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A method for rendering a light field comprises projecting 
rays from a viewpoint positioned at a first side of a spatial 
light modulator ( SLM ) to a clipping plane positioned at an 
opposing side of the SLM to form an elemental view frustum 
within a three - dimensional scene and rendering objects 
within the elemental view frustum to generate components 
of a first elemental image for the first elemental region . The 
SLM may include a tiled array of non - overlapping elemental 
regions and a top edge and a bottom edge of a first elemental 
region of the non - overlapping elemental regions are inter 
sected by the rays to form the elemental view frustum . 
Furthermore , the light field may include the first elemental 
image and additional elemental images corresponding to the 
array of elemental regions and each one of the additional 
elemental images is rendered using an additional elemental 
view frustum . 
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SYSTEM AND METHOD FOR NEAR - EYE 
LIGHT FIELD RENDERING FOR WIDE 

FIELD OF VIEW INTERACTIVE 
THREE - DIMENSIONAL COMPUTER 

GRAPHICS 

[ 0007 ] The second computer readable medium includes 
instructions that , when executed by a processing unit , per 
form the second method . Furthermore , the second system 
includes circuitry configured to perform the second method . 

CLAIM OF PRIORITY 
[ 0001 ] This application claims the benefit of U . S . Provi 
sional Application No . 62 / 525 , 644 ( Attorney Docket No . 
NVIDP1169 + / 17SC0101US01 ) titled “ NEAR - EYE LIGHT 
FIELD HOLOGRAPHIC RENDERING , " filed Jun . 27 , 
2017 , the entire contents of which is incorporated herein by 
reference . 

FIELD OF THE INVENTION 
[ 0002 ] The present invention relates to computer gener 
ated holography , and more particularly to a system and 
method for near - eye light field rendering for wide field of 
view interactive three - dimensional computer graphics . 

BACKGROUND 
[ 0003 ] Creating a comfortable visual experience is impor 
tant to the success of modern virtual reality ( VR ) and 
augmented reality ( AR ) systems . A wide field of view , high 
resolution , interactivity , view - dependent occlusion , and con 
tinuous focus cues are significant features for providing a 
comfortable visual experience . However , conventional VR 
systems typically fail to provide many of these features , 
resulting in user discomfort . Thus , there is a need for 
addressing these issues and / or other issues associated with 
the prior art . 

BRIEF DESCRIPTION OF THE DRAWINGS 
10008 ] FIG . 1A illustrates a flowchart of a method for 
rendering a light field , in accordance with one embodiment . 
[ 0009 ] FIG . 1B illustrates a flowchart of a method for 
rendering objects within an elemental view frustum , in 
accordance with one embodiment . 
[ 0010 ] FIG . 1C illustrates computer generated holography , 
in accordance with one embodiment . 
[ 0011 ] FIG . 1D illustrates a holographic element , in accor 
dance with one embodiment . 
[ 0012 ] FIG . 2A illustrates conventional hogel rendering , 
in accordance with the prior art . 
[ 0013 ] . FIG . 2B illustrates hogel rendering with plane 
wave illumination , in accordance with one embodiment . 
[ 0014 ] FIG . 2C illustrates a region of an ambiguity seg 
ment , in accordance with one embodiment . 
[ 0015 ] FIG . 2D illustrates hogel rendering with spherical 
wave illumination , in accordance with one embodiment . 
[ 0016 ] FIG . 2E illustrates a region of an ambiguity seg 
ment , in accordance with one embodiment . 
100171 FIG . 2F illustrates algorithmic operations of a 
method for rendering a light field using spherical illumina 
tion , in accordance with one embodiment . 
[ 0018 ] FIG . 2G illustrates a comparison of elemental 
image resolution results , in accordance with one embodi 
ment . 
[ 0019 ] FIG . 2H illustrates a flowchart of a method for 
rendering a light field , in accordance with one embodiment . 
[ 0020 ] FIG . 3 illustrates a parallel processing unit , in 
accordance with one embodiment . 
[ 0021 ] FIG . 4A illustrates a general processing cluster 
within the parallel processing unit of FIG . 3 , in accordance 
with one embodiment . 
( 0022 ] FIG . 4B illustrates a memory partition unit of the 
parallel processing unit of FIG . 3 , in accordance with one 
embodiment . 
100231 . FIG . 5A illustrates the streaming multi - processor 
of FIG . 4A , in accordance with one embodiment . 
[ 0024 ] FIG . 5B is a conceptual diagram of a processing 
system implemented using the PPU of FIG . 3 , in accordance 
with one embodiment . 
[ 0025 ] FIG . 5C illustrates an exemplary system in which 
the various architecture and / or functionality of the various 
previous embodiments may be implemented . 
10026 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline implemented by the PPU of FIG . 3 , in 
accordance with one embodiment . 

SUMMARY 
[ 0004 ] A method , computer readable medium , and system 
are configured to render a light field . The method comprises 
projecting rays from a viewpoint positioned at a first side of 
a spatial light modulator ( SLM ) to a clipping plane posi 
tioned at an opposing side of the SLM to form an elemental 
view frustum within a three - dimensional scene . Objects 
within the elemental view frustum are rendered to generate 
components of a first elemental image for the first elemental 
region . In one embodiment , the SLM is tiled with an array 
of elemental regions and a top edge and a bottom edge of a 
first elemental region of the non - overlapping elemental 
regions are intersected by the rays to form the elemental 
view frustum . In certain embodiments , the light field 
includes the first elemental image and additional elemental 
images corresponding to the array of elemental regions and 
each one of the additional elemental images is rendered 
using an additional elemental view frustum . 
10005 ] The computer readable medium includes instruc 
tions that , when executed by a processing unit , perform the 
method . Furthermore , the system includes circuitry config 
ured to perform the method . 
[ 0006 ] A second method , second computer readable 
medium , and second system are configured to render a light 
field . The second method comprises computing a lateral 
offset between a view position and a spatial light modulator 
( SLM ) based on a size of the SLM and a width of a 
holographic element . A three - dimensional scene is rendered 
from the view position to produce an array of elemental 
images . In one embodiment , an array of holographic ele 
ments covers a surface of the SLM . 

DETAILED DESCRIPTION 
[ 0027 ] Embodiments of the present invention improve 
field of view , interactivity at high resolution , and view 
dependent occlusion in computer generated holography 
( CGH ) . Furthermore , various embodiments advantageously 
provide continuous focus cues , thereby substantially avoid 
ing vergence - accommodation - conflict in near eye displays . 
In one embodiment , a near eye display comprises liquid 
crystal ( LC ) and / or spatial light modulator ( SLM ) structures 
configured to display a CGH light field to a user . The CGH 
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light field may be computed according to plane wave 
illumination , spherical wave illumination , or any other tech 
nically feasible wave propagation illumination model . 
[ 0028 ] A CGH light field provides an object wave for a 
given observable point in a three - dimensional ( 3D ) scene , 
based on a reference wave . The form of the reference wave 
( e . g . , plane wave ) may be specified , and CGH processing 
computes a diffraction pattern which will perform a conver 
sion from the reference wave to an object wave at a given 
location within a hologram . In one embodiment , computing 
the object wave includes projecting rays from a viewpoint 
( e . g . , rendering camera position ) positioned in front of an 
SLM towards a clipping plane positioned in back of the 
SLM . In general , the viewpoint and the clipping plane may 
be positioned on opposing sides of the SLM . A given ray 
may be computed to have an amplitude and phase relative to 
other rays . Regions of the SLM may be organized into 
elemental images , each with an elemental view frustum 
within the 3D scene so that each elemental image may 
comprise a single , different representative view of the 3D 
scene . Furthermore , multiple elemental images may be 
rendered to form a complete 3D scene presented to a user . 
[ 0029 ] FIG . 1A illustrates a flowchart of a method 110 for 
rendering a light field , in accordance with one embodiment . 
Although method 110 is described in the context of a 
processing unit , the method 110 may also be performed by 
a program , custom circuitry , or by a combination of custom 
circuitry and a program . For example , the method 110 may 
be executed by a GPU ( graphics processing unit ) , a CPU 
( central processing unit ) , or any other technically feasible 
processor . Furthermore , persons of ordinary skill in the art 
will understand that any system that performs method 110 is 
within the scope and spirit of embodiments of the present 
invention . 
[ 0030 ] At step 112 , the processing unit projects rays from 
a viewpoint positioned in front of an SLM to a clipping 
plane positioned in back of the SLM to form an elemental 
view frustum within a 3D scene . More generally , the view 
point may be positioned at a first side of the SLM , and the 
clipping plane may be positioned at an opposing side of the 
SLM . In one embodiment , viewpoint is positioned on the 
observer ' s side of the SLM and the near clipping plane is 
positioned on the opposing side ( opposite side relative to the 
observer ) of the SLM . In one embodiment , the near clipping 
plane is located coincident with the surface of the SLM . In 
one embodiment , the SLM is tiled with an array of non 
overlapping elemental regions and a top edge and a bottom 
edge of a first elemental region of the non - overlapping 
elemental regions are intersected by the rays to form the 
elemental view frustum . 
[ 0031 ] At step 114 , the processing unit renders objects 
within the elemental view frustum to generate components 
of a first elemental image for the first elemental region . In 
one embodiment , the light field includes the first elemental 
image and additional elemental images corresponding to the 
array of elemental regions and each one of the additional 
elemental images is rendered using an additional elemental 
view frustum . 
[ 0032 ] At step 116 , the processing unit computes phase 
and amplitude components for driving the SLM as a product 
of an object wave and a conjugate reference wave . Further 
more , the components may include color and position within 
the 3D scene . In one embodiment , the conjugate reference 
wave comprises a plane wave illumination source . In 

another embodiment , the conjugate reference wave com 
prises a spherical wave illumination source . In other 
embodiments , the conjugate reference wave comprises an 
arbitrary illumination source . 
[ 0033 ] In one embodiment , for each pixel of the SLM 
within the first elemental region , rendering comprises pro 
jecting second rays from the pixel of the SLM to the clipping 
plane to define a pixel diffraction cone having a base of a 
first width and removing a portion of the components of the 
first elemental image that are outside of the pixel diffraction 
cone to perform ambiguity segment culling . 
[ 0034 ] FIG . 1B illustrates a flowchart of a method 120 for 
rendering objects within the elemental view frustum , in 
accordance with one embodiment . Although method 120 is 
described in the context of a processing unit , the method 120 
may also be performed by a program , custom circuitry , or by 
a combination of custom circuitry and a program . For 
example , the method 120 may be executed by a GPU , CPU , 
or any other technically feasible processor . Furthermore , 
persons of ordinary skill in the art will understand that any 
system that performs method 120 is within the scope and 
spirit of embodiments of the present invention . As shown in 
FIG . 1B , in one embodiment , step 114 of method 110 
comprises steps 122 and 124 . 
[ 0035 ] At step 122 , the processing unit projects second 
rays from the pixel of the SLM to the clipping plane to define 
a pixel diffraction cone having a base of a first width . At step 
124 , the processing unit removes a portion of the compo 
nents of the first elemental image that are outside of the pixel 
diffraction cone . In one embodiment , ambiguity segment 
culling is performed by removing the portion of components 
outside of the pixel diffraction cone . 
[ 0036 ] Methods 110 and 120 may be performed in the 
context of computer generated holography ( CGH ) for gen 
erating light field data used to drive an SLM device . A 
description of CGH will now be set forth , along with 
implementation details relevant to various embodiments . 
[ 0037 ] FIG . 1C illustrates computer generated holography 
( CGH ) , in accordance with one embodiment . As shown , a 
rendering viewpoint is indicated by a virtual camera 142 , 
which is positioned to view a scene object 140 through an 
SLM 144 . A point j is shown on the scene object 140 , and 
a distance r separates point j from a pixel location x on the 
SLM 144 . 
[ 0038 ] In general , a hologram converts an input reference 
light wave ER ( x ) to an appropriate output object light wave 
E . ( x ) . In CGH , generating the output object light wave 
requires knowledge of both the reference light wave and the 
object light wave . The form of the reference light wave may 
be given and various CGH techniques may be applied to 
compute a diffraction pattern that will yield the object light 
wave at each location on SLM 144 . A diffraction pattern may 
be computed for each location based on a desired output 
waveform for the location on the SLM 144 . To compute a 
given output waveform resulting from scene object 140 , 
light is propagated backwards towards the SLM 144 using a 
Fresnel diffraction integral . For a scene object 140 compris 
ing discrete points j , a summation of spherical waves origi 
nating from the points j may operate in place of a diffraction 
integral . Such a summation is calculated by Equation 1 . 
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1 A ; 25r ; ( x ) + 0j ) Leila ( 1 ) Eo ( x ) = ) 

[ 0039 ] In Equation 1 , A is the wavelength of a monochro 
matic light source , A , is the amplitude of the point j on the 
scene object 140 , and r ; ( x ) is the Euclidean distance from the 
point j to a pixel location x on the SLM 144 to a given point 
j on the scene object 140 . Furthermore , 0 , is a random initial 
phase associated with each point j . 
[ 0040 ] The resulting electric field E . ( x ) is complex - val 
ued . In CGH , a corresponding illumination wavefront is 
generated by multiplying the resulting electric field with an 
appropriate illumination field . For example , in plane wave 
( collimated beam ) illumination the resulting electric field is 
multiplied by a constant ( e . g . , 1 ) . For spherical wave illu 
mination , the electric field may be multiplied by a complex 
exponential with a quadratic phase to cancel out the qua 
dratic phase of a spherical reference wave . Displaying a 
correct diffraction pattern on the SLM 144 is provided by 
spatially varying both amplitude and phase delays , accord 
ing to a resulting product . 
[ 0041 ] In one embodiment , a CGH rendering and display 
pipeline starts with a polygon - based holographic light field 
rendering and includes a point - based approach ( i . e . , sum 
mation of propagating fields from points on scene object 
140 ) with local partitioning for view - dependent effect . 
Occlusion is handled through the pipeline using a z - buffer . 
Sampled fragments allow for parallel full - parallax CGH 
computation on a GPU at interactive speed with high 
resolution ( e . g . , 1080p ) image quality . In certain embodi 
ments , a CGH rendering pipeline includes a polygon surface 
approach ( i . e . , summation of propagating fields from visible 
polygon surfaces comprising scene object 140 ) that may 
operate independently or in conjunction with the point - based 
approach . Any technically feasible technique may be per 
formed to compute fields from the polygon surfaces at 
different pixels of SLM 144 . Furthermore , while various 
techniques taught herein are described with reference to 
points on a scene object , persons of ordinary skill in the art 
will understand that the techniques may be applied to 
polygons and / or arbitrary shapes or surfaces without depart 
ing the scope and spirit of various embodiments . 
[ 0042 ] Rendering a full light field generates highly - over 
lapped views for adjacent hologram pixels and convention 
ally results in significant computational redundancy . For 
example , in a point - based approach , conventional rendering 
requires sequential scanning of the scene to accumulate 
wavefronts emitted from depth - sorted scene points . Such an 
operation is equivalent to adding densely sampled angular 
views in conventional light field rendering , an approach 
known in the art to be computationally impractical for 
real - time graphics . 
[ 0043 ] However , assuming Lambertian surfaces for scene 
object 140 , a single recording of each point is sufficient to 
determine the wavefront . Leveraging this observation , a 
hologram can be spatially partitioned into abutting grids , 
with an individual grid referred to herein as a holographic 
element ( hogel ) , illustrated in FIG . 1D . 
[ 0044 ] FIG . 1D illustrates a holographic element , in accor 
dance with one embodiment . As shown , a color intensity 
map includes an abutting grid of elemental images . Each 
elemental image comprises a single representative view of a 

3D scene . A location and depth map includes a correspond 
ing grid of depth information for the elemental images . A 
given elemental image is rendered and used to calculate each 
hogel , assuming all captured points are visible to all pixels 
in the hogel . In one embodiment , each hogel has an asso 
ciated phase map and an associated amplitude map . The 
phase map and the amplitude map may be computed based 
on the color intensity map and the location and depth map . 
[ 0045 ] Monocular occlusion parallax is bounded by hogel 
size ( wn ) within an eye box . In one embodiment , an eye box 
is a region at a user ' s eye position that is sufficiently large 
as to allow a user ' s eye to move freely while allowing the 
user ( viewer ) to see the entire 3D scene depicted by SLM 
144 ( e . g . , all points on scene object 140 ) . Approximating a 
complete holographic light field display as a grid of hogels 
substantially reduces rendering passes and computational 
effort , allowing conventional GPU systems to support real 
time rendering applications . However , conventional hogel 
rendering projects to a given hogel center , thereby failing to 
render an accurate per - pixel diffraction cone gathering , and 
conventional hogel rendering may scale poorly in spherical 
illumination scenarios . 
[ 0046 ] FIG . 2A illustrates conventional hogel rendering , 
in accordance with the prior art . As shown , a rendering 
configuration 200 includes a virtual camera 210 positioned 
at the center of a hogel 218 included within an SLM 203 . 
The virtual camera 210 is aimed at a scene to be rendered . 
The position of virtual camera 210 results in a conventional 
view frustum 212 , which only provides accurate rendering 
for pixels centered within the hogel 218 . In prior art hogel 
rendering systems , the conventional view frustum 212 is 
used for rendering all pixels in hogel 218 because virtual 
camera 210 is statically positioned at the center of the hogel 
218 . Consequently , for a bottom pixel in the hogel 218 , 
region 215 is mistakenly incorporated into the pixel during 
rendering , while region 217 will be incorrectly excluded 
from the pixel during rendering . To accurately render the 
bottom pixel in hogel 218 , view frustum 216 should be used . 
Similarly , to accurately render the top pixel in hogel 218 , 
view frustum 214 should be used . 
[ 0047 ] As shown , hogels 218 , 219 on SLM 203 have a 
hogel size W . Furthermore , a near clipping plane 204 is 
positioned a distance d , from SLM 203 , and a far clipping 
plane 206 is positioned a distance d2 from SLM 203 . Hogel 
size wn sets a depth limit of zsdmin to scene objects and the 
near clipping plane 204 to prevent geometric clipping . In 
certain scenarios , this depth limit , along with potential 
geometric clipping , inaccurate per - pixel diffraction cone 
gathering , and / or additional limitations of conventional 
hogel rendering reduce the comfort and quality of a user 
experience . 
[ 0048 ] FIG . 2B illustrates hogel rendering with plane 
wave illumination , in accordance with one embodiment . As 
shown , a rendering configuration 220 includes a virtual 
camera 230 positioned at a lateral offset d along the Z 
( depth ) axis with respect to an SLM 223 . In contrast , with 
conventional techniques , as shown in FIG . 2A , where the 
virtual camera 210 is positioned at a lateral offset of zero , the 
lateral offset d is greater than zero . The virtual camera 230 
is aimed at a scene to be rendered , including a near clipping 
plane 224 and a far clipping plane 226 . The position of 
virtual camera 230 results in a view frustum 232 that 
intersects at least hogel 238 on SLM 223 . Hogels 238 , 239 
on SLM 223 have a hogel size Wh . The near clipping plane 
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224 is positioned a distance d , from SLM 223 , and the far 
clipping plane 226 is positioned a distance d , from SLM 
203 . The lateral offset de , may be equal to a depth limit of 
zsdm . in relative to scene objects and the near clipping plane 
224 . In one embodiment , the lateral offset is calculated 
according to Equation 2 : 

Wh dcz = dmin = – ( 2 ) 

2tan?sin " ( . . ) 
[ 0049 ] In Equation 2 , Ap is a pixel pitch size for SLM 223 , 
and à is the wavelength of a monochromatic light source , 
such as a light source used for rendering . As shown , the 
offset position of virtual camera 230 allows the entire visible 
area for view frustum 232 to be rendered . This visible area 
is indicated by W , and calculated by Equation 3 : 

wi = 2 sin - ( W2Ap ) ( d + dcz ) ( 3 ) 

[ 0050 ] In one embodiment , view frustum 232 intersects 
the edge of hogel 238 and near clipping plane 224 , with an 
extent of wz . Furthermore , each pixel in SLM 223 may be 
generated using only a valid diffraction cone , bounded by 
projection 234 . A per - pixel perspective may be obtained by 
aligning the diffraction cone in the far clipping plane 226 
with a sliding window , defined by Wz . The sliding window 
( w3 ) may be calculated according to Equation 4 : 

should be included in rendering an associated pixel on SLM 
223 , and an excluded region 244 ( outside the width ) that 
should be excluded from rendering the pixel . Components 
outside the pixel diffraction cone may be removed as part of 
rendering one or more pixels within the pixel diffraction 
cone . 
[ 0054 ] FIG . 2D illustrates hogel rendering with spherical 
wave illumination , in accordance with one embodiment . As 
shown , a rendering configuration 250 includes a virtual 
camera 260 positioned at a lateral offset dez along the Z 
( depth ) axis with respect to an SLM 263 . The virtual camera 
260 is aimed at a scene to be rendered , including a near 
clipping plane 254 and a far clipping plane 256 . The position 
of virtual camera 260 results in a view frustum 262 that 
intersects at least hogel 268 on SLM 263 . Hogels 268 , 269 
on SLM 263 have a hogel size w . . The near clipping plane 
254 is positioned a distance dz along the Z axis from virtual 
camera 260 , and the far clipping plane 256 is positioned a 
distance de along the Z axis from virtual camera 260 . A user 
eye 261 is positioned a distance dp along the Z axis from 
SLM 263 . As shown , an eye box is shown to be w , in size . 
In one embodiment , a projection of view frustum 262 
through virtual camera 260 is at least as large as the eye box . 
[ 0055 ] In various embodiments that implement spherical 
illumination , view frustum 262 ( and other view frustums 
associated with an array of virtual cameras or camera 
positions ) may undergo a spatially varying transform 
because spherical illumination wavefronts introduce curva 
ture and an off - axis rotation to a local incident ray direction 
of a diffraction cone for a given position of virtual camera 
260 . Such diffraction cones collectively widen the field of 
view of a given hogel . 
[ 0056 ] Extending the rendering configuration 220 of FIG . 
2C , to rendering configuration 250 for spherical illumination 
sets virtual camera 260 at the intersection of marginal rays 
restricted by the eye box and skews available field of view . 
In one embodiment , the lateral offset dez of virtual camera 
260 relative to the position of SLM 263 is given by Equation 

( 4 ) ms = ( 1 - ci 
[ 0051 ] Diffraction culling may be used on an ambiguity 
segment , illustrated in FIG . 2C showing region 240 in detail , 
to provide more accurate rendering . Diffraction culling may 
include , without limitation , removing certain covered scene 
object geometry associated with an ambiguity segment from 
contributing to a given pixel on SLM 223 . The ambiguity 
region may be obtained by extending the sliding window to 
W2 , as calculated in Equation 5 . Furthermore , W3 and W2 
bound projection 234 . 

6 : 

dcz = dewn 
We ( dp ) + wh 

w = ( 1 - dot och [ 0057 ] An offset between a center view of virtual camera 
260 and a hogel center along the X - axis and Y - axis depends 
on the position of the hogel relative to the eye box . Assum 
ing 2m + 1 by 2n + 1 partitioning of the SLM 263 along the 
X - axis and Y - axis , respectively , the displacement from an 
( m , n ) - th hogel center to a corresponding virtual camera is 
given by Equations 7 and 8 : 

dex = mwider 

[ 0052 ] Arranging an array of virtual cameras 230 ( e . g . , 
one virtual camera per elemental view or elemental region ) 
according to the disclosed configuration allows for unre 
stricted disposition of scene objects . Lateral offset dcz 
ensures adjacent camera views overlap immediately in front 
of the SLM 223 , and a resulting tiled frustum array fully 
covers the field of view of the entire hologram ( the entire 3D 
scene ) . This allows the near clipping plane 224 to be 
advantageously set at an arbitrary depth in front of the SLM 
223 . 
[ 0053 ] FIG . 2C illustrates a region 240 of an ambiguity 
segment 242 , in accordance with one embodiment . Projec 
tion 234 intersects near clipping plane 224 and far clipping 
plane 226 . Projection 234 may define a pixel diffraction cone 
with a base of a certain width . Furthermore , projection 234 
may intersect an included region 245 ( within the width ) that 

dey = nwydcz da 

[ 0058 ] As shown , displacement day is a displacement 
along the Y - axis from the center of hogel 268 to the center 
of view for virtual camera 260 . In camera space , an appro 
priate off - axis projection matrix is defined by Equation 9 : 
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2dcx 0 ( 9 ) 
Wh 

2dcz 2dcy 
Pim , n } = Wh Wh 

da + dz 2d4d3 
da – dz - d4 – dz 

- 1 0 | 0 0 

[ 0059 ] A sliding window w? inside each elemental image 
may be used to disambiguate a projected pixel , wherein w2 
is calculated according to Equation 10 : 

should be included in rendering an associated pixel on SLM 
263 , and an excluded region 274 ( outside the width ) that 
should be excluded from rendering the pixel . Components 
outside the pixel diffraction cone may be removed as part of 
rendering one or more pixels within the pixel diffraction 
cone . 
10065 ] FIG . 2F illustrates algorithmic operations of a 
method for rendering a light field using spherical illumina 
tion , in accordance with one embodiment . In the algorithmic 
operations , p denotes an SLM pixel in the ( m , n ) - th hogel , 
at a displacement ( Ax , Ay ) to the hogel center . A CGH fringe 
calculation for E ( p ) of each SLM pixel under spherical 
illumination multiplies the object wave E . ( p ) by a conjugate 
reference wave ER * ( p ) . A position q is located on a scene 
object to be rendered , the position being identified by an 
index j . In an associated virtual camera space under spheri 
cal illumination , p ' s spatial coordinate is given by ( Ax + dex , 
Ay + d - d . ) . In one embodiment , p ' s estimated view is a 
sliding window of kxk pixels . Furthermore , q , is the elemen 
tal pixel with a rendered point located at ( xqj Yaj? Zaj ) , an 
amplitude Ani , and an initial phase . . . This computation is 
based on Equation 1 , and is shown in detail in Equations 
12 - 16 . 

E ( p ) = E . ( P ) : Ex * ( p ) ( 12 ) 
[ 0066 ] In Equation 12 , E . ( p ) may be calculated according 
to Equation 13 : 

( 10 ) we = 1 - dcz ( d4 + df - dcz ) , dadami 

[ 0060 ] Diffraction culling may be used on an ambiguity 
segment , illustrated in FIG . 2E showing detail of region 270 , 
to provide more accurate rendering . Diffraction culling may 
include , without limitation , removing certain covered scene 
object geometry associated with an ambiguity segment from 
contributing to a given pixel on SLM 263 . 
[ 0061 ] A fraction of an error - free segment within the 
sliding window may be used to derive a hogel size required 
to obtain an acceptable sampling error . Equation 11 : 

p . 91 + 09j ( 13 ) i21 W3 – 1 _ ( d4 – dz ) dcz ( 11 ) Ep ) = 
lia w2 d34d4 - dcz ) 

[ 0067 ] Furthermore , ER * ( p ) may be calculated according 
to Equation 14 : 

( 14 ) Ek ( P ) = ( - 0 . 2 , Ment ) 
[ 0068 ] Euclidean distances r ( p , q ; ) and r ( p , F ) may be 
calculated according to Equations 15 and 16 , respectively : 

r ( p , qi ) = V ( x , - 48 - dex ) + ( yqj - Ay - dey ) 2 + ( 29j + dez ) ? ( 15 ) 
( 16 ) 

[ 0062 ] Hogel size can have a significant impact on visual 
quality as well as computational effort . In one extreme case 
of hogel size , a hogel is one pixel within the SLM 263 . In 
this first case , the holographic light field rendering expands 
to full light field rendering , which may be impractical . In 
another extreme case of hogel size , a hogel extends to the 
entire size of the SLM 263 . In this second case , the rendered 
light field recedes to a single map of points rendered from 
the nearest distance where the SLM 263 is fully observable 
to a viewer ( e . g . , a user ) . In a practical scenario , hogel size 
is selected between these two extremes , as discussed further 
in conjunction with FIG . 2G . 
[ 0063 ] In a holographic light field , a one - to - one mapping 
between a hogel on an SLM and a corresponding visible 
elemental image , as shown in FIG . 1D , facilitates parallel 
computation using a point - based method for Fresnel inte 
gration ( i . e . , summation ) . For example , light field calcula 
tion may proceed as a parallel operation on pixels compris 
ing a hogel , a parallel operation on different virtual camera 
views , or a combination thereof . Furthermore , a parallel 
operation on pixels may include parallel computation of 
summation terms comprising Fresnel integration / summa 
tion . In one embodiment , a parallel processing unit , such as 
the PPU 300 shown in FIG . 3 may be used to perform the 
parallel computations . 
[ 0064 ] FIG . 2E illustrates a region 270 of an ambiguity 
segment 272 , in accordance with one embodiment . Projec 
tion 264 intersects near clipping plane 254 and far clipping 
plane 256 . Projection 264 may define a pixel diffraction cone 
with a base of a certain width . Furthermore , projection 264 
may intersect an included region 275 ( within the width ) that 

r ( p , F ) = V ( dp ) 2 + ( mwh + Ax ) 2 + ( nwh + Ay ) ? 
[ 0069 ] In steps 1 - 4 of FIG . 2F , i is defined as a pixel index 
for a pixel within an SLM ( e . g . , SLM 263 ) , and a subset of 
pixels are identified as being within a hogel . Pixels within a 
sliding window for the hogel are given an index j . A for loop 
in step 5 is configured to iterate over pixels within the sliding 
window to compute a field value for each pixel . A wavefront 
phase ( 0 ) from a point q to a pixel within the SLM is 
computed in step 8 , while an amplitude ( A ) for the wave 
front is computed in step 9 . Field summation of Equation 12 
is completed in step 11 . 
[ 0070 ] FIG . 2G illustrates a comparison of elemental 
image resolution results , in accordance with one embodi 
ment . Angular sampling rate ( pixels per observed degree ) is 
varied , with image ( a ) having an angular sampling rate of 6 , 
image ( b ) having an angular sampling rate of 18 , image ( c ) 
having an angular sampling rate of 30 , and image ( d ) having 
an angular sampling rate of 45 . An inset ( bottom left ) of each 
image depicts the rendered elemental image of resolution 
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Parallel Processing Architecture 
[ 0075 ] FIG . 3 illustrates a parallel processing unit ( PPU ) 
300 , in accordance with one embodiment . In one embodi 
ment , the PPU 300 is a multi - threaded processor that is 
implemented on one or more integrated circuit devices . The 
PPU 300 is a latency hiding architecture designed to process 
many threads in parallel . A thread ( i . e . , a thread of execu 
tion ) is an instantiation of a set of instructions configured to 
be executed by the PPU 300 . In one embodiment , the PPU 
300 is a graphics processing unit ( GPU ) configured to 
implement a graphics rendering pipeline for processing 
three - dimensional ( 3D ) graphics data in order to generate 
two - dimensional ( 2D ) image data for display on a display 
device such as a liquid crystal display ( LCD ) device . In 
other embodiments , the PPU 300 may be utilized for per 
forming general - purpose computations . While one exem 
plary parallel processor is provided herein for illustrative 
purposes , it should be strongly noted that such processor is 
set forth for illustrative purposes only , and that any proces 
sor may be employed to supplement and / or substitute for the 
same 

varying resolution having a corresponding angular sampling 
rate , while a detail ( top right ) illustrates reconstructions at 
the corresponding angular sampling rate . Lower resolution 
reconstructions ( top row of images ) exhibits obvious alias 
ing ; however , higher resolution reconstructions ( bottom row 
of images ) is smooth in appearance , without obvious signs 
of aliasing . In general , an angular sampling rate above 30 
pixels per degree provides a good approximation with little 
noticeable aliasing . Consequently , in one embodiment , an 
angular sampling rate above 30 pixels per degree is imple 
mented . 
[ 0071 ] Although a small hogel size ( wn ) and dense parti 
tioning increases the number of rendered views needed , a 
smaller hogel size also reduces ambiguity regions and 
produces more accurate perspectives for intra - ocular occlu 
sion . A balance may be achieved between competing param 
eters by evaluating hogel size based on a ratio between 
error - free segment and approximated sliding window . In one 
embodiment the SLM includes a resolution of 3840x2160 
and , W , 1 mm . This configuration may produce an ambi 
guity region of less than 0 . 16 % for a two - dimensional view 
with 16x9 hogel partitioning . Note that larger pixel pitch 
may require denser hogel partitioning . 
[ 0072 ] FIG . 2H illustrates a flowchart of a method 280 for 
rendering a light field , in accordance with one embodiment . 
Although method 280 is described in the context of a 
processing unit , the method 280 may also be performed by 
a program , custom circuitry , or by a combination of custom 
circuitry and a program . For example , the method 280 may 
be executed by a GPU , a CPU , or any other technically 
feasible processor . Furthermore , persons of ordinary skill in 
the art will understand that any system that performs method 
280 is within the scope and spirit of embodiments of the 
present invention . 
[ 0073 ] At step 282 , the processing unit computes a lateral 
offset ( e . g . , d ) between a view position and an SLM ( e . g . , 
SLM 223 , SLM 263 ) based on a size of the SLM and a width 
of a holographic element ( hogel ) . In one embodiment , the 
view position specifies a view position for a virtual camera 
( e . g . , virtual camera 230 , virtual camera 260 ) . Furthermore , 
in one embodiment , an array of hogels covers a surface of 
the SLM . At step 284 , the processing unit renders a three 
dimensional scene from the view position to produce an 
elemental image included within an array of elemental 
images . The processing unit may render each elemental 
image within the array of elemental images . In one embodi 
ment , the array of elemental images includes a correspond 
ing array of depth maps ( e . g . , rendered along with the 
elemental images ) . A phase map and an amplitude map are 
then computed from the elemental images and depth maps , 
as depicted in FIG . 1D . The phase map and amplitude map 
may be partitioned to form a one - to - one mapping to the 
array of hogels . Any technically feasible technique may be 
implemented to compute the phase map and the amplitude 
map . 
[ 0074 ] . More illustrative information will now be set forth 
regarding various optional architectures and features with 
which the foregoing framework may or may not be imple 
mented , per the desires of the user . It should be strongly 
noted that the following information is set forth for illus 
trative purposes and should not be construed as limiting in 
any manner . Any of the following features may be optionally 
incorporated with or without the exclusion of other features 
described . 

[ 0076 ] One or more PPUS 300 may be configured to 
accelerate thousands of High Performance Computing 
( HPC ) , data center , and machine learning applications . The 
PPU 300 may be configured to accelerate numerous deep 
learning systems and applications including autonomous 
vehicle platforms , deep learning , high - accuracy speech , 
image , and text recognition systems , intelligent video ana 
lytics , molecular simulations , drug discovery , disease diag 
nosis , weather forecasting , big data analytics , astronomy , 
molecular dynamics simulation , financial modeling , robot 
ics , factory automation , real - time language translation , 
online search optimizations , and personalized user recom 
mendations , and the like . 
[ 0077 ] As shown in FIG . 3 , the PPU 300 includes an 
Input / Output ( 1 / 0 ) unit 305 , a front end unit 315 , a scheduler 
unit 320 , a work distribution unit 325 , a hub 330 , a crossbar 
( Xbar ) 370 , one or more general processing clusters ( GPCs ) 
350 , and one or more partition units 380 . The PPU 300 may 
be connected to a host processor or other PPUS 300 via one 
or more high - speed NVLink 310 interconnect . The PPU 300 
may be connected to a host processor or other peripheral 
devices via an interconnect 302 . The PPU 300 may also be 
connected to a local memory comprising a number of 
memory devices 304 . In one embodiment , the local memory 
may comprise a number of dynamic random access memory 
( DRAM ) devices . The DRAM devices may be configured as 
a high - bandwidth memory ( HBM ) subsystem , with multiple 
DRAM dies stacked within each device . 
[ 0078 ] The NVLink 310 interconnect enables systems to 
scale and include one or more PPUS 300 combined with one 
or more CPUs , supports cache coherence between the PPUS 
300 and CPUs , and CPU mastering . Data and / or commands 
may be transmitted by the NVLink 310 through the hub 330 
to / from other units of the PPU 300 such as one or more copy 
engines , a video encoder , a video decoder , a power man 
agement unit , etc . ( not explicitly shown ) . The NVLink 310 
is described in more detail in conjunction with FIG . 5B . 
10079 ) The I / O unit 305 is configured to transmit and 
receive communications ( i . e . , commands , data , etc . ) from a 
host processor ( not shown ) over the interconnect 302 . The 
1 / 0 unit 305 may communicate with the host processor 
directly via the interconnect 302 or through one or more 
intermediate devices such as a memory bridge . In one 
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embodiment , the I / O unit 305 may communicate with one or 
more other processors , such as one or more the PPUs 300 via 
the interconnect 302 . In one embodiment , the I / O unit 305 
implements a Peripheral Component Interconnect Express 
( PCIe ) interface for communications over a PCIe bus and 
the interconnect 302 is a PCIe bus . In alternative embodi 
ments , the I / O unit 305 may implement other types of 
well - known interfaces for communicating with external 
devices . 
[ 0080 ] The I / O unit 305 decodes packets received via the 
interconnect 302 . In one embodiment , the packets represent 
commands configured to cause the PPU 300 to perform 
various operations . The I / O unit 305 transmits the decoded 
commands to various other units of the PPU 300 as the 
commands may specify . For example , some commands may 
be transmitted to the front end unit 315 . Other commands 
may be transmitted to the hub 330 or other units of the PPU 
300 such as one or more copy engines , a video encoder , a 
video decoder , a power management unit , etc . ( not explicitly 
shown ) . In other words , the I / O unit 305 is configured to 
route communications between and among the various logi 
cal units of the PPU 300 . 
[ 0081 ] In one embodiment , a program executed by the 
host processor encodes a command stream in a buffer that 
provides workloads to the PPU 300 for processing . A 
workload may comprise several instructions and data to be 
processed by those instructions . The buffer is a region in a 
memory that is accessible ( i . e . , read / write ) by both the host 
processor and the PPU 300 . For example , the host interface 
unit 310 may be configured to access the buffer in a system 
memory connected to the interconnect 302 via memory 
requests transmitted over the interconnect 302 by the I / O 
unit 305 . In one embodiment , the host processor writes the 
command stream to the buffer and then transmits a pointer 
to the start of the command stream to the PPU 300 . The front 
end unit 315 receives pointers to one or more command 
streams . The front end unit 315 manages the one or more 
streams , reading commands from the streams and forward 
ing commands to the various units of the PPU 300 . 
[ 0082 ] The front end unit 315 is coupled to a scheduler 
unit 320 that configures the various GPCs 350 to process 
tasks defined by the one or more streams . The scheduler unit 
320 is configured to track state information related to the 
various tasks managed by the scheduler unit 320 . The state 
may indicate which GPC 350 a task is assigned to , whether 
the task is active or inactive , a priority level associated with 
the task , and so forth . The scheduler unit 320 manages the 
execution of a plurality of tasks on the one or more GPCs 
350 . 
[ 0083 ] The scheduler unit 320 is coupled to a work 
distribution unit 325 that is configured to dispatch tasks for 
execution on the GPCs 350 . The work distribution unit 325 
may track a number of scheduled tasks received from the 
scheduler unit 320 . In one embodiment , the work distribu 
tion unit 325 manages a pending task pool and an active task 
pool for each of the GPCs 350 . The pending task pool may 
comprise a number of slots ( e . g . , 32 slots ) that contain tasks 
assigned to be processed by a particular GPC 350 . The active 
task pool may comprise a number of slots ( e . g . , 4 slots ) for 
tasks that are actively being processed by the GPCs 350 . As 
a GPC 350 finishes the execution of a task , that task is 
evicted from the active task pool for the GPC 350 and one 
of the other tasks from the pending task pool is selected and 
scheduled for execution on the GPC 350 . If an active task 

has been idle on the GPC 350 , such as while waiting for a 
data dependency to be resolved , then the active task may be 
evicted from the GPC 350 and returned to the pending task 
pool while another task in the pending task pool is selected 
and scheduled for execution on the GPC 350 . 
[ 0084 ] The work distribution unit 325 communicates with 
the one or more GPCs 350 via XBar 370 . The XBar 370 is 
an interconnect network that couples many of the units of the 
PPU 300 to other units of the PPU 300 . For example , the 
XBar 370 may be configured to couple the work distribution 
unit 325 to a particular GPC 350 . Although not shown 
explicitly , one or more other units of the PPU 300 may also 
be connected to the XBar 370 via the hub 330 . 
0085 The tasks are managed by the scheduler unit 320 
and dispatched to a GPC 350 by the work distribution unit 
325 . The GPC 350 is configured to process the task and 
generate results . The results may be consumed by other tasks 
within the GPC 350 , routed to a different GPC 350 via the 
XBar 370 , or stored in the memory 304 . The results can be 
written to the memory 304 via the partition units 380 , which 
implement a memory interface for reading and writing data 
to / from the memory 304 . The results can be transmitted to 
another PPU 304 or CPU via the NVLink 310 . In one 
embodiment , the PPU 300 includes a number U of partition 
units 380 that is equal to the number of separate and distinct 
memory devices 304 coupled to the PPU 300 . A partition 
unit 380 will be described in more detail below in conjunc 
tion with FIG . 4B . 
[ 008 ] In one embodiment , a host processor executes a 
driver kernel that implements an application programming 
interface ( API ) that enables one or more applications execut 
ing on the host processor to schedule operations for execu 
tion on the PPU 300 . In one embodiment , multiple compute 
applications are simultaneously executed by the PPU 300 
and the PPU 300 provides isolation , quality of service 
( QoS ) , and independent address spaces for the multiple 
compute applications . An application may generate instruc 
tions ( i . e . , API calls ) that cause the driver kernel to generate 
one or more tasks for execution by the PPU 300 . The driver 
kernel outputs tasks to one or more streams being processed 
by the PPU 300 . Each task may comprise one or more 
groups of related threads , referred to herein as a warp . In one 
embodiment , a warp comprises 32 related threads that may 
be executed in parallel . Cooperating threads may refer to a 
plurality of threads including instructions to perform the task 
and that may exchange data through shared memory . 
Threads and cooperating threads are described in more detail 
in conjunction with FIG . 5A . 
[ 0087 ] FIG . 4A illustrates a GPC 350 of the PPU 300 of 
FIG . 3 , in accordance with one embodiment . As shown in 
FIG . 4A , each GPC 350 includes a number of hardware units 
for processing tasks . In one embodiment , each GPC 350 
includes a pipeline manager 410 , a pre - raster operations unit 
( PROP ) 415 , a raster engine 425 , a work distribution cross 
bar ( WDX ) 480 , a memory management unit ( MMU ) 490 , 
and one or more Data Processing Clusters ( DPCs ) 420 . It 
will be appreciated that the GPC 350 of FIG . 4A may include 
other hardware units in lieu of or in addition to the units 
shown in FIG . 4A . 
0088 ] In one embodiment , the operation of the GPC 350 

is controlled by the pipeline manager 410 . The pipeline 
manager 410 manages the configuration of the one or more 
DPCs 420 for processing tasks allocated to the GPC 350 . In 
one embodiment , the pipeline manager 410 may configure at 
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least one of the one or more DPCs 420 to implement at least 
a portion of a graphics rendering pipeline . For example , a 
DPC 420 may be configured to execute a vertex shader 
program on the programmable streaming multiprocessor 
( SM ) 440 . The pipeline manager 410 may also be configured 
to route packets received from the work distribution unit 325 
to the appropriate logical units within the GPC 350 . For 
example , some packets may be routed to fixed function 
hardware units in the PROP 415 and / or raster engine 425 
while other packets may be routed to the DPCs 420 for 
processing by the primitive engine 435 or the SM 440 . In 
one embodiment , the pipeline manager 410 may configure at 
least one of the one or more DPCs 420 to implement a neural 
network model and / or a computing pipeline . 
[ 0089 ] The PROP unit 415 is configured to route data 
generated by the raster engine 425 and the DPCs 420 to a 
Raster Operations ( ROP ) unit in the partition unit 380 , 
described in more detail in conjunction with FIG . 4B . The 
PROP unit 415 may also be configured to perform optimi 
zations for color blending , organize pixel data , perform 
address translations , and the like . 
10090 ] The raster engine 425 includes a number of fixed 
function hardware units configured to perform various raster 
operations . In one embodiment , the raster engine 425 
includes a setup engine , a coarse raster engine , a culling 
engine , a clipping engine , a fine raster engine , and a tile 
coalescing engine . The setup engine receives transformed 
vertices and generates plane equations associated with the 
geometric primitive defined by the vertices . The plane 
equations are transmitted to the coarse raster engine to 
generate coverage information ( e . g . , an x , y coverage mask 
for a tile ) for the primitive . The output of the coarse raster 
engine is transmitted to the culling engine where fragments 
associated with the primitive that fail a z - test are culled , and 
transmitted to a clipping engine where fragments lying 
outside a viewing frustum are clipped . Those fragments that 
survive clipping and culling may be passed to the fine raster 
engine to generate attributes for the pixel fragments based 
on the plane equations generated by the setup engine . The 
output of the raster engine 425 comprises fragments to be 
processed , for example , by a fragment shader implemented 
within a DPC 420 . 
[ 0091 ] Each DPC 420 included in the GPC 350 includes 
an M - Pipe Controller ( MPC ) 430 , a primitive engine 435 , 
and one or more SMs 440 . The MPC 430 controls the 
operation of the DPC 420 , routing packets received from the 
pipeline manager 410 to the appropriate units in the DPC 
420 . For example , packets associated with a vertex may be 
routed to the primitive engine 435 , which is configured to 
fetch vertex attributes associated with the vertex from the 
memory 304 . In contrast , packets associated with a shader 
program may be transmitted to the SM 440 . 
[ 0092 ] The SM 440 comprises a programmable streaming 
processor that is configured to process tasks represented by 
a number of threads . Each SM 440 is multi - threaded and 
configured to execute a plurality of threads ( e . g . , 32 threads ) 
from a particular group of threads concurrently . In one 
embodiment , the SM 440 implements a SIMD ( Single 
Instruction , Multiple - Data ) architecture where each thread 
in a group of threads ( i . e . , a warp ) is configured to process 
a different set of data based on the same set of instructions . 
All threads in the group of threads execute the same instruc 
tions . In another embodiment , the SM 440 implements a 
SIMT ( Single - Instruction , Multiple Thread ) architecture 

where each thread in a group of threads is configured to 
process a different set of data based on the same set of 
instructions , but where individual threads in the group of 
threads are allowed to diverge during execution . In one 
embodiment , a program counter , call stack , and execution 
state is maintained for each warp , enabling concurrency 
between warps and serial execution within warps when 
threads within the warp diverge . In another embodiment , a 
program counter , call stack , and execution state is main 
tained for each individual thread , enabling equal concur 
rency between all threads , within and between warps . When 
execution state is maintained for each individual thread , 
threads executing the same instructions may be converged 
and executed in parallel for maximum efficiency . The SM 
440 will be described in more detail below in conjunction 
with FIG . 5A . 
[ 0093 ] The MMU 490 provides an interface between the 
GPC 350 and the partition unit 380 . The MMU 490 may 
provide translation of virtual addresses into physical 
addresses , memory protection , and arbitration of memory 
requests . In one embodiment , the MMU 490 provides one or 
more translation lookaside buffers ( TLBs ) for performing 
translation of virtual addresses into physical addresses in the 
memory 304 . 
[ 0094 ] FIG . 4B illustrates a memory partition unit 380 of 
the PPU 300 of FIG . 3 , in accordance with one embodiment . 
As shown in FIG . 4B , the memory partition unit 380 
includes a Raster Operations ( ROP ) unit 450 , a level two 
( L2 ) cache 460 , and a memory interface 470 . The memory 
interface 470 is coupled to the memory 304 . Memory 
interface 470 may implement 32 , 64 , 128 , 1024 - bit data 
buses , or the like , for high - speed data transfer . In one 
embodiment , the PPU 300 incorporates U memory inter 
faces 470 , one memory interface 470 per pair of partition 
units 380 , where each pair of partition units 380 is connected 
to a corresponding memory device 304 . For example , PPU 
300 may be connected to up to Y memory devices 304 , such 
as high bandwidth memory stacks or graphics double - data 
rate , version 5 , synchronous dynamic random access 
memory ( GDDR5 SDRAM ) . 
[ 0095 ] In one embodiment , the memory interface 470 
implements an HBM2 memory interface and Y equals half 
U . In one embodiment , the HBM2 memory stacks are 
located on the same physical package as the PPU 300 , 
providing substantial power and area savings compared with 
conventional GDDR5 SDRAM systems . In one embodi 
ment , each HBM2 stack includes four memory dies and Y 
equals 4 , with HBM2 stack including two 128 - bit channels 
per die for a total of 8 channels and a data bus width of 1024 
bits . 

[ 0096 ] In one embodiment , the memory 304 supports 
Single - Error Correcting Double - Error Detecting ( SECDED ) 
Error Correction Code ( ECC ) to protect data . ECC provides 
higher reliability for compute applications that are sensitive 
to data corruption . Reliability is especially important in 
large - scale cluster computing environments where PPUS 
300 process very large datasets and / or run applications for 
extended periods . 
[ 0097 ] In one embodiment , the PPU 300 implements a 
multi - level memory hierarchy . In one embodiment , the 
memory partition unit 380 supports a unified memory to 
provide a single unified virtual address space for CPU and 
PPU 300 memory , enabling data sharing between virtual 
memory systems . In one embodiment the frequency of 
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accesses by a PPU 300 to memory located on other proces 
sors is traced to ensure that memory pages are moved to the 
physical memory of the PPU 300 that is accessing the pages 
more frequently . In one embodiment , the NVLink 310 
supports address translation services allowing the PPU 300 
to directly access a CPU ' s page tables and providing full 
access to CPU memory by the PPU 300 . 
[ 0098 ] In one embodiment , copy engines transfer data 
between multiple PPUS 300 or between PPUS 300 and 
CPUs . The copy engines can generate page faults for 
addresses that are not mapped into the page tables . The 
memory partition unit 380 can then service the page faults , 
mapping the addresses into the page table , after which the 
copy engine can perform the transfer . In a conventional 
system , memory is pinned ( i . e . , non - pageable ) for multiple 
copy engine operations between multiple processors , sub 
stantially reducing the available memory . With hardware 
page faulting , addresses can be passed to the copy engines 
without worrying if the memory pages are resident , and the 
copy process is transparent . 
0099 ] Data from the memory 304 or other system 
memory may be fetched by the memory partition unit 380 
and stored in the L2 cache 460 , which is located on - chip and 
is shared between the various GPCs 350 . As shown , each 
memory partition unit 380 includes a portion of the L2 cache 
460 associated with a corresponding memory device 304 . 
Lower level caches may then be implemented in various 
units within the GPCs 350 . For example , each of the SMS 
440 may implement a level one ( L1 ) cache . The L1 cache is 
private memory that is dedicated to a particular SM 440 . 
Data from the L2 cache 460 may be fetched and stored in 
each of the L1 caches for processing in the functional units 
of the SMs 440 . The L2 cache 460 is coupled to the memory 
interface 470 and the XBar 370 . 
[ 0100 ] The ROP unit 450 performs graphics raster opera 
tions related to pixel color , such as color compression , pixel 
blending , and the like . The ROP unit 450 also implements 
depth testing in conjunction with the raster engine 425 , 
receiving a depth for a sample location associated with a 
pixel fragment from the culling engine of the raster engine 
425 . The depth is tested against a corresponding depth in a 
depth buffer for a sample location associated with the 
fragment . If the fragment passes the depth test for the sample 
location , then the ROP unit 450 updates the depth buffer and 
transmits a result of the depth test to the raster engine 425 . 
It will be appreciated that the number of partition units 380 
may be different than the number of GPCs 350 and , there 
fore , each ROP unit 450 may be coupled to each of the GPCs 
350 . The ROP unit 450 tracks packets received from the 
different GPCs 350 and determines which GPC 350 that a 
result generated by the ROP unit 450 is routed to through the 
Xbar 370 . 
[ 0101 ] FIG . 5A illustrates the streaming multi - processor 
440 of FIG . 4A , in accordance with one embodiment . As 
shown in FIG . 5A , the SM 440 includes an instruction cache 
505 , one or more scheduler units 510 , a register file 520 , one 
or more processing cores 550 , one or more special function 
units ( SFUS ) 552 , one or more load / store units ( LSUS ) 554 , 
an interconnect network 580 , a shared memory / L1 cache 
570 . 
[ 0102 ] As described above , the work distribution unit 325 
dispatches tasks for execution on the GPCs 350 of the PPU 
300 . The tasks are allocated to a particular DPC 420 within 
a GPC 350 and , if the task is associated with a shader 

program , the task may be allocated to an SM 440 . The 
scheduler unit 510 receives the tasks from the work distri 
bution unit 325 and manages instruction scheduling for one 
or more thread blocks assigned to the SM 440 . The scheduler 
unit 510 schedules thread blocks for execution as warps of 
parallel threads , where each thread block is allocated at least 
one warp . In one embodiment , each warp executes 32 
threads . The scheduler unit 510 may manage a plurality of 
different thread blocks , allocating the warps to the different 
thread blocks and then dispatching instructions from the 
plurality of different cooperative groups to the various 
functional units ( i . e . , cores 550 , SFUS 552 , and LSUs 554 ) 
during each clock cycle . 
[ 0103 ] Cooperative Groups is a programming model for 
organizing groups of communicating threads that allows 
developers to express the granularity at which threads are 
communicating , enabling the expression of richer , more 
efficient parallel decompositions . Cooperative launch APIs 
support synchronization amongst thread blocks for the 
execution of parallel algorithms . Conventional program 
ming models provide a single , simple construct for synchro 
nizing cooperating threads : a barrier across all threads of a 
thread block ( i . e . , the syncthreads ( ) function ) . However , 
programmers would often like to define groups of threads at 
smaller than thread block granularities and synchronize 
within the defined groups to enable greater performance , 
design flexibility , and software reuse in the form of collec 
tive group - wide function interfaces . 
[ 0104 ] Cooperative Groups enables programmers to 
define groups of threads explicitly at sub - block ( i . e . , as small 
as a single thread ) and multi - block granularities , and to 
perform collective operations such as synchronization on the 
threads in a cooperative group . The programming model 
supports clean composition across software boundaries , so 
that libraries and utility functions can synchronize safely 
within their local context without having to make assump 
tions about convergence . Cooperative Groups primitives 
enable new patterns of cooperative parallelism , including 
producer - consumer parallelism , opportunistic parallelism , 
and global synchronization across an entire grid of thread 
blocks . 
[ 0105 ] A dispatch unit 515 is configured to transmit 
instructions to one or more of the functional units . In the 
embodiment , the scheduler unit 510 includes two dispatch 
units 515 that enable two different instructions from the 
same warp to be dispatched during each clock cycle . In 
alternative embodiments , each scheduler unit 510 may 
include a single dispatch unit 515 or additional dispatch 
units 515 . 
[ 0106 ] Each SM 440 includes a register file 520 that 
provides a set of registers for the functional units of the SM 
440 . In one embodiment , the register file 520 is divided 
between each of the functional units such that each func 
tional unit is allocated a dedicated portion of the register file 
520 . In another embodiment , the register file 520 is divided 
between the different warps being executed by the SM 440 . 
The register file 520 provides temporary storage for oper 
ands connected to the data paths of the functional units . 
[ 0107 ] Each SM 440 comprises L processing cores 550 . In 
one embodiment , the SM 440 includes a large number ( e . g . , 
128 , etc . ) of distinct processing cores 550 . Each core 550 
may include a fully - pipelined , single - precision , double - pre 
cision , and / or mixed precision processing unit that includes 
a floating point arithmetic logic unit and an integer arith 
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metic logic unit . In one embodiment , the floating point 
arithmetic logic units implement the IEEE 754 - 2008 stan - 
dard for floating point arithmetic . In one embodiment , the 
cores 550 include 64 single - precision ( 32 - bit ) floating point 
cores , 64 integer cores , 32 double - precision ( 64 - bit ) floating 
point cores , and 8 tensor cores . 
[ 0108 ] Tensor cores configured to perform matrix opera 
tions , and , in one embodiment , one or more tensor cores are 
included in the cores 550 . In particular , the tensor cores are 
configured to perform deep learning matrix arithmetic , such 
as convolution operations for neural network training and 
inferencing . In one embodiment , each tensor core operates 
on a 4x4 matrix and performs a matrix multiply and accu 
mulate operation D = AXB + C , where A , B , C , and D are 4x4 
matrices . 
[ 0109 . In one embodiment , the matrix multiply inputs A 
and B are 16 - bit floating point matrices , while the accumu 
lation matrices C and D may be 16 - bit floating point or 
32 - bit floating point matrices . Tensor Cores operate on 
16 - bit floating point input data with 32 - bit floating point 
accumulation . The 16 - bit floating point multiply requires 64 
operations and results in a full precision product that is then 
accumulated using 32 - bit floating point addition with the 
other intermediate products for a 4x4x4 matrix multiply . In 
practice , Tensor Cores are used to perform much larger 
two - dimensional or higher dimensional matrix operations , 
built up from these smaller elements . An API , such as 
CUDA 9 C + + API , exposes specialized matrix load , matrix 
multiply and accumulate , and matrix store operations to 
efficiently use Tensor Cores from a CUDA - C + + program . At 
the CUDA level , the warp - level interface assumes 16x16 
size matrices spanning all 32 threads of the warp . 
[ 0110 ] Each SM 440 also comprises M SFUS 552 that 
perform special functions ( e . g . , attribute evaluation , recip 
rocal square root , and the like ) . In one embodiment , the 
SFUS 552 may include a tree traversal unit configured to 
traverse a hierarchical tree data structure . In one embodi 
ment , the SFUS 552 may include texture unit configured to 
perform texture map filtering operations . In one embodi 
ment , the texture units are configured to load texture maps 
( e . g . , a 2D array of texels ) from the memory 304 and sample 
the texture maps to produce sampled texture values for use 
in shader programs executed by the SM 440 . In one embodi 
ment , the texture maps are stored in the shared memory / L1 
cache 470 . The texture units implement texture operations 
such as filtering operations using mip - maps ( i . e . , texture 
maps of varying levels of detail ) . In one embodiment , each 
SM 340 includes two texture units . 
[ 0111 ] Each SM 440 also comprises N LSUS 554 that 
implement load and store operations between the shared 
memory / L1 cache 570 and the register file 520 . Each SM 
440 includes an interconnect network 580 that connects each 
of the functional units to the register file 520 and the LSU 
554 to the register file 520 , shared memory / L1 cache 570 . In 
one embodiment , the interconnect network 580 is a crossbar 
that can be configured to connect any of the functional units 
to any of the registers in the register file 520 and connect the 
LSUs 554 to the register file and memory locations in shared 
memory / L1 cache 570 . 
[ 0112 ] The shared memory / L1 cache 570 is an array of 
on - chip memory that allows for data storage and commu 
nication between the SM 440 and the primitive engine 435 
and between threads in the SM 440 . In one embodiment , the 
shared memory / L1 cache 570 comprises 128 KB of storage 

capacity and is in the path from the SM 440 to the partition 
unit 380 . The shared memory / L1 cache 570 can be used to 
cache reads and writes . One or more of the shared memory / 
L1 cache 570 , L2 cache 460 , and memory 304 are backing 
stores . 
[ 0113 ] Combining data cache and shared memory func 
tionality into a single memory block provides the best 
overall performance for both types of memory accesses . The 
capacity is usable as a cache by programs that do not use 
shared memory . For example , if shared memory is config 
ured to use half of the capacity , texture and load / store 
operations can use the remaining capacity . Integration 
within the shared memory / L1 cache 570 enables the shared 
memory / L1 cache 570 to function as a high - throughput 
conduit for streaming data while simultaneously providing 
high - bandwidth and low - latency access to frequently reused 
data . 
[ 0114 ] When configured for general purpose parallel com 
putation , a simpler configuration can be used compared with 
graphics processing . Specifically , the fixed function graphics 
processing units shown in FIG . 3 , are bypassed , creating a 
much simpler programming model . In the general purpose 
parallel computation configuration , the work distribution 
unit 325 assigns and distributes blocks of threads directly to 
the DPCs 420 . The threads in a block execute the same 
program , using a unique thread ID in the calculation to 
ensure each thread generates unique results , using the SM 
440 to execute the program and perform calculations , shared 
memory / L1 cache 570 to communicate between threads , and 
the LSU 554 to read and write global memory through the 
shared memory / L1 cache 570 and the memory partition unit 
380 . When configured for general purpose parallel compu 
tation , the SM 440 can also write commands that the 
scheduler unit 320 can use to launch new work on the DPCs 
420 . 
[ 0115 ] The PPU 300 may be included in a desktop com 
puter , a laptop computer , a tablet computer , servers , super 
computers , a smart - phone ( e . g . , a wireless , hand - held 
device ) , personal digital assistant ( PDA ) , a digital camera , a 
vehicle , a head mounted display , a hand - held electronic 
device , and the like . In one embodiment , the PPU 300 is 
embodied on a single semiconductor substrate . In another 
embodiment , the PPU 300 is included in a system - on - a - chip 
( SoC ) along with one or more other devices such as addi 
tional PPUS 300 , the memory 204 , a reduced instruction set 
computer ( RISC ) CPU , a memory management unit 
( MMU ) , a digital - to - analog converter ( DAC ) , and the like . 
[ 0116 ] In one embodiment , the PPU 300 may be included 
on a graphics card that includes one or more memory 
devices 304 . The graphics card may be configured to inter 
face with a PCIe slot on a motherboard of a desktop 
computer . In yet another embodiment , the PPU 300 may be 
an integrated graphics processing unit ( iGPU ) or parallel 
processor included in the chipset of the motherboard . 

Exemplary Computing System 
[ 0117 ] Systems with multiple GPUs and CPUs are used in 
a variety of industries as developers expose and leverage 
more parallelism in applications such as artificial intelli 
gence computing . High - performance GPU - accelerated sys 
tems with tens to many thousands of compute nodes are 
deployed in data centers , research facilities , and supercom 
puters to solve ever larger problems . As the number of 
processing devices within the high - performance systems 
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increases , the communication and data transfer mechanisms 
need to scale to support the increased 
[ 0118 ] FIG . 5B is a conceptual diagram of a processing 
system 500 implemented using the PPU 300 of FIG . 3 , in 
accordance with one embodiment . The processing system 
500 may be configured to implement the method 110 shown 
in FIG . 1A , the method 120 shown in FIG . 1B , the method 
280 shown in FIG . 2H , or any combination thereof . The 
processing system 500 includes a CPU 530 , switch 510 , and 
multiple PPUS 300 each and respective memories 304 . The 
NVLink 310 provides a high - speed communication links 
between each of the PPUS 300 . The switch 510 interfaces 
between the interconnect 302 and the CPU 530 . The PPUS 
300 , memories 304 , and NVLinks 310 may be situated on a 
single semiconductor platform to form a parallel processing 
module 525 . 
[ 0119 ] In the context of the present description , a single 
semiconductor platform may refer to a sole unitary semi 
conductor - based integrated circuit fabricated on a die or 
chip . It should be noted that the term single semiconductor 
platform may also refer to multi - chip modules with 
increased connectivity which simulate on - chip operation 
and make substantial improvements over utilizing a conven 
tional bus implementation . Of course , the various circuits or 
devices may also be situated separately or in various com 
binations of semiconductor platforms per the desires of the 
user . Alternately , the parallel processing module 525 may be 
implemented as a circuit board substrate and each of the 
PPUS 300 and / or memories 304 may be packaged devices . 
In one embodiment , the CPU 530 , switch 510 , and the 
parallel processing module 525 are situated on a single 
semiconductor platform . 
[ 0120 ] In one embodiment , the signaling rate of each 
NVLink 310 is 20 to 25 Gigabits / second and each PPU 300 
includes six NVLink 310 interfaces ( as shown in FIG . 5B , 
five NVLink 310 interfaces are included for each PPU 300 ) . 
Each NVLink 310 provides a data transfer rate of 25 
Gigabytes / second in each direction , with six links providing 
300 Gigabytes / second . The NVLinks 310 can be used exclu 
sively for PPU - to - PPU communication as shown in FIG . 5B , 
or some combination of PPU - to - PPU and PPU - to - CPU , 
when the CPU 530 also includes one or more NVLink 310 
interfaces . 
[ 0121 ] In one embodiment , the NVLink 310 allows direct 
load / store / atomic access from the CPU 530 to each PPU ' s 
300 memory 304 . In one embodiment , the NVLink 310 
supports coherency operations , allowing data read from the 
memories 304 to be stored in the cache hierarchy of the CPU 
530 , reducing cache access latency for the CPU 530 . In one 
embodiment , the NVLink 310 includes support for Address 
Translation Services ( ATS ) , allowing the PPU 300 to 
directly access page tables within the CPU 530 . One or more 
of the NVLinks 310 may also be configured to operate in a 
low - power mode . 
[ 0122 ] FIG . 5C illustrates an exemplary system 565 in 
which the various architecture and / or functionality of the 
various previous embodiments may be implemented . The 
exemplary system 565 may be configured to implement the 
method 110 shown in FIG . 1A , the method 120 shown in 
FIG . 1B , the method 280 shown in FIG . 2H , or any com 
bination thereof . 
[ 0123 ] As shown , a system 565 is provided including at 
least one central processing unit 530 that is connected to a 
communication bus 575 . The communication bus 575 may 

be implemented using any suitable protocol , such as PCI 
( Peripheral Component Interconnect ) , PCI - Express , AGP 
( Accelerated Graphics Port ) , HyperTransport , or any other 
bus or point - to - point communication protocol ( s ) . The sys 
tem 565 also includes a main memory 540 . Control logic 
( software ) and data are stored in the main memory 540 
which may take the form of random access memory ( RAM ) . 
[ 0124 ] The system 565 also includes input devices 560 , 
the parallel processing system 525 , and display devices 545 , 
i . e . a conventional CRT ( cathode ray tube ) , LCD ( liquid 
crystal display ) , LED ( light emitting diode ) , plasma display 
or the like . User input may be received from the input 
devices 560 , e . g . , keyboard , mouse , touchpad , microphone , 
and the like . Each of the foregoing modules and / or devices 
may even be situated on a single semiconductor platform to 
form the system 565 . Alternately , the various modules may 
also be situated separately or in various combinations of 
semiconductor platforms per the desires of the user . 
[ 0125 ] Further , the system 565 may be coupled to a 
network ( e . g . , a telecommunications network , local area 
network ( LAN ) , wireless network , wide area network 
( WAN ) such as the Internet , peer - to - peer network , cable 
network , or the like ) through a network interface 535 for 
communication purposes . 
[ 0126 ] The system 565 may also include a secondary 
storage ( not shown ) . The secondary storage 610 includes , 
for example , a hard disk drive and / or a removable storage 
drive , representing a floppy disk drive , a magnetic tape 
drive , a compact disk drive , digital versatile disk ( DVD ) 
drive , recording device , universal serial bus ( USB ) flash 
memory . The removable storage drive reads from and / or 
writes to a removable storage unit in a well - known manner . 
T0127 Computer programs , or computer control logic 
algorithms , may be stored in the main memory 540 and / or 
the secondary storage . Such computer programs , when 
executed , enable the system 565 to perform various func 
tions . The memory 540 , the storage , and / or any other storage 
are possible examples of computer - readable media . 
[ 0128 ] The architecture and / or functionality of the various 
previous figures may be implemented in the context of a 
general computer system , a circuit board system , a game 
console system dedicated for entertainment purposes , an 
application - specific system , and / or any other desired sys 
tem . For example , the system 565 may take the form of a 
desktop computer , a laptop computer , a tablet computer , 
servers , supercomputers , a smart - phone ( e . g . , a wireless , 
hand - held device ) , personal digital assistant ( PDA ) , a digital 
camera , a vehicle , a head mounted display , a hand - held 
electronic device , a mobile phone device , a television , 
workstation , game consoles , embedded system , and / or any 
other type of logic . 
[ 0129 ] While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of a preferred embodiment should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following claims and their equivalents . 

Graphics Processing Pipeline 
[ 0130 ] In one embodiment , the PPU 300 comprises a 
graphics processing unit ( GPU ) . The PPU 300 is configured 
to receive commands that specify shader programs for 
processing graphics data . Graphics data may be defined as a 
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set of primitives such as points , lines , triangles , quads , 
triangle strips , and the like . Typically , a primitive includes 
data that specifies a number of vertices for the primitive 
( e . g . , in a model - space coordinate system ) as well as attri 
butes associated with each vertex of the primitive . The PPU 
300 can be configured to process the graphics primitives to 
generate a frame buffer ( i . e . , pixel data for each of the pixels 
of the display ) . In one embodiment , phase and amplitude 
samples for pixels of an SLM ( e . g . , SLM 263 in FIG . 2D ) 
are rendered by the GPU , according to the techniques 
discussed herein . In particular , 3D scene information com 
prising geometric , vertex , and / or fragment primitives may 
be rendered by the GPU to generate fragments associated 
with different scene objects . View - dependent effects may be 
performed using the 3D rendering pipeline z - buffer . In one 
embodiment , the fragments may be generated in parallel by 
one or more instances of PPU 300 within the GPU . Fur 
thermore , an array of elemental images may be rendered 
according to computed virtual camera views for the 3D 
scene , and the elemental images are used to then compute 
corresponding hogels . A holographic light field frame com 
prising an array of hogels is presented to a viewer by the 
SLM . A time sequence of light field frames rendered by the 
GPU and displayed by the SLM may provide the viewer 
with an experience of seeing actual 3D objects in the 3D 
scene , with appropriate view - dependent occlusion , continu 
ous focus cues , and real - time response based on specific 
application scene information ( e . g . , model data and virtual 
camera position data ) . 
[ 0131 ] An application writes model data for a scene ( i . e . , 
a collection of vertices and attributes ) to a memory such as 
a system memory or memory 304 . The model data defines 
each of the objects that may be visible on a display . The 
application then makes an API call to the driver kernel that 
requests the model data to be rendered and displayed . The 
driver kernel reads the model data and writes commands to 
the one or more streams to perform operations to process the 
model data . The commands may reference different shader 
programs to be implemented on the SMs 440 of the PPU 300 
including one or more of a vertex shader , hull shader , 
domain shader , geometry shader , and a pixel shader . For 
example , one or more of the SMS 440 may be configured to 
execute a vertex shader program that processes a number of 
vertices defined by the model data . In one embodiment , the 
different SMS 440 may be configured to execute different 
shader programs concurrently . For example , a first subset of 
SMS 440 may be configured to execute a vertex shader 
program while a second subset of SMS 440 may be config 
ured to execute a pixel shader program . The first subset of 
SMS 440 processes vertex data to produce processed vertex 
data and writes the processed vertex data to the L2 cache 460 
and / or the memory 304 . After the processed vertex data is 
rasterized ( i . e . , transformed from three - dimensional data 
into two - dimensional data in screen space ) to produce 
fragment data , the second subset of SMS 440 executes a 
pixel shader to produce processed fragment data , which is 
then blended with other processed fragment data and written 
to the frame buffer in memory 304 . The vertex shader 
program and pixel shader program may execute concur 
rently , processing different data from the same scene in a 
pipelined fashion until all of the model data for the scene has 
been rendered to the frame buffer . Then , the contents of the 
frame buffer are transmitted to a display controller for 
display on a display device . 

[ 0132 ] FIG . 6 is a conceptual diagram of a graphics 
processing pipeline 600 implemented by the PPU 300 of 
FIG . 3 , in accordance with one embodiment . The graphics 
processing pipeline 600 is an abstract flow diagram of the 
processing steps implemented to generate 2D computer 
generated images from 3D geometry data . As is well - known , 
pipeline architectures may perform long latency operations 
more efficiently by splitting up the operation into a plurality 
of stages , where the output of each stage is coupled to the 
input of the next successive stage . Thus , the graphics pro 
cessing pipeline 600 receives input data 601 that is trans 
mitted from one stage to the next stage of the graphics 
processing pipeline 600 to generate output data 602 . In one 
embodiment , the graphics processing pipeline 600 may 
represent a graphics processing pipeline defined by the 
OpenGL® API . As an option , the graphics processing pipe 
line 600 may be implemented in the context of the func 
tionality and architecture of the previous Figures and / or any 
subsequent Figure ( s ) . 
[ 0133 ] As shown in FIG . 6 , the graphics processing pipe 
line 600 comprises a pipeline architecture that includes a 
number of stages . The stages include , but are not limited to , 
a data assembly stage 610 , a vertex shading stage 620 , a 
primitive assembly stage 630 , a geometry shading stage 640 , 
a viewport scale , cull , and clip ( VSCC ) stage 650 , a raster 
ization stage 660 , a fragment shading stage 670 , and a raster 
operations stage 680 . In one embodiment , the input data 601 
comprises commands that configure the processing units to 
implement the stages of the graphics processing pipeline 600 
and geometric primitives ( e . g . , points , lines , triangles , 
quads , triangle strips or fans , etc . ) to be processed by the 
stages . The output data 602 may comprise pixel data ( i . e . , 
color data ) that is copied into a frame buffer or other type of 
surface data structure in a memory . 
[ 0134 ] The data assembly stage 610 receives the input data 
601 that specifies vertex data for high - order surfaces , primi 
tives , or the like . The data assembly stage 610 collects the 
vertex data in a temporary storage or queue , such as by 
receiving a command from the host processor that includes 
a pointer to a buffer in memory and reading the vertex data 
from the buffer . The vertex data is then transmitted to the 
vertex shading stage 620 for processing . 
[ 0135 ] The vertex shading stage 620 processes vertex data 
by performing a set of operations ( i . e . , a vertex shader or a 
program ) once for each of the vertices . Vertices may be , e . g . , 
specified as a 4 - coordinate vector ( i . e . , < x , y , z , w > ) asso 
ciated with one or more vertex attributes ( e . g . , color , texture 
coordinates , surface normal , etc . ) . The vertex shading stage 
620 may manipulate individual vertex attributes such as 
position , color , texture coordinates , and the like . In other 
words , the vertex shading stage 620 performs operations on 
the vertex coordinates or other vertex attributes associated 
with a vertex . Such operations commonly including lighting 
operations ( i . e . , modifying color attributes for a vertex ) and 
transformation operations ( i . e . , modifying the coordinate 
space for a vertex ) . For example , vertices may be specified 
using coordinates in an object - coordinate space , which are 
transformed by multiplying the coordinates by a matrix that 
translates the coordinates from the object - coordinate space 
into a world space or a normalized - device - coordinate ( NCD ) 
space . The vertex shading stage 620 generates transformed 
vertex data that is transmitted to the primitive assembly 
stage 630 . 
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[ 0136 ] The primitive assembly stage 630 collects vertices 
output by the vertex shading stage 620 and groups the 
vertices into geometric primitives for processing by the 
geometry shading stage 640 . For example , the primitive 
assembly stage 630 may be configured to group every three 
consecutive vertices as a geometric primitive ( i . e . , a triangle ) 
for transmission to the geometry shading stage 640 . In some 
embodiments , specific vertices may be reused for consecu 
tive geometric primitives ( e . g . , two consecutive triangles in 
a triangle strip may share two vertices ) . The primitive 
assembly stage 630 transmits geometric primitives ( i . e . , a 
collection of associated vertices ) to the geometry shading 
stage 640 . 
[ 0137 ] The geometry shading stage 640 processes geo 
metric primitives by performing a set of operations ( i . e . , a 
geometry shader or program ) on the geometric primitives . 
Tessellation operations may generate one or more geometric 
primitives from each geometric primitive . In other words , 
the geometry shading stage 640 may subdivide each geo 
metric primitive into a finer mesh of two or more geometric 
primitives for processing by the rest of the graphics pro 
cessing pipeline 600 . The geometry shading stage 640 
transmits geometric primitives to the viewport SCC stage 
650 . 
[ 0138 ] In one embodiment , the graphics processing pipe 
line 600 may operate within a streaming multiprocessor and 
the vertex shading stage 620 , the primitive assembly stage 
630 , the geometry shading stage 640 , the fragment shading 
stage 670 , and / or hardware / software associated therewith , 
may sequentially perform processing operations . Once the 
sequential processing operations are complete , in one 
embodiment , the viewport SCC stage 650 may utilize the 
data . In one embodiment , primitive data processed by one or 
more of the stages in the graphics processing pipeline 600 
may be written to a cache ( e . g . L1 cache , a vertex cache , 
etc . ) . In this case , in one embodiment , the viewport SCC 
stage 650 may access the data in the cache . In one embodi 
ment , the viewport SCC stage 650 and the rasterization stage 
660 are implemented as fixed function circuitry . 
[ 0139 ] The viewport SCC stage 650 performs viewport 
scaling , culling , and clipping of the geometric primitives . 
Each surface being rendered to is associated with an abstract 
camera position . The camera position represents a location 
of a viewer looking at the scene and defines a viewing 
frustum that encloses the objects of the scene . The viewing 
frustum may include a viewing plane , a rear plane , and four 
clipping planes . Any geometric primitive entirely outside of 
the viewing frustum may be culled ( i . e . , discarded ) because 
the geometric primitive will not contribute to the final 
rendered scene . Any geometric primitive that is partially 
inside the viewing frustum and partially outside the viewing 
frustum may be clipped ( i . e . , transformed into a new geo 
metric primitive that is enclosed within the viewing frustum . 
Furthermore , geometric primitives may each be scaled based 
on a depth of the viewing frustum . All potentially visible 
geometric primitives are then transmitted to the rasterization 
stage 660 . 
[ 0140 ] The rasterization stage 660 converts the 3D geo 
metric primitives into 2D fragments ( e . g . capable of being 
utilized for display , etc . ) . The rasterization stage 660 may be 
configured to utilize the vertices of the geometric primitives 
to setup a set of plane equations from which various attri 
butes can be interpolated . The rasterization stage 660 may 
also compute a coverage mask for a plurality of pixels that 

indicates whether one or more sample locations for the pixel 
intercept the geometric primitive . In one embodiment , 
z - testing may also be performed to determine if the geo 
metric primitive is occluded by other geometric primitives 
that have already been rasterized . The rasterization stage 660 
generates fragment data ( i . e . , interpolated vertex attributes 
associated with a particular sample location for each covered 
pixel ) that are transmitted to the fragment shading stage 670 . 
[ 0141 ] The fragment shading stage 670 processes frag 
ment data by performing a set of operations ( i . e . , a fragment 
shader or a program ) on each of the fragments . The fragment 
shading stage 670 may generate pixel data ( i . e . , color values ) 
for the fragment such as by performing lighting operations 
or sampling texture maps using interpolated texture coordi 
nates for the fragment . The fragment shading stage 670 
generates pixel data that is transmitted to the raster opera 
tions stage 680 . 
0142 ] The raster operations stage 680 may perform vari 
ous operations on the pixel data such as performing alpha 
tests , stencil tests , and blending the pixel data with other 
pixel data corresponding to other fragments associated with 
the pixel . When the raster operations stage 680 has finished 
processing the pixel data ( i . e . , the output data 602 ) , the pixel 
data may be written to a render target such as a frame buffer , 
a color buffer , or the like . 
101431 It will be appreciated that one or more additional 
stages may be included in the graphics processing pipeline 
600 in addition to or in lieu of one or more of the stages 
described above . Various implementations of the abstract 
graphics processing pipeline may implement different 
stages . Furthermore , one or more of the stages described 
above may be excluded from the graphics processing pipe 
line in some embodiments ( such as the geometry shading 
stage 640 ) . Other types of graphics processing pipelines are 
contemplated as being within the scope of the present 
disclosure . Furthermore , any of the stages of the graphics 
processing pipeline 600 may be implemented by one or 
more dedicated hardware units within a graphics processor 
such as PPU 200 . Other stages of the graphics processing 
pipeline 600 may be implemented by programmable hard 
ware units such as the SM 440 of the PPU 300 . 
[ 0144 ] The graphics processing pipeline 600 may be 
implemented via an application executed by a host proces 
sor , such as a CPU . In one embodiment , a device driver may 
implement an application programming interface ( API ) that 
defines various functions that can be utilized by an appli 
cation in order to generate graphical data for display . The 
device driver is a software program that includes a plurality 
of instructions that control the operation of the PPU 300 . The 
API provides an abstraction for a programmer that lets a 
programmer utilize specialized graphics hardware , such as 
the PPU 300 , to generate the graphical data without requir 
ing the programmer to utilize the specific instruction set for 
the PPU 300 . The application may include an API call that 
is routed to the device driver for the PPU 300 . The device 
driver interprets the API call and performs various opera 
tions to respond to the API call . In some instances , the 
device driver may perform operations by executing instruc 
tions on the CPU . In other instances , the device driver may 
perform operations , at least in part , by launching operations 
on the PPU 300 utilizing an input / output interface between 
the CPU and the PPU 300 . In one embodiment , the device 
driver is configured to implement the graphics processing 
pipeline 600 utilizing the hardware of the PPU 300 . 
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10145 ] Various programs may be executed within the PPU 
300 in order to implement the various stages of the graphics 
processing pipeline 600 . For example , the device driver may 
launch a kernel on the PPU 300 to perform the vertex 
shading stage 620 on one SM 440 ( or multiple SMs 440 ) . 
The device driver ( or the initial kernel executed by the PPU 
400 ) may also launch other kernels on the PPU 400 to 
perform other stages of the graphics processing pipeline 
600 , such as the geometry shading stage 640 and the 
fragment shading stage 670 . In addition , some of the stages 
of the graphics processing pipeline 600 may be implemented 
on fixed unit hardware such as a rasterizer or a data 
assembler implemented within the PPU 400 . It will be 
appreciated that results from one kernel may be processed 
by one or more intervening fixed function hardware units 
before being processed by a subsequent kernel on an SM 
440 . 
10146 ] . While various embodiments have been described 
above , it should be understood that they have been presented 
by way of example only , and not limitation . Thus , the 
breadth and scope of the present application should not be 
limited by any of the above - described exemplary embodi 
ments , but should be defined only in accordance with the 
following and later - submitted claims and their equivalents . 
What is claimed is : 
1 . A method for rendering a light field , comprising : 
projecting rays from a viewpoint positioned at a first side 
of a spatial light modulator ( SLM ) to a clipping plane 
positioned at an opposing side of the SLM to form an 
elemental view frustum within a three - dimensional 
scene , wherein the SLM is tiled with an array of 
non - overlapping elemental regions and a top edge and 
a bottom edge of a first elemental region of the non 
overlapping elemental regions are intersected by the 
rays to form the elemental view frustum ; and 

rendering objects within the elemental view frustum to 
generate components of a first elemental image for the 
first elemental region , wherein the light field includes 
the first elemental image and additional elemental 
images corresponding to the array of elemental regions 
and each one of the additional elemental images is 
rendered using an additional elemental view frustum . 

2 . The method of claim 1 , wherein the rendering com 
prises , for each pixel of the SLM within the first elemental 
region : 

projecting second rays from the pixel of the SLM to the 
clipping plane to define a pixel diffraction cone having 
a base of a first width ; and 

removing a portion of the components of the first elemen 
tal image that are outside of the pixel diffraction cone . 

3 . The method of claim 1 , wherein the components 
include color and position in three - dimensional space . 

4 . The method of claim 1 , wherein the components 
include phase and amplitude . 

5 . The method of claim 4 , further comprising computing 
the phase and amplitude as a product of an object wave and 
a conjugate reference wave corresponding to a plane wave 
illumination source . 

6 . The method of claim 4 , further comprising computing 
the phase and amplitude as a product of an object wave and 
a conjugate reference wave corresponding to a spherical 
wave illumination source . 

7 . A method for rendering a light field , comprising : 
computing a lateral offset between a view position and a 

spatial light modulator ( SLM ) based on a size of the 
SLM and a width of a holographic element , wherein an 
array of holographic elements covers a surface of the 
SLM ; and 

rendering a three - dimensional scene from the view posi 
tion to produce an array of elemental images . 

8 . The method of claim 7 , wherein for at least one 
elemental image of the array of elemental images , rendering 
comprises : computing a color array and a depth array 
corresponding to the at least one elemental image . 

9 . The method of claim 8 , further comprising : calculating 
a phase value for a pixel of the SLM based on at least a depth 
value from the depth array . 

10 . The method of claim 8 , further comprising : calculat 
ing an amplitude value for a pixel of the SLM based on at 
least a corresponding color value from the color array . 

11 . The method of claim 7 , further comprising computing 
a phase and an amplitude for a pixel of the SLM as a product 
of an object wave and a conjugate reference wave corre 
sponding to a spherical wave illumination source . 

12 . The method of claim 7 , wherein rendering comprises 
projecting rays from the pixel of the SLM to the clipping 
plane to define a pixel diffraction cone having a base of a 
width . 

13 . The method of claim 12 , further comprising : remov 
ing a portion of the components of the first elemental image 
that are outside of the pixel diffraction cone . 

14 . A system for rendering a light field , comprising : 
a spatial light modulator ( SLM ) ; and 
a processing unit coupled to the SLM and configured to : 

project rays from a viewpoint positioned at a first side 
of the SLM to a clipping plane positioned at an 
opposing side of the SLM to form an elemental view 
frustum within a three - dimensional scene , wherein 
the SLM is tiled with an array of non - overlapping 
elemental regions and a top edge and a bottom edge 
of a first elemental region of the non - overlapping 
elemental regions are intersected by the rays to form 
the elemental view frustum ; and 

render objects within the elemental view frustum to 
generate components of a first elemental image for 
the first elemental region , wherein the light field 
includes the first elemental image and additional 
elemental images corresponding to the array of 
elemental regions and each one of the additional 
elemental images is rendered using an additional 
elemental view frustum . 

15 . The system of claim 14 , wherein the rendering com 
prises , for each pixel of the SLM within the first elemental 
region : 

projecting second rays from the pixel of the SLM to the 
clipping plane to define a pixel diffraction cone having 
a base of a first width ; and 

removing a portion of the components of the first elemen 
tal image that are outside of the pixel diffraction cone . 

16 . The system of claim 14 , wherein the components 
include color and position in three - dimensional space . 

17 . The system of claim 14 , wherein the components 
include phase and amplitude . 



US 2018 / 0373200 A1 Dec . 27 , 2018 

18 . The system of claim 17 , further comprising computing 
the phase and amplitude as a product of an object wave and 
a conjugate reference wave corresponding to a plane wave 
illumination source . 

19 . The system of claim 17 , further comprising computing 
the phase and amplitude as a product of an object wave and 
a conjugate reference wave corresponding to a spherical 
wave illumination source . 

20 . The system of claim 14 , wherein the processing unit 
comprises a graphics processing unit . 

* * * * * 


