processor from the INTEL X98 family of microprocessors .
In some cases , processor 808 can be specially designed
hardware for controlling the operations of network device
800. In some cases , a memory 806 (e.g. , non - volatile RAM ,
ROM , etc.) also forms part of CPU 804. However , there are
many different ways in which memory could be coupled to
the system .
[0166] The interfaces 802 are typically provided as modu
lar interface cards (sometimes referred to as “ line cards ”) .
Generally , they control the sending and receiving of data
packets over the network and sometimes support other
peripherals used with the network device 800. Among the
interfaces that may be provided are Ethernet interfaces ,

a

a

US 2022/0247757 A1 Aug. 4 , 2022
15

cases ,

a

frame relay interfaces , cable interfaces , DSL interfaces ,
token ring interfaces , and the like . In addition , various very
high - speed interfaces may be provided such as fast token
ring interfaces , wireless interfaces , Ethernet interfaces ,
Gigabit Ethernet interfaces , ATM interfaces , HSSI inter
faces , POS interfaces , FDDI interfaces , WIFI interfaces ,
3G / 4G / 5G cellular interfaces , CAN BUS , LORA , and the
like . Generally , these interfaces may include ports appropri
ate for communication with the appropriate media . In some

they may also include an independent processor and ,
in some instances , volatile RAM . The independent proces
sors may control such communications intensive tasks as
packet switching , media control , signal processing , crypto
processing , and management . By providing separate proces
sors for the communications intensive tasks , these interfaces
allow the master microprocessor 804 to efficiently perform
routing computations , network diagnostics , security func
tions , etc.
[0167] Although the system shown in FIG . 8 is one
specific network device of the present technologies , it is by
no means the only network device architecture on which the
present technologies can be implemented . For example , an
architecture having a single processor that handles commu
nications as well as routing computations , etc. , is often used .
Further , other types of interfaces and media could also be
used with the network device 800 .
[0168] Regardless of the network device's configuration ,
it may employ one or more memories or memory modules
(including memory 806) configured to store program
instructions for the general - purpose network operations and
mechanisms for roaming , route optimization and routing
functions described herein . The program instructions may
control the operation of an operating system and / or one or
more applications , for example . The memory or memories
may also be configured to store tables such as mobility
binding , registration , and association tables , etc. Memory
806 could also hold various software containers and virtu
alized execution environments and data .
[0169] The network device 800 can also include an appli
cation - specific integrated circuit (ASIC) 812 , which can be
configured to perform routing and / or switching operations .
The ASIC 812 can communicate with other components in
the network device 800 via the connection 810 , to exchange
data and signals and coordinate various types of operations
by the network device 800 , such as routing , switching ,
and / or data storage operations , for example .
[0170] FIG . 9 illustrates a computing system architecture
900 including various components in electrical communi
cation with each other using a connection 906 , such as a bus .
Example system architecture 900 includes a processing unit
(CPU or processor) 904 and a system connection 906 that
couples various system components including the system
memory 920 , such as read only memory (ROM) 918 and
random access memory (RAM) 916 , to the processor 904 .
The system architecture 900 can include a cache 902 of
high - speed memory connected directly with , in close prox
imity to , or integrated as part of the processor 904. The
system architecture 900 can copy data from the memory 920
and / or the storage device 908 to the cache 902 for quick
access by the processor 904. In this way , the cache can
provide a performance boost that avoids processor 904
delays while waiting for data . These and other modules can
control or be configured to control the processor 904 to
perform various actions .

[0171] Other system memory 920 may be available for use
as well . The memory 920 can include multiple different
types of memory with different performance characteristics .
The processor 904 can include any general purpose proces
sor and a hardware or software service , such as service 1
910 , service 2 912 , and service 3 914 stored in storage
device 908 , configured to control the processor 904 as well
as a special - purpose processor where software instructions
are incorporated into the actual processor design . The pro
cessor 904 may be a completely self - contained computing
system , containing multiple cores or processors , a bus ,
memory controller , cache , etc. A multi - core processor may
be symmetric or asymmetric .
[0172] To enable user interaction with the computing
system architecture 900 , an input device 922 can represent
any number of input mechanisms , such as a microphone for
speech , a touch - sensitive screen for gesture or graphical
input , keyboard , mouse , motion input , speech and so forth .
An output device 924 can also be one or more of a number
of output mechanisms known to those of skill in the art . In
some instances , multimodal systems can enable a user to
provide multiple types of input to communicate with the
computing system architecture 900. The communications
interface 926 can generally govern and manage the user
input and system output . There is no restriction on operating
on any particular hardware arrangement and therefore the
basic features here may easily be substituted for improved
hardware or firmware arrangements as they are developed .
[0173] Storage device 908 is a non - volatile memory and
can be a hard disk or other types of computer readable media
which can store data that are accessible by a computer , such
as magnetic cassettes , flash memory cards , solid state
memory devices , digital versatile disks , cartridges , random
access memories (RAM) 916 , read only memory (ROM)
918 , and hybrids thereof .
[0174] The storage device 908 can include services 910 ,
912 , 914 for controlling the processor 904. Other hardware
or software modules are contemplated . The storage device
908 can be connected to the system connection 906. In one
aspect , a hardware module that performs a particular func
tion can include the software component stored in a com
puter - readable medium in connection with the necessary
hardware components , such as the processor 904 , connec
tion 906 , output device 924 , and so forth , to carry out the
function .
[0175] For clarity of explanation , in some instances the
present technology may be presented as including individual
functional blocks including functional blocks comprising
devices , device components , steps or routines in a method
embodied in software , or combinations of hardware and
software .
[0176] In some embodiments the computer - readable stor
age devices , mediums , and memories can include a cable or
wireless signal containing a bit stream and the like . How
ever , when mentioned , non - transitory computer - readable
storage media expressly exclude media such as energy ,
carrier signals , electromagnetic waves , and signals per se .
(0177] Methods according the above - described
examples can be implemented using computer - executable
instructions that are stored or otherwise available from
computer readable media . Such instructions can comprise ,
for example , instructions and data which cause or otherwise
configure a general purpose computer , special purpose com
puter , or special purpose processing device to perform a

a

?

to

US 2022/0247757 A1 Aug. 4 , 2022
16

certain function or group of functions . Portions of computer
resources used can be accessible over a network . The
computer executable instructions may be , for example ,
binaries , intermediate format instructions such as assembly
language , firmware , or source code . Examples of computer
readable media that may be used to store instructions ,
information used , and / or information created during meth
ods according to described examples include magnetic or
optical disks , flash memory , USB devices provided with
non - volatile memory , networked storage devices , and so on .
[0178] Devices implementing methods according to these
disclosures can comprise hardware , firmware and / or soft
ware , and can take any of a variety of form factors . Typical
examples of such form factors include laptops , smart
phones , small form factor personal computers , personal
digital assistants , rackmount devices , standalone devices ,
and so on . Functionality described herein also can be
embodied in peripherals or add - in cards . Such functionality
can also be implemented on a circuit board among different
chips or different processes executing in a single device , by
way of further example .
[0179] The instructions , media for conveying such instruc
tions , computing resources for executing them , and other
structures for supporting such computing resources are
means for providing the functions described in these disclo
sures .

[0180] Although a variety of examples and other informa
tion was used to explain aspects within the scope of the
appended claims , no limitation of the claims should be
implied based on particular features or arrangements in such
examples , as one of ordinary skill would be able to use these
examples to derive a wide variety of implementations .
Further and although some subject matter may have been
described in language specific to examples of structural
features and / or method steps , it is to be understood that the
subject matter defined in the appended claims is not neces
sarily limited to these described features or acts . For
example , such functionality can be distributed differently or
performed in components other than those identified herein .
Rather , the described features and steps are disclosed as
examples of components of systems and methods within the
scope of the appended claims .
[0181] Claim language reciting “ at least one of ” a set
indicates that one member of the set or multiple members of
the set satisfy the claim . For example , claim language
reciting “ at least one of A and B ” means A , B , or A and B.

1. A method comprising :
receiving a packet comprising one or more metadata

elements generated based on security measurements
from one or more nodes along a path of the packet ;

determining a validity of the one or more metadata
elements based on at least one of a comparison of one
or more values in the one or more metadata elements
with one or more expected values calculated for the one
or more metadata elements , one or more signatures in
the one or more metadata elements , and timing infor
mation associated with the one or more metadata
elements ; and

based on the one or more metadata elements , determining
whether a node from the one or more nodes comprises
a compromised node , wherein at least one of a data
element in the one or more metadata elements and the
one or more signatures in the one or more metadata
elements are generated by one or more trusted execu

tion environments (TEE) or one or more platform
modules (TPMs) implemented by the node or one or
more cryptoprocessors implemented by the node .

2. The method of claim 1 , wherein the security measure
ments comprise at least one of a hardware integrity mea
surement , a runtime integrity measurement , a firmware
integrity measurement , a software integrity measurement ,
information identifying what software has been loaded at the
one or more nodes , a respective sequence of software loaded
at the one or more nodes , and one or more operating system
changes at the one or more nodes .

3. The method of claim 1 , wherein the one or more
metadata elements comprise the security measurements or
one or more hash values representing the security measure
ments .

4. The method of claim 1 , wherein the one or more
metadata elements comprise node integrity metadata gener
ated based on respective node integrity information from
each of the one or more nodes , the respective node integrity
information being generated based on a respective security
measurement from each of the one or more nodes .

5. The method of claim 1 , further comprising :
updating a verification digest in the one or more metadata

elements in the packet to yield an updated verification
digest , the verification digest being updated based on a
hash of at least one security measurement associated
with the node .

6. The method of claim 1 , wherein the one or more
metadata elements are included in an In - Situ Operations ,
Administration , and Maintenance (IOAM) data field on the
packet , an Inband Network Telemetry packet header asso
ciated with the packet , an Inband Flow Analyzer (IFA)
header associated with the packet , or a header associated
with an In - situ Flow Information Telemetry service used to
transmit the packet , the IOAM data field being associated
with an IOAM trace option or an IOAM proof - of - transit
(POT) option .

7. The method of claim 1 , wherein the one or more
metadata elements comprise one or more nonce values
associated with the one or more nodes .

8. The method of claim 1 , wherein the timing information
associated with the one or more metadata elements com
prises at least one of a respective timestamp associated with
each of the one or more nodes , one or more Time - Based
Uni - Directional Attestation (TUDA) sync tokens , one or
more Trusted Platform Module (TPM) counters , and one or
more packet trace timestamps defined by an In - Situ Opera
tions , Administration , and Maintenance telemetry scheme .

9. A system comprising :
one or more processors ; and
memory having stored therein instructions which , when

executed by the one or more processors , cause the one
or more processors to :
receive a packet comprising one or more metadata

elements generated based on security measurements
from one or more nodes along a path of the packet ;

determine a validity of the one or more metadata
elements based on at least one of a comparison of
one or more values in the one or more metadata
elements with one or more expected values calcu
lated for the one or more metadata elements , one or
more signatures in the one or more metadata ele
ments , and timing information associated with the
one or more metadata elements ; and

US 2022/0247757 A1 Aug. 4 , 2022
17

a

a

based on the one or more metadata elements , determine
whether a node from the one or more nodes com
prises a compromised node , wherein at least one of
a data element in the one or more metadata elements
and the one or more signatures in the one or more
metadata elements are generated by one or more
trusted execution environments (TEE) or one or
more platform modules (TPMs) implemented by the
node or one or more cryptoprocessors implemented
by the node .

10. The system of claim 9 , wherein the security measure
ments comprise at least one of a hardware integrity mea
surement , a runtime integrity measurement , a firmware
integrity measurement , a software integrity measurement ,
information identifying what software has been loaded at the
one or more nodes , a respective sequence of software loaded
at the one or more nodes , and one or more operating system
changes at the one or more nodes .

11. The system of claim 9 , wherein the one or more
metadata elements comprise the security measurements or
one or more hash values representing the security measure
ments .

12. The system of claim 9 , wherein the one or more
metadata elements comprise node integrity metadata gener
ated based on respective node integrity information from
each of the one or more nodes , the respective node integrity
information being generated based on a respective security
measurement from each of the one or more nodes .

13. The system of claim 9 , wherein the memory comprises
instructions stored thereon which , when executed by the one
or more processors , cause the one or more processors to :

update a verification digest in the one or more metadata
elements in the packet to yield an updated verification
digest , the verification digest being updated based on a
hash of at least one security measurement associated
with the node .

14. The system of claim 9 , wherein the one or more
metadata elements are included in an In - Situ Operations ,
Administration , and Maintenance (IOAM) data field on the
packet , an Inband Network Telemetry packet header asso
ciated with the packet , an Inband Flow Analyzer (IFA)
header associated with the packet , or a header associated
with an In - situ Flow Information Telemetry service used to
transmit the packet , the IOAM data field being associated
with an IOAM trace option or an IOAM proof - of - transit
(POT) option .

15. The system of claim 9 , wherein the one or more
metadata elements comprise one or more nonce values
associated with the one or more nodes .

16. The system of claim 9 , wherein the timing information
associated with the one or more metadata elements com

prises at least one of a respective timestamp associated with
each of the one or more nodes , one or more Time - Based
Uni - Directional Attestation (TUDA) sync tokens , one or
more Trusted Platform Module (TPM) counters , and one or
more packet trace timestamps defined by an In - Situ Opera
tions , Administration , and Maintenance telemetry scheme .

17. A non - transitory computer - readable storage medium
having stored thereon instructions which , when executed by
one or more processors , cause the one or more processors to :

receive a packet comprising one or more metadata ele
ments generated based on security measurements from
one or more nodes along a path of the packet ;

determine a validity of the one or more metadata elements
based on at least one of a comparison of one or more
values in the one or more metadata elements with one
or more expected values calculated for the one or more
metadata elements , one or more signatures in the one or
more metadata elements , and timing information asso
ciated with the one or more metadata elements ; and

based on the one or more metadata elements , determine
whether a node from the one or more nodes comprises
a compromised node , wherein at least one of a data
element in the one or more metadata elements and the
one or more signatures in the one or more metadata
elements are generated by one or more trusted execu
tion environments (TEE) or one or more platform
modules (TPMs) implemented by the node or one or
more cryptoprocessors implemented by the node .

18. The The non - transitory computer - readable storage
medium of claim 17 , wherein the security measurements
comprise at least one of a hardware integrity measurement ,
a runtime integrity measurement , a firmware integrity mea
surement , a software integrity measurement , information
identifying what software has been loaded at the one or more
nodes , a respective sequence of software loaded at the one
or more nodes , and one or more operating system changes
at the one or more nodes .

19. The non - transitory computer - readable storage
medium of claim 17 , wherein the one or more metadata
elements comprise the security measurements or one or
more hash values representing the security measurements .

20. The non - transitory computer - readable storage
medium of claim 17 , wherein the one or more metadata
elements comprise node integrity metadata generated based
on respective node integrity information from each of the
one or more nodes , the respective node integrity information
being generated based on a respective security measurement
from each of the one or more nodes .

