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1
IMAGE RENDERING METHOD AND
APPARATUS

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to an image rendering
method and apparatus.

Description of the Prior Art

The “background” description provided herein is for the
purpose of generally presenting the context of the disclo-
sure. Work of the presently named inventors, to the extent it
is described in this background section, as well as aspects of
the description which may not otherwise qualify as prior art
at the time of filing, are neither expressly or impliedly
admitted as prior art against the present invention.

Ray tracing is a rendering process in which paths of light
are traced within a virtual scene. The interactions of each ray
with objects or surfaces within the scene are then simulated.
To achieve a degree of realism, typically this simulation
takes account of material properties of these objects or
surfaces, such as their colour and reflectivity.

As a result, ray tracing is a computationally expensive
process. Furthermore, that cost varies from image frame to
image frame, depending on what scene is being illuminated,
by what lights, and from what viewpoint.

This makes maintaining a preferred frame rate for ren-
dering such images difficult to achieve; for an average
computational cost corresponding to an average image
completion time (i.e. a frame rate), and a given variance
around that average caused by ray tracing, then either the
average image quality has to be set low enough that the
variance only rarely impacts the frame rate, or if the average
image quality is set close to a maximum for the preferred
frame rate, then the consistency of that frame rate must be
sacrificed when varying ray tracing demands fluctuate above
the average.

Neither outcome is desirable, but cannot easily be avoided
whilst the computational burden of the ray tracing process is
data-driven and unpredictable.

The present invention seeks to address or mitigate this
problem.

SUMMARY OF THE INVENTION

Various aspects and features of the present invention are
defined in the appended claims and within the text of the
accompanying description and include at least:

in a first instance, an image rendering method in accor-

dance with claim 1; and

in another instance, an entertainment device in accor-

dance with claim 15.

It is to be understood that both the foregoing general
summary of the invention and the following detailed
description are exemplary, but are not restrictive, of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the disclosure and many
of the attendant advantages thereof will be readily obtained
as the same becomes better understood by reference to the
following detailed description when considered in connec-
tion with the accompanying drawings, wherein:
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2

FIG. 1 is a schematic diagram of an entertainment device
in accordance with embodiments of the present description;

FIG. 2 is an illustration of a ray-traced object in accor-
dance with embodiments of the present description;

FIG. 3 is a schematic diagram of components contributing
to the ray-traced object in accordance with embodiments of
the present description;

FIG. 4 is a schematic diagram of distribution functions
associated with respective components in accordance with
embodiments of the present description;

FIG. 5 is a schematic diagram of a scattering distribution
in accordance with embodiments of the present description;

FIG. 6 is a schematic diagram of a training scheme for a
machine learning system in accordance with embodiments
of the present description;

FIG. 7 is a schematic diagram of a render path for a
rendered image in accordance with embodiments of the
present description;

FIG. 8A is a schematic diagram of a machine learning
system in accordance with embodiments of the present
description;

FIG. 8B is a schematic diagram of part of a machine
learning system in accordance with embodiments of the
present description;

FIG. 9 is a flow diagram of an image rendering method in
accordance with embodiments of the present description;

FIG. 10 is a flow diagram of an image rendering method
in accordance with embodiments of the present description;

FIG. 11 is a schematic diagram of a method of training in
accordance with embodiments of the present description.

DESCRIPTION OF THE EMBODIMENTS

An image rendering method and apparatus are disclosed.
In the following description, a number of specific details are
presented in order to provide a thorough understanding of
the embodiments of the present invention. It will be appar-
ent, however, to a person skilled in the art that these specific
details need not be employed to practice the present inven-
tion. Conversely, specific details known to the person skilled
in the art are omitted for the purposes of clarity where
appropriate.

Embodiments of the present description seek to address or
mitigate the above problem by using a machine learning
system that learns the relationship between pixel surface
properties and rendered pixels for a given object or scene; by
using such a machine learning system, it is then possible to
approximate a ray traced render of the object or scene based
on a relatively consistent computational budget (that of
running the machine learning system).

Different machine learning systems can be trained for
different scenes, locations or parts thereof, or for different
objects or materials for use within one or more scenes, as
explained later herein.

The machine learning systems are comparatively small
(typically in the order of 100 KB to 1 MB) and so for the
purposes of being run by a GPU (30), may be pulled into
memory and subsequently discarded like a texture of the
scene. The systems can be run by shaders of the GPU. It will
also be appreciated that in principle the machine learning
systems could alternatively or in addition by run by a CPU
(20) or by a general or specialist co-processor, such as a
neural network processor or an ASIC.

Referring now to the drawings, wherein like reference
numerals designate identical or corresponding parts
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throughout the several views, FIGS. 2-7 illustrate the prob-
lem space within which the machine learning system is
trained.

FIG. 2 is a high-quality ray-traced render 200 of an
example object or scene, in this case a car on a dais.

FIG. 3 illustrates the different contributing components
behind this render. Firstly, a diffuse lighting component
200-D typically captures the matt colours of the surface and
the shading caused by the interaction of light and shape,
whilst secondly a specular lighting component 200-S cap-
tures the reflectivity of the surface, resulting in glints and
highlights. Optionally one or more additional components
can be included, such as a sheen or ‘coat’ 200-C, which is
a second outer surface that may comprise additional gloss or
patterning. Variants of such a coat may allow for partial
transparency and/or partial diffusion in a manner similar to
skin or fabric, for example. Each of these components can be
conventionally generated using a respective ray tracing
process.

These components sum additively to form the overall
image previously seen in FIG. 2. It will be appreciated that
whilst typically 2 or 3 such components will contribute to a
render, in come circumstances there may be fewer (for
example if just a diffuse component is desired) or more (for
example when the object is also translucent and so requires
a transmissive component).

FIG. 4 next includes the material properties of the object
that give rise to the above contributing components of the
image.

The material property is expressed as a so-called bidirec-
tional scattering distribution function (BSDF) or bidirec-
tional reflectance distribution function (BRDF).

A BRDF defines how light is reflected at an opaque
surface, whilst similarly a BSDF defines the probability that
a ray of light will be reflected or scattered in a particular
direction. Hence a BRDF or BSDF is a function that
describes the lighting properties of a surface (excluding the
incoming/outgoing radiance itself). Other functions may
also be used as appropriate, such as a bidirectional trans-
mittance distribution function (BTDF), defining how light
passes through a material.

Referring also to FIG. 5, in a typical ray tracing applica-
tion, for a set of rays (e.g. from a compact light source) the
application computes the incoming radiance (itself either
direct or previously reflected) onto a point on the model
having a particular BSDF, BRDF, and/or BTDF. The incom-
ing radiance is combined (e.g. multiplied) with the BSDF,
BRDF, or BTDF for a particular contributing component
response, and the result is added to the pixel value at that
point on the model. As shown in FIG. 5, a typical scattering
pattern for ray path m, in a BSDF will have a bias towards
a mirror reflection direction ®,, but may scatter in any
direction. Accurately modelling such behaviour is one rea-
son ray tracing can be computationally expensive.

Using the colour information of the model at respective
points and the corresponding BSDF, BRDF and/or BTDF for
that point (i.e. for a particular material represented by a
given point), the behaviour of the rays for a given final
viewpoint can thus be calculated, with the ray reflectance or
scattering for example determining the realistic distribution
of glints and highlights on the surface of the vehicle.

Separate BSDFs, BRDFs, or BTDFs may be used for each
contributing component; hence as a non-limiting example a
BSDF may be used for the diffuse component, a BRDF for
the specular component and in this example also a for the
coat component (though a BTDF could also be used for such
a coat component). It will be appreciated that either a BSDF,
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4

BRDF, or BTDF may be used as appropriate, and so
hereinafter a reference to a BSDF encompasses a reference
to a BRDF or a BTDF as appropriate, unless otherwise
stated.

As shown in FIG. 4, performing ray tracing using the
colour properties of the object and diffuse material proper-
ties of a BSDF (200-BSDF-D) results in the diffuse image
component 200-D. Similarly using the specular or reflective
material properties of a BSDF (200-BSDF-S) results in the
specular image component 200-S. Likewise the material
properties of a BSDF (200-BSDF-C), in this case typically
also specular, results in a coat image component 200-C.
Combining these components results in the final ray traced
image 200.

The problem however, as previously stated, is that calcu-
lating the reflected and scattered paths of rays as they
intersect with different surfaces having different BSDFs, and
summing the results for each pixel of a scene at a particular
viewpoint, is both computationally expensive and also
potentially highly variable.

Embodiments of the present description therefore seek to
replace the ray tracing step of FIG. 4 with something else
that has a more predictable computational load for a suitable
quality of final image.

Referring now also to FIG. 6, in embodiments of the
present description, a respective machine learning system is
provided for each contributing component of the image (e.g.
diffuse, specular, and optionally coat or any other contrib-
uting component).

The machine learning system is typically a neural net-
work, as described later herein, that is trained to learn a
transform between the BSDF (e.g. 200-BSDF-D) and the
ray-traced ground truth (e.g. 200-D) of the contributing
component of the image, for a plurality of images at different
viewpoints in the scene.

Put another way, if the ray traced image (or one of the
contributing components) is a combination of how lighting
plays over an object and the BSDF describing how that
object reacts to light, then by taking the ray traced image and
uncombining it with the BSDF, the result is a quality that
may be referred to as ‘radiance’ or ‘shade’, but more
generally describes how the light plays over the object (as
computed in aggregate by the ray tracing process).

If the machine learning system or neural network can
learn to predict this quality, then it can be combined again
with the BSDF to produce a predicted image approximating
the ray-traced image. The network may thus be referred to
as a neural precomputed light model or NPLM network.

More specifically, for a given position on a hypothetical
image of an object, and a direction of view, the machine
learning system or neural network must learn to output a
value that, when combined with the BSDF for that same
position/pixel, results in a pixel value similar to that which
would arise from raytracing the image at that pixel. Conse-
quently during training it generates an internal representa-
tion of the lighting conditions (e.g. due to point lights or a
skydome) and surface lighting properties implied from the
training images.

Hence in an example embodiment, an image may be
rasterised or otherwise generated at a given viewpoint,
which would fill the image with pixels to then be illumi-
nated. For each of these notional pixels there is a corre-
sponding 3D position in the scene for which the appropriate
‘radiance’ or shade' can be obtained using the NPLM net-
work.
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FIG. 6 shows a training environment for such a network,
and specifically as an example only, a network 600-D for the
diffuse contributing component.

The inputs to the network for the diffuse contributing
component are an (x,y,z) position 610 on the object or scene
(for example corresponding to a pixel in the image) and the
normal 620 of the object/scene at that point. The normal N
is used instead of the viewpoint direction because for the
diffuse contributing component, the illuminance can be
considered direction/viewpoint independent, and so the nor-
mal, as a known value, can be used for consistency. These
inputs are illustrated notionally in FIG. 6 using representa-
tive values of each for the car image in the present explana-
tory example.

Optionally additional inputs may be provided (not
shown), such as a roughness or matt-to-gloss scalar value
that may optionally be derived from the relevant BSDF.

The output of the NPLM network (as explained later
herein) is a learned quality of light or illuminance 630 for the
input position that, when combined 640 with the relevant
diffuse BSDF (200-BSDF-D) for the same position produces
a predicted pixel value for the (x,y) position in a predicted
image 650.

FIG. 6 illustrates that the per-pixel difference between the
predicted pixel and the ground truth pixel of a target
ray-traced diffuse component 200-D is used as the loss
function for training the network, but this is not necessary;
rather, the ground truth image can be uncombined with the
BSDF (i.e. by performing an inverse function) to produce an
proxy for how the ray traced light cumulatively affected the
object in the image for each (x,y) pixel, and this is the quality
that the network is training to learn.

Hence the error function for the network is based on the
difference between its single pixel (x,y) output value and the
corresponding single (x,y) pixel of the ground truth image
when uncombined from the corresponding BSDF for that
position.

Since the pixels of the ground truth image can be uncom-
bined from the corresponding BSDF for each position once
in advance, the network can be trained without needing to
combine its own output with any BSDF to generate an actual
predicted image pixel. This reduces the computational load
of training.

As noted above, the learned quality output by the trained
neural network captures how the light in the environment
plays over the object or scene as a function of the position
of surfaces within the scene and as a function of viewpoint.
As such it effectively generates an internal representation of
a light map for the scene and a surface response model. How
this occurs is discussed in more detail later herein.

Referring now to FIG. 7, in summary for each contribut-
ing component of the final output image, a machine learning
system is trained to perform a transform that is applied to the
BSDF local to the position on the object/scene for that
contributing component. The transform is a trained function,
based on the (x,y,z) position of points on the object/scene
and a direction value. As noted previously, depending on the
number of contributing components of the final image, there
may be any or one, two, three, four or possibly more
machine learning systems employed. The term ‘trained
function’ may be used hereafter to refer to a machine
learning system that has learned such a transform.

As noted for the diffuse component the direction value can
be assumed to equal the normal at a given point as the diffuse
shading is assumed to be direction-invariant.

Meanwhile for the specular component, which is at least
partially reflective and so will vary with view point, the
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direction value is or is based on the viewing angle between
the (x,y) position of a current pixel at the image view point
(which will have a position in the virtual space) and the
(x,y,z) position of the object as input to the machine learning
system, thereby providing a viewpoint dependent relation-
ship between the input point on the scene surface and the
current pixel for which the learned quantity is to be output.

In this case the coat component is also specular and so
uses a similar viewpoint or viewpoint based direction for an
input as well.

The direction value for direction dependent components
may thus be the view direction between the output pixel
position and the object surface position, or a value based on
this, such as the surface mirrored viewpoint direction (i.e.
the primary direction that the viewpoint direction would
reflect in, given the normal of the surface at the input
position). Any suitable direction value that incorporates
information about the viewpoint direction may be consid-
ered.

In each case, the trained function encapsulates the learned
quality, as described previously herein. Combining the
appropriate BSDF with the network output for each position
allows the shaded images for each component to be built up.
Alternatively or in addition combining the pixel values for
the shaded images from each component generates the final
output.

It will be appreciated that during the rendering of an
image, not all of the image may be subject to ray tracing, and
similarly not all of an image may be generated using the
above techniques. For example, NPLM networks may be
trained for specific objects or materials based on ground
truth ray traced images with representative lighting.

When these objects or materials are to be subsequently
rendered in real time using the apparent ray tracing provided
by the trained functions described herein, the relevant
NPLM networks are loaded into memory and run for the
relevant surface positions and viewing directions in the
scene to produce their contributions to the relevant pixels,
when combined with the appropriate BSDFs. Other pixels
may be rendered using any other suitable techniques (includ-
ing ray tracing itself).

Typically the appropriate the machine learning system(s)
are selected and loaded into a memory used by the GPU
based on the same asset identification scheme used for
selecting and loading a texture for the object or material.
Hence for example if an object has an ID ‘1234” used to
access associated textures, then this ID can also be associ-
ated with the relevant machine learning system(s). Con-
versely if a texture has an ID 5678’ that is associated with
an object (e.g. where the texture represents a material
common to plural objects), then this ID can also be associ-
ated with the relevant machine learning system(s). In this
way the entertainment device can use a similar process to
load the machine learning systems as it does to load the
textures. It will be appreciated that the actual storage and
access techniques may differ between textures and machine
learning systems, particularly if textures are stored using
lossy compression that would impact on the operation of a
decompressed machine learning system. Hence the machine
learning system may be stored without compression or using
lossless compression, or lossy compression where the
degree of loss is low enough that the decompressed machine
learning system still operates adequately; this can be
assessed by comparing the output error/cost function of the
machine learning system for incremental degrees of loss in
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compression, until the error reaches an absolute or relative
(to the uncompressed machine learning system) quality
threshold.

Turning now to FIG. 8A, in embodiments of the present
description, the machine learning system or NPLM network
may be any suitable machine learning system. Hence for
example a single neural network may be trained using the
position and viewpoint direction as inputs, and generate
RGB values for the learned property as outputs.

However, a particularly advantageous network comprises
a distinct split architecture.

As shown in FIG. 8A, in a non-limiting example the
network comprises two parts. The first part may be thought
of as the position network, whilst the second part may be
thought of as the direction network.

Each of these networks may have 3 or more layers, and
use any suitable activation function.

The position network receives the previously mentioned
(%, y, z) position for a point in the object/scene as input, and
outputs an interim representation discussed later herein.

The direction network receives this interim representation
and also the direction input (e.g. the normal, or the pixel
viewpoint or surface point mirrored pixel viewpoint direc-
tion or other viewpoint based direction value, as appropri-
ate) for example in a (0, ¢) format, or as a normalised (X, y,
7) vector, or similar. It outputs RGB values corresponding to
the previously mentioned leaned quantity for the (x,y)
position (and hence pixel viewpoint) of a current pixel in an
image to be rendered from a virtual camera position in a
space shared with the object/scene.

Hence in a non-limiting example, the position network
has 3 layers, with 3 input nodes (e.g. for the x, y, z position)
on the first layer, 128 hidden nodes on the middle layer, and
8 outputs on the final layer.

Whilst any suitable activation function may be chosen for
the network, a rectified linear unit (Re[LU) function has been
evaluated as a particularly effective activation function
between the layers of the position network. It generalizes
well to untrained positions and helps to avoid overfitting.

Similarly in the non-limiting example, the direction net-
work has 4 layers, with the 8 outputs of the position network
and 2 or 3 additional values for the direction feeding into
128 nodes on a first layer, then feeding on to two further
layers of 128 nodes, and a final 3 outputs on the final layer
corresponding to R,G,B values for the learned quantity at the
current pixel. This could then combined (e.g. multiplied)
with the BSDF for that position to get the final pixel
contribution from this trained function (e.g. diffuse, specular
etc), though as noted previously this is not required during
training.

Whilst any suitable activation function may be chosen for
the direction network, a sine function has been evaluated as
a particularly effective activation function between the lay-
ers of the direction network. Because the light behaviour
variation in the angular domain is large and contains details
at many angular frequencies, but is based on a low dimen-
sional input (e.g. a normalised x,y,z vector), the sine acti-
vation function has been found to be particularly good.

Notably therefore the two halves of the network may use
different activation functions.

The network however is treated as a split-architecture
network rather than as two separate networks because nota-
bly the training scheme only has one cost function; the error
between the RGB values output by the direction network
and the target values from the corresponding pixel of the
ground truth ray traced image, after being uncombined with
the appropriate BSDF.
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This error is back-propagated through both networks;
there is no separate target value or cost function for the
position network. Hence in practice the output layer of the
position network is really a hidden layer of the combined
network, augmented with additional inputs of direction
values, and representing a transition from a first activation
function to a possible second and different activation func-
tion within the layers.

As noted previously, the neural network builds a light
model for the lit object, material, or scene. In particular, in
the non-limiting example above the position network effec-
tively sorts the (x, y, z) positions into lighting types (e.g.
bright or dark, and/or possibly other categories relating to
how the light interacts with the respective BSDF, such as
relative reflectivity or diffusion); the interim representation
output by this part may be thought of as an N-dimensional
location in a lighting space characterising the type of light at
the input position; it will project positions in different parts
of the scene to the same N-dimensional location if they are
lit in the same way. A position network trained for a specular
component may have more outputs that one for a diffuse
component; for example 32 outputs compared to 8, to take
account of the greater variability in types of lighting that
may occur in the specular component.

The direction network then models how light the light
model behaves when viewed in the surface at the input
position at a certain input angle for the lit object, material,
or scene, to generate the learned property for that location in
the image.

Hence in summary, the position and direction networks
are trained together as one to predict a factor or transform
between a BSDF descriptive of a surface property, and the
desired rendered image of that surface. The networks can
then be used instead of ray tracing for renders of that surface.
Typically but not necessarily the networks are trained on just
one contributing component of the image, such as the diffuse
of specular component, with a plurality of networks being
used to produce the components needed for the final image
or image portion, although this is not necessary (i.e. in
principle a network could be trained on a fully combined
image or a combination of two or more contributing com-
ponents, such as all specular or all diffuse contributions).

Training

The network is trained as described elsewhere herein
using a plurality of ray traced images of the object, scene, or
surface taken from a plurality of different viewpoints. This
allows the network to learn in particular about how specular
reflections change with position. The viewpoints can be a
random distribution, and/or may for example be selected (or
predominantly selected) from within a range of viewpoints
available to the user when navigating the rendered environ-
ment, known as the view volume; i.e. the volume of space
within which viewpoints can occur, and so will need to be
included in the training.

In an embodiment of the present description, the training
data can be generated as follows.

It will be appreciated that for any machine learning
system the training data used to train the system can be key
to its performance. Consequently, generating training data
that leads to good performance is highly beneficial.

As described elsewhere herein, the training data for the
NPLM systems described herein is based on a set of high
quality rendered images of a scene/object/material/surface
(hereafter generically referred to as a scene), typically
uncombined with one or more relevant distribution functions
(e.g. a BSDF, BRDF, or the like as described elsewhere
herein) so that the learned quality referred to herein can be
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provided as a direct training target, removing the computa-
tional burden of generating predicted images during train-
ing, and also ensuring that the error function is not derived
at one remove from the output of the NPLM itself.

Different NPLLMs may handle view dependent and view
independent shading effects (e.g. diffuse, specular, etc), and
so typically a single view of an object in a scene is not
sufficient if the object has view dependent shading (e.g.
specularity, or a mirror reflection, etc.).

Consequently the number and location of training data
images can depend on not only the geometry of the scene
(e.g. if an object is visible within the view volume), but
potentially also the material properties of the objects in the
scene also.

Hence in an embodiment of the present description, the
NPLM training data, in the form of images of the scene
taken at a plurality of camera viewpoints, can be generated
at least in part based on the materials in the scene (e.g.
material properties such as light response properties like a
diffuse or specular response, but potentially also other
material properties such as surface complexity—e.g. the
present of narrow or broad spatial frequency components,
structurally and/or texturally).

Notably these images are typically generated from a 3rd
party high quality renderer, to which access to internal data
is not available. Hence only the final complete image may be
available, and not any information (or control) about specific
cast rays or their directions when performing shading within
an image.

It is therefore desirable to generate and use a set of images
that efficiently capture the appearance of the scene, for
preferably all valid views within the view volume, for the
purposes of training.

Referring now to FIG. 11, to this end, in a step 1110 firstly
a set of camera locations within the viewing volume are used
to render a set of low resolution images. The locations may
be equidistant or randomly distributed on a sphere around
the scene (if it can be viewed from any angle, e.g. as a
manipulable object), or on a hemisphere around the scene (if
it is based on the virtual ground, and so not viewable from
underneath), or on a ring around the scene (if it is viewed
from a ground based viewpoint, e.g. a first person view of an
avatar). Such a ring may be at a fixed height corresponding
to the avatar viewpoint, or may occupy a height range, e.g.
as a viewing cylinder encompassing one or more of a crouch
and jump height for the avatar viewpoint.

Step 1110 is illustrated in FIG. 11 with an orbit (ring) of
camera positions around the example car object.

The number of camera locations in this initial set may as
few as one, but is typically three or more, and more typically
is in the order of tens or hundreds. For example, one camera
per degree of orbit would result in 360 cameras. In the
present example, 200 cameras are used as a non-limiting
number.

The resolution per image is low; for example 128x84
pixels. An example image is shown for step s1120.

Notably for each pixel of each image, in step s1130
metadata is associated with it comprising the 3D position of
the scene surface corresponding to the pixel, the normal of
the scene surface corresponding to the pixel, and optionally
a material ID or similar material surface identifier or
descriptor, such as a texture ID or object ID.

In a first instance of a viewpoint selection process, the 3D
positions of the scene surfaces rendered by pixels in some or
typically all of these low resolution images are collated to
identify which positions within the scene are visible within
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the first set of camera positions. These are the 3D positions
on which the NPLM would benefit from being trained on.

Hence optionally, for each 3D position identified as being
rendered in at least one of the initial low resolution images,
a new position in 3D space is calculated as offset from that
position along the surface normal. The distance of the offset
from the surface is a variable that can be modified. This new
position is a candidate viewpoint for a virtual camera to
generate a high quality (e.g. high resolution ray traced)
render.

However, this may result in a large number of potential
high quality ray-traced renders to generate as training
images, which would be computationally burdensome, and
might also include significant redundancy when used as a
training set for the NPLM.

Consequently in a first instance it is desirable to filter or
cull these candidate viewpoint positions in some manner that
is relevant and useful to the training of the NPLM on the
scene.

In particular, it is beneficial to have more training
examples for parts of the scene that comprise view depen-
dent materials (e.g. specular or shiny) than view independent
materials (e.g. diffuse or matt).

Accordingly, one of two approaches may be taken.

In a first approach, in step 1140 for each of the candidate
viewpoints corresponding to a normal at a surface position,
the corresponding material property of the surface at that
position is reviewed. As noted above, in particular its diffuse
or specular response, or it translucency or the like, may be
used.

In practice, this can be done by use of a look-up table
associating the material ID or similar with a value indicating
how diffuse or specular (e.g. matt or shiny) the material
surface is. More particularly, this property can be repre-
sented, as a non-limiting example, by a value ranging from
0 for completely diffuse to 1 for a mirror reflection. This can
be treated as an input to a probability function, so that
specular or shiny (view dependent) materials have a com-
paratively high probability, and diffuse or matt (view inde-
pendent) materials have a comparatively low probability.

The probability function is then used to retain candidate
camera positions; a higher proportion of camera positions
facing specular surfaces will therefore be retained, com-
pared to diffuse surfaces.

Conversely if the value conventions are reversed (e.g. low
and high probabilities are reversed) then the probability
function can be used to cull candidate camera positions to
the same effect.

In a second approach, alternatively or in addition in step
s1140 the variability of pixel values corresponding to the
same 3D position of the scene surface as viewed in the low
resolution images can be evaluated, to determine a pixel
value variance for each captured 3D position. In this way,
view invariant (e.g. diffuse or heavily shadowed) surface
positions will have a low variance (i.e. pixels showing that
position in different low resolution images will be similar),
whilst view dependent (e.g. specular or shiny) surface
positons will have a high variance (i.e. pixels showing that
position in different low resolution images will show a wider
range of values for example as some catch glints or reflec-
tions of light). This variance, or a normalised version
thereof, can again be used as an input to a probability
function so that specular or shiny (view dependent) mate-
rials have a comparatively high probability, and diffuse or
matt (view independent) materials have a comparatively low
probability.
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Hence in either case, in step s1140 an estimate of the view
dependency of the light responsiveness of the material at
each captured 3D position in the view volume is obtained
(either based on material property or pixel variability, or
potentially both), and this can be used as an input to a
probability function.

The probability function is then used at step s1150 to
decide whether a respective candidate viewpoint is kept or
culled, with viewpoints centred on view dependent surfaces
being retained more often than those centred on view
independent surfaces.

The output range of this probability function can be tuned
to generate approximately the desired overall number of
camera viewpoints for training based on the original number
of possible candidates and the final desired number, or
alternatively a probability function can be applied for suc-
cessive rounds of retention/culling until the number of
remaining camera viewpoints is within a threshold value of
the desired number.

In either case the result is a manageable number of camera
viewpoints randomly distributed over the desired viewing
volume, but with a variable probability density that is
responsive to the material property (e.g. shininess or other-
wise) of the material immediately centred in front of the
camera. This is illustrated by the constellation of surviving
points in the figure for step s1150. In practice, the camera
positions can be further away from the object/scene surface
than is shown in this figure, but the points have been placed
close to the surface in the figure in order to illustrate their
distribution.

The amount of the manageable number of camera view-
points can be selected based on factors such as the desired
performance of the resulting NPLM, the computational
burden of generating the high quality ray traced images and
training the NPLM on them, memory or storage constraints,
and the like. A typical manageable number for training
purposes may be, as a non-limiting example, between 10 and
10,000, with a typical number being 200 to 2000.

Finally, in step s1160 the images are rendered at the
surviving viewpoints. Optionally, as shown in FIG. 11, these
renders are generated using a wider angle virtual lens than
the lens used for the initial low resolution images or the lens
used during game play.

This tends to result in rendering too much of the scene
(i.e. parts that are not directly visible from the view volume
points); this tends to make the NPLM output more robust,
particularly for view positions near the edges of the view
volume, and also in case of unexpected extensions of the
view volume e.g. due to object clipping in game, or minor
design modifications.

Whilst the above approach generated candidate camera
viewpoints based on the normals of the scene surface that
were captured in the initial low resolutions images, this is
not the only potential approach.

One possible issue with the above approach is that whilst
a view-invariant position in the scene may be imaged by a
camera pointing toward it along the normal at that position,
it is only rendered from different angles in other images that
at nearby positions, and in turn these angles are dictated by
the normal of the scene surface at those positions. As a result
whilst there may be comparatively more images captured on
and near view dependent parts of the scene, the images
themselves are potentially unduly influenced by the geom-
etry of the scene itself.

Accordingly, returning to the initial low resolution
images, in another instance of the viewpoint selection pro-
cess, a potential viewpoint position may be considered for
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each pixel of each low resolution image (or at least those
pixels that represent a surface in the scene). In the above
example of 200 images at 128x84 pixels, this equates to up
to 1.6 million candidates. These images typically capture
multiple instances of a given position on the scene from
different angles, independent of the topology of the scene
itself. As a result the training set is potentially more robust.

Again the surface material (and/or pixel variance) derived
view dependency of the surface position corresponding to a
given pixel within a low resolution image, and hence to a
candidate viewpoint, can be used to drive a probability of
retaining or culling that viewpoint. In this way the 1.6
million candidate viewpoints can again be culled down to a
manageable number.

In this case, because there can be multiple views of the
same position within the scene, it is possible that the
resulting distribution of camera views is biased towards
those positions within the scene that are most visible, as
opposed to only most view dependent; for example, if one
(diffuse) position in the scene is visible in 20 times more
images than one (specular) position, then even though it is
more likely that the viewpoints looking at the diffuse posi-
tion will be culled, because there are twenty times more of
them the eventual result may be that there are more images
of the diffuse position than the shiny one.

Hence optionally, the probability of retaining or culling a
viewpoint can be normalised based on how many viewpoints
are centred on the same position in the scene (albeit from
different angles). This normalisation may be full (so in the
above example, the probability of retaining an image of the
diffuse position is made 20 times less, so the effect of the
number of views is removed). Alternatively the normalisa-
tion may be partial; so that for example, the probability of
retaining an image of the diffuse position is only made 10
times less so the effect of the number of views is signifi-
cantly reduced, but not totally removed; this would mean
that areas that are potentially seen a lot by the user would
also get more training examples, independent of whether
they also got more training examples due to being view
dependent (e.g. specular/shiny).

In principle, both sets of viewpoints (surface normal
based viewpoints and low resolution image pixel based
viewpoints) could be generated and culled to create a
combined viewpoint set prior to generating high quality ray
traced renders for training purposes; indeed in any case there
is likely to be a subset of low resolution image pixel based
viewpoints that in effect are coincident with the normals of
at least some of the visible surface positions.

Variant training techniques

The above second approach optionally considers the issue
of compensating for multiple views of the same position in
the scene when culling available viewpoints. In addition to
enabling control of training bias, it also reduces training
times for this second approach by reducing repetitions for
certain positions in the scene.

However, alternatively or in addition the training time can
be (further) reduced as follows.

As before, select an initial set of viewpoints within (or on
the surface of) a view volume.

Now optionally, generate the initial low resolution images
for a set of positions within the view volume.

Now optionally, then generate candidate viewpoints either
based on normals of the positions in the scene found in the
low resolution images, and/or based on lines between pixels
of'the low resolution images and the represented positions in
the scene, as described previously herein.
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Again optionally, these viewpoints can be culled with a
probability based on the degree of specularity/diffusion of
the respective position in the scene. Further optionally,
where there are multiple images centred on a respective
position, the probability can be modified to at least partially
account for this.

Hence, depending on the approach taken, the result is a
generated series of viewpoints—either the original distribu-
tion optionally used to generate the low resolution images,
or a distribution arising from one of the above generation-
and-culling techniques.

In either case, in an embodiment of the description, once
a viewpoint is generated (and optionally confirmed as not
being culled, as appropriate), it is provided to or queued for
a ray tracing process to generate the high quality image,
optionally in a wide angle form as described elsewhere
herein.

Training on generated image begins when a respective
image is complete; hence there is a parallel process of
generating training images (which due to being ray-traced
images, takes some time) and training on those images
(which can also take some time). This avoids the issue of
having to wait for the complete training set to be generated
before training can begin.

Optionally, where viewpoints have been generated, or
where generated viewpoints are selected to determine if they
are to be culled, the selection of a viewpoint from those
available can be random, so that the eventual production
sequence of ray traced images is also random within the final
set of viewpoints being used.

This reduces the chance of the NPLM becoming initially
over trained on one section of the scene, and also means that
if, for example, the training has to be curtailed due to time
constraints, the NPLM will still have been exposed to a
diverse set of views of the scene.

In another variant training technique, if control of the ray
tracing application is available and allows it, then optionally
only a subset of pixels for an image from a given viewpoint
need be rendered; whether based on the original set of
viewpoints or a viewpoint that was not culled, there may be
parts of a scene within a given image that have been
rendered a number of times in other images within the
training set. For example, if a position in the scene has
already been rendered more than a threshold number of
times, it may be skipped in the current render as there are
already a sufficient number of training examples for it.
Unrendered parts of an image can be tagged with a reserved
pixel value acting as a mask value. Consequently training
can be performed using input positons, direction information
and a target value for unmasked pixel positions only. This
can significantly reduce the redundancy within the training
set, and also the associated computational load, both when
ray tracing the training images and when training the NPLM.

Exceptions can optionally be applied. For example pixels
near the centre of the image may always be rendered, as the
central pixel typically relates to the position in the scene that
was selected (or not culled), possibly as a function of its
surface properties as described elsewhere herein—it is typi-
cally the pixels in the non-central parts of an image that are
likely to capture unintended and unwanted repetitive points
within the scene.

Training with variable lighting states

The various training techniques described previously
herein are typically performed using a plurality of different
ray-traced images of a scene, object, or material (herein
generically referred to as a ‘scene’ unless specified other-
wise), for a given lighting condition; typically it is assumed
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that the lighting sources are fixed within a scene (e.g. due to
the position of windows, and/or due to the use of a so-called
‘sky dome’ providing a static illumination map).

However, in some circumstances the lighting of a scene
may vary considerably; for example some games model a
day/night cycle, and/or weather, and so the position of the
sun (or moon) may change over the course of a virtual day
(or night) within the game. Similarly depending on the
weather the dominant light source may be a nearly point
source such as the sun, or a diffuse source such as a back-lit
cloud.

An NPLM trained to model the illuminance of a scene
according to one lighting condition may not be able to
generalise sufficiently well to replicate other conditions.

Accordingly, in an embodiment of the description, an
NPLM is trained (using any of the techniques described
herein) to model the illuminance of a scene based upon
ground truth images that have been ray traced using multiple
lighting conditions.

Typically these lighting conditions will comprise one or
more adjustments of a lighting parameter within a predeter-
mined range.

Lighting parameters can include:

Position: for example the progression of the sun over a

predetermined range. This may be achieved by rotating

a sky dome comprising the sun in various ray traced

renders. Other examples may include the movement

paths of non-player characters or other mobile light
sources.

Direction: directional lights sources that change may be
modelled for a range of directional changes, e.g. in the
case of a lighthouse or an MPC/mobile light motion
path. Alternatively or in addition, the beam width or
beam angle of spread of the light may be specified (e.g.
a torch or spotlight typically has a narrower beam angle
than a desk lamp).

Alternatively these or other less predictable light
sources, such as player-based mobile light sources
like a torch or similar could be implemented by using
fully torch-lit and non-torch-lit NPL.Ms for different
parts of the scene depending on where the torch light
falls.

Colour or colour temperature: for example a progressive
reddening of the sun during a sunset.

Brightness.

Diffusion: for example replacing a rendered sky dome
with successive amounts of cloud or fog in front of a
point light source such as the sun or moon, or building
lights etc.

A single NPLM may be trained on variations in one, two
or more such parameters at once. For example, an NPLM
may be trained on the sunrise, comprising a predetermined
range of positions and also associated changes in colour
temperature. Another NPLM may be trained on day time (or
a part thereof) progression of the sun within a predetermined
range of positions, without any change in colour tempera-
ture. A further NPLM may be trained on sunset, again
comprising a predetermined range of positions and also
associated changes in colour temperature.

As is noted elsewhere herein, a more complex training
environment may require a change in NPLM architecture to
accommodate network, typically up to a maximum when the
memory footprint of the NPLM reaches a threshold size.

The NPLM may also require one or more additional
inputs during training indicative of the parameter change or
changes associated with the training data.
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For example, lighting position may be explicitly input,
and/or a proxy value such as time of day (for example if also
correlated with colour temperature), or the like. Typically
this could be input to the position network, to help charac-
terise the relative position of scene elements with respect to
the light, or could be input to the direction network, to help
characterise the relationship between light source and view-
point, or indeed input to both. The lighting position could
relate to the position of a point light source, the centre of a
diffuse light source, or the centre, or an offset position, for
a skydome. The inputs could be rectilinear or polar, or any
suitable format (e.g. polar may be more suitable for a
skydome). Hence typical examples of changing positions
would be along NPC paths (e.g. traffic), in-game movement
of objects (e.g. a table lamp being moved) or environmental
change (e.g. the sun or moon).

Similarly direction (and/or optionally beam angle of
spread) could be input to one or both of the halves of the
NPLM. Typical examples of directional change include a
spotlight or sentry, or in combination with positional move-
ment, traffic. Angle of spread values could be associated
with these. Meanwhile an example of a change to the angle
of spread includes opening a door that is in front of a light
source.

Colour or colour temperature could be input for example
as a scalar value (e.g. for colour temperature) or an RGB or
similar colour representation. Typically the colour represen-
tation would be for the same colour space as the predicted
image (i.e. the image pixels generated by combining the
output of the NPLM with a particular BSDF, BRDF, BTDF
or similar). Colour or colour temperature could be input to
the position network, again to assist with classifying the
scene positions embodied in the intermediate representation
of the position network’s output layer, and/or could be input
to the direction network, as it may more easily influence the
colour-related output of the NPLM there. As noted else-
where herein, a typical example of a change in colour may
relate to a rising or setting sun, but could also relate to a
dramatic even, e.g. the activation of an alarm and associated
switch to predominantly red lighting.

Brightness could be input as a scalar value in a similar
manner to colour temperature to one or both halves of the
NPLM. Again a typical example of a change in brightness
can be associated with sunset or sunrise.

Diftusion of the light source, like direction, could be input
to the position network to help with classification of the
surface points, and/or could be input to the direction network
to help with the relationship between the light source and the
viewpoint. Examples of diffuse light sources may include
cloud or fog, or urban/office environments with diffused
ceiling lights.

It will also be appreciated that some or all of these
parameters could be correlated with time, so that alterna-
tively or in addition a time-based parameter is used. This
was discussed above for position, but may also apply to
colour, brightness or any of the other parameters. For
example position, colour and brightness may all have a
correlation with time when the scene is illuminated by the
sun.

It will be appreciated that adding one or more such inputs
to the existing first layer of one of the position and/or
direction networks allows for only a single respective weight
between the input and the nodes of the first layer in each
network.

Hence, referring now also to FIG. 8B, optionally to
provide the capability for a more complex learned response
to these additional inputs, a further layer may be provided
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between the current first layer and two or more inputs to the
respective halves of the NPLM. Hence for example rather
than just providing the position of a light and the position of
the current surface point as a parallel inputs to the existing
NPLM position network, a further layer could be provided
so that any significant combination of these values could be
learned as a preparatory step.

Hence for example if in addition to the original surface
point position input to the position network, all of the above
inputs were included, a fully connected additional layer
could be provided, or a partially connected layer, e.g. with
directionality and diffusion input to a partial layer, bright-
ness and colour to a parallel partial layer, and light position
and surface point position to a parallel partial layer. These
partial layers then fully connect to the first full layer of the
network. A similar scheme could be used for the direction
network.

FIG. 8B shows a partial layer for the original scene
position and also the lighting position, and a parallel partial
layer for the colour and brightness of the light, being
included in the position network as a non-limiting example.

The training set for variable lighting conditions may
simply comprise repeating any of the techniques described
herein for generating a training set, for a plurality of lighting
changes (e.g. for successive positions of the light(s)).

Alternatively, a single set of positions for full renders can
be obtained as before, and then for each position a set of N
versions are created by selecting either a random parameter
value within a predetermined range, or a series of parameter
values across that range, for each of the one or more
parameters being varied. Optionally, where the probability
approach is used to cull candidate positions, the probability
of retention can either be made higher (to increase the
number of selected positions, enriching the training set for
a more demanding training situation) or the probability of
retention can be made lower (up to N times lower) to
mitigate the associated increase in computational load that
comes from rendering variants for the same view. Whether
the probability is increased, decreased, or remains the same
reflects a trade-off between computational load and time on
one hand, and eventual NPLM output quality on the other,
for that particular illuminated scene.

Alternatively again, the probability of retention can be
increased by up to N times, and for each resulting viewpoint
just one (random or in-sequence) version of the parameter
value is chosen so that rather than having multiple parameter
values at one viewpoint, there are respective parameter
values at multiple viewpoints.

It will be appreciated that the approaches overlap; for
example generating training sets for a plurality of lighting
changes, which can result in different respective constella-
tions of viewpoints for each training set, may collective
result in a set of different parameter values at the same
positions and single parameter values at unique positions.

Typically there is no need to change how the distribution
of viewpoints is generated, as this relates to the position of
the viewer, not the light. However, for highly directional
lights it may optionally be useful to bias the probability to
retain a viewpoint as a function of the angular distance of the
viewpoint from a reflection angle for the directional axis of
the light (i.e. increase retention as the views get closer to
being on a line of reflection into the light).

As noted previously herein, the NPLM can be imple-
mented using any suitable machine learning system, and so
whilst the split network architecture described herein is
preferred, in principle an NPLM compising a single neural
network (or indeed 3 or more networks or other machine
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learning systems, potentially of different types) may be used,
with inputs as discussed herein being supplied to one or
more of these as appropriate.

Variant Approaches

Each NPLM generates the learned quality for a single
pixel in response to the scene surface position and view-
point/mirror direction inputs described elsewhere herein, as
well as any of the additional inputs also described previously
herein.

Furthermore typically the contributions from several
NPLMs (e.g. trained on diffuse, specular, translucent and
other components of the scene) are combined when a final
output is required.

As aresult in principle contributions from several NPLMs
could be combined from NPLMs each trained for respective
lighting conditions. Hence for example an NPLM could be
trained for the sun, or a skydome, set for 1 pm; and another
could be trained for the sun/skydome at 2 pm. The contri-
butions for the output for each one could then be combined,
for example 100% of the 1 pm network at 1:00 pm, 75% of
1 pm and 25% of 2 pm at 1:15, 50/50 at 1:30, 25/75 at 1:45
and 100% of the 2 pm network at 2:00 pm.

For positional changes, optionally NPLMs for the specu-
lar contributions could be trained at finer intervals than
NPLMs for the diffuse contribution, as the impact of the
lighting change will be more obvious in the specular con-
tribution. For example the specular NPLMs could be created
for each hour interval or each 10% point along the parameter
range, whilst the diffuse NPLMs are created for every two or
three hours, or each 25% along the parameter range.

Hence the contributions from different NPLMs trained at
different points on a parameter range can be blended to
approximate the desired point on the parameter range, and
the sampling of these parameter ranges by respective
NPLMs can optionally be more sparse for less view depen-
dent contributions such as the diffuse contribution, com-
pared to the specular contribution.

It will also be appreciated that whilst the time example
above is a 1-dimensional parameter, and so only requires
blending two NPLMs trained with parameter values brack-
eting the desired parameter value, this approach can be
extended to a two-dimensional parameter using 3 or more
NPLMs (e.g. a triangle or other polygon in parameter space)
whose weighted contributions correspond to a triangulation
on the desired parameter value, or indeed a three dimen-
sional parameter using 4 or more NPLMs (e.g. a tetrahedron
or other volume in parameter space) whose weighted con-
tributions again correspond to a triangulation on the desired
parameter value.

It will be appreciated that this approach potentially
requires an increased number of trained NPLMs to be used
during the rendering of an image. These NPLMs may be
pulled into GPU memory from a memory of the system in
the same way as any other NPLM. Meanwhile they may be
stored in the memory of the system in the same way as
NPLMs described elsewhere herein, or an alternative NPLM
streaming strategy may be used, as described elsewhere
herein.

Training with variable object states

In a similar manner to training with variable lighting
states as described above, an NPLM may be similarly
trained where there is one or more dynamic objects within
the scene.

Such a dynamic object may change position, orientation,
pose/configuration, and/or indeed size, colour, and/or shape,
for example for reasons relating to the nature of the object
or for the purposes or gameplay or narrative.
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Essentially a similar approach can be taken as with
training with variable lighting states described elsewhere
herein.

Hence an NPLM may again be trained (using any of the
techniques described herein) to model the illuminance of a
scene based upon ground truth images that have been ray
traced using multiple object states representative of the
variability of the object.

As noted above the variability may relate to position (for
example a non-player character or an environmental hazard
within the game may follow a known path within the
environment).

Alternatively or in addition, it may relate to orientation
(for example when an object spins or rotates on an axis, like
a door). Often there is a correlation between position and
orientation if an object faces in a varying direction of travel.

Alternatively or in addition, it may relate to pose/con-
figuration; this may relate to a walking or other locomotion
animation, or it may relate to character gestures or other
animation cycles of an object.

Alternatively or in addition am object may vary its size,
colour, or shape; in some games for example an opponent
may transform during a battle. Similarly, a magical object
may change its appearance in response to user interaction or
in-game events.

As with the variable lighting states, a single NPLM may
be trained on variations in one, two or more such parameters
at once. For example, an NPLM may be trained on position,
orientation and pose of an object as it is animated following
a path within the environment.

Again as with the variable lighting states, a more complex
training environment may require a change in NPLM archi-
tecture to accommodate network, typically up to a maximum
when the memory footprint of the NPLM reaches a thresh-
old size.

The NPLM may also require one or more additional
inputs during training indicative of the parameter change or
changes associated with the training data.

Again for example the object position may be explicitly
input, and/or a proxy value such as a timing within an action
loop of the object (i.e. having a correlation with the position
in the training image) may be used. This could be input
typically to the position and/or optionally the direction
network (or to a single network, if used). A similar approach
to the inputs for variable lighting states described elsewhere
herein could also be used for position, pose, colour, size, and
shape. Pose could for example be indicated by a proxy value
such as a timing within an animation cycle (i.e. having a
correlation with the pose in the training image), applied to
the position and/or direction network.

It will also be appreciated from the above that some or all
of these parameters could be correlated with time, so that
alternatively or in addition a time-based parameter is used.
This was discussed above for position and pose, but may
also apply to orientation, colour, shape, size, or any of the
other parameters. Notably different time references may be
used for one or more different inputs; as non-limiting
examples, position and orientation may use a time index
corresponding to navigation of a path within the environ-
ment, whilst pose may use a time index corresponding to an
individual step animation cycle.

Again as with the variable lighting states, where several
object descriptive inputs are provided, optionally an extra
layer may be provided to the NPLM as per FIG. 8B.

The training set for variable object states may simply
comprise repeating any of the training techniques described
herein for variable lighting conditions.
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Again it will be appreciated that one approach is to blend
the output of successive NPLMs that bracket a 1, 2 or 3
dimensional parameter space corresponding to one or more
changes in object state, as described in relation to variable
lighting states previously herein.

Network Configuration

As noted above, a position network (i.e. the first part of
the split-architecture network described herein) may have a
different number of outputs depending on whether it is
trained for a diffuse of specular type image component. It
will be appreciated that this is a specific instance of a more
general approach.

In general, the capability of the NPLM may be varied
according to the complexity of the modelling task it is
required to do, either by increasing or reducing the capabil-
ity from a notional default setup. In doing so, the architec-
ture of the network is typically altered to change the capa-
bility.

In a first aspect, the capability may be varied based on the
size of the NPLM (e.g. the number of layers, the size of
layers and/or the distribution of layers between parts of the
NPLM, thereby modifying the architecture of the NPLM to
alter its capability).

Hence optionally the size can vary according to the type
of contributing component the NPLM is modelling (e.g.
diffuse, specular, or translucent/transmissive).

In particular, the size of the position network may be
beneficially made larger for specular or translucent/trans-
missive components compared to diffuse components, all
else being equal, due to the greater variability of lighting
responses inherent in these components. For similar reasons,
the size of the position network may be beneficially made
larger for translucent/transmissive components compared to
specular components, all else being equal, due to the com-
binations of partial reflection, transmission and internal
reflection that may be involved.

Similarly, the size of the position network may be ben-
eficially made larger in the case where changes to one or
more lighting conditions are being trained (as not limiting
examples, different lighting positions, directions, and/or
angular widths), due to the increased number of lighting
conditions, or the complexity thereof for a given scene
surface positon, that need to be modelled.

The size may be varied by alteration to the number of
hidden layers or the number of nodes within one or more
such hidden layers. Similarly the size may be varied accord-
ing to the number of output layers (for example the output
layer of the position network, which is also a hidden or
interface/intermediate layer between the position network
and direction network of the overall NPLM network). An
increase in the number of layers typically increases the
spatial distortion that the network is capable of applying to
the input data to classify or filter different types of infor-
mation, whilst an increase in the number of nodes in a layer
typically increases the number of specific conditions within
the training set that the network can model, and hence
improves fidelity. Meanwhile an increase in the number of
output nodes (where these are not selected to map onto a
specific format, as in the output of the position network) can
improve the discrimination by the output network (and also
by a subsequent network operating on the output node
values) by implementing a less stringent dimension reduc-
tion upon the internal representation of the dataset.

Alternatively or in addition, the size of the direction
network can vary according to the type of contributing
component the NPLM is modelling (e.g. diffuse, specular, or
translucent/transmissive).
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As noted above, the input layer of the direction network
can change in size to accommodate a higher dimensional
output of the position network within the overall NPLM
split-architecture network.

Similarly the number of layers and/or size of layers can be
varied to similar effect as then outlined for the position
network, i.e. increases in discriminatory capability and also
model fidelity.

As with the position network, the size of the direction
network may be beneficially made larger for specular or
translucent/transmissive components compared to diffuse
components, all else being equal, due to the greater vari-
ability of lighting responses inherent in these components.
For similar reasons, the size of the direction network may be
beneficially made larger for translucent/transmissive com-
ponents compared to specular components, all else being
equal, due to the combinations of partial reflection, trans-
mission and internal reflection that may be involved. Hence
like to position network, its architecture can be similarly
altered to alter its capability.

Similarly again the size of the direction network may be
beneficially made larger in the case where changes to one or
more lighting conditions are being trained (as not limiting
examples, different lighting positions, directions, and/or
angular widths), due to the increased number of lighting
conditions, or the complexity thereof for a given scene
surface positon, that need to be modelled.

Hence the NPLM (e.g. the position network, the direction
network, or both) may have its capabilities changed (e.g.
changes to its/their architectures such as increased number
of layers, internal nodes, or input or output dimensionali-
ties), for example to improve discriminatory capabilities (for
example due to more hidden layers or output dimensional-
ity) and/or to improve model fidelity (for example due to
more nodes in hidden layers), responsive to the demands of
the lighting model required; with for example a diffuse
contributing component typically being less demanding than
a specular one.

Conversely, from a notional standard or default set-up for
an NPLM, instead of increasing capability an NPLM may be
beneficially altered to reduce its capability (e.g. by steps
opposite those described above for increasing capability)
where appropriate (e.g. for a diffuse component). In this case
the benefit is typically in terms of reduced memory footprint
and computational cost.

In addition to the type of reflection property (or proper-
ties) of a material as modelled by different contributing
channels, alternatively or in addition the capability of an
NPLM may be increased or decreased in response to other
factors relating to the complexity of the lighting model/
render process.

For example, a diffuse light source (such as a sky dome)
may be less complex than a point light source, as there is less
spatial/angular variability in the lighting the impinges on the
object/scene. Conversely, a sky dome with significant spatial
variability of its own (e.g. showing a sunset) might be more
complex. The complexity of the light source may be evalu-
ated based on its spatial and colour variability, for example
based on an integral of a 2D Fourier transform of the lit
space without the object/scene in it, typically with the DC
component discounted; in this case a uniform sky dome
would have a near-zero integral, whilst one or more point
sources would have a larger integral, and a complex sky-
dome (like a city scape or sunset) may have a yet larger
integral. The capability of the NPLM (e.g. the size) could be
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set based on this or any such light source complexity
analysis, for example based on an empirical analysis of
performance.

Similarly, moving, dynamic or placeable lights may
require increased NPLM complexity, as they create chang-
ing lighting conditions. In this case the input to the NPLM
may comprise a lighting state input or inputs as well as the
(x,y,z) object position for the specific part of the object/scene
being rendered as for the output pixel. Hence for a model for
a scene where the sun traverses the sky, an input relating to
the time of day may be included, which will correlate with
the sun’s position. Other inputs to identify a current state of
a light source may include an (x,y,z) position for one or more
lights, an (r) radius or similar input for the light size, and/or
and RGB input for a light’s (dominant) colour, and the like.
It will be appreciated that the training data (e.g. based on ray
traced ground truths) will also incorporate examples of these
changing conditions. More generally, where an NPLM it
trained to model dynamic aspects of the environment, the
training data will comprise a suitable representative number
of examples.

In the case of the sun, the traversal for a whole day may
need to be modelled by several NPLMs in succession (e.g.
modelling dawn, morning, midday, afternoon and dusk), for
example so to avoid the memory footprint or computational
cost of the NPLM growing larger than a preferred maxi-
mum, as described elsewhere herein.

Similarly, moving, dynamic or placeable objects within
the scene may require increased NPLM complexity if they
are to be rendered using the NPLM (optionally the NPLM
can be used to contribute to the render of static scene
components only, and/or parts of the scene that are position
independent). Hence again in this case the input may for
example comprise object position and/or orientation data.

Alternatively or in addition, other factors may simplify
the modelling of the NPLM and so allow the capabilities of
the NPLM to be reduced (or for the fidelity of the model to
be comparatively improved, all else being equal). For
example, if the rendered scene comprises a fixed path (e.g.
on a race track, within crash barriers), then training from
viewpoints inaccessible by the user can be reduced or
avoided altogether. Similarly if the rendered scene com-
prises limited or preferred viewing directions (e.g. again on
a race track where most viewing is done in the driving
direction), then training for different viewpoints can reflect
the proportional importance of those viewpoints to the final
use case.

Similarly, where parts of a scene may be viewed less
critically by the user because they are background or distant
from a focal point of the game (either in terms of foveated
rendering or in terms of a point of interest such as a main
character), then the NPLM may be made comparatively less
capable. For example, different NPLMs may be trained for
different draw distances to an object or texture, with capa-
bility (e.g. size) reducing at different draw distances/level of
detail (LOD).

Alternatively or in addition, as noted elsewhere herein an
NPLM can be trained for a specific scene, object, material,
or texture. Consequently the capability of the NPLM can be
varied according to the complexity of the thing whose
illuminance it represents. A large or complex scene may
require a larger NPLM (and/or multiple NPLMs handling
respective parts, depending on the size of the scene and
resultant NPLMs). Similarly a complex object (like a car)
may benefit from a more capable NPLM than a simple object
(like a sphere). One way of evaluating the complexity of the
scene or object is to count the number of polygons, with
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more polygons inferring a more complex scene. As a refine-
ment, the variance of inter-polygon plane angles can also be
used to infer complexity; for example a sphere having the
same number of polygons as the car model in the figures
would have a very low angular variance compared to the car
itself, indicating that the car is structurally more complex.
Combining both polygon numbers and angular variance/
distribution would provide a good proxy for the complexity
of the scene/object for which illuminance is being modelled
by the NPLM.

Similarly a complex material (like skin or fur) may benefit
from a more capable NPLM than a simple material (like
metal) (and/or multiple NPLM contributors). Yet again a
complex texture (e.g. with a broad spatial spectrum) may
benefit from a more capable NPLM than a texture with a
narrower or more condensed spatial spectrum.

Whilst capability has been referred to in terms of size
(number of inputs/outputs, number of layers, number of
nodes etc), alternatively or in addition capability can be
varied by the choice of activation function between nodes on
different layers of the NPLM. As noted elsewhere herein, a
preferred activation function of the position network is a
ReL.U function whilst a preferred and activation function of
the direction network is a sin function, but other functions
may be chosen to model other scenarios.

The capability of an NPLM may be made subject to an
upper bound, for example when the memory footprint of the
NPLM reaches a threshold size. That threshold size may be
equal to an operating unit size of memory, such as a memory
page or a partial or multiple group of memory pages,
typically as selected for the purpose of accessing and
loading textures for a scene/object/material. The threshold
size may be equal to a texture or mipmap size used by the
GPU and/or game for loading graphical image data into the
GPU.

If the complexity of the NPLM would exceed this thresh-
old, then the task it models may either have to be simplified,
or shared between NPLMs, or the accuracy of the result may
have to be accepted as being less.

Hence in summary, an image rendering method (focusing
on network configuration and selection) may comprise a step
of selecting at least a first trained machine learning model
from among a plurality of machine learning models, the
machine learning model having been trained to generate data
contributing to a render of at least a part of an image, as
discussed elsewhere herein. Hence for example the contrib-
uting data may relate to a particular component of an image
pixel (e.g. for a diffuse or specular contributing component),
or may relate to a complete RGB pixel (e.g. modelling all
reflection aspects at once), for example depending on the
complexity of the lighting and/or material, texture and/or
other surface properties being modelled.

In such a method, the at least first trained machine
learning model has an architecture-based learning capability
that is responsive to at least a first aspect of a virtual
environment for which it is trained to generate the data, as
discussed elsewhere herein. Hence for example, the archi-
tectural aspect relating to learning capability may be in the
size of all or part of the NPLM, such as the number of layers
or nodes, and/or may relate to the nature of the connections
between nodes of different layers (for example in terms of
the degree of connectivity of the type of activations func-
tions used).

In such a method, a second step may comprise using the
at least first trained machine learning model to generate data
contributing to a render of at least a part of an image. As
discussed elsewhere herein. Hence for example an indi-
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vidual run of the NPLLM may generate data that is used with
data from other NPLMs to generate RGB values for a pixel
of the image, or may generate data to generate RGB values
for a pixel of the image by itself, for example after subse-
quent processing (e.g. combining with a distribution func-
tion) as described elsewhere herein.

Network Selection

The networks are trained during a game or application
development phase. The developer may choose when or
where NPLM based rendering would be advantageous. For
example, it may only be used for scenes that are consistently
found to cause a framerate below a predetermined quality
threshold. In such cases, the networks are trained on those
scenes or parts thereof, and used when those scenes are
encountered.

In other cases, the developer may choose to use NPLM
based rendering for certain objects or certain materials. In
this case, the networks are trained for and used when those
objects or materials are identified as within the scene to be
rendered.

In other cases, the developer may choose to use NPLM
based rendering for certain lighting conditions or combina-
tions thereof. In this case, the networks are trained for and
used when those conditions are identified as within the scene
to be rendered. A similar approach may be used for dynamic
objects, as described elsewhere herein.

Similarly, the developer may choose to use NPLM based
rendering for particular draw distances (z-distance), or
angles/distance away from an image centre or user’s foveal
view, or for certain lighting conditions. In this case, the
networks are trained for and used in those circumstances.

Similarly, it will be appreciate that any suitable combi-
nation of these criteria may be chosen for training and use.

Meanwhile as noted above, during use of the system there
may be a plurality of NPLMs associated with a scene, for a
plurality of reasons. For example, plural NPLMs may exist
to model a large scene (so that each part is modelled
sufficiently well by an NPLM within a threshold size and/or
to a threshold quality of image reproduction). Similarly
plural NPLMs may exist due to varying lighting conditions,
levels of detail/draw distance, and the like.

The appropriate NPLM(s) for the circumstances may be
selected and retrieved to GPU accessible working memory
and run for the purpose of rendering at least part of an image.
It will be appreciated that strategies applied to prefetching
and caching textures and other graphical assets can also be
applied to NPLMs.

Network Streaming

As noted elsewhere herein, a relevant NPLM or NPLMs
may be selected due to the contribution it or they make to an
image pixel (e.g. diffuse, specular or the like), and/or due to
what they model; for example a location within the envi-
ronment, or a particular scene, object, or material, and/or a
range of states for variable lighting or one or more dynamic
objects, or a particular state of a variable light or dynamic
object(s).

In some cases the outputs of several NPLMs may be
merged (for example in a weighted fashion) as described
elsewhere herein in relation to variable lighting or object
states, or also potentially for boundaries between locations
or scenes.

In any event it will be appreciated that there may therefore
be a large number of NPLM:s to select from, dependent upon
the current overall game or application state (for example
dependent upon location, scene (which for example may in
turn be viewpoint or game event dependent at a location),
object or material (which again may be location, scene, or
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event dependent, and/or a property of a dynamic object),
and/or lighting (which again may be location, scene, or
event dependent, and/or a property of a variable light), and
or any proxy for one or more of these, such as time.

Selection of such NPLMs may be limited to selecting
NPLMs found in local storage at runtime (e.g. in system/
CPU ram, flash memory hard disk or solid state disk, optical
disk and the like); i.e. NPLMs provided with other assets of
a given game or application for the purpose of rendering it.

However it will be appreciated that whilst individual
NPLMs require relatively little memory to store, a client
device such as a videogame console is a resource con-
strained system, and so a profusion of NPLMs that cover a
potentially very large number of permutations of circum-
stances for rendering a game may place an undue burden on
the console. For example, by making installation of a
videogame larger (due to these NPLMs), a console may be
able to store fewer games overall, and the process of
installing a game (and potentially loading it when selected)
are also likely to take longer.

Hence, alternatively or in addition, NPLMs may be
streamed from a server as required.

For example, a user may be traversing a particular envi-
ronment whose rendering is supported by the techniques
herein. Accordingly, NPLMs may have been created for a
number of different times of day and night, and for different
weather conditions, four successive portions of the environ-
ment.

Supposing, as non-limiting examples, that for each of 10
environment portions (representing distinct parts of the
environment being traversed) there are 10 time periods
(covering different sun and moon positions) and four
weather conditions (as non-limiting examples: clear, result-
ing in a point light source; light cloud, resulting in a
semi-diffuse light source; heavy cloud, resulting in a diffuse
light source; and mist, resulting in modified reflections).

As a result in total there are potentially 400 NPLMs
required to traverse this particular environment under all
circumstances, but only one (or one per contributing com-
ponent) is required at any given time. Furthermore, in this
case the next one to be required can be anticipated by the
user’s direction of travel and the passage of time (and
weather), and the ability to predict one or a small number of
candidate NPLMs to use next will generally be the case
within any game or application using them.

Consequently it is far more memory efficient to download
the required and/or anticipated NPLMs from a central
repository (or peer/distributed repository) than to store all
potentially required NPLMs locally.

Accordingly, the entertainment device/videogame con-
sole/client device is adapted to transmit game state data to a
remote server that stores NPLMs for the game/application
(or points to where they are stored in a peer or distributed
system). The game state data transmitted for a given game/
application is chosen to be relevant to the selection of
NPLMs. For example if the game does not model the
passage of time in the form of sun or moon transit, then this
may not be a relevant measure. Similarly if the game does
not model differences in weather then this may not be a
relevant measure.

Typically however the game state data will comprise an
indication of the scene to be rendered or anticipated to be
rendered, whether this is described by a set of coordinates
specifying a position within the virtual world (and optionally
also a viewpoint direction of the virtual camera), or a unique
number associated with a scene.
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Hence returning to the above example, if the user is
currently in the fifth of ten environment portions, and
traversing toward the sixth during a clear dawn within the
game, then the entertainment device can transmit a request
for an NPLM corresponding to the 67 environment portion,
with dawn lighting in clear weather. The format of the
request may be any suitable format, for example using a
co-ordinate scheme, tiling number scheme, or other scheme
for the environment portions, and time or lighting variant
types to indicate dawn, and weather variant types too.

Optionally, if the format is consistent, it may be used to
define at least part of a requested NPLM filename and/or
URL, thereby simplifying the process for the server (which
may handle many millions of requests). Hence for example
the request may be to receive file 0006-06-01.npm, being the
NPLM for the 0006” environment portion, for 06:00 (dawn)
in weather type 01 (clear), or similarly to download from
gamename.com/0006/06/01/file.npm.

For cases where the correct NPLM is less clear (for
example if the user is navigating towards a region bounded
by several other environment portions) then the client enter-
tainment device can request several NPLMs for different
outcomes, for example requested in order of probability or
urgency (e.g. based on proximity to the respective environ-
ment portions). It will be appreciated that a state of the
application may anticipated if a boundary of that state is
within a threshold of the current state of the application, and
that a given state can have multiple boundaries (for example
boundaries of time, location, lighting condition and dynamic
object properties).

Hence in the above example for file 0006-06-01.npm, the
associated game state may become an anticipated game state
any in-game time after 05:45, or at any location within 100
in-game metres of environment portion 6, or when the
weather is scheduled to transition to clear. In this case the
thresholds are, for example, 15 minutes, 100 metres and a
weather transition (towards clear), respectively.

For games or applications that have emergent scenes (e.g.
procedurally generated), or just with large numbers of
permutations of circumstance, the game state data, being
descriptive of the current (or typically upcoming/expected)
scene, may describe a situation for which an NPLM has not
yet been created.

In this case, the NPLM associated with a game state
closest to the transmitted game state can be duplicated and
treated as a partially trained NPLM. This NPLM may then
be trained on the new scene, either at the server (if the client
entertainment device uploads images rendered by other
means, such as ray tracing, as discussed elsewhere herein in
relation to failure modes), or at the client entertainment
device, either during game play for successive images
rendered by other means, or after game play is over (for
example as a background task, using a recording of the
rendered images within a circular image buffer, or saved
from such a buffer to storage for this purpose). The device
could also have a background training mode, with the game
or application rendering (but not necessarily displaying)
images of scenes for NPLM training as described elsewhere
herein, for example as a background task. Hence for
example a list of game states could be accumulated during
play, and then re-rendered (not necessarily at a playable
frame rate) for training purposes, for example when the
device was in a sleep mode.

In any case the newly trained NPLM(s) can then be stored
by the server (or peer or distributed storage) in association
with the game state data, so that the next time that game state
is encountered an NPLM is available.
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In this way, very quickly new NPLMs will be trained that
fill in any unanticipated gaps within the existing suite of
NPLMs. Typically this process may occur during QA testing
or alpha or beta releases of a game, but can also be used
when a game is released to conventional users.

This may be beneficial not just because a large number of
users may result in yet further game states being encoun-
tered, but because many games allow for users to create their
own content; in these circumstances NPLMs for example
already trained on materials and objects selectable by users
in a creative mode may be cloned and used to generate
NPLMs for their new scenes and environments. Alterna-
tively entirely new NPLMs can be trained on images from
these creations, either at the server or client device, and
either at runtime or subsequently (for example, based on a
seed NPLM). It will be appreciated that at runtime, the
training may result in additional computational overheads,
and so in some cases it may be preferable to use the recorded
images when the game or application is no longer requiring
most of the devices computational resources (e.g. after the
game or application has been stopped).

It will be appreciated that, as discussed elsewhere herein
in relation to specific example of variable lights and
dynamic objects, the outputs from NPLMs for adjacent
game states could be blended when at or near the boundary
of such game states. Typically the relative contribution of
each NPLM would be a function of the proximity of the
boundary between game state, whether than boundary is a
location, a time, or (as per the previous examples) a state of
light or a property of a particular object. This approach
provides a smooth transition between NPLMs for different
game states, and may avoid noticeable changes in rendering
behaviour between successive NPLMs, if it exists.

It will be appreciated that the above discussions for
streaming, training, and/or blending NPLMs also apply
where in practice the NPLM actually refers to several
contributing NPLMs, for example for diffuse and specular
image components.

Hence where a corresponding NPLM is available to
download/stream the above technique results in a form of
just-in-time delivery of relevant NPLMs for use during the
rendering of scenes, thereby removing the overhead associ-
ated with storing a plurality of NPLMs for a plurality of
circumstances that any one player of the game is unlikely to
encounter. Meanwhile where the corresponding NPLM is
not available or the download is too slow, the system can fail
over to an alternative rendering technique (see below) and/or
train a new NPLM (for example seeded from a closely
corresponding NPLM) based on images for the game state
that is missing a corresponding NPLM. This can be done
during runtime if resources permit, or afterwards using a
recording of footage generate in that game state if resources
otherwise do not permit, or at the server. The newly trained
NPLM is then available when that same game state is
subsequently encountered by the same or any other user.

Failure Modes

The NPLMs as described herein generate values that,
when combined with a respective distribution function and
typically then also in combination with contributions from
other NPLMs (e.g. for diffuse and specular components),
generate a pixel value for an image that is a computationally
efficient approximation of a ray traced pixel value for that
image.

Hence in general it is preferable to use one or more
NPLMs to render the scene/object/material as appropriate,
as long as this remains computationally efficient, and the
resulting approximation is good enough.
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However, there can be cases where one or both of these
conditions are not met.

In particular, the distribution functions (BSDF, BRDF and
BTDF) described herein typically assume a non-zero
amount of light scattering, with specular scattering being
more direction dependent than diffuse scattering (which can
be assumed to be a perfect or uniform scatter).

Furthermore, this scatter serves to visually conceal, within
the collective pixel results of successive runs of the NPLMs,
approximation errors within the model, so that particularly
for diffuse contributions, but also for specular contributions,
there is an elevated error tolerance due to the nature of the
materials being modelled.

However, for mirror-like surfaces (which can also include
glass, which is typically an 8% mirror and 92% transmitter),
these have little or no scatter; as a result errors within the
resulting image are more apparent, both to the user and also
in terms of the error values generated during training, in turn
making training more difficult.

As noted elsewhere herein, optionally NPLMs can be
made larger to model more difficult lighting conditions, for
example by using a larger NPLM for specular contributions
than diffuse contributions to the same scene. This principle
extends to potentially using a larger NPLM for mirror-like
reflective surfaces, in order to provide the resources required
to adequately model the lighting response.

Hence for a given NPLM that may be adequate for diffuse
or specular contributions, it may be that it does not comprise
sufficient resources to adequately model the lighting condi-
tions for a mirror-like reflective surface to an acceptable
level of accuracy; meanwhile a sufficiently large NPLM may
take a long time to train to the desired accuracy, and also use
more memory and computational resources at runtime.

Hence depending on the preferred maximum size and
computational limits of the NPLMs used, there is a point on
a line between a purely diffuse surface and a purely reflec-
tive surface at which the specular scattering becomes small
enough (e.g. narrow enough or directional enough) that the
approximation provided by the NPLM may no longer be
good enough.

Similarly, depending on the desired accuracy of the
approximation, there is also a point on the same line where
the NPLM needed to achieve that accuracy exceeds a
maximum budget for memory or computational load, if such
a budget exists.

Meanwhile, by contrast, mirror-like surfaces are relatively
straightforward to render using ray tracing precisely because
there is little or no scattering. As a result ray traced rendering
of mirror-like surfaces can have a relatively low computa-
tional cost compared to other ray tracing.

Hence for a threshold degree of reflectivity at a scene
surface position (with a perfect mirror being at one extreme
and hence typically above the threshold), it may be prefer-
able not use NPLMs to generate pixels for that position, but
instead use ray tracing (or optionally another rendering
technique such as existing non-ray-traced rendering meth-
ods). As noted above the reason could be due to insufficient
accuracy of the NPLM, relative computational cost of the
NPLM(s), or a mixture of both.

Above this threshold, it may therefore be preferable to use
ray tracing for the corresponding pixel, or any other suitable
approximate approach, as an alternative or ‘failure mode’.

Referring back to the example car in FIG. 2, the virtual
chrome on the front grille of the car is more mirror-like than
the body, which in turn is more reflective than the wheels or
wheel rims, or the seat.
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Hence for the purposes of explanation, we can state as an
example that the chrome on the front grille of the car is
sufficiently reflective that an NPLM modelling that material
either does not meet an accuracy criterion set by a developer,
or to meet that accuracy criterion does not meet a memory
or computation budget, and hence the chrome radiator is a
candidate for failing over to conventional ray tracing or
some other alternative approach.

It will be appreciated that typically the degree of reflec-
tivity will be consistent for a given material in a scene—in
this case the chrome. As a result a first option is to use a
material ID or a value associated with such an ID to indicate
whether to use an NPLM or an alternative technique such as
ray-tracing for any pixel corresponding to that material.

This material ID can be the same as the material ID
discussed elsewhere herein with which a value was associ-
ated indicating how diffuse or specular the material surface
is. In that example, a notional range between 0 for com-
pletely diffuse and 1 for a mirror reflection was suggested.
Hence in this case any material ID with an associated value
above a predetermined threshold of, as a non-limiting
example, 0.95 could be considered a candidate for this
fail-over approach. In this case if NPLMs are trained on a
per-material basis, then optionally an NPLM may not be
trained for this material at all. Alternatively when an NPLM
is trained on an object or scene comprising multiple mate-
rials (as in the example car), then the material ID and value
associated with a surface position can be looked up to decide
whether to use the NPLM or an alternative technique; hence
in this case the NPLM would get used for everything except
the chrome grille, and possibly the steering wheel.

It will be appreciated that rather than having an associated
value, a flag could be incorporated into the material 1D; for
example a lowest or highest significant bit (or any prede-
termined bit) could be used within an ID number to signify
that the material should or should not use an NPLM, and
hence whether to fail over to an alternate rendering
approach.

Whilst a material ID has been described, it will be
appreciated that other corresponding IDs may be consis-
tently associated with a particular surface position, such as
a cluster ID or object ID, or an ID specific to use or non-use
of machine learning systems such as NPLMs for rendering.
Hence alternatively or in addition optionally a reflection
value or flag may be associated with such an alternative ID.

It will be appreciated however that some techniques
described herein do not require a material or other corre-
sponding ID, and hence some implementations may not use
(or may not wish to use) such IDs.

Hence alternatively or in addition, other mechanisms for
determining whether a surface position in the scene should
be rendered using NPLMs or an alternative can be consid-
ered.

Firstly, the distribution function associated with a surface
position (e.g. the BSDF, BRDF, BTDF or other distribution
function) can be considered indicative of how mirror-like
the surface position is. Consequently a distribution function
indicating a threshold degree of mirror-like reflectance, or
associated with an element of the scene having such a
threshold degree of mirror-like reflectance, can be identified
as indicative that the surface position should not be rendered
with an NPLM but instead with another technique.

Similarly, the convergence rate of an NPLM and/or its
eventual loss/error function performance when being trained
may be taken as an indication of the accuracy of the result;
if the error or loss function for the output of a given NPLM
associated with a given surface position takes more than a
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threshold number of training cycles to converge on a thresh-
old value, or alternatively or in addition if (optionally
despite an overall threshold value for the entire scene being
reached) the error or loss function for a given surface
position never reaches of falls below a threshold value, then
this indicates that the NPLM should not be used for that
surface position.

Hence based on the training behaviour of an N PLM,
certain surface positions (or materials with a material ID
associated with that surface position) would not be rendered
by NPLM but instead using an alternative technique. In this
case a flag or value could be embedded or associated with a
material 1D, the associated distribution function, or a value
characterising the surface or its position, as appropriate.

Meanwhile, alternatively or in addition a sample sub-set
of pixels in an image or part thereof may be test-rendered
using multiple techniques. For example between 0.1%, 1%
or 10% of pixels in an image may be rendered using ray
tracing and using one or more NPLMs. The sample may be
random, or, to simplify tracking, a regular pattern (e.g. one
pixel in every 3x3, 4x4, 8x8 or 16x16 square).

The computational load of the candidate techniques could
be compared; if the NPLM uses fewer resources, it may be
selected for the rest of the image or the part thereof being
evaluated (the part may correspond to an arbitrary or pre-
selected text portion of the image, or an object or material
within the image).

Similarly the accuracy of the candidate techniques could
be compared; assuming that the ray-trace is accurate, then if
the NPLM result is within a threshold difference of the ray
traced version it may be considered acceptable (typically
also in conjunction with confirmation that it uses fewer
computational resources).

In either case, one of the sample pixels tested can then
contribute to the final image; typically the sample pixel
generated using the selected technique, so as to be consistent
with its neighbours. Hence for example even if a ray-traced
pixel is more accurate, if NPLM has been chosen then the
NPLM pixel may be used.

The remaining pixels may then be rendered using the
chosen approach.

It will be appreciated that the above techniques can
optionally be combined as suitable. Hence for example a
material ID or associated value, or a distribution function,
may be used to determine what pixels or areas of the image
to sample for a test between an NPLM and an alternative
technique. Conversely such tests, for example during devel-
opment rather than at runtime for an end-user, or the training
behaviour of an NPLM, may be used to identify materials or
distribution functions for which it is preferable not to use an
NPLM.

Hence by use of any suitable combination of the above
techniques, all or part of a given image may fail over from
using one or more NPLMs to an alternative rendering
technique such as ray tracing, when the accuracy of the
NPLM(s) other their computational or memory costs mean
it is preferable to do so, optionally signalled by values or
flags associated with a material ID or distribution function
for a given surface position, and/or in response to test
renders of a subset of pixels.

As a separate consideration to the failure modes discussed
above, alternatively or in addition another failure mode may
be considered as follows.

As noted previously herein, an NPLM may be trained for
variable object states and variable lighting states.

In such circumstances, in addition to outputting the
learned quantity as described elsewhere herein, the NPLM
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can also output a confidence metric. This confidence metric
indicates the degree to which the object’s current state,
and/or the lighting’s current state, as appropriate can be
adequately modelled by the NPLM.

The confidence in the model may dip for a variety of
reasons. Firstly, the NPLM may be constrained, either in
terms of size (e.g. either a practical maximum size has been
reached, or a size has been selected for other reasons), or in
terms of training (for example due to a large number of
permutations of both camera position and object state and/or
lighting state); and as a result of the constraint(s), the output
of the NPLM may not be adequate in some circumstances.

Secondly, the object state may be unpredictable; for
example whilst an object may move along a predetermined
path for which training images can be generated, the game
may require the object to divert from that path if the user
stands in it, or placed an object in the path as part of the
game. This may result in changes in local lighting conditions
that have not been specifically provided during training.
Whilst the NPLM, like other machine learning systems, can
typically generalise outside its direct training examples, the
more the new scene diverges from experience the less
acceptable the results might be. Similarly a lighting state
may be interactive, for example when a door is opened into
a lit environment, or when an object is a light source itself.

The confidence metric output by the NPLM (for example,
a fourth output node of the NPLM to accompany the three
RGB values of the learned quantity) can be trained by
comparing the current learned output of the NPLM during
training with the training target; the difference, if any,
between these values is the effective error or cost function.
For the output RGB values, the corrections for improving
these values will be fed back to the NPLM for the respective
outputs.

In parallel, a value indicative of the acceptability or
confidence of those outputs can be provided as a target value
for the confidence metric output of the NPLM (e.g. the
fourth output value). This trains the NPLM to provide an
estimate of its own accuracy/acceptability/confidence in its
outputs.

The nature of the accuracy/acceptability/confidence
depends upon how the error or cost function is represented
by this fourth target value. For example, the value could
saturate at 1 for errors above a first threshold (e.g. the
threshold of minimum acceptability), and progress down to
0, either linearly or non-linearly, for errors at or below a
second threshold (including down to a threshold of zero), so
that the value only gave an accuracy, acceptability, or
confidence score below 1 for outputs that were already close
to accurate or acceptable (where close is defined by the first
threshold). This gives good discriminatory capabilities to the
NPLM rather than trying to model a whole range of possible
errors within the output. It will be appreciated that ‘1’ and
‘0’ above are purely illustrative values.

In an alternative example, the value could be binary, with
‘1’ as acceptable and ‘0’ as unacceptable, again based on a
threshold set by the trainer. The NPLM will then model an
internal representation of the acceptability threshold. The
binary value could be a hard binary (e.g. a Heaviside
function) or a soft binary (e.g. a sigmoidal or ramp function).

The value could be based on the error in just the current
contributing values (i.e. the vales currently output by the
NPLM), or may comprise a component reflecting the overall
or average error fora number of values (e.g. for values within
a threshold distance of the current surface position in the
scene, or values for the image as a whole). The value could
alternatively or in addition comprise a component that is a
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moving average of N prior current values. Each of these
optional additional components provide the NPLM with
information about its more general performance at the task
for the current image.

The threshold for acceptability (or minimum acceptabil-
ity) may be set by the trainer of the NPLM (e.g. the
developer) and/or may be a default or pre-set threshold.

Using this confidence metric, the NPLM can thus learn to
estimate the accuracy (or acceptability) of its own output
when an error value is not available, e.g. at runtime.

Accordingly, when the output of the NPLM confidence
metric does not reach a predetermined value (e.g. a threshold
value, which may be different from the acceptability or
minimum acceptability threshold values above), this can
indicate the NPLM’s own assessment that its output is not
acceptable for use.

In this case, the system can then fail over to an alternative
rendering scheme such as ray tracing or a more conventional
rendering technique, for the particular pixel to which the
NPLM is contributing values.

In the case where the NPLM indicates a low confidence
(or equivalently poor accuracy or acceptability), this means
that the NPLM has already performed the processing nec-
essary to generate the learned quantity for its contribution to
the current pixel; consequently in this case it is becomes a
net overhead to the eventual rendering of the pixel by other
means.

Hence if an object in the scene has entered a state that the
NPLM estimates it will have difficulty with, or similarly a
lighting condition has entered a state that the NPLM esti-
mates it will have difficulty with, it is likely that a significant
proportion of NPLM outputs will have a low confidence/
accuracy/acceptability rating.

Consequently, optionally where an NPLM generates a
threshold number of low confidence/accuracy/acceptability
estimates, it is no longer used and the system fails over to an
alternative rendering scheme.

This approach may be applied for the whole of a material,
or the whole of an object, or the whole of a scene.

It will also be appreciated that where a given pixel is
generated based on the contributions of several NPLMs, it
may only require one NPLM to generate a low confidence/
accuracy/acceptability value to have that pixel replaced with
an alternative render, and similarly optionally only one
NPLM to generate a threshold number of such values to
have the system fail over to the alternative rendering
scheme.

To facilitate this approach, an NPLM may be used to
render an image starting with test renders; for example on a
regular distribution (e.g. one in 8x8 or one in 16x16 pixels)
within an image, or for a specific object or material in the
rendered scene. If the NPLM generates a threshold number
of'low confidence/accuracy/acceptability estimates (e.g. val-
ues not satisfying a threshold value) during these test
renders, it may be suspended for that image, object, or
material as appropriate, and then test again for the next
image, object, or material. In the latter cases, the subsequent
object or material may be in the same rendered image.

In this way it is possible to quickly and efficiently detect
when an NPLM evaluates itself to be producing unaccept-
able results, and replace the NPLM with an alternative
rendering scheme for the relevant pixel, material, or object
within a rendered image, or the entire rendered scene in a
rendered image, as desired.

As noted above the alternative rendering scheme may be
ray tracing or a conventional rendering process, but alter-
natively it may be a different NPLM; for example when
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objects move in a complex path, two or more NPLMs may
be trained on respective parts of the path, typically with
some overlap of the path between them, and so when the
confidence metric of a current NPLM starts to indicate a
confidence below a handover threshold value, that NPLM
can we swapped out for another that has been trained on the
new object positions.

As noted above a failure mode of the types described
herein may also be invoked when a downloaded or streamed
NPLM is not available (or is not received in time for use).
Such a failure mode may also trigger a training step, and/or
mark part of a buffered video stream for use in subsequent
training.

Such a failure mode may also trigger a change to the
definition of ‘anticipated game state’, for example causing
not merely an adjacent game state to be downloaded, but
also game states at one or more remove, to account for
possible download delays. Hence for example if a user
appears to be traversing from environment portion 5 to
environment portion 6, the failure mode may also request
download of one or more NPLMs for environment portion
7.

SUMMARY

Referring now to FIG. 9, in a summary embodiment of the
description, an image rendering method for rendering a pixel
at a viewpoint comprises the following steps, for a first
element of a virtual scene having a predetermined surface at
a position within that scene.

In a first step s910, provide the position and a direction
based on the viewpoint to a machine learning system pre-
viously trained to predict a factor that, when combined with
a distribution function that characterises an interaction of
light with the predetermined surface, generates a pixel value
corresponding to the first element of the virtual scene as
illuminated at the position, as described elsewhere herein.

In a second step $920, combine the predicted factor from
the machine learning system with the distribution function to
generate the pixel value corresponding to the illuminated
first element of the virtual scene at the position, as described
elsewhere herein.

And, in a third step s930, incorporate the pixel value into
a rendered image for display, as described elsewhere herein.
The image may then be subsequently output to a display via
an A/V port (90).

It will be apparent to a person skilled in the art that one
or more variations in the above method corresponding to
operation of the various embodiments of the method and/or
apparatus as described and claimed herein are considered
within the scope of the present disclosure, including but not
limited to that:

a respective machine learning system is trained for each

of a plurality of contributing components of the image
(e.g. diffuse, specular, coat, etc), a respective distribu-
tion function is used for each of the plurality of
contributing components of the image, and the respec-
tive generated pixel values are combined to create the
pixel value incorporated into the rendered image for
display, as described elsewhere herein;

the respective distribution function is one or more

selected from the list consisting of a bidirectional
scattering distribution function, a bidirectional reflec-
tance distribution function, and a bidirectional trans-
mittance distribution function, as described elsewhere
herein;
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the machine learning system is a neural network, an input
to a first portion of the neural network comprises the
position, and an input the a second portion of the neural
network comprises the output of the first portion and
the direction, as described elsewhere herein;
in this instance, an activation function of the first
portion is different to an activation function of the
second portion, as described elsewhere herein;
in this case, the activation function of the first portion
is a ReLU function and the activation function of
the second portion is a sin function, as described
elsewhere herein;
in this instance, the cost function of the neural network
is based on a difference between the output of the
second portion and a value derived from a ray-traced
version of the pixel for a training image on which an
inverse combination with the distribution function
has been performed, as described elsewhere herein;
in this instance, the cost function for the network is
back-propagated though both the second and first
portions during training, as described elsewhere
herein;
in this instance, the neural network is a fully connected
network, as described elsewhere herein;

the cost function of the machine learning system is based

on a difference between the output of the machine
learning system and a value derived from a ray-traced
version of the pixel for a training image on which an
inverse combination with the distribution function has
been performed, as described elsewhere herein; and

the machine learning system is selected and loaded into a

memory used by a graphics processing unit based on
the same asset identification scheme used for selecting
and loading a texture for the first element of the scene.

Next, referring to FIG. 10, in another summary embodi-
ment of the description, an image rendering method for an
entertainment device (focusing on downloading/streaming
NPLMs to save on local storage and/or memory manage-
ment) for rendering a pixel at a viewpoint, comprises the
following steps.

For a first element of a virtual scene, having a predeter-
mined surface at a position within that scene, a first step
s1010 comprises obtaining a machine learning system pre-
viously trained to predict a factor that, when combined with
a distribution function that characterises an interaction of
light with the predetermined surface, generates a pixel value
corresponding to the first element of the virtual scene as
illuminated at the position, as described elsewhere herein.

This step in turn comprises several sub-steps.

In a first sub-step s1012, the obtaining step comprises
identifying a current or anticipated state of an application
determining the virtual scene to be rendered, as described
elsewhere herein.

In a second sub-step s1014, the obtaining step comprises
requesting a download of a machine learning system corre-
sponding to the current or anticipated state, from among a
plurality of machine learning systems corresponding to a
plurality of states of the application, accessible via a remote
server (e.g. either downloaded from the server or pointed to
by the server), as described elsewhere herein.

In a third sub-step s1016, the obtaining step comprises
downloading the requested machine learning system (e.g.
via the remote server), as described elsewhere herein.

A second step s1020 then comprises providing the posi-
tion and a direction based on the viewpoint to the machine
learning system, as described elsewhere herein.
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A third step s1030 then comprises combining the pre-
dicted factor from the machine learning system with the
distribution function to generate the pixel value correspond-
ing to the illuminated first element of the virtual scene at the
position, as described elsewhere herein.

Then a fourth step s1040 comprises incorporating the
pixel value into a rendered image for display, as described
elsewhere herein.

Again it will be apparent to a person skilled in the art that
one or more variations in the above method corresponding
to operation of the various embodiments of the method
and/or apparatus as described and claimed herein are con-
sidered within the scope of the present disclosure, including
but not limited to that:

the current or anticipated state of the application com-
prises a virtual location, as described elsewhere herein;

the current or anticipated state of the application com-
prises one or more selected from the list consisting of
a notional time within the virtual scene, a lighting
condition, and a state of a dynamic object, as described
elsewhere herein;

the requesting step comprises formulating a file name or
file location of the machine learning system based upon
the current or anticipated state of the application, as
described elsewhere herein;

the requesting step comprises requesting a plurality of
machine learning systems respectively corresponding
to a plurality of anticipated states of the application, as
described elsewhere herein;

a state of the application is treated as anticipated if the
current application state is within a threshold of a
boundary with that state, as described elsewhere herein;

responsive to the proximity of the current application state
to a boundary between two or more application states,
the outputs of the corresponding two or more machine
learning systems are blended, as described elsewhere
herein;

if upon request no machine learning system corresponds
to the current or anticipated state, the method com-
prises selecting a machine learning system closely
corresponding to the current or anticipated state, and
training a copy of the selected machine learning system
on image data corresponding to the current or antici-
pated state, as described elsewhere herein;
in this case, optionally the step of training comprises

uploading image data from the entertainment device
to the remote server, training the copy of the selected
machine learning system at the remote server, and
associating the trained copy with the current or
anticipated state, as described elsewhere herein;
alternatively in this case, optionally the step of training
comprises downloading the copy of the selected
machine learning system from the remote server,
training the copy of the selected machine learning
system at the entertainment device, uploading the
trained copy from the entertainment device to the
remote server, and associating the trained copy with
the current or anticipated state, as described else-
where herein;
in this latter instance, optionally the training is
performed during operation of the application
based on image data rendered by the application
using an alternative rendering method, as
described elsewhere herein;
similarly in this latter instance, optionally the train-
ing is performed separately to the operation of the
application based on image data obtained from an



US 11,908,066 B2

35

image buffer used to record video clips of ren-
dered image data, as described elsewhere herein;
and

the step of incorporating the pixel value into a rendered

image for display comprises using respective machine
learning systems that have each been trained for one of
a plurality of contributing components of the image,
using a respective distribution function for each of the
plurality of contributing components of the image, and
combining the respective generated pixel values to
create a final combined pixel value incorporated into
the rendered image for display, as described elsewhere
herein.

It will be appreciated that the above methods may be
carried out on conventional hardware suitably adapted as
applicable by software instruction or by the inclusion or
substitution of dedicated hardware.

Thus the required adaptation to existing parts of a con-
ventional equivalent device may be implemented in the form
of'a computer program product comprising processor imple-
mentable instructions stored on a non-transitory machine-
readable medium such as a floppy disk, optical disk, hard
disk, solid state disk, PROM, RAM, flash memory or any
combination of these or other storage media, or realised in
hardware as an ASIC (application specific integrated circuit)
or an FPGA (field programmable gate array) or other con-
figurable circuit suitable to use in adapting the conventional
equivalent device. Separately, such a computer program may
be transmitted via data signals on a network such as an
Ethernet, a wireless network, the Internet, or any combina-
tion of these or other networks.

Referring to FIG. 1, the methods and techniques described
herein may be implemented on conventional hardware such
as an entertainment system 10 that generates images from
virtual scenes. An example of such an entertainment system
10 is a computer or console such as the Sony® PlayStation
5 ® (PS5).

The entertainment system 10 comprises a central proces-
sor 20. This may be a single or multi core processor, for
example comprising eight cores as in the PS5. The enter-
tainment system also comprises a graphical processing unit
or GPU 30. The GPU can be physically separate to the CPU,
or integrated with the CPU as a system on a chip (SoC) as
in the PS5.

The entertainment device also comprises RAM 40, and
may either have separate RAM for each of the CPU and
GPU, or shared RAM as in the PS5. The or each RAM can
be physically separate, or integrated as part of an SoC as in
the PS5. Further storage is provided by a disk 50, either as
an external or internal hard drive, or as an external solid state
drive, or an internal solid state drive as in the PSS5.

The entertainment device may transmit or receive data via
one or more data ports 60, such as a USB port, Ethernet®
port, WiFi® port, Bluetooth® port or similar, as appropriate.
It may also optionally receive data via an optical drive 70.

Interaction with the system is typically provided using
one or more handheld controllers 80, such as the
DualSense® controller in the case of the PS5.

Audio/visual outputs from the entertainment device are
typically provided through one or more A/V ports 90, or
through one or more of the wired or wireless data ports 60.

Where components are not integrated, they may be con-
nected as appropriate either by a dedicated data link or via
a bus 100.

Accordingly, in a summary embodiment of the present
description, an entertainment device (such as a Sony®
Playstation 5 ® or similar), comprises the following.
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Firstly, a graphics processing unit (such as GPU 30,
optionally in conjunction with CPU 20) configured (for
example by suitable software instruction) to render a pixel at
a viewpoint within an image of a virtual scene comprising a
first element having a predetermined surface at a position
within that scene, as described elsewhere herein.

Secondly, a machine learning processor (such as GPU 30,
optionally in conjunction with CPU 20) configured (for
example by suitable software instruction) to provide the
position and a direction based on the viewpoint to a machine
learning system previously trained to predict a factor that,
when combined with a distribution function that character-
ises an interaction of light with the predetermined surface,
generates a pixel value corresponding to the first element of
the virtual scene as illuminated at the position, as described
elsewhere herein.

The graphics processing unit is configured (again for
example by suitable software instruction) to combine the
predicted factor from the machine learning system with the
distribution function to generate the pixel value correspond-
ing to the illuminated first element of the virtual scene at the
position, as described elsewhere herein.

Further, the graphics processing unit is also configured
(again for example by suitable software instruction) to
incorporate the pixel value into a rendered image for display,
as described elsewhere herein.

It will be appreciated that the above hardware may
similarly be configured to carry out the methods and tech-
niques described herein, such as that:

the entertainment device comprises a plurality of machine

learning processors (e.g. respective processors, theads
and/or shaders of a GPU and/or CPU) running respec-
tive machine learning systems each trained for one of
a plurality of contributing components of the image
(e.g. diffuse, specular, coat, etc), where a respective
distribution function is used for each of the plurality of
contributing components of the image, and the graphics
processing unit is configured (again for example by
suitable software instruction) to combine the respective
generated pixel values to create the pixel value incor-
porated into the rendered image for display, as
described elsewhere herein; and

the or each machine learning system is a neural network,

where an input to a first portion of the neural network
comprises the position, and an input the a second
portion of the neural network comprises the output of
the first portion and the direction.

Similarly, in another summary embodiment of the present
invention, an entertainment device (such as a Sony® Play-
station 5 ® or similar), comprises the following.

Firstly, a graphics processing unit (such as GPU 30,
optionally in conjunction with CPU 20) configured (for
example by suitable software instruction) to render a pixel at
a viewpoint within an image of a virtual scene comprising a
first element having a predetermined surface at a position
within that scene, as described elsewhere herein.

Secondly, a requesting processor (such as CPU 20) con-
figured (for example by suitable software instruction) to
obtain a machine learning system previously trained to
predict a factor that, when combined with a distribution
function that characterises an interaction of light with the
predetermined surface, generates a pixel value correspond-
ing to the first element of the virtual scene as illuminated at
the position, as described elsewhere herein.

The requesting processor is further configured (for
example by suitable software instruction) to obtain the
machine learning system by identifying a current or antici-
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pated state of an application determining the virtual scene to
be rendered, requesting a download of a machine learning
system corresponding to the current or anticipated state,
from among a plurality of machine learning systems corre-
sponding to a plurality of states of the application, accessible
via a remote server, and then download (or equivalently
stream) the requested machine learning system (e.g. via the
remote server), as described elsewhere herein.

Thirdly, a machine learning processor (such as GPU 30,
optionally in conjunction with CPU 20) configured (for
example by suitable software instruction) to provide the
position and a direction based on the viewpoint to the
machine learning system, as described elsewhere herein.

The graphic processing unit is further configured (for
example by suitable software instruction) to combine the
predicted factor from the machine learning system with the
distribution function to generate the pixel value correspond-
ing to the illuminated first element of the virtual scene at the
position, as described elsewhere herein, and the graphic
processing unit is also further configured to incorporate the
pixel value into a rendered image for display, as described
elsewhere herein.

It will be appreciated that the above hardware may
similarly be configured to carry out the methods and tech-
niques described herein.

The foregoing discussion discloses and describes merely
exemplary embodiments of the present invention. As will be
understood by those skilled in the art, the present invention
may be embodied in other specific forms without departing
from the spirit or essential characteristics thereof. Accord-
ingly, the disclosure of the present invention is intended to
be illustrative, but not limiting of the scope of the invention,
as well as other claims. The disclosure, including any readily
discernible variants of the teachings herein, defines, in part,
the scope of the foregoing claim terminology such that no
inventive subject matter is dedicated to the public.

The invention claimed is:
1. An image rendering method for an entertainment
device for rendering a pixel at a viewpoint, comprising the
steps of:
for a first element of a virtual scene, having a predeter-
mined surface at a position within that scene,

obtaining a machine learning system previously trained to
predict a factor that, when combined with a distribution
function that characterises an interaction of light with
the predetermined surface, generates a pixel value
corresponding to the first element of the virtual scene as
illuminated at the position;

providing the position and a direction based on the

viewpoint to the machine learning system;
combining the predicted factor from the machine learning
system with the distribution function to generate the
pixel value corresponding to the illuminated first ele-
ment of the virtual scene at the position; and

incorporating the pixel value into a rendered image for
display;
wherein the obtaining step comprise:
identifying a current or anticipated state of an application
determining the virtual scene to be rendered;

requesting a download of a machine learning system
corresponding to the current or anticipated state, from
among a plurality of machine learning systems corre-
sponding to a plurality of states of the application,
accessible via a remote server; and

download the requested machine learning system.
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2. An image rendering method according to claim 1 in
which the current or anticipated state of the application
comprises a virtual location.

3. An image rendering method according to claim 1 in
which the current or anticipated state of the application
comprises one or more of:

i. a notional time within the virtual scene;

ii. a lighting condition; and

iii. a state of a dynamic object.

4. An image rendering method according to claim 1 in
which the requesting step comprises formulating a file name
or file location of the machine learning system based upon
the current or anticipated state of the application.

5. An image rendering method according to claim 1 in
which the requesting step comprises requesting a plurality of
machine learning systems respectively corresponding to a
plurality of anticipated states of the application.

6. An image rendering method according to claim 1, in
which a state of the application is treated as anticipated if the
current application state is within a threshold of a boundary
with that state.

7. An image rendering method according to claim 1, in
which, responsive to the proximity of the current application
state to a boundary between two or more application states,
the outputs of the corresponding two or more machine
learning systems are blended.

8. An image rendering method according to claim 1, in
which if upon request no machine learning system corre-
sponds to the current or anticipated state, the method com-
prises:

selecting a machine learning system closely correspond-

ing to the current or anticipated state; and

training a copy of the selected machine learning system

on image data corresponding to the current or antici-
pated state.

9. An image rendering method according to claim 8, in
which the step of training comprises:

uploading image data from the entertainment device to the

remote server;

training the copy of the selected machine learning system

at the remote server; and

associating the trained copy with the current or antici-

pated state.

10. An image rendering method according to claim 8, in
which the step of training comprises:

downloading the copy of the selected machine learning

system from the remote server;

training the copy of the selected machine learning system

at the entertainment device;

uploading the trained copy from the entertainment device

to the remote server; and

associating the trained copy with the current or antici-

pated state.

11. An image rendering method according to claim 10, in
which the training is performed during operation of the
application based on image data rendered by the application
using an alternative rendering method.

12. An image rendering method according to claim 10, in
which the training is performed separately to the operation
of the application based on image data obtained from an
image buffer used to record video clips of rendered image
data.

13. The image rendering method of claim 1, in which the
step of incorporating the pixel value into a rendered image
for display comprises:



US 11,908,066 B2

39

using respective machine learning systems that have each
been trained for one of a plurality of contributing
components of the image;
using a respective distribution function for each of the
plurality of contributing components of the image; and

combining the respective generated pixel values to create
a final combined pixel value incorporated into the
rendered image for display.
14. A non-transitory, computer readable storage medium
containing a computer program comprising computer
executable instructions, which when executed by a computer
system, causes the computer system to perform an image
rendering method for an entertainment device for rendering
a pixel at a viewpoint by carrying out actions, comprising:
for a first element of a virtual scene, having a predeter-
mined surface at a position within that scene,

obtaining a machine learning system previously trained to
predict a factor that, when combined with a distribution
function that characterises an interaction of light with
the predetermined surface, generates a pixel value
corresponding to the first element of the virtual scene as
illuminated at the position;

providing the position and a direction based on the

viewpoint to the machine learning system;
combining the predicted factor from the machine learning
system with the distribution function to generate the
pixel value corresponding to the illuminated first ele-
ment of the virtual scene at the position; and

incorporating the pixel value into a rendered image for
display;

wherein the obtaining step comprise:

identifying a current or anticipated state of an application

determining the virtual scene to be rendered;
requesting a download of a machine learning system

corresponding to the current or anticipated state, from

among a plurality of machine learning systems corre-
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sponding to a plurality of states of the application,
accessible via a remote server; and

download the requested machine learning system.

15. An entertainment device, comprising a graphics pro-
cessing unit configured to render a pixel at a viewpoint
within an image of a virtual scene comprising a first element
having a predetermined surface at a position within that
scene;

a requesting processor configured to obtain a machine
learning system previously trained to predict a factor
that, when combined with a distribution function that
characterises an interaction of light with the predeter-
mined surface, generates a pixel value corresponding to
the first element of the virtual scene as illuminated at
the position;

a machine learning processor configured to provide the
position and a direction based on the viewpoint to the
machine learning system;

the graphic processing unit being configured to combine
the predicted factor from the machine learning system
with the distribution function to generate the pixel
value corresponding to the illuminated first element of
the virtual scene at the position; and

the graphic processing unit being configured to incorpo-
rate the pixel value into a rendered image for display;
and

wherein the requesting processor is configured to:

identify a current or anticipated state of an application
determining the virtual scene to be rendered;

request a download of a machine learning system corre-
sponding to the current or anticipated state, from
among a plurality of machine learning systems corre-
sponding to a plurality of states of the application,
accessible via a remote server; and

download the requested machine learning system.
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