(19)

US 20220308747A1

a2y Patent Application Publication o) Pub. No.: US 2022/0308747 A1

United States

Chang et al.

43) Pub. Date: Sep. 29, 2022

(54) STREAMING APPLICATION Publication Classification
ENVIRONMENT WITH RECOVERY OF (51) Int. Cl
LOST OR DELAYED INPUT EVENTS GO6F 3/04883 (2006.01)
. A GO6F 9/451 (2006.01)
(71) Apphcant GOOGLE LLC, Mountain VleW, CA GO6F 3/038 (200601)
Us) HO4L 65/612 (2006.01)
HO4N 21/422 2006.01
(72) Inventors: Chuoe-Ling Chang, Mountain View, CA ( )
X bell (52) US. CL
(US); Peter Tan, Campbell, CA (US) CPC ... GOGF 3/04883 (2013.01); GOGF 9/452
(2018.02); GOG6F 9/451 (2018.02); GO6F
(21) Appl. No.: 17/833,469 3/038 (2013.01); HO4L 65/612 (2022.05);
HO4N 21/42224 (2013.01); GOGF 2203/0383
(2013.01); HO4M 1/72403 (2021.01)
(22) Filed: Jun. 6, 2022 (57) ABSTRACT
In a streaming application environment coupled to a remote
Related U.S. Application Data device over a packet-switching network, correction events
(63) Continuation of application No. 15/368,531, filed on may be syr}thesmgd .from input events recelve?d from .the
remote device and injected into a virtual streaming applica-
Dec. 2,2016, now Pat. No. 11,366,586 tion to account for lost or delayed input events. In addition.
(60) Provisional application No. 62/424,157, filed on Now. trailing events may be reissued by a remote device in frames
18, 2016. during which no new input events are generated.
- | Streaming Application
Remote Device 14 Environment (SAE) 10
Touch Panei 18 Input Control Player 32 | Injected
» Events Events
Sensors and Additional & Input Handler 36
User Input Components I
22 FR VFR | Events
Events
» FR Handler 38
Control Streamer
28 VFR
JEvents
Operating System 26 Net1v€\;ork
Virtual
Video Player 30 |« Streaming
Application
(VSA) 12
Display 20
|
Additional Qutput
Components 24 SCFR Frame
. Events Buffer
\
- Video Streamer 34 |«
Output Dlsp!ay
Representation




Patent Application Publication  Sep. 29, 2022 Sheet 1 of 6 US 2022/0308747 A1

Streaming Application

Remote Device 14 B Environment (SAE) 10
Touch Panel 18 Input Control Player 32 | Injected
Events Events
Sensors and Additional B Input Handler 36
User Input Components yY
22 FR VFR | Events
Events
» FR Handler 38
Control Streamer {
28 VFR
Events
A
Operating System 26 Negvgork [
Virtual
i B Streaming
Video Player 30 = Application
(VSA) 12
Display 20
|
Additional Qutput
Components 24 SCFR Frame
! Events Buffer
s
Video Streamer 34 |-

Output Display
Representation

FIG. 1



Patent Application Publication

50

k( Handle input Event )

60

y

52

4

Generate input event
message with timestamp
and event parameters

54 ¥

o

to SAE

Send event message

\ 4

( Done )

FIG. 2

70

~C

Schedule SAE FR

)

Sep. 29, 2022 Sheet 2 of 6

T
T

Events
72 X
Next FR yes
Event
received?
78 76
‘) }no
Schedule VFR Later FR
Event using Event
extrapolation received?
80 y yes
\| Schedule VFR Event
82 using lntirpolatlon
Schedule SCFR Event

-

US 2022/0308747 Al

L( Handle FR Event )

\

Generate FR event
message with timestamp

v

Send event message
to SAE

\ 4

( Done )

FIG. 3

74-ﬁ

Schedule VFR
Event using
FR Event

FIG. 4

using VFR Event

¥

<
T

Adjust delay based upon

observed network jitter




Patent Application Publication  Sep. 29, 2022 Sheet 3 of 6 US 2022/0308747 A1

90

% Receive FR Event >
96~
A J

Corresponding VFR yes | Update schedule of VFR

Event already and SCFR Events based
FIG. 5 scheduled? on FR Event
no

\ 4

94
\ Queue FR Event

\ B

( Done >
100
L'C Input Playback >

10 T FIG. 6

done For each input
event on priority -
queue /

106
104 ynext w

es
XDuplicate Event? Y Pop and ignore

108
) 110—7

Pop and ignore
(optionally cache)

In 114-3

On schedule? >—> Pop and inject

1@ In

Leave and ignore
118

¥ 120j
Cached late arrival with
later timestamp than last Inject cached event
injected input event?

No <

( Done )

\ 4

\ i

Late arrival?

A

112

A




Patent Application Publication  Sep. 29, 2022 Sheet 4 of 6 US 2022/0308747 A1

130

\\,C Handle Input Event )

132

Generate input event
message with timestamp
and event parameters

134 I FIG. 7
\

Send N copies of event
message to SAE
(optionally with delay)

( Done }

140

L‘( Handle FR Event )

142 ! 148j

Any input event no Resend last input
FlG 8 issued during event as trailing event
- last frame?
yes
144 Y

\ Generate FR event
message with timestamp

146 4

\ Send event message
to SAE

( Done )




Patent Application Publication  Sep. 29, 2022 Sheet 5 of 6 US 2022/0308747 A1

150

\\’(Inject Gesture Event

(5 ] 154j

Duplicate gesture event, set action to
es :
< Gesture start y stop, set coordinates to last injected

FIG.9

\_/

event and state

coordinates, and set timestamp to last
’) 1
is Started” gesture start timestamp
no
¥ 158-7
Gesture stop or yes
move event and Duplicate gesture event, _
state is set action to start
Completed?
| 162j
Gesture stop or cs
move event, state y Synthesize pair of
is Started, and gesture start and stop >
event is from new events
gesture?
no
164
 J j
Inject gesture event and any correction events in VSA,
preceding any gesture stop events with companion gesture <

move events, and following any gesture start events with
companion gesture move events

( Done )




Patent Application Publication  Sep. 29, 2022 Sheet 6 of 6 US 2022/0308747 A1
Storage Subsystem 212 200
Memory Subsystem 214
File Storage
R2(1)€I;/I %’?gﬂ Subsystem
— — 220 Sensors
222
202-7
(: A ‘nf :)
Processor(s) Network I/F Ul Output Ul Input
204 206 208 210

FIG. 10



US 2022/0308747 Al

STREAMING APPLICATION
ENVIRONMENT WITH RECOVERY OF
LOST OR DELAYED INPUT EVENTS

BACKGROUND

[0001] Some application services provide the ability to
interactively “stream” software applications (more simply
“applications” or “apps”) to remote devices, e.g., mobile
devices such as smart phones, tablet computers, vehicle
computing systems, wearable devices (e.g., smart watches),
etc. Streaming of such applications may allow a user to
operate the applications without actually downloading and
installing the applications locally on the remote device,
which may be useful in remote devices having limited
processing and/or memory resources, or for the purposes of
trying out applications. In some instances, application
streaming may be accomplished by installing an application
on a virtual machine operated by one or more servers (e.g.,
collectively forming a so-called “cloud”), whereby one or
more input/output (“I/O”) streams may be established
between the virtual machine and the remote device to
provide various modalities of input data received at the
remote device to the virtual machine, and likewise to pro-
vide various modalities of output data generated by the
application from the virtual machine to the remote device.
[0002] In some instances, the application services are
implemented in a streaming application environment
capable of supporting one or more virtual streaming appli-
cations for use by one or more remote devices. Further, in
some instances, virtual streaming application-generated
content may be output in the form of rendering framebuffers
that are captured, encoded and streamed to a remote device
for video playback. Then, on the remote device, user-control
information such as gesture or touch events and other inputs
may be captured, encoded and uploaded to the streaming
application environment and injected into a virtual stream-
ing application to render its content accordingly.

[0003] Synchronizing the injection of user-control infor-
mation and other inputs with the rendering of application
content on a remote device, however, can be problematic
even beyond the synchronization challenges presented by
local applications on a remote device. For example, where a
computing device such as a mobile device includes a touch-
screen capable of being manipulated by a user’s fingers,
ensuring that user input such as a finger swipe or a scrolling
gesture is tracked by rendered content can be challenging
even for a locally-installed application.

[0004] As an example, many gestures directed to a touch-
screen are handled using multiple events. In many instances,
a gesture such as a finger swipe is generally represented by
a “touch down” event that is signaled when the user first
places a finger on the touchscreen, a “touch up” event that
is signaled when the user lifts the finger off the touchscreen,
and numerous “touch move” events that track the movement
of the finger while touching the touchscreen. In many
computing devices, events may be generated on a touch-
screen computing device at a rate that matches a frame
refresh rate for the device, i.e., the rate at which rendered
content in the form of frames is updated on a touchscreen.
Further, in many computing devices, frames may be updated
at about 60 Hz or more, and as such, a simple finger swipe
may result in the generation of tens or hundreds of individual
but related events. Moreover, it has been found that when
some types of user input events are not appropriately syn-

Sep. 29, 2022

chronized with the rendered content frames during which the
input events are generated, a poor user experience may
result. As but one example, slowly scrolling through content
by dragging a user’s finger across a touchscreen can result
in jerkiness when events associated with the movement are
mapped to the wrong frames.

[0005] Where a computing device is interacting with a
virtual streaming application in a streaming application
environment over a packet-switched network such as the
Internet, however, the aforementioned synchronization chal-
lenge is far greater. Due to the practical limitations of the
Internet and other packet-switched networks, packets con-
taining user input and/or rendered content may be delayed or
lost entirely, and may arrive out of order. Furthermore,
where network connectivity is compromised as may be the
case in many mobile and/or vehicle applications, the risk of
packet loss or delay is greater. While protocols such as
Transmission Control Protocol (TCP) allow for packet
retransmission in the event of lost packets, waiting for all
packets to be received in order to ensure that all input data
and rendered content is received and processed may intro-
duce unacceptable delays and detract from the user experi-
ence.

SUMMARY

[0006] Some implementations disclosed herein may
include a method performed in a streaming application
environment including one or more processors, which may
include interfacing a virtual streaming application with a
remote device coupled to the streaming application envi-
ronment over a packet-switched network, including receiv-
ing from the packet-switched network input generated at the
remote device and streaming an output display representa-
tion generated by the virtual streaming application in
response to the received input over the packet-switched
network to the remote device, receiving input events from
the remote device, each input event associated with an input
generated on the remote device, synthesizing at least one
correction event from the received input events, the at least
one correction event corresponding to a lost or delayed input
event generated at the remote device, and controlling injec-
tion of the received input events and the at least one
correction event into the virtual streaming application.
[0007] In addition, in some implementations, the received
input events include gesture start, gesture stop and gesture
move events associated with user gestures received by the
remote device, the method further including tracking a state
of user gestures. In some implementations, the user gesture
is associated with touching of a touchscreen, where the
gesture start event is a touch down event, the gesture stop
event is a touch up event, and the gesture move event is a
touch move event. Moreover, in some implementations,
tracking the state of the user gesture includes determining
whether the gesture is started or completed.

[0008] Also, in some implementations, synthesizing the at
least one correction event from the received input includes,
in response to detecting a gesture start event when tracking
of the state of the user gesture indicates that the gesture is
started, synthesizing a gesture stop event to be injected prior
to the detected gesture start event. In some implementations,
synthesizing the gesture stop event includes generating a
duplicated event from the detected gesture start event,
setting an action for the duplicated event to stop, setting
coordinates for the duplicated event with last injected coor-



US 2022/0308747 Al

dinates, and setting a timestamp for the duplicated event to
a last gesture started timestamp.

[0009] In addition, in some implementations, synthesizing
the at least one correction event from the received input
includes, in response to detecting a gesture stop event or a
gesture move event when tracking of the state of the user
gesture indicates that the gesture is completed, synthesizing
a gesture start event to be injected prior to the detected
gesture stop event or gesture move event. Also, in some
implementations, synthesizing the gesture start event
includes generating a duplicated event from the detected
gesture stop event or gesture move event and setting an
action for the duplicated event to start.

[0010] In addition, some implementations may further
include tracking a last gesture started timestamp, where
synthesizing the at least one correction event from the
received input includes, in response to detecting a gesture
stop event or a gesture move event when tracking of the state
of the user gesture indicates that the gesture is started and
detecting that a timestamp of a matching gesture start event
is different from the last gesture started timestamp, synthe-
sizing a pair of gesture stop and gesture start events to be
injected prior to the detected gesture stop event or gesture
move event.

[0011] Some implementations may further include synthe-
sizing at least one companion gesture move event for
injection immediately following a received gesture start
event, while some implementations may also include syn-
thesizing at least one companion gesture move event for
injection immediately preceding a received gesture stop
event.

[0012] Some implementations may also include receiving
from the remote device a trailing event generated during a
frame of the remote device during which no gesture start,
gesture stop or gesture move events are generated, and
injecting the trailing event into the virtual streaming appli-
cation as a last event of a virtual frame corresponding to the
frame of the remote device in response to determining that
a timestamp of the trailing event is later than a timestamp of
a last input event injected into the virtual streaming appli-
cation.

[0013] Some implementations may also include a method
performed in a device including one or more processors and
a display, which may include receiving an output display
representation from a streaming application environment
coupled to the device over a packet-switched network, the
output display representation generated by a virtual stream-
ing application resident in the streaming application envi-
ronment, rendering a plurality of frames of the received
output display representation on the display, in response to
inputs generated during rendering of the plurality of frames,
issuing input events for communication over the packet-
switched network to the streaming application environment,
and in response to a determination that no inputs are
generated during a frame among the plurality of frames,
reissuing a trailing event issued in a prior frame for com-
munication over the packet-switched network to the stream-
ing application environment.

[0014] Some implementations also include a system
including one or more processors and memory operably
coupled with the one or more processors, where the memory
stores instructions that, in response to execution of the
instructions by the one or more processors, cause the one or
more processors to perform any of the above methods. Some

Sep. 29, 2022

implementations may also include at least one non-transitory
computer-readable medium including instructions that, in
response to execution of the instructions by one or more
processors, cause the one or more processors to perform any
of the above methods.

[0015] It should be appreciated that all combinations of
the foregoing concepts and additional concepts described in
greater detail herein are contemplated as being part of the
subject matter disclosed herein. For example, all combina-
tions of claimed subject matter appearing at the end of this
disclosure are contemplated as being part of the subject
matter disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 illustrates an example environment in which
disclosed techniques may be practiced, in accordance with
various implementations.

[0017] FIG. 2 is a flowchart illustrating an example
sequence of operations for handling an input event in the
example environment of FIG. 1.

[0018] FIG. 3 is a flowchart illustrating an example
sequence of operations for handling a frame refresh event in
the example environment of FIG. 1.

[0019] FIG. 4 is a flowchart illustrating an example
sequence of operations for scheduling streaming application
environment frame refresh events in the example environ-
ment of FIG. 1.

[0020] FIG. 5 is a flowchart illustrating an example
sequence of operations for receiving a frame refresh event in
the example environment of FIG. 1.

[0021] FIG. 6 is a flowchart illustrating an example
sequence of operations for input playback in the example
environment of FIG. 1.

[0022] FIG. 7 is a flowchart illustrating another example
sequence of operations for handling an input event to that
illustrated in FIG. 2.

[0023] FIG. 8 is a flowchart illustrating another example
sequence of operations for handling a frame refresh event to
that illustrated in FIG. 3.

[0024] FIG. 9 is a flowchart illustrating an example
sequence of operations for injecting a gesture event in the
example environment of FIG. 1.

[0025] FIG. 10 illustrates an example architecture of a
computer suitable for implementing one or more devices in
the example environment of FIG. 1.

DETAILED DESCRIPTION

[0026] Application streaming allows users in some
instances to run applications on a computing device such as
a mobile phone without having to download and install the
applications on the computing device itself. In some
instances, for example, a streaming application environ-
ment, e.g., as may be implemented on one or more servers
in a cloud computing system that is accessible to a comput-
ing device over a network such as the Internet. Applications
may be run as virtual streaming applications within the
streaming application environment, e.g., by running the
applications in virtual machines or in some instances as
virtual computing devices that effectively emulate physical
computing devices and/or the operating systems of such
devices. In addition, a streaming application environment
may include functionality to interface virtual streaming
applications with a computing device, including an ability to



US 2022/0308747 Al

receive input generated at the computing device to control
the virtual streaming application as well as an ability to
stream an output display representation of rendered content
generated by the virtual streaming application.

[0027] FIG. 1, for example, illustrates an example stream-
ing application environment (SAE) 10 capable of hosting
and interfacing one or more virtual streaming applications
(VSAs) 12 with one or more remote devices 14 over one or
more networks 16. As noted above, streaming application
environment 10 may be implemented, for example, as a
service of a cloud computing system, and thus implemented
using one or more hardware servers of a cloud computing
system. Device(s) 14, which are remote from the standpoint
that they are coupled to but distinct from streaming appli-
cation environment 10, may be implemented using practi-
cally any type of computing device capable of accessing a
cloud computing system, although the discussion hereinafter
primarily focuses on mobile devices such as mobile phones,
tablet computers, vehicle computers, wearable computers,
etc. Communication between devices 14 and streaming
application environment 10, as noted above, may be con-
ducted over one or more networks 16, which in some
implementations includes at least one packet-switched net-
work such as a local area network (LAN), wide area network
(WAN), the Internet, etc., such that communications
between devices 14 and application streaming environment
10 utilize packets to communicate data therebetween.
[0028] Consistent with remote devices being mobile
devices in some implementations, FIG. 1 illustrates an
example remote device 14 including a touch panel 18
capable of receiving touch inputs from a user and a display
20 capable of outputting video or graphical content to a user,
which in some implementations may be combined into a
single touch-sensitive screen, or touchscreen. Device 14
may also include additional sensors and user input compo-
nents 22 and/or additional output components 24, generally
depending upon the application of the device. Various sen-
sors and components that may be used in different imple-
mentations include accelerometers, GPS sensors, gyro-
scopes, hard buttons, keyboards, pointing devices,
microphones, imaging devices, speakers, indicators, and
haptic feedback devices, among others.

[0029] Other variations and modifications to the environ-
ment illustrated in FIG. 1 will be appreciated, and as such,
the invention is not limited to the particular environment
disclosed herein.

[0030] The implementations discussed hereinafter
address, in part, the synchronization of inputs with rendered
visual content in a streaming application environment. For
the purpose of simplifying the discussion, the hereinafter-
described implementations will focus in particular on the
synchronization of user gestures with rendered visual con-
tent, and in particular user input directed to a touchscreen. It
will be appreciated, however, that the principles disclosed
herein may be applied to other types of inputs, including
other user inputs such as user manipulation of a mouse,
trackball or other pointing device, user gestures captured by
an imaging device or a handheld or wearable motion sensor,
as well as additional inputs such as sensor inputs. Thus, the
invention is also not limited to the particular inputs disclosed
by way of example herein.

[0031] A common user interaction with a touchscreen
device is a single or multi-finger gesture to scroll and/or
zoom displayed content. On a physical touchscreen device,

Sep. 29, 2022

touchscreen hardware may trigger a continuous stream of
touch events that describe the locations of the user’s fingers
as they move across the touchscreen. These events are
generally processed and interpreted by the device to make
corresponding modifications to the displayed content on the
device. Swiping a finger up or down in a region of a display
dedicated to scrollable content may therefore lead to a
corresponding scrolling of the content to follow the motion
of the finger. A seamless user experience occurs when the
movement of the content precisely follows the motion of the
finger, and it has been found that driving the rate (frequency)
of the touch events and the rendering framerate by the same
clock on a physical device obtains acceptable results. Con-
sequently, with a nominal clock rate of 60 Hz, finger
movements across short intervals of 1/60 seconds generally
are mapped to consecutive frames rendered at 60 fps.
Undesirable results, however, can occur when the one-on-
one alignment between a 1/60-second movement to a ren-
dered frame is lost, such that if two 1/60-second movements
are mapped to a single frame while the next frame does not
see any movement, jerky scrolling can occur.

[0032] With application streaming, on the other hand, the
interaction between touch events and frame rendering works
similarly, except that there are multiple components and a
network between a device that generates input and displays
rendered content, and a virtual streaming application that
processes that input to generate the rendered content dis-
played on the device.

[0033] In an idealistic situation where (1) the network has
no packet loss and no delay jitter, i.e., the network round-
trip-time (RTT) is constant, and (2) rendering framerate in
the virtual streaming application, the encoding framerate in
the streaming application environment, and the frame
refresh rate in the remote device are the same, e.g. all at
exactly 60 Hz, scrolling via application streaming would be
as smooth as scrolling in a local application on a physical
device other than having an extra delay introduced by the
network RTT and the processing time in the additional
components. However, in reality some touch events can get
lost in the network, and because of network jitter each touch
event can take a different amount of time to travel from the
remote device to the streaming application environment, and
can even arrive out of order. In addition, some remote
devices do not always use the same, consistent frame refresh
rate (e.g., varying slightly from 60 Hz, and in some instances
reducing to a lower frame refresh rate when entering power-
saving mode), and components in an streaming application
environment may include delays that cause variations in the
frame refresh rate used for a virtual streaming application.
As such, there is generally an increased risk that multiple
touch events can be mapped into a single frame, while no
events may be mapped into adjacent frames, leading to jerky
movement.

[0034] In some implementations, therefore, a number of
modules or components may be implemented within a
remote device 14 and a streaming application environment
10 to assist with synchronization of input with rendered
content with application streaming. In particular, in some
implementations an operating system 26 of a remote device
14 may include a control streamer component 28 and a video
player component 30 that are respectively in communication
with a control player component 32 and a video streaming
component, or video streamer, 34 implemented within
streaming application environment 10.



US 2022/0308747 Al

[0035] Control streamer component 28 is used to stream
both input events and frame refresh (FR) events to control
player component 32, the former of which are streamed to
an input handler component 36 in control player component
32 and the latter of which are streamed to a frame refresh
(FR) handler component 38 in control player component 32.
Input events are events generated by remote device 14 to
control virtual streaming application 12, and may include,
for example, gesture events such as touch events, although
it will be appreciated that events generated in remote device
14 in response to other inputs, e.g., other user input and/or
sensor data, may also be supplied to virtual streaming
application 12 in the form of input events. FR events are
events generated in response to frame refreshes in remote
device 14, e.g., similar to vsync events generated in some
physical computing devices in connection with rendering
frames on such devices.

[0036] Input handler component 36, as will become more
apparent below, injects, or “plays back,” input events
received by control player component 32 into virtual stream-
ing application 12. FR handler component 38 generates
refresh events within streaming application environment 10
in response to FR events received by control player com-
ponent 32, including virtual frame refresh (VFR) events that
are provided to virtual streaming application 12 and to input
handler component 36 to synchronize input events with their
corresponding frames on the remote device, as well as
streaming component frame refresh (SCFR) events that are
provided to video streaming component 34 to synchronize
the encoding and streaming of rendered content output by
virtual streaming application 12. Rendered content, in some
implementations, is provided to video streaming component
34 in the form of virtual frames stored in a frame buffer
populated by virtual streaming application 12, and as such,
the VFR events generated by FR handler component 38 are
associated with virtual frames of virtual streaming applica-
tion 12 in a similar manner to the way in which FR events
generated by remote device 14 are associated with rendered
frames in remote device 14.

[0037] Video streaming component 34 may process the
virtual frames by encoding the virtual frames and commu-
nicating the encoded virtual frames to video player compo-
nent 30 of remote device 14, which in turn decodes the
encoded virtual frames and displays the rendered content on
the display 20 of the remote device 14. The rendered content
may be considered in some implementations to be an output
display representation, i.e., data capable of being used to
generate a visual depiction of the rendered content on a
remote device. It will also be appreciated that the output
display representation may be encoded, unencoded,
encrypted, unencrypted, or otherwise defined using various
formats, so the invention is not limited to any particular
format of data so long as the data may be used to generate
a visual depiction of rendered content on a display. In some
implementations, for example, the output display represen-
tation may be implemented as an encoded digital video
stream.

[0038] In some implementations, control streamer com-
ponent 28 may implement listener and/or callback routines
to handle system events in operating system 26. For
example, some input events may be generated in response to
events generated in response to various types of touch events
detected by operating system 26. Likewise, in some imple-
mentations, FR events may be generated in response to

Sep. 29, 2022

invocation of a frame rendering routine that renders a new
frame for display on remote device 14. FR events may be
generated, for example, periodically at a vsync rate of the
remote device, which may be around 60 Hz in some imple-
mentations, and both FR events and input events may
include associated timestamps representing remote device
system time when the corresponding system event occurred.
Moreover, in some implementations, each frame rendering
is configured to reflect the content updates triggered by the
input events, if any, with timestamps that fall within the
current frame or vsync interval, i.e., between the current FR
event timestamp and the previous one. In some implemen-
tations, input and FR events may also be serialized and/or
encrypted prior to communication over network 16.

[0039] FIGS. 2 and 3, for example, respectively illustrate
sequences of operations that may be implemented in control
streamer component 28 of remote device 14 to respectively
generate input and frame refresh (FR) events for communi-
cation to streaming application environment 10. As shown in
FIG. 2, a sequence of operations 50 may be used to handle
input events generated within remote device 14, e.g., gesture
or touch events. In block 52, an input event message is
generated, including a remote device system time time-
stamp, as well as any related event parameters, e.g., touch
coordinates, identifiers of related input events (e.g., for
touch move or touch up events associated with a particular
gesture, the timestamp of the initial touch down event that
started the gesture), etc. Block 54 then sends the generated
event message to the streaming application environment 10,
and sequence of operations 50 is complete. Similarly, as
illustrated by sequence of operations 60 in FIG. 3, for frame
refresh events, an FR event message, generally including a
remote device system time timestamp, may be generated in
block 62, and then sent to the streaming application envi-
ronment 10 in block 64. It will be appreciated that in both
cases, the particular format of the messages and then manner
in which the event data is encoded into packets may vary in
different implementations based in part on the protocol used
to communicate between remote device 14 and streaming
application environment 10.

Remote Device Input Synchronization

[0040] As noted above, in some implementations stream-
ing application environment 10 is configured to synchronize
input from the remote device 14 with rendered content
generated by a virtual streaming application 12. In particu-
lar, in some implementations the streaming application
environment 10 may receive frame refresh events from a
remote device 14 that are associated with particular frames
on the remote device 14, receive input events from the
remote device 14 that are associated with inputs generated
during frames on the remote device 14, generate virtual
frames for a virtual streaming application 12 corresponding
to the frames with which the received frame refresh events
are associated, and then control controlling injection of the
received input events into the virtual streaming application
12 to arrange the received input events within the virtual
frames corresponding to the frames with which the received
input events are associated.

[0041] In some implementations, for example, a frame
refresh (FR) handler component 38 of control player com-
ponent 32 may effectively track a frame refresh rate of the
remote device 14 based upon FR events communicated by
control streamer component 28 of the remote device 14 and



US 2022/0308747 Al

use the tracked frame refresh rate to drive the injection of
input events into virtual streaming application 12, and in
some instances, to drive the streaming of content from video
streaming component 34. In some implementations, for
example, the FR handler component 38 may generate VFR
events at a virtual frame refresh rate that substantially tracks
the frame refresh rate of the remote device. In addition, in
some implementations, an input handler component 36 of
control player component 32 may implement a queue that
effectively operates as a jitter buffer to synchronize the
injection of input events into the virtual streaming applica-
tion 12.

[0042] To track the frame refresh rate, FR handler com-
ponent 38 in some implementations may schedule VFR
events in the following manner. For the purposes of this
explanation, A(t) may be used to denote the streaming
application environment system time when an FR event with
a timestamp t is received by the streaming application
environment 10. Issuance of a VFR event corresponding to
the received FR event may then be scheduled for a streaming
application environment system time denoted as V(t) using
equation (1) below:

V(H)=A(V)+(t-t)+D (D

where D denotes a maximum playback delay (e.g., set to a
value such as 20 ms in some implementation) and t' is a
reference timestamp selected such that A(t')-t' is not greater
than any other A(t)-t for all FR events received from the
remote device to date. Put another way, t' may be considered
to correspond to the FR event that travelled from the remote
device to the streaming application environment 10 with the
shortest transmission time, such that A(t)-t' is effectively
the relative minimum one-way network delay, which is
relative because the streaming application environment sys-
tem clock used by A(t') and the remote device system clock
used by t' are not, and generally do not need to be, synchro-
nized. The selection oft’ may be adjusted in some imple-
mentations, particularly at the beginning of a streaming
session, but will generally settle to a final minimum value.
With equation (1) defined above, the streaming application
environment VFR event with timestamp t' may be dis-
patched at V(t')=A(t")+D, i.e., with an additional playback
delay of D after the arrival of the corresponding FR event
from the remote device. In addition, for all other VFR
events, the playback delay will generally never be greater
than D. Further, in some implementations, D may be auto-
matically adjusted over time, e.g., based upon observed
network jitter.

[0043] In addition, in some implementations, extrapola-
tion and/or interpolation may be used in connection with
tracking remote device FR events. In the illustration imple-
mentation, for example, each VFR event dispatch is initially
scheduled in connection with the actual dispatch or issue of
the prior VFR event. For example, right after dispatching a
VFR event with timestamp t, at V(t1)=A(t)+(t,-t")+D, the
VFR event with timestamp t, may be scheduled to dispatch
soon at V(t,)=A(t)+(t,—t)+D.

[0044] However, if the FR event with timestamp t, is
significantly delayed (or even lost) in the network, it is
possible that this FR event still hasn’t arrived at the stream-
ing application environment by V(t,), and therefore sched-
uling of the next VFR event by FR handler component 38
may be complicated by the fact that the timestamp t, itself

Sep. 29, 2022

is still unknown. In some implementations, therefore, t, may
be extrapolated from prior FR event timestamps, e.g., using
equation (2):

6=t +(t;-to) ()]

[0045] Similarly, it is possible that the FR event with
timestamp t, has not arrived at the streaming application
environment but a later FR event with timestamp t,, has
arrived. In that case, therefore, some implementations may
determine V(t,) using interpolation, e.g., using equation (3):

6=ty +(t, )/ (n-1) 3

[0046] Through the use of extrapolation and/or interpola-
tion, VFR events may be periodically issued at a rate
substantially matching the FR event rate from the remote
device 14, and generally even when some FR events are
significantly delayed or lost. The VFR event schedule effec-
tively may be recalibrated as soon as more FR events arrive
in the environment.

[0047] As also noted above, FR handler component 38
may also drive video streaming component 34. In some
implementations, however, rather than issuing the VFR
events directly to video streaming component a controlled
delay may be applied by scheduling a delayed version of a
corresponding VFR event, referred to herein as a streaming
component frame refresh (SCFR) event. In some implemen-
tations, for example, an SCFR event may be scheduled for
issuance about 10 ms to accommodate the time the virtual
streaming application takes to render a virtual frame, such
that when the video streaming component 34 captures a
virtual frame from the virtual streaming application frame-
buffer, the corresponding application content is fully ren-
dered. It will also be appreciated, however, that if a virtual
streaming application is configured to push a virtual frame
to video streaming component 34 upon completion of ren-
dering, no separate SCFR event may be used.

[0048] FIG. 4, for example, illustrates an example
sequence of operations 70 executable by FR handler com-
ponent 38 in some implementations for scheduling frame
refresh events in streaming application environment 10. The
sequence of operations may be called, for example, in
response to issuance of a scheduled VFR event correspond-
ing to a current FR event. Block 72 first determines if a next
FR event has been received, and if so, passes control to
block 74 to schedule the next VFR event using the time-
stamp of the received next FR event, e.g., using equation (1)
above. If the next FR event is not received, however, block
72 passes control to block 76 to determine if a later FR event
has been received. If not, control passes to block 78 to
schedule the next VFR event using extrapolation, e.g., by
extrapolating from the prior two FR event timestamps using
equation (2) above. If; on the other hand, a later FR event has
been received, block 76 passes control to block 80 to
schedule the next VFR event using interpolation, e.g., using
equation (3) above.

[0049] Once the next VFR event is scheduled by block 74,
78 or 80, control passes to block 82 to schedule an SCFR
event corresponding to the VFR event, e.g., by adding a
controlled or fixed delay to the issue time for the VFR event.
[0050] Next, block 84 optionally adjusts one or more
delays (e.g., D used in equation (1) above) based upon
observed network jitter. The adjustment may be based upon
tracking system responses and network-associated delays,
and may be based in some instances on heuristics, and in
other instances on various machine learning techniques. It



US 2022/0308747 Al

will be appreciated that increasing D further delays an input
event playback schedule and consequently reduces the num-
ber of late arriving input events that are effectively dis-
carded; however, the cost of doing so is higher end-to-end
latency.

[0051] FIG. 5 next illustrates a sequence of operations 90
for handling received FR events in FR handler component
38. While primarily sequence of operations 90 queues
received FR events for scheduling corresponding VFR
events at the appropriate time, as noted above, in some
instances FR events may be lost or delayed, and extrapola-
tion and/or interpolation may be used to predict the time-
stamps of lost or delayed FR events. Thus, it may be
desirable in some implementations to update or confirm
predicted timestamps when delayed FR events finally arrive.
In particular, as illustrated in block 92, it may be desirable
to determine if a VFR event corresponding to a received FR
event has already been scheduled. If not, control passes to
block 94 to queue the FR event for later scheduling of the
corresponding VFR event. If so, however, block 92 instead
passes control to block 96 to update the scheduled VFR
event (and, if scheduled, the corresponding SCFR event)
based upon the timestamp of the received FR event.
[0052] Now turning to FIG. 6, this figure illustrates a
sequence of operations 100 executable by input handler
component 36 of control player component 32 to play back
input to the virtual streaming application 12 in a synchro-
nized fashion with the frames of the remote device. In some
implementations, input handler component 36 may continu-
ously receive input events sent from control streamer com-
ponent 28 and place the received input events on a priority
queue where an input event with a smaller (earlier) time-
stamp has a higher priority than another input event with a
larger (later) timestamp. The queued input events may then
be retrieved later based on a playback schedule and injected,
or played back, into the virtual streaming application 12 as
corresponding virtual input events. Input event injection or
playback may be synchronized by calling sequence of
operations 100 in response to a VFR event generated by FR
handler component 38. Block 102 initiates a FOR loop to
process each input event on the priority queue. Then, for
each input event, that input event is handled based upon the
timestamp associated with the input event relative to the
timestamp associated with the VFR event triggering
sequence of operations 100.

[0053] First, as illustrated in block 104, in some imple-
mentations it may be desirable to send duplicate input events
to account for potential packet losses in the network, and as
such, if an input event is determined to be a duplicate event
in block 104, control may pass to block 106 to pop or
remove the duplicate event from the priority queue, but
otherwise ignore the event. The duplicate event may be
detected, for example, based upon matching a timestamp of
another input event that has already been injected, or based
upon other identifying characteristics that indicate that the
input associated with the input event has already been
injected into the virtual streaming application.

[0054] Ifthe input event is not a duplicate event, sequence
of operations 100 then determines whether the input event is
a late arrival event, an early arrival event, or an on schedule
event. For the purposes of this discussion, denote the time-
stamp of a queued input event by t, that of the current VFR
event by ti, and that of the previous VFR event by to where
t,<t,. The queued input event may be considered to be a late

Sep. 29, 2022

arrival event, an early arrival event, or an on schedule event
depending on the value its timestamp t compared to the
current virtual frame interval (t,, t,).

[0055] Block 108, for example, determines if the input
event is a late arrival event, e.g., where t<t,. The input event
may be considered late, as the input event should have been
injected at the VFR event with timestamp to, but arrived
sometime later. Thus if the input event is a late arrival event,
block 108 passes control to block 110 to pop the input event
from the priority queue, and otherwise ignore the event so
that it does not interfere with other on schedule events to be
played back in the current virtual frame interval. However,
in some implementations a late arrival event may still be
useful later on, and so the last late arrival event discarded in
the current virtual frame interval may also be cached future
use, as will be discussed in greater detail below.

[0056] Block 112 determines if the input event is an on
schedule event, e.g., where t,<t<t,. The input event in this
instance should be popped from the priority queue and
injected, and as such, block 112 passes control to block 114
to pop the input event from the priority queue and inject the
input event into the virtual streaming application. For each
of duplicate, late arrival and on schedule events, control then
returns to block 102 to process the next highest priority input
event on the priority queue.

[0057] Returning to block 112, if the input event is not an
on schedule event, the input event is an early arrival event,
e.g., where t>t;. The input event in such an instance should
be played back in a future virtual frame interval. As such,
block 112 may handle such an input event by passing control
to block 116 to leave the input event on the priority queue
and ignore it. In addition, because input events are processed
in order on the priority queue, there is also no need to further
process other input events in the priority queue in this virtual
frame interval as they are all early arrival events from the
perspective of the current virtual frame interval.

[0058] In some implementations, whenever all input
events have been processed by the FOR loop initiated in
block 102, or whenever an early arrival event is processed,
playback of input events for the current virtual frame
interval is complete. In other implementations, and as will
be discussed in greater detail below, control streamer 28 in
remote device 14 may be configured to resend a trailing
event, so in such implementations, blocks 102 and 116 may
instead pass control to block 118 to determine whether a
cached late arrival event has a later timestamp than a last
injected input event, and if so, to block 120 to inject the
cached event. A further discussion of this functionality is
discussed in greater detail below in connection with event
filling.

Recovery of Lost or Delayed Input Events

[0059] As noted above, in some instances, particularly
with mobile devices wirelessly coupled to a streaming
application environment over a packet-switching network
such as the internet, packet delays and losses can have an
adverse impact on application streaming performance, par-
ticularly from the perspective of injecting input events into
a virtual streaming application. Packet loss can be addressed
in some instances using a protocol such as Transmission
Control Protocol (TCP) that automatically handles packet
retransmission, congestion control and reordering, although
the use of TCP packets can, particularly with lossy networks,
result in unacceptably long delays. Using a faster, but less



US 2022/0308747 Al

reliable protocol such as User Datagram Protocol (UDP) can
avoid some of the delays associated with TCP retransmis-
sions and congestion control; however, the lost and out-of-
order packets can result in inconsistent application control.
[0060] Invarious implementations disclosed herein, on the
other hand, a number of techniques may be individually or
collectively utilized to address packet losses and delays. In
some implementations, for example, resiliency against
packet loss may be increased by sending input events
multiples times to add redundancy to the input stream,
potentially with a short delay between repeats to address
bursty packet loss. In addition, in some embodiments, cor-
rection events may be synthesized within the streaming
application environment to account for lost and/or delayed
packets.

[0061] For example, in some implementations, control
streamer component 28 of remote device 14 may be aug-
mented to resend each input packet N times, where N may
be determined based on a tradeoff’ between packet loss
resiliency and bandwidth consumption. In addition, in some
instances, to better handle bursty packet losses where con-
secutive packets sent in a short burst tend to get lost together,
the repeated input events may be sent with a delay, e.g.,
about 10 ms, after a previous transmission. FIG. 7, for
example, illustrates a sequence of operations 130 for han-
dling input events in control streamer component 28, e.g., as
an alternative to sequence of operations 50 of FIG. 2. In
block 132, an input event message is generated, including a
remote device system time timestamp, as well as any related
event parameters, e.g., touch coordinates, identifiers of
related input events (e.g., for touch move or touch up events
associated with a particular gesture, the timestamp of the
initial touch down event that started the gesture), etc. Block
134 then sends the generated event message to the streaming
application environment 10 N times, and optionally includ-
ing a delay between each transmission. Sequence of opera-
tions 130 is then complete.

[0062] It will be appreciated that even with event dupli-
cation, an input event can still get lost together with the
duplicated input events. In many instances, the effect of the
lost event may be transient and may be overwritten quickly
by subsequent input events. However, for certain events,
referred to herein as trailing events, this may not necessarily
be the case. As such, in some implementations it may be
desirable to additionally augment control streamer compo-
nent 38 to incorporate event filling. A trailing event, for the
purposes of this disclosure, may be considered to be the last
input event in a sequence before a silent period of no further
input events. A common example of a trailing event is a
touch up event in a swipe gesture on a touchscreen. If the
touch up event is lost together with all of its duplicate events,
the streaming application environment will not be able to
determine if the user has lifted his/her finger or if the finger
still stays on the screen just without further movements. This
unknown state is therefore no longer transient, and can
persist until the user starts the next touch gesture after a long
pause.

[0063] As such, in some implementations it may also be
desirable to check in connection with each frame on the
remote device whether any new input event was received
within the frame, and if not, resend the last input event to
ensure that the silent period is filled with the last trailing
event repeatedly at the FR rate, and that the trailing event
will eventually arrive at streaming application environment

Sep. 29, 2022

to resolve the unknown state. In some implementations, for
example, such functionality may be implemented in con-
nection with the handling of frame refresh events in control
streamer component 28, e.g., using as an alternative to
sequence of operations 60 of FIG. 3, sequence of operations
140 of FIG. 8. In sequence of operations 140, prior to
generating an FR event message, block 142 may determine
whether any input event has been issued during the last
frame interval. If so, control passes to block 144 to generate
an FR event message, including a remote device system time
timestamp, and then to block 146 to send the message to the
streaming application environment 10. On the other hand, if
it is determined that no input event has been issued during
the last frame interval, block 142 may pass control to block
148 to resend the last input event as a trailing event, prior to
passing control to block 144. As such, during frames in
which no input events are generated, a trailing event is still
sent, thereby ensuring that the trailing event will eventually
be received by the streaming application environment.

[0064] Next from the perspective of the control player
component 32, event synthesis may be used to synthesize
correction events, and in some instances companion events,
to address lost or delayed input events. Even synthesis may
be based, for example, on inferences drawn from other
events that are injected on schedule. In some implementa-
tions, for example, correction events are synthesized from an
injected or played-back event if applicable, and, then for
each synthesized correction event and the original played-
back event, a companion event may also be synthesized if
applicable.

[0065] For simplicity, the following discussion for correc-
tion events will focus on gestures such as touchscreen
gestures, and in particular on single-touch gestures where a
single finger is manipulated on the touchscreen. It will be
appreciated that a typical gesture of such a type will begin
with a gesture start event and end with a gesture stop event,
and with one or more gesture move events occurring
between the gesture start and stop events. In the case of
touchscreen gestures, for example, a touch down event,
where a user first places a finger on the touchscreen, may
correspond to a gesture start event, while a touch up event,
where a user lifts the finger off of the touchscreen, may
correspond to a gesture stop event, and a touch move event
may correspond to a gesture move event. While a single-
touch gesture is described hereinafter, however, extension of
the herein-disclosed techniques to other gestures, including
multi-finger touch gestures, mouse, trackball or other point-
ing device gestures, image captured gestures, and other
gestures having defined start and stop events, would be
straightforward. The invention is therefore not limited to use
with the particular touch events described herein.

[0066] To facilitate synthesis of events, control player
component 32 may be configured to track the states of
gesture-related input events, including synthesized events,
that are injected into a virtual streaming application, and in
particular may maintain a state of a gesture as being started
or completed. In some implementations, the gesture state
may also correspond to a state of a pointer, e.g., where a
started gesture state corresponds to a pointer down state and
a completed gesture state corresponds to a pointer up state.
It may also be desirable in some implementations to retain
the coordinates associated with the last injected or played
back input event, as well as the timestamp of the last injected
or played back gesture start (e.g., touch down) event,



US 2022/0308747 Al

denoted by td. In addition, it may be desirable to include
with each gesture-related event a field that represents the
timestamp of the associated gesture start (e.g., touch down)
event that initiated the current gesture. It will be appreciated
that the coordinates may correspond to a two-dimensional
location on a touchscreen or other two dimensional display,
while in some implementations three-dimensional coordi-
nates may be used as appropriate.

[0067] Now with reference to FIG. 9, this figure illustrates
a sequence of operations 150 executable by input handler
component 36 of control player component 32 to inject
gesture events into a virtual streaming application. Sequence
of operations 150, for example, may correspond to the
injection operations referred to in blocks 116 and 120 of
FIG. 6. In blocks 152-162 of sequence of operations 150,
several different scenarios, which may be implemented
individually or collectively in different implementations, are
illustrated for synthesizing events.

[0068] Block 152, for example, tests whether the event to
be injected is a gesture start (e.g., touch down) event and the
gesture state is started, which effectively corresponds to the
loss of a prior gesture stop (e.g., touch up) event. If so,
control passes to block 154 to generate an appropriate
correction event corresponding to the lost gesture stop event.
For example, in some implementations the correction event
may be generated by duplicating the gesture event but
changing the action from start(down) to stop(up), replacing
the coordinates of the event with those of the last injected
input event, and replacing the timestamp with td, the time-
stamp of the last injected gesture start event.

[0069] Block 156 tests whether the event to be injected is
a gesture stop or move event, but the current state is still
completed (up), which effectively corresponds to the loss of
a prior gesture start (e.g., touch down) event. If so, control
passes to block 158 to generate an appropriate correction
event corresponding to the lost gesture start event. For
example, in some implementations the correction event may
be generated by duplicating the gesture stop or move event,
but replacing the stop or move action with start.

[0070] Block 160 tests whether the event to be injected is
a gesture stop or move event, the current state is started
(down), but in the event to be injected the timestamp of the
associated gesture start (e.g., touch down) event is different
from td, which effectively corresponds to the event to be
injected being from a new gesture and at least one prior pair
of gesture stop (e.g., touch up) and gesture start (e.g., touch
down) event has been lost. If so, control passes to block 162
to generate an appropriate pair of correction events corre-
sponding to the lost gesture stop and gesture start events,
with the synthesis of the correction gesture stop and gesture
start events performed in a similar manner to that described
above in connection with blocks 154 and 158.

[0071] After correction events are synthesized, or if no
such correction events are needed, control next passes to
block 164 to inject the gesture event. In addition, in some
implementations it may also be desirable to inject one or
more companion events at this time. In particular, it has been
observed that on a physical computing device with the
touchscreen, each touch down event is always immediately
followed by a touch move event, and each touch up event is
always immediately preceded by a touch move event. There-
fore, in some implementations it may be desirable to syn-
thesize this behavior in block 164 by always preceding any
gesture stop event (including a correction gesture stop event)

Sep. 29, 2022

with a companion gesture move event and following any
gesture start event (including a correction gesture start
event) with a companion gesture move event. A companion
event may be generated, for example, by duplicating the
associated gesture start or stop event and simply changing
the action from start or stop to move.

[0072] Now returning once again to FIG. 6, as noted
above, it may be desirable in some instances to cache the last
late arrival input event discarded in the current virtual frame
interval (block 110). After popping all the late arrival and on
schedule input events in the priority queue and preserving all
the early arrival input events (blocks 102-116), the cached
last late arrival input event may be compared against the last
injected input event in the current virtual frame interval. The
cached event, although being a late arrival event, may in
some implementations still be useful because it may be a
trailing event that is resent periodically as described above
in connection with FIG. 8. For this reason, the cached event
may be played back as the last event in the current virtual
frame interval as long as its timestamp is greater than the
timestamp of the last input event injected or played back into
the virtual streaming application. Testing of this condition is
illustrated in block 118, and injecting of the cached event is
illustrated in block 120. It will be appreciated that the
comparison of the timestamps preserves ordering in the
input events perceived by the virtual streaming application.

Example Hardware Environment

[0073] The herein-described techniques may be imple-
mented in a number of different computers, computer sys-
tems, or computing devices in various implementations.
FIG. 10, for example, is a block diagram of an example
computer 200 that may be used to implement a remote
device and/or various computer systems within an applica-
tion streaming environment. Computer 200 typically
includes at least one processor 204 which communicates
with a number of peripheral devices via a bus subsystem
202. These peripheral devices may include a storage sub-
system 212, including, for example, a memory subsystem
214 and a file storage subsystem 220, user interface output
devices 208, user interface input devices 210, and a network
interface subsystem 206. The input and output devices allow
user interaction with computer 200, and network interface
subsystem 206 provides an interface to outside networks and
is coupled to corresponding interface devices in other com-
puters.

[0074] User interface input devices 210 may include a
keyboard, pointing devices such as a mouse, trackball,
touchpad, or graphics tablet, a scanner, a touchscreen incor-
porated into the display, audio input devices such as voice
recognition systems, microphones, and/or other types of
input devices. In general, use of the term “input device” is
intended to include all possible types of devices and ways to
input information into computer 200 or onto a communica-
tion network.

[0075] User interface output devices 208 may include a
display subsystem, a printer, a fax machine, or non-visual
displays such as audio output devices. The display subsys-
tem may include a cathode ray tube (CRT), a flat-panel
device such as a liquid crystal display (LCD), a projection
device, or some other mechanism for creating a visible
image. The display subsystem may also provide non-visual
display such as via audio output devices. In general, use of
the term “output device” is intended to include all possible



US 2022/0308747 Al

types of devices and ways to output information from
computer system 510 to the user or to another machine or
computer system.

[0076] Storage subsystem 212 stores programming and
data constructs that provide the functionality of some or all
of the modules described herein. For example, the storage
subsystem 212 may include the logic to perform selected
aspects of the aforementioned sequences of operations and/
or to implement one or more components of the various
devices and environments illustrated in FIGS. 1.

[0077] These software modules are generally executed by
processor 204 alone or in combination with other proces-
sors. Memory 214 used in the storage subsystem can include
a number of memories including a main random access
memory (RAM) 218 for storage of instructions and data
during program execution and a read only memory (ROM)
216 in which fixed instructions are stored. A file storage
subsystem 220 can provide persistent storage for program
and data files, and may include a hard disk drive, a floppy
disk drive along with associated removable media, a CD-
ROM drive, an optical drive, or removable media cartridges.
The modules implementing the functionality of certain
implementations may be stored by file storage subsystem
220 in the storage subsystem 212, or in other machines
accessible by the processor(s) 204.

[0078] Bus subsystem 202 provides a mechanism for
allowing the various components and subsystems of com-
puter 200 to communicate with each other as intended.
Although bus subsystem 202 is shown schematically as a
single bus, alternative implementations of the bus subsystem
may use multiple busses.

[0079] Computer 200 can be of varying types including a
workstation, server, computing cluster, blade server, server
farm, or any other data processing system or computing
device. Due to the ever-changing nature of computers and
networks, the description of computer 200 depicted in FIG.
10 is intended only as a specific example for purposes of
illustrating some implementations. Many other configura-
tions of computer 200 are possible having more or fewer
components than the computer system depicted in FIG. 10.
[0080] Moreover, particularly where computer 200 is used
to implement a remote device such as a mobile phone, tablet
computer, vehicle computer, wearable computer, etc., addi-
tional sensors 222 may also be included. Sensors such as
accelerometers, global positioning sensors, gyroscopic sen-
sors, health sensors, among others, may be used.

[0081] While several implementations have been
described and illustrated herein, a variety of other means
and/or structures for performing the function and/or obtain-
ing the results and/or one or more of the advantages
described herein may be utilized, and each of such variations
and/or modifications is deemed to be within the scope of the
implementations described herein. More generally, all
parameters, dimensions, materials, and configurations
described herein are meant to be exemplary and that the
actual parameters, dimensions, materials, and/or configura-
tions will depend upon the specific application or applica-
tions for which the teachings is/are used. Those skilled in the
art will recognize, or be able to ascertain using no more than
routine experimentation, many equivalents to the specific
implementations described herein. It is, therefore, to be
understood that the foregoing implementations are presented
by way of example only and that, within the scope of the
appended claims and equivalents thereto, implementations

Sep. 29, 2022

may be practiced otherwise than as specifically described
and claimed. Implementations of the present disclosure are
directed to each individual feature, system, article, material,
kit, and/or method described herein. In addition, any com-
bination of two or more such features, systems, articles,
materials, kits, and/or methods, if such features, systems,
articles, materials, kits, and/or methods are not mutually
inconsistent, is included within the scope of the present
disclosure.

What is claimed is:

1. A method implemented by one or more processors of a
device, the method comprising:

receiving an output display representation from a remote

streaming application environment coupled to the
device over a packet-switched network, the output
display representation generated by a virtual streaming
application resident in the remote streaming application
environment;

rendering a plurality of frames of the received output

display representation on a display associated with the
device;

in response to inputs generated on the device during

rendering of the plurality of frames via an input com-
ponent of the device, issuing a plurality of input events
for communication over the packet-switched network
to the remote streaming application environment; and
in response to a determination that no inputs are generated
during a frame among the plurality of frames, reissuing
a trailing event issued in a prior frame for communi-
cation over the packet-switched network to the remote
streaming application environment,
wherein the trailing event corresponds to a given input
event, of the plurality of input events, issued in the
prior frame before the determination that no inputs
are generated during the frame.

2. The method of claim 1, wherein each input event, of the
plurality of input events, is associated with a corresponding
timestamp, and wherein the trailing event is associated with
a trailing event timestamp, and wherein the trailing event
timestamp corresponds to the corresponding timestamp of
the given input event for which the trailing event is reissued.

3. The method of claim 2, wherein the trailing event is
placed in a priority queue, along with the plurality of input
events, as a last input event, of the plurality of input events,
based on the trailing event timestamp corresponding to the
corresponding timestamp of the given input event

4. The method of claim 3, further comprising:

rendering a plurality of additional frames of the received

output display representation on the display associated
with the device, the plurality of additional frames of the
received output display representation being based on
the priority queue.

5. The method of claim 2, wherein each input, of the
plurality of input events, is associated with one or more
corresponding input event parameters.

6. The method of claim 5, wherein the one or more
corresponding input event parameters include corresponding
input coordinates with respect the output display represen-
tation and/or corresponding input identifiers with respect to
a type of input event.

7. The method of claim 6, wherein the type of input event
corresponds to an input start event or an input stop event.



US 2022/0308747 Al

8. The method of claim 1, further comprising:

subsequent to issuing the plurality of input events for

communication over the packet-switched network to
the remote streaming application environment, reissu-
ing the plurality of input events for communication
over the packet-switched network to the remote stream-
ing application environment.

9. The method of claim 8, wherein issuing each input
event, of the plurality of input events, for communication
over the packet-switched network to the remote streaming
application environment comprises:

issuing a first input event, of the plurality of input events;

and

issuing a second input event, of the plurality of input

events.

10. The method of claim 9, wherein reissuing each input
event, of the plurality of input events, for communication
over the packet-switched network to the remote streaming
application environment comprises:

in response to determining that a first delay has lapsed,

reissuing the first input event, of the plurality of input
events; and

in response to determining that a second delay has lapsed,

reissuing the second input event, of the plurality of
input events.

11. The method of claim 1, further comprising:

in response to a determination that inputs are generated

during the frame among the plurality of frames, con-
tinue issuing the plurality of input events for commu-
nication over the packet-switched network to the
remote streaming application environment.

12. A device comprising:

an input component;

at least one processor; and

memory storing instructions that, when executed, cause

the at least one processor to:

receive an output display representation from a remote
streaming application environment coupled to the
device over a packet-switched network, the output
display representation generated by a virtual stream-
ing application resident in the remote streaming
application environment;

render a plurality of frames of the received output display

representation on a display component associated with
the device;

in response to inputs generated on the device during

rendering of the plurality of frames via the input
component, issue a plurality of input events for com-
munication over the packet-switched network to the
remote streaming application environment; and

in response to a determination that no inputs are generated

during a frame among the plurality of frames, reissue a

trailing event issued in a prior frame for communica-

tion over the packet-switched network to the remote

streaming application environment,

wherein the trailing event corresponds to a given input
event, of the plurality of input events, issued in the
prior frame before the determination that no inputs
are generated during the frame.

13. The device of claim 12, wherein each input event, of
the plurality of input events, is associated with a correspond-
ing timestamp, wherein the trailing event is associated with
a trailing event timestamp, and wherein the trailing event

10

Sep. 29, 2022

timestamp corresponds to the corresponding timestamp of
the given input event for which the trailing event is reissued.

14. The device of claim 13, wherein the trailing event is
placed in a priority queue, along with the plurality of input
events, as a last input event, of the plurality of input events,
based on the trailing event timestamp corresponding to the
corresponding timestamp of the given input event

15. The device of claim 14, wherein the instructions
further cause the at least one processor to:

render a plurality of additional frames of the received

output display representation on the display associated
with the device, the plurality of additional frames of the
received output display representation being based on
the priority queue.

16. The device of claim 13, wherein each input, of the
plurality of input events, is associated with one or more
corresponding input event parameters, wherein the one or
more corresponding input event parameters include corre-
sponding input coordinates with respect the output display
representation and/or corresponding input identifiers with
respect to a type of input event, and wherein the type of input
event corresponds to an input start event or an input stop
event.

17. The device of claim 12, wherein the instructions
further cause the at least one processor to:

subsequent to issuing the plurality of input events for

communication over the packet-switched network to
the remote streaming application environment, reissue
the plurality of input events for communication over
the packet-switched network to the remote streaming
application environment.

18. The device of claim 17, wherein the instruction to
issue each input event, of the plurality of input events, for
communication over the packet-switched network to the
remote streaming application environment comprise instruc-
tions to:

issue a first input event, of the plurality of input events;

and

issue a second input event, of the plurality of input events.

19. The device of claim 18, wherein the instructions to
reissue each input event, of the plurality of input events, for
communication over the packet-switched network to the
remote streaming application environment comprise instruc-
tions to:

in response to determining that a first delay has lapsed,

reissue the first input event, of the plurality of input
events; and

in response to determining that a second delay has lapsed,

reissue the second input event, of the plurality of input
events.

20. A device comprising:

an input component;

a display component;

at least one processor; and

memory storing instructions that, when executed, cause

the at least one processor to:

receive an output display representation from a remote
streaming application environment coupled to the
device over a packet-switched network, the output
display representation generated by a virtual stream-
ing application resident in the remote streaming
application environment;



US 2022/0308747 Al Sep. 29, 2022
11

render a plurality of frames of the received output
display representation on the display component
associated with the device;
in response to inputs generated on the device during
rendering of the plurality of frames via the input
component, issue a plurality of input events for
communication over the packet-switched network to
the remote streaming application environment; and
in response to a determination that no inputs are
generated during a frame among the plurality of
frames, reissue a trailing event issued in a prior
frame for communication over the packet-switched
network to the remote streaming application envi-
ronment,
wherein the trailing event corresponds to a given
input event, of the plurality of input events, issued
in the prior frame before the determination that no
inputs are generated during the frame.

#* #* #* #* #*



