
(19) United States
(12) Patent Application Publication

GOLAS et al.

US 20150379692A1

(10) Pub. No.: US 2015/0379692 A1
(43) Pub. Date: Dec. 31, 2015

(54)

(71)

(72)

(21)

(22)

(60)

RECONSTRUCTION OF MISSING DATA
PONT FROM SPARSE SAMPLES DURING
GRAPHICS PROCESSING USING CUBC
SPLINE POLYNOMALS

Applicant: Samsung Electronics Co., Ltd.,
Suwon-si (KR)

Inventors: Abhinav GOLAS, Mountain View, CA
(US); Karthik RAMANI, San Jose, CA
(US); John W. BROTHERS, Calistoga,
CA (US)

Appl. No.: 14/743,746

Filed: Jun. 18, 2015

Related U.S. Application Data
Provisional application No. 62/018,221, filed on Jun.
27, 2014, provisional application No. 62/018,228,
filed on Jun. 27, 2014, provisional application No.

Generating pre-Computed weights for each missing pixel location

62/018.254, filed on Jun. 27, 2014, provisional appli
cation No. 62/018,274, filed on Jun. 27, 2014.

Publication Classification

(51) Int. Cl.
G06T5/00 (2006.01)
G06T L/60 (2006.01)
G06T 15/80 (2006.01)
G06T 7/40 (2006.01)

(52) U.S. Cl.
CPC G06T5/001 (2013.01); G06T 7/408

(2013.01); G06T 1/60 (2013.01); G06T 15/80
(2013.01)

(57) ABSTRACT
A graphics system includes a reconstruction unit that utilizes
higher order polynomials, such as cubic splines, to recon
struct missing pixel data. The computational work to perform
interpolation with higher order polynomials, such as cubic
splines, is reduced by pre-calculating weights for each sparse
sample pattern. The pre-calculated weights may be stored as
stencils and used during runtime to perform interpolation.

1805
in a Sample pattern

1810
Storing A Stencil Containing the Pre-Computed Weights

1815
Accessing the Stencil During Runtime

Using the Stencil To Perform Cubic Spline Interpolation 1820

Patent Application Publication Dec. 31, 2015 Sheet 1 of 19 US 2015/0379692 A1

:
?al

to
s to S.
O

3

s

Patent Application Publication Dec. 31, 2015 Sheet 2 of 19 US 2015/0379692 A1

s

5. s Y M

li : O
: 2 : 5 v | g E | g si S a Da is d h- a d 5 E6 N | 5 | ESN

S S- X V EE I eg
: s r

A

52 a 3 is EO E9
| 3 || to S is X

S
O.

cy O
D S a D as

N c/ X S. x
C. & 9

cy 2 c.
is c is d 5 S. ls 3 35 ". 85

> to e to

US 2015/0379692 A1 Dec. 31, 2015 Sheet 3 of 19 Patent Application Publication

"" |
s||e?3C] JO?eJºuÐ9 ?IduueS CIV

Patent Application Publication Dec. 31, 2015 Sheet 4 of 19 US 2015/0379692 A1

Advection Intermediate Adaptive
Speed Speed Desampling
Range Range Speed Range(s)
- I -

O Kstat Krast Kfast2

FIG. 4

US 2015/0379692 A1 Dec. 31, 2015 Sheet 5 of 19 Patent Application Publication

US 2015/0379692 A1 Dec. 31, 2015 Sheet 6 of 19 Patent Application Publication

S??duuleS 9 || S??duuleS 3 S??duuleS #7

£ ?uueu - Z ?uu?eu H I ?Uueu-O ?Uueu

Patent Application Publication Dec. 31, 2015 Sheet 7 of 19 US 2015/0379692 A1

Select Tiles in Current Frame For Sub-Sampling At Reduced
Average Sampling Rate

Select Sampling Pattern from a set of sampling patterns to be
varied over previous frame

Perform Rendering and Reconstruction of Frame

Move On To Next Frame

FIG. 6B

Patent Application Publication Dec. 31, 2015 Sheet 8 of 19 US 2015/0379692 A1

700

Advect: copy pixel data from X(n-1) to X(n)

710 705

x X x x .

x X x x .
Advect Render

FIG. 7A

Patent Application Publication Dec. 31, 2015 Sheet 9 of 19 US 2015/0379692 A1

Determine if Speed Range For Tile Within Quasi-Static Range

Determine Pixel Locations of object in previous frame

Perform Advection Discrepancy Check

ReuSe Selected Fraction Of Pixels in Tile FrOm Previous Frame

Render Remaining Pixels

FIG. 7B

Patent Application Publication Dec. 31, 2015 Sheet 10 of 19 US 2015/0379692 A1

3

color(pixel c) = X w; X Color(pixel)
O

FIG. 8

Patent Application Publication Dec. 31, 2015 Sheet 11 of 19 US 2015/0379692 A1

Example Sampling Pattern For Interpolation. X Marks Rendered
Samples And Ols An Example Of An Interpolation Location

FIG. 9

Patent Application Publication Dec. 31, 2015 Sheet 12 of 19 US 2015/0379692 A1

Example Sampling Pattern For Interpolation in Which 8 samples
are rendered. X Marks Rendered Samples in first group of four

pixels And O Marks second group of rendered four pixels

FIG. 10

Patent Application Publication Dec. 31, 2015 Sheet 13 of 19 US 2015/0379692 A1

Determine if Speed Range For Tile Within Speed Range For
Sub-Sampling and Check For Edges

Determine Sub-Sampling Rate and Sample Pattern

Shade Sampled Pixels Of Tile

Perform Reconstruction (e.g., cubic spline interpolation)

FIG 11

Patent Application Publication Dec. 31, 2015 Sheet 14 of 19 US 2015/0379692 A1

Selecting a tile for sparse sampling

Selecting a sample pattern

Rendering pixels of sampled locations

Performing reconstruction of missing pixel data via cubic spline
interpolation based on pre-Computed weights

F.G. 12

Patent Application Publication Dec. 31, 2015 Sheet 15 of 19 US 2015/0379692 A1

Generating pre-computed weights for each missing pixel location
in a Sample pattern

Storing A Stencil Containing the Pre-Computed Weights

Accessing the Stencil During Runtime

Using the Stencil To Perform Cubic Spline Interpolation

F.G. 13

Patent Application Publication Dec. 31, 2015 Sheet 16 of 19 US 2015/0379692 A1

Advection vs. Spline Reconstruction

s S

SS Š Š&
S SS SS SS S

s s

S. SS

S s

Velocity=0 -> Advect Velocity= +0.5 X > Reconstruct

F.G. 14

Patent Application Publication Dec. 31, 2015 Sheet 17 of 19 US 2015/0379692 A1

FIG. 15A

s
s
s
X
X
X
&

s
&

FIG. 15B

Patent Application Publication Dec. 31, 2015 Sheet 18 of 19 US 2015/0379692 A1

Rendering a blue Cube

Left Eye Image 1 Right Eye Image

Patent Application Publication Dec. 31, 2015 Sheet 19 of 19 US 2015/0379692 A1

1705

FIG. 17

US 2015/0379692 A1

RECONSTRUCTION OF MISSING DATA
POINT FROM SPARSE SAMPLES DURING
GRAPHCS PROCESSING USING CUBC

SPLINE POLYNOMALS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. The present application claims the benefit of U.S.
Provisional Patent Application No. 62/018,221, filed Jun. 27.
2014: U.S. Provisional Patent Application No. 62/018,228,
filed Jun. 27, 2014; U.S. Provisional Patent Application No.
62/018,254 filed Jun. 27, 2014; and U.S. Provisional Patent
Application No. 62/018.274, filed Jun. 27, 2014, the contents
of each of which are hereby incorporated by reference.

FIELD OF THE INVENTION

0002 An embodiment of the present invention is generally
related to techniques of performing reconstruction of missing
sample data during graphics processing. More particularly, an
embodiment of the present invention is directed to techniques
to interpolate missing pixel data.

BACKGROUND OF THE INVENTION

0003 FIG. 1 illustrates major portions of a graphics pipe
line 100 based on the OpenGL(R) 3.0 standard. An illustrative
set of stages includes a vertex shader operations stage 105, a
primitive assembly and rasterization stage 110, a fragment
pixel shader operations stage 115, a frame buffer stage 120,
and a texture memory 125. The pipeline operates to receive
Vertex data, shade vertices, assemble and rasterize primitives,
and perform shading operations on fragments/pixels.
0004 One aspect of the graphics pipeline 100 is that every
region of an image is rendered at the same minimum resolu
tion. In particular, in a conventional graphics pipeline a Sam
pling rate (average number of samples per pixel) is typically
at least one sample for every pixel of an image.
0005 One aspect of the conventional graphics pipeline is
that it is wasteful and requires more pixel shading operations
then desired. In particular, there is no automation in the
graphics pipeline to permit strategic choices to be automati
cally made to reduce a sampling rate below one sample per
pixel (Sub-sampling/de-sampling) in local regions of an
image. In the context of mobile devices this means that the
amount of power that is consumed in larger than desired.

SUMMARY OF THE INVENTION

0006. A graphics apparatus, system, and method is dis
closed that utilizes higher order polynomials, such as cubic
splines, to interpolate missing pixel data. The computational
effort to perform interpolation with higher order polynomials
is reduced by using pre-computed weights. The pre-com
puted weights may be calculated for each pixel location in a
sample pattern and stored as a stencil.
0007. One embodiment of a method includes providing a
set of pre-computed weights to perform cubic spline interpo
lation of missing pixel data. At least one tile of a graphics
image is selected to be sparsely sampled and a sample pattern
is selected to sparsely sample the at least one tile of the
graphics image. The pixel data is rendered for the sparsely
sampled at least one tile. At runtime reconstruction of missing
pixel data is performed for the sparsely sampled at least one

Dec. 31, 2015

tile using the pre-computed weights to perform cubic spline
interpolation of pixel color values as a weighted Sum of
known pixel color values.

BRIEF DESCRIPTION OF THE DRAWINGS

O008)
0009 FIG. 2 illustrates a graphics pipeline in accordance
with an embodiment of the present invention.
0010 FIG. 3 illustrates an adaptive desampling generator
in accordance with an embodiment of the present invention.
0011 FIG. 4 illustrates an example of pixel speed consid
erations in performing adaptive rendering in accordance with
an embodiment of the present invention.
0012 FIG. 5 is a flow chart illustrating rendering and
reconstruction options in accordance with an embodiment of
the present invention.
0013 FIG. 6A illustrates an example of dithering sam
pling patterns to reduce visual artifacts in accordance with an
embodiment of the present invention.
0014 FIG. 6B illustrates a general method of performing
dithering of sample patterns in accordance with an embodi
ment of the present invention.
0015 FIG. 7A illustrates an example of advection in
accordance with an embodiment of the present invention.
0016 FIG. 7B illustrates a general method of performing
advection in agraphics system in accordance with an embodi
ment of the present invention.
0017 FIG. 8 illustrates an example of using pre-computed
weights to perform cubic spline interpolation in accordance
with an embodiment of the present invention.
0018 FIG. 9 illustrates an example of sampling pattern
related to considerations for determining pre-computed
weights in accordance with an embodiment of the present
invention.

0019 FIG. 10 illustrates an example of sampling pattern
related to considerations for determining pre-computed
weights in accordance with an embodiment of the present
invention.

0020 FIG. 11 illustrates a general method of adaptive
desampling in accordance with an embodiment of the present
invention.

0021 FIG. 12 illustrates a general method of performing
cubic spline interpolation in a graphics system in accordance
with an embodiment of the present invention.
0022 FIG. 13 illustrates a general method of performing
cubic spline interpolation in a graphics system in accordance
with an embodiment of the present invention.
0023 FIG. 14 illustrates an example of differences
between advection and spline reconstruction.
(0024 FIGS. 15A and 15B illustrates an example in which
different regions of a frame are adaptively rendered using
different approaches based on a magnitude of per-pixel Veloc
ity.
0025 FIG.16 illustrates an example of using advection for
Stereoscopic rendering in accordance with an embodiment of
the present invention.
0026 FIG. 17 illustrates adaptive rendering applied to
foveated rendering in accordance with an embodiment of the
present invention.

FIG. 1 illustrates a conventional graphics pipeline.

US 2015/0379692 A1

DETAILED DESCRIPTION

Example Graphics Pipeline System Overview
0027 FIG. 2 illustrates a graphics pipeline 200 in accor
dance with an embodiment of the present invention. The
graphics pipeline 200 may be implemented using a graphics
processing unit (GPU) including graphics hardware. The
graphics pipeline 200 includes several new stages and func
tions to support automatically determining regions of the
frame that do not require all of the pixels in individual tiles
(blocks of pixels) to be sampled and rendered in order to
achieve an acceptable viewing experience for a human user.
As used in this application, a tile is a contiguous set of pixels
in an image, typically in block having a square shape. The
term frame is commonly used to describe a set of operations
performed to render an image that is read by a display at a
preset frequency. However, the term frame is also used to
refer to the rendered image resulting from the set of opera
tions used to render the image.
0028. In one embodiment, an adaptive desampling (AD)
sample generator stage 205 is provided to Support adjusting a
sampling pattern in local regions of an image, where the local
region is a tile corresponding to a block of pixels (e.g., a 4x4
block of pixels, 16x16, or other size). Desampling is the
reduction in the number of samples per tile that are sampled
and rendered in the current frame. For example, desampling
may include sampling and rendering on average less than one
sample per pixel in a tile, and thus may also be described as
sub-sampling. To maintain full image resolution, two differ
ent approaches may be used to obtain values of missing pixel
data. A reconstruction and advection stage 210 Supports two
different options to reduce the number of pixels that need to
be sampled and rendered in a tile while maintaining visual
quality for a user. The reconstruction and advection stage 210
includes a reconstruction Submodule 211 and an advection
submodule 212. In one embodiment, a first option to reduce
the number of pixels rendered in a tile is reconstruction via
higher order polynomial interpolation and filtering in a tile to
generate missing pixel data for that tile. A second option to
reduce the number of pixels rendered in a tile is advection,
which includes identifying locations of one or more pixels in
a previous frame and reusing pixels from the previous frame
for a selected fraction of pixels in the tile.
0029. In one embodiment, pixel data of frame “n” 215 of
objects from frame in 220 is saved for possible reuse of pixel
data in the next frame “n+1. Additionally, vertex coordinate
data is saved for use in determining a frame-to-frame motion
vector of pixels. In one embodiment, the pixel data and vertex
coordinates from frame n are stored in a buffer memory for
use in the next frame n+1.
0030 FIG. 3 illustrates an AD sample stage 205 in accor
dance with an embodiment of the present invention. In one
embodiment, desampling decisions are made in local tile
regions based on Velocity and edge detection (e.g., edge
detection in depth/Z). A velocity buffer 310 receives the per
vertex coordinates from the current fame and from the previ
ous frame. The velocity of an individual pixel may be deter
mined by comparing the vertex coordinates of the pixel of the
current frame with the vertex coordinates of the pixel in the
previous frame. In one embodiment, a forward splatting
approach is used by rendering a “velocity image' with primi
tives from the scene, and using a per-vertex Velocity as a
vertex attribute. Many graphics applications render a Z-buffer
as a technique to reduce the number of pixel shader instances

Dec. 31, 2015

during rendering passes. A velocity buffer/image may be
rendered with a Z-buffer. During the Z-pass, where the
Z/depth buffer is generated, in addition to splatting and updat
ing the depth, the Velocity is also updated at each pixel.
Rendering the velocity buffer results in per-pixel velocity
values in Screen space, the magnitude of which corresponds
to a speed. A tile. Such as a 4x4 tile, thus has a pixel speed
associated with each pixel. The tile thus has a maximum pixel
speed, mean pixel speed, median pixel speed, and minimum
pixel speed. In one embodiment, the mean pixel speed is used
to make desampling decisions, although more generally the
maximum pixel speed or average pixel speed could also be
used.

0031. Visual artifacts are less perceptible to the human eye
in moving objects. Thus, one factor in whether or not a sam
pling rate may be reduced in a tile is whether the speed is
above a threshold speed.
0032. However, certain types of visual artifacts tend to be
more noticeable in edges in color. Strictly speaking, detecting
color edges in a final image is not possible without rendering
the image first. However, it is possible to detect, prior to
rendering, a high likelihood of edges in color. Thus, in one
embodiment, an edge detection module 305 detects the like
lihood of edges in color in local blocks of pixels. That is,
regions are detected in which there is a high likelihood of
edges in color by assuming that there is a high likelihood of
color variation across objects. In one embodiment, Z values
from the rasterization of the current frame are analyzed to
perform edge detection. A Laplace edge detector may be
defined as stencil centered on a current pixel. Any pixel in the
tile is marked as having an edge if the Laplacian of the
Z-buffer at the pixel is greater than a threshold value multi
plied by the Z-value at the pixel. This defines a one bit value
per tile. More generally, any type of edge detection may be
used.

0033. In one embodiment, an edge mask is generated for
individual tile and an edge state bit may be generated to
indicate whether or notatile includes at least one edge. In one
implementation the edge mask is generated for each 4x4
block of pixels although more generally other tile sizes may
be used. This information on velocity and the presence of an
edge is used by a sample generator 315 to determine a sample
pattern for a tile. In one embodiment, a full sampling resolu
tion is utilized if an edge is detected. If no edge is detected and
a tile has a speed greater than a first threshold speed a first
reduced sampling rate is used. If no edge is detected and a tile
has a speed above a second threshold speed a second reduced
sampling rate is used. Other additional optional factors could
also be considered in making a sampling rate decision. In one
embodiment, the sample pattern options include full sample
resolution (at least one sample per pixel), one-half resolution
(one-half of the pixels sampled in each tile), and one-quarter
resolution (one in four pixels sampled in each tile). More
generally, a plurality of sampling rates may be provided that
are controlled by threshold parameters for each sample rate.
Additionally, the sample rates selected may be optimized for
the block/tile size selected. Thus, while an illustrative
example includes three sample rates of 4, 8, and 16 samples
for 4x4 blocks, the approach may be varied based on block
size or other considerations to have a set of sampling rates
each controlled by threshold parameters for each sample rate.
Thus, the number of sampling rates, N. may be more than
three, depending on implementation details, such as block/
tile size and other factors.

US 2015/0379692 A1

0034. In one embodiment, a dithering module 320 is pro
vided to adjust the sampling pattern from a selection of Sam
pling patterns having the same effective sampling rate. The
dithering may be a repetitive sequence (e.g., Sample pattern 1.
sample pattern 2, sample pattern 3, Sample pattern 4) or
include aspects of randomization.
0035. The dithering of the sampling pattern by the dither
ing module 320 reduces the visual perception of sampling
artifacts by human users. The human eye and the human brain
starts to blend images into a video sequence when the rate is
faster than a biological threshold. That is, when images vary
at a rate faster than a biological threshold, the human eye
blends the images across time and perceives them as a con
tinuously varying sequence, akin to a video. There is some
contention about what the exact number of the biological
threshold is. At frame rates of about 12 frames per second, the
human eye and brain begins to see a sequence of images that
is moving instead of individual images. However, somewhat
higher frame rates of about 15 frames per second are required
to experience the beginnings of relatively fluid (non-jerky)
movement. However, the nature of the underlying images is
also an additional factor for whether or not a human observer
perceives a fluid motion at a given frame rate. Thus, the
human eye will tend to average out visual artifacts that are
dithered at frames rates at about 12 frames per second and
higher. In one embodiment, the dithering is performed Such
that every pixel is rendered at least fifteen frames per second,
which is faster than the human eye can discern individual
images. At 60 frames per second, dithering the sample pattern
in a tile every four frames corresponds to rendering each pixel
at least fifteen frames per second.

Exemplary Motion Speed Regimes

0036 FIG. 4 illustrates examples of speed regimes in
accordance with an embodiment of the present invention. The
motion is the combination of object motion and camera
motion. The speed corresponds to the magnitude of the
motion vector in a tile. In this example, the speed is an
indicator of the number of samples needed in a block of pixels
to have an acceptable visual quality. If the motion if above a
certain threshold speed K for a block of pixels, it is an
indication that the number of samples may be decreased (e.g.,
eight samples in a 4x4 tile) because the human eye cannot
perceive the high frequencies in a moving object. If the speed
is above an even higher threshold speed K2, it is an indi
cator that the number of samples in a tile may be reduced even
further (e.g., four samples in a 4x4 tile). On the other hand, if
the motion is very slow in a tile, below a speed K (or if there
is no motion), then there may be an opportunity to reuse pixel
data from the previous frame (e.g., render eight samples in a
4x4 tile and reuse eight color values from the previous frame
via advection). The reuse of pixel data from the previous
frame also requires that the graphics state does not change
from the previous frame to the current frame, where the
graphics state includes the shaders used, the constants pro
vided to the shaders, and the geometry provided to the frames.
There will be a speed regime where full sampling resolution
is required. As an example, there may be an intermediate
speed regime between K, and K in which a full Sam
pling resolution is required to achieve a high visual quality.
Additionally, there may be scenarios in which Super-Sam
pling is applied to individual tiles. As an illustrative example,
an option may be provided to Support Super-sampling of a
Z-edge case.

Dec. 31, 2015

0037. In one embodiment, desampling (changing the
sample pattern to reduce the sampling rate below one sample
per pixel) is permitted if the speed is above a first threshold
speed K. In one embodiment, the sampling rate is permit
ted to be reduced further if the speed exceeds a second thresh
old speed K2. A decision whether to perform desampling
may also be dependent on other conditions, such as whether
or not an edge is detected.
0038. In one embodiment, motion in the camera screen
space is obtained by differencing vertex position data from
the current frame and the previous frame. A speed regime of
a tile is classified on a tile-by-tile basis by calculating a
magnitude of a motion vector based on how much a pixel of
an object has moved from one frame to another. As previously
discussed, in one embodiment, splatting is used in the Z-pass
to determine per-pixel motion vectors. In one embodiment,
speed thresholds are defined and used as inputs to make
decisions on whether adaptive desampling or advection are to
be used for a current frame. One speed regime is a quasi-static
regime in which an object moves slowly enough that pixels of
the object are unlikely to differ significantly from their pre
vious image counterparts. If the speed is within the quasi
static speed limit, a decision may be made whether advection
may be used to reuse pixels from a previous frame. In one
embodiment, an upper bound on a quasi-static speed, K is
that a pixel in a given tile (tile m) in frame in remains in the
same tile in frame n+1. In one embodiment, if the speed is
below K, additional checks are performed to determine if
pixels from the previous frame may be used in the current
frame. This may include a check that advection produced an
acceptable result in a previous frame. Additionally, a check
may be performed to check that the pixel values for the tile in
the current frame are consistent with a small movement over
the previous frame, which may be described as a discrepancy
check. An advection discrepancy state bit may be associated
with a tile to indicate that it has passed one or more discrep
ancy checks to confirm that the tile is suitable for advection of
at least some of the pixel data.
0039 FIG. 5 is a flowchart illustrating an example of adap
tive rendering choices based on speed, edge detection, dith
ering, spline reconstruction and advection. Some conven
tional graphics pipeline features are omitted for clarity. FIG.
5 illustrates a specific example in which 4x4 tiles are used in
accordance with an embodiment of the present invention. An
initial pre-pass may be performed followed by a color pass to
render pixel data. The scene geometry 505 of an image is
provided by the application. The Z-buffer is computed 510
and edge detection is performed 515. Motion vectors are
computed 520 for the scene geometry. The per-pixel motion
vector is computed 525. The range of motion in a tile is
computed 530. Based upon this information, a decision 535 is
made whether to: 1) render 4, 8, or 16 samples in a 4x4 block
535 and perform interpolation or 2) to render 8 and advect 8.
Dithering 540 is performed for the sampling patterns. Spline
reconstruction 545 is utilized to reconstruct pixel data. If
advection is used, then advection 550 is used to obtain 8 of the
pixel values and the rest are obtained by rendering.

Exemplary Sampling Patterns and Dithering
0040 FIG. 6A illustrates an example of sampling patterns
and dithering. In this example the tile size is a 4x4 block of
pixels. Full resolution corresponds to 16 samples. Half-reso
lution (8 samples) and one-quarter resolution (four samples)
permits variations in the pattern of the samples. Thus, for the

US 2015/0379692 A1

case of 8 samples, the arrangement of the samples can have a
first sample pattern, second sample pattern, third sample pat
tern, etc. Having pre-defined sampling patterns Supports dith
ering of the sample pattern for temporal color averaging. The
pre-defined sampling patterns are selected to rotate the sam
pling so that every pixel location is rendered once every few
frames. The dithering of the sample pattern can be achieved
by different techniques. In one embodiment, the choice of
sample pattern in an individual frame can be selected by the
dithering module 320 in a sequence by a modulo k counter.
Dithering sample positions in time over multiple frames
makes rendering errors harder for a human observer to see. In
one embodiment, the sample patterns are selected so that each
pixel is guaranteed to be rendered at least once every kframes,
where (nn)/k is the minimum number of samples per nxn
tile. In another embodiment, temporal dithering is imple
mented using a stochastic approach to select the sample pat
tern.

0041 FIG. 6B illustrates a method of dithering in accor
dance with an embodiment of the present invention. Tiles in a
current frame are selected 605 for sub-sampling at a reduced
average sampling rate. For each tile, a sampling pattern is
selected 610 to be varied over the previous frame. Rendering
and reconstruction is performed 615. If additional frames are
to be rendered, the process continues.

Advection Example

0042 FIG. 7A illustrates an example of advection. In a tile
region, Such as a 4x4 tile 700, advection including copying
pixel data from pixel at a given location in the previous frame
to the corresponding location in the current frame. For
example, an individual object (e.g., a ball slowly moving
across the ground) may move across the screen Such that
every pixel of the ball moves with a velocity. In this example
there is a high level of temporal coherence between the pixels
of the slowly moving ball from one frame to another. In this
case, the changes are primarily motion. By determining the
motion of individual pixels of the ball across frames, pixel
data may be copied across frames. In this example, the motion
is slow enough that pixel data can be mapped form a current
pixel location to a pixel in the same tile in a previous frame.
The position of a pixel in a previous frame may be computed
as X(n-1)-X-mv(X), where mV(x) is the motion vector. As a
result this permits pixel data to be copied from X (n-1) to X(n).
That is, if the motion of the pixel is small between frames then
the pixel location in the current frame may be projected back
to a pixel in the previous frame and the pixel data from the
previous frame copied. Bilinear or any higher order interpo
lation may be used if X(n-1) has decimal components.
0043. In the example of FIG. 7A, advection is mixed with
rendering. In one embodiment, advection is used for half of
the pixels 705 in a tile and the other half of the pixels are
rendered 710. Mixing advection and rendering in a single
frame reduces visual artifacts associated with performing
only advection. That is, it minimizes the likelihood of visual
errors due to advection detectable by typical human viewers.
In conjunction with temporal dithering, it ensures that errors
do not accumulate over time, thus reducing the likelihood of
visual errors being noticed by typical human viewers. While
a 1:1 ratio of rendered pixels and advected pixels is one
option, more generally other ratios could be utilized.

Dec. 31, 2015

0044 As previously discussed, in one embodiment, a
maximum speed is used as condition for whether advection is
permitted. In one embodiment, the criteria is that the thresh
old speed is low enough that local deformation of pixel posi
tions in a small neighborhood can be classified as a rigid
transformation in which the change in the positions of the
pixels can be represented using one of translation and one
rotation for an entire set of pixels to within a desired accuracy.
For example, the maximum speed for advection can be that
the magnitude of the pixel motion is below a threshold of k
pixels. While it is possible that rigid transforms can occur at
any speed, the likelihood decreases with increasing speed
such that a speed threshold may be used as a criterion for
when advection is likely to be beneficial. A discrepancy check
may be performed for individual tiles to determine whether or
not advection produces acceptable results. This discrepancy
check can be performed in a current frame and written out as
1-bit value for each tile to let the next frame make a determi
nation whether or not to disable advection in the neighbor
hood of a tile failing the discrepancy check if the check
indicates that the advected results were inaccurate. That is, in
this implementation advection is performed for a tile inframe
in and the discrepancy check is performed in frame n and
consumed by frame n+1. Frame n+1 then uses the discrep
ancy check (computed in frame n) to determine whether or
not to perform advection in a neighborhood about a tile in
frame n+1. If the discrepancy check in frame n indicates the
advection result was acceptable, advection is allowed in
frame n+1. If not, the advection is turned off for a selected
number of frames. The discrepancy check is a check based on
whether or not there is a significant change in pixel values of
a tile inconsistent with the underlying assumptions of valid
advection. If the pixels of an object are slowly moving then a
tile is not expected to change significantly between two
frames. Thus, if the state of the tile changes significantly the
discrepancy check fails. A tile state discrepancy bit (e.g., 0 or
1) may be used to indicate whether the discrepancy check
passes. The degree to which changes in tile state are permitted
may be determined empirically or heuristically based, for
example, in the tradeoffs between the computational benefits
of advection and minimizing the appearance of visual arti
facts.

0045. Other ways of performing discrepancy checks may
be utilized. There are computational benefits to performing
advection in a tile of current frame n, performing a discrep
ancy check, and then utilizing the discrepancy check to deter
mine whether or not to perform advection in frame n+1.
However, it will be understood that an alternate implementa
tion of the discrepancy check may be utilized in which the
discrepancy check is performed in frame n and used to deter
mine whether or not to utilize advection in frame n to reuse
pixels from the previous frame.
0046. The accuracy can be improved, if desired, using
various enhancements. In one embodiment, back and forth
error correction and compensation (BFECC) is used. BFECC
utilized the position determined from Semi-Lagrangian
advection and adds the velocity at that coordinate to obtain a
new position in the current frame. If there is no error, this
coordinate should be the same as the original position (x, y).
Otherwise by subtracting half of this error from (x-Vy-v,)
the second-order accurate estimate of the position is obtained,
which is accurate to half a pixel, assuming that the Velocity is
pixel accurate.

US 2015/0379692 A1

0047 FIG. 7B illustrates a general method of performing
advection in accordance with an embodiment of the present
invention. A determination is made 1405 if the tile is suitable
for advection. The suitability is based on whether the speed
range is within the quasi-static range, augmented by passing
any additional discrepancy checks. If the tile is suitable for
advection, then a determination is made in block 1410 of
corresponding pixel locations in the previous frame. A
selected fraction of pixels are reused 1420 from a tile of a
previous fame. The remaining pixels are rendered 1425.

Image Interpolation and Reconstruction Examples
0048 FIG. 8 illustrates an example of image interpolation
and reconstruction of pixel color values for the situation of
desampling. In one embodiment, a weighted Summation of
color values is used to reconstruct unrendered pixels. For a
given choice of the weight function w, a normalized set of
weights can be precomputed for each configuration of pixels
arising from a particular sampling pattern. For example, if 4
pixels are rendered in a 4x4 block, the remaining 12 pixels
can be expressed using a weighted Sum of rendered pixels
within the same block, as well as its neighboring blocks. In
addition, since the set of possible pixel configurations in the
neighboring blocks is restricted by the set of sampling pat
terns, for this case, all possible weight sets can be precom
puted.
0049 Traditionally, a GPU utilizes bilinear interpolation.
However, bilinear interpolation has various drawbacks. In
one embodiment higher order polynomials having an order of
at least three. Such as piece-wise cubic polynomials (also
known as cubic splines), are used for efficient reconstruction
of sparse samples.
0050 Higher order polynomials, such as cubic splines, are
capable of mapping a larger frequency spectrum than bilinear
interpolation and provide a greater fidelity of data recon
structed from Sub-Sampled blocks. Additionally, when using
bilinear interpolation, samples are preferred on both sides of
a pixel, as one-sided linear extrapolation is likely to be inac
curate, as well as exceed the color spectrum range. In contrast,
higher-order polynomials using a wider Support (>1 pixel
away) are more likely to accurately approximate the func
tional form of rendered image data. While a variety of higher
order polynomials could be used, a cubic spline has continu
ity characteristics that are Superior to those of quadratic poly
nomials. Owing to the edge-detection step performed before
desampling, a tile undergoing reconstruction is unlikely to
have sharp discontinuities, where higher-order polynomial
reconstruction may perform poorly.
0051 One aspect of performing sub-sampling is that there

is a sparse sample data at runtime. In an individual block
region, Such as a kxk pixel region, desampling may result in
a Subset of pixels being rendered, such as four or eight pixels
from a 4x4 block of pixels. The missing pixel data needs to be
reconstructed. A consequence of having predetermined
sample patterns is that there is a finite set of possible sample
locations. This permits a fixed set of local stencils to be
created prior to run time, stored, and used to reconstruct pixel
data using cubic splines or other higher order polynomials.
Conventional approaches to evaluating higher order polyno
mials inhardware are computationally expensive. In contrast,
in embodiments of the present invention the use of a fixed set
of pre-computed stencils eliminates the computational over

Dec. 31, 2015

head, during runtime, of performing a conventional higher
order polynomial evaluation. The use of a static set of samples
allows the determination of possible configurations of pixels
that may need to be reconstructed, and thus the stencils that
are required may be pre-computed.
0052. In one embodiment, the higher order polynomial
interpolation is implemented as static stencil operations using
pre-computed weights. In one embodiment, a table of stencils
is stored and made available for spatial reconstruction to a
reconstruction submodule 211 of the reconstruction and
advection stage 210. The table of stencils provides weights
based on known sample positions. In one embodiment, the
table of stencils has all of the stencil weights pre-computed
for each pixel location within a defined sample pattern. The
pre-computed weights permit the higher order polynomial
reconstruction to be performed using static stencil operations.
0053. In one embodiment, a set of 5x5 stencils is deter
mined for all possible pixel locations in a tile (e.g., a 4x4 tile)
that may need to be interpolated during runtime. Each 5x5
stencil is computed for each pixel location and neighbor
configuration. Each stencil provides a list of weight values
and corresponding locations of sample points. The stencils
are stored in a constant memory table available for recon
struction purposes to the reconstruction submodule 211 of
reconstruction and advection stage 210. In one embodiment,
at run-time, for each pixel that must be interpolated, an index
is computed into this table using the pixel coordinates and
sampling mask. In one implementation each stencil is
addressed using: (a) the pixel’s location within a tile, and (b)
the sampling mask used for rendering. Thus, if dithering is
employed, the stencil that is selected will depend on which
sample pattern is selected for a given degree of Subsampling.
0054. In one embodiment, the higher order polynomial
interpolation is performed using a multiplier/adder to accu
mulate the products of weights and sample color values. The
accumulated value is then normalized by division, which in
many cases can be performed by a bit shift for integerformats,
or by subtraction for floating point formats. Thus, the use of
stencils with pre-computed weights permits the higher order
polynomial interpolation to be calculated at run time with
comparatively little computational effort.
0055 An example of a cubic spline functions used for
reconstruction and to compute pixel color values as a
weighted Sum of known pixel color values is as follows:
0056. In one embodiment, a formula expressing a
weighted Sum to determine a pixel color value is based
weights w() as follows:

tableFilled
c(i, j) = X w(i-a, -i- b)

a,befiiled

0057 Where c (i,j) is the color value at pixel location (i,j),
w() is the two dimensional spline function and "Filled' is the
set of pixels that were rendered. The two-dimensional spline
function is the product of two one-dimensional spline func
tions or W(i, j)k(i)k(), where the one dimensional spline
function k() is based on the cubic filter formula described in
the paper by Don P. Mitchell and Arun N. Netravali, “Recon
struction Filters in Computer Graphics. Computer Graphics,
Volume 22, Number 4, August 1988, pp. 221-228:

US 2015/0379692 A1

6
O

0058. The distances in the Mitchell and Netravali paper
are defined in a scaled pixel space:

0059 By restricting the relative positioning of sample
points, the weights and denominators can be pre-computed
into stencils. Because the spline function is defined in a
bounded fashion, Scaling of the magnitude of X can be used to
extend the functions to a desired support radius, Such as a 2
pixel Support radius.
0060 For a tile of size nxn, it is possible to arrange a kxk
square in (n/k)*(n/k) possible configurations. A sampling rate
of 4*s requires S squares, leading to (nn)/(kks) sampling
patterns.
0061 FIG. 9 illustrates an example of sampling pattern in
a 4x4 tile in which the Xs mark rendered samples and the O
marks an interpolation location. A 5x5 Stencil is used that is
centered at O. Assuming any access outside this 4x4 tile is
invalid, the stencil has 0 weights for any locations outside the
4x4 tile, which are removed from the stencil table. Assuming
the top left pixel to be (0, 0), the table entry then reads the
locations required as (0, 0), (2,0), (0,2), (2, 2), with appro
priate weights w0, will, w2, w8, and the normalization factor
w. The weighted Summation can then be computed as 1/w
(w0*c(0, 0)+w1*c(2,0)+w2*c(0, 2)+w3*c(2, 2)) for each
color component by using a multiply-and-accumulate opera
tion. However, more generally, the reconstruction is not lim
ited to one tile but a region of influence of a stencil may extend
to neighboring 4x4 blocks as well.
0062 Assuming a 5x5 stencil, there are 24 values in all to
be pre-computed (the center is always 0 since the pixel itself
has no color value). Of those, at most half can be rendered if
8 samples are used per 4x4 tile, leaving 12 values. In one
embodiment, each stencil is implemented to include a 4-bit
count of the number of non-zero weights, followed by 8-bit
weights stored in one chunk, followed by 2 chunks of 3-bit
coordinate offsets for the X and y coordinates relative to the
Center.

0063. In one embodiment, the stencils are stored in order
of the sampling patterns. In one embodiment the different
sampling patterns for the same sampling rate are rotations of
each other, so there are two sets of patterns. These can be
stored in row major order within a 4x4, with an index list to
point to the data for pixel (i,j). For rotations of the sampling
mask, the coordinates are transformed appropriately.
0064 Referring to FIG. 10, consider the case of a 4x4 tile
of pixels, in which 8 samples out of the possible 16 are
rendered. In this example, stencils are defined for each
unknown pixel given the weight function. These stencils can
be retrieved at runtime from a pre-defined set of stencils. For
the example case of cubic stencils with a Support radius of 2
pixels, these stencils would be of size 5x5 if no super-sam
pling is performed. If it is essential to restrict accesses to akxk
tile region, the stencils can be modified appropriately to have
0 weights for such pixels which fall outside the tile. It is

Dec. 31, 2015

if x < 1

otherwise

important to note that the number of samples does not need to
be less than the number of pixels. In regions where Super
sampling is desired for anti-aliasing, the number of Samples
may exceed the number of pixels, e.g. 32 samples for a 16
pixel 4x4 tile. Appropriate pre-computed stencils would be
added for those cases.
0065. In one embodiment, each sampling pattern is
defined as combination of sparse square patterns (e.g., four
samples to be rendered in a square pattern). Selecting square
patterns is useful in applications in which groups of four
pixels (quads) area default unit of processing. However, more
generally other arrangements of sampling positions could be
used in the sampling patterns. In one embodiment, the sample
patterns are squares of size 3x3 within a 4x4 tiles. Thus,
adjacent vertices are 2 pixels apart along each axis.
0066. In one embodiment, the same sampling pattern is
used for all regions of an individual frame that are sub
sampled at a given sampling rate. In this embodiment, the
same sampling pattern is used in all of the tiles Sub-sampled
at a given sample rate because this results in consistent spac
ing of sample positions within every frame, simplifying
reconstruction routines.
0067. In one embodiment, the sampling patterns are based
on quads to exploit Single instruction multiple data (SIMD)
processing units. Consistent spacing of samples provides
robust interpolation and aids in achieving full pixel resolution
in a final image.
0068 FIG. 11 illustrates a general method of adaptive
desampling and spline interpolation in accordance with an
embodiment of the present invention. A determination is
made 1005 if the speed range of the tile is within the speed
range for Sub-sampling and a check is made for the presence
of edges. A determination 1010 is made of the sub-sampling
rate and a sample pattern is chosen. The pixels of the tile are
shaded 1015 based on the sampling pattern. Reconstruction is
performed 1020 to interpolate missing pixel values, where
spline interpolation may be performed.
0069 FIG. 12 illustrates a method of performing cubic
spline interpolation in accordance with an embodiment of the
present invention. A tile is selected for sparse sampling 1105.
A sample pattern is selected 1110. Pixels are rendered 1115
for the sampled locations. Reconstruction is performed of
missing pixel data via cubic spline interpolation based on
pre-computed weights 1120.
(0070 FIG. 13 illustrates a method of utilizing stencils
containing pre-computed weights in accordance with an
embodiment of the present invention. Pre-computed weights
are generated for each missing pixel location in a sample
pattern 1205. A stencil containing the pre-computed weights
is stored 1210. The stored stencil is accessed during runtime
1215. The accessed stencil I used to perform cubic spline
interpolation 1220.
Example Comparison of Advection and Reconstruction
0071 FIG. 14 illustrates an example of aspects of advec
tion and reconstruction via cubic splines. The tile size is a 4x4

US 2015/0379692 A1

tile size. The pixel pattern in the previous frame is a check
erboard pattern. The rendered pixel values are denoted by an
R. In the example on the left, advection is performed to reuse
half of the pixel color data from the previous frame in a 4x4
tile. The velocity associated with the tile is very low and half
of the pixels are advected by copying them from pixel values
of the previous frame. Arrows are shown for four of the pixels
to indicate reuse of pixel data from the same tile in the pre
vious frame. In this case the color information is copied with
no bleeding of color. In the example on the right there is a
significant tile speed, corresponding to a half-pixel displace
ment per frame. In this example reconstruction is performed
based on cubic spline interpolation. The velocity along Xa 0.5
pixels leads to each rendered pixel having grey exactly half
way between black and white. The reconstructed pixels thus
have the same value. That is, the color values are correct, and
a full resolution render would also create the same values.

Automatic Tile-by-Tile Adaptive Rendering Example

0072 FIG. 15A illustrates an example of a frame in which
the scene has regions in which the pixel velocity differs from
other regions and some regions include color edges. As an
example, the scene may include a rider on a motorcycle as
well as stationary objects and quasi-stationary objects, such
as plants moving slowly in the wind. Thus, there are regions
that can be classified in different speed regimes. Conse
quently, as indicated by the boxes in FIG. 15B, different
regions of the scene have different pixel velocities, with some
of the regions providing different opportunities for adaptive
rendering. As a result, in an individual frame the system
automatically analyzes individual tiles and makes a determi
nation on a tile-by-tile basis whether to desample and perform
advection, desample and perform cubic spline interpolation,
or utilize a normal default sampling scheme. Individual deci
sions may also be made on a tile basis whether or not to
perform Super-sampling. As the system automatically per
forms this optimization, no special inputs from an application
developer are required, assuming relevant parameter values
are defined separately.

Stereoscopic Rendering Example

0073 Embodiments of the present invention may be used
to generate a single (non-stereoscopic) display. However, it
may also be applied to stereoscopic rendering for virtual
reality applications. Referring to FIG. 16, consider the case
where separate images are generated for each eye, corre
sponding to a left eye image and a right eye image. Advection
may be used to improve the efficiency of the stereoscopic
rendering. In one embodiment a left image is generated. A
translation motion, motion, is defined as the translation to
transform portions of the left-eye image to a right eye image.
In one embodiment, the sample generator decision making is
augmented to make a sampling decision for the right image to
attempt to advect pixel values from the left image. In one
embodiment, the sampling is Z-based and a test is performed
whether a minimum Z of the left image and right image are
greater than a threshold Z. If the min (Zleft, Zright)>Zthresh,
pixels are advected from the left frame to the right using the
motion. Otherwise rendering is based on the motion
based sampling rate. As illustrated in FIG. 11, this results in
the right eye image being a combination of advected pixels
from the left-eye image and rendered pixels.

Dec. 31, 2015

Foveated Rendering Using Adaptive Rendering

0074 FIG. 17 illustrates an embodiment in which adaptive
rendering is applied to foveated rendering. The structure of
the human retina of the eye has a fovea portion that provides
the highest visual acuity in a healthy human eye. The greatest
visual acuity of a healthy human eye is within a small cone of
angles and drops off with increasing angular distance. Fove
ated rendering renders higher detail near where the user is
looking and lowers the detail further from the focus point.
FIG. 17 illustrates a focal point (x,y) 1725. The sampling rate
is decreased with increasing radial distance from the focal
point (e.g., 1/(distance from the focal point). The decrease
may be performed in a stepwise fashion at specific radial
distance. For example, a specific number of samples may be
rendered in a circular region 1720 up to a radial distance ro
1715. A lower number of samples are rendered in the annular
region 1710 from ro to r1 1705. An even lower number of
samples are rendered in the region having a radial distance
greater than r1. As an illustrative example, 16 samples may be
rendered in the region between (x,y) and ro, 8 samples ren
dered in the region between rO and r1, and 4 samples in the
region beyond r1. More generally other radially varying Sam
pling functions may be used.
0075 While the invention has been described in conjunc
tion with specific embodiments, it will be understood that it is
not intended to limit the invention to the described embodi
ments. On the contrary, it is intended to cover alternatives,
modifications, and equivalents as may be included within the
spirit and scope of the invention as defined by the appended
claims. The present invention may be practiced without some
or all of these specific details. In addition, well known fea
tures may not have been described in detail to avoid unnec
essarily obscuring the invention. In accordance with the
present invention, the components, process steps, and/or data
structures may be implemented using various types of oper
ating Systems, programming languages, computing plat
forms, computer programs, and/or computing machines. In
addition, those of ordinary skill in the art will recognize that
devices, such as hardwired devices, field programmable gate
arrays (FPGAs), application specific integrated circuits
(ASICs), or the like, may also be used without departing from
the scope and spirit of the inventive concepts disclosed herein.
The present invention may also be tangibly embodied as a set
of computer instructions stored on a computer readable
medium, Such as a memory device.
What is claimed is:
1. A method of performing graphics processing, compris

ing:
selecting at least one tile of a graphics image to be sampled;
selecting a sample pattern to sample the at least one tile of

a graphics image;
rendering pixel data of the sampled at least one tile; and
performing, at runtime, reconstruction of missing pixel

data in the sampled at least one tile using cubic spline
interpolation.

2. The method of claim 1, wherein the cubic spline inter
polation is performed using pre-computed weights to com
pute pixel color values as a weighted Sum of known pixel
color values using cubic splines for reconstruction.

3. The method of claim 2, wherein the method further
comprises accumulating products of the pre-computed
weights and rendered color values with a multiplier/adder and
normalizing the accumulated product.

US 2015/0379692 A1

4. The method of claim 2, further comprising storing the
pre-computed weights of the sample pattern in a set of pre
computed Stencils.

5. The method of claim 4, wherein the set of pre-computed
stencils includes all of the pre-computed weights for each
location of missing pixel data in the sample pattern.

6. The method of claim 4, further comprising providing an
index into the pre-computed stencil.

7. The method of claim 1, wherein the sample pattern is
selected from a set of pre-defined sample patterns having the
same sample rate and each pre-defined sample pattern has an
associated set of pre-computed weights to perform cubic
spline interpolation for the selected sample pattern.

8. The method of claim 1, wherein the selecting at least one
tile of the graphics image to be sampled comprises analyzing
a scene and determining required sample rates in different
tiles of the image and selecting tiles requiring a lower Sam
pling rate to be sparsely sampled.

9. A method of performing graphics processing, compris
1ng:

providing a set of pre-computed weights to perform cubic
spline interpolation of missing pixel data;

Selecting at least one tile of agraphics image to be sampled;
Selecting the sample pattern to sample the at least one tile of

the graphics image; and
rendering pixel data of the sampled at least one tile;
performing, at runtime, reconstruction of missing pixel

data in the sampled at least one tile using the pre-com
puted weights to perform cubic spline interpolation of
pixel color values as a weighted Sum of known pixel
color values.

10. The method of claim 9, wherein the performing com
prises accumulating products of the pre-computed weights
and samples color values with a multiplier/adder and normal
izing the accumulated product.

11. The method of claim 9, wherein the pre-computed
weights are stored in a set of pre-computed stencils including
all of the pre-computed weights for each pixel location of the
sample pattern.

12. The method of claim 11, further comprising providing
an index into the set of pre-computed stencils.

13. The method of claim 9, wherein the sample pattern is
selected from a set of pre-defined sample patterns having the
same sample rate and further comprising selecting a pre
computed stencil having pre-computed weights stored for the
selected Sample pattern

Dec. 31, 2015

14. A graphics system including a graphics pipeline, com
prising:

a memory storing a set of pre-computed weights to com
pute pixel color values as a weighted Sum of known pixel
color values using cubic spline interpolation for recon
struction; and

a reconstruction Submodule configured to access the pre
computed weights from the memory and perform, at
runtime, reconstruction of missing pixel data in sampled
tiles using cubic spline interpolation.

15. The graphics system of claim 14 including a multiplier/
adder, wherein the reconstruction unit accumulates products
of the pre-computed weights and samples color values with
the multiplier/adder and normalizing the accumulated prod
uct.

16. The graphics system of claim 14, wherein the recon
struction is performed on a tile basis.

17. The graphics system of claim 16, wherein the pre
computed weights are stored as a set of stencils.

18. The graphics system of claim 17, wherein the set of
pre-computed stencils includes all of the pre-computed
weights for each pixel location of the sample pattern.

19. The graphics system of claim 14, wherein the graphics
system includes a set of sampling patterns having a reduced
average sampling rate and each respective sampling pattern
has a corresponding set of pre-computed stencils including
the pre-computed weights to perform cubic spline interpola
tion.

20. A method of performing graphics processing, compris
ing:

providing a set of pre-computed weights to perform higher
order polynomial interpolation of missing pixel data,
wherein the order of the polynomial is at least three:

selecting at least one tile of a graphics image to be sampled;
selecting the sample pattern to sample the at least one tile of

the graphics image:
rendering pixel data of the sampled at least one tile; and
performing, at runtime, reconstruction of missing pixel

data in the sampled at least one tile using the pre-com
puted weights to perform higher order polynomial inter
polation of pixel color values as a weighted Sum of
known pixel color values.

k k k k k

