
THAT THE TOUT UNTUK U PRA UNUI AI AI AI AI ANTHI US 20180129757A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0129757 A1

Bowman et al . (43) Pub . Date : May 10 , 2018

(54) ENGINEERING SOFTWARE THAT USES A
PSEUDO - SINGLETON DESIGN PATTERN
WHICH SUPPORTS ASYNCHRONOUS
HIERARCHICAL UPDATES IN
SYNCHRONOUS COLLABORATIVE
SOFTWARE

H04L 29 / 06 (2006 . 01)
G06F 9 / 54 (2006 . 01)

(52) U . S . CI .
CPC G06F 17 / 50 (2013 . 01) ; G06F 9 / 546

(2013 . 01) ; H04L 67 / 42 (2013 . 01) ; G06F
17 / 2735 (2013 . 01)

(71) Applicant : Brigham Young University , Provo , UT
(US) (57) ABSTRACT

(72) Inventors : K Eric Bowman , Provo , UT (US) ;
Joshua Coburn , Orem , UT (US) ; C .
Greg Jensen , Provo , UT (US)

(21) Appl . No . : 15 / 621 , 919
(22) Filed : Jun . 13 , 2017

Related U . S . Application Data
(60) Provisional application No . 62 / 349 , 424 , filed on Jun .

13 , 2016 .

A method for multi - user CAx editing includes receiving a
hierarchical message in an asynchronous client - server appli
cation , the hierarchical message corresponding to an ele
ment of a CAx model in a CAx environment , identifying a
reference portion of the hierarchical message upon which a
remaining portion of the element depends , the reference
portion being unique to the element , comparing the refer
ence portion to a dictionary of the CAx environment ,
receiving the reference portion of the element as a return
output in response to identifying a match for the reference
portion in the dictionary , and creating the reference portion
of the element within the CAx environment in response to
identifying no match for the reference portion in the dic
tionary . A computer program product such as a computer
readable medium and a computer system corresponding to
the above method are also disclosed herein .

(51)
Publication Classification

Int . Ci .
G06F 17 / 50 (2006 . 01)
G06F 1727 (2006 . 01)

100

PTSN
110

1
125 | 126

PSTN
Gateway

120

125
INTER - NETWORK

130

140
- - - - - - - - -

145 145 125

Inter - network
Gateway

150 0 . 10 .
Application
Server (s)

170

Communication
Server (s)

180

Data
Server (s)

190

- - - - - - - - - - - -

Patent Application Publication 1 May 10 , 2018 Sheet 1 of 3 US 2018 / 0129757 A1

o

PTSN
110

- 9 - 7 - - - -
125 25 | 126

PSTN
Gateway

120

p

INTER - NETWORK
130

140
- - - - - - - - - - - - 125 145

O Inter - network
Gateway |

150

1251
10 . Application

Server (s)
170

Communication
Server (s)

180

Data
Server (s)

190

— — — — — — — - - - - - - -

Figure 1

200

Patent Application Publication

Server or Client 202 or 204

Operation Filter 206

Processor 212

Network 208

May 10 , 2018 Sheet 2 of 3

Memory 216

Dictionary Evaluator 210

Dictionary 214

US 2018 / 0129757 A1

Figure 2

Patent Application Publication May 10 , 2018 Sheet 3 of 3 US 2018 / 0129757 A1

Begin
300

302 Receive a hierarchical message in an
asynchronous client - server application

corresponding to an element associated with a CAX
model

304

Identify a reference portion of the hierarchical
message upon which a remaining portion of the

element depends
306

Compare the reference portion to dictionary
associated with CAx environment of the CAX

model

308

Receive the reference portion of the element as a
return output in response to identifying a match for

the reference portion in the dictionary

310

Create the reference portion of the element within
the CAx environment in response to identifying no
match for the reference portion in the dictionary

End

Figure 3

US 2018 / 0129757 A1 May 10 , 2018

ENGINEERING SOFTWARE THAT USES A
PSEUDO - SINGLETON DESIGN PATTERN
WHICH SUPPORTS ASYNCHRONOUS

HIERARCHICAL UPDATES IN
SYNCHRONOUS COLLABORATIVE

SOFTWARE

RELATED APPLICATIONS
[0001] This application claims priority to U . S . provisional
application 62 / 349 , 424 entitled “ Engineering software that
uses a pseudo - singleton design pattern which supports asyn
chronous hierarchical updates in synchronous collaborative
software ” and filed on 13 Jun . 2016 . The above application
is incorporated herein by reference in its entirety .

BACKGROUND OF THE INVENTION
[0002] The claimed invention relates to computer aided
technologies (CAx) such as computer aided design , engi
neering , analysis , and manufacture in general , and managing
data in a CAx environment .
[0003] Multi - user CAx technologies enable multiple users
to collaborate on projects . However , if pieces of shared data
on operations are interdependent and are received out of
order , complex logical checks are needed to determine the
order in which the operations are to be applied to determine
if one or more of the operations has partially or wholly
fulfilled and apply operations , in whole or part , that have not
been fulfilled .

reference portion of the element as a return output in
response to identifying a match for the reference portion in
the dictionary , and create the reference portion of the ele
ment within the CAx environment in response to identifying
no match for the reference portion in the dictionary .
[0007] A computer system including a processor , a
memory , and a computer readable medium having instruc
tions encoded thereon to cause the processor to receive a
hierarchical message in an asynchronous client - server appli
cation , the hierarchical message corresponding to an ele
ment of a CAx model in a CAx environment , identify a
reference portion of the hierarchical message upon which a
remaining portion of the element depends , the reference
portion being unique to the element , compare the reference
portion to a dictionary of the CAx environment , receive the
reference portion of the element as a return output in
response to identifying a match for the reference portion in
the dictionary , and create the reference portion of the ele
ment within the CAx environment in response to identifying
no match for the reference portion in the dictionary .
10008] It should be noted that references throughout this
specification to features , advantages , or similar language do
not imply that all the features and advantages that may be
realized with the present invention should be or are in any
single embodiment of the invention . Rather , language refer
ring to the features and advantages is understood to mean
that a specific feature , advantage , or characteristic described
in connection with an embodiment is included in at least one
embodiment of the present invention . Thus , discussion of
the features and advantages , and similar language , through
out this specification may , but do not necessarily , refer to the
same embodiment .
100091 . The described features , advantages , and character
istics of the invention may be combined in any suitable
manner in one or more embodiments . One skilled in the
relevant art will recognize that the invention may be prac
ticed without one or more of the specific features or advan
tages of a particular embodiment . In other instances , addi
tional features and advantages may be recognized in certain
embodiments that may not be present in all embodiments of
the invention .
[0010] These features and advantages will become more
fully apparent from the following description and appended
claims , or may be learned by the practice of the invention as
set forth hereinafter .

SUMMARY OF THE INVENTION
[0004] The present invention has been developed in
response to the present state of the art , and in particular , in
response to the problems and needs in the art that have not
yet been fully solved by currently available CAX systems ,
apparatuses , and methods . Accordingly , the claimed inven
tions have been developed to provide CAx editing systems ,
apparatuses , and methods that overcome shortcomings in the
art .

[0005] A method for multi - user CAx editing includes
receiving a hierarchical message in an asynchronous client
server application , the hierarchical message corresponding
to an element of a CAx model in a CAx environment ,
identifying a reference portion of the hierarchical message
upon which a remaining portion of the element depends , the
reference portion being unique to the element , comparing
the reference portion to a dictionary of the CAx environ
ment , receiving the reference portion of the element as a
return output in response to identifying a match for the
reference portion in the dictionary , and creating the refer
ence portion of the element within the CAx environment in
response to identifying no match for the reference portion in
the dictionary .
[0006] A computer program product including a computer
readable storage medium having program instructions
embodied therewith , the program instructions readable / ex
ecutable by a processor to cause the processor to receive a
hierarchical message in an asynchronous client - server appli
cation , the hierarchical message corresponding to an ele
ment of a CAX model in a CAx environment , identify a
reference portion of the hierarchical message upon which a
remaining portion of the element depends , the reference
portion being unique to the element , compare the reference
portion to a dictionary of the CAx environment , receive the

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] In order that the advantages of the invention will be
readily understood , a more particular description of the
invention briefly described above will be rendered by ref
erence to specific embodiments that are illustrated in the
appended drawings . Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope , the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings , in which :
[0012] FIG . 1 is a block diagram of one example of a
computing and communications infrastructure that is con
sistent with one or more embodiments of the claimed
invention ;
[0013] FIG . 2 is a block diagram of one example of a
collaborative CAx editing system that is consistent with one
or more embodiments of the claimed invention ; and

US 2018 / 0129757 A1 May 10 , 2018

[0014] FIG . 3 is a flowchart diagram of one embodiment
of a method for multi - user CAx editing .

DETAILED DESCRIPTION OF THE
INVENTION

[0015] Reference throughout this specification to “ one
embodiment , ” “ an embodiment , ” or similar language means
that a particular feature , structure , or characteristic described
in connection with the embodiment is included in at least
one embodiment . Thus , appearances of the phrases " in one
embodiment , " " in an embodiment , ” and similar language
throughout this specification may , but do not necessarily , all
refer to the same embodiment , but mean “ one or more but
not all embodiments ” unless expressly specified otherwise .
The terms “ including , " " comprising , ” “ having , " and varia
tions thereof mean " including but not limited to " unless
expressly specified otherwise . An enumerated listing of
items does not imply that any or all of the items are mutually
exclusive and / or mutually inclusive , unless expressly speci
fied otherwise . The terms “ a , " " an , ” and “ the ” also refer to
“ one or more ” unless expressly specified otherwise .
[0016] Furthermore , the described features , advantages ,
and characteristics of the embodiments may be combined in
any suitable manner . One skilled in the relevant art will
recognize that the embodiments may be practiced without
one or more of the specific features or advantages of a
particular embodiment . In other instances , additional fea
tures and advantages may be recognized in certain embodi
ments that may not be present in all embodiments .
[0017] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .
[0018] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing .
[0019] A non - exhaustive list of more specific examples of
the computer readable storage medium includes the follow
ing : a portable computer diskette , a hard disk , a random
access memory (“ RAM ”) , a read - only memory (" ROM ”) , an
erasable programmable read - only memory (" EPROM ” or
Flash memory) , a static random access memory (“ SRAM ”) ,
a portable compact disc read - only memory (" CD - ROM ”) , a
digital versatile disk (“ DVD ”) , a memory stick , a floppy
disk , a mechanically encoded device such as punch - cards or
raised structures in a groove having instructions recorded
thereon , and any suitable combination of the foregoing . A
computer readable storage medium , as used herein , is not to
be construed as being transitory signals per se , such as radio
waves or other freely propagating electromagnetic waves ,
electromagnetic waves propagating through a waveguide or
other transmission media (e . g . , light pulses passing through
a fiber - optic cable) , or electrical signals transmitted through
a wire .
[0020) Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to

an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
10021] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or
either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C + + or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages .
[0022] The computer readable program instructions may
execute entirely on the user ' s computer , partly on the user ' s
computer , as a stand - alone software package , partly on the
user ' s computer and partly on a remote computer or entirely
on the remote computer or server . In the latter scenario , the
remote computer may be connected to the user ' s computer
through any type of network , including a local area network
(LAN) or a wide area network (WAN) , or the connection
may be made to an external computer (for example , through
the Internet using an Internet Service Provider) .
10023] In some embodiments , electronic circuitry includ
ing , for example , programmable logic circuitry , field - pro
grammable gate arrays (FPGA) , or programmable logic
arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer
readable program instructions to personalize the electronic
circuitry , in order to perform aspects of the present inven
tion .
[0024] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0025] These computer readable program instructions may
be provided to a processor of a general - purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including

US 2018 / 0129757 A1 May 10 , 2018

program product is then either detached to a directory or
loaded into a directory by a button on the e - mail that
executes a program that detaches the computer program
product into a directory .
[0032] Another alternative is to send the computer pro
gram product directly to a directory on the client computer
hard drive . When there are proxy servers , the process will ,
select the proxy server code , determine on which computers
to place the proxy servers ' code , transmit the proxy server
code , then install the proxy server code on the proxy
computer . The computer program product will be transmit
ted to the proxy server and then it will be stored on the proxy
server .
[0033] The computer program product , in one embodi
ment , may be shared , simultaneously serving multiple cus
tomers in a flexible , automated fashion . The computer
program product may be standardized , requiring little cus
tomization and scalable , providing capacity on demand in a
pay - as - you - go model .
[0034] The computer program product may be stored on a
shared file system accessible from one or more servers . The
computer program product may be executed via transactions
that contain data and server processing requests that use
Central Processor Unit (CPU) units on the accessed server .
CPU units may be units of time such as minutes , seconds ,
hours on the central processor of the server . Additionally , the
accessed server may make requests of other servers that
require CPU units . CPU units are an example that represents
but one measurement of use . Other measurements of use
include but are not limited to network bandwidth , memory
usage , storage usage , packet transfers , complete transactions

instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
0026] . The computer readable program instructions may

also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or device to produce a computer
implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0027] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures .
[0028] For example , two blocks shown in succession may ,
in fact , be executed substantially concurrently , or the blocks
may sometimes be executed in the reverse order , depending
upon the functionality involved . It will also be noted that
each block of the block diagrams and / or flowchart illustra
tion , and combinations of blocks in the block diagrams
and / or flowchart illustration , can be implemented by special
purpose hardware - based systems that perform the specified
functions or acts or carry out combinations of special
purpose hardware and computer instructions .
[0029] Many of the functional units described in this
specification have been labeled as modules to emphasize
their implementation independence . For example , a module
may be implemented as a hardware circuit comprising
custom VLSI circuits or gate arrays , off - the - shelf semicon
ductors such as logic chips , transistors , or other discrete
components . A module may also be implemented in pro
grammable hardware devices such as field programmable
gate arrays , programmable array logic , programmable logic
devices or the like .
[0030] Modules may also be implemented in software for
execution by various types of processors . An identified
module of program instructions may , for instance , comprise
one or more physical or logical blocks of computer instruc
tions which may , for instance , be organized as an object ,
procedure , or function . Nevertheless , the executables of an
identified module need not be physically located together ,
but may comprise disparate instructions stored in different
locations which , when joined logically together , comprise
the module and achieve the stated purpose for the module .
[0031] The computer program product may be deployed
by manually loading directly in the client , server , and proxy
computers via loading a computer readable storage medium
such as a CD , DVD , etc . , the computer program product may
be automatically or semi - automatically deployed into a
computer system by sending the computer program product
to a central server or a group of central servers . The
computer program product is then downloaded into the
client computers that will execute the computer program
product . Alternatively , the computer program product is sent
directly to the client system via e - mail . The computer

etc .
[0035] . When multiple customers use the same computer
program product via shared execution , transactions are dif
ferentiated by the parameters included in the transactions
which identify the unique customer and the type of service
for that customer . All the CPU units and other measurements
of use that are used for the services for each customer are
recorded .
[0036] . When the number of transactions to any one server
reaches a number that begins to affect the performance of
that server , other servers are accessed to increase the capac
ity and to share the workload . Likewise , when other mea
surements of use such as network bandwidth , memory
usage , storage usage , etc . approach a capacity so as to affect
performance , additional network bandwidth , memory usage ,
storage etc . are added to share the workload .
[0037] The measurements of use used for each service and
customer are sent to a collecting server that sums the
measurements of use for each customer for each service that
was processed anywhere in the network of servers that
provide the shared execution of the computer program
product . The summed measurements of use units are peri
odically multiplied by unit costs and the resulting total
computer program product service costs are alternatively
sent to the customer and or indicated on a web site accessed
by the customer which then remits payment to the service
provider .
[0038] In one embodiment , the service provider requests
payment directly from a customer account at a banking or
financial institution . In another embodiment , if the service
provider is also a customer of the customer that uses the
computer program product , the payment owed to the service

US 2018 / 0129757 A1 May 10 , 2018

provider is reconciled to the payment owed by the service
provider to minimize the transfer of payments .
[0039] The computer program product may be integrated
into a client , server , and network environment by providing
for the computer program product to coexist with applica
tions , operating systems and network operating systems
software and then installing the computer program product
on the clients and servers in the environment where the
computer program product will function .
[0040] In one embodiment software is identified on the
clients and servers including the network operating system
where the computer program product will be deployed that
are required by the computer program product or that work
in conjunction with the computer program product . This
includes the network operating system that is software that
enhances a basic operating system by adding networking
features .
[0041] In one embodiment , software applications and ver
sion numbers are identified and compared to the list of
software applications and version numbers that have been
tested to work with the computer program product . Those
software applications that are missing or that do not match
the correct version will be upgraded with the correct version
numbers . Program instructions that pass parameters from the
computer program product to the software applications will
be checked to ensure the parameter lists match the parameter
lists required by the computer program product .
[0042] Conversely , parameters passed by the software
applications to the computer program product will be
checked to ensure the parameters match the parameters
required by the computer program product . The client and
server operating systems including the network operating
systems will be identified and compared to the list of
operating systems , version numbers and network software
that have been tested to work with the computer program
product . Those operating systems , version numbers and
network software that do not match the list of tested oper
ating systems and version numbers will be upgraded on the
clients and servers to the required level .
[0043] In response to determining that the software where
the computer program product is to be deployed , is at the
correct version level that has been tested to work with the
computer program product , the integration is completed by
installing the computer program product on the clients and
servers .
[0044] The computer program product , in one embodi
ment , may be deployed , accessed , and executed using a
virtual private network (VPN) , which is any combination of
technologies that can be used to secure a connection through
an otherwise unsecured or untrusted network . The use of
VPNs is to improve security and for reduced operational
costs .
[0045] The VPN makes use of a public network , usually
the Internet , to connect remote sites or users together .
Instead of using a dedicated , real - world connection such as
leased line , the VPN uses " virtual ” connections routed
through the Internet from the company ' s private network to
the remote site or employee . Access to the software via a
VPN can be provided as a service by specifically construct
ing the VPN for purposes of delivery or execution of the
computer program product (i . e . the software resides else
where) wherein the lifetime of the VPN is limited to a given
period of time or a given number of deployments based on
an amount paid .

[0046] The computer program product may be deployed ,
accessed , and executed through either a remote - access or a
site - to - site VPN . When using the remote - access VPNs the
computer program product is deployed , accessed , and
executed via the secure , encrypted connections between a
company ' s private network and remote users through a
third - party service provider . The enterprise service provider
(ESP) sets up a network access server (NAS) and provides
the remote users with desktop client software for their
computers . The telecommuters can then dial a toll - free
number or attach directly via a cable or DSL modem to reach
the NAS and use their VPN client software to access the
corporate network and to access , download and execute the
computer program product .
10047] When using the site - to - site VPN , the computer
program product is deployed , accessed , and executed
through the use of dedicated equipment and large - scale
encryption that are used to connect a company ' s multiple
fixed sites over a public network such as the Internet .
[0048] The computer program product is transported over
the VPN via tunneling which is the process of placing an
entire packet within another packet and sending it over a
network . The protocol of the outer packet is understood by
the network and both points , called tunnel interfaces , where
the packet enters and exits the network .
0049 . Furthermore , the described features , structures , or
characteristics of the embodiments may be combined in any
suitable manner . In the following description , numerous
specific details are provided , such as examples of program
ming , software modules , user selections , network transac
tions , database queries , database structures , hardware mod
ules , hardware circuits , hardware chips , etc . , to provide a
thorough understanding of embodiments . One skilled in the
relevant art will recognize , however , that embodiments may
be practiced without one or more of the specific details , or
with other methods , components , materials , and so forth . In
other instances , well - known structures , materials , or opera
tions are not shown or described in detail to avoid obscuring
aspects of an embodiment .
[0050] The description of elements in each figure may
refer to elements of proceeding figures . Like numbers refer
to like elements in all figures , including alternate embodi
ments of like elements .
[0051] In a multi - user environment , it is desirable to
assign different areas , regions , or geometries for different
users to work i . e . a workspace . The assigned workspace may
or may not be a contiguous region . Casually updating the
model for each user may not be effective , because it is likely
a user will accidently cross into another user ' s workspace or
create conflicts with simultaneously executed operations .
The result may end up creating chaos and result in a less
productive or unworkable multi - user environment . There
fore , it is generally desirable that operations be serialized as
they are exchanged between users or servers .
[0052] As used herein the phrase " engineering object
refers to an electronically modeled object that may be edited
by a CAx application or tool and CAx model ' refers to the
electronic model for that object . CAx applications and tools
include , but are not limited to , design tools , meshing tools ,
simulation tools , visualization tools , analysis tools , manu
facture planning tools , and manufacture simulation tools .
[0053] FIG . 1 is a block diagram of one example of a
computing and communications infrastructure 100 that is
consistent with one or more embodiments of the claimed

US 2018 / 0129757 A1 May 10 , 2018

invention . As depicted , the infrastructure 100 includes vari
ous systems , subsystems , and networks such as a public
switched telephone network (PSTN) 110 , a TDM gateway
120 connecting the PSTN to an inter - network 130 , a variety
of workstations 125 , a data center 140 with administrative
terminals 145 , an inter - network gateway 150 connecting a
local area network to the inter - network 130 , and various
servers such as application servers 170 , communication
servers 180 , and data servers 190 . The infrastructure 100 is
one example of components that can be operably intercon
nected to provide an infrastructure for a collaborative CAX
system .
[0054] Each workstation 125 may include a separate com
puting device 126 and a communications device 127 or the
computing device and communications device may be inte
grated into the workstation 125 . Examples of the commu
nications device 127 include a phone , a VOIP device , an
instant messaging device , a texting device , a browsing
device , and the like . The computing devices 126 may enable
graphical view selection . The communications devices 127
may enable users to communicate with other CAX system
users .
[0055] The inter - network 130 may facilitate electronic
communications between the various workstations and serv
ers . In one embodiment , the inter - network 130 is the inter
net . In another embodiment , the inter - network 130 is a
virtual private network (VPN) .
[0056] Various servers such as blade servers within the
data center 140 function cooperatively to facilitate concur
rent collaborative editing of CAX models by local and
remote users . For example , the application servers 170 may
provide one or more CAx applications to the local and
remote users . Some users may have the CAx applications
installed on their local computing devices 126 .
[0057] In some embodiments , the communication servers
180 facilitate communications between the users through
various channels or services such as VOIP services , email
services , instant messaging services , short message services ,
and text messaging services . The workstations 125 may
leverage such services for user to user communications via
the communication servers 180 or via other available service
platforms .
[0058] The data servers 190 or the like may store CAX
models of design or engineering objects within various
model files or records . The data servers may replicate copies
of the models for use by various users . Some users may have
a local copy of a model .
[0059] FIG . 2 is a block diagram of one example of a
collaborative CAx editing system 200 . The illustrated
embodiment includes a server or client 202 or 204 , respec
tively . In some embodiments , the collaborative CAx editing
system 200 is embodied at the server level or at the client
level . The description below refers to the client 204 , how
ever , it should be borne in mind that other embodiments
operate on the server 202 .
10060] In the illustrated embodiment , the client 204
includes an operation filter 206 . The operation filter 206
receives hierarchical messages 207 from the network 208 . In
some embodiments , the hierarchical messages 207 are
remote communications from a server or remote client
distinct from the client 204 . In some embodiments , the
hierarchical messages 207 include one or more remote
operations corresponding to a CAx model or object associ
ated with the client 204 and a remote entity . In some

embodiments , the hierarchical messages 207 correspond to
operations to be executed on the client 204 to update the
engineering object or CAx model based on operations
completed relative to the CAx model separate from the
client 204 . In some embodiments , the hierarchical messages
207 are asynchronous communications .
10061] In some embodiments , the hierarchical messages
207 may be delayed by network traffic or latencies . In other
embodiments , the hierarchical messages 207 may be asyn
chronous based on one or more network security protocols
or certification or proofing processes . Other embodiments of
the hierarchical messages 207 may be asynchronous for
other reasons or in response to other functions or processes .
[0062] In some embodiments , the hierarchical messages
207 include parent and child data for an operation or element
of the CAx model . In some embodiments , the hierarchical
messages 207 are in a neutral format that is not compatible
with the client 204 . In some embodiments , the hierarchical
messages 207 include data which is not in a specified order
or organization which corresponds to an executable order
relative to the CAx model .
10063] . In the illustrated embodiment , the hierarchical
messages 207 are received by the operation filter 206 . In
some embodiments , the operation filter 206 receives the
hierarchical messages 207 from a network interface device
such as a network interface card or other communication
component . In some embodiments , the operation filter 206 is
a dedicated hardware element of the client 204 . In other
embodiments , the operation filter 206 includes at least one
software component such as logic or a learning machine to
evaluate the hierarchical messages 207 , for example , the
dictionary evaluator 210 described below .
[0064] In some embodiments , the operation filter 206
analyzes the hierarchical messages 207 to determine the
nature of the hierarchical messages 207 . In some embodi
ments , the operation filter 206 provides instructions or other
data to a processor 212 of the client 204 for execution .
[0065] In some embodiments , the operation filter 206
identifies data from the hierarchical messages 207 as a
reference portion of the hierarchical messages 207 . In other
embodiments , the operation filter 206 identifies parent and
child data from the hierarchical messages 207 .
[0066] In some embodiments , the operation filter 206
evaluates the hierarchical messages 207 by applying a
dictionary evaluator 210 . In some embodiments , the diction
ary evaluator 210 includes a singleton or pseudo - singleton
pattern . In some embodiments , the dictionary evaluator 210
prevents the formation of duplicate instances of an element
in at least one of the dictionary 214 , the CAx model , or the
CAx environment .
[0067] In some embodiments , the dictionary evaluator 210
takes , as an input , the reference portion of the hierarchical
messages 207 . In some embodiments , the dictionary evalu
ator 210 compares a reference portion of the hierarchical
messages 207 to a dictionary 214 .
10068] In some embodiments , the dictionary evaluator 210
sends the reference portion back to the operation filter 206
in response to identifying a match for the reference portion
in the dictionary 214 . In some embodiments , the dictionary
evaluator 210 sends a command to create the reference
portion of the element within a CAx environment in
response to identifying no match for the reference portion in
the dictionary 214 .

US 2018 / 0129757 A1 May 10 , 2018

100691 In some embodiments , the command to create the
reference portion in the CAx environment includes creating
the reference portion within the dictionary 214 . In another
embodiment , the command to create the reference portion in
the CAx environment includes creating the reference portion
at a CAX model within the CAX environment . In some
embodiments , such a command is executed by the processor
212 .
[0070] In some embodiments , the dictionary 214 is stored
in a local memory 216 of the client 204 . In other embodi
ments , the dictionary 214 is a central dictionary accessed by
a plurality of clients 204 . In some embodiments , the dic
tionary 214 is a central dictionary 214 located on a device
separate to , but accessible by , the client 204 . In some
embodiments , the dictionary 214 is a copy that is shared
across and updated by a network of devices .
[0071] In some embodiments , the memory 216 is a
memory device corresponding to the client 204 . In other
embodiments , the memory 216 is a memory device separate
from the client 204 . For example , the memory 216 may
include a memory device corresponding to at least one of a
server , another client , a network attached storage , a cloud
memory device , and another memory device .
[0072] FIG . 3 is a flowchart diagram of one embodiment
of a method 300 for multi - user CAx editing . At block 302 ,
the illustrated method 300 includes receiving a hierarchical
message in an asynchronous client - server application . In
some embodiments , the hierarchical message corresponds to
an element of a CAx model in a CAx environment . In some
embodiments , the hierarchical message is received at a
client . In other embodiments , the hierarchical message is
received at a server or other network component .
[0073] At block 304 , the method 300 includes identifying
a reference portion of the hierarchical message upon which
a remaining portion of the element depends . In some
embodiments , the reference portion is unique to the element .
In some embodiments , the reference portion includes at least
one of parent and child data corresponding to the element .
In some embodiments , the hierarchical message has a neu
tral format . In some embodiments , the hierarchical message
includes updates to one or more features of a CAx model on
the CAx client .
[0074] Examples of some potential features include the
shape , dimensions , composition , material properties and
tolerances of an object , the mesh size and required accuracy
for simulations , the path and tolerances for a manufacturing
tool , and any other attribute that may affect the performance
of a product and the manufacture thereof .
10075] In some embodiments , the CAx model is stored
locally . In some embodiments , the CAx client includes a
local model datastore that contains local copies of CAX
models managed by a global model datastore . In some
embodiments , the local and global model datastores coor
dinate together to provide data coherency between local
copies of the CAX models and the global copy . In some
embodiments , the global model datastore is a redundant
and / or a distributed storage system . In some embodiments ,
the local copies of the CAx models exchange data , such as
hierarchical messages , with one another to provide data
coherency .
[0076] . In some embodiments , the CAx client includes a
user interface . In some embodiments , the user interface
indicates reception of the first remote operation to by
executed by the first CAx client in the CAx environment . In

some embodiments , the user interface does not provide a
hierarchical message until the operation filter has evaluated
the hierarchical message , as described above . In other
embodiments , the user interface does not display the hier
archical message on the CAx client . In some embodiments ,
a level of detail shown by the user interface is user cus
tomizable . In some embodiments , the user interface allows
for customization of the level of detail shown .
[0077] In some embodiments , the user interface provides
a user with a variety of interface elements that facilitate
concurrent collaborative editing . Examples of such interface
elements include interfaces elements for displaying a feature
tree , defining a partitioning surface or equation , selecting ,
reserving , assigning , locking and releasing geometries , edit
ing regions and features , specifying a feature constraint ,
selecting and editing geometries , displaying a list of con
current users , displaying user identifiers proximate to
assigned editing regions , presenting a list or other view of
geometries and / or features , prioritizing user access rights
and priorities (e . g . by a project leader) including viewing
privileges , selecting user - to - user communication channels ,
initiating communication with another user , and providing
access to software tools corresponding to various stages or
layers associated with an engineering object . In some
embodiments , the user interface module 230 responds to
mouse events , keyboard events , and the like .
10078] . In some embodiments , the CAx client includes a
user - to - user communication module which facilitates direct
communication between different users . In some embodi
ments , the user - to - user communication module leverages
one or more of a variety of communication services such as
those detailed above . Communication may be between con
current users as well as users that may not be actively editing
an object . The interface elements provided by the user
interface may enable a user to select users or groups as a
target for a particular message or ongoing conversation .
10079] At block 306 , the method 300 includes comparing
the reference portion to a dictionary associated with the CAX
environment . In some embodiments , comparing the refer
ence portion to the dictionary include the application of a
dictionary evaluator having a singleton or pseudo - singleton
design pattern . In some embodiments , the design pattern of
the dictionary evaluator or the dictionary prevents or reduces
the likelihood of creating a duplicate instance of the element
associated with the CAX model . Embodiments of coding for
such a design is described below .
[0080] At block 308 , the method 300 includes executing
the first remote operation on the first CAx client in response
to a determination that the first CAx client is idle . In some
embodiments , a processor of the first CAx client sends a
notification indicating that the first CAx client is idle . In
other embodiments , a monitor generates the notification in
response to determining that the CAx client is idle .
[0081] In some embodiments , the singleton design pattern
ensures that a single copy of a class can be created and no
duplicate copies may be created . In some embodiments , if an
instance of the class exists , the instance is returned by a
singleton pattern or other mechanism . Other embodiments
may provide fewer or more restrictions or allow more
instances to be created .
0082] In some embodiments , a constructor of a design

pattern is made private and operators are allowed to use the
“ GetInstance ” feature with the corresponding static
“ Instance ” variable . In this manner , the instantiation of a

US 2018 / 0129757 A1 May 10 , 2018
7

class is limited to one object or element . In some embodi
ments , the features and variable are given other names . It is
noted that specific naming conventions are not limiting but
merely examples .
[0083] In some embodiments , multiple versions of the
type , such as a line or other element , may be created but each
version is unique . In a CAx environment , multiple lines exist
but duplicates of the same line are not useful and can create
conflicts and other problems . In some embodiments , a
dictionary is organized and maintained to prevent the for
mation of duplicate elements . In some embodiments , the
dictionary can be checked to determine if an element exists
or if an element can be created without duplication .
10084] In one example , a pseudo - singleton function may
be associated with a line element . In the above example , the
pseudo - singleton function may be applied to a geometric
line element . In some embodiments , creation of a line
requires a particular order of operations . For example , in
some systems , end points must be created prior to estab
lishment of the line itself .
[0085) In some embodiments , it can be difficult to deter
mine , from an asynchronous message corresponding to a
line , whether the endpoints of the line have been created . In
some embodiments , the line calls a “ GetInstance " function
based on the end points . As mentioned above , other names
and naming conventions may be applied to other embodi
ments . In some embodiments , a pseudo - singleton design
pattern returns the input end points if they are identified as
matching an entry within the dictionary . In other embodi
ments , the pseudo - singleton creates the end points in
response to a determination that the end points do not match
an entry within the dictionary . In some embodiments , estab
lishment of the line requires no identification of the state of
the end points by checks or analysis on the asynchronous
message .
[0086] The preceding depiction of the collaborative CAX
applications and other inventive elements described herein
are intended to be illustrative rather than definitive . Simi
larly , the claimed invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics . The described embodiments are to be con
sidered in all respects only as illustrative and not restrictive .
The scope of the invention is , therefore , indicated by the
appended claims rather than by the foregoing description .
All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
scope .

What is claimed is :
1 . A method for multi - user CAx editing , the method

comprising :
receiving a hierarchical message in an asynchronous

client - server application , the hierarchical message cor
responding to an element of a CAx model in a CAX
environment ;

identifying a reference portion of the hierarchical message
upon which a remaining portion of the element
depends , the reference portion being unique to the
element ;

comparing the reference portion to a dictionary associated
with the CAx environment ;

receiving the reference portion of the element as a return
output in response to identifying a match for the
reference portion in the dictionary ; and

creating the reference portion of the element within the
CAx environment in response to identifying no match
for the reference portion in the dictionary .

2 . The method of claim 1 , wherein the reference portion
of the hierarchical message comprises parent data corre
sponding to the element .

3 . The method of claim 1 , wherein the reference portion
of the hierarchical message comprises child data corre
sponding to the element .

4 . The method of claim 1 , wherein the hierarchical
message comprises a neutral format .

5 . The method of claim 1 , wherein comparing the refer
ence portion to the dictionary comprises applying a diction
ary evaluator having a pseudo - singleton pattern .

6 . The method of claim 5 , wherein the pseudo - singleton
pattern prevents duplicate instances of the element from
being created .

7 . The method of claim 5 , wherein the pseudo - singleton
pattern operates a private constructor and applies a shared
instance retrieval on the dictionary .

8 . A computer program product comprising a computer
readable storage medium having program instructions
embodied therewith , the program instructions readable / ex
ecutable by a processor to cause the processor to :

receive a hierarchical message in an asynchronous client
server application , the hierarchical message corre
sponding to an element of a CAx model in a CAX
environment ;

identify a reference portion of the hierarchical message
upon which a remaining portion of the element
depends , the reference portion being unique to the
element ;

compare the reference portion to a dictionary of the CAX
environment ;

receive the reference portion of the element as a return
output in response to identifying a match for the
reference portion in the dictionary ; and

create the reference portion of the element within the CAX
environment in response to identifying no match for the
reference portion in the dictionary .

9 . The computer program product of claim 8 , wherein the
reference portion of the hierarchical message comprises
parent data corresponding to the element .

10 . The computer program product of claim 8 , wherein
the reference portion of the hierarchical message comprises
child data corresponding to the element .

11 . The computer program product of claim 8 , wherein the
hierarchical message comprises a neutral format .

12 . The computer program product of claim 8 , wherein
comparing the reference portion to the dictionary comprises
applying a dictionary evaluator having a pseudo - singleton
pattern .

13 . The computer program product of claim 12 , wherein
the pseudo - singleton pattern prevents duplicate instances of
the element from being created .

14 . The computer program product of claim 12 , wherein
the pseudo - singleton pattern operates a private constructor
and applies a shared instance retrieval on the dictionary .

15 . A computer system comprising :
a processor ;
a memory ; and
a computer readable medium having instructions encoded

thereon to cause the processor to :

US 2018 / 0129757 A1 May 10 , 2018

receive a hierarchical message in an asynchronous
client - server application , the hierarchical message
corresponding to an element of a CAx model in a
CAx environment ;

identify a reference portion of the hierarchical message
upon which a remaining portion of the element
depends , the reference portion being unique to the
element ;

compare the reference portion to a dictionary of the
CAx environment ;

receive the reference portion of the element as a return
output in response to identifying a match for the
reference portion in the dictionary ; and

create the reference portion of the element within the
CAx environment in response to identifying no
match for the reference portion in the dictionary .

16 . The computer system of claim 15 , wherein the refer
ence portion of the hierarchical message comprises parent
data corresponding to the element .

17 . The computer system of claim 15 , wherein the refer
ence portion of the hierarchical message comprises child
data corresponding to the element .

18 . The computer system of claim 15 , wherein the hier
archical message comprises a neutral format .

19 . The computer system of claim 15 , wherein comparing
the reference portion to the dictionary comprises applying a
dictionary evaluator having a pseudo - singleton pattern .

20 . The computer system of claim 19 , wherein the
pseudo - singleton pattern prevents duplicate instances of the
element from being created .

* * * * *

