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COMPUTING DEVICE AND METHOD FOR
INFERRING AN AIRFLOW OF A VAV
APPLIANCE OPERATING IN AN AREA OF A
BUILDING

TECHNICAL FIELD

[0001] The present disclosure relates to the field of build-
ing automation, and more precisely to air flow control in an
area of a building. More specifically, the present disclosure
presents a computing device and a method for inferring an
airflow of a VAV appliance operating in the area of the
building.

BACKGROUND

[0002] Systems for controlling environmental conditions,
for example in buildings, are becoming increasingly sophis-
ticated. An environment control system may at once control
heating and cooling, monitor air quality, detect hazardous
conditions such as fire, carbon monoxide release, intrusion,
and the like. Such environment control systems generally
include at least one environment controller, which receives
measured environmental values, generally from external
sensors, and in turn determines set-points or command
parameters to be sent to controlled appliances.

[0003] An example of controlled appliance is a Variable
Air Volume (VAV) appliance. VAV appliances are deployed
in various areas of a building, to regulate the temperature,
humidity level and CO2 level in these various areas. The
VAV appliances are generally controlled by one or more
environment controller deployed in the building to imple-
ment an environment control system.

[0004] A VAV appliance generally includes an airflow
sensor, capable of measuring an airflow generated by the
VAV appliance during operations. The measured airflow is
used directly by the VAV appliance for auto-regulating the
operations of the VAV appliance, and can also be transmitted
to an environment controller for providing a feedback on the
operations of the VAV appliance.

[0005] The accuracy of the airflow measured by the air-
flow sensor is therefore of paramount importance to ensure
proper operations of the VAV appliance. However, when the
VAV appliance is installed, the airflow measured by the
airflow sensor may not be accurate. This lack of accuracy is
caused by a default in the configuration of the airflow sensor,
by specific environmental conditions not compatible with
the factory configuration of the airflow sensor, etc.

[0006] To correct the lack of accuracy of the airflow
sensor, an intervention by a specialized technician is usually
required. The technician measures the real airflow of the
VAV appliance, compares it to the air flow measured by the
airflow sensor, and reconfigures the airflow sensor accord-
ingly. This procedure is well known in the art and is referred
to as balancing. Practically, it consists in adjusting a K factor
of the airflow sensor, as will be detailed later in the descrip-
tion.

[0007] The configuration procedure being made by a tech-
nician makes it costly financially and in terms of delay
before the VAV appliance is fully operational after its initial
deployment. The procedure is also prone to human errors.
Thus, it would be beneficial to automate this configuration
procedure.
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[0008] Current advances in artificial intelligence, and
more specifically in neural networks, can be taken advantage
of for automating the determination of the real airflow of the
VAV appliance.

[0009] Therefore, there is a need for a computing device
and a method for inferring an airflow of a VAV appliance
operating in an area of a building.

SUMMARY

[0010] According to a first aspect, the present disclosure
relates to a method for inferring an airflow of a controlled
appliance operating in an area of a building. The method
comprises storing a predictive model in a memory of a
computing device. The method comprises determining, by a
processing unit of the computing device, a measured airflow
of the controlled appliance. The method comprises deter-
mining, by the processing unit of the computing device, a
plurality of consecutive temperature measurements in the
area. The method comprises executing, by the processing
unit of the computing device, a neural network inference
engine using the predictive model for inferring an inferred
airflow based on inputs, the inputs comprising the measured
airflow and the plurality of consecutive temperature mea-
surements.

[0011] According to a second aspect, the present disclo-
sure relates to a non-transitory computer program product
comprising instructions executable by a processing unit of a
computing device. The execution of the instructions by the
processing unit of the computing device provides for infer-
ring an airflow of a controlled appliance operating in an area
of a building, by implementing the aforementioned method.
[0012] According to a third aspect, the present disclosure
relates to a computing device for inferring an airflow of a
controlled appliance operating in an area of a building. The
computing device comprises memory for storing a predic-
tive model, and a processing unit. The processing unit
determines a measured airflow of the controlled appliance.
The processing unit determines a plurality of consecutive
temperature measurements in the area. The processing unit
executes a neural network inference engine using the pre-
dictive model for inferring an inferred airflow based on
inputs, the inputs comprising the measured airflow and the
plurality of consecutive temperature measurements.

[0013] In a particular aspect, the inputs further include at
least one of a plurality of consecutive humidity level mea-
surements in the area and a plurality of consecutive carbon
dioxide (CO2) level measurements in the area.

[0014] In another particular aspect, the controlled appli-
ance is a Variable Air Volume (VAV) appliance and a K
factor of the VAV appliance is calculated based on the
inferred airflow.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] Embodiments of the disclosure will be described
by way of example only with reference to the accompanying
drawings, in which:

[0016] FIG. 1 illustrates a manual procedure for adjusting
a K factor of a Variable Air Volume (VAV) appliance;
[0017] FIG. 2 represents a computing device capable of
inferring an airflow of a controlled appliance operating in an
area of a building;

[0018] FIG. 3 represents the computing device of FIG. 2
interacting with a training server;
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[0019] FIGS. 4A and 4B represent a method implemented
by the computing device of FIG. 2 for inferring an airflow
of a controlled appliance operating in an area of a building;
[0020] FIG. 5A illustrates a plurality of consecutive tem-
perature measurements;

[0021] FIG. 5B illustrates a plurality of consecutive
humidity level measurements;

[0022] FIG. 5C illustrates a plurality of consecutive CO2
level measurements;

[0023] FIG. 6 is a schematic representation of a neural
network inference engine executed by the computing device
of FIG. 2 according to the method of FIGS. 4A-B;

[0024] FIG. 7 represents an alternative method imple-
mented by the computing device of FIG. 2 for inferring a K
factor of a controlled appliance operating in an area of a
building; and

[0025] FIG. 8 is a schematic representation of a neural
network inference engine executed by the computing device
of FIG. 2 according to the method of FIG. 7.

DETAILED DESCRIPTION

[0026] The foregoing and other features will become more
apparent upon reading of the following non-restrictive
description of illustrative embodiments thereof, given by
way of example only with reference to the accompanying
drawings.

[0027] Various aspects of the present disclosure generally
address one or more of the problems related to environment
control systems for buildings. More particularly, the present
disclosure aims at providing solutions for automating the
configuration of an airflow sensor of a VAV appliance
operating in an area of a building. The automation is based
on the usage of a neural network for inferring the ‘real’
airflow of the VAV appliance by contrast to the airflow of the
VAV appliance measured by the airflow sensor. Based on the
inference of the ‘real’ airflow, the airflow sensor is recon-
figured to provide a more accurate measure of the airflow of
the VAV appliance.

[0028] The following terminology is used throughout the
present specification:

[0029] Environment: condition(s) (temperature, pres-
sure, oxygen level, light level, security, etc.) prevailing
in a controlled area or place, such as for example in a
building.

[0030] Environment control system: a set of compo-
nents which collaborate for monitoring and controlling
an environment.

[0031] Environmental data: any data (e.g. information,
commands) related to an environment that may be
exchanged between components of an environment
control system.

[0032] Environment control device (ECD): generic
name for a component of an environment control
system. An ECD may consist of an environment con-
troller, a sensor, a controlled appliance, etc.

[0033] Environment controller: device capable of
receiving information related to an environment and
sending commands based on such information.

[0034] Environmental characteristic: measurable, quan-
tifiable or verifiable property of an environment (a
building). The environmental characteristic comprises
any of the following: temperature, pressure, humidity,
lighting, CO2, flow, radiation, water level, speed,
sound; a variation of at least one of the following,
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temperature, pressure, humidity and lighting, CO2 lev-
els, flows, radiations, water levels, speed, sound levels,
etc., and/or a combination thereof.

[0035] Environmental characteristic value: numerical,
qualitative or verifiable representation of an environ-
mental characteristic.

[0036] Sensor: device that detects an environmental
characteristic and provides a numerical, quantitative or
verifiable representation thereof. The numerical, quan-
titative or verifiable representation may be sent to an
environment controller.

[0037] Controlled appliance: device that receives a
command and executes the command. The command
may be received from an environment controller.

[0038] Environmental state: a current condition of an
environment based on an environmental characteristic,
each environmental state may comprise a range of
values or verifiable representation for the correspond-
ing environmental characteristic.

[0039] VAV appliance: a Variable Air Volume appliance
is a type of heating, ventilating, and/or air-conditioning
(HVAC) system. By contrast to a Constant Air Volume
(CAV) appliance, which supplies a constant airflow at
a variable temperature, a VAV appliance varies the
airflow at a constant temperature.

[0040] Area of a building: the expression ‘area of a
building’ is used throughout the present specification to
refer to the interior of a whole building or a portion of
the interior of the building such as, without limitation:
a floor, a room, an aisle, etc.

[0041] Referring now to FIG. 1, a VAV appliance 50
comprising an airflow sensor 55 is illustrated. As mentioned
previously, the airflow sensor 55 measures an airflow gen-
erated by the VAV appliance 50 during operations of the
VAV appliance 50. The measured airflow is used directly by
the VAV appliance 50 as a feedback loop for auto-regulating
the operations of the VAV appliance 50 (for instance, main-
taining a constant airflow value in a room while the envi-
ronmental conditions of the room are changing). The mea-
sured airflow may also be transmitted to an environment
controller (not represented in FIG. 1 for simplification
purposes) controlling the VAV appliance 50, for providing a
feedback loop on the operations of the VAV appliance 50.
[0042] In a first implementation, the airflow sensor 55 is
capable of directly measuring the airflow of the VAV appli-
ance 50. However, this type of sensor may be costly and
other implementations are usually preferred.

[0043] In a second implementation, the airflow sensor 55
measures a velocity pressure of the airflow in the VAV
appliance 50. The velocity pressure of the airflow is a
differential pressure DP, consisting of the difference between
a total pressure and a static pressure measured by a differ-
ential pressure sensor integrated to the airflow sensor 55.
The differential pressure DP is then used by the airflow
sensor 55 for calculating the value of the airflow Q. For
instance, the airflow sensor 55 includes the differential
pressure sensor and a processing unit (not represented in
FIG. 1 for simplification purposes). The processing unit is
capable of calculating the value of the airflow Q based on the
differential pressure DP measured by the differential pres-
sure sensor.

[0044] Alternatively, the VAV appliance 50 does not have
an integrated airflow sensor 55, but includes a differential
pressure sensor and a processing unit used for calculating
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the value of the airflow Q based on the differential pressure
DP measured by the differential pressure sensor.

[0045] In a first step, a velocity pressure V is calculated as
follows:
DP Equation (1)
V = 4005« K actor
[0046] where V is expressed in feet per minute (fpm),

4005 is a constant specific to this equation, DP is expressed
in inches water column (wc), and K factor is a constant
provided by the manufacturer of the VAV appliance 50.

[0047] In a second step, the airflow Q is calculated as
follows:
. DP Equation (2)
Q = V*area = 4005 X factor *area
[0048] where Q is expressed in cubic feet per minute

(CFM), and area is a cross sectional surface of a duct
(expressed in square feet) through which the airflow circu-
lates in the VAV appliance 50.

[0049] The K factor is representative of characteristics of
the VAV appliance 50, including geometric characteristics of
the VAV appliance (e.g. the duct area), dynamic character-
istics of components of the VAV appliance (e.g. dynamics of
a pitot tube), etc. A manufacturer of VAV appliances pro-
vides a reference table for matching a list of K factors with
corresponding characteristics of VAV appliances.

[0050] For the airflow sensor 55 to provide an accurate
measure, the VAV appliance 50 needs to be configured with
the value of the K factor corresponding to its characteristics
(according to the reference table provided by the manufac-
turer).

[0051] However, it may happen that when a new VAV
appliance 50 is installed, the airflow measured by the airflow
sensor 55 is not accurate. As mentioned previously, this lack
of accuracy may be caused by a default in the factory
configuration of the airflow sensor (e.g. a wrong value for
the K factor has been configured), by specific environmental
conditions not compatible with the factory configuration of
the airflow sensor (in this case, a proper value for the K
factor has been configured but still needs to be changed), etc.
[0052] To detect the lack of accuracy of the airflow
measured by the airflow sensor 55, an intervention by a
specialized technician 10 is required. The technician 10
determines the real airflow of the VAV appliance 50 and
compares it to the air flow measured by the airflow sensor
55. For this purpose, the technician 10 uses a calibration
sensor 20 providing calibration data from which the real
airflow of the VAV appliance 50 is determined.

[0053] If the real airflow and the measured airflow are
equal, or at least within a pre-defined acceptable error
threshold, the airflow sensor 55 is considered to be properly
configured. Otherwise, the technician 10 calculates a K
factor based on the currently configured K factor, the real
airflow and the measured airflow. The technician 10 then
reconfigures the airflow sensor 55 with the calculated K
factor. Practically, the technician 10 selects a K factor value
among a list of pre-defined K factor values for the VAV
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appliance 50, which is closest to the calculated K factor. The
technician 10 reconfigures the airflow sensor 55 with the
selected closest K factor value.

[0054] The determination of the calculated K factor Ki
based on the currently configured K factor K, the real
airflow Q, and the measured airflow Q,, is based on the
following equations:

Equation (3)
Q, =4005%

*area

DP
K1
DP Equation (4)
KO

O = 4005 %

s

® area

Equation (5)

[0055] It should be noted that the technician 10 has either
direct access to the airflow sensor 55 for performing the
reconfiguration of the K factor; or has access to a recon-
figuration component of the VAV appliance 50 in charge of
reconfiguring the K factor used by the airflow sensor 55.
[0056] Referring now concurrently to FIGS. 2, 3, 4A, 4B,
5A, 5B, 5C and 6, a computing device 100 (FIG. 2) and a
method 400 for inferring an airflow of a controlled appliance
operating in an area of a building (FIGS. 4A-B) are illus-
trated.

[0057] FIG. 2 also represents the VAV appliance 50 and
airflow sensor 55 of FIG. 1. The computing device 100 is
used for automating (through the use of a neural network) at
least some of the operations performed by the technician of
FIG. 1.

[0058] The area of the building where the VAV appliance
50 is operating is not represented in the Figures for simpli-
fication purposes. As mentioned previously, the area may
consist of a room, a floor, an aisle, etc.

[0059] The computing device 100 receives environment
characteristic values measured by sensors 200. The envi-
ronment characteristic values are directly transmitted by the
sensors 200 to the computing device 100. Alternatively, one
or more intermediate device (not represented in the Figures
for simplification purposes) collects the environment char-
acteristic values from the sensors 200 and forwards the
environment characteristic values to the computing device
100.

[0060] Examples of sensors 200 include a temperature
sensor, capable of measuring a temperature in the area and
transmitting the temperature measured in the area to the
computing device 100. The examples also include a humid-
ity sensor, capable of measuring a humidity level in the area
and transmitting the humidity level measured in the area to
the computing device 100. The examples further include a
carbon dioxide (CO2) sensor, capable of measuring a CO2
level in the area and transmitting the CO2 level measured in
the area to the computing device 100.

[0061] The aforementioned examples of sensors 200 are
for illustration purposes only, other types of sensors 200
(e.g. an occupancy sensor, etc.) could be used in the context
of the present disclosure. Furthermore, each environmental
characteristic value measured by a sensor 200 may consist of
either a single value (e.g. current temperature of 25 degrees
Celsius), or a range of values (e.g. current temperature in the
range of 25 to 26 degrees Celsius).
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[0062] A single sensor 200 measures a given type of
environment characteristic value (e.g. temperature) for the
whole area. Alternatively, the area is divided into a plurality
of zones, and a plurality of sensors 200 measures the given
type of environment characteristic value (e.g. temperature)
in the corresponding plurality of zones. The computing
device 100 calculates an environment characteristic value
for the area (e.g. an average temperature for the area) based
on the environment characteristic values transmitted by the
plurality of sensors 200 respectively located in the plurality
of zones of the area.

[0063] Details of the computing device 100 and sensors
200 will now be provided.

[0064] The computing device 100 comprises a processing
unit 110, memory 120, and a communication interface 130.
The computing device 100 may comprise additional com-
ponents, such as another communication interface 130, a
user interface 140, a display 150, etc.

[0065] The processing unit 110 comprises one or more
processors (not represented in FIG. 2) capable of executing
instructions of a computer program. Each processor may
further comprise one or several cores.

[0066] The memory 120 stores instructions of computer
program(s) executed by the processing unit 110, data gen-
erated by the execution of the computer program(s), data
received via the communication interface 130 (or another
communication interface), etc. Only a single memory 120 is
represented in FIG. 2, but the computing device 100 may
comprise several types of memories, including volatile
memory (such as a volatile Random Access Memory
(RAM), etc.) and non-volatile memory (such as a hard drive,
electrically-erasable programmable read-only memory (EE-
PROM), etc.).

[0067] The communication interface 130 allows the com-
puting device 100 to exchange data with remote devices
(e.g. sensors 200, VAV appliance 50, etc.) over a commu-
nication network (not represented in FIG. 2 for simplifica-
tion purposes). For example, the communication network is
a wired communication network, such as an Ethernet net-
work; and the communication interface 130 is adapted to
support communication protocols used to exchange data
over the Ethernet network. Other types of wired communi-
cation networks may also be supported by the communica-
tion interface 130. In another example, the communication
network is a wireless communication network, such as a
Wi-Fi network; and the communication interface 130 is
adapted to support communication protocols used to
exchange data over the Wi-Fi network. Other types of
wireless communication network may also be supported by
the communication interface 130, such as a wireless mesh
network. The communication interface 130 usually com-
prises a combination of hardware and software executed by
the hardware, for implementing the communication func-
tionalities of the communication interface 130. As men-
tioned previously, the computing device 100 may have more
than one communication interface 130. For example, the
computing device 100 exchanges data with the sensors 200
via a first communication interface 130 supporting a first
wireless protocol (e.g. Bluetooth® Low Energy (BLE)); and
the computing device 100 exchanges data with the VAV
appliance 50 via a second communication interface 130
supporting a second wireless protocol (e.g. Wi-Fi).

[0068] Examples of computing device 100 include a lap-
top, a desktop, a server, etc. Considering the increasing
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processing power of mobile devices such as tablets and
smartphones, these mobile devices may also be used for the
computing device 100. Additionally, the computing device
100 may be implemented by an environment controller,
responsible for collecting environmental data from sensors
and transmitting commands to controlled appliances.
[0069] A detailed representation of the components of the
sensors 200 is not provided in FIG. 2 for simplification
purposes. The sensors 200 comprise at least one sensing
module for detecting an environmental characteristic; and
further comprise a communication interface for transmitting
to the computing device 100 an environmental characteristic
value (e.g. temperature, humidity level, CO2 level, etc.)
corresponding to the detected environmental characteristic.
The environmental characteristic value is transmitted over a
communication network and received via the communica-
tion interface 130 of the computing device 100. The sensors
200 may also comprise a processing unit for generating the
environmental characteristic value based on the detected
environmental characteristic.

[0070] A detailed representation of all the components of
the VAV appliance 50 is not provided in FIG. 2 for simpli-
fication purposes. In addition to the airflow sensor 55, the
VAV appliance 50 comprises at least one actuation module
(e.g. an actuation module controlling the speed of a fan, an
actuation module controlling the pressure generated by a
compressor, an actuation module controlling a valve defin-
ing the rate of an airflow, etc.). The VAV appliance 50 further
comprises a communication interface for receiving one or
more commands from an environment controller. The one or
more commands control operations of the at least one
actuation module. The VAV appliance 50 may also comprise
a processing unit for controlling the operations of the at least
one actuation module, based on the received one or more
commands and measurements performed by the airflow
sensor 55.

[0071] Reference is now made more specifically to FIGS.
4A and 4B. At least some of the steps of the method 400
represented in FIGS. 4A and 4B are implemented by the
computing device 100, to infer an airflow of the VAV
appliance 50.

[0072] A dedicated computer program has instructions for
implementing at least some of the steps of the method 400.
The instructions are comprised in a non-transitory computer
program product (e.g. the memory 120) of the computing
device 100. The instructions provide for inferring an airflow
of the VAV appliance 50, when executed by the processing
unit 110 of the computing device 100. The instructions are
deliverable to the computing device 100 via an electroni-
cally-readable media such as a storage media (e.g. CD-
ROM, USB key, etc.), or via communication links (e.g. via
a communication network through the communication inter-
face 130).

[0073] The dedicated computer program product executed
by the processing unit 110 comprises a neural network
inference engine 112 and a control module 114.

[0074] The method 400 comprises the step 405 of storing
a predictive model in the memory 120 of the computing
device 100. Step 405 is performed by the processing unit 110
of the computing device 100.

[0075] The predictive model is generated during a training
phase which will be detailed later in the description. During
the operational phase implemented by the method 400, the
predictive model is used by the neural network inference
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engine 112. FIG. 3 illustrates the generation of the predictive
model by a neural network training engine 312 executed by
a processing unit of a training server 300. The predictive
model generated by the neural network training engine 312
is transmitted by the training server 300 to the computing
device 100 for storage in the memory 120 of the computing
device 100. Alternatively, the training phase is performed
directly on the computing device 100. In this case, the neural
network training engine 312 is executed by the processing
unit 110 of the computing device 100 to generate the
predictive model and store it in the memory 120.

[0076] The method 400 comprises the step 410 of deter-
mining a measured airflow of the VAV appliance 50. Step
410 is performed by the control module 114 executed by the
processing unit 110 of the computing device 100.

[0077] As mentioned previously in relation to FIG. 1, the
sensor 55 is an airflow sensor capable of measuring directly
the airflow of the VAV appliance 50. Alternatively, the
sensor 55 includes a pressure sensor for measuring a pres-
sure in the VAV appliance 50. The measured airflow of the
VAV appliance 50 is calculated (directly by a processing unit
of'the sensor 55 or by a processing unit of the VAV appliance
50) based on the measured pressure, for instance by using
the aforementioned equations (1) and (2). In both cases, the
measured air flow is transmitted (either directly by the
sensor 55 or by another component of the VAV appliance 50)
to the computing device 100. Thus, the determination of the
measured airflow of the VAV appliance 50 at step 410
consists in receiving the measured air flow via the commu-
nication interface 130 of the computing device 100.
[0078] Alternatively, the sensor 55 consists of the pressure
sensor for measuring a pressure in the VAV appliance 50.
The measured pressure is transmitted (either directly by the
sensor 55 or by another component of the VAV appliance 50)
to the computing device 100. Thus, the determination of the
measured airflow of the VAV appliance 50 at step 410
consists in receiving the measured pressure via the commu-
nication interface 130 of the computing device 100; and
calculating by the processing unit 110 the measured air flow
based on the received measured pressure, for instance by
using the aforementioned equations (1) and (2). The param-
eters (e.g. K factor and area in equations (1) and (2)) for
calculating the measured air flow based on the measured
pressure have been previously stored in the memory 120, are
transmitted along with the measured pressure, are provided
by a user via the user interface 140 of the computing device
100, etc.

[0079] The method 400 comprises the step 415 of deter-
mining a plurality of consecutive temperature measurements
in the area. Step 415 is performed by the control module 114
executed by the processing unit 110 of the computing device
100. The consecutive temperature measurements are deter-
mined based on temperature data collected by the tempera-
ture sensor 200 of FIG. 2 and transmitted to the computing
device 100. The temperature data are received via the
communication interface 130 of the computing device 100.
The consecutive temperature measurements consist of N
temperature measurements respectively performed on N
consecutive intervals of time, N being an integer greater or
equal than 2 (e.g. 3 intervals of 30 seconds each).

[0080] Step 415 can be implemented in different ways. For
example, for each interval of time, the temperature sensor
200 is configured to spontaneously make a single tempera-
ture measurement, which is transmitted to the computing
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device 100 and used for a given interval of time at step 415.
Alternatively, for each interval of time, the temperature
sensor 200 is configured to spontaneously make several
temperature measurements, the average of the several tem-
perature measurements being calculated and transmitted by
the temperature sensor 200 to the computing device 100, to
be used for a given interval of time at step 415. In still
another alternative implementation, the temperature sensor
200 has no knowledge of the intervals of time and simply
transmits temperature data to the computing device 100. In
this case, at each interval of time, the computing device 100
sends a request to the temperature sensor 200 to transmit a
temperature measurement. The temperature sensor 200
sends the requested temperature measurement to the com-
puting device 100, which uses the temperature measurement
received from the temperature sensor 200 for a given
interval of time at step 415. Instead of a single temperature
measurement for each interval of time, the computing device
100 may request and receive a plurality of temperature
measurements from the temperature sensor 200; and use the
average of the plurality of temperature measurements for a
given interval of time at step 415.

[0081] FIG. 5A illustrates an exemplary implementation
of step 415 with 3 intervals of times. Three consecutive
temperature measurements are determined at step 415: T1
for time interval Int_1, T2 for time interval Int_2 and T3 for
time interval Int_3.

[0082] The method 400 comprises the optional step 420 of
determining a plurality of consecutive humidity level mea-
surements in the area. Step 420 is performed by the control
module 114 executed by the processing unit 110 of the
computing device 100. The consecutive humidity level
measurements are determined based on humidity level data
collected by the humidity sensor 200 of FIG. 2 and trans-
mitted to the computing device 100. The humidity level data
are received via the communication interface 130 of the
computing device 100. The consecutive humidity level
measurements consist of N humidity level measurements
respectively performed on N consecutive intervals of time,
N being an integer greater or equal than 2 (e.g. 3 intervals
0130 seconds each). The number of consecutive intervals of
time and the duration of each interval of time are similar for
steps 415 and 420. However, steps 415 and 420 may also be
implemented with a different number of intervals of time
and/or a different duration for each interval of time.
[0083] Step 420 can be implemented in different ways.
The exemplary implementations provided with respect to
step 415 are applicable to step 420; by replacing the tem-
perature measurements with humidity level measurements
and the temperature sensor 200 with the humidity sensor
200.

[0084] FIG. 5B illustrates an exemplary implementation
of step 420 with 3 intervals of times. Three consecutive
humidity level measurements are determined at step 420:
HL1 for time interval Int_1, HL.2 for time interval Int_2 and
HL3 for time interval Int_3.

[0085] The method 400 comprises the optional step 425 of
determining a plurality of consecutive CO2 level measure-
ments in the area. Step 425 is performed by the control
module 114 executed by the processing unit 110 of the
computing device 100. The consecutive CO2 level measure-
ments are determined based on CO2 data collected by the
CO2 sensor 200 of FIG. 2 and transmitted to the computing
device 100. The CO2 level data are received via the com-
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munication interface 130 of the computing device 100. The
consecutive CO2 level measurements consist of N CO2
level measurements respectively performed on N consecu-
tive intervals of time, N being an integer greater or equal
than 2 (e.g. 3 intervals of 30 seconds each). The number of
consecutive intervals of time and the duration of each
interval of time are similar for steps 415 and 425 (and
optionally 420). However, steps 415 and 425 (and optionally
420) may also be implemented with a different number of
intervals of time and/or a different duration for each interval
of time.

[0086] Step 425 can be implemented in different ways.
The exemplary implementations provided with respect to
step 415 are applicable to step 425; by replacing the tem-
perature measurements with CO2 level measurements and
the temperature sensor 200 with the CO2 sensor 200.
[0087] FIG. 5C illustrates an exemplary implementation
of'step 425 with 3 intervals of times. Three consecutive CO2
level measurements are determined at step 425: CO2L1 for
time interval Int_1, CO2L2 for time interval Int_2 and
CO2L3 for time interval Int_3.

[0088] The method 400 comprises the step 430 of execut-
ing the neural network inference engine 112 using the
predictive model (stored at step 405) for inferring an output
based on inputs. Step 430 is performed by the processing
unit 110 of the computing device 100.

[0089] The inputs include the measured airflow (deter-
mined at step 410), the plurality of consecutive temperature
measurements (determined at step 415), optionally the plu-
rality of consecutive humidity level measurements (deter-
mined at step 420), and optionally the plurality of consecu-
tive CO2 level measurements (determined at step 425). The
output consists in an interred airflow of the VAV appliance
50.

[0090] As mentioned in relation to FIG. 1, the measured
airflow is erroneous due to a defective configuration of the
VAV appliance 50/sensor 55. The inferred airflow is a more
accurate value than the measured airflow calculated by the
VAV appliance 50 based on the measures provided by the
sensor 55. The neural network allows to “guess” the more
accurate inferred value of the airflow knowing the erroneous
measured value of the airflow and the other input param-
eters.

[0091] It has been determined experimentally that step 430
is more effective when a plurality of consecutive tempera-
ture measurements (and optionally a plurality of consecutive
humidity level measurements and/or a plurality of consecu-
tive CO2 level measurements) are used as inputs, instead of
a single temperature measurement (and optionally a single
humidity level measurement and/or a single CO2 level
measurement).

[0092] In addition to the measured airflow, the inputs
include one of the following combinations: the plurality of
consecutive temperature measurements only; the plurality of
consecutive temperature measurements and the plurality of
consecutive humidity level measurements; the plurality of
consecutive temperature measurements and the plurality of
consecutive CO2 level measurements; the plurality of con-
secutive temperature measurements, the plurality of con-
secutive humidity level measurements and the plurality of
consecutive CO2 level measurements. The selection of one
of the combinations is determined experimentally during the
training phase. For example, it may be determined that at
least one of the humidity level and the CO2 level has a
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marginal impact, and can therefore be omitted from the
inputs of the neural network. Having more inputs for the
neural network may improve the accuracy of the inference,
at the cost of having a more complex predictive model and
a more complex execution of the training phase (more data
need to be collected and processed for generating the
predictive model).

[0093] FIG. 6 illustrates the inputs and the outputs used by
the neural network inference engine 112 when performing
step 430.

[0094] Additional input parameters may be used by the
neural network inference engine 112. For example, an
external temperature measurement may also be used for the
inputs at step 430. The external temperature is measured
outside the building where the area is located. A single
external temperature measurement is used over the consecu-
tive intervals of time considered at step 415, since the
external temperature does not vary much over the consecu-
tive intervals of time used for step 415. An external tem-
perature sensor (not represented in FIG. 2 for simplification
purposes) measures the external temperature outside of the
building and transmits the measured external temperature to
the computing device 100, for use at step 430.

[0095] Similarly, an external humidity level measurement
may also be used for the inputs at step 430. The external
humidity level is measured outside the building where the
area is located. A single external humidity level measure-
ment is used over the consecutive intervals of time consid-
ered at step 420, since the external humidity level does not
vary much over the consecutive intervals of time used for
step 420. An external humidity sensor (not represented in
FIG. 2 for simplification purposes) measures the external
humidity level outside of the building and transmits the
measured external humidity level to the computing device
100, for use at step 430.

[0096] The method 400 comprises the step 435 of deter-
mining the K factor of the VAV appliance 50 based on the
inferred airflow determined at step 430. Step 435 is at least
partially performed by the control module 114 executed by
the processing unit 110 of the computing device 100. For
instance, the aforementioned equation (5) is used for calcu-
lating the K factor. The inferred airflow determined at step
430 is used as the real airflow Q in equation (5).

[0097] In a first implementation, the control module 114 is
capable of calculating the K factor. For example, if equation
(5) is used, the calculation uses the measured air flow
(determined at step 410), the inferred airflow (determined at
step 430) and a value of the K factor currently configured at
the VAV appliance 50. The value of the K factor currently
configured at the VAV appliance 50 has been previously
stored in the memory 120, transmitted along with the
measured pressure or the measured airflow at step 410,
provided by a user via the user interface 140 of the com-
puting device 100, etc.

[0098] Following the calculation of the K factor, the
control module 114 performs the optional step 440 of the
method 400, consisting in transmitting a configuration com-
mand comprising the K factor calculated at step 435 to the
VAV appliance 50. The VAV appliance 50 is capable of
automatically reconfiguring its K factor based on the com-
mand received from the computing device. Alternatively, the
K factor calculated ate step 435 is displayed on the display
150 of the computing device 100. A user of the computing
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device 100 manually reconfigures the VAV appliance 50
based on the calculated K factor displayed on the display
150.

[0099] In a second implementation, the control module
114 is not capable of calculating the K factor. In this case,
the inferred air flow determined at step 430 and optionally
the measured airflow determined at step 410 are displayed
on the display 150 of the computing device 100.

[0100] A user of the computing device 100 performs the
calculation of the K factor (by means out of the scope of the
present disclosure) based on the information displayed on
the display 150, and manually reconfigures the VAV appli-
ance 50 based on the calculated K factor.

[0101] As mentioned previously in relation to FIG. 1, the
VAV appliance 50 is generally configurable with a K factor
value selected among a list of pre-defined K factor values.
Thus, based on one of the previously mentioned implemen-
tations, one of the control module 114, the user of the
computing device 100 and the VAV appliance 50 itself
selects a K factor value among the list of pre-defined K
factor values which is closest to the calculated K factor. The
selected K factor value is used for the configuration of the
VAV appliance 50.

[0102] The mechanism disclosed in the present disclosure
takes advantage of the neural network technology, to
“guess” the value of the airflow at step 430, based on a
predictive model generated during a training phase.

[0103] As is well known in the art of neural network,
during the training phase, the neural network implemented
by the neural network training engine 312 of FIG. 3 adjusts
its weights. Furthermore, during the training phase, the
number of layers of the neural network and the number of
nodes per layer can be adjusted to improve the accuracy of
the model. At the end of the training phase, the predictive
model generated by the neural network training engine 312
includes the number of layers, the number of nodes per layer,
and the weights.

[0104] The neural network training engine 312 is trained
with a plurality of data sets, each data set comprising
training inputs and a corresponding training output. Each set
of training inputs comprises an airflow measured by the
sensor 55/VAV appliance 50, a plurality of consecutive
temperature measurements, optionally a plurality of con-
secutive humidity level measurements, and optionally a
plurality of consecutive CO2 level measurements. Addi-
tional optional training inputs such as an external tempera-
ture and/or an external humidity level (measured outside the
building) may also be used. Each corresponding output
consists of a real airflow of the VAV appliance 50 deter-
mined by a technician as illustrated in FIG. 1. Using the
plurality of data sets comprising the inputs and the corre-
sponding outputs, the neural network implemented by the
neural network training engine 312 automatically adjusts its
weights. It is mandatory that the same inputs and outputs are
used by the neural network training engine 312 during the
training phase and the neural network inference engine 112
during the operational phase.

[0105] The inputs and outputs for the training phase of the
neural network are collected through an experimental pro-
cess. The procedure illustrated in FIG. 1 can be adapted for
the training phase. A technician 10 (illustrated in FIG. 1)
generates the set of training data using different VAV appli-
ances 50, if possible at different locations and at different
times, with different values of the K factor originally con-
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figured at the VAV appliance 50, etc. It is more efficient to
have the training server 300 represented in FIG. 3 automati-
cally collect the inputs and output of each training set used
for generating the predictive model. However, if some data
cannot be automatically collected, the technician 10 of FIG.
1 manually collects these data and uses a user interface of
the training server 300 to feed the manually collected data to
the neural network training engine 312.

[0106] Various techniques well known in the art of neural
networks are used for performing (and improving) the
generation of the predictive model, such as forward and
backward propagation, usage of bias in addition to the
weights (bias and weights are generally collectively referred
to as weights in the neural network terminology), reinforce-
ment training, etc.

[0107] During the operational phase implemented by the
method 400, the neural network inference engine 112 uses
the predictive model (including the values of the weights)
determined during the training phase to infer an output (the
inferred airflow of step 430) based on inputs (the measured
airflow determined at step 410, the plurality of consecutive
temperature measurements determined at step 415, etc.), as
is well known in the art.

Direct Inference of the K Factor

[0108] Referring now concurrently to FIGS. 2, 3, 4A, 4B,
7 and 8, a method 500 for inferring a K factor of a VAV
appliance operating in an area of a building is illustrated in
FIG. 7.

[0109] Steps 505 to 525 of the method 500 are identical to
corresponding steps 405 to 425 of the method 400. However,
the predictive model stored at step 505 and used at step 530
is different from the predictive model used by the method
400.

[0110] At step 530, a K factor of the VAV appliance 50 is
inferred by the neural network inference engine 112 (instead
of inferring an airflow of the VAV appliance 50). The inputs
are the same as for step 430 of the method 400. The inputs
include: the measured airflow (determined at step 510), the
plurality of consecutive temperature measurements (deter-
mined at step 515), optionally the plurality of consecutive
humidity level measurements (determined at step 520), and
optionally the plurality of consecutive CO2 level measure-
ments (determined at step 525).

[0111] Optional step 540 is identical to corresponding step
440 of the method 400.

[0112] FIG. 8 illustrates the inputs and the outputs used by
the neural network inference engine 112 when performing
step 530.

[0113] The determination of the predictive model during
the training phase for the method 500 is similar to the
previously described determination of the predictive model
for the method 400, with the exception of the training
outputs.

[0114] The neural network training engine 312 is trained
with a plurality of data sets, each data set comprising
training inputs and a corresponding training output. The
training inputs are the same as those used for the method
400. Each set of training inputs comprises an airflow mea-
sured by the sensor 55/VAV appliance 50, a plurality of
consecutive temperature measurements, optionally a plural-
ity of consecutive humidity level measurements, and option-
ally a plurality of consecutive CO2 level measurements.
Additional optional training inputs such as an external
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temperature and/or an external humidity level (measured
outside the building) may be used.

[0115] Each corresponding output consists of a calculated
K factor. The calculated K factor is calculated with equation
(5) using the airflow measured by the sensor 55/VAV appli-
ance 50, a real airflow of the VAV appliance 50 determined
by a technician as illustrated in FIG. 1, and a value of the K
factor currently configured at the VAV appliance 50.

[0116] The method 400 is easier to implement during the
training phase, since it does not need to calculate the
calculated K factor with equation (5) for generating the
predictive model, by contrast to the method 500 which needs
the calculated K factor for generating the predictive model.
The method 500 is easier to implement during the opera-
tional phase, since the K factor is directly inferred using the
predictive model at step 530, by contrast to the method 400
which includes the additional step 435 for calculating the K
factor.

[0117] The methods 400 and 500 also use distinct predic-
tive models. It shall be determined experimentally which
one of the two models is more accurate. One of the two
predictive models may also use less input parameters, mak-
ing the predictive model simpler and easier to generate.

[0118] The methods 400 and 500 are not limited to a VAV
appliance, but can be generalized to any type of HVAC
appliance having a sensor for measuring an airflow and a
configurable K factor. Furthermore, steps 405 to 430 of the
method 400 may also be generalized to other types of
appliance having a sensor for measuring an airflow, where
the measurements provided by the sensor need to be cali-
brated.

[0119] Although the present disclosure has been described
hereinabove by way of non-restrictive, illustrative embodi-
ments thereof, these embodiments may be modified at will
within the scope of the appended claims without departing
from the spirit and nature of the present disclosure.

What is claimed is:

1. A method for inferring an airflow of a controlled
appliance operating in an area of a building, the method
comprising:

storing a predictive model in a memory of a computing
device;

determining by a processing unit of the computing device
a measured airflow of the controlled appliance;

determining by the processing unit of the computing
device a plurality of consecutive temperature measure-
ments in the area;

executing by the processing unit of the computing device
a neural network inference engine using the predictive
model for inferring an inferred airflow based on inputs,
the inputs comprising the measured airflow and the
plurality of consecutive temperature measurements.

2. The method of claim 1, wherein the controlled appli-
ance is a Variable Air Volume (VAV) appliance.

3. The method of claim 2, further comprising calculating
by the processing unit of the computing device a K factor K,
of the VAV appliance based on the inferred airflow Q,, the
measured air Q,, and a K factor K, currently configured at
the VAV using the equation
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K = KO*(%)Z.

4. The method of claim 3, further comprising transmitting
by the processing unit of the computing device a configu-
ration command comprising the calculated K factor to the
VAV appliance.

5. The method of claim 1, wherein determining by the
processing unit of the computing device a measured airflow
of the controlled appliance consists in receiving the mea-
sured airflow from the controlled appliance.

6. The method of claim 1, wherein the inputs further
comprise at least one of the following: a plurality of con-
secutive humidity level measurements in the area deter-
mined by the processing unit of the computing device, a
plurality of consecutive carbon dioxide (CO2) level mea-
surements in the area determined by the processing unit of
the computing device, and a combination thereof.

7. The method of claim 1, wherein the predictive model
comprises weights used by the neural network inference
engine for inferring the inferred airflow based on the inputs.

8. A non-transitory computer program product comprising
instructions executable by a processing unit of a computing
device, the execution of the instructions by the processing
unit of the computing device providing for inferring an
airflow of a controlled appliance operating in an area of a
building by:

storing a predictive model in a memory of the computing

device;
determining by the processing unit of the computing
device a measured airflow of the controlled appliance;

determining by the processing unit of the computing
device a plurality of consecutive temperature measure-
ments in the area;

executing by the processing unit of the computing device

a neural network inference engine using the predictive
model for inferring an inferred airflow based on inputs,
the inputs comprising the measured airflow and the
plurality of consecutive temperature measurements.

9. The computer program product of claim 8, wherein the
controlled appliance is a Variable Air Volume (VAV) appli-
ance.

10. The computer program product of claim 9, further
comprising calculating by the processing unit of the com-
puting device a K factor K, of the VAV appliance based on
the inferred airflow Q,, the measured air Q,, and a K factor
K, currently configured at the VAV using the equation

K = KO*(%)Z.

11. The computer program product of claim 10, further
comprising transmitting by the processing unit of the com-
puting device a configuration command comprising the
calculated K factor to the VAV appliance.

12. The computer program product of claim 8, wherein
the inputs further comprise at least one of the following: a
plurality of consecutive humidity level measurements in the
area determined by the processing unit of the computing
device, a plurality of consecutive carbon dioxide (CO2)
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level measurements in the area determined by the processing
unit of the computing device, and a combination thereof.

13. The computer program product of claim 8, wherein
the predictive model comprises weights used by the neural
network inference engine for inferring the inferred airflow
based on the inputs.

14. A computing device for inferring an airflow of a
controlled appliance operating in an area of a building, the
computing device comprising:

memory for storing a predictive model; and

a processing unit for:

determining a measured airflow of the controlled appli-
ance;

determining a plurality of consecutive temperature
measurements in the area;

executing a neural network inference engine using the
predictive model for inferring an inferred airflow
based on inputs, the inputs comprising the measured
airflow and the plurality of consecutive temperature
measurements.

15. The computing device of claim 14, wherein the
controlled appliance is a Variable Air Volume (VAV) appli-
ance.

16. The computing device of claim 15, wherein the
processing unit further calculates a K factor K, of the VAV
appliance based on the inferred airflow Q,, the measured air
Q,, and a K factor K, currently configured at the VAV using
the equation
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K = KO*(%)Z.

17. The computing device of claim 16, wherein the
processing unit further transmits via a communication inter-
face of the computing device a configuration command
comprising the calculated K factor to the VAV appliance.

18. The computing device of claim 14, wherein determin-
ing by the processing unit a measured airflow of the con-
trolled appliance consists in receiving the measured airflow
from the controlled appliance via a communication interface
of the computing device.

19. The computing device of claim 14, wherein the inputs
further comprise at least one of the following: a plurality of
consecutive humidity level measurements in the area deter-
mined by the processing unit, a plurality of consecutive
carbon dioxide (CO2) level measurements in the area deter-
mined by the processing unit, and a combination thereof.

20. The computing device of claim 14, wherein the
predictive model comprises weights used by the neural
network inference engine for inferring the inferred airflow
based on the inputs.



