
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0363233 A1

US 2015 0363233A1

Magee et al. (43) Pub. Date: Dec. 17, 2015

(54) LEDGER-BASED RESOURCE TRACKING (52) U.S. Cl.
CPC G06F 9/5011 (2013.01); G06F 9/5016

(71) Applicant: Apple Inc., Cupertino, CA (US) (2013.01); G06F 9/5027 (2013.01)

(72) Inventors: James Michael Magee, Orlando, FL
(US); Nils A. Nieuwejaar, Belmont, CA (57) ABSTRACT
(US); Umesh S. Vaishampayan, Santa
Clara, CA (US) Disclosed are systems, methods, and non-transitory com

(21) Appl. No.: 14/810,288 puter-readable storage media for tracking and managing
resource usage through a ledger feature that can trigger com

(22) Filed: Jul. 27, 2015 plex real-time reactions. The resource tracking can be man
O O aged through a ledger module and a ledger data structure. The

Related U.S. Application Data ledger data structure can be updated each time a task requests
(63) Continuation of application No. 13/604,527, filed on a resource. Additionally, as part of the update, the ledger

Sep. 5, 2012, now Pat. No. 9,123,010. module can verify whether a resource has been over con
(60) Provisional application No. 61/655,968, filed on Jun. Sumed. In response to the detection of an over consumption,

5, 2012. the ledger module can set a flag. At some later pointer when
s the thread is in a stable, well-understood point, the ledger

Publication Classification module can check if the flag has been set. If the flag has been
set, the ledger module can call the appropriate callback func

(51) Int. Cl. tion, which can react to the over consumption in a resource
G06F 9/50 (2006.01) specific manner.

520
502 504 Ledger Template 514 512

506
Task 1's Ledger Entries

ReSource Balance

516
Task 2's Ledger Entries

ReSource Balance

US 2015/0363233 A1 Dec. 17, 2015 Sheet 1 of 17 Patent Application Publication

Patent Application Publication Dec. 17, 2015 Sheet 2 of 17 US 2015/0363233 A1

2OO

Task Ledger Module
2O2 2O4

Resource Management Module
2O6

ReSOUrCe Module 208

Resource Manager 210

Callback 212

Resource 214

FIG. 2

US 2015/0363233 A1 Dec. 17, 2015 Sheet 3 of 17 Patent Application Publication

| ?OunOS ºu ??epdn

| ?OunOS9H ?InpOWN | ?OJnOS9H

902 ?InpOW ?ueue6eue.W ?OunOS?H

US 2015/0363233 A1 Dec. 17, 2015 Sheet 4 of 17 Patent Application Publication

US 2015/0363233 A1 Dec. 17, 2015 Sheet 5 of 17 Patent Application Publication

US 2015/0363233 A1 Dec. 17, 2015 Sheet 6 of 17 Patent Application Publication

209

?OunOS?H

Soos

US 2015/0363233 A1 Dec. 17, 2015 Sheet 7 of 17 Patent Application Publication

| ?OunOS9H ?InpOWN | ?OJnOS9H

US 2015/0363233 A1 Dec. 17, 2015 Sheet 8 of 17 Patent Application Publication

| ?OJnOS9H ?InpOWN | ?OJnOS9H

So || Loll

Z 30 InOS3H

US 2015/0363233 A1

Z/

no || !cl) { | 00/nOS9H[×Oeqleo | eueN .

Dec. 17, 2015 Sheet 9 of 17

© | /

0 || /

Patent Application Publication

Z ?OunOS ?H

US 2015/0363233 A1 Dec. 17, 2015 Sheet 10 of 17 Patent Application Publication

US 2015/0363233 A1 Dec. 17, 2015 Sheet 11 of 17 Patent Application Publication

| ?OunOS9H ?InpOWN | ?OJnOS9H

US 2015/0363233 A1 Dec. 17, 2015 Sheet 12 of 17 Patent Application Publication

| ?OJnOS9H ?InpOWN | ?OJnOS9H

So || LCI

0 || 8

Z ?OunOS ?H

US 2015/0363233 A1

?InpOW Z 9OunOS9H| || || Junoo Jed ||
Lo | zo|| ||

ºs || LGL
|×Oeqleo | eueN .

Dec. 17, 2015 Sheet 13 of 17

| 90.InOS9H ?InpOWN | ?OunOS9H

Patent Application Publication

Z 90.InOS9H

US 2015/0363233 A1

J06eue.W Z 30 Inose H

Dec. 17, 2015 Sheet 14 of 17

| || || || 30 nos??

J06eue.W || 30 Inose H

Patent Application Publication

Patent Application Publication Dec. 17, 2015 Sheet 15 of 17 US 2015/0363233 A1

2OO

User Space
Task

902 2O2

AST Boundary
904

Kernal Space

2O6
906

Resource
MOdule
2O8

FIG. 9

Patent Application Publication Dec. 17, 2015 Sheet 16 of 17 US 2015/0363233 A1

FIG. 1 O
1OOO

BEGIN

1OO2
Receive resource request from a task

1 OO4
OO Update task's balance in the ledger entry

DOes the
balance exceed

the limit?

Yes
1008

Set LEDGER AST
flag

HaS
execution

reached the AST
poundary 2

Yes

Patent Application Publication Dec. 17, 2015 Sheet 17 of 17 US 2015/0363233 A1

FIG. 10 (cont.)

1012

ls
Ledger AST

flag Set?
Yes

Get ledger entry

as ledge
entry limit been
eXCeeded?

Call associated
Callback

S there anothe
ledger entry?

RETURN

US 2015/0363233 A1

LEDGER-BASED RESOURCE TRACKING

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a Continuation of U.S. patent
application Ser. No. 13/604,527, entitled “LEDGER-BASED
RESOURCE TRACKING” filed on Sep. 5, 2012, which in
turn, claims the benefit of U.S. Provisional Patent Application
No. 61/655,968, entitled “LEDGER-BASED RESOURCE
TRACKING”, filed on Jun. 5, 2012, which is hereby
expressly incorporated by reference in its entirety.

BACKGROUND

0002 1. Technical Field
0003. The present disclosure relates to tracking and man
aging usage of resources consumed by processes and, more
specifically, to tracking and managing resource usage
through a ledger process that can trigger complex real-time
reactions.

0004 2. Introduction
0005 Resource usage tracking is a feature common to
many operating systems. These accounting systems can keep
track of a variety of information, such as a process identifier,
an elapsed time, and/or a number of blocks of I/O the process
performed. However, these accounting features are designed
to record the resources consumed by a process after the fact.
Furthermore, the accounting features must be enabled explic
itly. Therefore, if the system is not instructed ahead of time to
track resource usage, accounting information will not be
available. The requirement to enable resource usage tracking
can be a significant drawback in situations where a system has
exhibited poor performance for a period of time and a user or
a process within the system wants to investigate but the
resource tracking feature had not been enabled.
0006 Additionally, many operating systems include fea
tures for controlling or limiting the consumption of resources.
For example, the Unix system call setrlimit can be used to set
a variety of limits including the amount of memory a process
consumes, the number of files a process can have open, or the
amount of CPU a process can consume. However, the set of
resources that can be controlled are limited, and cannot be
extended.

0007. In operating systems that include resource con
Sumption controlling features, when a process attempts to
exceed a specified limit, the system will respond by sending
the process a signal. The specific signal may depend on the
resource being consumed, but in most cases the signal is a
SIGSEGV. While it is theoretically possible to recover from
this type of failure, it is sufficiently impractical that most
processes are notable do so. Therefore, any failed allocation
of a limited resource will result in the immediate death of the
application.

SUMMARY

0008. Additional features and advantages of the disclosure
will be set forth in the description which follows, and in part
will be obvious from the description, or can be learned by
practice of the herein disclosed principles. The features and
advantages of the disclosure can be realized and obtained by
means of the instruments and combinations particularly
pointed out in the appended claims. These and other features
of the disclosure will become more fully apparent from the

Dec. 17, 2015

following description and appended claims, or can be learned
by the practice of the principles set forth herein.
0009 Disclosed are systems, methods, and non-transitory
computer-readable storage media for tracking and managing
resource usage through a ledger feature that can trigger com
plex real-time reactions. The ledger feature addresses the
limitations of resource tracking and consumption controlling
features found in many operating systems. The ledger feature
can be designed to have a low overhead, enable centralized
decision making, and to be actionable and extensible. The
resource tracking can be managed through a ledger data struc
ture that includes a ledger template, one or more ledger
objects, and one or more ledger entries objects. The ledger
template can include an entry for each resource registered for
tracking, where each entry includes, at least, a unique identi
fier for the registered resource and a pointer to a callback
function specific to the resource. The ledger feature can
include a single or a minimum number ofledger templates so
as to minimize the memory footprint of the ledger feature.
New entries can be added to the ledger template at any time.
However, in Some cases, once an entry has been added it
cannot be removed.

0010. Each task and its associated threads can be associ
ated with a ledger object. The ledger object can include, at
least, a pointer to the ledger template and a pointer to a ledger
entries object. The ledger entries object can be an array of
entries where each entry tracks the consumption of a particu
lar resource by the task and/or its associated threads. In some
cases, the number of entries in a tasks ledger entries object
can remain constant. Furthermore, the number of entries can
match the number of entries in the ledger template at the time
the ledger was created. If a new resource is registered for
tracking after the task is created, that resource will not be
added to the task’s ledger entries object, which means that the
resource will not be tracked for that task.
0011 Each entry in a ledgers entries object can contain a
balance and a limit. The balance represents the current con
sumption level. The ledger feature can support different types
of entries including declining and double-entry. A declining
entry includes a single value representing the current resource
consumption level. A double-entry entry tracks allocations
and deallocations independently. Therefore, in a double-entry
entry the balance is calculated on demand based on the allo
cation and deallocation values.

0012. When a resource allocation or deallocation occurs,
the ledger feature can update the task’s consumption balance
appropriately. Additionally, as part of the update, the ledger
feature can compare the balance against any limit set for the
resource entry. If the limit has been exceeded, the ledger
feature can set a flag, such as the LEDGER AST bit in the
thread structure. At a later point, just prior to the thread
returning to user space, the ledger feature can check if the
special flag, e.g. LEDGER AST bit, was set at any time while
the thread was in kernel mode. In some cases, this can occur
as the thread passes through the Asynchronous System Trap
(AST) boundary. If the flag is set, the ledger feature can
examine each entry in the task’s ledger entries object to
identify the resources that were over consumed.
0013 When the ledger feature detects that a limit has been
exceeded, the ledger feature can call the associated callback
function identified in the ledger template. The callback func
tion can be a resource specific function designed to react to
the resource over consumption in a manner that is appropriate
for the specific resource.

US 2015/0363233 A1

BRIEF DESCRIPTION OF THE DRAWINGS

0014. In order to describe the manner in which the above
recited and other advantages and features of the disclosure
can be obtained, a more particular description of the prin
ciples briefly described above will be rendered by reference to
specific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings
depict only exemplary embodiments of the disclosure and are
not therefore to be considered to be limiting of its scope, the
principles herein are described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:
0015 FIG. 1 illustrates an example system embodiment;
0016 FIG. 2 illustrates an exemplary system configura
tion for tracking and managing resource consumption;
0017 FIG. 3 illustrates an exemplary resource request;
0018 FIG. 4 illustrates an exemplary ledger data structure
for tracking resource consumption;
0019 FIG. 5 illustrates an exemplary reuse of the ledger
template;
0020 FIG. 6 illustrates an exemplary ledger data structure
for tracking resource consumption that uses a double-entry
entry type in a ledger entries object;
0021 FIG. 7A illustrates an exemplary registering of a
resource:
0022 FIG. 7B illustrates an exemplary creation of a task
and associated ledger objects;
0023 FIG. 7C illustrates an exemplary registering of a
second resource:
0024 FIG. 7D illustrates an exemplary creation of a sec
ond task and associated ledger objects;
0025 FIG. 8A illustrates an exemplary registering of a
resource:
0026 FIG. 8B illustrates an exemplary creation of a task
and associated ledger objects;
0027 FIG. 8C illustrates an exemplary registering of a
second resource:
0028 FIG. 8D illustrates an exemplary creation of a sec
ond task and associated ledger objects;
0029 FIG. 9 illustrates an exemplary division of a system
into user and kernel space; and
0030 FIG. 10 illustrates an exemplary method embodi
ment.

DETAILED DESCRIPTION

0031. Various embodiments of the disclosure are dis
cussed in detail below. While specific implementations are
discussed, it should be understood that this is done for illus
tration purposes only. A person skilled in the relevant art will
recognize that other components and configurations may be
used without parting from the spirit and scope of the disclo
SU

0032. The present disclosure addresses the need in the art
for improved tracking and managing of resource usage by
processes within a system. Using the presently disclosed
technology it is possible to track resource usage and trigger
complex real-time reactions when resource usage exceeds a
predefined limit. The disclosure first sets forth a discussion of
a basic general purpose system or computing device in FIG. 1
that can be employed to practice the concepts disclosed herein
before returning to a more detailed description of tracking
and managing resource usage.

Dec. 17, 2015

0033. With reference to FIG. 1, an exemplary system 100
includes a general-purpose computing device 100, including
a processing unit (CPU or processor) 120 and a system bus
110 that couples various system components including the
system memory 130 such as read only memory (ROM) 140
and random access memory (RAM) 150 to the processor 120.
The system 100 can include a cache 122 connected directly
with, in close proximity to, or integrated as part of the pro
cessor 120. The system 100 copies data from the memory 130
and/or the storage device 160 to the cache 122 for quick
access by the processor 120. In this way, the cache 122 pro
vides a performance boost that avoids processor 120 delays
while waiting for data. These and other modules can control
or be configured to control the processor 120 to perform
various actions. Other system memory 130 may be available
for use as well. The memory 130 can include multiple differ
ent types of memory with different performance characteris
tics. It can be appreciated that the disclosure may operate on
a computing device 100 with more than one processor 120 or
on a group or cluster of computing devices networked
together to provide greater processing capability. The proces
Sor 120 can include any general purpose processor and a
hardware module or software module, such as module 1162,
module 2164, and module 3166 stored in storage device 160,
configured to control the processor 120 as well as a special
purpose processor where software instructions are incorpo
rated into the actual processor design. The processor 120 may
essentially be a completely self-contained computing system,
containing multiple cores or processors, a bus, memory con
troller, cache, etc. A multi-core processor may be symmetric
or asymmetric.
0034. The system bus 110 may be any of several types of
bus structures including a memory bus or memory controller,
a peripheral bus, and a local bus using any of a variety of bus
architectures. A basic input/output (BIOS) stored in ROM
140 or the like, may provide the basic routine that helps to
transfer information between elements within the computing
device 100. Such as during start-up. The computing device
100 further includes storage devices 160 such as a hard disk
drive, a magnetic disk drive, an optical disk drive, tape drive
or the like. The storage device 160 can include software
modules 162, 164, 166 for controlling the processor 120.
Other hardware or software modules are contemplated. The
storage device 160 is connected to the system bus 110 by a
drive interface. The drives and the associated computer read
able storage media provide nonvolatile storage of computer
readable instructions, data structures, program modules and
other data for the computing device 100. In one aspect, a
hardware module that performs a particular function includes
the Software component stored in a non-transitory computer
readable medium in connection with the necessary hardware
components, such as the processor 120, bus 110, output
device 170, and so forth, to carry out the function. The basic
components are known to those of skill in the art and appro
priate variations are contemplated depending on the type of
device, such as whether the device 100 is a small, handheld
computing device, a desktop computer, or a computer server.
0035 Although the exemplary embodiment described
herein employs the hard disk 160, it should be appreciated by
those skilled in the art that other types of computer readable
media which can store data that are accessible by a computer,
Such as magnetic cassettes, flash memory cards, digital ver
satile disks, cartridges, random access memories (RAMS)
150, read only memory (ROM) 140, a cable or wireless signal

US 2015/0363233 A1

containing a bit stream and the like, may also be used in the
exemplary operating environment. Non-transitory computer
readable storage media expressly exclude media Such as
energy, carrier signals, electromagnetic waves, and signals
perse.

0036. To enable user interaction with the computing
device 100, an input device 190 represents any number of
input mechanisms, such as a microphone for speech, a touch
sensitive screen for gesture or graphical input, keyboard,
mouse, motion input, speech and so forth. An output device
170 can also be one or more of a number of output mecha
nisms known to those of skill in the art. In some instances,
multimodal systems enable a user to provide multiple types of
input to communicate with the computing device 100. The
communications interface 180 generally governs and man
ages the user input and system output. There is no restriction
on operating on any particular hardware arrangement and
therefore the basic features here may easily be substituted for
improved hardware or firmware arrangements as they are
developed.
0037 For clarity of explanation, the illustrative system
embodiment is presented as including individual functional
blocks including functional blocks labeled as a “processor or
processor 120. The functions these blocks represent may be
provided through the use of either shared or dedicated hard
ware, including, but not limited to, hardware capable of
executing Software and hardware. Such as a processor 120,
that is purpose-built to operate as an equivalent to Software
executing on a general purpose processor. For example the
functions of one or more processors presented in FIG.1 may
be provided by a single shared processor or multiple proces
sors. (Use of the term “processor should not be construed to
refer exclusively to hardware capable of executing software.)
Illustrative embodiments may include microprocessor and/or
digital signal processor (DSP) hardware, read-only memory
(ROM) 140 for storing software performing the operations
discussed below, and random access memory (RAM) 150 for
storing results. Very large scale integration (VLSI) hardware
embodiments, as well as custom VLSI circuitry in combina
tion with a general purpose DSP circuit, may also be pro
vided.

0038. The logical operations of the various embodiments
are implemented as: (1) a sequence of computer implemented
steps, operations, or procedures running on a programmable
circuit within a general use computer, (2) a sequence of com
puter implemented steps, operations, or procedures running
on a specific-use programmable circuit; and/or (3) intercon
nected machine modules or program engines within the pro
grammable circuits. The system 100 shown in FIG. 1 can
practice all or part of the recited methods, can be a part of the
recited systems, and/or can operate according to instructions
in the recited non-transitory computer-readable storage
media. Such logical operations can be implemented as mod
ules configured to control the processor 120 to perform par
ticular functions according to the programming of the mod
ule. For example, FIG. 1 illustrates three modules Mod1162,
Mod2 164 and Mod3166 which are modules configured to
control the processor 120. These modules may be stored on
the storage device 160 and loaded into RAM 150 or memory
130 at runtime or may be stored as would be known in the art
in other computer-readable memory locations.
0039 Having disclosed some components of a computing
system, the disclosure now turns to FIG. 2, which illustrates
an exemplary system configuration for tracking and manag

Dec. 17, 2015

ing resource consumption, such as a general-purpose com
puting device like system 100 in FIG. 1. Exemplary system
configuration 200 can be any computing system in which
tasks, such as user applications, consume computing
resources, e.g. CPU cycles or memory. For example, system
configuration 200 can be a client device, such as a desktop
computer, mobile computer, handheld communications
device, e.g. mobile phone, Smartphone, tablet, Smart televi
sion; set-top box; and/or any other computing device.
0040 System 200 can include one or more tasks 202. A
task 202 can be any process that consumes system resources.
For example, a task 202 can be a user space application, such
as a Word processing program, a game, a mail application, a
calendar application, a media player application, etc. System
200 can also include a resource management module 206,
which can receive resource requests from a task 202. In some
configurations, the resource management module 206 can be
an operating system scheduler. A resource request can be an
allocation and/or a deallocation request, such as a request to
allocate or deallocate memory. Requests to allocate and/or
deallocate additional resource types are also possible. Such as
disk I/O, network I/O, Mach ports, CPU cycles, etc. When a
task 202 needs a resource to carry out the task’s prescribed
job, the task 202 can request the resource from the resource
management module 206. Furthermore, when the task 202 no
longer requires the resource, the task 202 can make a request
to the resource management module 206 to free the resource.
0041) System 200 can further include one or more
resource modules 208. In some cases, the system 200 can
include a resource module 208 for each resource type. For
example, System 200 can include a resource module 208 for
each of CPU cycles, memory, disk I/O, network I/O, and/or
Mach ports. A resource module 208 can include at least three
items: a resource manager 210, a callback 212, and the actual
resource 214. In some configurations, a resource module 208
can include additional items as well. The resource manager
210 can be responsible for the actual allocation and deallo
cation of the particular resource 214. Additionally, the
resource manager 210 can communicate with the ledger mod
ule 204 to request an update to the consumption records. A
resource manager 210 can receive an allocation and/or deal
location request from the resource management module 206.
As will be described in greater detail below, the callback 212
is resource-specific functionality that can be invoked upon the
detection of a task exceeding the tasks predefined resource
consumption limit.
0042. As mentioned above, system 200 can additionally
include a ledger module 204. The ledger module 204 is a
facility for tracking and reacting to resource consumption.
When a resource is allocated or freed, the resource's resource
manager 210 can communicate with the ledger module 204 to
update a task’s resource consumption balance appropriately.
For example, FIG. 3 illustrates an exemplary resource
request. Task 202 can request a resource from the resource
management module 206. At some point after receiving the
request, the resource management module 206 can identify
the resource module that corresponds to the requested
resource and forward the resource request to that resource
module. In this example, the task made a request for a
resource of type resource 1. Therefore, the resource manage
ment module 206 identifies the resource module 302 for
resource 1. After receiving the request, the resource manager
304 for resource 1 can request the ledger module 204 to
update the resource 1 consumption balance for task 202.

US 2015/0363233 A1

0043. To track the resource consumption balance for the
various tasks in the system 200, the ledger module 204 can
use a data structure. FIG. 4 illustrates an exemplary data
structure 400 for tracking resource consumption. Each task
402 can point to, or be assigned to, a single ledger object 404.
In some embodiments, a ledger object 404 can be specific to
a task 402. However, the ledger module 204 can also be
configured to assign multiple tasks to a single ledger object
404. Furthermore, each thread of a task, such as thread 410,
412, and 414 of task 402 can be assigned to the task’s ledger
object 404.
0044. Each ledger object 404 can include a variety of
information, Such as a pointer to a ledger template, a lock, a
reference count, a size, and/or a pointer to a ledger entries
object. Additional information can also be included in a led
ger object. As mentioned, each ledger object can contain a
pointer to a ledger template, such as ledger template 406. The
ledger template 406 can include an entry for each resource
type that is being tracked. For example, a ledger template can
include an entry for each of CPU cycles, memory, disk I/O.
network I/O, and/or Mach ports. Each entry can be identified
by a name. The name can be an arbitrary identifier. For
example, when the ledger module 204 registers a resource for
tracking, the resource can be assigned the next available iden
tifier number. That is, if the resource is the first resource to be
registered, the ledger module 204 can assign the resource the
identifier 0. The next resource to register to be tracked can be
assigned the identifier 1, and so on. Each entry can also
include a reference count. The reference count can be used to
track the number of ledger objects that are currently pointing
to the ledger template 406. The ledger module 204 can reg
ister a new resource for tracking at any time. However, to
eliminate the need for locking and error checking, the ledger
module 204 can be configured to prohibit the removal of a
resource from the ledger template 406. Furthermore, the led
ger template can include a pointer to a callback function that
is specific to the particular resource.
0045. To minimize the memory footprint of the ledger
module 204, multiple ledger objects can share a single ledger
template that can hold information common to all ledger
objects. For example, FIG. 5 illustrates two tasks 502 and
512. Task 1502 has a single ledger object 504, which includes
a pointer to ledger template 520 and a pointer to task 1's
ledger entries object 506. Task 2512 also has a single ledger
object 514, which includes a pointer to task 2's ledger entries
object 516 and a pointer to the same ledger template as used
by task 1502, ledger template 520.
0046 Referring back to FIG. 4, each ledger object can
contain a pointer to a ledger entries object, Such as ledger
entries object 408. Aledger entries object 408 can be an array
of ledger entries. The ledger entries object 408 can also use
other data structures to manage ledger entries. Each entry in
the entries object 408 can be used to track a tasks resource
consumption. A ledger entries object 408 can be allocated at
the time the task’s ledger object 404 is allocated.
0047. The number of entries allocated in a ledger entries
object can be based on the number of entries in the ledger
template 406 at the time the ledger entries object is allocated.
For example, if the ledger module 204 has registered two
resources to be tracked, the ledger template 406 will include
two entries. Therefore, the ledger entries object 408 will
include 2 entries—one for each resource registered. Further
more, the number of entries in the ledger entries object 408
can remain constant. That is, if the ledger module 204 regis

Dec. 17, 2015

ters a new resource to be tracked after the ledger entries object
408 is allocated, the newly registered resource will not be
tracked.

0048. Each entry in the ledger entries object 408 can con
tain a record of the resources consumed and a limit. In some
cases, the resources consumed and limit values have no inher
ent units associated with them. That is, the meaning of the
values can be defined to be specific to the particular resource.
For example, for CPU usage, the values can be recorded in
nanoseconds. In another example, for memory usage, the
values can be recorded in bytes. In some configurations, an
entry in the ledger entries object 408 can be a declining entry
type. A declining entry type can include a single value repre
senting the current resource consumption level, e.g. the bal
aCC.

0049. Alternatively, an entry in the ledger entries object
can be a double-entry entry type. A double-entry entry type
can track allocations and deallocations independently. For
example, FIG. 6 illustrates an exemplary data structure 600
for tracking resource consumption that uses a double-entry
entry type in a ledger entries object. Ledger entries object 602
includes a record for allocations and a separate record for
deallocations. When using the double-entry entry type, the
ledger module 204 can calculate an entry's balance on
demand using the allocation and deallocation values. There
fore, the ledger entries object 602 does not need to maintain a
separate record for the balance. However, a ledger entries
object using a double-entry entry type can maintain a separate
record of the current resource consumption level, e.g. a bal
ance. By using a double-entry entry type, the ledger module
204 can track rates of allocation and deallocation, as well as
the current balance. An advantage of tracking allocation and
deallocation separately is that the ledger module 204 can
detect a case where a resource limit was exceeded tempo
rarily, such as if a thread allocates and frees memory in close
Succession. An additional advantage of tracking allocations
and deallocations separately is that if needed, the rate of
allocations can be monitored without interference from the
deallocations.

0050 FIGS. 7A-7D illustrate the allocation of two differ
ent ledger entries objects. In FIG. 7A, the ledger module 204
has registered a single resource, resource 1, for tracking.
Therefore, ledger template 702 contains a single entry 704.
The entry 704 includes an identifier for the resource and a
pointer to resource 1's callback function 706. At some point,
as illustrated in FIG. 7B, task 1710 is created along with task
1's ledger object 712. At the time that task 1's ledger entries
object 714 is created, the ledger template 702 contains a
single entry. Therefore, task 1's ledger entries object 714
contains a single entry as well. As illustrated in FIG.7C, after
the creation of task 1710, the ledger module 204 registers a
new resource, resource 2, for tracking. Upon registration of
resource 2, the ledger module clones the previous ledger
template 702 to create a new ledger template 724 and adds a
new entry 720 to the cloned ledger template 724. The new
ledger template entry 720 includes a unique identifier for
resource 2 and a pointer to resource 2's callback function 722.
Even though the ledger module 204 has registered a new
resource for tracking, task 1's ledger object 712 still refer
ences the previous ledger template 702 and task 1's entries
object 714 remains a constant size and is not updated to
include an entry for the new resource. However, as illustrated
in FIG. 7D, when task 2 730 is created, task 2's ledger object
732 points to a ledger entries object 734 with two entries,

US 2015/0363233 A1

which is a greater number of entries than in task 1's ledger
entries object 714. This reflects the number of entries in the
new ledger template 724 at the time that task 2 was created.
0051 FIGS. 8A-8D illustrate an alternate allocation of
two different ledger entries objects. In FIG. 8A, the ledger
module 204 has registered a single resource, resource 1, for
tracking. Therefore, ledger template 802 contains a single
entry 804. The entry 804 includes an identifier for the
resource and a pointer to resource 1s callback function 806.
At some point, as illustrated in FIG. 8B, task 1810 is created
along with task 1's ledger object 812. At the time that task 1's
ledger entries object 814 is created, the ledger template 802
contains a single entry. Therefore, task 1's ledger entries
object 814 contains a single entry as well. As illustrated in
FIG. 8C, after the creation of task 1810, the ledger module
204 registers a new resource, resource 2, for tracking. Upon
registration of resource 2, the ledger module adds a new entry
820 to the ledger template 802. The new ledger template entry
820 includes a unique identifier for resource 2 and a pointer to
resource 2's callback function 622. Even though the ledger
module 204 has registered a new resource for tracking, task
1's ledger entries object remains a constant size and is not
updated to include an entry for the new resource. However, as
illustrated in FIG. 8D, when task 2 830 is created, task 2's
ledger object 832 points to a ledger entries object 834 with
two entries. This reflects the number of entries in the ledger
template 802 at the time that task 2 was created.
0052. As previously described, a resource manager 210
can communicate with the ledger module 204 to request that
the ledger module 204 update the resource consumption
records. That is, the resource manager 210 can instruct the
ledger module 204 to update the allocations, deallocations,
and/or balance in an entry of a task’s ledger entries object. For
example, when a task 202 has requested to consume some
memory, the resource manager 210 can call into the ledger
module 204 using the function call: thread ledger debit(thr,
task ledgers.tkm private, SZ) Likewise, when a task 202 has
requested to release some memory, the resource manager 210
can call into the ledger module 204 using the function call:
thread ledger credit(thr, task ledgers.tkm private, SZ). The
first parameter to each function call can be the thread per
forming the allocation or deallocation, the second parameter
can be an index into the task’s ledger entries object entry
array, and the third parameter can be the number of bytes to
allocate or deallocate. Each of these functions can alter the
allocations, deallocations, and/or balance values of an entry
in the task’s ledger entries object. Another advantage of never
removing and/or reusing an entry from the ledger template is
that the array index can remain constant. Therefore, the array
index can be looked up once. Such as at boot time, and can
then be cached for later reference.

0053. Each time the ledger module 204 updates the
resource consumption records, the entry that is modified can
be checked to ensure that the new balance does not exceed a
predefined limit. That is, the ledger module 204 can compare
the new balance stored in the entry or calculated from the
allocation and deallocation values in an entry with the pre
defined limit value in the entry. For double-entry entry types,
the limit value can be either positive or negative. For the
declining entry type, the limit can be set to always be Zero. If
the ledger module 204 detects that the balance has exceeded
the predefined limit, the ledger module 204 can set a flag, such
as the LEDGER AST bit in a thread structure. Once the flag
is set, no further action is taken and execution continues.

Dec. 17, 2015

0054 FIG. 9 illustrates an exemplary division of system
200 into user and kernel space. The one or more tasks 202
exist in user space 802 while the ledger module 204, the
resource management module 206, and the one or more
resource modules 208 reside in kernel space 906. Existing in
between the user and kernel space is the Asynchronous Sys
tem. Trap (AST) boundary 904. Just prior to returning to user
space, a thread associated with a task 202 will pass through
the AST boundary 904. When the thread enters the AST
boundary 904, it is known that the thread has released all
kernel locks and is in a stable, well-understood state. There
fore, this can be an ideal time to performany blocking actions,
Such as any actions related to over consumption of resources.
While the thread is in the AST boundary 904, the ledger
module 204 can check if a flag, such as the LEDGER AST
flag, was set at any time while in kernel mode. If so, the ledger
module 204 can check each entry in the task’s ledger entries
object to see which resource balance exceeds the predefined
limit. In some cases, multiple resource constraints can be
exceeded in a single visit into the kernel. That is, the task
could have made resource requests for multiple different
types of resources while in kernel space 906 and two or more
of those resources could have been over consumed. By check
ing each entry in the ledger entries object, multiple violations
can be detected and handled.

0055 When the ledger module 204 detects that a limit has
been exceeded, the ledger module 204 can call the associated
callback function referenced in the ledger template. Each
callback function can be specific to a particular resource.
Furthermore, each callback function can be defined to react to
an over consumption of the resource in a manner that is
appropriate for that particular resource. Therefore, the
resource module can manage the limited resource and decide
the proper reaction. Additionally, in Some configurations, the
ledger module 204 can include one or more default actions,
Such as notify, Suspend, and/or kill. In the case of an entry of
the declining entry type, a default action can be a refill action.
That is, the expectation is that resources are always being
consumed from a declining entry type entry, and thus the
balance can be periodically refilled by the system. Therefore,
if an allocation reduces an entry's balance below zero, the
thread can be blocked while the ledger module 204 refills the
resource. The refill value and refill rate can be defined to be
specific to the particular resource.
0056 FIG. 10 is a flowchart illustrating an exemplary
method 1000 for tracking and managing resource consump
tion. For the sake of clarity, this method is discussed in terms
of an exemplary system such as is shown in FIG. 2. Although
specific steps are shown in FIG. 10, in other embodiments a
method can have more or less steps than shown. The resource
consumption tracking and management can begin when the
system 200 receives a resource request from a task (1002).
The request can be an allocation and/or a deallocation
request. In response to receiving the request, the system 200
can update an entry associated with the resource in the tasks
ledger entry object (1004). For example, in response to an
allocation request, the system 200 can increase the overall
balance and/or update the allocation specific value. Likewise,
in response to a deallocation request, the system 200 can
decrease the overall balance and/or update the deallocation
specific value. In the case of a double-entry entry type, the
system 200 can also calculate the current balance to obtain an
updated balance.

US 2015/0363233 A1

0057. After updating the balance, the system 200 can
check if the balance exceeds a predefined limit (1006). If the
consumption limit has been exceeded, the system 200 can set
a flag, such as a LEDGER AST flag (1008). After setting the
flag or if the consumption limit was not exceeded, the system
can check if the thread has reached the AST boundary (1010).
If the AST boundary has not been reached, the system 200 can
resume processing resource requests (1002).
0058 If the system 200 detects that the tasks thread has
reached the AST boundary, the system 200 can check if the
LEDGER AST flag is set (1012). If not, execution can con
tinue to user space without further action. However, if the
LEDGER AST flag is set, the system 200 can obtain an entry
from the ledger entries object (1014) and check if the entry's
consumption limit has been exceeded (1016). If the consump
tion limit has been exceeded, the system 200 can call the
associated callback function (1018), which can cause the
system to react to the over consumption in a resource specific
way. After calling the callback or if the limit was not
exceeded, the system 200 can check if there are additional
entries in the ledger entries object (1020). If so, the system
200 can continue processing the entries at step 1014. After
completing step 1012 or 1020, the system 200 can resume
previous processing, which can include repeating method
1OOO.

0059 Embodiments within the scope of the present dis
closure may also include tangible and/or non-transitory com
puter-readable storage media for carrying or having com
puter-executable instructions or data structures stored
thereon. Such non-transitory computer-readable storage
media can be any available media that can be accessed by a
general purpose or special purpose computer, including the
functional design of any special purpose processor as dis
cussed above. By way of example, and not limitation, Such
non-transitory computer-readable media can include RAM,
ROM, EEPROM, CD-ROM or other optical disk storage,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to carry or store desired
program code means in the form of computer-executable
instructions, data structures, or processor chip design. When
information is transferred or provided over a network or
another communications connection (either hardwired, wire
less, or combination thereof) to a computer, the computer
properly views the connection as a computer-readable
medium. Thus, any Such connection is properly termed a
computer-readable medium. Combinations of the above
should also be included within the scope of the computer
readable media.

0060 Computer-executable instructions include, for
example, instructions and data which cause a general purpose
computer, special purpose computer, or special purpose pro
cessing device to perform a certain function or group of
functions. Computer-executable instructions also include
program modules that are executed by computers in stand
alone or network environments. Generally, program modules
include routines, programs, components, data structures,
objects, and the functions inherent in the design of special
purpose processors, etc. that perform particular tasks or
implement particular abstract data types. Computer-execut
able instructions, associated data structures, and program
modules represent examples of the program code means for
executing steps of the methods disclosed herein. The particu
lar sequence of Such executable instructions or associated

Dec. 17, 2015

data structures represents examples of corresponding acts for
implementing the functions described in Such steps.
0061 Those of skill in the art will appreciate that other
embodiments of the disclosure may be practiced in network
computing environments with many types of computer sys
tem configurations, including personal computers, hand-held
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs, mini
computers, mainframe computers, and the like. Embodi
ments may also be practiced in distributed computing envi
ronments where tasks are performed by local and remote
processing devices that are linked (either by hardwired links,
wireless links, or by a combination thereof) through a com
munications network. In a distributed computing environ
ment, program modules may be located in both local and
remote memory storage devices.
0062. The various embodiments described above are pro
vided by way of illustration only and should not be construed
to limit the scope of the disclosure. Those skilled in the art
will readily recognize various modifications and changes that
may be made to the principles described herein without fol
lowing the example embodiments and applications illustrated
and described herein, and without departing from the spirit
and scope of the disclosure.

1. (canceled)
2. A non-transitory computer-readable storage media stor

ing instructions which, when executed by a computing
device, causes the computing device to perform steps com
prising:

receiving, at a processor, a resource request from a task, the
task associated with a resource tracking object includ
ing:
(i) a reference to a template including an entry identify

ing the task and a pointer to a callback function,
wherein the callback function is specific to the
resource requested, and

(ii) an entries object including an entry for the resource
requested with a corresponding balance of current
resources consumed and a corresponding predefined
resource limit of the resource requested, wherein val
ues of the balance and the limit are defined specific to
the resource:

registering, at the processor, the resource for tracking in the
template; and

updating, at the processor, the balance of resources con
Sumed, wherein the updating comprises comparing the
balance of resources consumed against the predefined
resource limit, and setting a flag when the balance
exceeds the predefined resource limit.

3. The non-transitory computer-readable storage media of
claim 2, further comprising:

in response to detecting, at the processor, prior to returning
the task to user space, that the flag is set, calling a first
callback function associated with a first resource entry in
the entries object, whereina first balance associated with
the first resource entry exceeds a first predefined limit
associated with the first resource entry.

4. The non-transitory computer-readable storage media of
claim 3, further comprising:

identifying, at the processor, a second resource entry in the
entries object, wherein a second balance associated with
the second resource entry exceeds a second predefined
limit associated with the second resource entry; and

US 2015/0363233 A1

calling, at the processor, a second callback function asso
ciated with the second resource entry.

5. The non-transitory computer-readable storage media of
claim 3, wherein detecting that the flag is set occurs in
response to detecting that execution of the task has reached an
Asynchronous System Trap boundary.

6. The non-transitory computer-readable storage media of
claim 2, further comprising:

registering a second resource, the registering comprising
cloning the template to create a second template and
adding a new entry to the second template for the second
SOUC.

7. The non-transitory computer-readable storage media of
claim 6, wherein the new entry comprises a unique resource
identifier and a reference to a callback function.

8. The non-transitory computer-readable storage media of
claim 2, further comprising:

identifying, at the processor, a second resource entry in the
entries object, wherein a second balance associated with
the second resource entry exceeds a second predefined
limit associated with the second resource entry; and

calling, at the processor, a second callback function asso
ciated with the second resource entry.

9. The non-transitory computer-readable storage media of
claim 2, further comprising:

allocating the resource tracking object associated with the
task prior to processing an initial request for a resource
from the task, the allocating including allocating an
entries object with a number of entries corresponding to
a current number of entries in the template.

10. The non-transitory computer-readable storage media of
claim 2, wherein the entries object comprises at least one
entry and the at least one entry is of a double-entry entry type.

11. The non-transitory computer-readable storage media of
claim 2, wherein the entries object comprises at least one
entry and the at least one entry is of a declining entry type.

12. The non-transitory computer-readable storage media of
claim 2, wherein the balance is calculated on demand.

13. The non-transitory computer-readable storage media of
claim 2, wherein the template is referenced by a plurality of
resource tracking objects.

14. The non-transitory computer-readable storage media of
claim 2, further comprising:

the task including one or more threads;
the threads being associated with the resource tracking

object.
15. The non-transitory computer-readable storage media of

claim 2, further comprising:
prohibiting the removal of the resource from the template.
16. The non-transitory computer-readable storage media of

claim 2, wherein the resource request is a request to allocate
or deallocate the resource and performing the resource
request includes allocating or deallocating the resource.

17. The non-transitory computer-readable storage media of
claim 2, wherein the resource is at least one of CPU cycles,
memory, disk I/O, network I/O, or Mach ports.

18. A system comprising:
a processor;
a task associated with a resource tracking object;
the resource tracking object including:

(i) a reference to a template, the template including an
entry identifying the task and a pointer to a callback
function, wherein the callback function is specific to a
resource requested, and

Dec. 17, 2015

(ii) an entries object including an entry for the resource
requested with a corresponding balance of current
resources consumed and a corresponding predefined
resource limit of the resource requested, wherein val
ues of the balance and the limit are defined specific to
the resource:

the processor receiving the resource request from the task:
and

the processor updating the balance of resources consumed
related to the task, wherein the updating comprises set
ting a flag when the resource consumption balance
exceeds the predefined resource limit.

19. A computer-implemented method comprising:
receiving, at a processor, a resource request from a task, the

task associated with a resource tracking object includ
ing:
(i) a reference to a template including an entry identify

ing the task and a pointer to a callback function,
wherein the callback function is specific to the
resource requested, and

(ii) an entries object including an entry for the resource
requested with a corresponding balance of current
resources consumed and a corresponding predefined
resource limit of the resource requested, wherein val
ues of the balance and the limit are defined specific to
the resource:

registering, at the processor, the resource for tracking in the
template; and

updating, at the processor, the balance of resources con
Sumed, wherein the updating comprises comparing the
balance of resources consumed against the predefined
resource limit, and setting a flag when the balance
exceeds the predefined resource limit.

20. A non-transitory computer-readable storage media
storing instructions which, when executed by a computing
device, causes the computing device to perform steps com
prising:

updating, by a processor, an entry corresponding to a
resource in a resource tracking object, the resource
tracking object including:
(i) a reference to a template including an entry identify

ing a task and a pointerto a callback function, wherein
the callback function is specific to the resource, and

(ii) an entries object including an entry for the resource
with a corresponding balance of current resources
consumed and a corresponding predefined resource
limit of the resource, wherein values of the balance
and the limit are defined specific to the resource:

the updating includes recording the balance in the entry
specified in the request, and setting a flag when the
balance for the entry exceeds the resource limit
defined in the entry;

identifying, by a processor, that the flag is set prior to the
task returning to user space; and

calling, by a processor, the callback function specific the
SOUC.

21. The non-transitory computer-readable storage media of
claim 20, wherein the callback function is defined to react to
an over consumption of the resource in a resource specific
a.

