US 20240037025A1

a2y Patent Application Publication o) Pub. No.: US 2024/0037025 A1

a9y United States

MAEDA

43) Pub. Date: Feb. 1, 2024

(54) ARITHMETIC PROCESSING APPARATUS
AND ARITHMETIC PROCESSING METHOD

(71) Applicant: Fujitsu Limited, Kawasaki-shi (JP)

(72) Inventor: Munenori MAEDA, Yokohama (JP)
(73) Assignee: Fujitsu Limited, Kawasaki-shi (JP)

(21) Appl. No.: 18/191,930

Publication Classification

(51) Int. CL
GOGF 12/02 (2006.01)
GOGF 12/0815 (2006.01)
(52) US.CL
CPC ... GOGF 12/023 (2013.01); GOGF 12/0815
(2013.01)
(57) ABSTRACT

An arithmetic processing apparatus includes: a memory; and
a processor coupled to the memory and configured to:
determine whether a critical section is being executed in
inter-thread synchronization using read-copy-update, and
when determining that the critical section is being executed,
perform memory freeing processing or memory reallocation
processing, which is executed from a scheduler, by specu-
lative execution.

MEMORY a

31

1 MEMORY b

(22) Filed: Mar. 29, 2023
(30) Foreign Application Priority Data

Jul. 26, 2022 (JP) weveevvcrciececincercenee 2022-118978

3)

121\/’\\ READ POSITION

SPECULATIVE MEMORY

MANAGEMENT
MECHANISM

WRITE POSITION

{

SO U

WA L

WP

%

US 2024/0037025 Al

s
L

O

N

o~ 1_1

.«“\\..

-

RGO TR R0 S) SN SN SN S RTINS e g

| nETYY

Feb. 1,2024 Sheet 1 of 14

Lo T Inod AQ Y00 B0RIdBY

LA

Patent Application Publication

US 2024/0037025 Al

Feb. 1,2024 Sheet 2 of 14

Patent Application Publication

{sg) {(pa}
C# FANSYHAWHIINNOCD T# FUNSYINWHIINNCD
ONIONYAQY d2 ONIONYAQY d9
| |
/ N
(£9)sD yooun pess pd 0] pESs P
N A ﬁ A~
cd NOISSTHOOUd id

AWt 40 NOILLDIEIA

¢ 9l4

US 2024/0037025 Al

Feb. 1,2024 Sheet 3 of 14

Patent Application Publication

o
Ly
i

o o Ao o o o e

g e oo o o o o o o o e o G o o o] o o o o e

VR AV A7 N A A 0 S A 0 R Y A AV B A W L VA A A YOS VR A e e A e AV Y A A YA L A A A A VY A AL

oy
™y
e

| 30IA3A IATMD

PIAIT

51~

ADIA3J

L e

OGH
-5YS

[4 !

AY1dSIA

97 \J/\ N

L R T Y

*

A01A40

MUOMLIN
1 \/\

FOVHOLS

e1 ~~/

AHOWINW

T A A W T T A Y T WA Y A L T T AT S e

71 S

s LING DNISSIO0Ud

s JLLIWH LYY

M \\ A

;.l-.\

{
¢
B

5Nd

BT N T U S D DG A T KT T P A T K T A BT S T M T S S T LT T T S T T T B M A A 4

H0S5300d

s i 2 Y 2 VA 3 W 2 A ML U A VAL Y VA8 WA ML B0 DA TS A Y A2 Y A 2 W A O A WA A WA Y

SOLYUVAdY ¥ LNdWOD

A0 A L, AR Y 0 L A S A 0 A 1 S A YA A O P L A G L Y O T R

s

l!k!li!I!!121'!3‘!!!!lliilx!iliIt‘i!!i’l!SlxlJ\ii!!lk?i!!illl!Ul!liil!ili‘ll!li‘i!!i!&

PRdel o ¥
0T 7"

i

e 9Old

LOANNODHELNT
"NV LINYALN]

US 2024/0037025 Al

0

0

1

Feb. 1,2024 Sheet 4 of 14

AHIVO 11

WSINYHOIW

10T INIWIDYNYIA JHDIYD

WSINVHOIW
WLH NMOJ-NId

03 MO55300ud

J
117

Patent Application Publication

17~/

AAOWIW

e1

AHOMIIN
ASNILSISNOD FHOVD

HOVD T

201
WNSINYHOZN
ANIWIDYNYIN GHOYD A~1o7
WSINVHOAN
WiH NAMOG-NId
ST

FH00 "O55300Ud

WSINYHDIW
TOUINOD ADNILSISNOD dHOVD

1e

US 2024/0037025 Al

Feb. 1,2024 Sheet 5 of 14

Patent Application Publication

e nn s s A A A A A A A A A A e .
] E£# WYYO0Ud ¥3ISN P
mex/Mmmaomm P NOWd YO MIWIL
NOILYJ0TTv NOLLYDOTTY P
; AOWIN ALOWAN P ,
“ NOLLYDILLON | i T~
m WSINYHOINW ENIICE P L LdmniaiN
m ININIOVNVI g NOLLOVSNVYL | |
i ot o~ S ba W :
: 171 1S e
m JALLYIND3dS SNLLTO -
; AHOWIW JALLYIND3dS TYNOLLOVSNYYL - ¢
: 40 NuNi3d P
Z# WYuDOUd ¥3SN BPIS-IBILM o
i NOLLVDI4ILON e~y Do
: : 1€l -
i MR T
; : i
4=1NaaHIS NoY] YTTIANYH LdOUYALNT i 1
: P) 4
o/ ezt ™/ P WSINVHO3W
! NOLLD3LIA SD P \:WE NMOG-NId
- T# WVHDOU ¥3SN SDIS- P
———% OPIS-ISpERY T 3u00 woss300Ud
W MMH m._ m .HN \\.J/.(\
: SNOLLD(TYLSNI 40 HIGWAN|
m YO IWIL ONISOTO 40 ONILIIS | |
FUVMLA0S THYMOHYH
o S 'Ol

B L e e N L T e T e T T e e N e T T

LS

—
S I S— i)
S | WS | m
o ejep | Moyl ber § aiers |
2 —
-t
2 o™
2 IJHOVD 11 dVINDIY

abund
= f s D
: e s
° — | I
m eep [ma | e | eims JHOD WOSSIDOU
3 mmmw/,\ THOVD TYNOLLOVSNYYL
M, 109188 2lep
: e R asuodsad
M anant) AJL0Ld 185 BILM

£1Z

‘- Mmmﬁ@mﬁ
m anan) AJJoid 195 peay , [RUOIdQ
S 7177 ™~
=
=)
= WSINVHOIW INIWIDYNYIN IHOYD ¢ 158nba.
(=]
g ro1~/ ﬂ e 12~/
2 v
2 | + 11T
< SHOMLIN ADNILSISNOD FHIVD
g o~
= 00T .
£ 9 Ol

Patent Application Publication Feb. 1, 2024 Sheet 7 of 14 US 2024/0037025 A1

FIG. 7

S1

1S INTERRUPT SN 82
DESTINATION CPU RETURN FROM
EXECUTING IN CRITICAL INTERRUPT
. SECTION?
SN\ 54
IS START OF CRITICAL RETURN FROM
SECTION BEFORE GP? INTERRUPT
, YES /. 55
INCREMENT CS COUNTER
l START OF TRANSACTION
EXECUTE TX_begin [/ _ 56
l /o S7
TX_read_address(data_addr}
l /N 58

RETURN FROM
INTERRUPT

Patent Application Publication Feb. 1, 2024 Sheet 8 of 14 US 2024/0037025 A1

FIG. 8

Sit

1S Reader TRANSACTION NO

BEING EXECUTED?

/S \.-512
EXECUTE TX end END OF TRANSACTION

DISABLE INTERRUPT FOR
TRANSACTION AND DELETE V N-513
SETTING

;

US 2024/0037025 Al

o uJanad
‘T 4+ 30y = 304
‘d = [300lwe

Cr- udnied {(doy == Ng{T + 3003 41

: b {d, proalsaddy JuI
g uanan.g b {dy pros) Y I

‘Nz(T + doi) = doy 157
Pldoyjwew = dy pIoa
‘poudnaad (don == 300) 41 .
b ()ooriew], pIoa ‘

Feb. 1,2024 Sheet 9 of 14

[niwaw, pros

el

6 Ol

Patent Application Publication

Patent Application Publication Feb. 1,2024 Sheet 10 of 14

FIG. 10

US 2024/0037025 Al

voild *kmalloc() {
it (bot == top) return 8;
void *p = mem{top];
top = (top + 1)%N;

it (status = TX begiﬂ()),i:

Lo oo o s Yo se s w200 s oy oSV o o B s 2n e eo T Sop v

L : .
Lpo=.1s [/ dummy write
X end();

ireturn p; |

i} else if (status == TXABORT) {i

H
_____________________ &

N I N

-

®
}:
A

i
i

US 2024/0037025 Al

Feb. 1,2024 Sheet 11 of 14

Patent Application Publication

43

NOILISOd 311dM

d3d4Nd DNIY

WSINYHODW
INGWADVNYI
AHOWIW JIALIVINDIES
/r\\/_MNM

MOILLISOd Jv3d

4 AdOWIW

MM\.!/\\

& AUCGHWINW

US 2024/0037025 Al

Feb. 1,2024 Sheet 12 of 14

Patent Application Publication

NOILISOd 31TdM

Ha44Ng ONIY
WSINYHOIW
ANFWIDYNYI
AHOWIW FALLYINDEAS

NOILLISOd Qv3y

g AHOWAW

US 2024/0037025 Al

3

S

<

ko

<

7 0]

- NOLLISOd 311dMm

o

& €I44N9 ONTY

- WSINYHDIN

S LINIWIDYNYIN

= AAOWIN FALLYIND3DS
o~ 121

NOILISOd QvdY

elL Old

Patent Application Publication

Patent Application Publication Feb. 1,2024 Sheet 14 of 14 US 2024/0037025 A1l

FIG. 14

512B

C‘“\“?%@% —_—
128801

e TX_read_address{p);
@?}{ ?i’}?&d ad{im%{gw“‘%

US 2024/0037025 Al

ARITHMETIC PROCESSING APPARATUS
AND ARITHMETIC PROCESSING METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the
benefit of priority of the prior Japanese Patent Application
No. 2022-118978, filed on Jul. 26, 2022, the entire contents
of which are incorporated herein by reference.

FIELD

[0002] The embodiment discussed herein is related to an
arithmetic processing unit and an arithmetic processing
method.

BACKGROUND

[0003] As a technique capable of performing synchroni-
zation between threads with low overhead, there is read-
copy-update (RCU) employed in a Linux (registered trade-
mark) operating system (OS) and the like.

[0004] Japanese Laid-open Patent Publication No. 2003-
323415 and Japanese Laid-open Patent Publication No.
2011-44161 are disclosed as related art.

SUMMARY

[0005] According to an aspect of the embodiments, an
arithmetic processing apparatus includes: a memory; and a
processor coupled to the memory and configured to: deter-
mine whether a critical section is being executed in inter-
thread synchronization using read-copy-update, and when
determining that the critical section is being executed,
perform memory freeing processing or memory reallocation
processing, which is executed from a scheduler, by specu-
lative execution.

[0006] The object and advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the claims.

[0007] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory and are not restrictive of the
invention.

BRIEF DESCRIPTION OF DRAWINGS

[0008] FIG. 1 is a diagram exemplifying a Writer-side
pseudo code used in RCU;

[0009] FIG. 2 is a diagram for explaining GP advancing
countermeasures in RCU;

[0010] FIG. 3 is a block diagram schematically illustrating
a hardware configuration example of an arithmetic process-
ing unit according to an embodiment;

[0011] FIG. 4 is a block diagram schematically illustrating
a configuration example of a processor and a memory
illustrated in FIG. 3;

[0012] FIG. 5 is a block diagram schematically illustrating
a functional configuration example of the arithmetic pro-
cessing unit illustrated in FIG. 3;

[0013] FIG. 6 is a block diagram schematically illustrating
a configuration example of a pin-down HTM mechanism
illustrated in FIG. 5;

[0014] FIG. 7 is a flowchart for explaining interrupt han-
dler processing in a Reader transaction according to the
embodiment;

Feb. 1, 2024

[0015] FIG. 8 is a flowchart for explaining ending pro-
cessing of a critical section in the Reader transaction accord-
ing to the embodiment;

[0016] FIG. 9 is a diagram illustrating a first example of a
pseudo code executed in a speculative memory management
mechanism illustrated in FIG. 5;

[0017] FIG. 10 is a diagram illustrating a second example
of the pseudo code executed in the speculative memory
management mechanism illustrated in FIG. 5;

[0018] FIG. 11 is a diagram for explaining processing in
the speculative memory management mechanism illustrated
in FIG. 5;

[0019] FIG. 12 is a diagram for explaining processing in
the speculative memory management mechanism illustrated
in FIG. 5;

[0020] FIG. 13 is a diagram for explaining processing in
the speculative memory management mechanism illustrated
in FIG. 5; and

[0021] FIG. 14 is a diagram for explaining memory divi-
sion processing according to a modification example.

DESCRIPTION OF EMBODIMENTS

[0022] As a representative application example of RCU,
there is memory freeing and reclamation. When a thread
frees a memory, the memory is not freed immediately and
the freeing processing is put in a queue of processing of
checking that all cores have not accessed the area. The
memory is freed after the checking, thereby achieving safe
reclamation.

[0023] However, in order to check that all cores have not
accessed the area, the memory freeing processing has to be
put in a freeing waiting queue and waited until a waiting
period (grace period (GP)) ends. This means that there is
unwanted waiting time in a case where safe freeing is
possible before the end of the GP. This may cause memory
exhaustion or the like.

[0024] According to one aspect, it is an object to shorten
the time for synchronization between central processing
units (CPUs) using RCU.

[A] Related Example

[0025] RCU is a method in which reading and update (and
reclamation) of shared data may be executed in parallel
without using a lock.

[0026] In RCU, removal and reclamation of old data in
update are temporally separated and a waiting period (may
also be referred to as a “grace period” (GP)) is set for this
purpose. In RCU, it is detected that all Readers (reader-side
critical section executers) existing before the start of the
N-th GP have been ended, and a procedure for detecting the
end of the N-th GP is performed.

[0027] Hardware transactional memory (HTM), which is a
method for accessing a shared memory, has a synchroniza-
tion unit called a transaction, and has a transaction start
instruction and a transaction end instruction.

[0028] A memory write issued in a transaction is held
locally in the CPU core, and if the transaction commit
succeeds, the memory write is reflected atomically in the
main memory.

[0029] In a case where transactions conflict with each
other, a transaction failure occurs and the writing to the

US 2024/0037025 Al

memory held locally in the CPU core is entirely discarded
(in other words, the writing is not reflected in the main
memory).

[0030] A conflict of transactions occurs in a case where
write is generated for the same address in different transac-
tions and in a case where read and write are generated for the
same address in different transactions.

[0031] Addresses used in HTM are managed in units of
cache blocks in implementation. Accordingly, a conflict is
detected even when the addresses are not exactly the same.
[0032] HTM has Read set that holds a read cache block set
and Write set that holds a write cache block set.

[0033] FIG. 1 is a diagram exemplifying a Writer-side
pseudo code used in RCU.

[0034] In RCU, processing is repeated in which Reader of
each core executes a critical section from a stationary state
(in other words, a state in which a shared memory is not
accessed), and returns to the stationary state when the
critical section is ended. Writer waits at synchronize_rcu(
)indicated by reference sign A1 until all cores experience the
stationary state one or more times.

[0035] FIG. 2 is a diagram for explaining GP advancing
countermeasures in RCU.

[0036] A logical critical section of Reader of RCU of each
core is a portion sandwiched between rd_read_lock (refer-
ence sign B1) and rd_read_unlock (reference sign B2).
[0037] At rd_read_unlock, the Writer side and an RCU
scheduler are not explicitly notified of the transition to the
stationary state. Detection of the stationary state is per-
formed by the RCU scheduler confirming the occurrence of
context switching (CS) indicated by reference sign B3,
including preemption.

[0038] In GP advancing countermeasure #1 indicated by
reference sign B4, processing to be described later in the
embodiment is executed. On the other hand, GP advancing
countermeasure #2 indicated by reference sign B5 is a
portion that is logically in the stationary state, but is not
treated as the stationary state since CS does not occur.
[0039] In GP advancing countermeasure #1, it takes time
in the logical critical section (from rd_read_lock to rd_read_
unlock) in the first place. When a memory area including a
shared variable is freed in this section and reclamation
processing proceeds and/or reallocation is performed in
different processing, there is no problem until the memory
area is actually destroyed by write.

[B] Embodiment

[0040] Hereinafter, an embodiment will be described with
reference to the drawings. However, the following embodi-
ment is merely exemplary, and it is not intended to exclude
various modification examples or technical applications that
are not explicitly described in the embodiment. For example,
the present embodiment may be carried out while being
variously modified within a scope not departing from the
gist of the embodiment. The drawings are not provided with
an intention that only the elements illustrated in the draw-
ings are included. Other functions and the like may be
included in the drawings. Hereinafter, since the same refer-
ence signs in the drawings have similar functions, descrip-
tion thereof may be omitted.

[0041] FIG. 3 is a block diagram schematically illustrating
a hardware configuration example of an arithmetic process-
ing unit 1 according to the embodiment.

Feb. 1, 2024

[0042] A computer apparatus 10 includes the arithmetic
processing unit 1, a drive device 15, and a display device 16.
[0043] The arithmetic processing unit 1 includes a pro-
cessor 11, a memory 12, a storage device 13, and a network
device 14. The processor 11, the memory 12, the storage
device 13, the network device 14, the drive device 15, and
the display device 16 may be communicably coupled to one
another via a bus.

[0044] The processor 11 is an exemplification of a pro-
cessing device that performs various kinds of control and
arithmetic operation, and implements various functions by
executing an OS and a program stored in the memory 12.

[0045] For example, the program for implementing vari-
ous functions may be provided in a form in which the
program is recorded in a computer-readable recording
medium such as a flexible disk, a compact disc (CD) (such
as a CD-read-only memory (CD-ROM), a CD-recordable
(CD-R), or a CD-rewritable (CD-RW)), a Digital Versatile
Disc (DVD) (such as a DVD-ROM, a DVD-random-access
memory (DVD-RAM), a DVD-R, a DVD+R, a DVD-RW, a
DVD+RW, or a high definition (HD) DVD), a Blu-ray disc,
a magnetic disk, an optical disk or a magneto-optical disk.
A computer (the processor 11 in the present embodiment)
may read the program from the above-described recording
medium through a reading device (not illustrated), and
transfer and store the read program to an internal recording
device or an external recording device and use the program.
For example, the program may be recorded in a storing
device (recording medium) such as a magnetic disk, an
optical disk, or a magneto-optical disk, and provided from
the storing device to the computer via a communication
path.

[0046] When various functions are implemented, a pro-
gram stored in an internal storing device (the memory 12 in
the present embodiment) may be executed by a computer
(the processor 11 in the present embodiment). The computer
may read and execute the program recorded in the recording
medium.

[0047] The processor 11 controls operation of the entire
arithmetic processing unit 1. The processor 11 may be a
multiprocessor. For example, the processor 11 may be any
one of a central processing unit (CPU), a microprocessor
unit (MPU), a digital signal processor (DSP), an application-
specific integrated circuit (ASIC), a programmable logic
device (PLD), and a field-programmable gate array (FPGA).
The processor 11 may be a combination of two or more types
of elements selected from the CPU, MPU, DSP, ASIC, PLD,
and FPGA.

[0048] The memory 12 is an exemplification of a storing
device that includes a read-only memory (ROM) and a
random-access memory (RAM). For example, the RAM
may be a dynamic RAM (DRAM). Programs such as a Basic
Input/Output System (BIOS) may be written in the ROM of
the memory 12. The software program in the memory 12
may be read and executed by the processor 11 as appropri-
ate. The RAM of the memory 12 may be used as a primary
recording memory or a working memory.

[0049] The storage device 13 is a device that stores data
such that the data may be read and written. For example, a
serial attached small computer system interface (SCSI) hard
disk drive (SAS-HDD) 133, a solid-state drive (SSD) 132, or
a storage class memory (SCM) (not illustrated) may be used.
[0050] The network device 14 is an interface device for
coupling the arithmetic processing unit 1 to a network such

US 2024/0037025 Al

as the Internet, a local area network (LAN), or an intercon-
nect, and communicating with an external device (not illus-
trated) via the network. As the network device 14, for
example, various interface cards compatible with a network
standard of a wired LAN, a wireless LAN, or a wireless wide
area network (WWAN) may be used.

[0051] The drive device 15 is configured so that a record-
ing medium 151 may be mounted. The drive device 15 is
configured to be able to read information recorded in the
recording medium 151 in a state in which the recording
medium 151 is mounted. In this example, the recording
medium 151 has portability. For example, the recording
medium 151 is a flexible disk, an optical disk, a magnetic
disk, a magneto-optical disk, a semiconductor memory, or
the like.

[0052] The display device 16 is a liquid crystal display, an
organic light-emitting diode (OLED) display, a cathode ray
tube (CRT) display, an electronic paper display, or the like,
and displays various kinds of information for an operator or
the like. For example, the display device 16 may be com-
bined with an input device (not illustrated), and may be a
touch panel.

[0053] FIG. 4 is a block diagram schematically illustrating
a configuration example of the processor 11 and the memory
12 illustrated in FIG. 3.

[0054] The processor 11 includes a plurality of sets (two
sets in the example illustrated in FIG. 4) of a processor core
21, a cache management mechanism 101, and an L1 cache
102. The processor core 21 may include a pin-down HTM
mechanism 111.

[0055] The sets of the processor core 21, the cache man-
agement mechanism 101, and the [.1 cache 102 are coupled
to the memory 12 and a cache consistency control mecha-
nism 110 via a cache consistency network 100. The cache
consistency control mechanism 110 controls consistency
between the [.1 caches 102 via the cache consistency
network 100.

[0056] The pin-down HTM mechanism 111, the cache
management mechanism 101, and the L1 cache 102 will be
described later with reference to FIG. 6 and the like.
[0057] FIG. 5 is a block diagram schematically illustrating
a functional configuration example of the arithmetic pro-
cessing unit 1 illustrated in FIG. 3.

[0058] For example, the arithmetic processing unit 1
includes, as hardware, the processor core 21 including the
pin-down HTM mechanism 111 and a timer (or a perfor-
mance monitoring mechanism (PMOM)) 112.

[0059] For example, the arithmetic processing unit 1
includes, as software, a speculative memory management
mechanism 121, an interrupt handler 122, and an RCU
scheduler 123. For example, the arithmetic processing unit
1 executes user programs 131 (user programs #1 to #3) as
software.

[0060] The timer (or PMON) 112 performs setting of a
closing time or the number of instructions for the Reader-
side user program #1.

[0061] The timer (or PMON) 112 makes an interrupt to the
user program #1.

[0062] The interrupt handler 122 performs transactional
reading and pin setting for the pin-down HTM mechanism
111 with respect to the user program #1.

[0063] The interrupt handler 122 determines whether a
critical section is being executed in inter-thread synchroni-
zation using RCU.

Feb. 1, 2024

[0064] The RCU scheduler 123 performs CS detection
from the user program #1, and performs GP end notification
for the Writer-side user program #2.

[0065] The speculative memory management mechanism
121 accepts return of a speculative memory from the user
program #2.

[0066] The speculative memory management mechanism
121 performs transactional writing for the pin-down HTM
mechanism 111, and receives a transaction failure notifica-
tion from the pin-down HTM mechanism 111.

[0067] The speculative memory management mechanism
121 receives a memory allocation request from the user
program #3, and performs memory allocation to the user
program #3.

[0068] When it is determined that a critical section is
being executed, the speculative memory management
mechanism 121 performs memory freeing processing or
memory reallocation processing, which is executed from the
RCU scheduler 123, by speculative execution.

[0069] When it is determined that a critical section is
being executed and that the start of the critical section is
before a waiting period (GP), the speculative memory man-
agement mechanism 121 may perform the memory freeing
processing or the memory reallocation processing.

[0070] In a case where the memory freeing processing or
the memory reallocation processing is not safe, the specu-
lative memory management mechanism 121 may cause a
transaction conflict to occur and cause the memory reallo-
cation processing to be retried.

[0071] FIG. 6 is a block diagram schematically illustrating
a configuration example of the pin-down HTM mechanism
111 illustrated in FIG. S.

[0072] HTM is capable of referring to a memory of a
plurality of addresses without leaking memory rewriting to
the outside when a conflict is detected, and a requester-win
policy is implemented in which a requester of a cache block
wins a conflict when the conflict occurs. For these reasons,
in the present embodiment, HTM is used in the processor
core 21.

[0073] It is desirable to avoid a transaction failure even
when entry purge occurs due to an increase in Read Set and
Write Set. It is desirable to protect a specific address from
being purged by setting the specific address as a high
priority, and to detect a conflict with the specific address
without fail. For these reasons, HTM extension is performed
in the present embodiment.

[0074] Normally, Read Set and Write Set are implemented
on hardware, and the resource size is fixed.

[0075] Accordingly, the pin-down HTM mechanism 111
may separately include priority queues 211 to 213 such as
those as illustrated in FIG. 6 so that priority is set for cache
blocks and the cache block of the lowest priority is purged
when the cache blocks overflow. In the example illustrated
in FIG. 6, the priority queues 211 to 213 are allocated
respectively to request, Optional request, and response data
from the processor core 21.

[0076] For memory freeing and reallocation of RCU, the
pin-down HTM mechanism 111 reliably detects a transac-
tion conflict between Reader and a memory reallocation
mechanism (Updater), and causes only the Updater side to
be a transaction failure every time when the conflict occurs.
[0077] The pin-down HTM mechanism 111 may include a
unit that executes a transaction in the middle of a critical
section of Reader, and may include a unit in which the

US 2024/0037025 Al

processing of Updater is a transaction and that suspends or
retries reallocation in a transaction failure.

[0078] When an entry is purged from Write set, the
pin-down HTM mechanism 111 turns off the transaction Tag
of a cache block and treats the cache block as a normal cache
block. If accessed by a transaction, the transaction is caused
to fail, and operation such as Write Back/Write Through/
Write Combine is performed.

[0079] In FIG. 6, the cache management mechanism 101
manages Read set Priority Queue and Write set Priority
Queue. The cache management mechanism 101 refers to the
cache consistency network 100, selects a record in a trans-
actional cache 102a, and purges the selected record in a
regular I.1 cache 1025.

[0080] In a Reader transaction, a critical section is sur-
rounded by rd_read_lock and rd_read_unlock. In the critical
section, interrupts are not all prohibited and the following
interrupt by a trip counter is permitted. This depends on the
implementation of rd_read_lock().

[0081] At the beginning of the critical section, a timer
interrupt or an interrupt by a trip counter for the number of
executed instructions is set (for example, one second or 10°9
counts), and the interrupt is enabled. A processor manufac-
tured by Intel (registered trademark) includes performance
monitoring controllers called Performance Monitor Coun-
ters, which may be used to make an interrupt to a CPU core.
[0082] At the end of the critical section, the above inter-
rupt is disabled. By doing so, logic and performance are not
affected in a case where the critical section is short.
[0083] Interrupt handler processing in a Reader transac-
tion according to the embodiment will be described with
reference to a flowchart (steps S1 to S8) illustrated in FIG.
7

[0084] The interrupt handler 122 determines whether an
interrupt destination CPU is executing in a critical section
(step S1).

[0085] When the interrupt destination CPU is not execut-
ing in the critical section (see NO route in step S1), the
processing returns from the interrupt (step S2), and the
interrupt handler processing in the Reader transaction ends.
[0086] When the interrupt destination CPU is executing in
the critical section (see YES route in step S1), the interrupt
handler 122 determines whether the start of the critical
section is before a GP (step S3).

[0087] When the start of the critical section is not before
the GP (see NO route in step S3), the processing returns
from the interrupt (step S4), and the interrupt handler
processing in the Reader transaction ends.

[0088] When the start of the critical section is before the
GP (see YES route in step S3), the interrupt handler 122
increments a CS counter (step S5).

[0089] When the transaction is started, the interrupt han-
dler 122 executes the code of TX begin (GP advancing
countermeasure #1 illustrated in FIG. 2) (step S6). Since a
transaction failure does not have to be considered, a fallback
address does not have to be designated.

[0090] The interrupt handler 122 reads the address desti-
nation of the argument for TX_read_address (data_addr),
places the address destination in the cache, and overwrites
the priority of the cache block with a high priority (step S7).
data_addr is the first address of data being currently
accessed, which is protected by RCU.

Feb. 1, 2024

[0091] The processing returns from the interrupt (step S8),
and the interrupt handler processing in the Reader transac-
tion ends.

[0092] Next, ending processing of the critical section in
the Reader transaction according to the embodiment will be
described with reference to a flowchart (steps S11 to 513)
illustrated in FIG. 8.

[0093] The interrupt handler 122 determines whether the
Reader transaction is being executed (step S11).

[0094] When the Reader transaction is not being executed
(see NO route in step S11), the processing proceeds to step
513.

[0095] On the other hand, when the Reader transaction is
being executed (see YES route in step S11), the interrupt
handler 122 ends the transaction and executes the code of
TX _end (step S12).

[0096] The interrupt handler 122 disables the interrupt for
transaction and deletes the setting (step S13). The ending
processing of the critical section in the Reader transaction
ends.

[0097] Processing of an Updater transaction will be
described with reference again to the Writer-side pseudo
code illustrated in FIG. 1.

[0098] Similarly to the Writer-side processing, synchro-
nize_rcu()returns from the suspended state in response to
GPend. GPend is advanced since a part of the CPU core has
started the Reader transaction.

[0099] Kkfree receives address p to be freed as an argument,
and the address is registered in a management structure for
reallocation and allocated by the kmalloc function. Writing
to the memory block indicated by p is delayed until the
Reader transaction ends. Although a function having the
same name as kfree/kmalloc exists in Linux (registered
trademark), the function does not depend on the actual
implementation of these.

[0100] FIG. 9 is a diagram illustrating a first example of a
pseudo code executed in the speculative memory manage-
ment mechanism 121 illustrated in FIG. 5.

[0101] A portion to be executed as a transaction in the
whole processing of memory freeing, reallocation, and rec-
lamation depends on the implementation of kfree/kmalloc.
Hereinafter, a case is disclosed as one embodiment in which
the implementation of kfree (reference sign C1) is that a
pointer p is stored at the tail of a ring buffer prepared locally
in a CPU core, and the implementation of kmalloc (reference
sign C2) is that the pointer is taken out from the head of the
ring buffer.

[0102] FIG. 10 is a diagram illustrating a second example
of the pseudo code executed in the speculative memory
management mechanism 121 illustrated in FIG. 5.

[0103] Portions surrounded by broken line frames in FIG.
10 are devised points in the present embodiment.

[0104] Inkmalloc illustrated in FIG. 9, the pointer is taken
out from the head of the ring buffer and returned to the caller.
On the other hand, in the example illustrated in FIG. 10, the
Updater transaction is started and writing is performed to the
address indicated by p.

[0105] In the Reader transaction, the cache block of
address p is entered in readset with high priority before
Updater, and the cache block is not purged before the end of
the Reader transaction.

[0106] The writing to address p (dummy) invalidates the
cache block, and when the Reader transaction exists, the
Updater transaction is caused to be failure TXABORT.

US 2024/0037025 Al

[0107] As aresult, p that has once been taken out is moved
to the tail of the ring buffer again by calling kfree (thick line
frame in FIG. 10).

[0108] By recursive calling of kmalloc, only a safe pointer
is returned to the caller of kmalloc. A safe pointer is a pointer
in which a transaction has succeeded.

[0109] FIGS. 11 to 13 are diagrams for explaining pro-
cessing in the speculative memory management mechanism
121 illustrated in FIG. 5.

[0110] In FIGS. 11 to 13, the speculative memory man-
agement mechanism 121 refers to one read position and one
write position with respect to a ring buffer 3. In each area of
the ring buffer 3, a memory 31 (for example, memory a, b)
is allocated or no memory 31 is allocated.

[0111] In the example illustrated in FIG. 11, the read
position of the speculative memory management mechanism
121 refers to an area where memory a is allocated, and the
write position refers to an area where no memory 31 is
allocated.

[0112] As indicated by reference sign DI. in FIG. 12, in a
case where Reader has finished the execution of a critical
section for memory a at the time of a memory allocation
request, memory a is passed from the ring buffer 3 to the user
program #3 illustrated in FIG. 5, and speculative execution
is performed. The read position of the speculative memory
management mechanism 121 moves to an area where
memory b is allocated.

[0113] In FIG. 13, in a case where Reader is executing a
critical section for memory a at the time of a memory
allocation request, the speculative memory management
mechanism 121 allocates memory a to the write position of
the ring buffer 3.

[0114] For example, the dummy writing to memory a
causes a speculation failure, and memory a is returned to the
tail of the ring buffer 3 by detecting the speculation failure.
After that, memory b is recursively allocated and specula-
tively executed.

[0115] The write position of the speculative memory man-
agement mechanism 121 moves to an area in the ring buffer
3 where no memory 31 is allocated.

[0116] FIG. 14 is a diagram for explaining memory divi-
sion processing according to a modification example.
[0117] In the present modification example, a method in
which a memory is divided and reclaimed (segregated
memory management) is used.

[0118] As indicated by reference sign El, 1 Kbyte
memory is managed by being divided into 512 bytesx1, 256
bytesx1, and 128 bytesx2.

[0119] In such a case, as indicated by reference sign E2,
TX_read_address()is called for the divided address. At
kfree, TX_read_address is linked to each of the divided lists.

[C] Effects

[0120] According to the arithmetic processing unit and the
arithmetic processing method in the embodiment described
above, for example, the following action effects may be
achieved.

[0121] The interrupt handler 122 determines whether a
critical section is being executed in inter-thread synchroni-
zation using RCU. When it is determined that the critical
section is being executed, the speculative memory manage-
ment mechanism 121 performs memory freeing processing
or memory reallocation processing, which is executed from
the RCU scheduler 123, by speculative execution.

Feb. 1, 2024

[0122] Accordingly, the time for synchronization between
CPUs using RCU may be shortened. For example, an upper
limit may be set for a GP section and memory exhaustion
may be improved by setting an upper limit to the execution
time of a Reader critical section and determining that the
critical section has speculatively ended if the critical section
has not ended at the time when the execution time has
elapsed.

[0123] When it is determined that the critical section is
being executed and that the start of the critical section is
before the waiting period (GP), the speculative memory
management mechanism 121 performs the memory freeing
processing or the memory reallocation processing.

[0124] Accordingly, the memory freeing processing or the
memory reallocation processing may be appropriately per-
formed by speculative execution.

[0125] In a case where the memory freeing processing or
the memory reallocation processing is not safe, the specu-
lative memory management mechanism 121 causes a trans-
action conflict to occur and causes the memory reallocation
processing to be retried.

[0126] Accordingly, by checking that the execution of a
speculative critical section has ended at the time when the
freed memory is reclaimed, the processing of freeing and
reclaiming the memory and the execution of the Reader
critical section are executed in parallel, the entire execution
time is shortened, and safe memory allocation may be
ensured.

[D] Others

[0127] The disclosed technique is not limited to the
embodiment described above, and may be carried out by
variously modifying the technique within a range not depart-
ing from the gist of the present embodiment. The configu-
rations and processing in the present embodiment may be
employed or omitted as desired or may be combined as
appropriate.
[0128] All examples and conditional language provided
herein are intended for the pedagogical purposes of aiding
the reader in understanding the invention and the concepts
contributed by the inventor to further the art, and are not to
be construed as limitations to such specifically recited
examples and conditions, nor does the organization of such
examples in the specification relate to a showing of the
superiority and inferiority of the invention. Although one or
more embodiments of the present invention have been
described in detail, it should be understood that the various
changes, substitutions, and alterations could be made hereto
without departing from the spirit and scope of the invention.
What is claimed is:
1. An arithmetic processing apparatus comprising:
a memory; and
a processor coupled to the memory and configured to:
determine whether a critical section is being executed in
inter-thread synchronization using read-copy-update,
and when determining that the critical section is
executed, perform memory freeing processing or
memory reallocation processing, which is executed
from a scheduler, by speculative execution.
2. The arithmetic processing apparatus according to claim
15
wherein the processor performs the memory freeing pro-
cessing or the memory reallocation processing when

US 2024/0037025 Al

determining that the critical section is executed and that
a start of the critical section is before a waiting period.

3. The arithmetic processing apparatus according to claim

15

wherein in a case where the memory freeing processing or
the memory reallocation processing is not safe, the
processor causes a transaction conflict to occur and
causes the memory reallocation processing to be
retried.

4. An arithmetic processing method comprising:

determining whether a critical section is being executed in
inter-thread synchronization using read-copy-update,
and when determining that the critical section is
executed, performing memory freeing processing or
memory reallocation processing, which is executed
from a scheduler, by speculative execution.

5. The arithmetic processing method according to claim 4,

wherein the memory freeing processing or the memory
reallocation processing is performed when determining
that the critical section is executed and that a start of the
critical section is before a waiting period.

6. The arithmetic processing method according to claim 4,

further comprising:

in a case where the memory freeing processing or the
memory reallocation processing is not safe, causing a
transaction conflict to occur and causes the memory
reallocation processing to be retried.

#* #* #* #* #*

Feb. 1, 2024

