US 20190163502A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2019/0163502 A1l

Malone, II et al.

43) Pub. Date: May 30, 2019

(54) METHOD FOR SECURELY CONFIGURING
AN INFORMATION SYSTEM

(71)
(72)

(73)

@

(22)

(1)

Applicant:

Inventors:

Assignee:
Appl. No.:

Filed:

Forcepoint LL.C, Austin, TX (US)

Mickey J. Malone, II, Rowlett, TX
(US); Jacob Minnis, Plano, TX (US)

Forcepoint LL.C, Austin, TX (US)
15/826,281

Nov. 29, 2017

Publication Classification

Int. CI.
GO6F 9/445 (2006.01)
HO4L 9/32 (2006.01)
GO6F 21/57 (2006.01)
100
102 verify a base file system image by comparing a
signed hash of the image with a signed hash
generaled by the kernel image
104 venly the bundie nage by coraparing a signed hash
S ofthe image with a signed hash generagd by the
kernel image
106 - " l - X
. create a file systern from the base fife systentimage
~ insysten remory of the infonmstion compuling
sysiem
108 J’
.| apply binary and configumtion files from the bundle
image to the file systern i memory
110
e COpy Tiles from u persisient file sysiem stored in the
SICIAge WSOUICe 10 M ery
112 -
‘\ validate the files from the persistent file system

(52) US.CL
CPC

GOGF 9/44505 (2013.01); GOGF 21/575
(2013.01); HO4L 9/3236 (2013.01)

(57) ABSTRACT

Systems, method, and non-transitory computer readable
storage medium are provided for configuring an information
computing machine during execution of a kernel image. The
system can create a file system from a base file system image
in system memory of the computing system, apply configu-
ration files from a bundle image to the file system in
memory, copy files from a persistent file system stored in the
storage resource to memory, validate the files from the
persistent file system, and apply validated files to the file
system in memory. The base file system image and bundle
image can be verified by comparing a signed hash of the
image with a hash generated by the initial file system and
checking the hash signature against a public certificate
included in the initial filesystem. The system can further
execute/sbin/init and start application services.

}

114
- apply vahidated files to the file system in memory
116
Excoute /shinvinit and start application services

US 2019/0163502 A1

May 30,2019 Sheet 1 of 2

01

Patent Application Publication
&

£ 814
ol e ittt entieedieneielionediensiotionlisseihoneliound ~y
L e e e e s o oo §
i 3
i ovz | INOOW 1 00 !
w | SNOUYOddY WILSAS § w
e I s
Y4 | . i
g i VIa3Ew
i -~ AOVAYILN W ; i ARAOWEN P
i LIdLA0IENGEN | FOvHOLS | WALSAS OLT
i i j i
i T T i
i ot i
i 0 3 .v i
m - 58 W3 LBAS : w
H H
i FOVAHT LN YOI Y b . H
10927 omLIN HOSSEOOMd b gy
H i
b v s v e o ok e st o o o o oo i oot oo oo v oo o v At ?W/ iiiiii e
™ 00z
e ,wz YRIOMLEN M\
QLZ T, o
S84 JURISISIR d BACIN/ALSD W..!,...syc nots
Hl N
$-3UI/UIG5/ BIN0X T~ a./ v
wiasAs o Qﬁ:mmw afewy wesis HNPoIA I aIsAS
iy howapyuy | ETOHUOD S9AEY i aseq 3 Aowisp e~
I aseg JoAe 87
IO WalsAS a4 {elluy
07 1 1
w - ‘
o1 % adew) Bussy JBREOT WING u 5018 el

1008

US 2019/0163502 A1

May 30,2019 Sheet 2 of 2

S301A18S worEsrdde 1eIs pUR IMLALIGS, SWoaXY

g1l

ATQUISUI 11 WIS AS O] 91 0 SOf] payeprnua Ajdde

vl

wio3s A5 oy Judsrsrad S WA Y M MEpHEA

(A5}

AIDTISUE O} ONINOSH 358101
I T PRAOTS BISAS of1] jumstsiod v wory sopg Adoo

.
011

Krourow 1 wioisAs oy oip o3 ofenn
QIPHING D) WHOXY SO wonemmSpion pue Awwg Apdde

-

3

207

1003548
Frymduroo uonewIIodr 5t JO LI01E0UL YWNS AR U1
2FeIy WS AS o1 958G Ol WOIT WIANSAS 1T € OIS

S01

ofewm oy
a1 Aq paeronsd ysey poudss v s o8 o jo
yswy pousis v Sunreduros g ofewr oppung 51 AJuda

0t

ofewit [swey 3 Ag poeIousd
ysey pouds v gia oFetn o4 yo yseq paufs
v Suneduros AQ »8vwr wielsAs ofIf 0SEQ B AJHoA

™ 701

Patent Application Publication

001

US 2019/0163502 Al

METHOD FOR SECURELY CONFIGURING
AN INFORMATION SYSTEM

TECHNICAL FIELD

[0001] The present disclosure relates generally to config-
uring an Operating System (OS) of a computer system and,
more specifically, to securely configuring the OS during a
booting processing of a kernel image of the OS.

BACKGROUND

[0002] Traditionally, computer systems are configured
after the booting process when the disk partitions have been
fully mounted and an operating system has been handed
over control of a processor by a kernel image of the boot
process. Configurations, however, are either done manually
or automatically using an automated solution, such as Pup-
pet, Chef, Ansible, and Saltstack. During runtime, configu-
ration typically requires root access, which can lead to
malformed configurations and malicious configurations.
Either of these can lead to a compromised computer system.

SUMMARY

[0003] In one aspect, the present disclosure is directed to
a system for configuring an information computing machine
during execution of a kernel image. The system can include
a storage resource and a processor that is communicatively
coupled to the storage resource, wherein the processor
executes application code instruction that are stored in the
storage resource to cause the system to create a file system
from a base file system image in system memory of the
information computing system. The system can apply con-
figuration files from a bundle image to the file system in
memory, and copy files from a persistent file system stored
in the storage resource to memory. The system can also
validate the files from the persistent file system and apply
validated files to the file system in memory.

[0004] In another aspect, the present disclosure is directed
to a computer aided method of a system for configuring an
information computing system during execution of a kernel
image. The method includes creating a file system from a
base file system image in system memory of the information
computing system and applying configuration files from a
bundle image to the file system in memory. The method
further includes copying files from a persistent file system
stored in the storage resource to memory and validating the
files from the persistent file system. The method also
includes applying validated files to the file system in
memory.

[0005] In yet another aspect, the present disclosure is
directed to a non-transitory computer readable medium
containing computer readable instructions for configuring an
information computing machine, where the computer-read-
able instructions comprising instructions for causing the
computing machine to create a file system from a base file
system image in system memory of the information com-
puting system. The instructions further cause the computing
machine to apply configuration files from a bundle image to
the file system in memory and to copy files from a persistent
file system stored in the storage resource to memory. In
addition, the instructions cause the computing machine to
validate the files from the persistent file system and apply
validated files to the file system in memory.

May 30, 2019

[0006] In other embodiments of the aspects, the base file
system image can be verified by comparing a signed hash of
the image with a hash generated by the initial file system
image and checking the hash signature against a public
certificate included in the initial file system. The bundle
image can be verified by comparing a signed hash of the
image with a hash generated by the initial file system image
and checking the hash signature against a public certificate
included in the initial file system. The bundle image can be
further verified by determining if the hash has been signed
by an administrator. The base file system image can be
retrieved from a local storage resource or from a remote
storage resource. The bundle image can be retrieved from a
local storage resource or a from a remote storage resource,
and the system or method can execute/sbin/init and start
application services.

BRIEF DESCRIPTION OF DRAWINGS

[0007] For a more complete understanding of the features
and advantages of the present disclosure, reference is now
made to the detailed description along with the accompa-
nying figures in which corresponding numerals in the dif-
ferent figures refer to corresponding parts and in which:
[0008] FIG. 1 is a block diagram of a system for booting
an operating system, in accordance to certain example
embodiments;

[0009] FIG. 2 is a flow diagram of an algorithm for
configuring an operating system during execution of a kernel
image, according to certain example embodiments; and
[0010] FIG. 3 is a block diagram depicting a computing
machine and system applications, in accordance with certain
example embodiments.

DETAILED DESCRIPTION

[0011] While the making and using of various embodi-
ments of the present disclosure are discussed in detail below,
it should be appreciated that the present disclosure provides
many applicable inventive concepts, which can be embodied
in a wide variety of specific contexts. The specific embodi-
ments discussed herein are merely illustrative and do not
delimit the scope of the present disclosure. In the interest of
clarity, not all features of an actual implementation may be
described in the present disclosure. It will of course be
appreciated that in the development of any such actual
embodiment, numerous implementation-specific decisions
must be made to achieve the developer’s specific goals, such
as compliance with system-related and business-related con-
straints, which will vary from one implementation to
another. Moreover, it will be appreciated that such a devel-
opment effort might be complex and time-consuming but
would be a routine undertaking for those of ordinary skill in
the art having the benefit of this disclosure.

[0012] Currently, there is nothing that exists that allows a
serviceless daemon, i.e. a process detached from a running
operating system, to validate and securely apply a system
configuration to an operating system during the booting
process. The present disclosure provides solutions wherein
validated and verified system configurations are performed
during the boot process prior to the actual operating system
being executed.

[0013] Referring to FIG. 1, illustrated is a system for
booting an operating system, according to certain example
embodiments, denoted generally as 10. The system 10

US 2019/0163502 Al

comprises a Basic Input Output Operating System (BIOS)
12, a boot loader 14, a kernel image 16, an initial file system
18, a memory module 20, a persistent file system 22, and
system service applications 24. In the embodiment, BIOS 12
receive a boot command and, in response, launches a boot
loader 14. The boot loader 14 launches a kernel image 16.
The boot loader 14 and kernel image 16, or only the kernel
image 16, can be provided from a trusted source approved
for execution on a hardware platform executing the BIOS 12
and only responds to execution commands from a trusted
source. In a trusted environment, the kernel image 16
launches the initial file system 18.

[0014] The initial file system 18 comprises a memory file
system module 26, a base file system image 28, and a
configuration bundle image 30. The memory file system
module 26 extracts a file system from the base file system
from image 28 and installs the file system into the memory
module 20. The memory file system module 26 further
extracts configuration files from configuration bundle image
30 and installs the configuration files into the base file
system. The files installed on the file system in memory 20
can include pre-approved system space binaries, and also
user space binaries, and configurations files. The initial file
system 18 further mounts the persistent file system 22 and
either copies or moves files, e.g. all or select system binaries
and configuration files, from the mounted file system to the
base file system in memory 20. After performing an audit
between the pre-approved installed in-memory files and the
files installed from the mounted file system, the memory file
system module 26 can cause/sbin/init to be executed if the
audit passes inspection or halt further operation of the
system 10 if the audit doesn’t pass inspection. In response to
the execution of/sbin/init, the OS system application ser-
vices are executed.

[0015] In this embodiment, once the kernel image 16 has
been booted and control is given to the initial file system 18,
the memory file system module 26 can read from the kernel
command line to identify where to retrieve the base file
system image 28. The base file system image 28 can exist on
disk or it can be retrieved from a remote system. Once the
base system file image 26 has been retrieved it can be
validated by the initial file system 18. The initial file system
18 can compute a hash of the base file system image 28 and
verify it by comparing the hash against a hash generated
from keys and certificates preinstalled with the initial file
system 18. If the base file system image 28 is validated, then
it can be extracted and the in-memory file system created
and the base file system installed.

[0016] The base file system image 28 can be built in the
factory and, as such, is immutable and can also be updated
over a secure network, e.g. a peer-to-peer network, to
include updates including relevant and trusted OS updates.
In this manner, the installed binaries and configurations files
are certain to be trusted application services. In other words,
binaries and configurations files installed on the system 10,
binaries and configurations from system images and from
persisted file system 22, can only be audited as trusted
before the system service applications 24 can actually be
executed. So, if any changes occur to the binaries and
configurations files on the persistent file system 30, or at
least a subset of the files, in order for the changes to be
permanently effected by the initial file system 18 would
require those changes to pass the audit phase. L.e., files in the
base image 28, configuration bundle 30 and the persistent

May 30, 2019

file system 22, or a subset, are validated against a whitelist.
The whitelist can be a static file that can be built at the
factory. If the base image 28, configuration bundle 30, and
the file system 22 contains files that are not in the whitelist
the system will raise an error and reboot.

[0017] The configuration bundle image 30 can be built and
signed by designated system and security administrators on
the system 10. The bundle image 30 can be an archive that
contains the following items; alch.tar; secadmin.crt; secad-
min.sig; secadmin.txt; sysadmin.crt; sysadmin.sig; sysad-
min.txt. The crt, sig, and txt files can be used to ensure the
alch.tar file has not been tampered with. This can be
achieved by taking a hash of the alch.tar and having both
system and security administrators digitally sign the hash.
The alch.tar can be the configuration. It can contain the
following items: additional system files; YAML (Yet
Another Extensible Markup Language); and counter.txt. The
additional system files can be 3™ party provided files that
can be generated using a markup language other than
YAML. Examples include: CDS rule files; certificates;
XCCDF Benchmarks; etc. YAML, in this embodiment, can
be used to describe the system and how it should be
configured. The counter.txt can be used to track the version
of the configuration bundle. It can be incremented each time
a configuration bundle is built and signed, and can be used
to prevent rolling back the system to an old configuration.
The configuration bundle can be processed each and every
time that the system boots, or in other suitable manners.
[0018] After the configuration bundle has successfully
been applied to the non-running system, cleanup can occur.
This can include running AIDE, applying permissions, set-
ting up SELinux, or anything else that needs to happen to the
in-memory file system. Upon completion, the in-memory
file system will become the real file system and the system
will finish booting and enter into the running state.

[0019] FIG. 2 is a flow diagram of an algorithm for
configuring an information computing system during execu-
tion of a kernel image, according to certain example embodi-
ments, denoted generally as 100. The algorithm 100 begins
at block 102 by verifying the base file system image 28, such
as by comparing a signed hash of the image with a hash
generated by the initial file system and checking the hash
signature against a public certificate included in the initial
file system in other suitable manners. The algorithm 100
continues to block 104, where it verifies the bundle image 30
by comparing a signed hash of the image with a hash
generated by the initial file system and checking the hash
signature against a public certificate included in the initial
filesystem. The algorithm 100 continues, block 106, by
creating a file system from the base file system image in
system memory of the information computing system. The
algorithm 100 further continues, block 108, by applying
binary and configuration files from the bundle image to the
file system in memory. At block 110, the algorithm 100
continues by copying files from a persistent file system
stored in the storage resource to memory. The algorithm 100
further continues, block 112, by validating the files from the
persistent file system. The algorithm 100 continues, block
114, by applying validated files to the file system in memory.
At block 116, the algorithm 100 continues by executing/
sbin/init and starting application services.

[0020] FIG. 3 is a computing machine 200 and a system
applications module 300 in accordance with example
embodiments. The computing machine 200 can correspond

US 2019/0163502 Al

to any of the various computers, mobile devices, laptop
computers, servers, embedded systems, or computing sys-
tems presented herein. The module 300 can comprise one or
more hardware or software elements that are configured to
facilitate the computing machine 200 in performing the
various methods and processing functions presented herein.
The computing machine 200 can include various internal or
attached components such as a processor 210, system bus
220, system memory 230, storage media 240, input/output
interface 250, and a network interface 260 for communicat-
ing with a network 270.

[0021] The computing machine 200 can be implemented
as a conventional computer system, an embedded controller,
a laptop, a server, a mobile device, a smartphone, a wearable
computer, a customized machine, any other suitable hard-
ware platform, or any combination or multiplicity thereof.
The computing machine 200 can be a distributed system
configured to function using multiple computing machines
interconnected via a data network or bus system.

[0022] The processor 210 can be configured to execute
code instructions in order to perform the operations and
functionality described herein, manage request flow and
address mappings, and to perform calculations and generate
commands. The processor 210 can be configured to monitor
and control the operation of the components in the comput-
ing machine 200. The processor 210 can be a general
purpose processor, a processor core, a multiprocessor, a
reconfigurable processor, a microcontroller, a digital signal
processor (“DSP”), an application specific integrated circuit
(“ASIC”), a controller, a state machine, gated logic, discrete
hardware components, any other suitable processing unit, or
any combination or multiplicity thereof. The processor 210
can be a single processing unit, multiple processing units, a
single processing core, multiple processing cores, special
purpose processing cores, co-processors, or any combina-
tion thereof. According to certain embodiments, the proces-
sor 210 along with other components of the computing
machine 200 can be a virtualized computing machine
executing within one or more other computing machines.
[0023] The system memory 230 can include non-volatile
memories such as read-only memory (“ROM”), program-
mable read-only memory (“PROM”), erasable program-
mable read-only memory (“EPROM”), flash memory, or any
other suitable device capable of storing program instructions
or data with or without applied power. The system memory
230 can also include volatile memories such as random
access memory (“RAM”), static random access memory
(“SRAM”), dynamic random access memory (“DRAM”),
and synchronous dynamic random access memory
(“SDRAM?”). Other types of RAM also can be used to
implement the system memory 230. The system memory
230 can be implemented using a single memory module or
multiple memory modules. While the system memory 230 is
depicted as being part of the computing machine 200, one
skilled in the art will recognize that the system memory 230
can be separate from the computing machine 200 without
departing from the scope of the subject technology. It should
also be appreciated that the system memory 230 can include,
or operate in conjunction with, a non-volatile storage device
such as the storage media 240.

[0024] The storage media 240 can include a hard disk, a
floppy disk, a compact disc read-only memory (“CD-
ROM”), a digital versatile disc (“DVD”), a Blu-ray disc, a
magnetic tape, a flash memory, other non-volatile memory

May 30, 2019

device, a solid state drive (“SSD”), any suitable magnetic
storage device, any suitable optical storage device, any
suitable electrical storage device, any suitable semiconduc-
tor storage device, any suitable physical-based storage
device, any other suitable data storage device, or any com-
bination or multiplicity thereof. The storage media 240 can
store one or more operating systems, application programs
and program modules such as module 300, data, or any other
suitable information. The storage media 240 can be part of,
or connected to, the computing machine 200. The storage
media 240 can also be part of one or more other computing
machines that are in communication with the computing
machine 200 such as servers, database servers, cloud stor-
age, network attached storage, and so forth.

[0025] The system applications module 300 can comprise
one or more hardware or software elements configured to
facilitate the computing machine 200 with performing the
various methods and processing functions presented herein.
The module 300 can include one or more sequences of
instructions stored as software or firmware in association
with the system memory 230, the storage media 240, or
both. The storage media 240 can therefore represent
examples of machine or computer readable media on which
instructions or code can be stored for execution by the
processor 210. Machine or computer readable media can
generally refer to any suitable medium or media used to
provide instructions to the processor 210. Such machine or
computer readable media associated with the module 300
can comprise a computer software product. It should be
appreciated that a computer software product comprising the
module 300 can also be associated with one or more
processes or methods for delivering the module 300 to the
computing machine 200 via the network 270, any suitable
signal-bearing medium, or any other suitable communica-
tion or delivery technology. The module 300 can also
comprise hardware circuits or information for configuring
hardware circuits such as microcode or configuration infor-
mation for an FPGA or other PLD.

[0026] The input/output (“I/O”) interface 250 can be con-
figured to couple to one or more external devices, to receive
data from the one or more external devices, and to send data
to the one or more external devices. Such external devices
along with the various internal devices can also be known as
peripheral devices. The /O interface 250 can include both
electrical and physical connections for coupling the various
peripheral devices to the computing machine 200 or the
processor 210. The I/O interface 250 can be configured to
communicate data, addresses, and control signals between
the peripheral devices, the computing machine 200, or the
processor 210. The I/O interface 250 can be configured to
implement any suitable standard interface, such as small
computer system interface (“SCSI”), serial-attached SCSI
(“SAS”), fiber channel, peripheral component interconnect
(“PCT”), PCI express (PCle), serial bus, parallel bus,
advanced technology attached (“ATA”), serial ATA
(“SATA”), universal serial bus (“USB”), Thunderbolt,
FireWire, various video buses, and the like. The 1/O inter-
face 250 can be configured to implement only one interface
or bus technology. Alternatively, the /O interface 250 can be
configured to implement multiple interfaces or bus technolo-
gies. The /O interface 250 can be configured as part of, all
of, or to operate in conjunction with, the system bus 220.
The 1/O interface 250 can include one or more buffers for

US 2019/0163502 Al

buffering transmissions between one or more external
devices, internal devices, the computing machine 200, or the
processor 210.

[0027] The I/O interface 250 can couple the computing
machine 200 to various input devices including mice, touch-
screens, scanners, electronic digitizers, sensors, receivers,
touchpads, trackballs, cameras, microphones, keyboards,
any other suitable pointing devices, or any combinations
thereof. The I/O interface 250 can couple the computing
machine 200 to various output devices including video
displays, speakers, printers, projectors, tactile feedback
devices, automation control, robotic components, actuators,
motors, fans, solenoids, valves, pumps, transmitters, signal
emitters, lights, and so forth.

[0028] The computing machine 200 can operate in a
networked environment using logical connections through
the network interface 260 to one or more other systems or
computing machines across the network 270. The network
270 can include wide area networks (WAN), local area
networks (LAN), intranets, the Internet, wireless access
networks, wired networks, mobile networks, telephone net-
works, optical networks, or combinations thereof. The net-
work 270 can be packet switched, circuit switched, of any
suitable topology, and can use any suitable communication
protocol. Communication links within the network 270 can
involve various digital or an analog communication media
such as fiber optic cables, free-space optics, waveguides,
electrical conductors, wireless links, antennas, radio-fre-
quency communications, and so forth.

[0029] The processor 210 can be connected to the other
elements of the computing machine 200 or the various
peripherals discussed herein through the system bus 220. It
should be appreciated that the system bus 220 can be within
the processor 210, outside the processor 210, or both.
According to some embodiments, any of the processor 210,
the other elements of the computing machine 200, or the
various peripherals discussed herein can be integrated into a
single device such as a system on chip (“SOC”), system on
package (“SOP”), or ASIC device.

[0030] Embodiments may comprise a computer program
that embodies the functions described and illustrated herein,
wherein the computer program is implemented in a com-
puter system that comprises instructions stored in a
machine-readable medium and a processor that executes the
instructions. However, it should be apparent that there could
be many different ways of implementing embodiments in
computer programming, and the embodiments should not be
construed as limited to any one set of computer program
instructions unless otherwise disclosed for an exemplary
embodiment. Further, a skilled programmer would be able to
write such a computer program to implement an embodi-
ment of the disclosed embodiments based on the appended
flow charts, algorithms and associated description in the
application text. Therefore, disclosure of a particular set of
program code instructions is not considered necessary for an
adequate understanding of how to make and use embodi-
ments. Further, those skilled in the art will appreciate that
one or more aspects of embodiments described herein may
be performed by hardware, software, or a combination
thereof, as may be embodied in one or more computing
systems. Moreover, any reference to an act being performed
by a computer should not be construed as being performed
by a single computer as more than one computer may
perform the act.

May 30, 2019

[0031] The example embodiments described herein can be
used with computer hardware and software that perform the
methods and processing functions described previously. The
systems, methods, and procedures described herein can be
embodied in a programmable computer, computer-execut-
able software, or digital circuitry. The software can be stored
on computer-readable media. For example, computer-read-
able media can include a floppy disk, RAM, ROM, hard
disk, removable media, flash memory, memory stick, optical
media, magneto-optical media, CD-ROM, etc. Digital cir-
cuitry can include integrated circuits, gate arrays, building
block logic, field programmable gate arrays (FPGA), etc.

[0032] The example systems, methods, and acts described
in the embodiments presented previously are illustrative,
and, in alternative embodiments, certain acts can be per-
formed in a different order, in parallel with one another,
omitted entirely, and/or combined between different
example embodiments, and/or certain additional acts can be
performed, without departing from the scope and spirit of
various embodiments. Accordingly, such alternative
embodiments are included in the description herein.

[0033] As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising,”
when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. As used
herein, the term “and/or” includes any and all suitable
combinations of one or more of the associated listed items.
As used herein, phrases such as “between X and Y and
“between about X and Y should be interpreted to include X
and Y. As used herein, phrases such as “between about X and
Y” mean “between about X and about Y.” As used herein,
phrases such as “from about X to Y” mean “from about X
to about Y.”

[0034] As used herein, “hardware” can include a combi-
nation of discrete components, an integrated circuit, an
application-specific integrated circuit, a field programmable
gate array, or other suitable hardware. As used herein,
“software” can include one or more objects, agents, threads,
lines of code, subroutines, separate software applications,
two or more lines of code or other suitable software struc-
tures operating in two or more software applications, on one
or more processors (where a processor includes one or more
microcomputers or other suitable data processing units,
memory devices, input-output devices, displays, data input
devices such as a keyboard or a mouse, peripherals such as
printers and speakers, associated drivers, control cards,
power sources, network devices, docking station devices, or
other suitable devices operating under control of software
systems in conjunction with the processor or other devices),
or other suitable software structures. In one exemplary
embodiment, software can include one or more lines of code
or other suitable software structures operating in a general
purpose software application, such as an operating system,
and one or more lines of code or other suitable software
structures operating in a specific purpose software applica-
tion. As used herein, the term “couple” and its cognate
terms, such as “couples” and “coupled,” can include a
physical connection (such as a copper conductor), a virtual
connection (such as through randomly assigned memory

US 2019/0163502 Al

locations of a data memory device), a logical connection
(such as through logical gates of a semiconducting device),
other suitable connections, or a suitable combination of such
connections. The term “data” can refer to a suitable structure
for using, conveying or storing data, such as a data field, a
data buffer, a data message having the data value and
sender/receiver address data, a control message having the
data value and one or more operators that cause the receiving
system or component to perform a function using the data,
or other suitable hardware or software components for the
electronic processing of data.

[0035] In general, a software system is a system that
operates on a processor to perform predetermined functions
in response to predetermined data fields. For example, a
system can be defined by the function it performs and the
data fields that it performs the function on. As used herein,
a NAME system, where NAME is typically the name of the
general function that is performed by the system, refers to a
software system that is configured to operate on a processor
and to perform the disclosed function on the disclosed data
fields. Unless a specific algorithm is disclosed, then any
suitable algorithm that would be known to one of skill in the
art for performing the function using the associated data
fields is contemplated as falling within the scope of the
disclosure. For example, a message system that generates a
message that includes a sender address field, a recipient
address field and a message field would encompass software
operating on a processor that can obtain the sender address
field, recipient address field and message field from a
suitable system or device of the processor, such as a buffer
device or buffer system, can assemble the sender address
field, recipient address field and message field into a suitable
electronic message format (such as an electronic mail mes-
sage, a TCP/IP message or any other suitable message
format that has a sender address field, a recipient address
field and message field), and can transmit the electronic
message using electronic messaging systems and devices of
the processor over a communications medium, such as a
network. One of ordinary skill in the art would be able to
provide the specific coding for a specific application based
on the foregoing disclosure, which is intended to set forth
exemplary embodiments of the present disclosure, and not to
provide a tutorial for someone having less than ordinary skill
in the art, such as someone who is unfamiliar with program-
ming or processors in a suitable programming language. A
specific algorithm for performing a function can be provided
in a flow chart form or in other suitable formats, where the
data fields and associated functions can be set forth in an
exemplary order of operations, where the order can be
rearranged as suitable and is not intended to be limiting
unless explicitly stated to be limiting.

[0036] Although specific embodiments have been
described above in detail, the description is merely for
purposes of illustration. It should be appreciated, therefore,
that many aspects described above are not intended as
required or essential elements unless explicitly stated oth-
erwise. Modifications of, and equivalent components or acts
corresponding to, the disclosed aspects of the example
embodiments, in addition to those described above, can be
made by a person of ordinary skill in the art, having the
benefit of the present disclosure, without departing from the
spirit and scope of embodiments defined in the following

May 30, 2019

claims, the scope of which is to be accorded the broadest
interpretation so as to encompass such modifications and
equivalent structures.

What is claimed is:

1. A system for configuring an information computing
machine during execution of a kernel image and an initial
file system, the system comprising:

a storage resource;

a processor communicatively coupled to the storage
resource, wherein the processor executes application
code instruction that are stored in the storage resource
to cause the system to:

create a file system from a base file system image in
system memory of the information computing system;

apply binary and configuration files from a bundle image
to the file system in memory;

copy files from a persistent file system stored in the
storage resource to memotry,

validate the files from the persistent file system; and

apply validated files to the file system in memory.

2. The system of claim 1 further comprising application
code instruction to cause the system to:

verify the base file system image by comparing a signed
hash of the image with a hash generated by the initial
file system and checking the hash signature against a
public certificate included in the initial filesystem.

3. The system of claim 1 further comprising application

code instruction to cause the system to:

verify the bundle image by comparing a signed hash of the
image with a hash generated by the initial file system
and checking the hash signature against a public cer-
tificate included in the initial filesystem.

4. The system of claim 3 wherein the bundle image is
further verified by determining if the hash has been signed
by an administrator.

5. The system of claim 1 wherein the base file system
image can be retrieved from a local storage resource or from
a remote storage resource.

6. The system of claim 1 wherein the bundle image can be
retrieved from a local storage resource or a from a remote
storage resource.

7. The system of claim 1 further comprising application
code instruction to cause the system to:

execute/sbin/init; and

start services.

8. A computer aided method of a system for configuring
an information computing system during execution of a
kernel image and an initial file system, the method com-
prising:

creating a file system from a base file system image in
system memory of the information computing system;

applying configuration files from a bundle image to the
file system in memory;

copying files from a persistent file system stored in the
storage resource to memotry,

validating the files from the persistent file system; and

applying validated files to the file system in memory.

9. The method of claim 8 further comprising:

verifying the base file system image by comparing a
signed hash of the image with a hash generated by the
initial file system and checking the hash signature
against a public certificate included in the initial file-
system.

US 2019/0163502 Al

10. The method of claim 8 further comprising:

verifying the bundle image by comparing a signed hash of

the image with a hash generated by the initial file
system and checking the hash signature against a public
certificate included in the initial filesystem.

11. The method of claim 10 wherein the bundle image is
further verified by determining if the hash has been signed
by an administrator.

12. The method of claim 8 further comprising retrieving
the base file system image from a local storage resource or
from a remote storage resource.

13. The method of claim 8 further comprising retrieving
the bundle image from a local storage resource or a from a
remote storage resource.

14. The method of claim 8 further comprising:

executing/sbin/init; and

starting services.

15. A non-transitory computer readable medium contain-
ing computer readable instructions for configuring an infor-
mation computing machine, the computer-readable instruc-
tions comprising instructions for causing the computing
machine to:

create a file system from a base file system image in

system memory of the information computing system;
apply configuration files from a bundle image to the file
system in memory;

copy files from a persistent file system stored in the

storage resource to memotry,

validate the files from the persistent file system; and

apply validated files to the file system in memory.

May 30, 2019

16. The non-transitory computer readable medium of
claim 15 further includes computer readable instruction to
cause the computing machine to:

verify the base file system image by comparing a signed
hash of the image with a hash generated by the initial
file system and checking the hash signature against a
public certificate included in the initial filesystem.

17. The non-transitory computer readable medium of
claim 15 further includes computer readable instruction to
cause the computing machine to:

verify the bundle image by comparing a signed hash of the
image with a hash generated by the initial file system
and checking the hash signature against a public cer-
tificate included in the initial filesystem.

18. The non-transitory computer readable medium of
claim 15 wherein the base file system image can be retrieved
from a local storage resource or from a remote storage
resource.

19. The non-transitory computer readable medium of
claim 15 wherein the bundle image can be retrieved from a
local storage resource or from a remote storage resource.

20. The non-transitory computer readable medium of
claim 15 further includes computer readable instruction to
cause the computing machine to:

execute/sbin/init; and

start services.

