a2 United States Patent

Klein et al.

US011900137B2

US 11,900,137 B2
Feb. 13, 2024

(10) Patent No.:
45) Date of Patent:

(54) CONFIGURABLE IN-APPLICATION EVENT
LOGGING SERVICE

(71) Applicant: SAP SE, Walldorf (DE)
(72) Inventors: Ude Klein, Oftersheim (DE); Achim
Seubert, Mannheim (DE); Lukas
Melzer, Bretten (DE); Daniel
Goldmann, Mannheim (DE)
(73) Assignee: SAP SE, Walldorf (DE)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 67 days.
(21) Appl. No.: 17/672,540
(22) Filed: Feb. 15, 2022
(65) Prior Publication Data
US 2023/0259379 Al Aug. 17, 2023
(51) Imt.CL
GO6F 9/455 (2018.01)
GO6F 9/54 (2006.01)
(52) US. CL
CPC GO6F 9/45529 (2013.01); GOGF 9/542
(2013.01)
(58) Field of Classification Search
CPC ..o GOG6F 9/45529; GO6F 9/542
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

2003/0005173 Al* 1/2003 Shah ... HO4L 41/0677
709/200
2003/0225872 Al* 12/2003 Bartek GO6F 11/3476

714/E11.181

402

2004/0111406 Al* 6/2004 Udeshi GOGF 16/9027
2004/0246973 Al* 12/2004 Hoang HO4L 45/62
370/395.21
2008/0275951 Al* 112008 Hindccceeevvenenee. HO4L 67/02
709/224
2009/0082918 Al* 3/2009 Hendrix, Jr. GO7C 5/0858
701/31.4
2010/0030789 Al* 2/2010 GOtOcecoverennnn GOGF 11/1658
711/E12.001
2010/0093316 Al* 4/2010 Doppler HO04M 1/72403
455/414.1
2014/0089399 Al* 3/2014 Chun ... G06Q 50/01
709/204
2015/0277942 Al* 10/2015 Rorkccoeeens GOGF 9/44505
701/31.4
2016/0070564 Al* 3/2016 WUccceeveinn GOGF 11/3476
717/120
2016/0072840 Al* 3/2016 Iyercccoooevevenn HO4L 63/20
726/1

(Continued)

Primary Examiner — Tuan C Dao
(74) Attorney, Agent, or Firm — Mintz Levin Cohn Ferris
Glovsky and Popeo, P.C.

(57) ABSTRACT

A method for configurable in-application event logging may
include receiving, from a client device, one or more user
inputs specifying at least one of an event of interest asso-
ciated with an operation of a software application and a data
to collect in response to the event of interest. A logging agent
may be configured, based on the user inputs, to respond to
the specified event of interest by generating one or more log
messages including the specified data. The logging agent
may be as a first programming code embedded within a
second programming code implementing the software appli-
cation such that the logging agent is able to access a context
of each executing instance of the software application.
Related systems and computer program products are also
provided.

20 Claims, 5 Drawing Sheets

- 400

RECEIVE, FROM CLIENT DEVICE, ONE OR MORE USER INPUTS SPECIFYING AT

LEAST ONE OF EVENT OF INTEREST ASSOCIATED WITH OPERATION OF

SOFTWARE APPLICATION AND DATA TO COLLECT IN RESPONSE TO EVENT OF

INTEREST

IN RESPONSE TO THE ONE OR MORE USER INPUTS, DETERMINE REQUEST
IDENTIFIER ASSOCIATED WITH ONE OR MORE USER INPUTS

406 - l

CONFIGURE, BASED AT LEAST ON ONE OR MORE USER INPUTS, LOGGING

AGENT TO RESPOND TO SPECIFIED EVENT OF INTEREST 8Y GENERATING ONE

OR MORE LOG MESSAGES TAGGED WITH REQUEST IDENTIFIER

408 . _ l

DEPLOY LOGGING AGENT AS FIRST PROGRAMMING CODE EMBEDDED WITHIN

SECOND PROGRAMMING CODE IMPLEMENTING SOFTWARE APPLICATION

US 11,900,137 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2016/0094509 Al* 3/2016 Ye .cccooevvvrnnnennne. HOAL 67/306

709/206
2016/0364616 Al* 12/2016 McLean GOGF 3/0346
2017/0099177 Al* 4/2017 Tsuchida . GO6F 11/34
2018/0018436 Al* 1/2018 Opitz GOG6F 40/56
2018/0183690 Al* 6/2018 Yamanashi HOAL 41/069

* cited by examiner

US 11,900,137 B2

Sheet 1 of 5

Feb. 13,2024

U.S. Patent

0g1 ®d1neqg
o)

aoeL8iUl|

- desn

0ol

Vs

(0727 E—

uaby —_
Ggl ddy
_mc_mmo._ SIEMYOS

021 wiogeid
Bunpndwon pnoyn

01 XiomiaN

L1 J8fjonuc)
Buibb0

U.S. Patent Feb. 13,2024 Sheet 2 of 5 US 11,900,137 B2

Client
Device 130

/ 100

Data: Store 220

FIG. 2

applicaton 125

U.S. Patent Feb. 13,2024 Sheet 3 of 5 US 11,900,137 B2

300

FIG. 3

U.S. Patent Feb. 13,2024 Sheet 4 of 5 US 11,900,137 B2

400

402 -.

RECEIVE, FROM CLIENT DEVICE, ONE OR MORE USER INPUTS SPECIFYING AT
LEAST ONE OF EVENT OF INTEREST ASSOCIATED WITH OPERATION OF
SOFTWARE APPLICATION AND DATA TO COLLECT IN RESPONSE TO EVENT OF
INTEREST

404

N

IN RESPONSE TO THE ONE OR MORE USER INPUTS, DETERMINE REQUEST
IDENTIFIER ASSOCIATED WITH ONE OR MORE USER INPUTS

406 -

k4

CONFIGURE, BASED AT LEAST ON ONE OR MORE USER INPUTS, LOGGING
AGENT TO RESPOND TO SPECIFIED EVENT OF INTEREST BY GENERATING ONE
OR MORE LOG MESSAGES TAGGED WITH REQUEST IDENTIFIER

408 - l

DEPLOY LOGGING AGENT AS FIRST PROGRAMMING CODE EMBEDDED WITHIN
SECOND PROGRAMMING CODE IMPLEMENTING SOFTWARE APPLICATION

FIG. 4

US 11,900,137 B2

Sheet 5 of 5

Feb. 13,2024

U.S. Patent

0GS
sng
ovS 0csS — _
025 1%
S3AVIAIA 3JDIA3A
LNd.LNO/LNGNI JOVHOLS AHOWIN ¥OSSIO0Ud

00S \.

US 11,900,137 B2

1
CONFIGURABLE IN-APPLICATION EVENT
LOGGING SERVICE

TECHNICAL FIELD

The subject matter described herein relates generally to
cloud native computing and more specifically to an in-
application configurable event logging service.

BACKGROUND

An enterprise may rely on a suite of enterprise software
applications for sourcing, procurement, supply chain man-
agement, invoicing, and payment. These enterprise software
applications may provide a variety of data processing func-
tionalities including, for example, billing, invoicing, pro-
curement, payroll, time and attendance management,
recruiting and onboarding, learning and development, per-
formance and compensation, workforce planning, logistics,
and/or the like. Examples of enterprise software applications
may include enterprise resource planning (ERP) software,
customer relationship management (CRM) software, and/or
the like. Data associated with multiple enterprise software
applications may be stored in a common database in order to
enable integration across different enterprise software appli-
cations. Moreover, to provide access to multiple end users
from different geographic locations, many enterprise soft-
ware applications may be deployed as a web-based appli-
cation (e.g., a software-as-a-service (SaaS)) such that the
functionalities of the enterprise software applications are
available for remote access.

SUMMARY

Systems, methods, and articles of manufacture, including
computer program products, are provided for configurable
in-application event logging. In some example embodi-
ments, there is provided a system that includes at least one
processor and at least one memory. The at least one memory
may include program code that provides operations when
executed by the at least one processor. The operations may
include: receiving, from a client device, one or more user
inputs specifying an event of interest associated with an
operation of a software application; configuring, based at
least on the one or more user inputs, a logging agent to
respond to the specified event of interest by generating one
or more log messages; and deploying the logging agent as a
first programming code embedded within a second program-
ming code implementing the software application.

In some variations, one or more features disclosed herein
including the following features can optionally be included
in any feasible combination. The operations may further
comprise: in response to receiving the one or more user
inputs, determining a first request identifier associated with
the one or more user inputs; and configuring the logging
agent to tag the one or more log messages with the first
request identifier.

In some variations, the one or more user inputs may
further specify a data to collect in response to the event of
interest. The logging agent may be further configured to
generate the one or more log messages to include the data.

In some variations, the first programming code imple-
menting the logging agent may be included in a main
program loop of the software application.

In some variations, the first programming code imple-
menting the logging agent may be embedded within the
second programming code implementing the software appli-

10

30

40

45

2

cation such that an instance of the logging agent resides
within each executing instance of the software application.

In some variations, the instance of the logging agent may
respond to the specified event of interest occurring during an
execution of the software application by at least accessing a
context of the executing instance of the software application
and generating the one or more log messages to include
information associated with the context of the executing
instance of the software application.

In some variations, the information may include a value
of one or more variables operated upon by the executing
instance of the software application.

In some variations, the one or more user inputs may
include a configuration for the logging agent. The configu-
ration may be stored in an in-memory data structure com-
prising a distributed, in-memory key-value database, cache,
and message broker.

In some variations, the logging agent may be configured
to respond to a first log message indicating an occurrence of
the specified event of interest by at least generating a second
log message including information associated with the
specified event of interest.

In some variations, the software application may include
an enterprise resource planning (ERP) application, a cus-
tomer relationship management (CRM) application, a pro-
cess management application, a process intelligence appli-
cation, a sales engagement application, a territory and quota
management application, an agent performance manage-
ment (APM) application, a social networking application, a
data warehousing application, and/or a logistics collabora-
tion application.

In another aspect, there is provided a method for config-
urable in-application event logging. The method may
include: receiving, from a client device, one or more user
inputs specifying an event of interest associated with an
operation of a software application; configuring, based at
least on the one or more user inputs, a logging agent to
respond to the specified event of interest by generating one
or more log messages; and deploying the logging agent as a
first programming code embedded within a second program-
ming code implementing the software application.

In some variations, one or more features disclosed herein
including the following features can optionally be included
in any feasible combination. The method may further
include: in response to receiving the one or more user inputs,
determining a first request identifier associated with the one
or more user inputs; and configuring the logging agent to tag
the one or more log messages with the first request identifier.

In some variations, the one or more user inputs may
further specify a data to collect in response to the event of
interest. The logging agent may be further configured to
generate the one or more log messages to include the data.

In some variations, the first programming code imple-
menting the logging agent may be included in a main
program loop of the software application.

In some variations, the first programming code imple-
menting the logging agent may be embedded within the
second programming code implementing the software appli-
cation such that an instance of the logging agent resides
within each executing instance of the software application.

In some variations, the instance of the logging agent may
respond to the specified event of interest occurring during an
execution of the software application by at least accessing a
context of the executing instance of the software application
and generating the one or more log messages to include
information associated with the context of the executing
instance of the software application.

US 11,900,137 B2

3

In some variations, the information may include a value
of one or more variables operated upon by the executing
instance of the software application.

In some variations, the one or more user inputs may
include a configuration for the logging agent. The configu-
ration may be stored in an in-memory data structure com-
prising a distributed, in-memory key-value database, cache,
and message broker.

In some variations, the logging agent may be configured
to respond to a first log message indicating an occurrence of
the specified event of interest by at least generating a second
log message including information associated with the
specified event of interest.

In another aspect, there is provided a computer program
product including a non-transitory computer readable
medium storing instructions. The instructions may cause
operations may executed by at least one data processor. The
operations may include: receiving, from a client device, one
or more user inputs specifying an event of interest associated
with an operation of a software application; configuring,
based at least on the one or more user inputs, a logging agent
to respond to the specified event of interest by generating
one or more log messages; and deploying the logging agent
as a first programming code embedded within a second
programming code implementing the software application.

Implementations of the current subject matter can include
methods consistent with the descriptions provided herein as
well as articles that comprise a tangibly embodied machine-
readable medium operable to cause one or more machines
(e.g., computers, etc.) to result in operations implementing
one or more of the described features. Similarly, computer
systems are also described that may include one or more
processors and one or more memories coupled to the one or
more processors. A memory, which can include a non-
transitory computer-readable or machine-readable storage
medium, may include, encode, store, or the like one or more
programs that cause one or more processors to perform one
or more of the operations described herein. Computer imple-
mented methods consistent with one or more implementa-
tions of the current subject matter can be implemented by
one or more data processors residing in a single computing
system or multiple computing systems. Such multiple com-
puting systems can be connected and can exchange data
and/or commands or other instructions or the like via one or
more connections, including a connection over a network
(e.g. the Internet, a wireless wide area network, a local area
network, a wide area network, a wired network, or the like),
via a direct connection between one or more of the multiple
computing systems, etc.

The details of one or more variations of the subject matter
described herein are set forth in the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims. While cer-
tain features of the currently disclosed subject matter are
described for illustrative purposes with respect to cloud-
based enterprise software applications, it should be readily
understood that such features are not intended to be limiting.
The claims that follow this disclosure are intended to define
the scope of the protected subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, show certain
aspects of the subject matter disclosed herein and, together

35

40

45

50

4

with the description, help explain some of the principles
associated with the disclosed implementations. In the draw-
ings,

FIG. 1 depicts a system diagram illustrating an example
of a cloud computing system, in accordance with some
example embodiments;

FIG. 2 depicts a block diagram illustrating an example of
data flow associated with a configurable in-application event
logging service, in accordance with some example embodi-
ments;

FIG. 3 depict a screenshot of a user interface displaying
various examples of log messages, in accordance with some
example embodiments;

FIG. 4 depicts a flowchart illustrating an example of a
process for configurable in-application event logging, in
accordance with some example embodiments;

FIG. 5 depicts a block diagram illustrating an example of
a computing system, in accordance with some example
embodiments; and

When practical, similar reference numbers denote similar
structures, features, or elements.

DETAILED DESCRIPTION

A software application, such as an enterprise software
application, may provide a variety of solutions for sourcing,
procurement, supply chain management, invoicing, and pay-
ment. For example, the software application may perform
various data processing functionalities such as billing,
invoicing, procurement, payroll, time and attendance man-
agement, recruiting and onboarding, learning and develop-
ment, performance and compensation, workforce planning,
and logistics. In instances where the software application is
licensed and delivered as a cloud-based service (e.g., a
software-as-a-service (SaaS) and/or the like), the cloud
provider hosting the software application may provide an
event logging service to record significant events that occur
during the operation of the software application. However,
conventional event logging services are preconfigured to log
a fixed set of events and are therefore unable to collect
additional system information, such as the context of the
software application, in response to certain events of inter-
est. While constantly monitoring the operation of the soft-
ware application for the occurrence of certain events is
impractical, indiscriminately collecting any or all potential
information is equally inefficient, especially when the events
of interest are transient or rarely occur.

In some example embodiments, a configurable in-appli-
cation event logging service may be configured to respond
to one or more events of interests defined by one or more
user inputs. For example, upon the occurrence of an event of
interest specified by the one or more user inputs, the
configurable in-application event logging service may col-
lect information specified by the one or more user inputs.
Moreover, the programming code implementing the config-
urable in-application event logging service may be inte-
grated with the programming code of a software application.
For instance, the programming code implementing the con-
figurable in-application event logging service may be a part
of the main program loop of the software application. The
configurable in-application event logging service may there-
fore reside within each executing instance of the software
application. As such, when an event of interest occurs during
the execution of the software application, the configurable
in-application event logging service is able to access the
context of that executing instance of the software application
and collect additional information, such as the values of one

US 11,900,137 B2

5

or more variables, that are otherwise unavailable to an event
logging service residing outside of the executing instance of
the software application.

FIG. 1 depicts a system diagram illustrating an example
of a cloud computing system 100, in accordance with some
example embodiments. Referring to FIG. 1, the cloud com-
puting system 100 may include a logging controller 110, a
cloud computing platform 120 hosting a software applica-
tion 125, and a client device 130. As shown in FIG. 1, the
logging controller 110, the cloud computing platform 120,
and the client device 130 may be communicatively coupled
via a network 140. The software application 125 may be an
enterprise software application such as an enterprise
resource planning (ERP) application, a customer relation-
ship management (CRM) application, a process manage-
ment application, a process intelligence application, a sales
engagement application, a territory and quota management
application, an agent performance management (APM)
application, a social networking application, a data ware-
housing application, and/or a logistics collaboration appli-
cation. The client device 130 may be a processor-based
device including, for example, a smartphone, a tablet com-
puter, a wearable apparatus, a virtual assistant, an Internet-
of-Things (IoT) appliance, and/or the like. The network 140
may be a wired network and/or a wireless network includ-
ing, for example, a wide area network (WAN), a local area
network (LAN), a virtual local area network (VLAN), a
public land mobile network (PLMN), the Internet, and/or the
like.

Referring again to FIG. 1, the client device 130 may
receive one or more user inputs for configuring, via the
logging controller 110, a logging agent 140. For example,
the logging agent 140 may be configured to respond to
certain events of interest that occur during the operation of
the software application 125. Moreover, the logging agent
140 may be configured to collect specific data upon detect-
ing the occurrence of certain events of interest. Table 1
below depicts examples of configuration parameters for the
logging agent 140.

TABLE 1

/ KK

136

* Trigger robotic log investigation as defined in the _triggers table
137

*

@param {object} logger - the logger where messages can be
logged to
138

*

@param {string} layer - the layer (aka path) of the log message
139

* @param {string} level - the (severity) level of the log message
140

@param {string} message - the text of the log message

141

* @param {array} args - whatever other parameters are written
into the log

142

* @returns {Promise<void>}

143

*/

In some example embodiments, the one or more user
inputs may specify an event of interest associated with the
software application 125 and identify the information that is
to be collected upon the occurrence of the event. Accord-
ingly, when the event of interest specified by the one or more
user inputs occurs during the execution of the software
application 125, the logging agent 140 may be configured to

10

15

20

25

30

35

40

45

50

55

60

65

6

respond to the event of interest by at least collecting the
information specified by the one or more user inputs. The
client device 130 may be associated with one of multiple
tenants associated with the cloud computing platform 120.
The one or more user inputs may therefore specify tenant-
specific configurations for the logging agent 140. For
example, the logging agent 140 may be configured to
respond to events that are of interest to a particular tenant.
In some cases, the logging agent 140 may be further
configured to respond to such events by at least collecting
tenant-specific data as defined by the one or more user
inputs.

In some example embodiments, the logging controller 110
may assign, to each request to track one or more events of
interest associated with the software application 125, a
corresponding request identifier. For example, in response to
a first user input configuring the logging agent 140 to
respond to one or more first events of interest, the logging
controller 110 may determine a first request identifier that
the logging agent 140 may use to tag log messages associ-
ated with the occurrence of the one or more first events of
interest. Meanwhile, in response to a second user input
configuring the logging agent 140 to respond to one or more
second events of interest, the logging controller 110 may
determine a second request identifier that the logging agent
140 may use to tag log messages associated with the
occurrence of the one or more second events of interest. The
first request identifier and the second request identifier may
enable a differentiation between log messages associated
with different requests, which may further originate from
different tenants in instances where the cloud computing
platform 120 supports multiple tenants. For instance, the
logging controller 110 may categorize, based at least on the
first request identifier and the second request identifier, the
different log messages generated by the logging agent 140.
Furthermore, the logging controller 110 determine, based at
least on the first request identifier and the second request
identifier, the respective recipients of the log messages
associated with the occurrence of the one or more first events
of interest and the one or more second events of interest.

As shown in FIG. 1, the logging agent 140 may be
deployed as a part of the software application 125. That is,
a first programming code implementing the logging agent
140 may be incorporated in a second programming code
implementing the software application 125 (e.g., within the
main program loop) such that the logging agent 140 is
embedded in the runtime of the software application 125. An
instance of the logging agent 140 with configurations spe-
cific to a particular tenant may therefore reside within each
executing instance of the software application 125 associ-
ated with that particular tenant. As such, when an event of
interest occurs during the execution of the software appli-
cation 125, the logging agent 140 is able to access the
context of that executing instance of the software application
125 and collect information that is unavailable to an event
logging service residing outside of the executing instance of
the software application 125. For example, in response to the
occurrence of the event of interest, the logging agent 140
may collect the values of one or more variables operated
upon by the executing instance of the software application
125 and generate one or more corresponding log messages.

FIG. 2 depicts a block diagram illustrating an example of
data flow associated with a configurable in-application event
logging service, in accordance with some example embodi-
ments. Referring to FIGS. 1-2, the logging controller 110
may receive, from the client device 130, one or more inputs
defining a configuration 225 for the logging agent 140. In the

US 11,900,137 B2

7

example shown in FIG. 2, the configuration 225 for the
logging agent 140 may be stored in a data store 220 which
may be, for example, an in-memory data structure used as a
distributed, in-memory key-value database, cache, and mes-
sage broker. Moreover, in the example shown in FIG. 2, the
logging controller 110 may be a part of a logging subsystem
210 associated with the software application 125.

Referring again to FIG. 2, the logging subsystem 210 may
include a logger 215, which may be configured to record
significant events that occur during the operation of the
software application 125. For example, while the software
application 125 performs one or more application specific
functionalities 215, the logger 215 may respond to the
occurrence of a significant event by writing, to an applica-
tion log 230, one or more corresponding log messages. To
further illustrate, FIG. 3 depict a screenshot of a user
interface 300 displaying various examples of log messages
that may be present in the application log 230. One log
message shown in the user interface 300 indicates that the
software application 125 was unable to update table
F8250BE36DDA46A693FSECI99A01 AAFID:SAP_
AFC_CORE_TASKEXECUTION due to a lock wait tim-
eout. Table 2 below includes the details provided by the log
message.

TABLE 2

10

15

20

8

the logging controller 110 to identify and group these log
messages as belonging to the same request.

FIG. 4 depicts a flowchart illustrating an example of a
process 400 for configurable in-application event logging, in
accordance with some example embodiments. Referring to
FIGS. 1-4, the process 400 may be performed by the logging
controller 110 to configure the logging agent 140 to detect
one or more events of interest that occur during the operation
of'the software application 125 deployed, for example, at the
cloud computing platform 120.

At 402, the logging controller 110 may receive, from a
client device, one or more user inputs specifying at least one
of an event of interest associated with the operation of a
software application and a data to collect in response to the
event of interest. For example, the logging controller 110
may receive, from the client device 130, one or more user
inputs specifying one or more events of interest that may
occur during the operation of the software application 125
deployed at the cloud computing platform 120. In some
instances, one or more user inputs may further identify
specific data that is to be collected in response to the
occurrence of the one or more events of interest. For
instance, the one or more user inputs received from the client
device 130 identify a tick handler failure and the corre-

tick handler failure: tick handler returned with an error: transaction rolled back by lock wait

timeout: TrexColumnUpdate failed on table

‘F8250BE36DDA46A693FSECI9A01AAFOD:SAP_AFC_CORE_TASKEXECUTION’ with

error: transaction rolled back by lock wait timeout: Lock-wait time out exceeded

[OWNER=38454374, TYPE=RECORD_LOCK, CURRENT_MODE=EXCLUSIVE,

REQUESTED_MODE=EXCLUSIVE], rc=4628 at executeTick

(/home/vcap/app/srv/handlers/trigger/ticker.js:345:11) at runMicrotasks (<anonymous>) at
processTicksAndRejections (internal/process/task _queues.js:97:5) { jse_shortmsg: ‘tick
handler returned with an error’, jse_cause: [SqlError: transaction rolled back by lock wait

timeout: TrexColumnUpdate failed on table

‘F8250BE36DDA46A693FSECI9A01 AAFID:SAP_AFC CORE TASKEXECUTION’ with

error: transaction rolled back by lock wait timeout: Lock-wait time out exceeded

[OWNER=38454374, TYPE=RECORD_LOCK, CURRENT_MODE=EXCLUSIVE,
REQUESTED_MODE=EXCLUSIVE], rc=4628] { code: 131, sql State: ‘HY000’, level: 1,
position: 0, query: ‘UPDATE sap_afc_core_TaskExecution SET ID = ?, createdAt = ?,
createdBy = ?, modified At = ?, modifiedBy = ?, taskListCode = ?, taskListInstance = ?,

taskListType_code = ?, taskListContext_code = ?, taskCode = ?, folderCode = ?, jobName = ?,
bteJobID = ? , lifeCycleStatus_code = ?, duration = ?, jobStartOn = ?, jobEndOn = ?,
combinedStatus_code = ?, text = ?, isManuallyChanged = ?, isTestRun = ?,

plannedJobStartOn = ?, approvalText = ?, country_code = ?, isOrgAssignmentCreated = ?,
executionGroup_ID = ?, taskList_ID = ?, communicationProfile_ID = ?, companyCode_ID =

?, controllingArea 1D = ? , manufacturingUnit_ID = ?, consolidationGroup_ID = ?,
consolidationUnit_ID = 2 WHERE ID = ?°, values: [*42010aee-0142-1edb-8aca-
24e69da45b44°, *2020-11-19T10:22:41.4772", ‘AFC_QIA_730°, 2020-11-19T10:22:52.000Z",
‘[1", ‘PDSE_QIA_JOBS_MANY_BUKRS_TMPL’, ‘2020012°, 1, ‘ENTITY_CLS’, 1°, ‘3’,
‘FCC-PDSE QIA JOBS_MANY_B-1-1°, ‘11224101°, *N’, null, null, null, *N”, null, false, false,

€2020-11-19T10:22:39Z7", null, ‘“DEU’, true, ‘10ea5735-958¢-4b96-8fc0-48882def5a9d’,
336bddal-d2eb-4557-a337-852798e01cf1’, ‘13146402-4379-4ae2-9b3b-a5ab53e511ba’,
‘ff95795¢-bbib-4e7b-bel 6-af9c6ctb3f3a’, null, null, null, null, *42010aee-0142-1edb-8aca-

24e69da45b44’ | }, jse_info: { tickId: ‘job_result_sync’ } }

Because the log message shown in Table 2 was not
generated by the software application 125 but was triggered
from inside the database layer, it lacks the contextual infor-
mation necessary to trouble shoot the update failure.
Accordingly, in some example embodiments, the logging
agent 140 may be configured to respond to such a log
message by collecting the additional information required to
troubleshoot the update failure such as the process main-
taining the table lock, the transaction implicitly locking the
table, and additional data from the database layer. The
logging agent 140 may in turn generate one or more addi-
tional log messages containing the additional information.
Moreover, as noted, the logging agent 140 may tag these
additional log messages with a request identifier to enable

55

60

65

sponding log message shown in Table 2 as an event of
interest. Furthermore, the one or more user inputs may
identify additional information required to trouble shoot the
tick handler failure such as the process maintaining the table
lock, the transaction implicitly locking the table, and addi-
tional data from the database layer.

At 404, the logging agent 110 may determine a request
identifier associated with the one or more user inputs. In
some example embodiments, the logging controller 110 may
assign, to each request to track one or more events of interest
associated with the software application 125, a correspond-
ing request identifier. The request identifiers may enable the
logging controller 110 to? categorize the different log mes-
sages generated by the logging agent 140 in response to

US 11,900,137 B2

9

various events of interest. Furthermore, the request identi-
fiers may enable the logging controller 110 determine the
proper recipients of the log messages generated by the
logging agent 140.

At 406, the logging agent 110 may configure, based at
least on the one or more user inputs, the logging agent 140
to respond to the specified event of interest by generating
one or more log messages tagged with the request identifier.
In some example embodiments, the logging agent 140 may
be configured to respond to an event of interest by gener-
ating one or more log message including information asso-
ciated with the event of interest. For example, the logging
agent 140 may be configured to respond to a log message
indicating a tick handler failure at the software application
125 by collecting additional required to trouble shoot the
tick handler failure such as the process maintaining the table
lock, the transaction implicitly locking the table, and addi-
tional data from the database layer. The logging agent 140
may generate additional log messages which the logging
controller 110 may forward, for example, to the client device
130.

At 408, the logging agent 110 may deploy the logging
agent 140 as a first programming code that is embedded
within a second programming code implementing the soft-
ware application. In some example embodiments, the log-
ging agent 140 may be deployed as a part of the software
application 125. For example, a first programming code
implementing the logging agent 140 may be incorporated in
a second programming code implementing the software
application 125, such as within the main program loop of the
software application 125, in order for the logging agent 140
to be embedded in the runtime of the software application
125. In instances where the cloud computing platform 120
supports multiple tenants, an instance of the logging agent
140 with configurations specific to a particular tenant may
reside within each executing instance of the software appli-
cation 125 associated with that particular tenant. Accord-
ingly, upon detecting the occurrence of an event of interest
during the execution of the software application 125, the
logging agent 140 may access the context of that executing
instance of the software application 125 and retrieve infor-
mation that is unavailable to an event logging service
residing outside of the executing instance of the software
application 125. For instance, in response to the occurrence
of'the event of interest, the logging agent 140 may collect the
values of one or more variables operated upon by the
executing instance of the software application 125 and
generate one or more corresponding log messages.

In view of the above-described implementations of sub-
ject matter this application discloses the following list of
examples, wherein one feature of an example in isolation or
more than one feature of said example taken in combination
and, optionally, in combination with one or more features of
one or more further examples are further examples also
falling within the disclosure of this application:

Example 1: A system, comprising: at least one data
processor; and at least one memory storing instructions,
which when executed by the at least one data processor,
result in operations comprising: receiving, from a client
device, one or more user inputs specifying an event of
interest associated with an operation of a software applica-
tion; configuring, based at least on the one or more user
inputs, a logging agent to respond to the specified event of
interest by generating one or more log messages; and
deploying the logging agent as a first programming code
embedded within a second programming code implementing
the software application.

25

35

40

45

55

10

Example 2: The system of Example 1, wherein the
operations further comprise: in response to receiving the one
or more user inputs, determining a first request identifier
associated with the one or more user inputs; and configuring
the logging agent to tag the one or more log messages with
the first request identifier.

Example 3: The system of any one of Examples 1 to 2,
wherein the one or more user inputs further specity a data to
collect in response to the event of interest, and wherein the
logging agent is further configured to generate the one or
more log messages to include the data.

Example 4: The system of any one of Examples 1 to 3,
wherein the first programming code implementing the log-
ging agent is included in a main program loop of the
software application.

Example 5: The system of any one of Examples 1 to 4,
wherein the first programming code implementing the log-
ging agent is embedded within the second programming
code implementing the software application such that an
instance of the logging agent resides within each executing
instance of the software application.

Example 6: The system of Example 5, wherein the
instance of the logging agent responds to the specified event
of interest occurring during an execution of the software
application by at least accessing a context of the executing
instance of the software application and generating the one
or more log messages to include information associated with
the context of the executing instance of the software appli-
cation.

Example 7: The system of Example 6, wherein the
information includes a value of one or more variables
operated upon by the executing instance of the software
application.

Example 8: The system of any one of Examples 1 to 7,
wherein the one or more user inputs comprises a configu-
ration for the logging agent, and wherein the configuration
is stored in an in-memory data structure comprising a
distributed, in-memory key-value database, cache, and mes-
sage broker.

Example 9: The system of any one of Examples 1 to 8§,
wherein the logging agent is configured to respond to a first
log message indicating an occurrence of the specified event
of interest by at least generating a second log message
including information associated with the specified event of
interest.

Example 10: The system of any one of Examples 1 to 9,
wherein the software application comprises an enterprise
resource planning (ERP) application, a customer relation-
ship management (CRM) application, a process manage-
ment application, a process intelligence application, a sales
engagement application, a territory and quota management
application, an agent performance management (APM)
application, a social networking application, a data ware-
housing application, and/or a logistics collaboration appli-
cation.

Example 11: A computer-implemented method, compris-
ing: receiving, from a client device, one or more user inputs
specifying an event of interest associated with an operation
of a software application; configuring, based at least on the
one or more user inputs, a logging agent to respond to the
specified event of interest by generating one or more log
messages; and deploying the logging agent as a first pro-
gramming code embedded within a second programming
code implementing the software application.

Example 12: The method of Example 11, further com-
prising: in response to receiving the one or more user inputs,
determining a first request identifier associated with the one

US 11,900,137 B2

11

or more user inputs; and configuring the logging agent to tag
the one or more log messages with the first request identifier.

Example 13: The method of any one of Examples 11 to
12, wherein the one or more user inputs further specify a
data to collect in response to the event of interest, and
wherein the logging agent is further configured to generate
the one or more log messages to include the data.

Example 14: The method of any one of Examples 11 to
13, wherein the first programming code implementing the
logging agent is included in a main program loop of the
software application.

Example 15: The method of any one of Examples 11 to
14, wherein the first programming code implementing the
logging agent is embedded within the second programming
code implementing the software application such that an
instance of the logging agent resides within each executing
instance of the software application.

Example 16: The method of Example 15, wherein the
instance of the logging agent responds to the specified event
of interest occurring during an execution of the software
application by at least accessing a context of the executing
instance of the software application and generating the one
or more log messages to include information associated with
the context of the executing instance of the software appli-
cation.

Example 17: The method of Example 16, wherein the
information includes a value of one or more variables
operated upon by the executing instance of the software
application.

Example 18: The method of any one of Examples 11 to
17, wherein the one or more user inputs comprises a
configuration for the logging agent, and wherein the con-
figuration is stored in an in-memory data structure compris-
ing a distributed, in-memory key-value database, cache, and
message broker.

Example 19: The method of any one of Examples 11 to
18, wherein the logging agent is configured to respond to a
first log message indicating an occurrence of the specified
event of interest by at least generating a second log message
including information associated with the specified event of
interest.

Example 20: A non-transitory computer readable medium
storing instructions, which when executed by at least one
data processor, result in operations comprising: receiving,
from a client device, one or more user inputs specifying an
event of interest associated with an operation of a software
application; configuring, based at least on the one or more
user inputs, a logging agent to respond to the specified event
of interest by generating one or more log messages; and
deploying the logging agent as a first programming code
embedded within a second programming code implementing
the software application.

FIG. 5 depicts a block diagram illustrating a computing
system 500, in accordance with some example embodi-
ments. Referring to FIGS. 1-5, the computing system 500
can be used to implement the logging controller 110 and/or
any components therein.

As shown in FIG. 5, the computing system 500 can
include a processor 510, a memory 520, a storage device
530, and an input/output device 540. The processor 510, the
memory 520, the storage device 530, and the input/output
device 540 can be interconnected via a system bus 550. The
processor 510 is capable of processing instructions for
execution within the computing system 500. Such executed
instructions can implement one or more components of, for
example, the logging controller 110. In some implementa-
tions of the current subject matter, the processor 510 can be

10

15

20

25

30

35

40

45

50

55

60

65

12

a single-threaded processor. Alternately, the processor 510
can be a multi-threaded processor. The processor 510 is
capable of processing instructions stored in the memory 520
and/or on the storage device 530 to display graphical infor-
mation for a user interface provided via the input/output
device 540.

The memory 520 is a computer readable medium such as
volatile or non-volatile that stores information within the
computing system 500. The memory 520 can store data
structures representing configuration object databases, for
example. The storage device 530 is capable of providing
persistent storage for the computing system 500. The storage
device 530 can be a floppy disk device, a hard disk device,
an optical disk device, or a tape device, or other suitable
persistent storage means. The input/output device 540 pro-
vides input/output operations for the computing system 500.
In some implementations of the current subject matter, the
input/output device 540 includes a keyboard and/or pointing
device. In various implementations, the input/output device
540 includes a display unit for displaying graphical user
interfaces.

According to some implementations of the current subject
matter, the input/output device 540 can provide input/output
operations for a network device. For example, the input/
output device 540 can include Ethernet ports or other
networking ports to communicate with one or more wired
and/or wireless networks (e.g., a local area network (LAN),
a wide area network (WAN), the Internet).

In some implementations of the current subject matter, the
computing system 500 can be used to execute various
interactive computer software applications that can be used
for organization, analysis and/or storage of data in various
(e.g., tabular) format (e.g., Microsoft Excel®, and/or any
other type of software). Alternatively, the computing system
500 can be used to execute any type of software applica-
tions. These applications can be used to perform various
functionalities, e.g., planning functionalities (e.g., generat-
ing, managing, editing of spreadsheet documents, word
processing documents, and/or any other objects, etc.), com-
puting functionalities, communications functionalities, etc.
The applications can include various add-in functionalities
or can be standalone computing products and/or function-
alities. Upon activation within the applications, the func-
tionalities can be used to generate the user interface pro-
vided via the input/output device 540. The user interface can
be generated and presented to a user by the computing
system 500 (e.g., on a computer screen monitor, etc.).

One or more aspects or features of the subject matter
described herein can be realized in digital electronic cir-
cuitry, integrated circuitry, specially designed ASICs, field
programmable gate arrays (FPGAs) computer hardware,
firmware, software, and/or combinations thereof. These
various aspects or features can include implementation in
one or more computer programs that are executable and/or
interpretable on a programmable system including at least
one programmable processor, which can be special or gen-
eral purpose, coupled to receive data and instructions from,
and to transmit data and instructions to, a storage system, at
least one input device, and at least one output device. The
programmable system or computing system may include
clients and servers. A client and server are generally remote
from each other and typically interact through a communi-
cation network. The relationship of client and server arises
by virtue of computer programs running on the respective
computers and having a client-server relationship to each
other.

US 11,900,137 B2

13

These computer programs, which can also be referred to
as programs, software, software applications, applications,
components, or code, include machine instructions for a
programmable processor, and can be implemented in a
high-level procedural and/or object-oriented programming
language, and/or in assembly/machine language. As used
herein, the term “machine-readable medium” refers to any
computer program product, apparatus and/or device, such as
for example magnetic discs, optical disks, memory, and
Programmable Logic Devices (PLDs), used to provide
machine instructions and/or data to a programmable proces-
sor, including a machine-readable medium that receives
machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to
provide machine instructions and/or data to a programmable
processor. The machine-readable medium can store such
machine instructions non-transitorily, such as for example as
would a non-transient solid-state memory or a magnetic hard
drive or any equivalent storage medium. The machine-
readable medium can alternatively or additionally store such
machine instructions in a transient manner, such as for
example, as would a processor cache or other random access
memory associated with one or more physical processor
cores.

To provide for interaction with a user, one or more aspects
or features of the subject matter described herein can be
implemented on a computer having a display device, such as
for example a cathode ray tube (CRT) or a liquid crystal
display (LCD) or a light emitting diode (LED) monitor for
displaying information to the user and a keyboard and a
pointing device, such as for example a mouse or a trackball,
by which the user may provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received in any form, including
acoustic, speech, or tactile input. Other possible input
devices include touch screens or other touch-sensitive
devices such as single or multi-point resistive or capacitive
track pads, voice recognition hardware and software, optical
scanners, optical pointers, digital image capture devices and
associated interpretation software, and the like.

The subject matter described herein can be embodied in
systems, apparatus, methods, and/or articles depending on
the desired configuration. The implementations set forth in
the foregoing description do not represent all implementa-
tions consistent with the subject matter described herein.
Instead, they are merely some examples consistent with
aspects related to the described subject matter. Although a
few variations have been described in detail above, other
modifications or additions are possible. In particular, further
features and/or variations can be provided in addition to
those set forth herein. For example, the implementations
described above can be directed to various combinations and
subcombinations of the disclosed features and/or combina-
tions and subcombinations of several further features dis-
closed above. In addition, the logic flows depicted in the
accompanying figures and/or described herein do not nec-
essarily require the particular order shown, or sequential
order, to achieve desirable results. For example, the logic
flows may include different and/or additional operations
than shown without departing from the scope of the present
disclosure. One or more operations of the logic flows may be
repeated and/or omitted without departing from the scope of
the present disclosure. Other implementations may be within
the scope of the following claims.

10

15

20

25

30

35

40

45

50

55

60

14

What is claimed is:

1. A system, comprising:

at least one processor; and

at least one memory including program code which when

executed by the at least one processor provides opera-

tions comprising:

receiving, from a client device, one or more user inputs
specifying an event of interest associated with an
operation of a software application;

configuring, based at least on the one or more user
inputs, a logging agent to respond to the specified
event of interest by generating one or more log
messages;

deploying the logging agent as a first programming
code embedded within a second programming code
implementing the software application; and

responding, by the logging agent, to a first log message
indicating an occurrence of the specified event of
interest by at least generating a second log message
including information associated with the specified
event of interest.

2. The system of claim 1, wherein the operations further
comprise:

in response to receiving the one or more user inputs,

determining a first request identifier associated with the
one or more user inputs; and

configuring the logging agent to tag the one or more log

messages with the first request identifier.

3. The system of claim 1, wherein the one or more user
inputs further specify a data to collect in response to the
specified event of interest, and wherein the operations fur-
ther comprise generating, by the logging agent, the one or
more log messages to include the data.

4. The system of claim 1, wherein the first programming
code implementing the logging agent is included in a main
program loop of the software application.

5. The system of claim 1, wherein the first programming
code implementing the logging agent is embedded within
the second programming code implementing the software
application such that an instance of the logging agent resides
within each executing instance of the software application.

6. The system of claim 5, wherein the instance of the
logging agent responds to the specified event of interest
occurring during an execution of the software application by
at least accessing a context of the executing instance of the
software application and generating the one or more log
messages to include information associated with the context
of the executing instance of the software application.

7. The system of claim 6, wherein the information
includes a value of one or more variables operated upon by
the executing instance of the software application.

8. The system of claim 1, wherein the one or more user
inputs comprises a configuration for the logging agent, and
wherein the configuration is stored in an in-memory data
structure comprising a distributed, in-memory key—value
database, cache, and message broker.

9. The system of claim 1, wherein the one or more user
inputs specify tenant-specific configurations for the logging
agent, and wherein the operations further comprise respond-
ing, by the logging agent, to the specified event of interest
by collecting tenant-specific data as defined by the one or
more user inputs.

10. The system of claim 1, wherein the software appli-
cation comprises an enterprise resource planning (ERP)
application, a customer relationship management (CRM)
application, a process management application, a process
intelligence application, a sales engagement application, a

US 11,900,137 B2

15

territory and quota management application, an agent per-
formance management (APM) application, a social network-
ing application, a data warehousing application, and/or a
logistics collaboration application.

11. A computer-implemented method, comprising:

receiving, from a client device, one or more user inputs

specifying an event of interest associated with an
operation of a software application;
configuring, based at least on the one or more user inputs,
a logging agent to respond to the specified event of
interest by generating one or more log messages;

deploying the logging agent as a first programming code
embedded within a second programming code imple-
menting the software application; and

responding, by the logging agent, to a first log message

indicating an occurrence of the specified event of
interest by at least generating a second log message
including information associated with the specified
event of interest.

12. The method of claim 11, further comprising:

in response to receiving the one or more user inputs,

determining a first request identifier associated with the
one or more user inputs; and

configuring the logging agent to tag the one or more log

messages with the first request identifier.

13. The method of claim 11, wherein the one or more user
inputs further specify a data to collect in response to the
event of interest, and wherein method further comprises
generating the one or more log messages to include the data.

14. The method of claim 11, wherein the first program-
ming code implementing the logging agent is included in a
main program loop of the software application.

15. The method of claim 11, wherein the first program-
ming code implementing the logging agent is embedded
within the second programming code implementing the
software application such that an instance of the logging
agent resides within each executing instance of the software
application.

15

20

25

16

16. The method of claim 15, wherein the instance of the
logging agent responds to the specified event of interest
occurring during an execution of the software application by
at least accessing a context of the executing instance of the
software application and generating the one or more log
messages to include information associated with the context
of the executing instance of the software application.

17. The method of claim 16, wherein the information
includes a value of one or more variables operated upon by
the executing instance of the software application.

18. The method of claim 11, wherein the one or more user
inputs comprises a configuration for the logging agent, and
wherein the configuration is stored in an in-memory data
structure comprising a distributed, in-memory key-value
database, cache, and message broker.

19. The method of claim 11, wherein the one or more user
inputs specify tenant-specific configurations for the logging
agent, and wherein the method further comprising respond-
ing, by the logging agent, to the specified event of interest
by collecting tenant-specific data as defined by the one or
more user inputs.

20. A non-transitory computer readable medium storing
instructions, which when executed by at least one data
processor, result in operations comprising:

receiving, from a client device, one or more user inputs

specifying an event of interest associated with an
operation of a software application;
configuring, based at least on the one or more user inputs,
a logging agent to respond to the specified event of
interest by generating one or more log messages;

deploying the logging agent as a first programming code
embedded within a second programming code imple-
menting the software application, and

responding, by the logging agent, to a first log message

indicating an occurrence of the specified event of
interest by at least generating a second log message
including information associated with the specified
event of interest.

#* #* #* #* #*

