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TECHNOLOGIES FOR PROVING PACKET 
TRANSIT THROUGH UNCOMPROMISED 

NODES 

[ 0010 ] FIG . 8 illustrates an example network device in 
accordance with some examples ; and 
[ 0011 ] FIG . 9 illustrates an example computing device 
architecture in accordance with some examples . 

CROSS - REFERENCE TO RELATED 
APPLICATIONS DETAILED DESCRIPTION 

[ 0001 ] This application is a Continuation of U.S. patent 
application Ser . No. 16 / 555,869 , filed Aug. 29 , 2019 , which 
claims the benefit of , and priority to , U.S. Provisional Patent 
Application No. 62 / 830,156 , filed Apr. 5 , 2019 , entitled 
“ TECHNOLOGIES FOR PROVING PACKET TRANSIT 
THROUGH UNCOMPROMISED NODES ” , the contents 
of which are incorporated herein by reference in their 
entireties . 

TECHNICAL FIELD 

[ 0002 ] The present disclosure generally relates to the field 
of computer networking , and more particularly to assessing 
reliability and trustworthiness of devices operating within a 
network . 

BACKGROUND 

a 

[ 0003 ] Trustworthiness of a node on a network may 
degrade over time after its initial deployment . If a node 
becomes compromised , traffic processed by that node — and 
even the network itself — can similarly become compro 
mised . Thus , verifying the trustworthiness of nodes process 
ing packets on a network can help reduce the likelihood of 
such traffic — and the network — becoming compromised . In 
some cases , certain verification checks can be implemented 
to attempt to verify the integrity of a node in order to reduce 
or mitigate the harm caused by the node becoming compro 
mised . For example , an integrity verification application can 
check a node's memory to validate the integrity of the node . 
When errors are found during the check , the integrity 
verification application can implement steps to return the 
node to a trusted state . 
[ 0004 ] However , such verification checks are expensive 
and unreliable , often inaccurately assuming that a node is 
likely to be in a normal or trusted state soon after being 
validated and less likely to be in a normal state just before 
such validation . Moreover , current security approaches are 
unable to accurately or efficiently confirm the trustworthi 
ness of the nodes along a path of the packet , which can leave 
the data associated with the packet vulnerable to hacking , 
leaks and unauthorized use and access . 

[ 0012 ] Various embodiments of the disclosure are dis 
cussed in detail below . While specific implementations are 
discussed , it should be understood that this is done for 
illustration purposes only . A person skilled in the relevant art 
will recognize that other components and configurations 
may be used without parting from the spirit and scope of the 
disclosure . Thus , the following description and drawings are 
illustrative and are not to be construed as limiting . Numer 
ous specific details are described to provide a thorough 
understanding of the disclosure . However , in certain 
instances , well - known or conventional details are not 
described in order to avoid obscuring the description . Ref 
erences to one or an embodiment in the present disclosure 
can be references to the same embodiment or any embodi 
ment ; and , such references mean at least one of the embodi 
ments . 
[ 0013 ] Reference to " one embodiment ” or “ an embodi 
ment ” means that a particular feature , structure , or charac 
teristic described in connection with the embodiment is 
included in at least one embodiment of the disclosure . The 
appearances of the phrase " in one embodiment ” in various 
places in the specification are not necessarily all referring to 
the same embodiment , nor are separate or alternative 
embodiments mutually exclusive of other embodiments . 
Moreover , various features are described which may be 
exhibited by some embodiments and not by others . 
[ 0014 ] The terms used in this specification generally have 
their ordinary meanings in the art , within the context of the 
disclosure , and in the specific context where each term is 
used . Alternative language and synonyms may be used for 
any one or more of the terms discussed herein , and no 
special significance should be placed upon whether or not a 
term is elaborated or discussed herein . In some cases , 
synonyms for certain terms are provided . A recital of one or 
more synonyms does not exclude the use of other synonyms . 
The use of examples anywhere in this specification includ 
ing examples of any terms discussed herein is illustrative 
only , and is not intended to further limit the scope and 
meaning of the disclosure or of any example term . Likewise , 
the disclosure is not limited to various embodiments given 
in this specification . 
[ 0015 ] Without intent to limit the scope of the disclosure , 
examples of instruments , apparatus , methods and their 
related results according to the embodiments of the present 
disclosure are given below . Note that titles or subtitles may 
be used in the examples for convenience of a reader , which 
in no way should limit the scope of the disclosure . Unless 
otherwise defined , technical and scientific terms used herein 
have the meaning as commonly understood by one of 
ordinary skill in the art to which this disclosure pertains . In 
the case of conflict , the present document , including defi 
nitions will control . 
[ 0016 ] Additional features and advantages of the disclo 
sure will be set forth in the description which follows , and 
in part will be obvious from the description , or can be 
learned by practice of the herein disclosed principles . The 
features and advantages of the disclosure can be realized and 
obtained by means of the instruments and combinations 

BRIEF DESCRIPTION OF THE FIGURES 

[ 0005 ] To provide a more complete understanding of the 
present disclosure and features and advantages thereof , 
reference is made to the following description , taken in 
conjunction with the accompanying drawings , in which : 
[ 0006 ] FIGS . 1 through 3 illustrate example networking 
environments in accordance with some examples ; 
[ 0007 ] FIG . 4 illustrates an example of a controller orches 
trated attestation - based routing , in accordance with some 
examples ; 
[ 0008 ] FIGS . 5 and 6 illustrate example flows for provid 
ing proof of packet transit through uncompromised nodes , in 
accordance with some examples ; 
[ 0009 ] FIG . 7 illustrates an example method for proving a 
packet transit through uncompromised nodes , in accordance 
with some examples ; 
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particularly pointed out in the appended claims . These and 
other features of the disclosure will become more fully 
apparent from the following description and appended 
claims , or can be learned by the practice of the principles set 
forth herein . 
[ 0017 ] Overview 
[ 0018 ] Disclosed are systems , methods , and computer 
readable media for proving packet transit through uncom 
promised nodes . In some aspects , a method for proving 
packet transit through uncompromised nodes is provided . 
An example method can include receiving a packet includ 
ing one or more metadata elements generated based on 
security measurements from a plurality of nodes along a 
path of the packet ; determining a validity of the one or more 
metadata elements based on a comparison of one or more 
values in the one or more metadata elements with one or 
more expected values calculated for the one or more meta 
data elements , one or more signatures in the one or more 
metadata elements , and / or timing information associated 
with the one or more metadata elements , and based on the 
one or more metadata elements , determining whether the 
packet traversed any compromised nodes along the path of 
the packet . 
[ 0019 ] In some aspects , a system for proving packet transit 
through uncompromised nodes is provided . An example 
system can include one or more processors and memory 
having stored therein instructions which , when executed by 
the one or more processors , cause the one or more proces 
sors to receive a packet including one or more metadata 
elements generated based on security measurements from a 
plurality of nodes along a path of the packet ; determine a 
validity of the one or more metadata elements based on a 
comparison of one or more values in the one or more 
metadata elements with one or more expected values cal 
culated for the one or more metadata elements , one or more 
signatures in the one or more metadata elements , and / or 
timing information associated with the one or more metadata 
elements ; and based on the one or more metadata elements , 
determine whether the packet traversed any compromised 
nodes along the path of the packet . 
[ 0020 ] In some aspects , a non - transitory computer - read 
able medium for proving packet transit through uncompro 
mised nodes is provided . An example non - transitory com 
puter - readable medium can include instructions which , 
when executed by one or more processors , cause the one or 
more processors to receive a packet including one or more 
metadata elements generated based on security measure 
ments from a plurality of nodes along a path of the packet ; 
determine a validity of the one or more metadata elements 
based on a comparison of one or more values in the one or 
more metadata elements with one or more expected values 
calculated for the one or more metadata elements , one or 
more signatures in the one or more metadata elements , 
and / or timing information associated with the one or more 
metadata elements ; and based on the one or more metadata 
elements , determine whether the packet traversed any com 
promised nodes along the path of the packet . 
[ 0021 ] In some examples , the one or more metadata ele 
ments referenced in the example method , system , and non 
transitory computer - readable medium described above can 
include the security measurements or one or more hash 
values representing the security measurements . Moreover , in 
some cases , the one or more metadata elements can include 
node integrity metadata generated based on respective node 

integrity information from each of the plurality of nodes 
along the path of the packet , and the respective node 
integrity information can be generated based on a respective 
security measurement from each of the plurality of nodes 
along the path of the packet . 
[ 0022 ] In some aspects , the packet can be received by a 
node at a hop in the path of the packet , and the example 
method , system , and non - transitory computer - readable 
medium described above can include updating a verification 
digest in the one or more metadata elements in the packet to 
yield an updated verification digest , the verification digest 
being updated based on a hash of at least one security 
measurement associated with the node . Moreover , in some 
examples , determining whether the packet traversed any 
compromised nodes along the path of the packet can be 
based at least partly on the updated verification digest , and 
the verification digest can be based on a respective hash 
generated by a second node at previous hop in the path , the 
respective hash being based on one or more security mea 
surements at the second node . 
[ 0023 ] In some cases , the verification digest is further 
based on a second verification digest generated by a third 
node at a different previous hop in the path , the second 
verification digest being based on a second respective hash 
of one or more additional security measurements at the third 
node . 
[ 0024 ] In some examples , the one or more metadata ele 
ments are included in an In - Situ ( or in - band ) Operations , 
Administration , and Maintenance ( IOAM ) data field on the 
packet , an Inband Network Telemetry ( INT ) packet header 
associated with the packet , an Inband Flow Analyzer ( IFA ) 
header associated with the packet , or a header associated 
with an In - situ Flow Information Telemetry service used to 
transmit the packet , the IOAM data field being associated 
with an IOAM trace option or an IOAM proof - of - transit 
( POT ) option . In some aspects , the one or more metadata 
elements can include one or more nonce values associated 
with one or more nodes from the plurality of nodes . 
[ 0025 ] In some examples , the timing information associ 
ated with the one or more metadata elements can include a 
respective timestamp associated with each of the plurality of 
nodes , one or more Time - Based Uni - Directional Attestation 
( TUDA ) time - synchronization tokens , one or more Trusted 
Platform Module ( e.g. , TPM , TPM2 , or any current or future 
version of TPM ) counters , and / or one or more packet trace 
timestamps defined by an IOAM telemetry scheme . 
[ 0026 ] In some examples , a data element in the one or 
more metadata elements and / or the one or more signatures 
in the one or more metadata elements can be generated by 
one or more TPMs implemented by one or more nodes from 
the plurality of nodes and / or one or more cryptoprocessors 
implemented by the one or more nodes . Moreover , the 
security measurements can include information identifying a 
respective firmware at each of the plurality of nodes , what 
software has been loaded at each of the plurality of nodes , 
a respective sequence of software loaded at each of the 
plurality of nodes , hardware information associated with the 
plurality of nodes , and / or any operating system changes at 
the plurality of nodes . 
[ 0027 ] In some aspects , determining whether the packet 
traversed any compromised nodes along the path of the 
packet can include identifying each hop traversed by the 
packet and / or providing a proof - of - transit of the packet . 
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[ 0028 ] This overview is not intended to identify key or 
essential features of the claimed subject matter , nor is it 
intended to be used in isolation to determine the scope of the 
claimed subject matter . The subject matter should be under 
stood by reference to appropriate portions of the entire 
specification of this patent application , any or all drawings , 
and each claim . 
[ 0029 ] The foregoing , together with other features and 
embodiments , will become more apparent upon referring to 
the following specification , claims , and accompanying 
drawings . 

Example Embodiments 
[ 0030 ] The technologies herein can provide proof of 
packet transit through uncompromised network nodes , to 
ensure that packets have not traversed untrusted or compro 
mised nodes that can harm or improperly access the packets 
and associated data . In some examples , the technologies 
herein can implement proof - of - transit ( POT ) and attestation 
techniques to confirm the integrity of a node , verify that 
traffic traverses a defined set of nodes , and verify that such 
nodes have not been compromised . In some cases , such POT 
and attestation techniques can implement canary stamps 
( e.g. , tokens or metadata elements containing or reflecting 
security measures taken at one or more nodes ) . 
[ 0031 ] Disclosed herein are systems , methods and com 
puter - readable storage media for proving packet transit 
through uncompromised nodes . The present technologies 
will be described in more detail in the following disclosure 
as follows . The disclosure begins with an initial discussion 
of systems and technologies for providing explicit verifiable 
proof of integrity of network nodes traversed by packets . A 
description of example systems , methods and environments 
for providing verifiable proof of integrity of network nodes 
traversed by packets , as illustrated in FIGS . 1 through 7 , will 
then follow . The discussion concludes with a description of 
an example network device and an example computing 
device architecture , as illustrated in FIGS . 8 and 9 , including 
example hardware components suitable for performing vari 
ous networking and computing operations described herein . 
[ 0032 ] The disclosure now turns to an initial discussion of 
example concepts and technologies for providing verifiable 
proof of integrity of network nodes traversed by packets . 
[ 0033 ] A computer network can include different nodes 
( e.g. , network devices , client devices , sensors , and any other 
computing devices ) interconnected by communication links 
and segments for sending data between end nodes . Many 
types of networks are available , including , for example , 
local area networks ( LANs ) , wide area networks ( WANs ) , 
software - defined networks ( SDNs ) , wireless networks , core 
networks , cloud networks , the Internet , etc. When data traffic 
is transmitted through one or more networks , the data traffic 
typically traverses a number of nodes that route the traffic 
from a source node to a destination node . 
[ 0034 ] While having numerous nodes can increase net 
work connectivity and performance , it also increases secu 
rity risks as each node that a packet traverses introduces a 
risk of unauthorized data access and manipulation . For 
example , when a packet traverses a node , there is a security 
risk that is introduced which can result from the node being 
potentially compromised ( e.g. , hacked , manipulated , cap 
tured , etc. ) . As a result , compliance , security , and audit 
procedures can be implemented to verify that network users , 

devices , entities and their associated network traffic comply 
with specific business and / or security policies . 
[ 0035 ] When sensitive information is transmitted through 
nodes in a network , such as in battlefield , banking settings , 
and healthcare settings , such traffic should be sent through 
uncomprised nodes to prevent access to , leakage of , or 
tampering with the data and sensitive information carried by 
that traffic . If an attacker gains access to a device via some exploit , previous protection and encryption approaches for 
network interfaces are generally ineffective at mitigating or 
addressing such unauthorized access and resulting damage . 
[ 0036 ] Proving that network traffic complies with specific 
policies can involve proving in a secure way that the traffic 
has traversed a well - defined set of network nodes ( e.g. , 
firewalls , switches , routers , etc. ) and that such network 
nodes have not been modified or compromised . This can 
help ensure that the network nodes have performed their 
expected or intended actions ( e.g. , packet processing , secu 
rity or policy compliance verification , routing , etc. ) on the 
packet and that the packet has traversed the network nodes . 
[ 0037 ] Some security approaches can aim at removing any 
implied trust in the network used for connecting applications 
hosted on devices to cloud or enterprise hosted services . 
Moreover , some security approaches can be implemented to 
verify the trustworthiness ( e.g. , the integrity , identity , state , 
etc. ) of the network and / or nodes traversed by packets . In 
some cases , certain verification checks can be implemented 
to validate or verify that traffic has traversed a specific set of 
nodes and that such nodes are trusted and uncompromised . 
In some examples , certain Proof - of - Transit ( POT ) , Trusted 
Platform Module ( TPM ) , attestation , or proof of integrity 
approaches can be implemented to verify or validate the 
trustworthiness of a node in a network . 
[ 0038 ] POT can enable a network user or entity to verify 
whether traffic traversed a defined set of network nodes . 
Attestation , as further described below , can also be used to 
verify the integrity of a node . In some cases , the approaches 
herein can integrate both to offer a secure approach that 
allows network users or entities to verify that traffic has 
traversed a defined set of nodes and that such nodes have not 
been compromised . 
[ 0039 ] In some cases , TPM can be implemented to collect 
and report the identity of hardware and software components 
in a platform to establish trust for that platform . A TPM used 
in a computing system can report on the hardware and 
software of the system in a manner that allows verification 
of expected behavior associated with that system and , from 
such expected behavior , establishment of trust . The TPM 
can be a system component containing state that is separate 
from the host system on which the TPM reports identity 
and / or other information . TPMs can be implemented on 
physical resources ( indirectly or directly ) of the host system . 
In some examples , a TPM component can have a processor 
and memory such as RAM , ROM and / or flash memory . In 
other implementations of a TPM , a host processor can run 
TPM code while the processor is in a particular execution 
mode . Parts of system memory can be partitioned by hard 
ware to ensure that memory used by the TPM is not 
accessible by the host processor unless the host processor is 
in the particular execution mode . 
[ 0040 ] In some cases , trusted computing ( TC ) implemen 
tations , such as TPM , can rely on Roots of Trust . Roots of 
Trust can be system elements that should be trustworthy 
because misbehavior by such system elements may not be 
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detectable . A set of roots can provide a minimum function 
ality that can sufficiently describe characteristics that affect 
a platform's trustworthiness . In some cases , determining if 
a Root of Trust is behaving properly may not be possible ; 
however , it may be possible to determine how roots are 
implemented . For example , certificates can provide assur 
ances that the root has been implemented in a way that 
renders it trustworthy . 
[ 0041 ] To illustrate , a certificate may identify the manu 
facturer and evaluated assurance level ( EAL ) of a TPM . 
Such certification can provide a level of confidence in the 
Roots of Trust used in the TPM . Moreover , a certificate from 
a platform manufacturer may provide assurance that the 
TPM was properly installed on a system that is compliant 
with specific requirements so the Root of Trust provided by 
the platform may be trusted . Some implementations can rely 
on three Roots of Trust in a trusted platform , including Root 
of Trust for Measurement ( RTM ) , Root of Trust for Storage 
( RTS ) , and Root of Trust for Reporting ( RTR ) . 
[ 0042 ] The RTM can send integrity information , such as 
integrity measurements , to the RTS . Generally , the RTM can 
be a processor controlled by a Core Root of Trust for 
Measurement ( CRTM ) . The CRTM is the first set of instruc 
tions executed when a new chain of trust is established . 
When a system is reset , the processor ( e.g. , RTM ) can 
execute the CRTM , which can then send values that indicate 
its identity to the RTS . Thus , in some cases , the starting point 
for a chain of trust can be established in this manner . 
[ 0043 ] As previously noted , the TPM memory can be 
shielded from access by an entity other than the TPM . Since 
the TPM can be trusted to prevent unauthorized access to its 
memory , the TPM can act as an RTS . Moreover , the RTR can 
report on the contents of the RTS . An RTR report can be a 
digitally signed digest of the contents of one or more values 
in a TPM . 

[ 0044 ] Attestation is another example trusted computing 
approach that can be used to verify the integrity of a node . 
Attestation can be applied to a node , such as a router or 
switch , to review logs from connected devices , such as 
Layer 1 ( L1 ) or Layer ( L2 ) connected devices , and maintain 
these logs in trusted storage . These logs can be protected by 
embedding a private key into every trust anchor produced 
for a hardware device , and publishing the device's public 
key as a certificate to adjacent devices . This peering device 
can then push log updates from trusted storage periodically 
and / or on some log entry event . Reviewing any provided 
signed logs can provide an understanding of the current 
trustable state of a peer device . Moreover , by looking back 
at the set of transactions which have occurred since boot 
time , a determination can be made regarding the trustwor 
thiness of the information which that peer device is assert 
ing . 
[ 0045 ] In some examples , canary stamps , which can refer 
to tokens or metadata elements containing security measure 
ments or evidence , can be used to provide verifiable evi 
dence of device trustworthiness ( e.g. , integrity , state , etc. ) . 
Such verifiable evidence can be appended or included in 
packets transmitted by nodes on a network . The canary 
stamps can thus be used to evaluate the trustworthiness of a 
node ( s ) and react accordingly . For example , a device or 
entity can review a canary stamp associated with a node to 
determine that the node should not be trusted and adjust a 
network policy to mitigate possible damage . 

[ 0046 ] In some implementations , dedicated cryptoproces 
sors , such as a processor in TPM platform , can take mea 
surements to attest to the trustworthiness ( e.g. , identity , 
integrity , etc. ) of a node and its environment ( e.g. , software , 
hardware , operating system , running binaries , firmware , 
etc. ) . These measurements include evidence that the node is 
in a safe state . In some cases , these measurements can be 
provided through canary stamps , as previously described . 
However , a receiver of such evidence should be able to 
certify that the evidence is fresh , as the evidence can become 
stale thereby potentially reducing its effectiveness in reflect 
ing the current trustworthiness of a node . For example , 
without ensuring freshness of such evidence , an attacker has 
an opening to inject previously recorded measurements and 
asserting what is replayed as being current . 
[ 0047 ] Some approaches can detect the replaying of old 
evidence via a " nonce ” . A nonce is a random number that 
can be used to introduce randomness . In some cases , a nonce 
can passed into a TPM and / or incorporated into a canary 
stamp . In some cases , a result provided by the TPM can 
include a signature based on the nonce . Since the nonce can 
be grounded in a transactional challenge / response interac 
tion model , in some cases the nonce may be less effective 
with unidirectional communications originating from an 
attesting device . For example , a nonce may less effective 
with an asynchronous push , multicast , or broadcast message . 
[ 0048 ] However , there are numerous use cases where a 
platform assessing whether its peers are trustworthy is 
advantageous . Being able to perform a unidirectional attes 
tation using an asynchronous push , multicast , or broadcast 
message in conjunction with trusted binaries opens many 
possibilities for platforms to assess whether their peers are 
trustworthy . Detection of invalid attestations can trigger 
alarms or events , reduction of network access from a suspect 
device , or can become a part of Admission Control ( e.g. , 
IEEE 802.1X ) . Some platforms can be configured to support 
the unidirectional attestation mechanism . 
[ 0049 ] Other freshness approaches can be based on trusted 
computing capabilities , such as TPM . For example , a token 
can be generated which allows external entities to validate 
freshness of asserted data based on the state of internal 
counters within the TPM . This token can be used to detect 
replay attacks , and provide attestation for asynchronous 
push , multicast , and broadcast messages . In some cases , 
such tokes can include canary stamps . Such tokens can be 
referred to as canary stamps because each signed measure 
ment is like a stamp proving its authenticity , and like a 
canary in a coal mine they indicate an early sign of trouble . 
[ 0050 ] Various of the foregoing approaches can be com 
bined with TPM - integrated capabilities aimed at verifying 
that valid compute components , such as binary processes , 
are running on a node . These capabilities can include , for 
example , Trusted Execution Environments ( TEE ) which 
provide runtime malware protections , Authenticated Code 
Modules ( ACM ) which ensure that only digitally - signed 
code modules can be loaded into a processor , and the like . 
These technologies can validate that a processor is running 
known software with a valid chain of binary signatures . 
[ 0051 ] In some cases , canary stamps ( e.g. , tokens or 
metadata elements ) can be created by extracting current 
counters ( e.g. , clock , reset , restart ) from a node's TPM , and 
incorporating such counters and security measures taken 
from the node into a packet . In some examples , the current 
counters and / or security measures can be hashed with infor 
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mation within an external TPM . The canary stamp can 
thereby provide a non - spoofable token or metadata element , 
which can bind continuously incrementing counters on an 
attestee with a known external state . Any resetting of the 
TPM counters is visible in any subsequent TPM queries , and 
any restarting of a platform is also exposed in subsequent 
TPM queries . Within these bounds of reset and restart , the 
TPM's time ticks counter continuously increments . There 
fore , any push of attestee TPM information which includes 
these counters can be determined to have occurred subse 
quent to any previously - received measurement . Also , if the 
reset and restart counters have not changed , the incremental 
time since any previous measurement can also be known . 
[ 0052 ] In some cases , a large amount of information that 
should be trusted by network peers may not be contained 
within the TPM's Program Configuration Registers ( PCR ) . 
As a result , indirect methods of validating that a node has not 
been compromised can be applied . 
[ 0053 ] The receipt of canary stamps can mean that a 
receiver should have the option of verifying the information . 
In many cases , such verification can be performed without 
the need of supplementary evidence being sent with the 
canary stamp . Moreover , in non - controller based or central 
ized implementations , the verification steps do not have to 
occur at the receiver . 
[ 0054 ] In some integrity verification implementations , a 
controller or device can implement an integrity verification 
application . The integrity verification application can be 
designed to recognize change events and evaluate known 
good values , which allow evaluation of a boot - integrity 
stamp and a running process binary signature stamp based 
on , for example , TPM counters , timestamps , nonces , and / or 
time tokens . On any discrepancy , a controller or centralized 
device can isolate a compromised node from its network 
peers by shutting down the interfaces of the node . 
[ 0055 ] In some examples , one or more canary stamps 
( e.g. , tokens or metadata elements ) and / or verifications for 
integrity can be implemented , such as a measured - boot 
stamp ( e.g. , SHA1 hash over PCRs 0-7 ) , a verified - boot 
stamp ( e.g. , which can verify that only recognized binaries 
were executed when booting ) , a process - stamp ( e.g. , root 
of - trust validated through a process which is asserting a 
particular protocol or protocols ) , a file - system stamp ( e.g. , 
all files within a vendor determined set of directories ) , a 
log - integrity stamp ( e.g. , used to augment existing integrity 
analytics and forensics ) , a configuration stamp ( e.g. , State of 
the current device configuration ) , etc. Some implementa 
tions can achieve all or some of these stamps , depending on 
the implementation . Moreover , in some implementations , all 
or some of these stamps can be implemented or achieved 
using a single or multiple stamps . 
[ 0056 ] As previously explained , TPM provides methods 
for collecting and reporting the identity of hardware and 
software components in a platform to establish trust for that 
platform . TPM functionality can be embedded in a variety of 
devices including mobile phones , personal computers , net 
work nodes ( e.g. , switches , routers , firewalls , servers , net 
work appliances , etc. ) , and / or any other computing devices . 
Further , attestation can describe how the TPM can be used 
as a hardware root of trust and offer proof of integrity of a 
node . Such integrity can include hardware integrity , soft 
ware integrity ( e.g. , micro loader , firmware , boot loader , 
kernel , operating system , binaries , files , etc. ) , and runtime 
integrity . 

[ 0057 ] In some cases , TPM and attestation can be imple 
mented as described herein to provide proof of integrity and 
proof of transit through uncompromised nodes . In some 
examples , canary stamps ( e.g. , tokens or metadata elements 
containing or reflecting security measures ) are used as 
previously mentioned to validate the integrity of a node and 
perform continuous evaluation of node integrity . Thus , the 
canary stamps described herein can be used to provide proof 
of transit through uncompromised nodes . 
[ 0058 ] In some examples , the canary stamp can be added 
as additional metadata to packets that traverse a network 
where proof of transit via uncompromised nodes is desired . 
Various strategies can be implemented for transporting a 
canary stamp in a packet . In some cases , a canary stamp can 
be carried within an In - Situ ( or in - band ) Operations , Admin 
istration and Management ( IOAM ) data field . 
[ 0059 ] In some implementations , a canary stamp can be 
carried IOAM trace data . For example , the canary stamp 
( e.g. , the token or metadata ) can be carried as part of an 
IOAM data field in a variety of encapsulation protocols such 
as , for example and without limitation , IPv4 , IPv6 , NSH 
( Network Service Header ) , etc. In some cases , the canary 
stamp can be carried in an IOAM data field as an IOAM 
Trace option data element ( e.g. , with an IOAM Trace type 
for node integrity canary stamp ) . A canary stamp or canary 
stamp digest can be added in the IOAM trace option of a 
packet by each node that forwards the packet . 
[ 0060 ] When the packet reaches a node ( e.g. , the destina 
tion node and / or an intermediate node ) that removes IOAM 
metadata ( e.g. , an IOAM decapsulating node ) , the validity of 
a canary stamp in the packet can be verified to determine that 
the packet traversed uncompromised nodes . In some 
examples , since canary stamps are time bound , the packet 
trace timestamps defined in IOAM can be used to validate 
the canary stamp in the time window the packet traversed 
that node . 
[ 0061 ] Verification can be performed without placing a 
large transactional load on the verifier or a device , such as 
a controller , that will ultimately validate the security mea 
surements associated with the canary stamp . This is because 
canary stamp measurement values can often change infre 
quently . The verifier may only need to validate a canary 
stamp or canary stamp digest carried within an IOAM data 
trace whenever the security measurements associated with 
the canary stamp or canary stamp change ( e.g. , a verifier 
may only need to check with a controller whenever it sees 
a node's TPM extends a Platform Configuration Register 
( PCR ) value which was not previously confirmed by the 
verifier ) . 
[ 0062 ] In some cases , when only the time ticks within a 
signed canary stamp increases , only the signature of the 
canary stamp is validated . To do this , the verifier may use the 
public key of any node which can place a canary stamp . 
Such signature validation can be done without using a 
controller to verify stamp measurements . 
[ 0063 ] In another example , a packet can carry IOAM POT 
data with space optimization of canary stamp values . This 
example can leverage a new IOAM POT data field , which 
can carry canary stamp or a hash extend of a canary stamp 
and which can also carry canary stamp data across nodes . In 
some cases , a canary stamp hash extend can be a similar 
method as a Platform Configuration Registers ( PCRs ) 
extend operation performed by TPMs . 
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[ 0064 ] In some cases , the canary stamp hash extend can 
provide a one - way hash so that canary stamp recorded by 
any node cannot be removed or modified without detection . 
IOAM proof of transit option data for a canary stamp digest 
can be defined by a hash algorithm ( e.g. , 20 octets with 
SHA1 , 32 octets with SHA 256 , etc. ) . In some implemen 
tations , each node along a path of the packet can forward the 
packet with a new or updated canary stamp digest . In some 
examples , the new or updated canary stamp digest can be 
generated by a node as follows : IOAM canary stamp digest 
new value = Digest of ( IOAM canary stamp digest old val 
ue | hash ( canary stamp of the node ) ) , where the IOAM canary 
stamp digest old value can refer to the canary stamp digest 
included in the packet by one or more previous hops . 
[ 0065 ] Moreover , in some cases , a Per Packet Nonce 
( PPN ) , where PPN changes per packet and is carried as 
another field within the IOAM metadata option , can be 
added to provide robustness against replay attacks . To 
illustrate , in some examples , a PPN can be added as follows : 
IOAM canary stamp digest new value = Digest of ( IOAM 
canary stamp digest old value | hash ( canary stamp of the 
node || PPN ) ) . A node creating the new value for the IOAM 
canary stamp digest can thus take the value of any previous 
IOAM canary stamp digest , and extend / hash that value with 
the node's current canary stamp . The result of the concat 
enation and hashing can then be written into IOAM POT 
data ( or other IOAM data fields ) as the new IOAM canary 
stamp digest . 
[ 0066 ] At the verifier ( e.g. , the device verifying the canary 
stamp data ) , the same operation can be performed over 
expected canary stamp values calculated for the nodes that 
are traversed in the time window when the packet was 
forwarded . In some cases , a verifier can be an inline device 
or a centralized device . Moreover , in some examples , nodes 
that are expected to be traversed can be identified using 
IOAM tracing , routing state or by sending active probes . A 
match between the value of POT data carrying a canary 
stamp digest and the expected canary stamp value can prove 
that the packet traversed through trusted or uncompromised 
nodes . 
[ 0067 ] In some examples , one or more strategies can be 
implemented to optimize canary stamp validation . For 
example , canary stamps can detect attempts of a replay 
attack by embedding a nonce as well as TPM or TPM2 
counters ( e.g. , clock , reset , restart ) . In some cases , this nonce 
can be part of the canary stamp and different from the PPN 
described above . 
[ 0068 ] The nonce is relevant to a receiver as the interval 
from the nonce's creation time to the first stamp received by 
the verifier can define the interval of freshness ( e.g. , the 
measurement is no older than this interval of freshness ) . 
From there , the TPM2 time ticks counter can be used to 
maintain that initial gap of freshness even without the 
delivery of a new nonce . 
[ 0069 ] In some implementations , to optimize canary 
stamp validation across nodes , the following approaches can 
be implemented to deliver synchronization information from 
a central component to each node and the verifier . For 
example , a central server can broadcast or multicast cen 
tralized nonce values ( e.g. , tracked random numbers ) . Each 
node can pick up the latest nonce and use it to attest a stamp 
value . A verifier can know the freshness of a stamp it 
receives from each node . This freshness can be the delta in 
time since that particular nonce was issued . Subsequent 

attestations can use the incrementing time ticks to prove 
freshness from that initial time gap . In some cases , the 
issuing of new nonces can reset the time gap to a potentially 
shorter interval . 
[ 0070 ] Moreover , in some cases , each node can embed 
attested time within its canary stamp . To get attested time , a 
TUDA ( Time - Based Uni - Directional Attestation ) scheme 
such as the TUDA scheme described in https : // datatracker . 
ietf.org/doc/draft-birkholz-i2nsf-tuda/ , the contents of which 
are incorporated herein by reference in their entirety , can be 
used . This can result in the availability of both the attested 
time at a node , as well as the value of the TPM2 counters at 
this node when a TUDA time - synchronization token was 
created . This can eliminate the use of a central nonce 
authority , but can increase the size of the canary stamp as the 
nonce can be replaced by the TUDA time - synchronization 
token . This approach may also implement a central time 
stamp authority as per TUDA . In some examples , for each 
hop , a canary stamp digest value can be : IOAM canary 
stamp digest new value = Digest of ( IOAM canary stamp 
digest old value hash ( canary stamp of the node || TUDA 
time - synchronization token of the node ) ) . 
[ 0071 ] This approach can provide numerous benefits . For 
example and without limitation , with this approach , a veri 
fier can limit the number of verifications by verifying the 
signature of a hop's time - synchronization token only when 
it changes . Moreover , with this approach , there may not be 
a time gap nonce changeover freshness when a first mea 
surement is received . Further , in some cases , this approach 
can be implemented without also carrying a PPN or without 
synchronizing a nonce across nodes as previously described . 
[ 0072 ] Having provided an initial discussion of example 
concepts and technologies for providing explicit verifiable 
proof of integrity of network nodes traversed by packets , the 
disclosure now turns to FIG . 1 . 
[ 0073 ] FIG . 1 is a block diagram of an example of 
networking environment 100 in accordance with some 
implementations . While pertinent features are shown , those 
of ordinary skill in the art will appreciate from the present 
disclosure that various other features have not been illus 
trated for the sake of brevity and so as not to obscure aspects 
of the example implementations disclosed herein . 
[ 0074 ] In this example , the networking environment 100 
can include a network 114 of interconnected nodes ( e.g. , 
108A - N , 110A - N , and 112A - N ) . The network 114 can 
include a private network , such as a local area network 
( LAN ) , and / or a public network , such as a cloud network , a 
core network , and the like . In some implementations , the 
network 114 can also include one or more sub - networks , 
such as sub - network 114A . Sub - network 114A can include , 
for example and without limitation , a LAN , a virtual local 
area network ( VLAN ) , a datacenter , a cloud network , a wide 
area network ( WAN ) , etc. In some examples , the sub 
network 114A can include a WAN , such as the Internet . In 
other examples , the sub - network 114A can include a com 
bination of nodes included within a LAN , VLAN , and / or 
WAN . 
[ 0075 ] The networking environment 100 can include a 
source node 102. The source node 102 can be a networking 
device ( e.g. , switch , router , gateway , endpoint , etc. ) associ 
ated with a data packet that is destined for a destination node 
116. The source node 102 can communicate with candidate 
next - hop nodes 108A - 108N on the network 114. Each of the 
candidate next - hop nodes 108A - 108N can be included 
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within a respective route between the source node 102 and 
the destination node 116. Moreover , in some cases , each of 
the candidate next - hop nodes 108A - 108N can communicate 
with candidate second hop nodes 110A - 110N in the network 
114. Each of the candidate second hop nodes 110A - 110N 
can similarly communicate with candidate N - hop nodes 
112A - 112N in the network 114 . 
[ 0076 ] The networking environment 100 can also include 
an attestation routing orchestrator 104. The attestation rout 
ing orchestrator 104 can communicate with the candidate 
next - hop nodes 108A - 108N . In some implementations , the 
attestation routing orchestrator 104 can obtain attestation 
data ( e.g. , canary stamps , security measures , signatures , 
and / or metadata ) or vectors from the candidate next - hop 
nodes 108A - 108N . In some examples , the attestation routing 
orchestrator 104 can obtain additional information from 
candidate second - hop nodes 110A - 110N and / or candidate 
N - hop nodes 112A - 112N , and utilize the additional infor 
mation in selecting a particular candidate next - hop node for 
a packet . In some implementations , the attestation routing 
orchestrator 104 can also obtain additional information from 
nodes that are more than two hops away ( e.g. , candidate 
third hop nodes , candidate fourth hop nodes , etc. ) . 
[ 0077 ] The attestation routing orchestrator 104 can com 
municate with a verifier system 106. In some implementa 
tions , the attestation routing orchestrator 104 can obtain 
trusted state , such as a trusted image vector , from the verifier 
system 106. The verifier system 106 can include a verified 
state repository 106A and one or more servers 106B . In 
some examples , the verified state in the verified state reposi 
tory 106A can include one or more verified images , verified 
security measurements , verified settings , verified node data , 
and / or any other verified trust or integrity data . In some 
implementations , the verified state in the verified state 
repository 106A can include one or more trusted states or 
image vectors that are known with a degree of confidence to 
represent uncompromised states or images ( e.g. , states or 
images that have not been hacked , attacked , improperly 
accessed , etc. ) . 
[ 0078 ] As will be described in great detail with reference 
to FIG . 4 , in some cases , the attestation routing orchestrator 
104 can select and direct a data packet to a particular 
candidate next - hop node of the candidate next - hop nodes 
108A - 108N based on a trusted state or image vector and the 
attestation states or vectors . Moreover , the attestation rout 
ing orchestrator 104 can direct the data packet destined for 
the destination node 116 to the particular candidate next - hop 
node . 
[ 0079 ] FIG . 2 is a block diagram of another example 
networking environment 200 in accordance with some 
implementations . In this example , the networking environ 
ment 200 includes a source node 202 that implements an 
attestation routing orchestrator 202B . In some implementa 
tions , the attestation routing orchestrator 202B can be simi 
lar to , or adapted from , the attestation routing orchestrator 
104 in FIG . 1 . 
[ 0080 ] The source node 202 can include one or more 
processors 202B . In some implementations , the one or more 
processors 202B can provide processing resources for gen 
erating a confidence scores for the candidate next - hop nodes 
108A - 108N . In some implementations , the one or more 
processors 202B can provide processing resources for 
selecting a particular confidence score , from the confidence 
scores , that satisfies one or more selection criteria . 

[ 0081 ] In some examples , the source node 202 can include 
a memory 202C . The memory 202C can be , for example and 
without limitation , a non - transitory memory , such as RAM 
( random - access memory ) , ROM ( Read - only memory ) , etc. 
The memory 202C can store the data , such as the packet 
destined for the destination node 116. In some implemen 
tations , the memory 202C can store a trusted state or image 
vector obtained from the verifier system 106. In some 
implementations , the memory 202C can store attestation 
states or vectors obtained from the candidate next - hop nodes 
108A - 108N and optionally attestation states or vectors 
obtained from the candidate second hop nodes 110A - 110N 
and / or the candidate N - hop nodes 112A - 112N . The source 
node 202 can also include a network interface 202D for 
obtaining , receiving , and transmitting the data packets and 
states or vectors . 

[ 0082 ] In some implementations , the source node 202 can 
select and direct a data packet to a particular candidate 
next - hop node based a trusted state or image vector and the 
attestation states or vectors . 
[ 0083 ] FIG . 3 is a block diagram of another example 
networking environment 300 in accordance with some 
implementations . In this example , one or more of the 
candidate next - hop nodes 108A - 108N can relay a trusted 
state or image vector from the verifier system 106 to the 
source node 302. In some implementations , the attestation 
routing orchestrator 302A can be similar to , or adapted from , 
the attestation routing orchestrator 104 in FIG . 1 and / or the 
attestation routing orchestrator 202A in FIG . 2 . 
[ 0084 ] In some implementations , the verifier system 106 
can sign the trusted state or image vector and provide the 
signed trusted state or image vector to a particular candidate 
next hop node , which in turn can provide the signed trusted 
state or image vector to the source node 302. In some 
implementations , having the particular candidate next hop 
node provide the signed trusted state or image vector can 
reduce attestation time ( e.g. , the time to determine trustwor 
thiness of the particular candidate next hop node ) because 
the source node 302 may not need to contact a remote node 
( verifier system 106 ) . In some implementations , attestation 
time can be further reduced because a single attestation 
process ( e.g. , the verifier system 106 signing the trusted state 
or image vector ) facilitates the attesting of multiple source 
nodes . In other words , trusted states or image vectors may 
not be generated and evaluated on a per source node basis . 
[ 0085 ] Moreover , in implementations in which the source 
node 302 is not connected to the verifier system 106 ( e.g. , 
link down ) , obtaining the trusted state or image vector from 
the particular candidate next hop provides an alternative 
mechanism for node attestation . In some implementations , 
the verifier system 106 appends a time - stamped response to 
the trusted state or image vector as part of the signing 
process , which can be referred to as stapling . Consequently , 
the source node 302 may not contact the verifier system 106 
in order to attest a particular candidate next hop node . 
[ 0086 ] FIG . 4 is a block diagram of an example controller 
orchestrated attestation - based routing 400 , in accordance 
with some implementations . In some examples , the source 
node 402 is similar to , or adapted from , the source node 102 
in FIG . 1. As illustrated in FIG . 4 , the attestation routing 
orchestrator 104 is separate from , but coupled ( e.g. , con 
nected ) to , the source node 402. In some examples , the 
attestation routing orchestrator 104 can include a controller 
with knowledge of the network 114 that includes the can 
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didate next - hop nodes 108A - N and optionally the candidate 
second - hop nodes 110A - N and / or the candidate N - hop 
nodes 112A - N . 
[ 0087 ] For example , in some implementations , the attes 
tation routing orchestrator 104 can be a network manage 
ment system ( NMS ) . As another example , in some imple 
mentations , the attestation routing orchestrator 104 can be 
an intent - based networking system , such as Cisco's Digital 
Network Architecture ( DNA ) . As yet another example , in 
some implementations , the attestation routing orchestrator 
104 can be a wireless LAN controller ( WLC ) , and the 
candidate next - hop nodes 108A - 108N and optionally the 
candidate second hop nodes 110A - N and / or the candidate 
N - hop nodes 112A - N can be networking devices such as 
access points , user devices , switches , routers , firewalls , etc. 
[ 0088 ] The attestation routing orchestrator 104 can obtain 
attestation data ( e.g. , canary stamps ) from the candidate 
next - hop nodes 108A - 108N . Each of the candidate next - hop 
nodes 108A - 108N can be included within a respective route 
between the source node 402 and a destination node ( e.g. , 
114 ) . In some implementations , the respective routes are 
independent of each other . 
[ 0089 ] The attestation routing orchestrator 104 can deter 
mine confidence scores based on the attestation data . For 
example , in some cases , each of the confidence scores can be 
based on a comparison between a corresponding one of the 
attestation data and a trusted state or image vector . In some 
implementations , the attestation routing orchestrator 104 can 
obtain the trusted state or image vector from the verifier 
system 106 . 
[ 0090 ] In some examples , the attestation routing orches 
trator 104 can obtain attestation data from candidate second 
hop nodes ( e.g. , 110A - N ) and / or candidate N - hop nodes 
( 112A - N ) . Each of the candidate second - hop nodes and / or 
the candidate N - hop nodes can be included within a respec 
tive route between a corresponding one of the candidate 
next - hop nodes 108A - 108N and the destination node . More 
over , each of the confidence scores can additionally be based 
on a comparison between a corresponding one of the atten 
tion data and the trusted state or image vector in combination 
with a comparison between another corresponding one of 
the attestation data from the candidate next - hop nodes 
108A - N and the trusted state or image vector . 
[ 0091 ] The attestation routing orchestrator 104 can select , 
from the confidence scores , a particular confidence score 
that satisfies one or more selection criteria . The particular 
confidence score is associated with a particular candidate 
next - hop node of the candidate next - hop nodes 108A - 108N . 
[ 0092 ] The attestation routing orchestrator 104 can directs , 
to the particular candidate next - hop node , a data packet 
destined for the destination node . For example , in some 
cases , the attestation routing orchestrator 104 can provide 
attested route information ( e.g. , validated canary stamp data , 
security measurements , etc. ) to an attested route manager 
402D of the source node 402 in order to facilitate the source 
node 402 sending the data packet to the particular candidate 
next - hop node . The attested route information can be indica 
tive of the trustworthiness of each of the candidate next - hop 
nodes 108 A - 108N . 
[ 0093 ] For example , in some implementations , the attested 
route information includes an identifier ( e.g. , an IP address , 
a MAC address , an SSID , etc. ) identifying a secure candi 
date next - hop node of the candidate next - hop nodes 108A 
108N . In this example , the source node 402 can provide the 

data packet based on the identifier in order to route the data 
packet to the secure , particular candidate next - hop node . 
[ 0094 ] As another example , in some implementations , the 
attested route information can include confidence scores 
associated with the candidate next - hop nodes 108A - 108N . 
In this example , the attested route manager 402D can select 
a particular candidate score based on one or more selection 
criteria . Moreover , the attested route manger 402D can 
provide the data packet to the particular next - hop node 
associated with the particular candidate score . In some 
examples , the attestation routing orchestrator 104 can cease 
to direct additional data packets to the particular candidate 
next - hop node in response to determining that the particular 
confidence score falls below a confidence threshold . 
[ 0095 ] In some cases , the source node 402 can include one 
or more processors 402A . The one or more processors 402A 
can provide processing resources for managing attested 
route information obtained from the attestation routing 
orchestrator 104. The source node 402 can also include a 
memory 402B . The memory 402B can include , for example , 
a non - transitory memory such as RAM , ROM , etc. In some 
examples , the memory 402B can store data such as the 
obtained attested route information and data packets to be 
transmitted . The source node 402 can also include a network 
interface 402C for obtaining the attested route information 
and sending / receiving other data . 
[ 009 ] In some cases , whether a network device has been 
compromised can be determined based on indicators asso 
ciated with the network device and time information . The 
indicators can include , but are not limited to , a set of security 
measurements or evidence footprints which indicate 
whether a particular device is compromised . Such indicators 
can come from one or more sources such as , for example and 
without limitation , TPM , canary stamps , Syslog , YANG 
Push , EEM , peer devices , traffic counters , and other sources . 
Visibility can be a method of identifying a compromise in a 
timely manner . 
[ 0097 ] When there are no indicators ( i.e. , no security 
measurements or footprints available ) , the probability of a 
device being compromise can be a function of the time 
which has passed since a last validation that the device is in 
a known good state . In some cases , with the foregoing 
indicators , a formula can be provided for estimating prob 
ability or chance of a compromise on any given device 
operating within a network . 
[ 0098 ] For example , P_V , can be defined as a probability 
for compromise of type 1 when there is a specific set of 
events / signatures existing which correspond to the compro 
mise . P_V2 can be defined as probability for compromise of 
type 2 and P_Vx can be defined as probability for compro 
mise of type x . Assuming each of these compromises ( P_V1 
through P_vx ) are independent , the following equation can 
provide the probability of a compromise based on recog 
nized signatures ( P_v ) : 

P_v = 1 - ( ( 1 - P_v1 ) ( 1 - P_v3 ) ( 1 - P_vx ) ) Equation ( 1 ) . 

[ 0099 ] Other type of equations can be used instead of , or 
in conjunction with , equation ( 1 ) when there are interde 
pendencies between different types of evaluated compro 
mises ( P_V1 , P_V2 , P_vx ) . 
[ 0100 ] Furthermore , in some cases , a given probability 
( e.g. , P_V2 - P_vx ) can be determined based on evidence of 
events from a device for which the probability of a com 
promise is being calculated ( e.g. , via equation ( 1 ) ) and / or 
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evidence obtained from one or more devices adjacent to the 
device for which the probability of a compromise is being 
calculated ( e.g. , via equation ( 1 ) ) . 
[ 0101 ] In some cases , a probability that an invisible com 
promise has occurred at a device in the deployment envi 
ronment can be expressed by the equation : 

P = 1 - ( ( 1 - chance of invisible compromise in time 
period t ) ̂  number of t intervals since a last veri 
fication of a good / uncompromised system state ) Equation ( 2 ) . 

[ 0102 ] Effectively knowing P ; can imply that an operator 
knows the half - life which should be expected before a 
device should be considered compromised independently of 
any concrete evidence . It should be noted that a probability 
of an invisible compromise does not have to be static . 
Real - time modification based on current knowledge of 
viruses / attacks may be allowed . 
[ 0103 ] With formulates for visible and invisible factors as 
described above ( equation ( 1 ) and equation ( 2 ) ) , an overall 
probability of a compromise for a given device may be given 
by : 

Pe = 1 - ( ( 1 - P ) * ( 1 - P ; ) ) Equation ( 3 ) . 

[ 0104 ] Equation ( 3 ) provides an indicator of trustworthi 
ness of a given device . This metric considers both time 
based entropy and any available evidence which can be 
correlated to known compromises . 
[ 0105 ] If P. can be calculated ( or roughly estimated ) , 
various functions can be efficiently prioritized . For example , 
a controller may schedule when to do deeper validation ( or 
perhaps direct refresh ) of a device . This scheduling could 
include determining when to perform active checks to 
validate device memory locations ( locations possibly con 
taining executable code which might have been compro 
mised ) . These can be used to return the system to a known 
good state ( and reset the entropy timer ) . Local configuration 
repositories can be refreshed based on evidence of security / 
trustworthiness issues underway , rather than being based 
just on time . Beyond the scheduling of system checks , there 
can be forwarding implications based on the value of Pc . For 
example , routing or switching behavior might be adjusted 
impacted based on the relative trustworthiness of a remote 
device . Where a higher P. values exist , sensitive data traffic 
flows can be routed around that device . 
[ 0106 ] As a further advantage of the present disclosure , it 
should be noted that encryption alone may be insufficient to 
protect sensitive flows since there are scenarios where even 
the fact that a flow is occurring between endpoints might be 
considered information to be protected ( e.g. , in a battlefield ) . 
[ 0107 ] FIG . 5 illustrates an example flow 500 for provid 
ing proof of packet transit through uncompromised nodes . In 
this example , the source node 502 first sends ( 510 ) a packet 
destined to the destination node 116. The source node 502 
can be similar to , or adapted from , source node 102 , 202 , or 
302 shown in FIGS . 1 , 2 , and 3 respectively . 
[ 0108 ] The packet from the source node 502 is received by 
a next - hop node 108A along a route to the destination node 
116. When the next - hop node 108A receives the packet , it 
can add ( 512 ) canary stamp data to the packet . In some 
examples , the next - hop node 108A can include the canary 
stamp data in an IOAM data field on the packet . For 
example , in some implementations , the next - hop node 108A 
can add the canary stamp data in an IOAM data field as an 
IOAM Trace option data element which can be used to carry 
the canary stamp data in the packet . In other implementa 

tions , the next - hop node 108A can add the canary stamp data 
in a new IOAM POT ( proof - of - transit ) data field which can 
be used to carry the canary stamp data in the packet . 
[ 0109 ] In other examples , the next - hop node 108A can 
include the canary stamp data in an Inband Network Telem 
etry ( INT ) header in the packet , an Inband Flow Analyzer 
( IFA ) header in the packet , or a header associated with an 
In - situ Flow Information Telemetry ( IFIT ) service used to 
transmit the packet . 
[ 0110 ] The canary stamp data added to the packet can be 
used to verify or prove that the next - hop node 108A is a 
trusted or uncompromised node . For example , a receiving 
device , such as a verifier system ( e.g. , 106 ) or a node along 
the path of the packet , can analyze the canary stamp data 
carried in the packet to assess whether the next - hop node 
108A is trustworthy and / or compromised . The canary stamp 
data can include security measurements taken at the next 
hop node 108A or a hash / digest of the security measure 
ments . The security measurements can evidence the trust 
worthiness or integrity state of the next - hop node 108A . For 
example , the security measurements can include information 
about a current state of hardware , software , firmware , a 
runtime environment , etc. , at the next - hop node 108A . 
[ 0111 ] Such information can indicate whether the next 
hop node 108A has been compromised ( e.g. , hacked , 
attacked , accessed / modified without permission , etc. ) ; 
whether the next - hop node 108A has any unauthorized or 
untrusted hardware or software components , whether a state 
( e.g. , firmware , hardware , software , boot files , sequence of 
loaded software , runtime environment , etc. ) of the next - hop 
node 108A has been modified since deployment and / or a 
previous known state , which could indicate that the next - hop 
node has been compromised ; etc. Non - limiting examples of 
security measurements can include a hardware state or 
integrity measurement , a runtime state or integrity measure 
ment , a firmware state or integrity measurement , a software 
integrity measurement , information identifying what soft 
ware has been loaded at the node , information identifying a 
sequence of software loaded at the node , any operating 
system changes at the node , any application log entries , an 
identity of the node , and / or any information that can be 
measured / captured to determine whether the node has been 
compromised and / or whether the node has had any unveri 
fied / suspicious changes . 
[ 0112 ] In some examples , the security measurements can 
be obtained by a cryptoprocessor on the next - hop node 
108A . The cryptoprocessor can provide secure storage and 
measurement capabilities for the next - hop node 108A . For 
example , the cryptoprocessor can measure what software 
was loaded at the next - hop node 108A during and / or since 
it was booted . As new software is loaded at the next - hop 
node 108A , the cryptoprocessor can measure the new loaded 
software . The cryptoprocessor in this example can thus 
obtain a picture of what software and files have been loaded 
at the next - hop node 108A and a particular sequence in 
which the software and files were loaded . The loaded 
software and files and the load sequence can be used to 
detect any unexpected or unusual software and files loaded 
in the next - hop node 108A or an unexpected or unusual load 
sequence , which can be used to determine whether the 
next - hop node 108A is trustworthy and / or has been com 
promised . 
[ 0113 ] In some implementations , the cryptoprocessor can 
provide the raw security measurements for use as part ( or 

a 



US 2022/0247757 A1 Aug. 4 , 2022 
10 

a 

a 

2 

all ) of the canary stamp data . In other implementations , the 
cryptoprocessor can hash the security measurements and 
provide the hash result for use as part ( or all ) of the canary 
stamp data . Moreover , in some cases , the cryptoprocessor 
can sign the security measurements or a hash of the security 
measurements to validate the security measurements and / or 
protect the information against tampering . 
[ 0114 ] In some cases , the canary stamp data can also 
include a time or counter value which can be used to indicate 
a freshness of the canary stamp data . For example , the 
next - hop node 108A can include a time or counter value in 
the canary stamp data to indicate when the security mea 
surements associated with the canary stamp data were taken 
and / or an interval between the time when the current secu 
rity measurements were taken and the time when previous 
security measurements were taken . 
[ 0115 ] The freshness information can allow a device 
reviewing or verifying the canary stamp data to determine 
whether the associated security measurements are suffi 
ciently fresh to be reliable and / or to prevent a malicious 
actor from simply re - using old data to trick a verifying 
device . In some cases , the time or counter value can include , 
for example and without limitation , one or more TPM 
counters ( e.g. , clock , reset , restart ) , a timestamp , or a TUDA 
time - synchronization token . 
[ 0116 ] In some cases , the canary stamp data can also 
include one or more nonce values . The one or more nonce 
values can be used to insert randomness into the canary 
stamp data to prevent potential replay attacks . In some 
examples , the one or more nonce values can be provided to 
the next - hop node 108A by a remote or centralized system , 
such as the verifier system 106 , for example . The remote or 
centralized system can provide such nonce values to nodes 
for use in respective canary stamp data in order to insert 
randomness into such data , as previously described . In such 
examples , since the nonce values used in canary stamp data 
are provided and known by the remote or centralized system , 
the remote or centralized system ( and / or a separate verifier 
system ) knows what the values in the canary stamp data 
and / or the nonce values in the canary stamp data should be 
or are expected to be , which can allow the remote or 
centralized system ( and / or the separate verifier system ) to 
validate such data and prevent replay attacks . 
[ 0117 ] In some cases , in addition to adding the canary 
stamp data to the packet , the next - hop node 108A can also 
cryptographically sign the canary stamp data . In some 
examples , the next - hop node 108A can sign some or all of 
the canary stamp data using an encryption algorithm and / or 
an encryption key , such as a public key provided by a remote 
or centralized system ( e.g. , verifier system 106 ) . Moreover , 
in some examples , the next - hop node 108A can sign some or 
all of the canary stamp data using a cryptoprocessor on the 
next - hop node 108A , as previously explained . 
[ 0118 ] Once the next - hop node 108A has added the canary 
stamp data to the packet , the next - hop node 108A can send 
( 516 ) the packet with the canary stamp data to the second 
hop node 110A . In some implementations , the second - hop 
node 110A can receive the packet and add / update ( 518 ) the 
canary stamp data in the packet to include canary stamp data 
associated with the second - hop node 110A . For example , in 
some cases , the second - hop node 110A can add additional 
canary stamp data to the packet so the packet includes 
canary stamp data from both the next - hop node 108A and the 
second - hop node 110A . Similar to the canary stamp data 

associated with the next - hop node 108A , the additional 
canary stamp data associated with the second - hop node 
110A can include security measurements taken from the 
second - hop node 110A . 
[ 0119 ] In other cases , the second - hop node 110A can 
update the canary stamp data in the packet with new canary 
stamp data representative of the canary stamp data from the 
next - hop node 108A and canary stamp data from the second 
hop node 110A . To illustrate , in some cases , the canary 
stamp data in the packet received by the second - hop node 
110A can include a canary stamp digest from the next - hop 
node 108A . The canary stamp digest from the next - hop node 
108A can include a hash of the security measurements taken 
at the next - hop node 108A . The second - hop node 110A can 
then create a hash of security measurements taken from the 
second - hop node 110A to create a canary stamp for the 
second - hop node 110A . The second - hop node 110A can then 
update or replace the canary stamp data in the packet with 
a new canary stamp digest , which can be a digest of the 
canary stamp digest from the next - hop node 108A and the 
canary stamp of the second - hop node 110A ( e.g. , the hash of 
the security measurements taken from the second - hop node 
110A ) . 
[ 0120 ] This way , the new canary stamp digest included in 
the packet by the second - hop node 110A can represent both 
the canary stamp digest ( and the security measurements ) 
from the next - hop node 108A and the canary stamp digest 
( and the security measurements ) from the second - hop node 
110A . In some examples , each hop that receives the packet 
can similarly update the canary stamp data in the packet to 
include a new canary stamp digest . The final version of the 
canary stamp digest in the packet to the destination node 116 
can thus reflect or represent the canary stamp digest ( and the 
security measurements ) from each node along the path of the 
packet . A verifier system ( e.g. , 106 ) or an inline node can 
compare that final version of the canary stamp digest in the 
packet with an expected canary stamp digest calculated 
based on expected security measures for each of the nodes 
in the path , to validate ( or invalidate ) the final version of the 
canary stamp digest . 
[ 0121 ] In some cases , the second - hop node 110A can also 
sign ( 520 ) some or all of the canary stamp data added or 
updated by the second - hop node 110A , as previously 
explained . The second - hop node 110A can then send ( 522 ) 
the packet with the new or updated canary stamp data , along 
the path to the N - hop node 112A . The N - hop node 112A can 
receive the packet and validate ( 524 ) the canary stamp data 
in the packet . 
[ 0122 ] In some examples , when validating the canary 
stamp data , the N - hop node 112A can check any signatures , 
nonce values , and / or time or counter values in the canary 
stamp data to verify that the canary stamp data has not been 
tampered with and is sufficiently fresh to be reliable . More 
over , in some cases , to validate the canary stamp data , the 
N - hop node 112A can compare the canary stamp data in the 
packet with an expected canary stamp data value ( s ) calcu 
lated based on the nodes traversed by the packet and 
associated security measurements ( or expected security 
measurements ) . 
[ 0123 ] For example , the N - hop node 112A can create a 
digest of a known or previous state ( e.g. , known or previous 
security measurements ) of each node traversed by the packet 
and compare the resulting digest with a canary stamp digest 
in the packet . If the digests match , the N - hop node 112A can 
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determine that the nodes traversed by the packet have not 
have had changes in state and / or are not compromised . In 
some cases , if the digests do not match , the N - hop node 
112A can check the security measurements from one or 
more nodes along the path of the packet to determine which 
node has had a change in state and / or is potentially com 
promised . 
[ 0124 ] If the N - hop node 112A determines that a node is 
compromised or is unable to verify that the node is not 
compromised , the N - hop node 112A report such findings or 
otherwise trigger a remediation action to avoid a potential 
compromise of data and / or network resources . For example , 
if a node is determined to be compromised or its trustwor 
thiness / integrity cannot be confirmed , a policy can be imple 
mented on the network to avoid routing traffic through that 
node until that node can be returned to a normal state or 
confirmed to not be compromised . As another example , if a 
node is determined to be compromised or its trustworthi 
ness / integrity cannot be confirmed , the node can be powered 
off or removed from the network until the node can be 
returned to a normal state or confirmed to not be compro 
mised . 
[ 0125 ] In other cases , to validate the canary stamp data , 
the N - hop node 112A can check security measurements 
included in the canary stamp data and associated with each 
node along the path of the packet to determine if any of the 
nodes have had a change in state and / or have unusual , 
unexpected , and / or potentially problematic security mea 
surements . For example , the N - hop node 112A can compare 
a security measurement ( s ) from each node with an expected 
security measurement ( s ) or previous known good security 
measurement ( s ) from each node to determine if any node 
has had a change in state and / or is potentially compromised . 
[ 0126 ] In some cases , to validate the canary stamp data , 
the N - hop node 112A can check if the canary stamp data 
matches a previous version of the canary stamp data to 
determine if any state changes have occurred on any of the 
nodes along the path of the packet . The N - hop node 112A 
can also check a nonce and / or time or counter value to verify 
that the canary stamp data is fresh and is not part of a replay 
attack . If the canary stamp data matches the previous version 
of the canary stamp data , the canary stamp data is fresh , and 
there are no indications of a possible replay attack , the 
N - hop node 112A can determine that none of the nodes have 
had a change in state and validate the canary stamp data . The 
validated canary stamp data can indicate that the nodes 
along the path of the packet are not currently compromised . 
[ 0127 ] The N - hop node 112A can then send ( 526 ) the 
packet to the destination node 116. In some cases , prior to 
sending the packet to the destination node 116 , the N - hop 
node 112A can add / update the canary stamp data to include 
canary stamp data from the N - hop node 112A and / or reflect 
security measurements from the N - hop node 112A . The 
N - hop node 112A can send the packet to the destination node 
116 with the current version of the canary stamp data to 
allow the destination node 116 itself verify that the packet 
traversed only through uncompromised nodes . Moreover , in 
some cases , prior to sending the packet , the N - hop node 
112A can also sign the canary stamp data as previously 
described . 
[ 0128 ] In some cases , in validating the canary stamp data 
as described herein , the N - hop node 112A can determine or 
verify whether the packet traversed through uncompromised 
nodes or whether the packet traversed through one or more 

compromised nodes . Moreover , in some implementations , in 
addition to , or in lieu of , validating the canary stamp data , 
the N - hop node 112A can send the packet with the canary 
stamp data to a separate device for validation / verification . 
For example , the N - hop node 112A can send the packet with 
the canary stamp data to a verifier system ( e.g. , 106 ) to have 
the verifier system validate the canary stamp data and 
confirm or determine that the packet has or has not traversed 
through compromised and / or uncompromised nodes . 
[ 0129 ] In some cases , every hop in the chain of hops 
traversed by the packet can provide canary stamp data and 
sign such canary stamp data so that all hops in the chain can 
be verified to be uncompromised . For example , in addition 
to the nodes along the path of the packet providing or 
updating canary stamp data as previously described , if the 
packet is sent to a separate verifier system for verification , 
the verifier system can similarly modify the packet to add or 
update canary stamp data to include or reflect its own canary 
stamp data ( and / or security measurements ) and prove that 
the verifier system is not compromised . 
[ 0130 ] While FIG . 5 shows the canary stamp data in the 
packet being validated by the last hop ( e.g. , the N - hop node 
112A ) before the destination node 116 , it should be noted 
that the canary stamp data can also or alternatively be 
validated by one or more other nodes in the path and / or a 
remote verifier system ( e.g. , 106 ) . For example , in some 
cases , the canary stamp data in the packet can be validated 
by a centralized verifier system ( e.g. , at each hop or at one 
or more hops along the path ) and / or by one or more 
intermediate nodes along the path ( e.g. , as the packet tra 
verses those nodes ) . In FIG . 5 , the validation performed by 
the N - hop node 112A is one illustrative example provided 
for explanation purposes . 
[ 0131 ] FIG . 6 illustrates another example flow 600 for 
providing proof of packet transit through uncompromised 
nodes , where a verifier system 106 verifies and signs canary 
stamp data at each hop along the path of the packet . It should 
be noted that this is one illustrative example implementation 
provided for explanation purposes , and in other examples 
the verifier system 106 may only verify and sign canary 
stamp data at one or more hops along the path of the packet . 
[ 0132 ] In this example , the source node 602 first sends 
( 610 ) a packet for the destination node 116 to the next - hop 
node 108A . The next - hop node 108A receives the packet and 
adds and signs ( 612 ) canary stamp data generated based on 
security measurements taken at the next - hop node 108A 
( e.g. , via a cryptoprocessor ) . The next - hop node 108A can 
add canary stamp data containing the security measurements 
or a digest of the canary stamp data ( e.g. , the security 
measurements ) , as previously explained . 
[ 0133 ] The next - hop node 108A can then send ( 614 ) the 
packet with the canary stamp data to the verifier system 106 
for validation . In some examples , the verifier system 106 can 
be a centralized system , such as a centralized server or 
controller , configured to analyze and verify canary stamp 
data from nodes . In other examples , the verifier system 106 
can be a distributed system including multiple verifiers 
configured to analyze and verify canary stamp data from 
nodes . 
[ 0134 ] The verifier system 106 can receive the packet 
from the next - hop node 108A and verify and sign ( 616 ) the 
canary stamp data in the packet . In some cases , the verifier 
system 106 can check that the canary stamp data in the 
packet from the next - hop node 108A is fresh ( e.g. , based on 
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the canary stamp data to verify that the next - hop node 108A 
is not compromised . The verifier system 106 can also check 
that the canary stamp data in the packet is not part of a replay 
attack . For example , the verifier system 106 can verify that 
the canary stamp data is not simply a copy of old canary 
stamp data added to the packet by an attacker or compro 
mised component to trick the verifier system 106 into 
determining that the canary stamp data is valid and the 
next - hop node 108A has not been compromised . In some 
examples , the verifier system 106 can use , or check for , 
nonce values that introduce randomness into the data , to 
identify and / or protect against such replay attacks . 
[ 0135 ] In some cases , when verifying and signing the 
canary stamp data in the packet , the verifier system 106 can 
add its own signed canary stamp data to the packet or update 
the canary stamp data with its own canary stamp data as 
previously explained . This way , every hop that processes the 
packet can be verified , and other nodes can verify that the 
verifier system 106 itself is not compromised . 
[ 0136 ] The verifier system 106 can then send ( 618 ) the 
packet with the canary stamp data back to the next - hop node 
108A . At this point , the canary stamp data in the packet 
received by the next - hop node 108A is validated and signed 
by the verifier system 106. The next - hop node 108A can then 
send ( 620 ) the packet with the canary stamp data to the 
second - hop node 110A . The canary stamp data in the packet 
can include the canary stamp and signature from the next 
hop node 108A . In some cases , the canary stamp data in the 
packet can also reflect canary stamp data and signature data 
from the verifier system 106 , as previously explained . 
[ 0137 ] The second - hop node 110A then add / update and 
sign ( 622 ) the canary stamp data in the packet . In some 
examples , the second - hop node 110A can add new canary 
stamp data generated based on security measurements taken 
at the second - hop node 110A . Here , the packet can include 
the canary stamp data from the next - hop node 108A and the 
new canary stamp data from the second - hop node 110A . In 
other examples , the second - hop node 110A can take the 
canary stamp data from the next - hop node 108A and update 
it to also reflect new canary stamp data ( and / or security 
measurements ) from the second - hop node 110A . 
[ 0138 ] For example , the second - hop node 110A can hash 
the security measurements taken at the second - hop node 
110A and generate a digest based on a hash value or digest 
from the next - hop node 108A ( e.g. , the canary stamp data 
from the next - hop node 108A ) and the hash of the security 
measurements taken at the second - hop node 110A . To 
illustrate , the second - hop node 110A can generate a new 
canary stamp digest as follows : New canary stamp 
digest = Digest of ( canary stamp data from the next - hop node 
108A hash ( canary stamp data from the second - hop node 
110A ) ) . 
[ 0139 ] In some cases , the second - hop node 110A can also 
implement a nonce value and / or a time value or token when 
calculating the new canary stamp data . For example , in some 
cases , the second - hop node 110A can generate the new 
canary stamp digest as follows : New canary stamp 
digest = Digest of ( canary stamp data from the next - hop node 
108A || hash ( canary stamp data from the second - hop node 
110A || PPN ) ) , where PPN represents a per - packet nonce 
( PPN ) assigned to the current packet and which changes per 
packet . As another example , in some cases , the second - hop 
node 110A can generate the new canary stamp digest as 

follows : New canary stamp digest = Digest of ( canary stamp 
data from the next - hop node 108A || hash ( canary stamp data 
from the second - hop node 110A || TUDA time - synchroniza 
tion token associated with the second - hop node 110A ) ) , 
where the TUDA time - synchronization token is provided by 
a central timestamp authority . 
[ 0140 ] In some cases , when adding / updating canary stamp 
data , the second - hop node 110A can concatenate or combine 
canary stamp data from the next - hop node 108A and the 
second - hop node 110A . For example , in some cases , the 
canary stamp data from the next - hop node 108A can include 
one or more security measurements taken at the next - hop 
node 108A . To add / update canary stamp data , the second 
hop node 110A can concatenate or combine such security 
measurements with one or more other security measure 
ments taken at the second - hop node 110A . This can result in 
canary stamp data that includes and / or reflects security 
measurements from both the next - hop node 110A and the 
second - hop node 110A . 
[ 0141 ] Once the added / updated and signed the canary 
stamp data , the second - hop node 110A can send ( 624 ) the 
packet with the new / updated canary stamp data to the 
verifier system 106. The verifier system 106 can then verify 
and sign ( 626 ) the canary stamp data as previously 
explained . After verifying and signing the canary stamp 
data , the verifier system 106 can send ( 628 ) the packet with 
the canary stamp data back to the second - hop node 110A . In 
some cases , when verifying the canary stamp data , the 
verifier system 106 can also add / update the canary stamp 
data with its own canary stamp data generated based on 
security measurements taken at the verifier system 106 , and 
sign the result prior to sending the packet with the canary 
stamp data to the verifier system 106 . 
[ 0142 ] The second - hop node 110A can receive the packet 
with the canary stamp data and send ( 630 ) it to the N - hop 
node 112A . The N - hop node 112A can receive the packet 
with the canary stamp data and add / update and sign ( 632 ) 
the canary stamp data as previously described with respect 
to the second - hop node 110A . The N - hop node 112A can 
then send ( 634 ) the packet with the new or updated canary 
stamp data to the verifier system 106. The verifier system 
106 can receive the packet with the canary stamp data from 
the N - hop node 112A , and validate ( 636 ) the canary stamp 
data in the packet . 
[ 0143 ] When validating the canary stamp data , the verifier 
system 106 can use the canary stamp data in the packet to 
verify that none of the nodes ( e.g. , 108A , 110A , 112A ) 
traversed by the packet are compromised . The verifier 
system 106 can verify the integrity or trustworthiness of 
each of the nodes based on the value ( s ) in the canary stamp 
data ( e.g. , the associated security measures , the associated 
digest values , etc. ) . Since the canary stamp data can contain 
security measures from each of the nodes or reflect security 
measures from each of the nodes ( e.g. , the canary stamp data 
can be updated at each hop based on security measures at 
that hop or a digest of security measures at that hop ) , the 
canary stamp data can provide an indication of the state and 
integrity / trustworthiness of each hop in the chain , which the 
verifier system 106 can use to validate ( or invalidate ) the 
canary stamp data in the packet . 
[ 0144 ] In some implementations , when validating the 
canary stamp data , the verifier system 106 can also verify 
that the canary stamp data is fresh ( e.g. , was generated 
within a certain period of time from the time it was received 
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by the verifier system 106 ) and / or that the canary stamp data 
is not a replay attack . The verifier system 106 can make such 
determinations based on timing information ( e.g. , one or 
more TUDA time - synchronization tokens , a time or counter 
value such as a TPM counter value , etc. ) included in the 
canary stamp data and / or associated with the nodes in the 
path , one or more nonce values used to introduce random 
ness in the canary stamp data , etc. 
[ 0145 ] Moreover , in some examples , when validating the 
canary stamp data , the verifier system 106 can also add its 
own signed canary stamp data to the packet or update the 
canary stamp data in the packet based on its own canary 
stamp data . Once the verifier system 106 has validated the 
canary stamp data , the verifier system 106 can send ( 638 ) the 
packet with the validated canary stamp data back to the 
N - hop node 112A , which can then send ( 640 ) the packet to 
the destination node 116 . 
[ 014 ] In some cases , rather than sending the packet to the 
N - hop node 112A , the verifier system 116 can deliver the 
packet to the destination node 116 , thereby reducing the 
amount of traffic ( e.g. , by eliminating the communication of 
the packet back to the N - hop node 112A for subsequent 
delivery to the destination node 116 ) . Moreover , in some 
cases , the packet delivered ( e.g. , by the N - hop node 112A or 
the verifier system 106 ) to the destination node 116 can 
include the current version of the canary stamp data to allow 
the destination node 116 to perform its own verification that 
the packet traversed only through uncompromised nodes . 
[ 0147 ] Having described example systems and concepts , 
the disclosure now turns to the example method 700 for 
providing proof of packet transit through uncompromised 
nodes , as illustrated in FIG . 7. For the sake of clarity , the 
method 700 is described in terms of verifier system 116 , as 
shown in FIGS . 1-3 , configured to practice the method 700 . 
The steps outlined herein are examples and can be imple 
mented in any combination thereof , including combinations 
that exclude , add , or modify certain steps . 
[ 0148 ] At step 702 , the verifier system 116 can receive a 
packet including one or more metadata elements ( e.g. , 
canary stamp data ) generated based on security measure 
ments from a plurality of nodes ( e.g. , 108 , 110 , 112 ) along 
a path of the packet . The one or more metadata elements can 
include or refer to canary stamp data as previously 
described . In some examples , the canary stamp data ( e.g. , 
the one or more metadata elements ) can include a digest 
created based on the security measurements . In some cases , 
the digest can be created using a one - way hash that ensures 
that the canary stamp data ( e.g. , the one or more metadata 
elements ) recorded by any node cannot be removed or 
modified without detection . 
[ 0149 ] Moreover , in some examples , the one or more 
metadata elements ( e.g. , the canary stamp data ) can include 
the security measurements from the plurality of nodes . In 
some examples , the security measurements can include 
information identifying a respective firmware at each of the 
plurality of nodes , what software has been loaded at each of 
the plurality of nodes , a respective sequence of software 
loaded at each of the plurality of nodes , hardware informa 
tion associated with the plurality of nodes , any operating 
system changes at the plurality of nodes , a runtime state at 
the plurality of nodes , etc. 
[ 0150 ] In some examples , the one or more metadata ele 
ments can also include one or more nonce values . For 
example , in some cases , the one or more metadata elements 

can one or more per - packet nonce values ; one or more 
signatures ; and / or one or more time values , such as one or 
more packet trace timestamps , time counters ( e.g. , TPM 
counters ) , TUDA time - synchronization tokens , etc. 
[ 0151 ] The verifier system 116 can receive the packet from 
a particular node in the path of the packet . For example , the 
verifier system 116 can receive the packet from the last - hop 
node before the destination node or the destination node 
itself . In some examples , the verifier system 116 can receive 
the packet from each hop along the path as the packet 
traverses the hops in the path . The packet from each hop can 
include one or more new or updated metadata elements 
provided by that hop . In such examples , the verifier system 
116 can validate the one or more metadata elements as it 
traverses each hop in the path . 
[ 0152 ] At step 704 , the verifier system 116 can determine 
a validity of the one or more metadata elements in the 
packet . In some cases , the verifier system 116 can analyze 
the contents of the one or more metadata elements and 
determine a validity of the one or more metadata elements 
by comparing one or more values in the one or more 
metadata elements with one or more expected values cal 
culated for the one or more metadata elements ( e.g. , based 
on known , expected , or predicted security measurements 
associated with the plurality of nodes ) , checking one or more 
signatures ( e.g. , one or more respective node or cryptopro 
cessor signatures ) in the one or more metadata elements , 
verifying timing information ( e.g. , one or more timestamps , 
counter values , TUDA time - synchronization tokens , etc. ) 
associated with the one or more metadata elements , and / or 
verifying one or more nonce values implemented by the one 
or more metadata elements . 
[ 0153 ] In some cases , the verifier system 116 can also 
update the one or more metadata elements based on meta 
data ( e.g. , canary stamp data ) from the verifier system 116 , 
or add new metadata ( e.g. , canary stamp data ) from the 
verifier system 116. Moreover , if the verifier system 116 is 
able to validate the one or more metadata elements , the 
verifier system 116 can sign the one or more metadata 
elements in the packet to indicate that the verifier system 116 
has validated the one or more metadata elements and / or 
provide protection against unauthorized tampering with the 
one or more metadata elements . 
[ 0154 ] At step 706 , the verifier system 116 can determine , 
based on the one or more metadata elements , whether the 
packet traversed any compromised nodes along the path of 
the packet . In some cases , the verifier system 116 can make 
such determination based on a determined validity of the one 
or more metadata elements in the packet . Moreover , in some 
cases , the verifier system 116 can analyze the contents of the 
one or more metadata elements and make such determina 
tion based on the contents of the one or more metadata 
elements . 
[ 0155 ] For example , in some cases , if the one or more 
metadata elements include the security measurements from 
the plurality of nodes , the verifier system 116 can analyze 
the security measurements to verify that none of the nodes 
are compromised . The verifier system 116 can review state 
information ( e.g. , hardware state , firmware state , software 
state , runtime state , etc. ) captured by the security measure 
ments to determine if the state of any nodes has changes 
and / or appears compromised , suspicious , unexpected , or 
abnormal . To illustrate , if the security measurements indi 
cate that the operating system ( OS ) or a sequence of soft 
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ware loaded at a node has changed since a previous known 
state of the node or is different than expected , the verifier 
system 116 flag that node as potentially ( or actually ) com 
promised . In some cases , the verifier system 116 can analyze 
the specific changes to the OS or sequence of software 
loaded to determine whether the node is indeed compro 
mised or should be deemed compromised . 
[ 0156 ] In other examples , if the one or more metadata 
elements include a digest of the security measurements from 
the plurality of nodes , the verifier system 116 can compare 
the digest with a digest it calculates for the plurality of nodes 
based on expected , normal , and / or predicted security mea 
surements . For example , the verifier system 116 can calcu 
late a digest ( e.g. , using the same algorithm used to generate 
the digest included in the one or more metadata elements ) 
based on expected security measurement values for the 
plurality of nodes , previous known security measurement 
values associated with the plurality of nodes , or security 
measurement values considered to be desirable or normal 
( e.g. , not indicative of a compromised node ) . The verifier 
system 116 can then compare the calculated digest with the 
digest associated with ( e.g. , included in or reflected by ) the 
one or more metadata elements to determine if they match . 
A mismatch between the digests can indicate that one or 
more nodes are potentially compromised . 
[ 0157 ] In some cases , the digest of the security measure 
ments from the plurality of nodes ( e.g. , the digest included 
in or reflected by the one or more metadata elements ) can be 
generated using one or more nonce values used to introduce 
randomness to protect against replay attacks . In such cases , 
the verifier system 116 can also implement such one or more 
nonce values when calculating the digest that the verifier 
system 116 compares with the digest in the packet . For 
example , in some cases , a nonce can be provided to the 
plurality of nodes for use in creating or updating a respective 
digest at each hop . The nonce can be a nonce specifically 
defined for the packet ( e.g. , a per - packet nonce which 
changes for every packet ) or a nonce specifically defined for 
one or more of the plurality of nodes . The verifier system 
116 can thus know the value ( s ) of the nonce and use such 
value ( s ) to calculate the digest it compares with the digest in 
the packet it receives . 
[ 0158 ] In some cases , each node along the path of the 
packet can similarly perform a validity check and / or a 
verification check of the one or more metadata elements in 
the packet , as described with respect to steps 704 and 706 . 
Moreover , in some cases , each node can modify the one or 
more metadata elements in the packet as the node processes 
the packet . For example , when a node receives the packet 
with the one or more metadata elements , the node can add 
its own metadata ( e.g. , its own canary stamp data ) to the one 
or more metadata elements or update the one or more 
metadata elements based on its own metadata ( e.g. , its own 
canary stamp data ) . Each node can also sign ( e.g. , via TPM 
or a cryptoprocessor ) the one or more metadata elements in 
the packet prior to forwarding the packet to the next hop 
and / or a centralized verification system ( e.g. , verifier system 
116 ) . 
[ 0159 ] In some implementations , the one or more meta 
data elements can be carried by the packet in an IOAM data 
field on the packet . In some examples , the one or more 
metadata elements can be carried in an IOAM trace option . 
In other examples , the one or more metadata elements can 
be carried in an IOAM proof - of - transit ( POT ) option . More 

over , in some cases , the packet can be transmitted and / or 
processed using one or more encapsulating protocols such 
as , for example and without limitation , IPv4 , IPv6 , NSH 
( network service header ) , segment routing , Geneve , 
VXLAN , VXLAN - GPE , GRE , MPLS , SRv6 , etc. In other 
cases , the one or more metadata elements can be carried by 
the packet in an Inband Network Telemetry packet header , 
an Inband Flow Analyzer ( IFA ) header , or a header associ 
ated with an In - situ Flow Information Telemetry service 
used to transmit the packet . 
[ 0160 ] In some aspects , a data element in the one or more 
metadata elements , such as a signature or canary stamp data 
value ( s ) , can be generated by one or more TPMs ( e.g. , TPM , 
TPM2 , or any current or future version of TPM ) imple 
mented by one or more nodes from the plurality of nodes 
and / or one or more cryptoprocessors implemented by the 
one or more nodes . 
[ 0161 ] In some cases , determining whether the packet 
traversed any compromised nodes along the path of the 
packet can include identifying each hop traversed by the 
packet and providing a proof - of - transit of the packet . In 
some examples , the hops traversed by the packet can be 
identified using IOAM tracing , using routing state informa 
tion , or sending active probes . 
[ 0162 ] In some implementations , the one or more meta 
data elements can include one or more trace timestamps 
defined in IOAM . Since the one or more metadata elements 
can be time bound , the packet trace timestamps can be used 
to validate the one or more metadata elements in the time 
window the packet visited a particular node . 
[ 0163 ] In some cases , when determining whether the 
packet traversed any compromised nodes , the verifier sys 
tem 116 can check a public key of one or more nodes that 
added / updated the one or more metadata elements , a portion 
of the one or more metadata elements , and / or a previous 
version of the one or more metadata elements . 
[ 0164 ] The disclosure now turns to FIGS . 8 and 9 , which 
illustrate example network nodes and computing devices , 
such as switches , routers , client devices , endpoints , servers , 
and so forth . 
[ 0165 ] FIG . 8 illustrates an example network device 800 
suitable for performing switching , routing , and other net 
working operations . Network device 800 includes a central 
processing unit ( CPU ) 804 , interfaces 802 , and a connection 
810 ( e.g. , a PCI bus ) . When acting under the control of 
appropriate software or firmware , the CPU 804 is respon 
sible for executing packet management , error detection , 
and / or routing functions . The CPU 804 can accomplish these 
functions under the control of software including an oper 
ating system and any appropriate applications software . 
CPU 804 may include one or more processors 808 , such as 
a processor from the INTEL X98 family of microprocessors . 
In some cases , processor 808 can be specially designed 
hardware for controlling the operations of network device 
800. In some cases , a memory 806 ( e.g. , non - volatile RAM , 
ROM , etc. ) also forms part of CPU 804. However , there are 
many different ways in which memory could be coupled to 
the system . 
[ 0166 ] The interfaces 802 are typically provided as modu 
lar interface cards ( sometimes referred to as “ line cards ” ) . 
Generally , they control the sending and receiving of data 
packets over the network and sometimes support other 
peripherals used with the network device 800. Among the 
interfaces that may be provided are Ethernet interfaces , 
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frame relay interfaces , cable interfaces , DSL interfaces , 
token ring interfaces , and the like . In addition , various very 
high - speed interfaces may be provided such as fast token 
ring interfaces , wireless interfaces , Ethernet interfaces , 
Gigabit Ethernet interfaces , ATM interfaces , HSSI inter 
faces , POS interfaces , FDDI interfaces , WIFI interfaces , 
3G / 4G / 5G cellular interfaces , CAN BUS , LORA , and the 
like . Generally , these interfaces may include ports appropri 
ate for communication with the appropriate media . In some 

they may also include an independent processor and , 
in some instances , volatile RAM . The independent proces 
sors may control such communications intensive tasks as 
packet switching , media control , signal processing , crypto 
processing , and management . By providing separate proces 
sors for the communications intensive tasks , these interfaces 
allow the master microprocessor 804 to efficiently perform 
routing computations , network diagnostics , security func 
tions , etc. 
[ 0167 ] Although the system shown in FIG . 8 is one 
specific network device of the present technologies , it is by 
no means the only network device architecture on which the 
present technologies can be implemented . For example , an 
architecture having a single processor that handles commu 
nications as well as routing computations , etc. , is often used . 
Further , other types of interfaces and media could also be 
used with the network device 800 . 
[ 0168 ] Regardless of the network device's configuration , 
it may employ one or more memories or memory modules 
( including memory 806 ) configured to store program 
instructions for the general - purpose network operations and 
mechanisms for roaming , route optimization and routing 
functions described herein . The program instructions may 
control the operation of an operating system and / or one or 
more applications , for example . The memory or memories 
may also be configured to store tables such as mobility 
binding , registration , and association tables , etc. Memory 
806 could also hold various software containers and virtu 
alized execution environments and data . 
[ 0169 ] The network device 800 can also include an appli 
cation - specific integrated circuit ( ASIC ) 812 , which can be 
configured to perform routing and / or switching operations . 
The ASIC 812 can communicate with other components in 
the network device 800 via the connection 810 , to exchange 
data and signals and coordinate various types of operations 
by the network device 800 , such as routing , switching , 
and / or data storage operations , for example . 
[ 0170 ] FIG . 9 illustrates a computing system architecture 
900 including various components in electrical communi 
cation with each other using a connection 906 , such as a bus . 
Example system architecture 900 includes a processing unit 
( CPU or processor ) 904 and a system connection 906 that 
couples various system components including the system 
memory 920 , such as read only memory ( ROM ) 918 and 
random access memory ( RAM ) 916 , to the processor 904 . 
The system architecture 900 can include a cache 902 of 
high - speed memory connected directly with , in close prox 
imity to , or integrated as part of the processor 904. The 
system architecture 900 can copy data from the memory 920 
and / or the storage device 908 to the cache 902 for quick 
access by the processor 904. In this way , the cache can 
provide a performance boost that avoids processor 904 
delays while waiting for data . These and other modules can 
control or be configured to control the processor 904 to 
perform various actions . 

[ 0171 ] Other system memory 920 may be available for use 
as well . The memory 920 can include multiple different 
types of memory with different performance characteristics . 
The processor 904 can include any general purpose proces 
sor and a hardware or software service , such as service 1 
910 , service 2 912 , and service 3 914 stored in storage 
device 908 , configured to control the processor 904 as well 
as a special - purpose processor where software instructions 
are incorporated into the actual processor design . The pro 
cessor 904 may be a completely self - contained computing 
system , containing multiple cores or processors , a bus , 
memory controller , cache , etc. A multi - core processor may 
be symmetric or asymmetric . 
[ 0172 ] To enable user interaction with the computing 
system architecture 900 , an input device 922 can represent 
any number of input mechanisms , such as a microphone for 
speech , a touch - sensitive screen for gesture or graphical 
input , keyboard , mouse , motion input , speech and so forth . 
An output device 924 can also be one or more of a number 
of output mechanisms known to those of skill in the art . In 
some instances , multimodal systems can enable a user to 
provide multiple types of input to communicate with the 
computing system architecture 900. The communications 
interface 926 can generally govern and manage the user 
input and system output . There is no restriction on operating 
on any particular hardware arrangement and therefore the 
basic features here may easily be substituted for improved 
hardware or firmware arrangements as they are developed . 
[ 0173 ] Storage device 908 is a non - volatile memory and 
can be a hard disk or other types of computer readable media 
which can store data that are accessible by a computer , such 
as magnetic cassettes , flash memory cards , solid state 
memory devices , digital versatile disks , cartridges , random 
access memories ( RAM ) 916 , read only memory ( ROM ) 
918 , and hybrids thereof . 
[ 0174 ] The storage device 908 can include services 910 , 
912 , 914 for controlling the processor 904. Other hardware 
or software modules are contemplated . The storage device 
908 can be connected to the system connection 906. In one 
aspect , a hardware module that performs a particular func 
tion can include the software component stored in a com 
puter - readable medium in connection with the necessary 
hardware components , such as the processor 904 , connec 
tion 906 , output device 924 , and so forth , to carry out the 
function . 
[ 0175 ] For clarity of explanation , in some instances the 
present technology may be presented as including individual 
functional blocks including functional blocks comprising 
devices , device components , steps or routines in a method 
embodied in software , or combinations of hardware and 
software . 
[ 0176 ] In some embodiments the computer - readable stor 
age devices , mediums , and memories can include a cable or 
wireless signal containing a bit stream and the like . How 
ever , when mentioned , non - transitory computer - readable 
storage media expressly exclude media such as energy , 
carrier signals , electromagnetic waves , and signals per se . 
( 0177 ] Methods according the above - described 
examples can be implemented using computer - executable 
instructions that are stored or otherwise available from 
computer readable media . Such instructions can comprise , 
for example , instructions and data which cause or otherwise 
configure a general purpose computer , special purpose com 
puter , or special purpose processing device to perform a 
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certain function or group of functions . Portions of computer 
resources used can be accessible over a network . The 
computer executable instructions may be , for example , 
binaries , intermediate format instructions such as assembly 
language , firmware , or source code . Examples of computer 
readable media that may be used to store instructions , 
information used , and / or information created during meth 
ods according to described examples include magnetic or 
optical disks , flash memory , USB devices provided with 
non - volatile memory , networked storage devices , and so on . 
[ 0178 ] Devices implementing methods according to these 
disclosures can comprise hardware , firmware and / or soft 
ware , and can take any of a variety of form factors . Typical 
examples of such form factors include laptops , smart 
phones , small form factor personal computers , personal 
digital assistants , rackmount devices , standalone devices , 
and so on . Functionality described herein also can be 
embodied in peripherals or add - in cards . Such functionality 
can also be implemented on a circuit board among different 
chips or different processes executing in a single device , by 
way of further example . 
[ 0179 ] The instructions , media for conveying such instruc 
tions , computing resources for executing them , and other 
structures for supporting such computing resources are 
means for providing the functions described in these disclo 
sures . 

[ 0180 ] Although a variety of examples and other informa 
tion was used to explain aspects within the scope of the 
appended claims , no limitation of the claims should be 
implied based on particular features or arrangements in such 
examples , as one of ordinary skill would be able to use these 
examples to derive a wide variety of implementations . 
Further and although some subject matter may have been 
described in language specific to examples of structural 
features and / or method steps , it is to be understood that the 
subject matter defined in the appended claims is not neces 
sarily limited to these described features or acts . For 
example , such functionality can be distributed differently or 
performed in components other than those identified herein . 
Rather , the described features and steps are disclosed as 
examples of components of systems and methods within the 
scope of the appended claims . 
[ 0181 ] Claim language reciting “ at least one of ” a set 
indicates that one member of the set or multiple members of 
the set satisfy the claim . For example , claim language 
reciting “ at least one of A and B ” means A , B , or A and B. 

1. A method comprising : 
receiving a packet comprising one or more metadata 

elements generated based on security measurements 
from one or more nodes along a path of the packet ; 

determining a validity of the one or more metadata 
elements based on at least one of a comparison of one 
or more values in the one or more metadata elements 
with one or more expected values calculated for the one 
or more metadata elements , one or more signatures in 
the one or more metadata elements , and timing infor 
mation associated with the one or more metadata 
elements ; and 

based on the one or more metadata elements , determining 
whether a node from the one or more nodes comprises 
a compromised node , wherein at least one of a data 
element in the one or more metadata elements and the 
one or more signatures in the one or more metadata 
elements are generated by one or more trusted execu 

tion environments ( TEE ) or one or more platform 
modules ( TPMs ) implemented by the node or one or 
more cryptoprocessors implemented by the node . 

2. The method of claim 1 , wherein the security measure 
ments comprise at least one of a hardware integrity mea 
surement , a runtime integrity measurement , a firmware 
integrity measurement , a software integrity measurement , 
information identifying what software has been loaded at the 
one or more nodes , a respective sequence of software loaded 
at the one or more nodes , and one or more operating system 
changes at the one or more nodes . 

3. The method of claim 1 , wherein the one or more 
metadata elements comprise the security measurements or 
one or more hash values representing the security measure 
ments . 

4. The method of claim 1 , wherein the one or more 
metadata elements comprise node integrity metadata gener 
ated based on respective node integrity information from 
each of the one or more nodes , the respective node integrity 
information being generated based on a respective security 
measurement from each of the one or more nodes . 

5. The method of claim 1 , further comprising : 
updating a verification digest in the one or more metadata 

elements in the packet to yield an updated verification 
digest , the verification digest being updated based on a 
hash of at least one security measurement associated 
with the node . 

6. The method of claim 1 , wherein the one or more 
metadata elements are included in an In - Situ Operations , 
Administration , and Maintenance ( IOAM ) data field on the 
packet , an Inband Network Telemetry packet header asso 
ciated with the packet , an Inband Flow Analyzer ( IFA ) 
header associated with the packet , or a header associated 
with an In - situ Flow Information Telemetry service used to 
transmit the packet , the IOAM data field being associated 
with an IOAM trace option or an IOAM proof - of - transit 
( POT ) option . 

7. The method of claim 1 , wherein the one or more 
metadata elements comprise one or more nonce values 
associated with the one or more nodes . 

8. The method of claim 1 , wherein the timing information 
associated with the one or more metadata elements com 
prises at least one of a respective timestamp associated with 
each of the one or more nodes , one or more Time - Based 
Uni - Directional Attestation ( TUDA ) sync tokens , one or 
more Trusted Platform Module ( TPM ) counters , and one or 
more packet trace timestamps defined by an In - Situ Opera 
tions , Administration , and Maintenance telemetry scheme . 

9. A system comprising : 
one or more processors ; and 
memory having stored therein instructions which , when 

executed by the one or more processors , cause the one 
or more processors to : 
receive a packet comprising one or more metadata 

elements generated based on security measurements 
from one or more nodes along a path of the packet ; 

determine a validity of the one or more metadata 
elements based on at least one of a comparison of 
one or more values in the one or more metadata 
elements with one or more expected values calcu 
lated for the one or more metadata elements , one or 
more signatures in the one or more metadata ele 
ments , and timing information associated with the 
one or more metadata elements ; and 
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based on the one or more metadata elements , determine 
whether a node from the one or more nodes com 
prises a compromised node , wherein at least one of 
a data element in the one or more metadata elements 
and the one or more signatures in the one or more 
metadata elements are generated by one or more 
trusted execution environments ( TEE ) or one or 
more platform modules ( TPMs ) implemented by the 
node or one or more cryptoprocessors implemented 
by the node . 

10. The system of claim 9 , wherein the security measure 
ments comprise at least one of a hardware integrity mea 
surement , a runtime integrity measurement , a firmware 
integrity measurement , a software integrity measurement , 
information identifying what software has been loaded at the 
one or more nodes , a respective sequence of software loaded 
at the one or more nodes , and one or more operating system 
changes at the one or more nodes . 

11. The system of claim 9 , wherein the one or more 
metadata elements comprise the security measurements or 
one or more hash values representing the security measure 
ments . 

12. The system of claim 9 , wherein the one or more 
metadata elements comprise node integrity metadata gener 
ated based on respective node integrity information from 
each of the one or more nodes , the respective node integrity 
information being generated based on a respective security 
measurement from each of the one or more nodes . 

13. The system of claim 9 , wherein the memory comprises 
instructions stored thereon which , when executed by the one 
or more processors , cause the one or more processors to : 

update a verification digest in the one or more metadata 
elements in the packet to yield an updated verification 
digest , the verification digest being updated based on a 
hash of at least one security measurement associated 
with the node . 

14. The system of claim 9 , wherein the one or more 
metadata elements are included in an In - Situ Operations , 
Administration , and Maintenance ( IOAM ) data field on the 
packet , an Inband Network Telemetry packet header asso 
ciated with the packet , an Inband Flow Analyzer ( IFA ) 
header associated with the packet , or a header associated 
with an In - situ Flow Information Telemetry service used to 
transmit the packet , the IOAM data field being associated 
with an IOAM trace option or an IOAM proof - of - transit 
( POT ) option . 

15. The system of claim 9 , wherein the one or more 
metadata elements comprise one or more nonce values 
associated with the one or more nodes . 

16. The system of claim 9 , wherein the timing information 
associated with the one or more metadata elements com 

prises at least one of a respective timestamp associated with 
each of the one or more nodes , one or more Time - Based 
Uni - Directional Attestation ( TUDA ) sync tokens , one or 
more Trusted Platform Module ( TPM ) counters , and one or 
more packet trace timestamps defined by an In - Situ Opera 
tions , Administration , and Maintenance telemetry scheme . 

17. A non - transitory computer - readable storage medium 
having stored thereon instructions which , when executed by 
one or more processors , cause the one or more processors to : 

receive a packet comprising one or more metadata ele 
ments generated based on security measurements from 
one or more nodes along a path of the packet ; 

determine a validity of the one or more metadata elements 
based on at least one of a comparison of one or more 
values in the one or more metadata elements with one 
or more expected values calculated for the one or more 
metadata elements , one or more signatures in the one or 
more metadata elements , and timing information asso 
ciated with the one or more metadata elements ; and 

based on the one or more metadata elements , determine 
whether a node from the one or more nodes comprises 
a compromised node , wherein at least one of a data 
element in the one or more metadata elements and the 
one or more signatures in the one or more metadata 
elements are generated by one or more trusted execu 
tion environments ( TEE ) or one or more platform 
modules ( TPMs ) implemented by the node or one or 
more cryptoprocessors implemented by the node . 

18. The The non - transitory computer - readable storage 
medium of claim 17 , wherein the security measurements 
comprise at least one of a hardware integrity measurement , 
a runtime integrity measurement , a firmware integrity mea 
surement , a software integrity measurement , information 
identifying what software has been loaded at the one or more 
nodes , a respective sequence of software loaded at the one 
or more nodes , and one or more operating system changes 
at the one or more nodes . 

19. The non - transitory computer - readable storage 
medium of claim 17 , wherein the one or more metadata 
elements comprise the security measurements or one or 
more hash values representing the security measurements . 

20. The non - transitory computer - readable storage 
medium of claim 17 , wherein the one or more metadata 
elements comprise node integrity metadata generated based 
on respective node integrity information from each of the 
one or more nodes , the respective node integrity information 
being generated based on a respective security measurement 
from each of the one or more nodes . 


