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(57) ABSTRACT 
A graphics system includes a reconstruction unit that utilizes 
higher order polynomials, such as cubic splines, to recon 
struct missing pixel data. The computational work to perform 
interpolation with higher order polynomials, such as cubic 
splines, is reduced by pre-calculating weights for each sparse 
sample pattern. The pre-calculated weights may be stored as 
stencils and used during runtime to perform interpolation. 
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Select Tiles in Current Frame For Sub-Sampling At Reduced 
Average Sampling Rate 

Select Sampling Pattern from a set of sampling patterns to be 
varied over previous frame 

Perform Rendering and Reconstruction of Frame 

Move On To Next Frame 

FIG. 6B 
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Determine if Speed Range For Tile Within Quasi-Static Range 

Determine Pixel Locations of object in previous frame 

Perform Advection Discrepancy Check 

ReuSe Selected Fraction Of Pixels in Tile FrOm Previous Frame 

Render Remaining Pixels 

FIG. 7B 

  



Patent Application Publication Dec. 31, 2015 Sheet 10 of 19 US 2015/0379692 A1 

3 

color(pixel c) = X w; X Color(pixel) 
O 

FIG. 8 

  



Patent Application Publication Dec. 31, 2015 Sheet 11 of 19 US 2015/0379692 A1 

Example Sampling Pattern For Interpolation. X Marks Rendered 
Samples And Ols An Example Of An Interpolation Location 

FIG. 9 
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Example Sampling Pattern For Interpolation in Which 8 samples 
are rendered. X Marks Rendered Samples in first group of four 

pixels And O Marks second group of rendered four pixels 

FIG. 10 

  



Patent Application Publication Dec. 31, 2015 Sheet 13 of 19 US 2015/0379692 A1 

Determine if Speed Range For Tile Within Speed Range For 
Sub-Sampling and Check For Edges 

Determine Sub-Sampling Rate and Sample Pattern 

Shade Sampled Pixels Of Tile 

Perform Reconstruction (e.g., cubic spline interpolation) 

FIG 11 
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Selecting a tile for sparse sampling 

Selecting a sample pattern 

Rendering pixels of sampled locations 

Performing reconstruction of missing pixel data via cubic spline 
interpolation based on pre-Computed weights 

F.G. 12 
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Generating pre-computed weights for each missing pixel location 
in a Sample pattern 

Storing A Stencil Containing the Pre-Computed Weights 

Accessing the Stencil During Runtime 

Using the Stencil To Perform Cubic Spline Interpolation 
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RECONSTRUCTION OF MISSING DATA 
POINT FROM SPARSE SAMPLES DURING 
GRAPHCS PROCESSING USING CUBC 

SPLINE POLYNOMALS 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. The present application claims the benefit of U.S. 
Provisional Patent Application No. 62/018,221, filed Jun. 27. 
2014: U.S. Provisional Patent Application No. 62/018,228, 
filed Jun. 27, 2014; U.S. Provisional Patent Application No. 
62/018,254 filed Jun. 27, 2014; and U.S. Provisional Patent 
Application No. 62/018.274, filed Jun. 27, 2014, the contents 
of each of which are hereby incorporated by reference. 

FIELD OF THE INVENTION 

0002 An embodiment of the present invention is generally 
related to techniques of performing reconstruction of missing 
sample data during graphics processing. More particularly, an 
embodiment of the present invention is directed to techniques 
to interpolate missing pixel data. 

BACKGROUND OF THE INVENTION 

0003 FIG. 1 illustrates major portions of a graphics pipe 
line 100 based on the OpenGL(R) 3.0 standard. An illustrative 
set of stages includes a vertex shader operations stage 105, a 
primitive assembly and rasterization stage 110, a fragment 
pixel shader operations stage 115, a frame buffer stage 120, 
and a texture memory 125. The pipeline operates to receive 
Vertex data, shade vertices, assemble and rasterize primitives, 
and perform shading operations on fragments/pixels. 
0004 One aspect of the graphics pipeline 100 is that every 
region of an image is rendered at the same minimum resolu 
tion. In particular, in a conventional graphics pipeline a Sam 
pling rate (average number of samples per pixel) is typically 
at least one sample for every pixel of an image. 
0005 One aspect of the conventional graphics pipeline is 
that it is wasteful and requires more pixel shading operations 
then desired. In particular, there is no automation in the 
graphics pipeline to permit strategic choices to be automati 
cally made to reduce a sampling rate below one sample per 
pixel (Sub-sampling/de-sampling) in local regions of an 
image. In the context of mobile devices this means that the 
amount of power that is consumed in larger than desired. 

SUMMARY OF THE INVENTION 

0006. A graphics apparatus, system, and method is dis 
closed that utilizes higher order polynomials, such as cubic 
splines, to interpolate missing pixel data. The computational 
effort to perform interpolation with higher order polynomials 
is reduced by using pre-computed weights. The pre-com 
puted weights may be calculated for each pixel location in a 
sample pattern and stored as a stencil. 
0007. One embodiment of a method includes providing a 
set of pre-computed weights to perform cubic spline interpo 
lation of missing pixel data. At least one tile of a graphics 
image is selected to be sparsely sampled and a sample pattern 
is selected to sparsely sample the at least one tile of the 
graphics image. The pixel data is rendered for the sparsely 
sampled at least one tile. At runtime reconstruction of missing 
pixel data is performed for the sparsely sampled at least one 
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tile using the pre-computed weights to perform cubic spline 
interpolation of pixel color values as a weighted Sum of 
known pixel color values. 

BRIEF DESCRIPTION OF THE DRAWINGS 

O008) 
0009 FIG. 2 illustrates a graphics pipeline in accordance 
with an embodiment of the present invention. 
0010 FIG. 3 illustrates an adaptive desampling generator 
in accordance with an embodiment of the present invention. 
0011 FIG. 4 illustrates an example of pixel speed consid 
erations in performing adaptive rendering in accordance with 
an embodiment of the present invention. 
0012 FIG. 5 is a flow chart illustrating rendering and 
reconstruction options in accordance with an embodiment of 
the present invention. 
0013 FIG. 6A illustrates an example of dithering sam 
pling patterns to reduce visual artifacts in accordance with an 
embodiment of the present invention. 
0014 FIG. 6B illustrates a general method of performing 
dithering of sample patterns in accordance with an embodi 
ment of the present invention. 
0015 FIG. 7A illustrates an example of advection in 
accordance with an embodiment of the present invention. 
0016 FIG. 7B illustrates a general method of performing 
advection in agraphics system in accordance with an embodi 
ment of the present invention. 
0017 FIG. 8 illustrates an example of using pre-computed 
weights to perform cubic spline interpolation in accordance 
with an embodiment of the present invention. 
0018 FIG. 9 illustrates an example of sampling pattern 
related to considerations for determining pre-computed 
weights in accordance with an embodiment of the present 
invention. 

0019 FIG. 10 illustrates an example of sampling pattern 
related to considerations for determining pre-computed 
weights in accordance with an embodiment of the present 
invention. 

0020 FIG. 11 illustrates a general method of adaptive 
desampling in accordance with an embodiment of the present 
invention. 

0021 FIG. 12 illustrates a general method of performing 
cubic spline interpolation in a graphics system in accordance 
with an embodiment of the present invention. 
0022 FIG. 13 illustrates a general method of performing 
cubic spline interpolation in a graphics system in accordance 
with an embodiment of the present invention. 
0023 FIG. 14 illustrates an example of differences 
between advection and spline reconstruction. 
(0024 FIGS. 15A and 15B illustrates an example in which 
different regions of a frame are adaptively rendered using 
different approaches based on a magnitude of per-pixel Veloc 
ity. 
0025 FIG.16 illustrates an example of using advection for 
Stereoscopic rendering in accordance with an embodiment of 
the present invention. 
0026 FIG. 17 illustrates adaptive rendering applied to 
foveated rendering in accordance with an embodiment of the 
present invention. 

FIG. 1 illustrates a conventional graphics pipeline. 
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DETAILED DESCRIPTION 

Example Graphics Pipeline System Overview 
0027 FIG. 2 illustrates a graphics pipeline 200 in accor 
dance with an embodiment of the present invention. The 
graphics pipeline 200 may be implemented using a graphics 
processing unit (GPU) including graphics hardware. The 
graphics pipeline 200 includes several new stages and func 
tions to support automatically determining regions of the 
frame that do not require all of the pixels in individual tiles 
(blocks of pixels) to be sampled and rendered in order to 
achieve an acceptable viewing experience for a human user. 
As used in this application, a tile is a contiguous set of pixels 
in an image, typically in block having a square shape. The 
term frame is commonly used to describe a set of operations 
performed to render an image that is read by a display at a 
preset frequency. However, the term frame is also used to 
refer to the rendered image resulting from the set of opera 
tions used to render the image. 
0028. In one embodiment, an adaptive desampling (AD) 
sample generator stage 205 is provided to Support adjusting a 
sampling pattern in local regions of an image, where the local 
region is a tile corresponding to a block of pixels (e.g., a 4x4 
block of pixels, 16x16, or other size). Desampling is the 
reduction in the number of samples per tile that are sampled 
and rendered in the current frame. For example, desampling 
may include sampling and rendering on average less than one 
sample per pixel in a tile, and thus may also be described as 
sub-sampling. To maintain full image resolution, two differ 
ent approaches may be used to obtain values of missing pixel 
data. A reconstruction and advection stage 210 Supports two 
different options to reduce the number of pixels that need to 
be sampled and rendered in a tile while maintaining visual 
quality for a user. The reconstruction and advection stage 210 
includes a reconstruction Submodule 211 and an advection 
submodule 212. In one embodiment, a first option to reduce 
the number of pixels rendered in a tile is reconstruction via 
higher order polynomial interpolation and filtering in a tile to 
generate missing pixel data for that tile. A second option to 
reduce the number of pixels rendered in a tile is advection, 
which includes identifying locations of one or more pixels in 
a previous frame and reusing pixels from the previous frame 
for a selected fraction of pixels in the tile. 
0029. In one embodiment, pixel data of frame “n” 215 of 
objects from frame in 220 is saved for possible reuse of pixel 
data in the next frame “n+1. Additionally, vertex coordinate 
data is saved for use in determining a frame-to-frame motion 
vector of pixels. In one embodiment, the pixel data and vertex 
coordinates from frame n are stored in a buffer memory for 
use in the next frame n+1. 
0030 FIG. 3 illustrates an AD sample stage 205 in accor 
dance with an embodiment of the present invention. In one 
embodiment, desampling decisions are made in local tile 
regions based on Velocity and edge detection (e.g., edge 
detection in depth/Z). A velocity buffer 310 receives the per 
vertex coordinates from the current fame and from the previ 
ous frame. The velocity of an individual pixel may be deter 
mined by comparing the vertex coordinates of the pixel of the 
current frame with the vertex coordinates of the pixel in the 
previous frame. In one embodiment, a forward splatting 
approach is used by rendering a “velocity image' with primi 
tives from the scene, and using a per-vertex Velocity as a 
vertex attribute. Many graphics applications render a Z-buffer 
as a technique to reduce the number of pixel shader instances 
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during rendering passes. A velocity buffer/image may be 
rendered with a Z-buffer. During the Z-pass, where the 
Z/depth buffer is generated, in addition to splatting and updat 
ing the depth, the Velocity is also updated at each pixel. 
Rendering the velocity buffer results in per-pixel velocity 
values in Screen space, the magnitude of which corresponds 
to a speed. A tile. Such as a 4x4 tile, thus has a pixel speed 
associated with each pixel. The tile thus has a maximum pixel 
speed, mean pixel speed, median pixel speed, and minimum 
pixel speed. In one embodiment, the mean pixel speed is used 
to make desampling decisions, although more generally the 
maximum pixel speed or average pixel speed could also be 
used. 

0031. Visual artifacts are less perceptible to the human eye 
in moving objects. Thus, one factor in whether or not a sam 
pling rate may be reduced in a tile is whether the speed is 
above a threshold speed. 
0032. However, certain types of visual artifacts tend to be 
more noticeable in edges in color. Strictly speaking, detecting 
color edges in a final image is not possible without rendering 
the image first. However, it is possible to detect, prior to 
rendering, a high likelihood of edges in color. Thus, in one 
embodiment, an edge detection module 305 detects the like 
lihood of edges in color in local blocks of pixels. That is, 
regions are detected in which there is a high likelihood of 
edges in color by assuming that there is a high likelihood of 
color variation across objects. In one embodiment, Z values 
from the rasterization of the current frame are analyzed to 
perform edge detection. A Laplace edge detector may be 
defined as stencil centered on a current pixel. Any pixel in the 
tile is marked as having an edge if the Laplacian of the 
Z-buffer at the pixel is greater than a threshold value multi 
plied by the Z-value at the pixel. This defines a one bit value 
per tile. More generally, any type of edge detection may be 
used. 

0033. In one embodiment, an edge mask is generated for 
individual tile and an edge state bit may be generated to 
indicate whether or notatile includes at least one edge. In one 
implementation the edge mask is generated for each 4x4 
block of pixels although more generally other tile sizes may 
be used. This information on velocity and the presence of an 
edge is used by a sample generator 315 to determine a sample 
pattern for a tile. In one embodiment, a full sampling resolu 
tion is utilized if an edge is detected. If no edge is detected and 
a tile has a speed greater than a first threshold speed a first 
reduced sampling rate is used. If no edge is detected and a tile 
has a speed above a second threshold speed a second reduced 
sampling rate is used. Other additional optional factors could 
also be considered in making a sampling rate decision. In one 
embodiment, the sample pattern options include full sample 
resolution (at least one sample per pixel), one-half resolution 
(one-half of the pixels sampled in each tile), and one-quarter 
resolution (one in four pixels sampled in each tile). More 
generally, a plurality of sampling rates may be provided that 
are controlled by threshold parameters for each sample rate. 
Additionally, the sample rates selected may be optimized for 
the block/tile size selected. Thus, while an illustrative 
example includes three sample rates of 4, 8, and 16 samples 
for 4x4 blocks, the approach may be varied based on block 
size or other considerations to have a set of sampling rates 
each controlled by threshold parameters for each sample rate. 
Thus, the number of sampling rates, N. may be more than 
three, depending on implementation details, such as block/ 
tile size and other factors. 



US 2015/0379692 A1 

0034. In one embodiment, a dithering module 320 is pro 
vided to adjust the sampling pattern from a selection of Sam 
pling patterns having the same effective sampling rate. The 
dithering may be a repetitive sequence (e.g., Sample pattern 1. 
sample pattern 2, sample pattern 3, Sample pattern 4) or 
include aspects of randomization. 
0035. The dithering of the sampling pattern by the dither 
ing module 320 reduces the visual perception of sampling 
artifacts by human users. The human eye and the human brain 
starts to blend images into a video sequence when the rate is 
faster than a biological threshold. That is, when images vary 
at a rate faster than a biological threshold, the human eye 
blends the images across time and perceives them as a con 
tinuously varying sequence, akin to a video. There is some 
contention about what the exact number of the biological 
threshold is. At frame rates of about 12 frames per second, the 
human eye and brain begins to see a sequence of images that 
is moving instead of individual images. However, somewhat 
higher frame rates of about 15 frames per second are required 
to experience the beginnings of relatively fluid (non-jerky) 
movement. However, the nature of the underlying images is 
also an additional factor for whether or not a human observer 
perceives a fluid motion at a given frame rate. Thus, the 
human eye will tend to average out visual artifacts that are 
dithered at frames rates at about 12 frames per second and 
higher. In one embodiment, the dithering is performed Such 
that every pixel is rendered at least fifteen frames per second, 
which is faster than the human eye can discern individual 
images. At 60 frames per second, dithering the sample pattern 
in a tile every four frames corresponds to rendering each pixel 
at least fifteen frames per second. 

Exemplary Motion Speed Regimes 

0036 FIG. 4 illustrates examples of speed regimes in 
accordance with an embodiment of the present invention. The 
motion is the combination of object motion and camera 
motion. The speed corresponds to the magnitude of the 
motion vector in a tile. In this example, the speed is an 
indicator of the number of samples needed in a block of pixels 
to have an acceptable visual quality. If the motion if above a 
certain threshold speed K for a block of pixels, it is an 
indication that the number of samples may be decreased (e.g., 
eight samples in a 4x4 tile) because the human eye cannot 
perceive the high frequencies in a moving object. If the speed 
is above an even higher threshold speed K2, it is an indi 
cator that the number of samples in a tile may be reduced even 
further (e.g., four samples in a 4x4 tile). On the other hand, if 
the motion is very slow in a tile, below a speed K (or if there 
is no motion), then there may be an opportunity to reuse pixel 
data from the previous frame (e.g., render eight samples in a 
4x4 tile and reuse eight color values from the previous frame 
via advection). The reuse of pixel data from the previous 
frame also requires that the graphics state does not change 
from the previous frame to the current frame, where the 
graphics state includes the shaders used, the constants pro 
vided to the shaders, and the geometry provided to the frames. 
There will be a speed regime where full sampling resolution 
is required. As an example, there may be an intermediate 
speed regime between K, and K in which a full Sam 
pling resolution is required to achieve a high visual quality. 
Additionally, there may be scenarios in which Super-Sam 
pling is applied to individual tiles. As an illustrative example, 
an option may be provided to Support Super-sampling of a 
Z-edge case. 
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0037. In one embodiment, desampling (changing the 
sample pattern to reduce the sampling rate below one sample 
per pixel) is permitted if the speed is above a first threshold 
speed K. In one embodiment, the sampling rate is permit 
ted to be reduced further if the speed exceeds a second thresh 
old speed K2. A decision whether to perform desampling 
may also be dependent on other conditions, such as whether 
or not an edge is detected. 
0038. In one embodiment, motion in the camera screen 
space is obtained by differencing vertex position data from 
the current frame and the previous frame. A speed regime of 
a tile is classified on a tile-by-tile basis by calculating a 
magnitude of a motion vector based on how much a pixel of 
an object has moved from one frame to another. As previously 
discussed, in one embodiment, splatting is used in the Z-pass 
to determine per-pixel motion vectors. In one embodiment, 
speed thresholds are defined and used as inputs to make 
decisions on whether adaptive desampling or advection are to 
be used for a current frame. One speed regime is a quasi-static 
regime in which an object moves slowly enough that pixels of 
the object are unlikely to differ significantly from their pre 
vious image counterparts. If the speed is within the quasi 
static speed limit, a decision may be made whether advection 
may be used to reuse pixels from a previous frame. In one 
embodiment, an upper bound on a quasi-static speed, K is 
that a pixel in a given tile (tile m) in frame in remains in the 
same tile in frame n+1. In one embodiment, if the speed is 
below K, additional checks are performed to determine if 
pixels from the previous frame may be used in the current 
frame. This may include a check that advection produced an 
acceptable result in a previous frame. Additionally, a check 
may be performed to check that the pixel values for the tile in 
the current frame are consistent with a small movement over 
the previous frame, which may be described as a discrepancy 
check. An advection discrepancy state bit may be associated 
with a tile to indicate that it has passed one or more discrep 
ancy checks to confirm that the tile is suitable for advection of 
at least some of the pixel data. 
0039 FIG. 5 is a flowchart illustrating an example of adap 
tive rendering choices based on speed, edge detection, dith 
ering, spline reconstruction and advection. Some conven 
tional graphics pipeline features are omitted for clarity. FIG. 
5 illustrates a specific example in which 4x4 tiles are used in 
accordance with an embodiment of the present invention. An 
initial pre-pass may be performed followed by a color pass to 
render pixel data. The scene geometry 505 of an image is 
provided by the application. The Z-buffer is computed 510 
and edge detection is performed 515. Motion vectors are 
computed 520 for the scene geometry. The per-pixel motion 
vector is computed 525. The range of motion in a tile is 
computed 530. Based upon this information, a decision 535 is 
made whether to: 1) render 4, 8, or 16 samples in a 4x4 block 
535 and perform interpolation or 2) to render 8 and advect 8. 
Dithering 540 is performed for the sampling patterns. Spline 
reconstruction 545 is utilized to reconstruct pixel data. If 
advection is used, then advection 550 is used to obtain 8 of the 
pixel values and the rest are obtained by rendering. 

Exemplary Sampling Patterns and Dithering 
0040 FIG. 6A illustrates an example of sampling patterns 
and dithering. In this example the tile size is a 4x4 block of 
pixels. Full resolution corresponds to 16 samples. Half-reso 
lution (8 samples) and one-quarter resolution (four samples) 
permits variations in the pattern of the samples. Thus, for the 
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case of 8 samples, the arrangement of the samples can have a 
first sample pattern, second sample pattern, third sample pat 
tern, etc. Having pre-defined sampling patterns Supports dith 
ering of the sample pattern for temporal color averaging. The 
pre-defined sampling patterns are selected to rotate the sam 
pling so that every pixel location is rendered once every few 
frames. The dithering of the sample pattern can be achieved 
by different techniques. In one embodiment, the choice of 
sample pattern in an individual frame can be selected by the 
dithering module 320 in a sequence by a modulo k counter. 
Dithering sample positions in time over multiple frames 
makes rendering errors harder for a human observer to see. In 
one embodiment, the sample patterns are selected so that each 
pixel is guaranteed to be rendered at least once every kframes, 
where (nn)/k is the minimum number of samples per nxn 
tile. In another embodiment, temporal dithering is imple 
mented using a stochastic approach to select the sample pat 
tern. 

0041 FIG. 6B illustrates a method of dithering in accor 
dance with an embodiment of the present invention. Tiles in a 
current frame are selected 605 for sub-sampling at a reduced 
average sampling rate. For each tile, a sampling pattern is 
selected 610 to be varied over the previous frame. Rendering 
and reconstruction is performed 615. If additional frames are 
to be rendered, the process continues. 

Advection Example 

0042 FIG. 7A illustrates an example of advection. In a tile 
region, Such as a 4x4 tile 700, advection including copying 
pixel data from pixel at a given location in the previous frame 
to the corresponding location in the current frame. For 
example, an individual object (e.g., a ball slowly moving 
across the ground) may move across the screen Such that 
every pixel of the ball moves with a velocity. In this example 
there is a high level of temporal coherence between the pixels 
of the slowly moving ball from one frame to another. In this 
case, the changes are primarily motion. By determining the 
motion of individual pixels of the ball across frames, pixel 
data may be copied across frames. In this example, the motion 
is slow enough that pixel data can be mapped form a current 
pixel location to a pixel in the same tile in a previous frame. 
The position of a pixel in a previous frame may be computed 
as X(n-1)-X-mv(X), where mV(x) is the motion vector. As a 
result this permits pixel data to be copied from X (n-1) to X(n). 
That is, if the motion of the pixel is small between frames then 
the pixel location in the current frame may be projected back 
to a pixel in the previous frame and the pixel data from the 
previous frame copied. Bilinear or any higher order interpo 
lation may be used if X(n-1) has decimal components. 
0043. In the example of FIG. 7A, advection is mixed with 
rendering. In one embodiment, advection is used for half of 
the pixels 705 in a tile and the other half of the pixels are 
rendered 710. Mixing advection and rendering in a single 
frame reduces visual artifacts associated with performing 
only advection. That is, it minimizes the likelihood of visual 
errors due to advection detectable by typical human viewers. 
In conjunction with temporal dithering, it ensures that errors 
do not accumulate over time, thus reducing the likelihood of 
visual errors being noticed by typical human viewers. While 
a 1:1 ratio of rendered pixels and advected pixels is one 
option, more generally other ratios could be utilized. 
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0044 As previously discussed, in one embodiment, a 
maximum speed is used as condition for whether advection is 
permitted. In one embodiment, the criteria is that the thresh 
old speed is low enough that local deformation of pixel posi 
tions in a small neighborhood can be classified as a rigid 
transformation in which the change in the positions of the 
pixels can be represented using one of translation and one 
rotation for an entire set of pixels to within a desired accuracy. 
For example, the maximum speed for advection can be that 
the magnitude of the pixel motion is below a threshold of k 
pixels. While it is possible that rigid transforms can occur at 
any speed, the likelihood decreases with increasing speed 
such that a speed threshold may be used as a criterion for 
when advection is likely to be beneficial. A discrepancy check 
may be performed for individual tiles to determine whether or 
not advection produces acceptable results. This discrepancy 
check can be performed in a current frame and written out as 
1-bit value for each tile to let the next frame make a determi 
nation whether or not to disable advection in the neighbor 
hood of a tile failing the discrepancy check if the check 
indicates that the advected results were inaccurate. That is, in 
this implementation advection is performed for a tile inframe 
in and the discrepancy check is performed in frame n and 
consumed by frame n+1. Frame n+1 then uses the discrep 
ancy check (computed in frame n) to determine whether or 
not to perform advection in a neighborhood about a tile in 
frame n+1. If the discrepancy check in frame n indicates the 
advection result was acceptable, advection is allowed in 
frame n+1. If not, the advection is turned off for a selected 
number of frames. The discrepancy check is a check based on 
whether or not there is a significant change in pixel values of 
a tile inconsistent with the underlying assumptions of valid 
advection. If the pixels of an object are slowly moving then a 
tile is not expected to change significantly between two 
frames. Thus, if the state of the tile changes significantly the 
discrepancy check fails. A tile state discrepancy bit (e.g., 0 or 
1) may be used to indicate whether the discrepancy check 
passes. The degree to which changes in tile state are permitted 
may be determined empirically or heuristically based, for 
example, in the tradeoffs between the computational benefits 
of advection and minimizing the appearance of visual arti 
facts. 

0045. Other ways of performing discrepancy checks may 
be utilized. There are computational benefits to performing 
advection in a tile of current frame n, performing a discrep 
ancy check, and then utilizing the discrepancy check to deter 
mine whether or not to perform advection in frame n+1. 
However, it will be understood that an alternate implementa 
tion of the discrepancy check may be utilized in which the 
discrepancy check is performed in frame n and used to deter 
mine whether or not to utilize advection in frame n to reuse 
pixels from the previous frame. 
0046. The accuracy can be improved, if desired, using 
various enhancements. In one embodiment, back and forth 
error correction and compensation (BFECC) is used. BFECC 
utilized the position determined from Semi-Lagrangian 
advection and adds the velocity at that coordinate to obtain a 
new position in the current frame. If there is no error, this 
coordinate should be the same as the original position (x, y). 
Otherwise by subtracting half of this error from (x-Vy-v,) 
the second-order accurate estimate of the position is obtained, 
which is accurate to half a pixel, assuming that the Velocity is 
pixel accurate. 
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0047 FIG. 7B illustrates a general method of performing 
advection in accordance with an embodiment of the present 
invention. A determination is made 1405 if the tile is suitable 
for advection. The suitability is based on whether the speed 
range is within the quasi-static range, augmented by passing 
any additional discrepancy checks. If the tile is suitable for 
advection, then a determination is made in block 1410 of 
corresponding pixel locations in the previous frame. A 
selected fraction of pixels are reused 1420 from a tile of a 
previous fame. The remaining pixels are rendered 1425. 

Image Interpolation and Reconstruction Examples 
0048 FIG. 8 illustrates an example of image interpolation 
and reconstruction of pixel color values for the situation of 
desampling. In one embodiment, a weighted Summation of 
color values is used to reconstruct unrendered pixels. For a 
given choice of the weight function w, a normalized set of 
weights can be precomputed for each configuration of pixels 
arising from a particular sampling pattern. For example, if 4 
pixels are rendered in a 4x4 block, the remaining 12 pixels 
can be expressed using a weighted Sum of rendered pixels 
within the same block, as well as its neighboring blocks. In 
addition, since the set of possible pixel configurations in the 
neighboring blocks is restricted by the set of sampling pat 
terns, for this case, all possible weight sets can be precom 
puted. 
0049 Traditionally, a GPU utilizes bilinear interpolation. 
However, bilinear interpolation has various drawbacks. In 
one embodiment higher order polynomials having an order of 
at least three. Such as piece-wise cubic polynomials (also 
known as cubic splines), are used for efficient reconstruction 
of sparse samples. 
0050 Higher order polynomials, such as cubic splines, are 
capable of mapping a larger frequency spectrum than bilinear 
interpolation and provide a greater fidelity of data recon 
structed from Sub-Sampled blocks. Additionally, when using 
bilinear interpolation, samples are preferred on both sides of 
a pixel, as one-sided linear extrapolation is likely to be inac 
curate, as well as exceed the color spectrum range. In contrast, 
higher-order polynomials using a wider Support (>1 pixel 
away) are more likely to accurately approximate the func 
tional form of rendered image data. While a variety of higher 
order polynomials could be used, a cubic spline has continu 
ity characteristics that are Superior to those of quadratic poly 
nomials. Owing to the edge-detection step performed before 
desampling, a tile undergoing reconstruction is unlikely to 
have sharp discontinuities, where higher-order polynomial 
reconstruction may perform poorly. 
0051 One aspect of performing sub-sampling is that there 

is a sparse sample data at runtime. In an individual block 
region, Such as a kxk pixel region, desampling may result in 
a Subset of pixels being rendered, such as four or eight pixels 
from a 4x4 block of pixels. The missing pixel data needs to be 
reconstructed. A consequence of having predetermined 
sample patterns is that there is a finite set of possible sample 
locations. This permits a fixed set of local stencils to be 
created prior to run time, stored, and used to reconstruct pixel 
data using cubic splines or other higher order polynomials. 
Conventional approaches to evaluating higher order polyno 
mials inhardware are computationally expensive. In contrast, 
in embodiments of the present invention the use of a fixed set 
of pre-computed stencils eliminates the computational over 
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head, during runtime, of performing a conventional higher 
order polynomial evaluation. The use of a static set of samples 
allows the determination of possible configurations of pixels 
that may need to be reconstructed, and thus the stencils that 
are required may be pre-computed. 
0052. In one embodiment, the higher order polynomial 
interpolation is implemented as static stencil operations using 
pre-computed weights. In one embodiment, a table of stencils 
is stored and made available for spatial reconstruction to a 
reconstruction submodule 211 of the reconstruction and 
advection stage 210. The table of stencils provides weights 
based on known sample positions. In one embodiment, the 
table of stencils has all of the stencil weights pre-computed 
for each pixel location within a defined sample pattern. The 
pre-computed weights permit the higher order polynomial 
reconstruction to be performed using static stencil operations. 
0053. In one embodiment, a set of 5x5 stencils is deter 
mined for all possible pixel locations in a tile (e.g., a 4x4 tile) 
that may need to be interpolated during runtime. Each 5x5 
stencil is computed for each pixel location and neighbor 
configuration. Each stencil provides a list of weight values 
and corresponding locations of sample points. The stencils 
are stored in a constant memory table available for recon 
struction purposes to the reconstruction submodule 211 of 
reconstruction and advection stage 210. In one embodiment, 
at run-time, for each pixel that must be interpolated, an index 
is computed into this table using the pixel coordinates and 
sampling mask. In one implementation each stencil is 
addressed using: (a) the pixel’s location within a tile, and (b) 
the sampling mask used for rendering. Thus, if dithering is 
employed, the stencil that is selected will depend on which 
sample pattern is selected for a given degree of Subsampling. 
0054. In one embodiment, the higher order polynomial 
interpolation is performed using a multiplier/adder to accu 
mulate the products of weights and sample color values. The 
accumulated value is then normalized by division, which in 
many cases can be performed by a bit shift for integerformats, 
or by subtraction for floating point formats. Thus, the use of 
stencils with pre-computed weights permits the higher order 
polynomial interpolation to be calculated at run time with 
comparatively little computational effort. 
0055 An example of a cubic spline functions used for 
reconstruction and to compute pixel color values as a 
weighted Sum of known pixel color values is as follows: 
0056. In one embodiment, a formula expressing a 
weighted Sum to determine a pixel color value is based 
weights w() as follows: 

tableFilled 
c(i, j) = X w(i-a, -i- b) 

a,befiiled 

0057 Where c (i,j) is the color value at pixel location (i,j), 
w() is the two dimensional spline function and "Filled' is the 
set of pixels that were rendered. The two-dimensional spline 
function is the product of two one-dimensional spline func 
tions or W(i, j)k(i)k(), where the one dimensional spline 
function k() is based on the cubic filter formula described in 
the paper by Don P. Mitchell and Arun N. Netravali, “Recon 
struction Filters in Computer Graphics. Computer Graphics, 
Volume 22, Number 4, August 1988, pp. 221-228: 
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0058. The distances in the Mitchell and Netravali paper 
are defined in a scaled pixel space: 

0059 By restricting the relative positioning of sample 
points, the weights and denominators can be pre-computed 
into stencils. Because the spline function is defined in a 
bounded fashion, Scaling of the magnitude of X can be used to 
extend the functions to a desired support radius, Such as a 2 
pixel Support radius. 
0060 For a tile of size nxn, it is possible to arrange a kxk 
square in (n/k)*(n/k) possible configurations. A sampling rate 
of 4*s requires S squares, leading to (nn)/(kks) sampling 
patterns. 
0061 FIG. 9 illustrates an example of sampling pattern in 
a 4x4 tile in which the Xs mark rendered samples and the O 
marks an interpolation location. A 5x5 Stencil is used that is 
centered at O. Assuming any access outside this 4x4 tile is 
invalid, the stencil has 0 weights for any locations outside the 
4x4 tile, which are removed from the stencil table. Assuming 
the top left pixel to be (0, 0), the table entry then reads the 
locations required as (0, 0), (2,0), (0,2), (2, 2), with appro 
priate weights w0, will, w2, w8, and the normalization factor 
w. The weighted Summation can then be computed as 1/w 
(w0*c(0, 0)+w1*c(2,0)+w2*c(0, 2)+w3*c(2, 2)) for each 
color component by using a multiply-and-accumulate opera 
tion. However, more generally, the reconstruction is not lim 
ited to one tile but a region of influence of a stencil may extend 
to neighboring 4x4 blocks as well. 
0062 Assuming a 5x5 stencil, there are 24 values in all to 
be pre-computed (the center is always 0 since the pixel itself 
has no color value). Of those, at most half can be rendered if 
8 samples are used per 4x4 tile, leaving 12 values. In one 
embodiment, each stencil is implemented to include a 4-bit 
count of the number of non-zero weights, followed by 8-bit 
weights stored in one chunk, followed by 2 chunks of 3-bit 
coordinate offsets for the X and y coordinates relative to the 
Center. 

0063. In one embodiment, the stencils are stored in order 
of the sampling patterns. In one embodiment the different 
sampling patterns for the same sampling rate are rotations of 
each other, so there are two sets of patterns. These can be 
stored in row major order within a 4x4, with an index list to 
point to the data for pixel (i,j). For rotations of the sampling 
mask, the coordinates are transformed appropriately. 
0064 Referring to FIG. 10, consider the case of a 4x4 tile 
of pixels, in which 8 samples out of the possible 16 are 
rendered. In this example, stencils are defined for each 
unknown pixel given the weight function. These stencils can 
be retrieved at runtime from a pre-defined set of stencils. For 
the example case of cubic stencils with a Support radius of 2 
pixels, these stencils would be of size 5x5 if no super-sam 
pling is performed. If it is essential to restrict accesses to akxk 
tile region, the stencils can be modified appropriately to have 
0 weights for such pixels which fall outside the tile. It is 
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if x < 1 

otherwise 

important to note that the number of samples does not need to 
be less than the number of pixels. In regions where Super 
sampling is desired for anti-aliasing, the number of Samples 
may exceed the number of pixels, e.g. 32 samples for a 16 
pixel 4x4 tile. Appropriate pre-computed stencils would be 
added for those cases. 
0065. In one embodiment, each sampling pattern is 
defined as combination of sparse square patterns (e.g., four 
samples to be rendered in a square pattern). Selecting square 
patterns is useful in applications in which groups of four 
pixels (quads) area default unit of processing. However, more 
generally other arrangements of sampling positions could be 
used in the sampling patterns. In one embodiment, the sample 
patterns are squares of size 3x3 within a 4x4 tiles. Thus, 
adjacent vertices are 2 pixels apart along each axis. 
0066. In one embodiment, the same sampling pattern is 
used for all regions of an individual frame that are sub 
sampled at a given sampling rate. In this embodiment, the 
same sampling pattern is used in all of the tiles Sub-sampled 
at a given sample rate because this results in consistent spac 
ing of sample positions within every frame, simplifying 
reconstruction routines. 
0067. In one embodiment, the sampling patterns are based 
on quads to exploit Single instruction multiple data (SIMD) 
processing units. Consistent spacing of samples provides 
robust interpolation and aids in achieving full pixel resolution 
in a final image. 
0068 FIG. 11 illustrates a general method of adaptive 
desampling and spline interpolation in accordance with an 
embodiment of the present invention. A determination is 
made 1005 if the speed range of the tile is within the speed 
range for Sub-sampling and a check is made for the presence 
of edges. A determination 1010 is made of the sub-sampling 
rate and a sample pattern is chosen. The pixels of the tile are 
shaded 1015 based on the sampling pattern. Reconstruction is 
performed 1020 to interpolate missing pixel values, where 
spline interpolation may be performed. 
0069 FIG. 12 illustrates a method of performing cubic 
spline interpolation in accordance with an embodiment of the 
present invention. A tile is selected for sparse sampling 1105. 
A sample pattern is selected 1110. Pixels are rendered 1115 
for the sampled locations. Reconstruction is performed of 
missing pixel data via cubic spline interpolation based on 
pre-computed weights 1120. 
(0070 FIG. 13 illustrates a method of utilizing stencils 
containing pre-computed weights in accordance with an 
embodiment of the present invention. Pre-computed weights 
are generated for each missing pixel location in a sample 
pattern 1205. A stencil containing the pre-computed weights 
is stored 1210. The stored stencil is accessed during runtime 
1215. The accessed stencil I used to perform cubic spline 
interpolation 1220. 
Example Comparison of Advection and Reconstruction 
0071 FIG. 14 illustrates an example of aspects of advec 
tion and reconstruction via cubic splines. The tile size is a 4x4 
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tile size. The pixel pattern in the previous frame is a check 
erboard pattern. The rendered pixel values are denoted by an 
R. In the example on the left, advection is performed to reuse 
half of the pixel color data from the previous frame in a 4x4 
tile. The velocity associated with the tile is very low and half 
of the pixels are advected by copying them from pixel values 
of the previous frame. Arrows are shown for four of the pixels 
to indicate reuse of pixel data from the same tile in the pre 
vious frame. In this case the color information is copied with 
no bleeding of color. In the example on the right there is a 
significant tile speed, corresponding to a half-pixel displace 
ment per frame. In this example reconstruction is performed 
based on cubic spline interpolation. The velocity along Xa 0.5 
pixels leads to each rendered pixel having grey exactly half 
way between black and white. The reconstructed pixels thus 
have the same value. That is, the color values are correct, and 
a full resolution render would also create the same values. 

Automatic Tile-by-Tile Adaptive Rendering Example 

0072 FIG. 15A illustrates an example of a frame in which 
the scene has regions in which the pixel velocity differs from 
other regions and some regions include color edges. As an 
example, the scene may include a rider on a motorcycle as 
well as stationary objects and quasi-stationary objects, such 
as plants moving slowly in the wind. Thus, there are regions 
that can be classified in different speed regimes. Conse 
quently, as indicated by the boxes in FIG. 15B, different 
regions of the scene have different pixel velocities, with some 
of the regions providing different opportunities for adaptive 
rendering. As a result, in an individual frame the system 
automatically analyzes individual tiles and makes a determi 
nation on a tile-by-tile basis whether to desample and perform 
advection, desample and perform cubic spline interpolation, 
or utilize a normal default sampling scheme. Individual deci 
sions may also be made on a tile basis whether or not to 
perform Super-sampling. As the system automatically per 
forms this optimization, no special inputs from an application 
developer are required, assuming relevant parameter values 
are defined separately. 

Stereoscopic Rendering Example 

0073 Embodiments of the present invention may be used 
to generate a single (non-stereoscopic) display. However, it 
may also be applied to stereoscopic rendering for virtual 
reality applications. Referring to FIG. 16, consider the case 
where separate images are generated for each eye, corre 
sponding to a left eye image and a right eye image. Advection 
may be used to improve the efficiency of the stereoscopic 
rendering. In one embodiment a left image is generated. A 
translation motion, motion, is defined as the translation to 
transform portions of the left-eye image to a right eye image. 
In one embodiment, the sample generator decision making is 
augmented to make a sampling decision for the right image to 
attempt to advect pixel values from the left image. In one 
embodiment, the sampling is Z-based and a test is performed 
whether a minimum Z of the left image and right image are 
greater than a threshold Z. If the min (Zleft, Zright)>Zthresh, 
pixels are advected from the left frame to the right using the 
motion. Otherwise rendering is based on the motion 
based sampling rate. As illustrated in FIG. 11, this results in 
the right eye image being a combination of advected pixels 
from the left-eye image and rendered pixels. 
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Foveated Rendering Using Adaptive Rendering 

0074 FIG. 17 illustrates an embodiment in which adaptive 
rendering is applied to foveated rendering. The structure of 
the human retina of the eye has a fovea portion that provides 
the highest visual acuity in a healthy human eye. The greatest 
visual acuity of a healthy human eye is within a small cone of 
angles and drops off with increasing angular distance. Fove 
ated rendering renders higher detail near where the user is 
looking and lowers the detail further from the focus point. 
FIG. 17 illustrates a focal point (x,y) 1725. The sampling rate 
is decreased with increasing radial distance from the focal 
point (e.g., 1/(distance from the focal point). The decrease 
may be performed in a stepwise fashion at specific radial 
distance. For example, a specific number of samples may be 
rendered in a circular region 1720 up to a radial distance ro 
1715. A lower number of samples are rendered in the annular 
region 1710 from ro to r1 1705. An even lower number of 
samples are rendered in the region having a radial distance 
greater than r1. As an illustrative example, 16 samples may be 
rendered in the region between (x,y) and ro, 8 samples ren 
dered in the region between rO and r1, and 4 samples in the 
region beyond r1. More generally other radially varying Sam 
pling functions may be used. 
0075 While the invention has been described in conjunc 
tion with specific embodiments, it will be understood that it is 
not intended to limit the invention to the described embodi 
ments. On the contrary, it is intended to cover alternatives, 
modifications, and equivalents as may be included within the 
spirit and scope of the invention as defined by the appended 
claims. The present invention may be practiced without some 
or all of these specific details. In addition, well known fea 
tures may not have been described in detail to avoid unnec 
essarily obscuring the invention. In accordance with the 
present invention, the components, process steps, and/or data 
structures may be implemented using various types of oper 
ating Systems, programming languages, computing plat 
forms, computer programs, and/or computing machines. In 
addition, those of ordinary skill in the art will recognize that 
devices, such as hardwired devices, field programmable gate 
arrays (FPGAs), application specific integrated circuits 
(ASICs), or the like, may also be used without departing from 
the scope and spirit of the inventive concepts disclosed herein. 
The present invention may also be tangibly embodied as a set 
of computer instructions stored on a computer readable 
medium, Such as a memory device. 
What is claimed is: 
1. A method of performing graphics processing, compris 

ing: 
selecting at least one tile of a graphics image to be sampled; 
selecting a sample pattern to sample the at least one tile of 

a graphics image; 
rendering pixel data of the sampled at least one tile; and 
performing, at runtime, reconstruction of missing pixel 

data in the sampled at least one tile using cubic spline 
interpolation. 

2. The method of claim 1, wherein the cubic spline inter 
polation is performed using pre-computed weights to com 
pute pixel color values as a weighted Sum of known pixel 
color values using cubic splines for reconstruction. 

3. The method of claim 2, wherein the method further 
comprises accumulating products of the pre-computed 
weights and rendered color values with a multiplier/adder and 
normalizing the accumulated product. 
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4. The method of claim 2, further comprising storing the 
pre-computed weights of the sample pattern in a set of pre 
computed Stencils. 

5. The method of claim 4, wherein the set of pre-computed 
stencils includes all of the pre-computed weights for each 
location of missing pixel data in the sample pattern. 

6. The method of claim 4, further comprising providing an 
index into the pre-computed stencil. 

7. The method of claim 1, wherein the sample pattern is 
selected from a set of pre-defined sample patterns having the 
same sample rate and each pre-defined sample pattern has an 
associated set of pre-computed weights to perform cubic 
spline interpolation for the selected sample pattern. 

8. The method of claim 1, wherein the selecting at least one 
tile of the graphics image to be sampled comprises analyzing 
a scene and determining required sample rates in different 
tiles of the image and selecting tiles requiring a lower Sam 
pling rate to be sparsely sampled. 

9. A method of performing graphics processing, compris 
1ng: 

providing a set of pre-computed weights to perform cubic 
spline interpolation of missing pixel data; 

Selecting at least one tile of agraphics image to be sampled; 
Selecting the sample pattern to sample the at least one tile of 

the graphics image; and 
rendering pixel data of the sampled at least one tile; 
performing, at runtime, reconstruction of missing pixel 

data in the sampled at least one tile using the pre-com 
puted weights to perform cubic spline interpolation of 
pixel color values as a weighted Sum of known pixel 
color values. 

10. The method of claim 9, wherein the performing com 
prises accumulating products of the pre-computed weights 
and samples color values with a multiplier/adder and normal 
izing the accumulated product. 

11. The method of claim 9, wherein the pre-computed 
weights are stored in a set of pre-computed stencils including 
all of the pre-computed weights for each pixel location of the 
sample pattern. 

12. The method of claim 11, further comprising providing 
an index into the set of pre-computed stencils. 

13. The method of claim 9, wherein the sample pattern is 
selected from a set of pre-defined sample patterns having the 
same sample rate and further comprising selecting a pre 
computed stencil having pre-computed weights stored for the 
selected Sample pattern 
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14. A graphics system including a graphics pipeline, com 
prising: 

a memory storing a set of pre-computed weights to com 
pute pixel color values as a weighted Sum of known pixel 
color values using cubic spline interpolation for recon 
struction; and 

a reconstruction Submodule configured to access the pre 
computed weights from the memory and perform, at 
runtime, reconstruction of missing pixel data in sampled 
tiles using cubic spline interpolation. 

15. The graphics system of claim 14 including a multiplier/ 
adder, wherein the reconstruction unit accumulates products 
of the pre-computed weights and samples color values with 
the multiplier/adder and normalizing the accumulated prod 
uct. 

16. The graphics system of claim 14, wherein the recon 
struction is performed on a tile basis. 

17. The graphics system of claim 16, wherein the pre 
computed weights are stored as a set of stencils. 

18. The graphics system of claim 17, wherein the set of 
pre-computed stencils includes all of the pre-computed 
weights for each pixel location of the sample pattern. 

19. The graphics system of claim 14, wherein the graphics 
system includes a set of sampling patterns having a reduced 
average sampling rate and each respective sampling pattern 
has a corresponding set of pre-computed stencils including 
the pre-computed weights to perform cubic spline interpola 
tion. 

20. A method of performing graphics processing, compris 
ing: 

providing a set of pre-computed weights to perform higher 
order polynomial interpolation of missing pixel data, 
wherein the order of the polynomial is at least three: 

selecting at least one tile of a graphics image to be sampled; 
selecting the sample pattern to sample the at least one tile of 

the graphics image: 
rendering pixel data of the sampled at least one tile; and 
performing, at runtime, reconstruction of missing pixel 

data in the sampled at least one tile using the pre-com 
puted weights to perform higher order polynomial inter 
polation of pixel color values as a weighted Sum of 
known pixel color values. 

k k k k k 


