US 20190163497A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0163497 A1

Samuel et al.

43) Pub. Date: May 30, 2019

(54)

(71)

(72)

(73)

@

(22)

SYSTEMS AND METHODS FOR
ESTABLISHING CORE ROOT OF TRUST
MEASUREMENT (CRTM) FOR BASIC
INPUT/OUTPUT (BIOS) IMAGE RECOVERY

Applicant: Dell Products, L.P., Round Rock, TX
(US)

Inventors: Balasingh Ponraj Samuel, Round

Rock, TX (US); Ricardo L. Martinez,

Leander, TX (US); Richard M. Tonry,

Austin, TX (US); Wai-Ming Richard

Chan, Austin, TX (US)

Dell Products, L.P., Round Rock, TX
us)

Assignee:

Appl. No.: 15/826,922

Filed: Nov. 30, 2017

Publication Classification

(51) Int. CL
GOGF 9/44 (2006.01)
GOGF 13/42 (2006.01)
GOGF 11/14 (2006.01)
(52) US.CL
CPC ... GOGF 9/4411 (2013.01); GOGF 13/4282

(2013.01); GOGF 2201/82 (2013.01); GO6F
11/1417 (2013.01); GO6F 2201/805 (2013.01);
GO6F 11/1469 (2013.01)

(57) ABSTRACT

Systems and methods for establishing Core Root of Trust
Measurement (CRTM) for Basic Input/Output (BIOS)
image recovery are described. In some embodiments, an
Information Handling System (IHS) may include a proces-
sor and a BIOS coupled to the processor, the BIOS having
program instructions that, upon execution, cause the IHS to:
during a boot process, verify integrity of a BIOS recovery
image using a CRTM, and determine whether to restore the
BIOS recovery image in response to the verification.

100
102 CPU
A
o=t —0 104
110 ' ! "
N GIGABIT || ~ NORTH |
ETHERNET [*| I
| | BRIDGE |ay . Méﬂl\;\g:w 114
M2~TonsoarD | ! | 106 | |
GRAPHICS : il :
| i I
| ' |
116 | | POWER | 126
Us3 PORTS [« -1 " MANAGEMENT
: : CLOCK | ~128
| I
| I SCSI HOST
SERIALATA | | | SOUTH | PCI BUS ADAPTER
PORTS BRIDGE
12071 : « : BUS | ["opTION ROM
|| 108 [T 130
ATA100 1 1 131
1221 PORTS 1 |
B T |
sounp |1 | 132
124 _ADAPTER T | ETHERNET
| T CONTROLLER [
| I 134
- — i = .|
v v Y
EFI SUPER 1/0
136" FIRMwARE | | NVRAM DEVICE [-138
/

Patent Application Publication = May 30, 2019 Sheet 1 of 7 US 2019/0163497 A1

?)O
A
| i e |
| T 10
M0~ eicasIT | | ok | !
ETHERNET | | = I
| | BRIDGE |ey . Mé”@é',“.w L~ 114
112~J onBoarD | | | 106 '
GRAPHICS [~ 1 '
| - |
| |
| v |
116~ l | | power }126
USB PORTS | : > N : 2] MANAGEMENT
118~ : : | cock }-128
GPIOPINS |« , GENERATION
| |
| | SCSI HOST
SERIALATA || | SOUTH | | peI BUS ADAPTER
PORTS BRIDGE
120" | 124! [oPTIONROM
| 108 | N ™-130
ATA100 | I 131
122" PORTS : :
! T LT NPV
SOUND | '
124/ ADAPTER - | - ETHERNET
: : CONTROLLER 434
N I |
! y v
EFI SUPER 1/0
136-"] FIRMwWARE | | NVRAM DEVICE 138

/
137 FIG. 1

Patent Application Publication = May 30, 2019 Sheet 2 of 7 US 2019/0163497 A1
202~
OPERATING SYSTEM |«
A
mr—==--=7 -TT=-""
| Y |
| [EXTENSIBLEFIRMWARE | | | 912
| INTERFACE I
| 7y |
136~ / 208
|
| 206 / I
| LEGACY BIOS]
| SUPPORT MODULE [+ 1
| 7y |
N A — e — — o — o]
\
2101 HARDWARE
FIG. 2
3(8‘
OPERATING SYSTEM | ~202
EFI O/S LOADER | ~302
304~] EFIBOOT EFIRUNTIME | -306
SERVICES SERVICES
314 OTHERS l PLATFORM SPECIFIC FIRMWARE
AN)
SMBIOS | EFIBOOT LOADER |_5., [>-308 > FIG. 3
=1 | AcPI PLATFORM HARDWARE
EFI SYSTEM /S
PARTITION PARTITION | [T\-316
N
318 320 |

Patent Application Publication = May 30, 2019 Sheet 3 of 7 US 2019/0163497 A1
400
\
FIRMWARE | -401
RECOVERY IMAGE
402 403 404 405 406
S] ; ;
HA?gl‘J'”é’f‘rRE UEFL PEL UEFI BOOT OPERATING
MODULE DXE/SMM LOADER SYSTEM

NNV AN AN

FIG. 4

Patent Application Publication = May 30, 2019 Sheet 4 of 7 US 2019/0163497 A1

501~ ("s7arTBOOT) 500
¥

502~] VERIFY PEI CODE REGION
(CORE ROOT OF TRUST (CRTM))

503

YES

NO

504~ USE ALTERNATE BOOT
BLOCK TO CONTINUE

v

505~ INCREMENT
AlternateBootBlock FLAG

v

ADD BIOS EVENT LOG. CUSTOMER
506-"1 OR IT ADMINISTRATOR
NOTIFICATION PURPOSE

2

Y

MEASURE DXE/SMM CODE
VOLUME(S) (ON THE
SPI - GENERATE HASH)

v

COMPARE DXE/SMM
MEASUREMENT TO PEI TRUSTED
508-"| MEASUREMENT VALUE (STORED
IN SPI - REFERENCE HASH)

507"

GENERATED RESET
HASH MATCHES REFERENCE AlternateBootBlock
HASH? FLAG
\
512
IS
AlternateBootBlock YES -
FLAGIS>1
510 @
511 /(PROCEED TO NORMAL BOOT)

TOFIG. 5B
FIG. 5A

Patent Application Publication

FROM
FIG. 5A

7

513~

LOCATE RECOVERY IMAGE

514

FounD? N0

May 30, 2019 Sheet 5 of 7

YES

518~

LOCATE DXE/SMM
RECOVERY PAYLOAD

v

519~

VERIFY BIOS PAYLOAD
SIGNATURE

NO

US 2019/0163497 Al

500

IS
AlternateBootBlock FLAG
> PRE-DEFINED
VALUE?

YES

VERIFIED?

521

EXTRACT DXE/SMM
PAYLOAD (TO MEMORY)

v

522

MEASURE DXE/SMM CODE
REGION (IN MEMORY)

v

523

COMPARE DXE/SMM
MEASUREMENT TO PEI
TRUSTED MEASUREMENT
VALUE (STORED IN SPI)

COMPARE

NO

OK?

TOFIG.5C

Y

Y
(CONTINUE BOOT)

N
516

) 4
(__BLOCKBOOT)N 517

FIG. 5B

Patent Application Publication = May 30, 2019 Sheet 6 of 7 US 2019/0163497 A1

FROM

FIG. 58
500

525~ WRITE DXE/SMM PAYLOAD TO
FIRMWARE STORAGE DEVICE

v

526~ MEASURE DXE/SMM
CODE VOLUME

v

527~ COMPARE DXE/SMM TO PEI
TRUSTED MEASUREMENT VALUE

NO

COMPARE OK?
Y

MESSAGE CUSTOMER
OF UNRECOVERABLE |~_ 531
529" RESET AlternateBootBlock FLAG FAILURE

v
PROCEED WITH NORMAL LAUNCH MANUAL
530 BOOT (AFTER RECOVERY) RECOVERY 532

FIG. 5C

Patent Application Publication

May 30, 2019 Sheet 7 of 7

608‘
601~ ("B105 BUILD START)
Y
6021 BuILD DXE CODE REGIONS
Y
603~ BUILD PEI CODE REGIONS
Y
604~| CREATE DXE CODE REGION
MEASUREMENT
Y
INSERT DXE CODE REGION
605-"| MEASUREMENT INTO PEI REGION
A
6061 MEASURE PEI CODE REGION
Y
SAVE PEI CODE REGION
607" MEASUREMENT (CRTM)

\
608 {_BIOSBU

A
ILDEND)

FIG. 6

US 2019/0163497 Al

US 2019/0163497 Al

SYSTEMS AND METHODS FOR
ESTABLISHING CORE ROOT OF TRUST
MEASUREMENT (CRTM) FOR BASIC
INPUT/OUTPUT (BIOS) IMAGE RECOVERY

FIELD

[0001] This disclosure relates generally to Information
Handling Systems (IHSs), and more specifically, to systems
and methods for establishing Core Root of Trust Measure-
ment (CRTM) for Basic Input/Output (BIOS) image recov-

ery.
BACKGROUND

[0002] As the value and use of information continues to
increase, individuals and businesses seek additional ways to
process and store information. One option is an information
handling system (IHS). An IHS generally processes, com-
piles, stores, and/or communicates information or data for
business, personal, or other purposes. Because technology
and information handling needs and requirements may vary
between different applications, IHSs may also vary regard-
ing what information is handled, how the information is
handled, how much information is processed, stored, or
communicated, and how quickly and efficiently the infor-
mation may be processed, stored, or communicated. The
variations in IHSs allow for IHSs to be general or configured
for a specific user or specific use such as financial transac-
tion processing, airline reservations, enterprise data storage,
global communications, etc. In addition, IHSs may include
a variety of hardware and software components that may be
configured to process, store, and communicate information
and may include one or more computer systems, data storage
systems, and networking systems.

[0003] In most IHSs, low-level code is used as an inter-
mediary between hardware components and the Operating
System (OS), as well as other high-level software. In some
THSs, this low-level code is known as the Basic Input/Output
System (BIOS). The BIOS provides a set of software
routines that allow high-level software to interact with
hardware components using standard calls. Because of cer-
tain limitations of the original BIOS, a new specification for
creating code that is responsible for booting the IHS has
been developed that is called the Extensible Firmware
Interface (EFI) Specification, and which has been extended
by the Unified Extensible Firmware Interface Forum
(UEFD).

[0004] The EFI Specification describes an interface
between the OS and the system firmware. In particular, the
EFI Specification defines the interface that platform firm-
ware must implement and the interface that the OS may use
in booting. The EFI Specification also specifies that proto-
cols should be provided for EFI drivers to communicate with
each other. An EFI protocol is an interface definition pro-
vided by an EFI driver. The EFI core provides protocols for
allocation of memory, creating events, setting the clock, etc.

[0005] The inventors hereof have recognized that BIOS-
based IHSs include manual and/or automatic BIOS recovery
features that allow for the recovery of the BIOS if the IHS
fails to boot properly-a possible cause being that the BIOS
code becomes corrupted. As the inventors hereof have also
discovered, however, these conventional BIOS image recov-
ery mechanisms are vulnerable to security threats.

May 30, 2019

SUMMARY

[0006] Embodiments of systems and methods for estab-
lishing Core Root of Trust Measurement (CRTM) for Basic
Input/Output (BIOS) image recovery are described herein.
In an illustrative, non-limiting embodiment, an Information
Handling System (IHS) may include a processor and a BIOS
coupled to the processor, the BIOS having program instruc-
tions stored thereon that, upon execution, cause the IHS to:
during a boot process, verify integrity of a BIOS recovery
image using a CRTM, and determine whether to restore the
BIOS recovery image in response to the verification.
[0007] In some implementations, the program instruc-
tions, upon execution, may cause the IHS to: detect changes
in the BIOS recovery image and prevent the IHS from
booting. Additionally or alternatively, the program instruc-
tions, upon execution, may cause the IHS to detect no
changes in the BIOS recovery image; and allow the IHS to
boot.

[0008] The BIOS may include a first pre-efi initialization
phase (PEI) portion and a first Driver Execution Environ-
ment (DXE)/System Management Mode (SMM) portion,
and the BIOS recovery image may include a second DXE/
SMM portion. The program instructions, upon execution,
may cause the IHS to verify the integrity of the first PEI
portion using a hardware Root of Trust. Additionally or
alternatively, the program instructions, upon execution, fur-
ther cause the first PEI portion to chain the CRTM to the
second DXE/SMM portion. Additionally or alternatively,
the program instructions, upon execution, may cause the first
PEI portion to compare a DXE measurement of the second
DXE/SMM portion with a known value stored in the first
PEI region.

[0009] The known value may include a value stored in a
Platform Configuration Register (PCR) prior to initiation of
the restore. The program instructions, upon execution, may
cause the IHS to write contents of the second DXE/SMM
portion to a Serial Peripheral Interface (SPI) module. Addi-
tionally or alternatively, the program instructions, upon
execution, may cause the IHS to verify the DXE/SMM
contents on the SPI; and in response to the verification, hand
off execution to the second DXE/SMM portion on the SPI
module.

[0010] In another illustrative, non-limiting embodiment, a
method may implement one or more of the aforementioned
operations. In yet another illustrative, non-limiting embodi-
ment, a hardware memory device may have program instruc-
tions stored thereon that, upon execution by an IHS, cause
the THS to perform one or more of the aforementioned
operations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present invention(s) is/are illustrated by way of
example and is/are not limited by the accompanying figures,
in which like references indicate similar elements. Elements
in the figures are illustrated for simplicity and clarity, and
have not necessarily been drawn to scale.

[0012] FIG. 1 is a block diagram of an example of an
Information Handling System (IHS) configured to imple-
ment systems and methods, according to some embodi-
ments.

[0013] FIGS. 2 and 3 are block diagrams of examples of
aspects of Basic Input/Output (BIOS) or Extensible Firm-

US 2019/0163497 Al

ware Interface (EFI) firmware configured to implement
systems and methods, according to some embodiments.
[0014] FIG. 4 is a block diagram of a Root of Trust
established between hardware and a BIOS recovery image,
according to some embodiments.

[0015] FIGS. 5A-C show a flowchart of an example of a
method for creating a reference HASH from a BIOS build-
ing process, according to some embodiments.

[0016] FIG. 6 is a flowchart of an example of a method for
establishing Core Root of Trust Measurement (CRTM) for
BIOS image recovery, according to some embodiments.

DETAILED DESCRIPTION

[0017] In various embodiments, systems and methods
described herein may facilitate establishing Core Root of
Trust Measurement (CRTM) for Basic Input/Output (BIOS)
image recovery. Particularly, these techniques may help
mitigate against attackers gaining access to an Information
Handling System (IHS) during a BIOS recovery process
using an otherwise vulnerable recovery image. In contrast, a
recovery method that does not establish a Root of Trust for
the BIOS recovery code can itself contain malicious code,
which is then usable as an attack vector to access the BIOS
code or the IHS, without the user’s awareness.

[0018] For purposes of this disclosure, an IHS may
include any instrumentality or aggregate of instrumentalities
operable to compute, calculate, determine, classify, process,
transmit, receive, retrieve, originate, switch, store, display,
communicate, manifest, detect, record, reproduce, handle, or
utilize any form of information, intelligence, or data for
business, scientific, control, or other purposes. For example,
an [HS may be a personal computer (e.g., desktop or laptop),
tablet computer, mobile device (e.g., Personal Digital Assis-
tant (PDA) or smart phone), server (e.g., blade server or rack
server), a network storage device, or any other suitable
device and may vary in size, shape, performance, function-
ality, and price. An IHS may include Random Access
Memory (RAM), one or more processing resources such as
a Central Processing Unit (CPU) or hardware or software
control logic, Read-Only Memory (ROM), and/or other
types of nonvolatile memory.

[0019] Additional components of an IHS may include one
or more disk drives, one or more network ports for com-
municating with external devices as well as various /O
devices, such as a keyboard, a mouse, touchscreen, and/or a
video display. An IHS may also include one or more buses
operable to transmit communications between the various
hardware components. An example of an IHS is described in
more detail below.

[0020] FIG. 1 shows an example of an IHS configured to
implement the systems and methods described herein. It
should be appreciated that although certain embodiments
described herein may be discussed in the context of a
desktop or server computer, other embodiments may be
utilized with virtually any type of IHS. In this example, the
THS is configured to facilitate establishing CRTM for BIOS
recovery images.

[0021] Particularly, the IHS includes a baseboard or moth-
erboard 100, which is a printed circuit board (PCB) to which
components or devices are mounted to by way of a bus or
other electrical communication path. For example, Central
Processing Unit (CPU) 102 operates in conjunction with a
chipset 104. CPU 102 is a processor that performs arithmetic
and logic necessary for the operation of the IHS.

May 30, 2019

[0022] Chipset 104 includes northbridge 106 and south-
bridge 108. Northbridge 106 provides an interface between
CPU 102 and the remainder of the THS. Northbridge 106
also provides an interface to a random access memory
(RAM) used as main memory 114 in the IHS and, possibly,
to on-board graphics adapter 112. Northbridge 106 may also
be configured to provide networking operations through
Ethernet adapter 110. Ethernet adapter 110 is capable of
connecting the THS to another IHS (e.g., a remotely located
THS) via a network. Connections which may be made by
network adapter 110 may include local area network (LAN)
or wide area network (WAN) connections. Northbridge 106
is also coupled to southbridge 108.

[0023] Southbridge 108 is responsible for controlling
many of the input/output (I/O) operations of the IHS. In
particular, southbridge 108 may provide one or more uni-
versal serial bus (USB) ports 116, sound adapter 124,
Ethernet controller 134, and one or more general purpose
input/output (GPIO) pins 118. Southbridge 108 may also
provide a bus for interfacing peripheral card devices such as
BIOS boot system-compliant SCSI host bus adapter 130. In
some embodiments, the bus may include a peripheral com-
ponent interconnect (PCI) bus. Southbridge 108 may also
provide baseboard management controller (BMC) 132 for
use in managing the various components of the IHS. Power
management circuitry 126 and clock generation circuitry
128 may also be utilized during operation of southbridge
108.

[0024] Additionally, southbridge 108 is configured to pro-
vide one or more interfaces for connecting mass storage
devices to the IHS. For instance, in an embodiment, south-
bridge 108 may include a serial advanced technology attach-
ment (SATA) adapter for providing one or more serial ATA
ports 120 and/or an ATA100 adapter for providing one or
more ATA100 ports 122. Serial ATA ports 120 and ATA100
ports 122 may be, in turn, connected to one or more mass
storage devices storing an operating system (OS) and appli-
cation programs.

[0025] An OS may comprise a set of programs that
controls operations of the IHS and allocation of resources.
An application program is software that runs on top of the
OS and uses computer resources made available through the
OS to perform application-specific tasks desired by the user.

[0026] Mass storage devices connected to southbridge 108
and SCSI host bus adapter 130, and their associated com-
puter-readable media provide non-volatile storage for the
THS. Although the description of computer-readable media
contained herein refers to a mass storage device, such as a
hard disk or CD-ROM drive, it should be appreciated a
person of ordinary skill in the art that computer-readable
media can be any available media on any memory storage
device that can be accessed by the IHS. Examples of
memory storage devices include, but are not limited to,
RAM, ROM, EPROM, EEPROM, flash memory or other
solid state memory technology, CD-ROM, DVD, or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices.

[0027] A low pin count (LPC) interface may also be
provided by southbridge 108 for connecting Super /O
device 138. Super I/O device 138 is responsible for provid-
ing a number of I/O ports, including a keyboard port, a
mouse port, a serial interface, a parallel port, and other types
of input/output ports.

US 2019/0163497 Al

[0028] The LPC interface may connect a computer storage
media such as a ROM or a flash memory such as a
non-volatile random access memory (NVRAM) for storing
BIOS/firmware 136 that includes BIOS program code con-
taining the basic routines that help to start up the IHS and to
transfer information between elements within the IHS.
BIOS/firmware 136 comprises firmware compatible with the
Extensible Firmware Interface (EFI) Specification and
Framework.

[0029] The LPC interface may also be utilized to connect
NVRAM 137 to the IHS.

[0030] NVRAM 137 may be utilized by BIOS/firmware
136 to store configuration data for the IHS. In other embodi-
ments, configuration data for the IHS may be stored on the
same NVRAM 137 as BIOS/firmware 136.

[0031] BMC 132 may include non-volatile memory hav-
ing program instructions stored thereon that enable remote
management of the IHS. For example, BMC 132 may enable
a user to discover, configure, and manage the IHS, setup
configuration options, resolve and administer hardware or
software problems, etc. Additionally or alternatively, BMC
132 may include one or more firmware volumes, each
volume having one or more firmware files used by the BIOS’
firmware interface to initialize and test components of the
THS.

[0032] As a non-limiting example of BMC 132, the inte-
grated DELL Remote Access Controller (iDRAC) from
DELL, INC. is embedded within DELL. POWEREDGE
servers and provides functionality that helps information
technology (IT) administrators deploy, update, monitor, and
maintain servers with no need for any additional software to
be installed. The iDRAC works regardless of OS or hyper-
visor presence from a pre-OS or bare-metal state, because
iDRAC is embedded within the THS from the factory.
[0033] It should be appreciated that, in other embodi-
ments, the THS may comprise other types of computing
devices, including hand-held computers, embedded com-
puter systems, personal digital assistants, and other types of
computing devices. It is also contemplated that the IHS may
not include all of the components shown in FIG. 1, may
include other components that are not explicitly shown in
FIG. 1, or may utilize a different architecture.

[0034] Referring now to FIG. 2, examples of aspects of an
EFI environment created by BIOS/firmware 136 of the IHS
are described. As shown, BIOS/firmware 136 comprises
firmware compatible with the EFI Specification from INTEL
CORPORATION or from the UEFI FORUM. The EFI
Specification describes an interface between OS 202 and
BIOS/firmware 136. Particularly, the EFI Specification
defines the interface that BIOS/firmware 136 implements
and the interface that OS 202 may use in booting.

[0035] According to an implementation of EFL, both EFI
206 and legacy BIOS support module 208 may be present in
BIOS/firmware 136. This allows the IHS to support both
firmware interfaces. In order to provide this, interface 212
may be used by legacy OSs and applications. Additional
details regarding the architecture and operation of the EFI
206 are provided below with respect to FIG. 3.

[0036] FIG. 3 provides additional details regarding an EFI
Specification-compliant system 300 utilized to provide an
operating environment for facilitate initialization and recon-
figuration of replacement motherboards. As shown, system
300 includes platform hardware 316 and OS 202. Platform
firmware 308 may retrieve an OS image from EFI system

May 30, 2019

partition 318 using an EFI O/S loader 302. EFI system
partition 318 may be an architecturally shareable system
partition. As such, EFI system partition 318 defines a
partition and file system that are designed to allow safe
sharing of mass storage between multiple vendors. O/S
partition 320 may also be utilized.

[0037] Once started, EFI O/S loader 302 continues to boot
the complete OS 202. In doing so, EFI O/S loader 302 may
use EFI boot services 304 and interface to other supported
specifications to survey, comprehend, and initialize the
various platform components and the operating system
software that manages them. Thus, interfaces 314 from other
specifications may also be present on system 300. For
example, the Advanced Configuration and Power Manage-
ment Interface (ACPI) and the System Management BIOS
(SMBIOS) specifications may be supported.

[0038] EFI boot services 304 provide interfaces for
devices and system functionality that can be used during
boot time. EFI runtime services 306 may also be available
to the O/S loader 302 during the boot phase. For example,
a minimal set of runtime services may be presented to ensure
appropriate abstraction of base platform hardware resources
that may be needed by the operating system 202 during its
normal operation. EFI allows extension of platform firm-
ware by loading EFI driver and EFI application images
which, when loaded, have access to EFI-defined runtime and
boot services.

[0039] Various program modules provide the boot and
runtime services. These program modules may be loaded by
the EFI boot loader 312 at system boot time. EFI boot loader
312 is a component in the EFI firmware that determines
which program modules should be explicitly loaded and
when. Once the EFI firmware is initialized, it passes control
to boot loader 312. Boot loader 312 is then responsible for
determining which of the program modules to load and in
what order.

[0040] In that context, UEFI Secure Boot is an industry-
standard mechanism in the system BIOS for authenticating
pre-boot code modules (e.g., device drivers or other software
or firmware code). The UEFI specification defines data
structures and logic for the authentication process. The
BIOS maintains a Secure Boot policy having X.509 certifi-
cates, public keys, and image digests. The BIOS enforces the
Secure Boot policy for each pre-boot code module that loads
during the boot process. If a pre-boot code module cannot be
authenticated or does not otherwise satisty the Secure Boot
policy, the BIOS does not load that module.

[0041] In various implementations, an IHS may use a
Trusted Platform Module (TPM) and cryptographic tech-
niques to provide measurements of software and platform
components to make trust decisions. In such implementa-
tions, in addition or as an alternative to UEFI Secure Boot,
IHS manufacturers can provide boot guard or platform
secure boot features that prevent an IHS from running
firmware images not released by that manufacturer. When
the THS is turned on, the CPU verifies a signature contained
in the image before executing it, using the HASH of a public
portion of a signing key. In some cases, the Root of Trust
may serve as separate compute engine controlling the trusted
computing platform cryptographic processor on the THS
[0042] However, neither do the aforementioned features
nor does the UEFI Secure Boot provide a recovery mecha-
nism that establishes a “Root of Trust” for a BIOS recovery
image that is based on Core Root of Trust Measurement

US 2019/0163497 Al

(CRTM). As used herein, the term “Root of Trust” encom-
passes one or more functions in a hardware trusted comput-
ing module (TPM) that are trusted by the OS. Moreover,
examples of CRTM include measurements of code, data
structures, configuration, information, etc.

[0043] Using techniques described herein, if any BIOS
recovery image module being measured is modified, the
resulting measurement would be different from what is
expected, thus indicating that the recovery image has been
altered or corrupted.

[0044] FIG. 4 shows Root of Trust 400 established
between hardware and BIOS recovery image 401. During a
booting process, the UEFI boot process takes place in three
phases: a security phase (SEC), a pre-efi initialization phase
(PEI), and a driver execution environment (DXE). The DXE
phase may be divided into DXEBoot and DXERuntime.
[0045] The SEC phase contains CPU initialization code
from the cold boot entry point on. The main function of this
phase is to set the system to find, validate, install and run the
PEL which then configures the entire platform and then
loads and boots the DXE. DXE is where the UEFI system
loads drivers for configured devices, if necessary, mounts
drives, and also finds and executes boot code. After control
is transferred to the boot OS, the DXERuntime stays resident
to handle OS to UEFT calls.

[0046] Still referring to FIG. 4, Root of Trust 400 is
established during a boot process when a hardware trust
module (e.g., a TPM module) establishes a trusted relation-
ship with the UEFI code in the BIOS. In this case, as part of
the boot process, Root of Trust hardware trust module 402
verifies the integrity of UEFI PEI code portion 403, UEFI
PEI code portion 403 verifies the integrity of UEFI DXE/
System Management Mode (SMM) code portion 404, UEFI
DXE/SMM code portion 404 verifies the integrity of boot
loader code portion 405, and boot loader portion 405 verifies
the integrity of OS 406. In addition, however, UEFI PEI 402
also establishes a trusted link with BIOS recovery image
401.

[0047] FIG. S5A-C show a flowchart of method 500 for
recovering a corrupted BIOS with a recovery image trusted
with CRTM. In this embodiment, method 500 starts the boot
process at 501. At 502, method 500 verifies the PEI code
region using CRTM. Then, 503 determines whether the
CRTM is verified.

[0048] If the Boot Block is identified as corrupted at 503,
method 500 uses an alternate Boot Block. Particularly, 504
uses an alternate Boot Block to continue, 505 increments an
alternatebootblock flag, and 506 adds an entry to the BIOS
event log, and alerts or notifies an administrator of the event.
At 507, method 500 measures the DXE/SMM code volume
(s), and generates a HASH value on the Serial Peripheral
Interface (SPI) module or code. At 508, method 500 com-
pares the DXE/SMM measurement to a PEI Trusted Mea-
surement Value, which is a reference HASH stored in SPI.
[0049] At 509, if the generated HASH matched the refer-
ence HASH, 510 determines whether the alternatebootblock
flag is set. If it is not, control passes to 511, and method 500
proceeds to normal boot. In this case, SPI is not corrupted or
compromised (e.g., no malicious configuration parameters
or other system changes). If the primary Boot Block code is
corrupted, the system will successfully boot with alternate
Boot Block code, the second time.

[0050] Ifblock 510 determines that the alternatebootblock
flag is set, method 500 proceeds to a recovery path to 513.

May 30, 2019

I 509 determines that the generated HASH does not match
the reference hash, 512 resets the alternatebootblock flag,
method 500 proceeds to the recovery path to 513. Method
500 then attempts to locate the BIOS recovery image at 513.
It 514 does not find the recovery image, 515 determines
whether the number of alternatebootblock flag is greater
than a threshold value. If not, method 500 continues to boot
at 516. If so, 517 stops the boot process. In this case, the
BIOS recovery image does not have Core Root of Trust, and
it could potentially be used as an attack vector to gain access
to the IHS.

[0051] If 514 find the recovery image, 518 locates the
DXE/SMM recovery payload and 519 verifies the BIOS
payload signature. If the signature is not verified, 517 stops
the boot process. Otherwise, 521 extracts DXE/SMM pay-
load to memory, 522 measures DXE/SMM code region (in
memory), and 523 compare DXE/SMM measurements to
the PEI Trusted Measurement Value (stored in SPI module).
It 524 determines that the comparison does not check, again
517 stops the boot process.

[0052] Conversely, if 524 determines that the comparison
checks, method 500 begins a restore path. Particularly, 525
writes the DXE/SMM payload to the firmware storage
device. 526 measures DXE/SMM code volume, and 527
compares DXE/SMM to the PEI Trusted Measurement
Value.

[0053] At 528, method 500 determines if the comparison
of 527 checks. If so, 529 resets the alternatebootblock flag,
and 530 proceeds with the normal boot process after recov-
ery. In this case, the BIOS recovery process with the trusted
recovery image is successful.

[0054] If528’s comparison does not check, 531 messages
a customer of an unrecoverable failure, and 532 launches
manual recovery process. In this case, there is a potential
hardware (SPI device) failure, and the customer is notified
to recover with another version of the BIOS.

[0055] In some embodiments, method 500 allows BIOS
recovery only if a trusted link established between hardware
and recovery image, and it allows an alternate Boot Block to
continue boot in the event of Boot Block corruption. Method
500 also stops the boot process if the Boot Block is not
restored after a pre-determined amount of boot. As such,
method 500 may facilitate differentiating hardware failures
from potential attack vectors.

[0056] FIG. 6 shows method 600 for creating a reference
HASH from the BIOS building process. At 601, the BIOS
build process starts. At 602, method 600 builds DXE code
regions. At 603, method 600 builds PEI code regions. At
604, method 600 creates a DXE Code Region Measurement,
and at 605 method 600 inserts it into the PEI region. At 606,
method 600 measures the PEI code region. At 607, method
600 saves the PEI Code Region Measurement. Finally, at
608, the BIOS building process ends.

[0057] Accordingly, systems and methods described
herein provide a mechanism to directly confirm the integrity
of the BIOS data with a trusted known value, and to initiate
the recovery based on a failed integrity verification.

[0058] In some cases, another recovery feature (e.g.,
INTEL’s BootGuard or AMD’s Secure Boot) may be used
to restore a corrupted or altered Boot Block, if needed, using
a similar CRTM. The Boot Block establishes the PEI Root
of Trust to ensure the PEI code, and measurements per-
formed to chain-verify the DXE/SMM boot phase are
trusted (not tampered with). Each block of code contains a

US 2019/0163497 Al

cryptographic digest of the next region. Each region is
verified by the previous region via CRTM trust chaining.

[0059] Once the Boot Block CRTM is established, the
Boot Block may cryptographically measure/verify the PEI
region. The PEI code may be configured to cryptographi-
cally verify the DXE/SMM code regions, and compare it to
a known cryptographic digest (or HASH) value within the
PEI Boot Block region. If the measurement does not com-
pare, the Boot Block code may automatically trigger a
recovery of the DXE/SMM code regions from a backup
BIOS image stored on the EFI System Partition (ESP) or
other storage location.

[0060] If the BIOS PEI region is altered, the signature of
the PEI regions will not match, triggering a PEI recovery of
the Boot Block code region using a backup copy of the Boot
Block. Once the PEI image is known to be good, the trusted
PEI code (BIOS) measures the DXE code regions. The code
regions are compared to known good values stored in the
PEI code region. If the measurement compares correctly, the
THS will boot normally. If the DXE code regions do not
compare, the PEI code initiates a recovery.

[0061] Trusted PEI code may initiate a recovery from the
backup recovery image on a storage medium, such as the
HDD, or a backup copy on the SPI. The PEI code may
extract the DXE/SMM code region to memory and perform
BIOS update signature verification on the payload. If the
signature verification check passes, the trusted PEI code
may perform a HASH of the DXE/SMM code and compare
the measurement to the known good measurement stored in
PEI code region. If the measurement compares, the trusted
PEI code may write the contents of the DXE/SMM code
volume(s) to the SPI part.

[0062] The trusted PEI code may then verify the DXE/
SMM code region on the SPI. If the code region image
compares correctly, the trusted PEI code may hand off
execution to the verified and trusted DXE code (on the SPI;
no reboot is required). If however, the measurement fails,
there is potentially an attack using an altered BIOS recovery
image or the failure could be a result of a malfunction with
the hardware, the boot is blocked. The customer is notified
of the failure, and is allowed to launch a manual recovery
operation.

[0063] If the BIOS has been overwritten in an attempt to
gain an escalation of privilege, an automatic recovery
method may detect the changes to the SPI code, and restore
the image before an attacker can gain access to the platform
Root of Trust.

[0064] If the image verification fails at any point in the
process, the recovery is blocked to prevent unauthorized
code from being installed in the system (using the recovery
mechanism as a potential backdoor for malicious code
injection). Furthermore, the system may be prevented from
booting, and the customer may be prompted to indicate a
corruption issue (if possible). This serves two purposes: for
a normal failure, the customer is prompted to get help, and,
for a malicious user attempting to hack the BIOS, the
platform will become unusable.

[0065] To reduce boot time impact, techniques described
herein may make use of measurements already taken during
normal boot. PEI code chains the CRTM to DXE by
measuring DXE to a trusted value—i.e. the known good
value stored in PEI can be the value of Platform Configu-

May 30, 2019

ration Registers—PCR. Because code volumes are already
measured in PEI, there is no additional performance hit.

[0066] It should be understood that various operations
described herein may be implemented in software executed
by processing circuitry, hardware, or a combination thereof.
The order in which each operation of a given method is
performed may be changed, and various operations may be
added, reordered, combined, omitted, modified, etc. It is
intended that the invention(s) described herein embrace all
such modifications and changes and, accordingly, the above
description should be regarded in an illustrative rather than
a restrictive sense.

[0067] The terms “tangible” and “non-transitory,” when
used herein, are intended to describe a computer-readable
storage medium (or “memory”) excluding propagating elec-
tromagnetic signals; but are not intended to otherwise limit
the type of physical computer-readable storage device that is
encompassed by the phrase computer-readable medium or
memory. For instance, the terms “non-transitory computer
readable medium” or “tangible memory” are intended to
encompass types of storage devices that do not necessarily
store information permanently, including, for example,
RAM. Program instructions and data stored on a tangible
computer-accessible storage medium in non-transitory form
may afterwards be transmitted by transmission media or
signals such as electrical, electromagnetic, or digital signals,
which may be conveyed via a communication medium such
as a network and/or a wireless link.

[0068] Although the invention(s) is/are described herein
with reference to specific embodiments, various modifica-
tions and changes can be made without departing from the
scope of the present invention(s), as set forth in the claims
below. Accordingly, the specification and figures are to be
regarded in an illustrative rather than a restrictive sense, and
all such modifications are intended to be included within the
scope of the present invention(s). Any benefits, advantages,
or solutions to problems that are described herein with
regard to specific embodiments are not intended to be
construed as a critical, required, or essential feature or
element of any or all the claims.

[0069] Unless stated otherwise, terms such as “first” and
“second” are used to arbitrarily distinguish between the
elements such terms describe. Thus, these terms are not
necessarily intended to indicate temporal or other prioriti-
zation of such elements. The terms “coupled” or “operably
coupled” are defined as connected, although not necessarily
directly, and not necessarily mechanically. The terms “a”
and “an” are defined as one or more unless stated otherwise.
The terms “comprise” (and any form of comprise, such as
“comprises” and “comprising”), “have” (and any form of
have, such as “has” and “having”), “include” (and any form
of include, such as “includes” and “including”) and “con-
tain” (and any form of contain, such as “contains” and
“containing”) are open-ended linking verbs. As a result, a
system, device, or apparatus that “comprises,” “has,”
“includes” or “contains” one or more elements possesses
those one or more elements but is not limited to possessing
only those one or more elements. Similarly, a method or
process that “comprises,” “has,” “includes” or “contains”
one or more operations possesses those one or more opera-
tions but is not limited to possessing only those one or more
operations.

US 2019/0163497 Al

1. An Information Handling System (IHS), comprising:

a processor; and

a Basic Input/Output System (BIOS) coupled to the

processor, the BIOS having program instructions stored

thereon that, upon execution, cause the IHS to:

during a boot process, verity integrity of a BIOS
recovery image using a Core Root of Trust Measure-
ment (CRTM); and

determine whether to restore the BIOS recovery image
in response to the verification.

2. The IHS of claim 1, wherein the program instructions,
upon execution, further cause the IHS to:

detect changes in the BIOS recovery image; and

prevent the IHS from booting.

3. The IHS of claim 1, wherein the program instructions,
upon execution, further cause the IHS to:

detect no changes in the BIOS recovery image; and

allow the IHS to boot.

4. The IHS of claim 1, wherein the BIOS includes a first
pre-efi initialization phase (PEI) portion and a first Driver
Execution Environment (DXE)/System Management Mode
(SMM) portion, and wherein the BIOS recovery image
includes a second DXE/SMM portion.

5. The IHS of claim 4, wherein the program instructions,
upon execution, further cause the IHS to verify the integrity
of the first PEI portion using a hardware Root of Trust.

6. The THS of claim 5, wherein the program instructions,
upon execution, further cause the first PEI portion to chain
the CRTM to the second DXE/SMM portion.

7. The THS of claim 6, wherein the program instructions,
upon execution, further cause the first PEI portion to com-
pare a DXE measurement of the second DXE/SMM portion
with a known value stored in the first PEI region.

8. The IHS of claim 7, wherein the known value includes
a value stored in a Platform Configuration Register (PCR)
prior to initiation of the restore.

9. The IHS of claim 7, wherein the program instructions,
upon execution, further cause the IHS to write contents of
the second DXE/SMM portion to a Serial Peripheral Inter-
face (SPI) module.

10. The IHS of claim 7, wherein the program instructions,
upon execution, further cause the IHS to:

verify the DXE/SMM contents on the SPI; and

in response to the verification, hand off execution to the

second DXE/SMM portion on the SPI module.

11. A Basic /O System (BIOS) having program instruc-
tions stored thereon that, upon execution by an Information
Handling System (IHS), cause the IHS to:

during a boot process, verify integrity of a BIOS recovery

image using a Core Root of Trust Measurement
(CRTM), wherein the BIOS includes a first pre-efi
initialization phase (PEI) portion and a first Driver

May 30, 2019

Execution Environment (DXE)/System Management
Mode (SMM) portion, and wherein the BIOS recovery
image includes a second DXE/SMM portion; and

determine whether to restore the BIOS recovery image in
response to the verification.

12. The BIOS of claim 11, wherein the program instruc-
tions, upon execution, further cause the IHS to verify the
integrity of the first PEI portion using a hardware Root of
Trust.

13. The BIOS of claim 12, wherein the program instruc-
tions, upon execution, further cause the first PEI portion to
chain the CRTM to the second DXE/SMM portion.

14. The BIOS of claim 13, wherein the program instruc-
tions, upon execution, further cause the first PEI portion to
compare a DXE measurement of the second DXE/SMM
portion with a known value stored in the first PEI region.

15. The BIOS of claim 14, wherein the program instruc-
tions, upon execution, further cause the IHS to write con-
tents of the second DXE/SMM portion to a Serial Peripheral
Interface (SPI) module.

16. The BIOS of claim 15, wherein the program instruc-
tions, upon execution, further cause the IHS to:

verify the DXE/SMM contents on the SPI; and

in response to the verification, hand off execution to the

second DXE/SMM portion on the SPI module.
17. In an Information Handling System (IHS) comprising
a Basic /O System (BIOS) coupled to a processor, a method
comprising:
during a boot process, verifying integrity of a BIOS
recovery image using a Core Root of Trust Measure-
ment (CRTM), wherein the BIOS includes a first pre-efi
initialization phase (PEI) portion and a first Driver
Execution Environment (DXE)/System Management
Mode (SMM) portion, and wherein the BIOS recovery
image includes a second DXE/SMM portion; and

determining whether to restore the BIOS recovery image
in response to the verification.

18. The method of claim 17, further comprising verifying
the integrity of the first PEI portion using a hardware Root
of Trust, and causing the first PEI portion to chain the CRTM
to the second DXE/SMM portion.

19. The method of claim 18, wherein the program instruc-
tions, upon execution, further cause the first PEI portion to
compare a DXE measurement of the second DXE/SMM
portion with a known value stored in the first PEI region, and
to write contents of the second DXE/SMM portion to a
Serial Peripheral Interface (SPI) module.

20. The method of claim 19, further comprising verify the
DXE/SMM contents on the SPI; and in response to the
verification, handing off execution to the second DXFE/SMM
portion on the SPI module.

#* #* #* #* #*

