
US 20180373200A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0373200 A1

Shi et al . (43) Pub . Date : Dec . 27 , 2018

(54) SYSTEM AND METHOD FOR NEAR - EYE
LIGHT FIELD RENDERING FOR WIDE
FIELD OF VIEW INTERACTIVE
THREE - DIMENSIONAL COMPUTER
GRAPHICS

(52) U . S . CI .
CPC GO3H 1 / 02 (2013 . 01) ; GO2B 27 / 0172

(2013 . 01) ; G03H 2001 / 0224 (2013 . 01) ; G02B
2027 / 0123 (2013 . 01) ; GO2B 2027 / 0174

(2013 . 01)

(71) Applicant : NVIDIA Corporation , Santa Clara , CA
(US) (57) ABSTRACT

(72) Inventors : Liang Shi , Cambridge , MA (US) ;
Fu - Chung Huang , Cupertino , CA (US) ;
Ward Lopes , Redwood City , CA (US)

(21) Appl . No . : 15 / 946 , 576
(22) Filed : Apr . 5 , 2018

Related U . S . Application Data
(60) Provisional application No . 62 / 525 , 644 , filed on Jun .

27 , 2017 .

A method for rendering a light field comprises projecting
rays from a viewpoint positioned at a first side of a spatial
light modulator (SLM) to a clipping plane positioned at an
opposing side of the SLM to form an elemental view frustum
within a three - dimensional scene and rendering objects
within the elemental view frustum to generate components
of a first elemental image for the first elemental region . The
SLM may include a tiled array of non - overlapping elemental
regions and a top edge and a bottom edge of a first elemental
region of the non - overlapping elemental regions are inter
sected by the rays to form the elemental view frustum .
Furthermore , the light field may include the first elemental
image and additional elemental images corresponding to the
array of elemental regions and each one of the additional
elemental images is rendered using an additional elemental
view frustum .

(51)
Publication Classification

Int . Cl .
GO3H 1 / 02 (2006 . 01)
GO2B 27 / 01 (2006 . 01)

Clipping
Plane
226

Clipping
Plane
224

View Frustum
232

X

240

Camera
234 230 * DD00000000000

Hogel
238

239
223

w dzm

- dmin

Patent Application Publication Dec . 27 , 2018 Sheet 1 of 19 U S 2018 / 0373200 A1

77

Project rays from a viewpoint positioned in front of a
spatial light modulator (SLM) to a clipping plane

positioned in back of the SLM to form an elemental
view frustum within a three - dimensional scene

112

Render objects within the elemental view frustum to
generate components of a first elemental image for

the first elemental region
114

Compute components as a product of an object
wave and a conjugate reference wave

116

Patent Application Publication Dec . 27 , 2018 Sheet 2 of 19 U S 2018 / 0373200 A1

112

Project second rays from the pixel of the SLM to the

having a base of a first width

Remove a portion of the components of the first
elemental image that are outside of the pixel

124

Wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

116

Fig . 1B

Patent Application Publication Dec . 27 , 2018 Sheet 3 of 19 U S 2018 / 0373200 A1

SLM

Scene

140 Camera
142

Fig . 1C

Patent Application Publication Dec . 27 , 2018 Sheet 4 of 19 U S 2018 / 0373200 A1

Color Intensity Map Location and Depth Map

Holographic Light Field
. * * Elemental

Image
* WW

. * *

CGH
Hogel

Phase Map Amplitude Map

Fig . ID

Patent Application Publication Dec . 27 , 2018 Sheet 5 of 19 U S 2018 / 0373200 A1 te doen
Clipping
Plane
206

Clipping
Plane
204

Conventional
View Frustum

212
215 Hogel

218 X1979109644701 * * * * * 9193) View
tu

Camera
210 00000000000000000 m

me Hogel
wn > 219 217

216

With
203

mm dmin mu

PRIOR ART

Fig . 2A

Patent Application Publication Dec . 27 , 2018 Sheet 6 of 19 U S 2018 / 0373200 A1

weitere 220 20
Clipping
Plane
226

Clipping
Plane
224

View Frustum
232

240
234 230

Y

wwwwwwwwww without 10000DOOOOOOOO Hogel
238

239 # tr

d1 CZ

quwwwwwwwww dmin -

Fig . 2B

Patent Application Publication Dec . 27 , 2018 Sheet 7 of 19 U S 2018 / 0373200 A1

Clipping
Plane
226

Clipping
Plane
224 .

240

244
234

voastra
242

245

Fig . 2C

Patent Application Publication Dec . 27 , 2018 Sheet 8 of 19 U S 2018 / 0373200 A1

250 Clipping
Plane
256

Clipping
Plane
254

??????
Hogel
268

264
View

Frustum
262

W3

tytutytutytutytutto
263 000000000000000 Camera

260 _

> 269

- DF -

www . d3 mm

Fig . 2D

Patent Application Publication Dec . 27 , 2018 Sheet 9 of 19 U S 2018 / 0373200 A1

Clipping
Plane
256

Clipping
Plane
254 .

270

-

wwwwwwwwwwwwwwwwww ?????? ????????? rvatskom * OHOOL * > coco » * * * * orconcorcon 272
W

H N NXBv 275

.

- - - - - - - - - - - - - -

Fig . 2E

Patent Application Publication Dec . 27 , 2018 Sheet 10 of 19 US 2018 / 0373200 A1

1 : i fum pixel index in SLM
2 : ØEg (x) + - - length ({ (i - Pys - Ap , De }) 12 : 27
3 : logel the mod (i , Pwy)
* : iclem * 1 / Pwl PW Hogel / Pw * (Pw - Pry)
5 for Pixel inder in sliding window) = 0 to PX XP do

9 Light FieldPositionTexlielem j]
7 : Aq + - { { i - Pint) * Ap + deix . 42 - dea]

as Length (q - q) / 27 * E ; (x) * Minit
A = LightFieldColorTexliglem jl (1 / r)

* * *

Fig . 2F

Patent Application Publication Dec . 27 , 2018 Sheet 11 of 19 US 2018 / 0373200 A1

XXXX

wwwww

JIJISISISISIJI u
Fig . 26

Patent Application Publication Dec . 27 , 2018 Sheet 12 of 19 US 2018 / 0373200 A1

280

Compute a lateral offset between a view position

282

Render a three - dimensional scene from the view
position to produce an array of elemental images

284

Fig . 21

Patent Application Publication Dec . 27 , 2018 Sheet 13 of 19 US 2018 / 0373200 A1

302 pm PPU 300

1 / 0 Unit
305

Front End Unit
315

Scheduler Unit
320

WWW .

NVLink 310 + 44AAAA 44 Hub
330

Work Distribution Unit
325

1 ?? GPC
3500X)

VYYYYYYYYYYYYYYY

XBar 370

Memory
30467) Memory Partition Unit 380 (0) wwwwwwwwwwwwwwww

VVV

Fig . 3

Patent Application Publication Dec . 27 , 2018 Sheet 14 of 19 US 2018 / 0373200 A1

To / From XBar 370

GPC 350

Pipeline Manager
410

PROP
415

MPC
430

L igi mere

Primitive
Engine
435 Raster Engine * impinanginginiging enginginigiinginginiginginiginginiginginiging 425

SM
??? ??? ???? ??? ??? ????? ??? ??? ????? ????????????? ??? ??? ????? 440

DPC 420 (V) we wand
www

.

WDX
480 !

MMU 490
- - - hhhhhhhhhhh heh wwww

W

To / From XBar 370 To / From XBar 370

Fig . 4A

Patent Application Publication Dec . 27 , 2018 Sheet 15 of 19 US 2018 / 0373200 A1

To / From
XBar 370

Memory Partition Unit
380

verkeer

L2 Cache 460 to To / From
XBar 370

Memory Interface
470

Memory 304

Fig . 4B

Patent Application Publication Dec . 27 , 2018 Sheet 16 of 19 US 2018 / 0373200 A1

SM 440

Instruction Cache 505

Scheduler Unit 5101K) _

waren
manier

were

Dispatch 515 we

during women
inion een

w 72

Register File 520

wery

Core
550 (L - 1)

SFU
552 (M - 1)

LSU
554 (N - 1) www wanie www www

.

??? ??? ???????? ??? ? ??? .

Interconnect Network 580

Shared Memory / L1 Cache 570

Fig . 5A

Patent Application Publication Dec . 27 , 2018 Sheet 17 of 19 US 2018 / 0373200 A1

009

*

CPU 530
* * *

????????????????????????? * * *

302

•••••••• Switch 510
YY

w wwwwwww

304 PPU 300 PPU 300 304 w

NVLink
- 310

www 304 PPU 300 PPU 300 304

w

525 wwwwwwwwwwww
Fig . 5B

Patent Application Publication Dec . 27 , 2018 Sheet 18 of 19 US 2018 / 0373200 A1

wwwwwwwwwwwwwww

565 Main
Memory
540

???????? ????????????? ????????????? ?????????????? ????????????? ??????????

Network
Interface

.

.

Display
Devices

545 CPU 530
Input

Devices
560

.

.

. 535 .

.

.

302

Switch 510

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

304 PPU 300 PPU 300 304
NVLink
- 310

444444444444444 304 PPU 300 PPU 300 304

525

Fig . 5C

Patent Application Publication Dec . 27 , 2018 Sheet 19 of 19 US 2018 / 0373200 A1

009
Input Data

601

LY

Data Assembly
610

Vertex Shading
620

inay i injinimai jami i inaimanja i i prijinjinimai janjinjinimai jam

Primitive Assembly
630

Geometry Shading
640 Wy

Viewport SCC
650

? ? ? ? ? ? ? ? ? ? ? ? ? ? maji

w Rasterization
660

Fragment Shading
670

www Raster Operations
680

Output Data
602

Fig . 6

US 2018 / 0373200 A1 Dec . 27 , 2018

SYSTEM AND METHOD FOR NEAR - EYE
LIGHT FIELD RENDERING FOR WIDE

FIELD OF VIEW INTERACTIVE
THREE - DIMENSIONAL COMPUTER

GRAPHICS

[0007] The second computer readable medium includes
instructions that , when executed by a processing unit , per
form the second method . Furthermore , the second system
includes circuitry configured to perform the second method .

CLAIM OF PRIORITY
[0001] This application claims the benefit of U . S . Provi
sional Application No . 62 / 525 , 644 (Attorney Docket No .
NVIDP1169 + / 17SC0101US01) titled “ NEAR - EYE LIGHT
FIELD HOLOGRAPHIC RENDERING , " filed Jun . 27 ,
2017 , the entire contents of which is incorporated herein by
reference .

FIELD OF THE INVENTION
[0002] The present invention relates to computer gener
ated holography , and more particularly to a system and
method for near - eye light field rendering for wide field of
view interactive three - dimensional computer graphics .

BACKGROUND
[0003] Creating a comfortable visual experience is impor
tant to the success of modern virtual reality (VR) and
augmented reality (AR) systems . A wide field of view , high
resolution , interactivity , view - dependent occlusion , and con
tinuous focus cues are significant features for providing a
comfortable visual experience . However , conventional VR
systems typically fail to provide many of these features ,
resulting in user discomfort . Thus , there is a need for
addressing these issues and / or other issues associated with
the prior art .

BRIEF DESCRIPTION OF THE DRAWINGS
10008] FIG . 1A illustrates a flowchart of a method for
rendering a light field , in accordance with one embodiment .
[0009] FIG . 1B illustrates a flowchart of a method for
rendering objects within an elemental view frustum , in
accordance with one embodiment .
[0010] FIG . 1C illustrates computer generated holography ,
in accordance with one embodiment .
[0011] FIG . 1D illustrates a holographic element , in accor
dance with one embodiment .
[0012] FIG . 2A illustrates conventional hogel rendering ,
in accordance with the prior art .
[0013] . FIG . 2B illustrates hogel rendering with plane
wave illumination , in accordance with one embodiment .
[0014] FIG . 2C illustrates a region of an ambiguity seg
ment , in accordance with one embodiment .
[0015] FIG . 2D illustrates hogel rendering with spherical
wave illumination , in accordance with one embodiment .
[0016] FIG . 2E illustrates a region of an ambiguity seg
ment , in accordance with one embodiment .
100171 FIG . 2F illustrates algorithmic operations of a
method for rendering a light field using spherical illumina
tion , in accordance with one embodiment .
[0018] FIG . 2G illustrates a comparison of elemental
image resolution results , in accordance with one embodi
ment .
[0019] FIG . 2H illustrates a flowchart of a method for
rendering a light field , in accordance with one embodiment .
[0020] FIG . 3 illustrates a parallel processing unit , in
accordance with one embodiment .
[0021] FIG . 4A illustrates a general processing cluster
within the parallel processing unit of FIG . 3 , in accordance
with one embodiment .
(0022] FIG . 4B illustrates a memory partition unit of the
parallel processing unit of FIG . 3 , in accordance with one
embodiment .
100231 . FIG . 5A illustrates the streaming multi - processor
of FIG . 4A , in accordance with one embodiment .
[0024] FIG . 5B is a conceptual diagram of a processing
system implemented using the PPU of FIG . 3 , in accordance
with one embodiment .
[0025] FIG . 5C illustrates an exemplary system in which
the various architecture and / or functionality of the various
previous embodiments may be implemented .
10026] FIG . 6 is a conceptual diagram of a graphics
processing pipeline implemented by the PPU of FIG . 3 , in
accordance with one embodiment .

SUMMARY
[0004] A method , computer readable medium , and system
are configured to render a light field . The method comprises
projecting rays from a viewpoint positioned at a first side of
a spatial light modulator (SLM) to a clipping plane posi
tioned at an opposing side of the SLM to form an elemental
view frustum within a three - dimensional scene . Objects
within the elemental view frustum are rendered to generate
components of a first elemental image for the first elemental
region . In one embodiment , the SLM is tiled with an array
of elemental regions and a top edge and a bottom edge of a
first elemental region of the non - overlapping elemental
regions are intersected by the rays to form the elemental
view frustum . In certain embodiments , the light field
includes the first elemental image and additional elemental
images corresponding to the array of elemental regions and
each one of the additional elemental images is rendered
using an additional elemental view frustum .
10005] The computer readable medium includes instruc
tions that , when executed by a processing unit , perform the
method . Furthermore , the system includes circuitry config
ured to perform the method .
[0006] A second method , second computer readable
medium , and second system are configured to render a light
field . The second method comprises computing a lateral
offset between a view position and a spatial light modulator
(SLM) based on a size of the SLM and a width of a
holographic element . A three - dimensional scene is rendered
from the view position to produce an array of elemental
images . In one embodiment , an array of holographic ele
ments covers a surface of the SLM .

DETAILED DESCRIPTION
[0027] Embodiments of the present invention improve
field of view , interactivity at high resolution , and view
dependent occlusion in computer generated holography
(CGH) . Furthermore , various embodiments advantageously
provide continuous focus cues , thereby substantially avoid
ing vergence - accommodation - conflict in near eye displays .
In one embodiment , a near eye display comprises liquid
crystal (LC) and / or spatial light modulator (SLM) structures
configured to display a CGH light field to a user . The CGH

US 2018 / 0373200 A1 Dec . 27 , 2018

light field may be computed according to plane wave
illumination , spherical wave illumination , or any other tech
nically feasible wave propagation illumination model .
[0028] A CGH light field provides an object wave for a
given observable point in a three - dimensional (3D) scene ,
based on a reference wave . The form of the reference wave
(e . g . , plane wave) may be specified , and CGH processing
computes a diffraction pattern which will perform a conver
sion from the reference wave to an object wave at a given
location within a hologram . In one embodiment , computing
the object wave includes projecting rays from a viewpoint
(e . g . , rendering camera position) positioned in front of an
SLM towards a clipping plane positioned in back of the
SLM . In general , the viewpoint and the clipping plane may
be positioned on opposing sides of the SLM . A given ray
may be computed to have an amplitude and phase relative to
other rays . Regions of the SLM may be organized into
elemental images , each with an elemental view frustum
within the 3D scene so that each elemental image may
comprise a single , different representative view of the 3D
scene . Furthermore , multiple elemental images may be
rendered to form a complete 3D scene presented to a user .
[0029] FIG . 1A illustrates a flowchart of a method 110 for
rendering a light field , in accordance with one embodiment .
Although method 110 is described in the context of a
processing unit , the method 110 may also be performed by
a program , custom circuitry , or by a combination of custom
circuitry and a program . For example , the method 110 may
be executed by a GPU (graphics processing unit) , a CPU
(central processing unit) , or any other technically feasible
processor . Furthermore , persons of ordinary skill in the art
will understand that any system that performs method 110 is
within the scope and spirit of embodiments of the present
invention .
[0030] At step 112 , the processing unit projects rays from
a viewpoint positioned in front of an SLM to a clipping
plane positioned in back of the SLM to form an elemental
view frustum within a 3D scene . More generally , the view
point may be positioned at a first side of the SLM , and the
clipping plane may be positioned at an opposing side of the
SLM . In one embodiment , viewpoint is positioned on the
observer ' s side of the SLM and the near clipping plane is
positioned on the opposing side (opposite side relative to the
observer) of the SLM . In one embodiment , the near clipping
plane is located coincident with the surface of the SLM . In
one embodiment , the SLM is tiled with an array of non
overlapping elemental regions and a top edge and a bottom
edge of a first elemental region of the non - overlapping
elemental regions are intersected by the rays to form the
elemental view frustum .
[0031] At step 114 , the processing unit renders objects
within the elemental view frustum to generate components
of a first elemental image for the first elemental region . In
one embodiment , the light field includes the first elemental
image and additional elemental images corresponding to the
array of elemental regions and each one of the additional
elemental images is rendered using an additional elemental
view frustum .
[0032] At step 116 , the processing unit computes phase
and amplitude components for driving the SLM as a product
of an object wave and a conjugate reference wave . Further
more , the components may include color and position within
the 3D scene . In one embodiment , the conjugate reference
wave comprises a plane wave illumination source . In

another embodiment , the conjugate reference wave com
prises a spherical wave illumination source . In other
embodiments , the conjugate reference wave comprises an
arbitrary illumination source .
[0033] In one embodiment , for each pixel of the SLM
within the first elemental region , rendering comprises pro
jecting second rays from the pixel of the SLM to the clipping
plane to define a pixel diffraction cone having a base of a
first width and removing a portion of the components of the
first elemental image that are outside of the pixel diffraction
cone to perform ambiguity segment culling .
[0034] FIG . 1B illustrates a flowchart of a method 120 for
rendering objects within the elemental view frustum , in
accordance with one embodiment . Although method 120 is
described in the context of a processing unit , the method 120
may also be performed by a program , custom circuitry , or by
a combination of custom circuitry and a program . For
example , the method 120 may be executed by a GPU , CPU ,
or any other technically feasible processor . Furthermore ,
persons of ordinary skill in the art will understand that any
system that performs method 120 is within the scope and
spirit of embodiments of the present invention . As shown in
FIG . 1B , in one embodiment , step 114 of method 110
comprises steps 122 and 124 .
[0035] At step 122 , the processing unit projects second
rays from the pixel of the SLM to the clipping plane to define
a pixel diffraction cone having a base of a first width . At step
124 , the processing unit removes a portion of the compo
nents of the first elemental image that are outside of the pixel
diffraction cone . In one embodiment , ambiguity segment
culling is performed by removing the portion of components
outside of the pixel diffraction cone .
[0036] Methods 110 and 120 may be performed in the
context of computer generated holography (CGH) for gen
erating light field data used to drive an SLM device . A
description of CGH will now be set forth , along with
implementation details relevant to various embodiments .
[0037] FIG . 1C illustrates computer generated holography
(CGH) , in accordance with one embodiment . As shown , a
rendering viewpoint is indicated by a virtual camera 142 ,
which is positioned to view a scene object 140 through an
SLM 144 . A point j is shown on the scene object 140 , and
a distance r separates point j from a pixel location x on the
SLM 144 .
[0038] In general , a hologram converts an input reference
light wave ER (x) to an appropriate output object light wave
E . (x) . In CGH , generating the output object light wave
requires knowledge of both the reference light wave and the
object light wave . The form of the reference light wave may
be given and various CGH techniques may be applied to
compute a diffraction pattern that will yield the object light
wave at each location on SLM 144 . A diffraction pattern may
be computed for each location based on a desired output
waveform for the location on the SLM 144 . To compute a
given output waveform resulting from scene object 140 ,
light is propagated backwards towards the SLM 144 using a
Fresnel diffraction integral . For a scene object 140 compris
ing discrete points j , a summation of spherical waves origi
nating from the points j may operate in place of a diffraction
integral . Such a summation is calculated by Equation 1 .

US 2018 / 0373200 A1 Dec . 27 , 2018

1 A ; 25r ; (x) + 0j) Leila (1) Eo (x) =)

[0039] In Equation 1 , A is the wavelength of a monochro
matic light source , A , is the amplitude of the point j on the
scene object 140 , and r ; (x) is the Euclidean distance from the
point j to a pixel location x on the SLM 144 to a given point
j on the scene object 140 . Furthermore , 0 , is a random initial
phase associated with each point j .
[0040] The resulting electric field E . (x) is complex - val
ued . In CGH , a corresponding illumination wavefront is
generated by multiplying the resulting electric field with an
appropriate illumination field . For example , in plane wave
(collimated beam) illumination the resulting electric field is
multiplied by a constant (e . g . , 1) . For spherical wave illu
mination , the electric field may be multiplied by a complex
exponential with a quadratic phase to cancel out the qua
dratic phase of a spherical reference wave . Displaying a
correct diffraction pattern on the SLM 144 is provided by
spatially varying both amplitude and phase delays , accord
ing to a resulting product .
[0041] In one embodiment , a CGH rendering and display
pipeline starts with a polygon - based holographic light field
rendering and includes a point - based approach (i . e . , sum
mation of propagating fields from points on scene object
140) with local partitioning for view - dependent effect .
Occlusion is handled through the pipeline using a z - buffer .
Sampled fragments allow for parallel full - parallax CGH
computation on a GPU at interactive speed with high
resolution (e . g . , 1080p) image quality . In certain embodi
ments , a CGH rendering pipeline includes a polygon surface
approach (i . e . , summation of propagating fields from visible
polygon surfaces comprising scene object 140) that may
operate independently or in conjunction with the point - based
approach . Any technically feasible technique may be per
formed to compute fields from the polygon surfaces at
different pixels of SLM 144 . Furthermore , while various
techniques taught herein are described with reference to
points on a scene object , persons of ordinary skill in the art
will understand that the techniques may be applied to
polygons and / or arbitrary shapes or surfaces without depart
ing the scope and spirit of various embodiments .
[0042] Rendering a full light field generates highly - over
lapped views for adjacent hologram pixels and convention
ally results in significant computational redundancy . For
example , in a point - based approach , conventional rendering
requires sequential scanning of the scene to accumulate
wavefronts emitted from depth - sorted scene points . Such an
operation is equivalent to adding densely sampled angular
views in conventional light field rendering , an approach
known in the art to be computationally impractical for
real - time graphics .
[0043] However , assuming Lambertian surfaces for scene
object 140 , a single recording of each point is sufficient to
determine the wavefront . Leveraging this observation , a
hologram can be spatially partitioned into abutting grids ,
with an individual grid referred to herein as a holographic
element (hogel) , illustrated in FIG . 1D .
[0044] FIG . 1D illustrates a holographic element , in accor
dance with one embodiment . As shown , a color intensity
map includes an abutting grid of elemental images . Each
elemental image comprises a single representative view of a

3D scene . A location and depth map includes a correspond
ing grid of depth information for the elemental images . A
given elemental image is rendered and used to calculate each
hogel , assuming all captured points are visible to all pixels
in the hogel . In one embodiment , each hogel has an asso
ciated phase map and an associated amplitude map . The
phase map and the amplitude map may be computed based
on the color intensity map and the location and depth map .
[0045] Monocular occlusion parallax is bounded by hogel
size (wn) within an eye box . In one embodiment , an eye box
is a region at a user ' s eye position that is sufficiently large
as to allow a user ' s eye to move freely while allowing the
user (viewer) to see the entire 3D scene depicted by SLM
144 (e . g . , all points on scene object 140) . Approximating a
complete holographic light field display as a grid of hogels
substantially reduces rendering passes and computational
effort , allowing conventional GPU systems to support real
time rendering applications . However , conventional hogel
rendering projects to a given hogel center , thereby failing to
render an accurate per - pixel diffraction cone gathering , and
conventional hogel rendering may scale poorly in spherical
illumination scenarios .
[0046] FIG . 2A illustrates conventional hogel rendering ,
in accordance with the prior art . As shown , a rendering
configuration 200 includes a virtual camera 210 positioned
at the center of a hogel 218 included within an SLM 203 .
The virtual camera 210 is aimed at a scene to be rendered .
The position of virtual camera 210 results in a conventional
view frustum 212 , which only provides accurate rendering
for pixels centered within the hogel 218 . In prior art hogel
rendering systems , the conventional view frustum 212 is
used for rendering all pixels in hogel 218 because virtual
camera 210 is statically positioned at the center of the hogel
218 . Consequently , for a bottom pixel in the hogel 218 ,
region 215 is mistakenly incorporated into the pixel during
rendering , while region 217 will be incorrectly excluded
from the pixel during rendering . To accurately render the
bottom pixel in hogel 218 , view frustum 216 should be used .
Similarly , to accurately render the top pixel in hogel 218 ,
view frustum 214 should be used .
[0047] As shown , hogels 218 , 219 on SLM 203 have a
hogel size W . Furthermore , a near clipping plane 204 is
positioned a distance d , from SLM 203 , and a far clipping
plane 206 is positioned a distance d2 from SLM 203 . Hogel
size wn sets a depth limit of zsdmin to scene objects and the
near clipping plane 204 to prevent geometric clipping . In
certain scenarios , this depth limit , along with potential
geometric clipping , inaccurate per - pixel diffraction cone
gathering , and / or additional limitations of conventional
hogel rendering reduce the comfort and quality of a user
experience .
[0048] FIG . 2B illustrates hogel rendering with plane
wave illumination , in accordance with one embodiment . As
shown , a rendering configuration 220 includes a virtual
camera 230 positioned at a lateral offset d along the Z
(depth) axis with respect to an SLM 223 . In contrast , with
conventional techniques , as shown in FIG . 2A , where the
virtual camera 210 is positioned at a lateral offset of zero , the
lateral offset d is greater than zero . The virtual camera 230
is aimed at a scene to be rendered , including a near clipping
plane 224 and a far clipping plane 226 . The position of
virtual camera 230 results in a view frustum 232 that
intersects at least hogel 238 on SLM 223 . Hogels 238 , 239
on SLM 223 have a hogel size Wh . The near clipping plane

US 2018 / 0373200 A1 Dec . 27 , 2018

224 is positioned a distance d , from SLM 223 , and the far
clipping plane 226 is positioned a distance d , from SLM
203 . The lateral offset de , may be equal to a depth limit of
zsdm . in relative to scene objects and the near clipping plane
224 . In one embodiment , the lateral offset is calculated
according to Equation 2 :

Wh dcz = dmin = – (2)

2tan?sin " (. .)
[0049] In Equation 2 , Ap is a pixel pitch size for SLM 223 ,
and à is the wavelength of a monochromatic light source ,
such as a light source used for rendering . As shown , the
offset position of virtual camera 230 allows the entire visible
area for view frustum 232 to be rendered . This visible area
is indicated by W , and calculated by Equation 3 :

wi = 2 sin - (W2Ap) (d + dcz) (3)

[0050] In one embodiment , view frustum 232 intersects
the edge of hogel 238 and near clipping plane 224 , with an
extent of wz . Furthermore , each pixel in SLM 223 may be
generated using only a valid diffraction cone , bounded by
projection 234 . A per - pixel perspective may be obtained by
aligning the diffraction cone in the far clipping plane 226
with a sliding window , defined by Wz . The sliding window
(w3) may be calculated according to Equation 4 :

should be included in rendering an associated pixel on SLM
223 , and an excluded region 244 (outside the width) that
should be excluded from rendering the pixel . Components
outside the pixel diffraction cone may be removed as part of
rendering one or more pixels within the pixel diffraction
cone .
[0054] FIG . 2D illustrates hogel rendering with spherical
wave illumination , in accordance with one embodiment . As
shown , a rendering configuration 250 includes a virtual
camera 260 positioned at a lateral offset dez along the Z
(depth) axis with respect to an SLM 263 . The virtual camera
260 is aimed at a scene to be rendered , including a near
clipping plane 254 and a far clipping plane 256 . The position
of virtual camera 260 results in a view frustum 262 that
intersects at least hogel 268 on SLM 263 . Hogels 268 , 269
on SLM 263 have a hogel size w . . The near clipping plane
254 is positioned a distance dz along the Z axis from virtual
camera 260 , and the far clipping plane 256 is positioned a
distance de along the Z axis from virtual camera 260 . A user
eye 261 is positioned a distance dp along the Z axis from
SLM 263 . As shown , an eye box is shown to be w , in size .
In one embodiment , a projection of view frustum 262
through virtual camera 260 is at least as large as the eye box .
[0055] In various embodiments that implement spherical
illumination , view frustum 262 (and other view frustums
associated with an array of virtual cameras or camera
positions) may undergo a spatially varying transform
because spherical illumination wavefronts introduce curva
ture and an off - axis rotation to a local incident ray direction
of a diffraction cone for a given position of virtual camera
260 . Such diffraction cones collectively widen the field of
view of a given hogel .
[0056] Extending the rendering configuration 220 of FIG .
2C , to rendering configuration 250 for spherical illumination
sets virtual camera 260 at the intersection of marginal rays
restricted by the eye box and skews available field of view .
In one embodiment , the lateral offset dez of virtual camera
260 relative to the position of SLM 263 is given by Equation

(4) ms = (1 - ci
[0051] Diffraction culling may be used on an ambiguity
segment , illustrated in FIG . 2C showing region 240 in detail ,
to provide more accurate rendering . Diffraction culling may
include , without limitation , removing certain covered scene
object geometry associated with an ambiguity segment from
contributing to a given pixel on SLM 223 . The ambiguity
region may be obtained by extending the sliding window to
W2 , as calculated in Equation 5 . Furthermore , W3 and W2
bound projection 234 .

6 :

dcz = dewn
We (dp) + wh

w = (1 - dot och [0057] An offset between a center view of virtual camera
260 and a hogel center along the X - axis and Y - axis depends
on the position of the hogel relative to the eye box . Assum
ing 2m + 1 by 2n + 1 partitioning of the SLM 263 along the
X - axis and Y - axis , respectively , the displacement from an
(m , n) - th hogel center to a corresponding virtual camera is
given by Equations 7 and 8 :

dex = mwider

[0052] Arranging an array of virtual cameras 230 (e . g . ,
one virtual camera per elemental view or elemental region)
according to the disclosed configuration allows for unre
stricted disposition of scene objects . Lateral offset dcz
ensures adjacent camera views overlap immediately in front
of the SLM 223 , and a resulting tiled frustum array fully
covers the field of view of the entire hologram (the entire 3D
scene) . This allows the near clipping plane 224 to be
advantageously set at an arbitrary depth in front of the SLM
223 .
[0053] FIG . 2C illustrates a region 240 of an ambiguity
segment 242 , in accordance with one embodiment . Projec
tion 234 intersects near clipping plane 224 and far clipping
plane 226 . Projection 234 may define a pixel diffraction cone
with a base of a certain width . Furthermore , projection 234
may intersect an included region 245 (within the width) that

dey = nwydcz da

[0058] As shown , displacement day is a displacement
along the Y - axis from the center of hogel 268 to the center
of view for virtual camera 260 . In camera space , an appro
priate off - axis projection matrix is defined by Equation 9 :

US 2018 / 0373200 A1 Dec . 27 , 2018

2dcx 0 (9)
Wh

2dcz 2dcy
Pim , n } = Wh Wh

da + dz 2d4d3
da – dz - d4 – dz

- 1 0 | 0 0

[0059] A sliding window w? inside each elemental image
may be used to disambiguate a projected pixel , wherein w2
is calculated according to Equation 10 :

should be included in rendering an associated pixel on SLM
263 , and an excluded region 274 (outside the width) that
should be excluded from rendering the pixel . Components
outside the pixel diffraction cone may be removed as part of
rendering one or more pixels within the pixel diffraction
cone .
10065] FIG . 2F illustrates algorithmic operations of a
method for rendering a light field using spherical illumina
tion , in accordance with one embodiment . In the algorithmic
operations , p denotes an SLM pixel in the (m , n) - th hogel ,
at a displacement (Ax , Ay) to the hogel center . A CGH fringe
calculation for E (p) of each SLM pixel under spherical
illumination multiplies the object wave E . (p) by a conjugate
reference wave ER * (p) . A position q is located on a scene
object to be rendered , the position being identified by an
index j . In an associated virtual camera space under spheri
cal illumination , p ' s spatial coordinate is given by (Ax + dex ,
Ay + d - d .) . In one embodiment , p ' s estimated view is a
sliding window of kxk pixels . Furthermore , q , is the elemen
tal pixel with a rendered point located at (xqj Yaj? Zaj) , an
amplitude Ani , and an initial phase . . . This computation is
based on Equation 1 , and is shown in detail in Equations
12 - 16 .

E (p) = E . (P) : Ex * (p) (12)
[0066] In Equation 12 , E . (p) may be calculated according
to Equation 13 :

(10) we = 1 - dcz (d4 + df - dcz) , dadami

[0060] Diffraction culling may be used on an ambiguity
segment , illustrated in FIG . 2E showing detail of region 270 ,
to provide more accurate rendering . Diffraction culling may
include , without limitation , removing certain covered scene
object geometry associated with an ambiguity segment from
contributing to a given pixel on SLM 263 .
[0061] A fraction of an error - free segment within the
sliding window may be used to derive a hogel size required
to obtain an acceptable sampling error . Equation 11 :

p . 91 + 09j (13) i21 W3 – 1 _ (d4 – dz) dcz (11) Ep) =
lia w2 d34d4 - dcz)

[0067] Furthermore , ER * (p) may be calculated according
to Equation 14 :

(14) Ek (P) = (- 0 . 2 , Ment)
[0068] Euclidean distances r (p , q ;) and r (p , F) may be
calculated according to Equations 15 and 16 , respectively :

r (p , qi) = V (x , - 48 - dex) + (yqj - Ay - dey) 2 + (29j + dez) ? (15)
(16)

[0062] Hogel size can have a significant impact on visual
quality as well as computational effort . In one extreme case
of hogel size , a hogel is one pixel within the SLM 263 . In
this first case , the holographic light field rendering expands
to full light field rendering , which may be impractical . In
another extreme case of hogel size , a hogel extends to the
entire size of the SLM 263 . In this second case , the rendered
light field recedes to a single map of points rendered from
the nearest distance where the SLM 263 is fully observable
to a viewer (e . g . , a user) . In a practical scenario , hogel size
is selected between these two extremes , as discussed further
in conjunction with FIG . 2G .
[0063] In a holographic light field , a one - to - one mapping
between a hogel on an SLM and a corresponding visible
elemental image , as shown in FIG . 1D , facilitates parallel
computation using a point - based method for Fresnel inte
gration (i . e . , summation) . For example , light field calcula
tion may proceed as a parallel operation on pixels compris
ing a hogel , a parallel operation on different virtual camera
views , or a combination thereof . Furthermore , a parallel
operation on pixels may include parallel computation of
summation terms comprising Fresnel integration / summa
tion . In one embodiment , a parallel processing unit , such as
the PPU 300 shown in FIG . 3 may be used to perform the
parallel computations .
[0064] FIG . 2E illustrates a region 270 of an ambiguity
segment 272 , in accordance with one embodiment . Projec
tion 264 intersects near clipping plane 254 and far clipping
plane 256 . Projection 264 may define a pixel diffraction cone
with a base of a certain width . Furthermore , projection 264
may intersect an included region 275 (within the width) that

r (p , F) = V (dp) 2 + (mwh + Ax) 2 + (nwh + Ay) ?
[0069] In steps 1 - 4 of FIG . 2F , i is defined as a pixel index
for a pixel within an SLM (e . g . , SLM 263) , and a subset of
pixels are identified as being within a hogel . Pixels within a
sliding window for the hogel are given an index j . A for loop
in step 5 is configured to iterate over pixels within the sliding
window to compute a field value for each pixel . A wavefront
phase (0) from a point q to a pixel within the SLM is
computed in step 8 , while an amplitude (A) for the wave
front is computed in step 9 . Field summation of Equation 12
is completed in step 11 .
[0070] FIG . 2G illustrates a comparison of elemental
image resolution results , in accordance with one embodi
ment . Angular sampling rate (pixels per observed degree) is
varied , with image (a) having an angular sampling rate of 6 ,
image (b) having an angular sampling rate of 18 , image (c)
having an angular sampling rate of 30 , and image (d) having
an angular sampling rate of 45 . An inset (bottom left) of each
image depicts the rendered elemental image of resolution

US 2018 / 0373200 A1 Dec . 27 , 2018

Parallel Processing Architecture
[0075] FIG . 3 illustrates a parallel processing unit (PPU)
300 , in accordance with one embodiment . In one embodi
ment , the PPU 300 is a multi - threaded processor that is
implemented on one or more integrated circuit devices . The
PPU 300 is a latency hiding architecture designed to process
many threads in parallel . A thread (i . e . , a thread of execu
tion) is an instantiation of a set of instructions configured to
be executed by the PPU 300 . In one embodiment , the PPU
300 is a graphics processing unit (GPU) configured to
implement a graphics rendering pipeline for processing
three - dimensional (3D) graphics data in order to generate
two - dimensional (2D) image data for display on a display
device such as a liquid crystal display (LCD) device . In
other embodiments , the PPU 300 may be utilized for per
forming general - purpose computations . While one exem
plary parallel processor is provided herein for illustrative
purposes , it should be strongly noted that such processor is
set forth for illustrative purposes only , and that any proces
sor may be employed to supplement and / or substitute for the
same

varying resolution having a corresponding angular sampling
rate , while a detail (top right) illustrates reconstructions at
the corresponding angular sampling rate . Lower resolution
reconstructions (top row of images) exhibits obvious alias
ing ; however , higher resolution reconstructions (bottom row
of images) is smooth in appearance , without obvious signs
of aliasing . In general , an angular sampling rate above 30
pixels per degree provides a good approximation with little
noticeable aliasing . Consequently , in one embodiment , an
angular sampling rate above 30 pixels per degree is imple
mented .
[0071] Although a small hogel size (wn) and dense parti
tioning increases the number of rendered views needed , a
smaller hogel size also reduces ambiguity regions and
produces more accurate perspectives for intra - ocular occlu
sion . A balance may be achieved between competing param
eters by evaluating hogel size based on a ratio between
error - free segment and approximated sliding window . In one
embodiment the SLM includes a resolution of 3840x2160
and , W , 1 mm . This configuration may produce an ambi
guity region of less than 0 . 16 % for a two - dimensional view
with 16x9 hogel partitioning . Note that larger pixel pitch
may require denser hogel partitioning .
[0072] FIG . 2H illustrates a flowchart of a method 280 for
rendering a light field , in accordance with one embodiment .
Although method 280 is described in the context of a
processing unit , the method 280 may also be performed by
a program , custom circuitry , or by a combination of custom
circuitry and a program . For example , the method 280 may
be executed by a GPU , a CPU , or any other technically
feasible processor . Furthermore , persons of ordinary skill in
the art will understand that any system that performs method
280 is within the scope and spirit of embodiments of the
present invention .
[0073] At step 282 , the processing unit computes a lateral
offset (e . g . , d) between a view position and an SLM (e . g . ,
SLM 223 , SLM 263) based on a size of the SLM and a width
of a holographic element (hogel) . In one embodiment , the
view position specifies a view position for a virtual camera
(e . g . , virtual camera 230 , virtual camera 260) . Furthermore ,
in one embodiment , an array of hogels covers a surface of
the SLM . At step 284 , the processing unit renders a three
dimensional scene from the view position to produce an
elemental image included within an array of elemental
images . The processing unit may render each elemental
image within the array of elemental images . In one embodi
ment , the array of elemental images includes a correspond
ing array of depth maps (e . g . , rendered along with the
elemental images) . A phase map and an amplitude map are
then computed from the elemental images and depth maps ,
as depicted in FIG . 1D . The phase map and amplitude map
may be partitioned to form a one - to - one mapping to the
array of hogels . Any technically feasible technique may be
implemented to compute the phase map and the amplitude
map .
[0074] . More illustrative information will now be set forth
regarding various optional architectures and features with
which the foregoing framework may or may not be imple
mented , per the desires of the user . It should be strongly
noted that the following information is set forth for illus
trative purposes and should not be construed as limiting in
any manner . Any of the following features may be optionally
incorporated with or without the exclusion of other features
described .

[0076] One or more PPUS 300 may be configured to
accelerate thousands of High Performance Computing
(HPC) , data center , and machine learning applications . The
PPU 300 may be configured to accelerate numerous deep
learning systems and applications including autonomous
vehicle platforms , deep learning , high - accuracy speech ,
image , and text recognition systems , intelligent video ana
lytics , molecular simulations , drug discovery , disease diag
nosis , weather forecasting , big data analytics , astronomy ,
molecular dynamics simulation , financial modeling , robot
ics , factory automation , real - time language translation ,
online search optimizations , and personalized user recom
mendations , and the like .
[0077] As shown in FIG . 3 , the PPU 300 includes an
Input / Output (1 / 0) unit 305 , a front end unit 315 , a scheduler
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar
(Xbar) 370 , one or more general processing clusters (GPCs)
350 , and one or more partition units 380 . The PPU 300 may
be connected to a host processor or other PPUS 300 via one
or more high - speed NVLink 310 interconnect . The PPU 300
may be connected to a host processor or other peripheral
devices via an interconnect 302 . The PPU 300 may also be
connected to a local memory comprising a number of
memory devices 304 . In one embodiment , the local memory
may comprise a number of dynamic random access memory
(DRAM) devices . The DRAM devices may be configured as
a high - bandwidth memory (HBM) subsystem , with multiple
DRAM dies stacked within each device .
[0078] The NVLink 310 interconnect enables systems to
scale and include one or more PPUS 300 combined with one
or more CPUs , supports cache coherence between the PPUS
300 and CPUs , and CPU mastering . Data and / or commands
may be transmitted by the NVLink 310 through the hub 330
to / from other units of the PPU 300 such as one or more copy
engines , a video encoder , a video decoder , a power man
agement unit , etc . (not explicitly shown) . The NVLink 310
is described in more detail in conjunction with FIG . 5B .
10079) The I / O unit 305 is configured to transmit and
receive communications (i . e . , commands , data , etc .) from a
host processor (not shown) over the interconnect 302 . The
1 / 0 unit 305 may communicate with the host processor
directly via the interconnect 302 or through one or more
intermediate devices such as a memory bridge . In one

US 2018 / 0373200 A1 Dec . 27 , 2018

embodiment , the I / O unit 305 may communicate with one or
more other processors , such as one or more the PPUs 300 via
the interconnect 302 . In one embodiment , the I / O unit 305
implements a Peripheral Component Interconnect Express
(PCIe) interface for communications over a PCIe bus and
the interconnect 302 is a PCIe bus . In alternative embodi
ments , the I / O unit 305 may implement other types of
well - known interfaces for communicating with external
devices .
[0080] The I / O unit 305 decodes packets received via the
interconnect 302 . In one embodiment , the packets represent
commands configured to cause the PPU 300 to perform
various operations . The I / O unit 305 transmits the decoded
commands to various other units of the PPU 300 as the
commands may specify . For example , some commands may
be transmitted to the front end unit 315 . Other commands
may be transmitted to the hub 330 or other units of the PPU
300 such as one or more copy engines , a video encoder , a
video decoder , a power management unit , etc . (not explicitly
shown) . In other words , the I / O unit 305 is configured to
route communications between and among the various logi
cal units of the PPU 300 .
[0081] In one embodiment , a program executed by the
host processor encodes a command stream in a buffer that
provides workloads to the PPU 300 for processing . A
workload may comprise several instructions and data to be
processed by those instructions . The buffer is a region in a
memory that is accessible (i . e . , read / write) by both the host
processor and the PPU 300 . For example , the host interface
unit 310 may be configured to access the buffer in a system
memory connected to the interconnect 302 via memory
requests transmitted over the interconnect 302 by the I / O
unit 305 . In one embodiment , the host processor writes the
command stream to the buffer and then transmits a pointer
to the start of the command stream to the PPU 300 . The front
end unit 315 receives pointers to one or more command
streams . The front end unit 315 manages the one or more
streams , reading commands from the streams and forward
ing commands to the various units of the PPU 300 .
[0082] The front end unit 315 is coupled to a scheduler
unit 320 that configures the various GPCs 350 to process
tasks defined by the one or more streams . The scheduler unit
320 is configured to track state information related to the
various tasks managed by the scheduler unit 320 . The state
may indicate which GPC 350 a task is assigned to , whether
the task is active or inactive , a priority level associated with
the task , and so forth . The scheduler unit 320 manages the
execution of a plurality of tasks on the one or more GPCs
350 .
[0083] The scheduler unit 320 is coupled to a work
distribution unit 325 that is configured to dispatch tasks for
execution on the GPCs 350 . The work distribution unit 325
may track a number of scheduled tasks received from the
scheduler unit 320 . In one embodiment , the work distribu
tion unit 325 manages a pending task pool and an active task
pool for each of the GPCs 350 . The pending task pool may
comprise a number of slots (e . g . , 32 slots) that contain tasks
assigned to be processed by a particular GPC 350 . The active
task pool may comprise a number of slots (e . g . , 4 slots) for
tasks that are actively being processed by the GPCs 350 . As
a GPC 350 finishes the execution of a task , that task is
evicted from the active task pool for the GPC 350 and one
of the other tasks from the pending task pool is selected and
scheduled for execution on the GPC 350 . If an active task

has been idle on the GPC 350 , such as while waiting for a
data dependency to be resolved , then the active task may be
evicted from the GPC 350 and returned to the pending task
pool while another task in the pending task pool is selected
and scheduled for execution on the GPC 350 .
[0084] The work distribution unit 325 communicates with
the one or more GPCs 350 via XBar 370 . The XBar 370 is
an interconnect network that couples many of the units of the
PPU 300 to other units of the PPU 300 . For example , the
XBar 370 may be configured to couple the work distribution
unit 325 to a particular GPC 350 . Although not shown
explicitly , one or more other units of the PPU 300 may also
be connected to the XBar 370 via the hub 330 .
0085 The tasks are managed by the scheduler unit 320
and dispatched to a GPC 350 by the work distribution unit
325 . The GPC 350 is configured to process the task and
generate results . The results may be consumed by other tasks
within the GPC 350 , routed to a different GPC 350 via the
XBar 370 , or stored in the memory 304 . The results can be
written to the memory 304 via the partition units 380 , which
implement a memory interface for reading and writing data
to / from the memory 304 . The results can be transmitted to
another PPU 304 or CPU via the NVLink 310 . In one
embodiment , the PPU 300 includes a number U of partition
units 380 that is equal to the number of separate and distinct
memory devices 304 coupled to the PPU 300 . A partition
unit 380 will be described in more detail below in conjunc
tion with FIG . 4B .
[008] In one embodiment , a host processor executes a
driver kernel that implements an application programming
interface (API) that enables one or more applications execut
ing on the host processor to schedule operations for execu
tion on the PPU 300 . In one embodiment , multiple compute
applications are simultaneously executed by the PPU 300
and the PPU 300 provides isolation , quality of service
(QoS) , and independent address spaces for the multiple
compute applications . An application may generate instruc
tions (i . e . , API calls) that cause the driver kernel to generate
one or more tasks for execution by the PPU 300 . The driver
kernel outputs tasks to one or more streams being processed
by the PPU 300 . Each task may comprise one or more
groups of related threads , referred to herein as a warp . In one
embodiment , a warp comprises 32 related threads that may
be executed in parallel . Cooperating threads may refer to a
plurality of threads including instructions to perform the task
and that may exchange data through shared memory .
Threads and cooperating threads are described in more detail
in conjunction with FIG . 5A .
[0087] FIG . 4A illustrates a GPC 350 of the PPU 300 of
FIG . 3 , in accordance with one embodiment . As shown in
FIG . 4A , each GPC 350 includes a number of hardware units
for processing tasks . In one embodiment , each GPC 350
includes a pipeline manager 410 , a pre - raster operations unit
(PROP) 415 , a raster engine 425 , a work distribution cross
bar (WDX) 480 , a memory management unit (MMU) 490 ,
and one or more Data Processing Clusters (DPCs) 420 . It
will be appreciated that the GPC 350 of FIG . 4A may include
other hardware units in lieu of or in addition to the units
shown in FIG . 4A .
0088] In one embodiment , the operation of the GPC 350

is controlled by the pipeline manager 410 . The pipeline
manager 410 manages the configuration of the one or more
DPCs 420 for processing tasks allocated to the GPC 350 . In
one embodiment , the pipeline manager 410 may configure at

US 2018 / 0373200 A1 Dec . 27 , 2018

least one of the one or more DPCs 420 to implement at least
a portion of a graphics rendering pipeline . For example , a
DPC 420 may be configured to execute a vertex shader
program on the programmable streaming multiprocessor
(SM) 440 . The pipeline manager 410 may also be configured
to route packets received from the work distribution unit 325
to the appropriate logical units within the GPC 350 . For
example , some packets may be routed to fixed function
hardware units in the PROP 415 and / or raster engine 425
while other packets may be routed to the DPCs 420 for
processing by the primitive engine 435 or the SM 440 . In
one embodiment , the pipeline manager 410 may configure at
least one of the one or more DPCs 420 to implement a neural
network model and / or a computing pipeline .
[0089] The PROP unit 415 is configured to route data
generated by the raster engine 425 and the DPCs 420 to a
Raster Operations (ROP) unit in the partition unit 380 ,
described in more detail in conjunction with FIG . 4B . The
PROP unit 415 may also be configured to perform optimi
zations for color blending , organize pixel data , perform
address translations , and the like .
10090] The raster engine 425 includes a number of fixed
function hardware units configured to perform various raster
operations . In one embodiment , the raster engine 425
includes a setup engine , a coarse raster engine , a culling
engine , a clipping engine , a fine raster engine , and a tile
coalescing engine . The setup engine receives transformed
vertices and generates plane equations associated with the
geometric primitive defined by the vertices . The plane
equations are transmitted to the coarse raster engine to
generate coverage information (e . g . , an x , y coverage mask
for a tile) for the primitive . The output of the coarse raster
engine is transmitted to the culling engine where fragments
associated with the primitive that fail a z - test are culled , and
transmitted to a clipping engine where fragments lying
outside a viewing frustum are clipped . Those fragments that
survive clipping and culling may be passed to the fine raster
engine to generate attributes for the pixel fragments based
on the plane equations generated by the setup engine . The
output of the raster engine 425 comprises fragments to be
processed , for example , by a fragment shader implemented
within a DPC 420 .
[0091] Each DPC 420 included in the GPC 350 includes
an M - Pipe Controller (MPC) 430 , a primitive engine 435 ,
and one or more SMs 440 . The MPC 430 controls the
operation of the DPC 420 , routing packets received from the
pipeline manager 410 to the appropriate units in the DPC
420 . For example , packets associated with a vertex may be
routed to the primitive engine 435 , which is configured to
fetch vertex attributes associated with the vertex from the
memory 304 . In contrast , packets associated with a shader
program may be transmitted to the SM 440 .
[0092] The SM 440 comprises a programmable streaming
processor that is configured to process tasks represented by
a number of threads . Each SM 440 is multi - threaded and
configured to execute a plurality of threads (e . g . , 32 threads)
from a particular group of threads concurrently . In one
embodiment , the SM 440 implements a SIMD (Single
Instruction , Multiple - Data) architecture where each thread
in a group of threads (i . e . , a warp) is configured to process
a different set of data based on the same set of instructions .
All threads in the group of threads execute the same instruc
tions . In another embodiment , the SM 440 implements a
SIMT (Single - Instruction , Multiple Thread) architecture

where each thread in a group of threads is configured to
process a different set of data based on the same set of
instructions , but where individual threads in the group of
threads are allowed to diverge during execution . In one
embodiment , a program counter , call stack , and execution
state is maintained for each warp , enabling concurrency
between warps and serial execution within warps when
threads within the warp diverge . In another embodiment , a
program counter , call stack , and execution state is main
tained for each individual thread , enabling equal concur
rency between all threads , within and between warps . When
execution state is maintained for each individual thread ,
threads executing the same instructions may be converged
and executed in parallel for maximum efficiency . The SM
440 will be described in more detail below in conjunction
with FIG . 5A .
[0093] The MMU 490 provides an interface between the
GPC 350 and the partition unit 380 . The MMU 490 may
provide translation of virtual addresses into physical
addresses , memory protection , and arbitration of memory
requests . In one embodiment , the MMU 490 provides one or
more translation lookaside buffers (TLBs) for performing
translation of virtual addresses into physical addresses in the
memory 304 .
[0094] FIG . 4B illustrates a memory partition unit 380 of
the PPU 300 of FIG . 3 , in accordance with one embodiment .
As shown in FIG . 4B , the memory partition unit 380
includes a Raster Operations (ROP) unit 450 , a level two
(L2) cache 460 , and a memory interface 470 . The memory
interface 470 is coupled to the memory 304 . Memory
interface 470 may implement 32 , 64 , 128 , 1024 - bit data
buses , or the like , for high - speed data transfer . In one
embodiment , the PPU 300 incorporates U memory inter
faces 470 , one memory interface 470 per pair of partition
units 380 , where each pair of partition units 380 is connected
to a corresponding memory device 304 . For example , PPU
300 may be connected to up to Y memory devices 304 , such
as high bandwidth memory stacks or graphics double - data
rate , version 5 , synchronous dynamic random access
memory (GDDR5 SDRAM) .
[0095] In one embodiment , the memory interface 470
implements an HBM2 memory interface and Y equals half
U . In one embodiment , the HBM2 memory stacks are
located on the same physical package as the PPU 300 ,
providing substantial power and area savings compared with
conventional GDDR5 SDRAM systems . In one embodi
ment , each HBM2 stack includes four memory dies and Y
equals 4 , with HBM2 stack including two 128 - bit channels
per die for a total of 8 channels and a data bus width of 1024
bits .

[0096] In one embodiment , the memory 304 supports
Single - Error Correcting Double - Error Detecting (SECDED)
Error Correction Code (ECC) to protect data . ECC provides
higher reliability for compute applications that are sensitive
to data corruption . Reliability is especially important in
large - scale cluster computing environments where PPUS
300 process very large datasets and / or run applications for
extended periods .
[0097] In one embodiment , the PPU 300 implements a
multi - level memory hierarchy . In one embodiment , the
memory partition unit 380 supports a unified memory to
provide a single unified virtual address space for CPU and
PPU 300 memory , enabling data sharing between virtual
memory systems . In one embodiment the frequency of

US 2018 / 0373200 A1 Dec . 27 , 2018

accesses by a PPU 300 to memory located on other proces
sors is traced to ensure that memory pages are moved to the
physical memory of the PPU 300 that is accessing the pages
more frequently . In one embodiment , the NVLink 310
supports address translation services allowing the PPU 300
to directly access a CPU ' s page tables and providing full
access to CPU memory by the PPU 300 .
[0098] In one embodiment , copy engines transfer data
between multiple PPUS 300 or between PPUS 300 and
CPUs . The copy engines can generate page faults for
addresses that are not mapped into the page tables . The
memory partition unit 380 can then service the page faults ,
mapping the addresses into the page table , after which the
copy engine can perform the transfer . In a conventional
system , memory is pinned (i . e . , non - pageable) for multiple
copy engine operations between multiple processors , sub
stantially reducing the available memory . With hardware
page faulting , addresses can be passed to the copy engines
without worrying if the memory pages are resident , and the
copy process is transparent .
0099] Data from the memory 304 or other system
memory may be fetched by the memory partition unit 380
and stored in the L2 cache 460 , which is located on - chip and
is shared between the various GPCs 350 . As shown , each
memory partition unit 380 includes a portion of the L2 cache
460 associated with a corresponding memory device 304 .
Lower level caches may then be implemented in various
units within the GPCs 350 . For example , each of the SMS
440 may implement a level one (L1) cache . The L1 cache is
private memory that is dedicated to a particular SM 440 .
Data from the L2 cache 460 may be fetched and stored in
each of the L1 caches for processing in the functional units
of the SMs 440 . The L2 cache 460 is coupled to the memory
interface 470 and the XBar 370 .
[0100] The ROP unit 450 performs graphics raster opera
tions related to pixel color , such as color compression , pixel
blending , and the like . The ROP unit 450 also implements
depth testing in conjunction with the raster engine 425 ,
receiving a depth for a sample location associated with a
pixel fragment from the culling engine of the raster engine
425 . The depth is tested against a corresponding depth in a
depth buffer for a sample location associated with the
fragment . If the fragment passes the depth test for the sample
location , then the ROP unit 450 updates the depth buffer and
transmits a result of the depth test to the raster engine 425 .
It will be appreciated that the number of partition units 380
may be different than the number of GPCs 350 and , there
fore , each ROP unit 450 may be coupled to each of the GPCs
350 . The ROP unit 450 tracks packets received from the
different GPCs 350 and determines which GPC 350 that a
result generated by the ROP unit 450 is routed to through the
Xbar 370 .
[0101] FIG . 5A illustrates the streaming multi - processor
440 of FIG . 4A , in accordance with one embodiment . As
shown in FIG . 5A , the SM 440 includes an instruction cache
505 , one or more scheduler units 510 , a register file 520 , one
or more processing cores 550 , one or more special function
units (SFUS) 552 , one or more load / store units (LSUS) 554 ,
an interconnect network 580 , a shared memory / L1 cache
570 .
[0102] As described above , the work distribution unit 325
dispatches tasks for execution on the GPCs 350 of the PPU
300 . The tasks are allocated to a particular DPC 420 within
a GPC 350 and , if the task is associated with a shader

program , the task may be allocated to an SM 440 . The
scheduler unit 510 receives the tasks from the work distri
bution unit 325 and manages instruction scheduling for one
or more thread blocks assigned to the SM 440 . The scheduler
unit 510 schedules thread blocks for execution as warps of
parallel threads , where each thread block is allocated at least
one warp . In one embodiment , each warp executes 32
threads . The scheduler unit 510 may manage a plurality of
different thread blocks , allocating the warps to the different
thread blocks and then dispatching instructions from the
plurality of different cooperative groups to the various
functional units (i . e . , cores 550 , SFUS 552 , and LSUs 554)
during each clock cycle .
[0103] Cooperative Groups is a programming model for
organizing groups of communicating threads that allows
developers to express the granularity at which threads are
communicating , enabling the expression of richer , more
efficient parallel decompositions . Cooperative launch APIs
support synchronization amongst thread blocks for the
execution of parallel algorithms . Conventional program
ming models provide a single , simple construct for synchro
nizing cooperating threads : a barrier across all threads of a
thread block (i . e . , the syncthreads () function) . However ,
programmers would often like to define groups of threads at
smaller than thread block granularities and synchronize
within the defined groups to enable greater performance ,
design flexibility , and software reuse in the form of collec
tive group - wide function interfaces .
[0104] Cooperative Groups enables programmers to
define groups of threads explicitly at sub - block (i . e . , as small
as a single thread) and multi - block granularities , and to
perform collective operations such as synchronization on the
threads in a cooperative group . The programming model
supports clean composition across software boundaries , so
that libraries and utility functions can synchronize safely
within their local context without having to make assump
tions about convergence . Cooperative Groups primitives
enable new patterns of cooperative parallelism , including
producer - consumer parallelism , opportunistic parallelism ,
and global synchronization across an entire grid of thread
blocks .
[0105] A dispatch unit 515 is configured to transmit
instructions to one or more of the functional units . In the
embodiment , the scheduler unit 510 includes two dispatch
units 515 that enable two different instructions from the
same warp to be dispatched during each clock cycle . In
alternative embodiments , each scheduler unit 510 may
include a single dispatch unit 515 or additional dispatch
units 515 .
[0106] Each SM 440 includes a register file 520 that
provides a set of registers for the functional units of the SM
440 . In one embodiment , the register file 520 is divided
between each of the functional units such that each func
tional unit is allocated a dedicated portion of the register file
520 . In another embodiment , the register file 520 is divided
between the different warps being executed by the SM 440 .
The register file 520 provides temporary storage for oper
ands connected to the data paths of the functional units .
[0107] Each SM 440 comprises L processing cores 550 . In
one embodiment , the SM 440 includes a large number (e . g . ,
128 , etc .) of distinct processing cores 550 . Each core 550
may include a fully - pipelined , single - precision , double - pre
cision , and / or mixed precision processing unit that includes
a floating point arithmetic logic unit and an integer arith

US 2018 / 0373200 A1 Dec . 27 , 2018

metic logic unit . In one embodiment , the floating point
arithmetic logic units implement the IEEE 754 - 2008 stan -
dard for floating point arithmetic . In one embodiment , the
cores 550 include 64 single - precision (32 - bit) floating point
cores , 64 integer cores , 32 double - precision (64 - bit) floating
point cores , and 8 tensor cores .
[0108] Tensor cores configured to perform matrix opera
tions , and , in one embodiment , one or more tensor cores are
included in the cores 550 . In particular , the tensor cores are
configured to perform deep learning matrix arithmetic , such
as convolution operations for neural network training and
inferencing . In one embodiment , each tensor core operates
on a 4x4 matrix and performs a matrix multiply and accu
mulate operation D = AXB + C , where A , B , C , and D are 4x4
matrices .
[0109 . In one embodiment , the matrix multiply inputs A
and B are 16 - bit floating point matrices , while the accumu
lation matrices C and D may be 16 - bit floating point or
32 - bit floating point matrices . Tensor Cores operate on
16 - bit floating point input data with 32 - bit floating point
accumulation . The 16 - bit floating point multiply requires 64
operations and results in a full precision product that is then
accumulated using 32 - bit floating point addition with the
other intermediate products for a 4x4x4 matrix multiply . In
practice , Tensor Cores are used to perform much larger
two - dimensional or higher dimensional matrix operations ,
built up from these smaller elements . An API , such as
CUDA 9 C + + API , exposes specialized matrix load , matrix
multiply and accumulate , and matrix store operations to
efficiently use Tensor Cores from a CUDA - C + + program . At
the CUDA level , the warp - level interface assumes 16x16
size matrices spanning all 32 threads of the warp .
[0110] Each SM 440 also comprises M SFUS 552 that
perform special functions (e . g . , attribute evaluation , recip
rocal square root , and the like) . In one embodiment , the
SFUS 552 may include a tree traversal unit configured to
traverse a hierarchical tree data structure . In one embodi
ment , the SFUS 552 may include texture unit configured to
perform texture map filtering operations . In one embodi
ment , the texture units are configured to load texture maps
(e . g . , a 2D array of texels) from the memory 304 and sample
the texture maps to produce sampled texture values for use
in shader programs executed by the SM 440 . In one embodi
ment , the texture maps are stored in the shared memory / L1
cache 470 . The texture units implement texture operations
such as filtering operations using mip - maps (i . e . , texture
maps of varying levels of detail) . In one embodiment , each
SM 340 includes two texture units .
[0111] Each SM 440 also comprises N LSUS 554 that
implement load and store operations between the shared
memory / L1 cache 570 and the register file 520 . Each SM
440 includes an interconnect network 580 that connects each
of the functional units to the register file 520 and the LSU
554 to the register file 520 , shared memory / L1 cache 570 . In
one embodiment , the interconnect network 580 is a crossbar
that can be configured to connect any of the functional units
to any of the registers in the register file 520 and connect the
LSUs 554 to the register file and memory locations in shared
memory / L1 cache 570 .
[0112] The shared memory / L1 cache 570 is an array of
on - chip memory that allows for data storage and commu
nication between the SM 440 and the primitive engine 435
and between threads in the SM 440 . In one embodiment , the
shared memory / L1 cache 570 comprises 128 KB of storage

capacity and is in the path from the SM 440 to the partition
unit 380 . The shared memory / L1 cache 570 can be used to
cache reads and writes . One or more of the shared memory /
L1 cache 570 , L2 cache 460 , and memory 304 are backing
stores .
[0113] Combining data cache and shared memory func
tionality into a single memory block provides the best
overall performance for both types of memory accesses . The
capacity is usable as a cache by programs that do not use
shared memory . For example , if shared memory is config
ured to use half of the capacity , texture and load / store
operations can use the remaining capacity . Integration
within the shared memory / L1 cache 570 enables the shared
memory / L1 cache 570 to function as a high - throughput
conduit for streaming data while simultaneously providing
high - bandwidth and low - latency access to frequently reused
data .
[0114] When configured for general purpose parallel com
putation , a simpler configuration can be used compared with
graphics processing . Specifically , the fixed function graphics
processing units shown in FIG . 3 , are bypassed , creating a
much simpler programming model . In the general purpose
parallel computation configuration , the work distribution
unit 325 assigns and distributes blocks of threads directly to
the DPCs 420 . The threads in a block execute the same
program , using a unique thread ID in the calculation to
ensure each thread generates unique results , using the SM
440 to execute the program and perform calculations , shared
memory / L1 cache 570 to communicate between threads , and
the LSU 554 to read and write global memory through the
shared memory / L1 cache 570 and the memory partition unit
380 . When configured for general purpose parallel compu
tation , the SM 440 can also write commands that the
scheduler unit 320 can use to launch new work on the DPCs
420 .
[0115] The PPU 300 may be included in a desktop com
puter , a laptop computer , a tablet computer , servers , super
computers , a smart - phone (e . g . , a wireless , hand - held
device) , personal digital assistant (PDA) , a digital camera , a
vehicle , a head mounted display , a hand - held electronic
device , and the like . In one embodiment , the PPU 300 is
embodied on a single semiconductor substrate . In another
embodiment , the PPU 300 is included in a system - on - a - chip
(SoC) along with one or more other devices such as addi
tional PPUS 300 , the memory 204 , a reduced instruction set
computer (RISC) CPU , a memory management unit
(MMU) , a digital - to - analog converter (DAC) , and the like .
[0116] In one embodiment , the PPU 300 may be included
on a graphics card that includes one or more memory
devices 304 . The graphics card may be configured to inter
face with a PCIe slot on a motherboard of a desktop
computer . In yet another embodiment , the PPU 300 may be
an integrated graphics processing unit (iGPU) or parallel
processor included in the chipset of the motherboard .

Exemplary Computing System
[0117] Systems with multiple GPUs and CPUs are used in
a variety of industries as developers expose and leverage
more parallelism in applications such as artificial intelli
gence computing . High - performance GPU - accelerated sys
tems with tens to many thousands of compute nodes are
deployed in data centers , research facilities , and supercom
puters to solve ever larger problems . As the number of
processing devices within the high - performance systems

US 2018 / 0373200 A1 Dec . 27 , 2018

increases , the communication and data transfer mechanisms
need to scale to support the increased
[0118] FIG . 5B is a conceptual diagram of a processing
system 500 implemented using the PPU 300 of FIG . 3 , in
accordance with one embodiment . The processing system
500 may be configured to implement the method 110 shown
in FIG . 1A , the method 120 shown in FIG . 1B , the method
280 shown in FIG . 2H , or any combination thereof . The
processing system 500 includes a CPU 530 , switch 510 , and
multiple PPUS 300 each and respective memories 304 . The
NVLink 310 provides a high - speed communication links
between each of the PPUS 300 . The switch 510 interfaces
between the interconnect 302 and the CPU 530 . The PPUS
300 , memories 304 , and NVLinks 310 may be situated on a
single semiconductor platform to form a parallel processing
module 525 .
[0119] In the context of the present description , a single
semiconductor platform may refer to a sole unitary semi
conductor - based integrated circuit fabricated on a die or
chip . It should be noted that the term single semiconductor
platform may also refer to multi - chip modules with
increased connectivity which simulate on - chip operation
and make substantial improvements over utilizing a conven
tional bus implementation . Of course , the various circuits or
devices may also be situated separately or in various com
binations of semiconductor platforms per the desires of the
user . Alternately , the parallel processing module 525 may be
implemented as a circuit board substrate and each of the
PPUS 300 and / or memories 304 may be packaged devices .
In one embodiment , the CPU 530 , switch 510 , and the
parallel processing module 525 are situated on a single
semiconductor platform .
[0120] In one embodiment , the signaling rate of each
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300
includes six NVLink 310 interfaces (as shown in FIG . 5B ,
five NVLink 310 interfaces are included for each PPU 300) .
Each NVLink 310 provides a data transfer rate of 25
Gigabytes / second in each direction , with six links providing
300 Gigabytes / second . The NVLinks 310 can be used exclu
sively for PPU - to - PPU communication as shown in FIG . 5B ,
or some combination of PPU - to - PPU and PPU - to - CPU ,
when the CPU 530 also includes one or more NVLink 310
interfaces .
[0121] In one embodiment , the NVLink 310 allows direct
load / store / atomic access from the CPU 530 to each PPU ' s
300 memory 304 . In one embodiment , the NVLink 310
supports coherency operations , allowing data read from the
memories 304 to be stored in the cache hierarchy of the CPU
530 , reducing cache access latency for the CPU 530 . In one
embodiment , the NVLink 310 includes support for Address
Translation Services (ATS) , allowing the PPU 300 to
directly access page tables within the CPU 530 . One or more
of the NVLinks 310 may also be configured to operate in a
low - power mode .
[0122] FIG . 5C illustrates an exemplary system 565 in
which the various architecture and / or functionality of the
various previous embodiments may be implemented . The
exemplary system 565 may be configured to implement the
method 110 shown in FIG . 1A , the method 120 shown in
FIG . 1B , the method 280 shown in FIG . 2H , or any com
bination thereof .
[0123] As shown , a system 565 is provided including at
least one central processing unit 530 that is connected to a
communication bus 575 . The communication bus 575 may

be implemented using any suitable protocol , such as PCI
(Peripheral Component Interconnect) , PCI - Express , AGP
(Accelerated Graphics Port) , HyperTransport , or any other
bus or point - to - point communication protocol (s) . The sys
tem 565 also includes a main memory 540 . Control logic
(software) and data are stored in the main memory 540
which may take the form of random access memory (RAM) .
[0124] The system 565 also includes input devices 560 ,
the parallel processing system 525 , and display devices 545 ,
i . e . a conventional CRT (cathode ray tube) , LCD (liquid
crystal display) , LED (light emitting diode) , plasma display
or the like . User input may be received from the input
devices 560 , e . g . , keyboard , mouse , touchpad , microphone ,
and the like . Each of the foregoing modules and / or devices
may even be situated on a single semiconductor platform to
form the system 565 . Alternately , the various modules may
also be situated separately or in various combinations of
semiconductor platforms per the desires of the user .
[0125] Further , the system 565 may be coupled to a
network (e . g . , a telecommunications network , local area
network (LAN) , wireless network , wide area network
(WAN) such as the Internet , peer - to - peer network , cable
network , or the like) through a network interface 535 for
communication purposes .
[0126] The system 565 may also include a secondary
storage (not shown) . The secondary storage 610 includes ,
for example , a hard disk drive and / or a removable storage
drive , representing a floppy disk drive , a magnetic tape
drive , a compact disk drive , digital versatile disk (DVD)
drive , recording device , universal serial bus (USB) flash
memory . The removable storage drive reads from and / or
writes to a removable storage unit in a well - known manner .
T0127 Computer programs , or computer control logic
algorithms , may be stored in the main memory 540 and / or
the secondary storage . Such computer programs , when
executed , enable the system 565 to perform various func
tions . The memory 540 , the storage , and / or any other storage
are possible examples of computer - readable media .
[0128] The architecture and / or functionality of the various
previous figures may be implemented in the context of a
general computer system , a circuit board system , a game
console system dedicated for entertainment purposes , an
application - specific system , and / or any other desired sys
tem . For example , the system 565 may take the form of a
desktop computer , a laptop computer , a tablet computer ,
servers , supercomputers , a smart - phone (e . g . , a wireless ,
hand - held device) , personal digital assistant (PDA) , a digital
camera , a vehicle , a head mounted display , a hand - held
electronic device , a mobile phone device , a television ,
workstation , game consoles , embedded system , and / or any
other type of logic .
[0129] While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of a preferred embodiment should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following claims and their equivalents .

Graphics Processing Pipeline
[0130] In one embodiment , the PPU 300 comprises a
graphics processing unit (GPU) . The PPU 300 is configured
to receive commands that specify shader programs for
processing graphics data . Graphics data may be defined as a

US 2018 / 0373200 A1 Dec . 27 , 2018
12

set of primitives such as points , lines , triangles , quads ,
triangle strips , and the like . Typically , a primitive includes
data that specifies a number of vertices for the primitive
(e . g . , in a model - space coordinate system) as well as attri
butes associated with each vertex of the primitive . The PPU
300 can be configured to process the graphics primitives to
generate a frame buffer (i . e . , pixel data for each of the pixels
of the display) . In one embodiment , phase and amplitude
samples for pixels of an SLM (e . g . , SLM 263 in FIG . 2D)
are rendered by the GPU , according to the techniques
discussed herein . In particular , 3D scene information com
prising geometric , vertex , and / or fragment primitives may
be rendered by the GPU to generate fragments associated
with different scene objects . View - dependent effects may be
performed using the 3D rendering pipeline z - buffer . In one
embodiment , the fragments may be generated in parallel by
one or more instances of PPU 300 within the GPU . Fur
thermore , an array of elemental images may be rendered
according to computed virtual camera views for the 3D
scene , and the elemental images are used to then compute
corresponding hogels . A holographic light field frame com
prising an array of hogels is presented to a viewer by the
SLM . A time sequence of light field frames rendered by the
GPU and displayed by the SLM may provide the viewer
with an experience of seeing actual 3D objects in the 3D
scene , with appropriate view - dependent occlusion , continu
ous focus cues , and real - time response based on specific
application scene information (e . g . , model data and virtual
camera position data) .
[0131] An application writes model data for a scene (i . e . ,
a collection of vertices and attributes) to a memory such as
a system memory or memory 304 . The model data defines
each of the objects that may be visible on a display . The
application then makes an API call to the driver kernel that
requests the model data to be rendered and displayed . The
driver kernel reads the model data and writes commands to
the one or more streams to perform operations to process the
model data . The commands may reference different shader
programs to be implemented on the SMs 440 of the PPU 300
including one or more of a vertex shader , hull shader ,
domain shader , geometry shader , and a pixel shader . For
example , one or more of the SMS 440 may be configured to
execute a vertex shader program that processes a number of
vertices defined by the model data . In one embodiment , the
different SMS 440 may be configured to execute different
shader programs concurrently . For example , a first subset of
SMS 440 may be configured to execute a vertex shader
program while a second subset of SMS 440 may be config
ured to execute a pixel shader program . The first subset of
SMS 440 processes vertex data to produce processed vertex
data and writes the processed vertex data to the L2 cache 460
and / or the memory 304 . After the processed vertex data is
rasterized (i . e . , transformed from three - dimensional data
into two - dimensional data in screen space) to produce
fragment data , the second subset of SMS 440 executes a
pixel shader to produce processed fragment data , which is
then blended with other processed fragment data and written
to the frame buffer in memory 304 . The vertex shader
program and pixel shader program may execute concur
rently , processing different data from the same scene in a
pipelined fashion until all of the model data for the scene has
been rendered to the frame buffer . Then , the contents of the
frame buffer are transmitted to a display controller for
display on a display device .

[0132] FIG . 6 is a conceptual diagram of a graphics
processing pipeline 600 implemented by the PPU 300 of
FIG . 3 , in accordance with one embodiment . The graphics
processing pipeline 600 is an abstract flow diagram of the
processing steps implemented to generate 2D computer
generated images from 3D geometry data . As is well - known ,
pipeline architectures may perform long latency operations
more efficiently by splitting up the operation into a plurality
of stages , where the output of each stage is coupled to the
input of the next successive stage . Thus , the graphics pro
cessing pipeline 600 receives input data 601 that is trans
mitted from one stage to the next stage of the graphics
processing pipeline 600 to generate output data 602 . In one
embodiment , the graphics processing pipeline 600 may
represent a graphics processing pipeline defined by the
OpenGL® API . As an option , the graphics processing pipe
line 600 may be implemented in the context of the func
tionality and architecture of the previous Figures and / or any
subsequent Figure (s) .
[0133] As shown in FIG . 6 , the graphics processing pipe
line 600 comprises a pipeline architecture that includes a
number of stages . The stages include , but are not limited to ,
a data assembly stage 610 , a vertex shading stage 620 , a
primitive assembly stage 630 , a geometry shading stage 640 ,
a viewport scale , cull , and clip (VSCC) stage 650 , a raster
ization stage 660 , a fragment shading stage 670 , and a raster
operations stage 680 . In one embodiment , the input data 601
comprises commands that configure the processing units to
implement the stages of the graphics processing pipeline 600
and geometric primitives (e . g . , points , lines , triangles ,
quads , triangle strips or fans , etc .) to be processed by the
stages . The output data 602 may comprise pixel data (i . e . ,
color data) that is copied into a frame buffer or other type of
surface data structure in a memory .
[0134] The data assembly stage 610 receives the input data
601 that specifies vertex data for high - order surfaces , primi
tives , or the like . The data assembly stage 610 collects the
vertex data in a temporary storage or queue , such as by
receiving a command from the host processor that includes
a pointer to a buffer in memory and reading the vertex data
from the buffer . The vertex data is then transmitted to the
vertex shading stage 620 for processing .
[0135] The vertex shading stage 620 processes vertex data
by performing a set of operations (i . e . , a vertex shader or a
program) once for each of the vertices . Vertices may be , e . g . ,
specified as a 4 - coordinate vector (i . e . , < x , y , z , w >) asso
ciated with one or more vertex attributes (e . g . , color , texture
coordinates , surface normal , etc .) . The vertex shading stage
620 may manipulate individual vertex attributes such as
position , color , texture coordinates , and the like . In other
words , the vertex shading stage 620 performs operations on
the vertex coordinates or other vertex attributes associated
with a vertex . Such operations commonly including lighting
operations (i . e . , modifying color attributes for a vertex) and
transformation operations (i . e . , modifying the coordinate
space for a vertex) . For example , vertices may be specified
using coordinates in an object - coordinate space , which are
transformed by multiplying the coordinates by a matrix that
translates the coordinates from the object - coordinate space
into a world space or a normalized - device - coordinate (NCD)
space . The vertex shading stage 620 generates transformed
vertex data that is transmitted to the primitive assembly
stage 630 .

US 2018 / 0373200 A1 Dec . 27 , 2018

[0136] The primitive assembly stage 630 collects vertices
output by the vertex shading stage 620 and groups the
vertices into geometric primitives for processing by the
geometry shading stage 640 . For example , the primitive
assembly stage 630 may be configured to group every three
consecutive vertices as a geometric primitive (i . e . , a triangle)
for transmission to the geometry shading stage 640 . In some
embodiments , specific vertices may be reused for consecu
tive geometric primitives (e . g . , two consecutive triangles in
a triangle strip may share two vertices) . The primitive
assembly stage 630 transmits geometric primitives (i . e . , a
collection of associated vertices) to the geometry shading
stage 640 .
[0137] The geometry shading stage 640 processes geo
metric primitives by performing a set of operations (i . e . , a
geometry shader or program) on the geometric primitives .
Tessellation operations may generate one or more geometric
primitives from each geometric primitive . In other words ,
the geometry shading stage 640 may subdivide each geo
metric primitive into a finer mesh of two or more geometric
primitives for processing by the rest of the graphics pro
cessing pipeline 600 . The geometry shading stage 640
transmits geometric primitives to the viewport SCC stage
650 .
[0138] In one embodiment , the graphics processing pipe
line 600 may operate within a streaming multiprocessor and
the vertex shading stage 620 , the primitive assembly stage
630 , the geometry shading stage 640 , the fragment shading
stage 670 , and / or hardware / software associated therewith ,
may sequentially perform processing operations . Once the
sequential processing operations are complete , in one
embodiment , the viewport SCC stage 650 may utilize the
data . In one embodiment , primitive data processed by one or
more of the stages in the graphics processing pipeline 600
may be written to a cache (e . g . L1 cache , a vertex cache ,
etc .) . In this case , in one embodiment , the viewport SCC
stage 650 may access the data in the cache . In one embodi
ment , the viewport SCC stage 650 and the rasterization stage
660 are implemented as fixed function circuitry .
[0139] The viewport SCC stage 650 performs viewport
scaling , culling , and clipping of the geometric primitives .
Each surface being rendered to is associated with an abstract
camera position . The camera position represents a location
of a viewer looking at the scene and defines a viewing
frustum that encloses the objects of the scene . The viewing
frustum may include a viewing plane , a rear plane , and four
clipping planes . Any geometric primitive entirely outside of
the viewing frustum may be culled (i . e . , discarded) because
the geometric primitive will not contribute to the final
rendered scene . Any geometric primitive that is partially
inside the viewing frustum and partially outside the viewing
frustum may be clipped (i . e . , transformed into a new geo
metric primitive that is enclosed within the viewing frustum .
Furthermore , geometric primitives may each be scaled based
on a depth of the viewing frustum . All potentially visible
geometric primitives are then transmitted to the rasterization
stage 660 .
[0140] The rasterization stage 660 converts the 3D geo
metric primitives into 2D fragments (e . g . capable of being
utilized for display , etc .) . The rasterization stage 660 may be
configured to utilize the vertices of the geometric primitives
to setup a set of plane equations from which various attri
butes can be interpolated . The rasterization stage 660 may
also compute a coverage mask for a plurality of pixels that

indicates whether one or more sample locations for the pixel
intercept the geometric primitive . In one embodiment ,
z - testing may also be performed to determine if the geo
metric primitive is occluded by other geometric primitives
that have already been rasterized . The rasterization stage 660
generates fragment data (i . e . , interpolated vertex attributes
associated with a particular sample location for each covered
pixel) that are transmitted to the fragment shading stage 670 .
[0141] The fragment shading stage 670 processes frag
ment data by performing a set of operations (i . e . , a fragment
shader or a program) on each of the fragments . The fragment
shading stage 670 may generate pixel data (i . e . , color values)
for the fragment such as by performing lighting operations
or sampling texture maps using interpolated texture coordi
nates for the fragment . The fragment shading stage 670
generates pixel data that is transmitted to the raster opera
tions stage 680 .
0142] The raster operations stage 680 may perform vari
ous operations on the pixel data such as performing alpha
tests , stencil tests , and blending the pixel data with other
pixel data corresponding to other fragments associated with
the pixel . When the raster operations stage 680 has finished
processing the pixel data (i . e . , the output data 602) , the pixel
data may be written to a render target such as a frame buffer ,
a color buffer , or the like .
101431 It will be appreciated that one or more additional
stages may be included in the graphics processing pipeline
600 in addition to or in lieu of one or more of the stages
described above . Various implementations of the abstract
graphics processing pipeline may implement different
stages . Furthermore , one or more of the stages described
above may be excluded from the graphics processing pipe
line in some embodiments (such as the geometry shading
stage 640) . Other types of graphics processing pipelines are
contemplated as being within the scope of the present
disclosure . Furthermore , any of the stages of the graphics
processing pipeline 600 may be implemented by one or
more dedicated hardware units within a graphics processor
such as PPU 200 . Other stages of the graphics processing
pipeline 600 may be implemented by programmable hard
ware units such as the SM 440 of the PPU 300 .
[0144] The graphics processing pipeline 600 may be
implemented via an application executed by a host proces
sor , such as a CPU . In one embodiment , a device driver may
implement an application programming interface (API) that
defines various functions that can be utilized by an appli
cation in order to generate graphical data for display . The
device driver is a software program that includes a plurality
of instructions that control the operation of the PPU 300 . The
API provides an abstraction for a programmer that lets a
programmer utilize specialized graphics hardware , such as
the PPU 300 , to generate the graphical data without requir
ing the programmer to utilize the specific instruction set for
the PPU 300 . The application may include an API call that
is routed to the device driver for the PPU 300 . The device
driver interprets the API call and performs various opera
tions to respond to the API call . In some instances , the
device driver may perform operations by executing instruc
tions on the CPU . In other instances , the device driver may
perform operations , at least in part , by launching operations
on the PPU 300 utilizing an input / output interface between
the CPU and the PPU 300 . In one embodiment , the device
driver is configured to implement the graphics processing
pipeline 600 utilizing the hardware of the PPU 300 .

US 2018 / 0373200 A1 Dec . 27 , 2018
14

10145] Various programs may be executed within the PPU
300 in order to implement the various stages of the graphics
processing pipeline 600 . For example , the device driver may
launch a kernel on the PPU 300 to perform the vertex
shading stage 620 on one SM 440 (or multiple SMs 440) .
The device driver (or the initial kernel executed by the PPU
400) may also launch other kernels on the PPU 400 to
perform other stages of the graphics processing pipeline
600 , such as the geometry shading stage 640 and the
fragment shading stage 670 . In addition , some of the stages
of the graphics processing pipeline 600 may be implemented
on fixed unit hardware such as a rasterizer or a data
assembler implemented within the PPU 400 . It will be
appreciated that results from one kernel may be processed
by one or more intervening fixed function hardware units
before being processed by a subsequent kernel on an SM
440 .
10146] . While various embodiments have been described
above , it should be understood that they have been presented
by way of example only , and not limitation . Thus , the
breadth and scope of the present application should not be
limited by any of the above - described exemplary embodi
ments , but should be defined only in accordance with the
following and later - submitted claims and their equivalents .
What is claimed is :
1 . A method for rendering a light field , comprising :
projecting rays from a viewpoint positioned at a first side
of a spatial light modulator (SLM) to a clipping plane
positioned at an opposing side of the SLM to form an
elemental view frustum within a three - dimensional
scene , wherein the SLM is tiled with an array of
non - overlapping elemental regions and a top edge and
a bottom edge of a first elemental region of the non
overlapping elemental regions are intersected by the
rays to form the elemental view frustum ; and

rendering objects within the elemental view frustum to
generate components of a first elemental image for the
first elemental region , wherein the light field includes
the first elemental image and additional elemental
images corresponding to the array of elemental regions
and each one of the additional elemental images is
rendered using an additional elemental view frustum .

2 . The method of claim 1 , wherein the rendering com
prises , for each pixel of the SLM within the first elemental
region :

projecting second rays from the pixel of the SLM to the
clipping plane to define a pixel diffraction cone having
a base of a first width ; and

removing a portion of the components of the first elemen
tal image that are outside of the pixel diffraction cone .

3 . The method of claim 1 , wherein the components
include color and position in three - dimensional space .

4 . The method of claim 1 , wherein the components
include phase and amplitude .

5 . The method of claim 4 , further comprising computing
the phase and amplitude as a product of an object wave and
a conjugate reference wave corresponding to a plane wave
illumination source .

6 . The method of claim 4 , further comprising computing
the phase and amplitude as a product of an object wave and
a conjugate reference wave corresponding to a spherical
wave illumination source .

7 . A method for rendering a light field , comprising :
computing a lateral offset between a view position and a

spatial light modulator (SLM) based on a size of the
SLM and a width of a holographic element , wherein an
array of holographic elements covers a surface of the
SLM ; and

rendering a three - dimensional scene from the view posi
tion to produce an array of elemental images .

8 . The method of claim 7 , wherein for at least one
elemental image of the array of elemental images , rendering
comprises : computing a color array and a depth array
corresponding to the at least one elemental image .

9 . The method of claim 8 , further comprising : calculating
a phase value for a pixel of the SLM based on at least a depth
value from the depth array .

10 . The method of claim 8 , further comprising : calculat
ing an amplitude value for a pixel of the SLM based on at
least a corresponding color value from the color array .

11 . The method of claim 7 , further comprising computing
a phase and an amplitude for a pixel of the SLM as a product
of an object wave and a conjugate reference wave corre
sponding to a spherical wave illumination source .

12 . The method of claim 7 , wherein rendering comprises
projecting rays from the pixel of the SLM to the clipping
plane to define a pixel diffraction cone having a base of a
width .

13 . The method of claim 12 , further comprising : remov
ing a portion of the components of the first elemental image
that are outside of the pixel diffraction cone .

14 . A system for rendering a light field , comprising :
a spatial light modulator (SLM) ; and
a processing unit coupled to the SLM and configured to :

project rays from a viewpoint positioned at a first side
of the SLM to a clipping plane positioned at an
opposing side of the SLM to form an elemental view
frustum within a three - dimensional scene , wherein
the SLM is tiled with an array of non - overlapping
elemental regions and a top edge and a bottom edge
of a first elemental region of the non - overlapping
elemental regions are intersected by the rays to form
the elemental view frustum ; and

render objects within the elemental view frustum to
generate components of a first elemental image for
the first elemental region , wherein the light field
includes the first elemental image and additional
elemental images corresponding to the array of
elemental regions and each one of the additional
elemental images is rendered using an additional
elemental view frustum .

15 . The system of claim 14 , wherein the rendering com
prises , for each pixel of the SLM within the first elemental
region :

projecting second rays from the pixel of the SLM to the
clipping plane to define a pixel diffraction cone having
a base of a first width ; and

removing a portion of the components of the first elemen
tal image that are outside of the pixel diffraction cone .

16 . The system of claim 14 , wherein the components
include color and position in three - dimensional space .

17 . The system of claim 14 , wherein the components
include phase and amplitude .

US 2018 / 0373200 A1 Dec . 27 , 2018

18 . The system of claim 17 , further comprising computing
the phase and amplitude as a product of an object wave and
a conjugate reference wave corresponding to a plane wave
illumination source .

19 . The system of claim 17 , further comprising computing
the phase and amplitude as a product of an object wave and
a conjugate reference wave corresponding to a spherical
wave illumination source .

20 . The system of claim 14 , wherein the processing unit
comprises a graphics processing unit .

* * * * *

