US 20230237269A1

a2y Patent Application Publication o) Pub. No.: US 2023/0237269 A1

a9y United States

Guzik et al. 43) Pub. Date: Jul. 27, 2023
(54) DYNAMIC ONTOLOGY FOR INTELLIGENT (52) US. CL
DATA DISCOVERY CPC ... GO6F 40,295 (2020.01); GOGF 40/247
(2020.01); GO6F 16/367 (2019.01)
(71) Applicant: S&P Global Inc., New York, NY (US)
(72) Inventors: Stanley Guzik,. Ridgewood, NJ (US); (57) ABSTRACT
Prashant Desai, Princeton, NJ (US);
Anthony Sweet, Aurora, CO (US);
Jason Holden, Charlottesville, VA (US) A method, apparatus, system, and computer program code
for intelligent data discovery with dynamic ontology are
(21) Appl. No.: 17/648,748 provided. According to one illustrative embodiment, the
. method using a number of processors to perform the steps
(22) Filed: Jan. 24, 2022 of: identifying a set of data items in unstructured content
.. . . using a dynamic data schema populated from a dynamic
Publication Classification ontology; and responsive to identifying a data item that is
(51) Imt. ClL not recognized in the data schema: storing the data item with
GOG6F 40/295 (2006.01) labels; generating a weight for the data item; and responsive
GOGF 40247 (2006.01) to the weight exceeding a threshold, updating the schema to
GO6F 16/36 (2006.01) include the data item that was not recognized.
ARCHITECTURE
303‘

316 316 316
CONTEXTUALIZED CONTEXTUALIZED CONTEXTUALIZED
REPRESENTATION REPRESENTATION REPRESENTATION

y 3 3
314 314 314
DECODER DECODER coo DECODER
4 _ A
-
NS
<
~
312 RN 312
TRANSFORMER TRANSFORMER 0coco TRANSFORMER
3
rd
><
EMBEDDING EMBEDDING cco EMBEDDING
310 310 310

Patent Application Publication Jul. 27,2023 Sheet 1 of 6 US 2023/0237269 A1

100 110
N '
Ir CLIENT DEVICES —:
124
| |
l |
130~] DATA ' '
SCHEMA '
: CLIENT COMPUTER USER
|
DATA
128~ MANAGEMENT : 14
SYSTEM |

CLIENT COMPUTER
104

=

1t
- ILER

SERVER COMPUTER

116

N\

106 =
% NETWORK
102
D01 102 ™-118
. L N -2
SERVER COMPUTER MOBILE PHONE
108
\
oo
STORAGE UNIT Y
| | | N 120
DYNAMIC | .
ONTOLOGY DOCUMENTS | ——
4 / |
132 126 :
| SMART GLASSES
L J

US 2023/0237269 Al

Jul. 27,2023 Sheet 2 of 6

Patent Application Publication

¢ DIA
_ ADOTOLNO | 022
25¢ 92¢ <« | oIAVNAG
\ \ _
STIAON VWIHOS
ONINYYI1 v1vad o vae
INIHOVI 772 /
- C JOV4YALNI J INJLNOD
¥asn < aIHNLONYLSNN
NILSAS SW3lI TVOIHAVYD
JONIOITTALNI vivd
WIDIHLLAY NIOYNVIN W3LSAS L1NdNI
v1va / 012
P [AY4 /)
/ WALSAS X -~
052 ¥3LNdNOD 9QZ W3LSAS AV1dSIA
A W3LSAS J0VAHIINI
02 INTFWIOVNYW VLV ANIHOVIN NYWNH
c0¢ 80¢
9l¢
ooM«
INIWNOHIANT d3sn
NOLLYOIddY

Patent Application Publication

ARCHITECTURE
308‘
316 316
\ \
CONTEXTUALIZED CONTEXTUALIZED
REPRESENTATION REPRESENTATION
A
314 314
DECODER oo
4
AN
/><
312 o~
TRANSFORMER

TRANSFORMER o

EMBEDDING EMBEDDING 000
/ /
310 310 FIG. 3

Jul. 27,2023 Sheet 3 of 6

US 2023/0237269 Al

316
/

a

CONTEXTUALIZED
REPRESENTATION

J

DECODER
A
7

[
314

312

TRANSFORMER

A

EMBEDDING

N
310

Patent Application Publication Jul. 27,2023 Sheet 4 of 6 US 2023/0237269 A1

MODEL
CLASS LABEL ;00
TRANSFORMER
LANGUAGE MODEL
e N N 7 ™)
c T Ty feoo | Ty
\. J J L J \ J/
ECLS E1 E2 0 0 0O EN

f—;
() (o0 () o

F===m’

SINGLE SENTENCE
FIG. 4

510 IDENTIFY A SET OF DATA ITEMS IN UNSTRUCTURED
™ CONTENT USING A DYNAMIC DATA SCHEMA
POPULATED FROM A DYNAMIC ONTOLOGY

!

RESPONSIVE TO IDENTIFYING A DATA ITEM
520~ THAT IS NOT RECOGNIZED IN THE DATA
SCHEMA, STORE THE DATA ITEM WITH LABELS

!

530" GENERATE A WEIGHT FOR THE DATA ITEM

!

RESPONSIVE TO THE WEIGHT EXCEEDING A
540" THRESHOLD, UPDATE THE SCHEMA TO INCLUDE
THE DATA ITEM THAT WAS NOT RECOGNIZED

Y

(CEND)
FIG. 5

Patent Application Publication Jul. 27,2023 Sheet 5 of 6 US 2023/0237269 A1

(FROM 530)

[

)

610

DYNAMICALLY ADJUST THE

WEIGHT OF THE DATAITEM |~ 620

AS ADDITIONAL DOCUMENTS
ARE PROCESSED

DOES
THE WEIGHT EXCEED A
THRESHOLD?

FIG. 6

(FROM 540)

Y

UPDATE THE ONTOLOGY ACCORDING | ~710
TO THE UPDATED SCHEMA

Y

CLASSIFY THE UNSTRUCTURED CONTENT
ACCORDING TO THE SET OF DATA ITEMS ~-720
AND THE DYNAMIC ONTOLOGY

Y

C eno)
FIG. 7

Patent Application Publication Jul. 27,2023 Sheet 6 of 6

US 2023/0237269 Al

80\0‘
DATA PROCESSING SYSTEM
816 806 gTORAGE DEVICES 808
80\4 A N /
PERSISTENT
PROCESSOR UNIT MR STORAGE
/\ /\
@ \/ \/
< >
/ [\ AN
@ 802
\/ \/
COMMUNICATIONS INPUT/OUTPUT
UNIT UNIT DISPLAY
/ / N
810 812 814
820 COMPUTER
\ PROGRAM PRODUCT
COMPUTER READABLE MEDIA
PROGRAM CODE
/
818
822" COMPUTER READABLE
STORAGE MEDIA
(82
824 /
COMPUTER READABLE
SIGNAL MEDIA

FIG. 8

US 2023/0237269 Al

DYNAMIC ONTOLOGY FOR INTELLIGENT
DATA DISCOVERY

BACKGROUND

1. Field

[0001] The disclosure relates generally to an improved
computer system and, more specifically, to a method, appa-
ratus, computer system, and computer program product for
intelligent data discovery using a dynamic ontology.

2. Description of the Related Art

[0002] Natural language processing is an ability of a
computer to understand human language and is an important
component of artificial intelligence. Natural language pro-
cessing may, for example, parse text into identifiable parts,
such as words, phrases, numbers, and punctuation marks.
Natural language processing may perform various methods
and techniques for analyzing text, such as, for example,
morphological analysis, syntactic analysis, semantic analy-
sis, lexical analysis, and the like.

[0003] Automated text classification is an important
aspect in Natural Language Processing. Machine-learning
based text classification often utilizes automated feature
selection techniques based on statistics derived from the
distribution of features within a corpus, or their joint distri-
bution with document classes. Ontologies have been utilized
to improve feature ranking and selection. Text is mapped to
concepts from an ontology that encodes semantic relation-
ships between concepts.

[0004] However, current ontological systems are static
and cannot evolve through time. These ontological classifi-
cations are “black and white”—<classifying text as either
belong to, or not belong to, the defined concepts and
relationships within an ontology. Any change to the ontology
relies on a large number of data analysts, who must manually
go through thousands of documents to entities and their
relationships. These methods suffer from both scalability
and subjectivity: it is difficult to quickly identify new entities
and their relationships within an ontology over thousands of
documents. Furthermore, as different documents are
reviewed by different analysts, ontological classification
standards and quality may vary.

[0005] Therefore, it would be desirable to have a method
and apparatus that would take into account at least some of
the issues discussed above, as well as other possible issues.

SUMMARY

[0006] According to one embodiment of the present inven-
tion, a method provides for intelligent data discovery with
dynamic ontology. The method comprises using a number of
processors to perform the steps of: identifying a set of data
items in unstructured content using a dynamic data schema
populated from a dynamic ontology; and responsive to
identifying a data item that is not recognized in the data
schema: storing the data item with labels; generating a
weight for the data item; and updating the schema to include
the data item that was not recognized in response to the
weight exceeding a threshold.

[0007] According to another embodiment of the present
invention, a computer system for intelligent data discovery
with dynamic ontology comprises a storage device config-
ured to store program instructions and one or more proces-

Jul. 27,2023

sors operably connected to the storage device. The one or
more processors are configured to execute the program
instructions to cause the system to: identify a set of data
items in unstructured content using a dynamic data schema
populated from a dynamic ontology; responsive to identi-
fying a data item that is not recognized in the data schema:
store the data item with labels; generate a weight for the data
item; and responsive to the weight exceeding a threshold,
update the schema to include the data item that was not
recognized.

[0008] According to yet another embodiment of the pres-
ent invention, a computer program product for intelligent
data discovery with dynamic ontology comprises a com-
puter-readable storage medium having program instructions
embodied thereon to perform the steps of: identifying a set
of data items in unstructured content using a dynamic data
schema populated from a dynamic ontology; responsive to
identifying a data item that is not recognized in the data
schema: storing the data item with labels; generating a
weight for the data item; and responsive to the weight
exceeding a threshold, updating the schema to include the
data item that was not recognized.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 is a pictorial representation of a network of
data processing systems in which illustrative embodiments
may be implemented;

[0010] FIG. 2 is a block diagram of an application envi-
ronment depicted in accordance with an illustrative embodi-
ment;

[0011] FIG. 3 is an architecture of an artificial intelligence
model to classify an entity depicted in accordance with an
illustrative embodiment;

[0012] FIG. 4 is a task-specific classification model
depicted in accordance with an illustrative embodiment;
[0013] FIG. 5 is a flowchart of a process for real-time
visual guidance depicted in accordance with an illustrative
embodiment;

[0014] FIG. 6 is a flowchart of a process for real-time
visual guidance depicted in accordance with an illustrative
embodiment;

[0015] FIG. 7 is a flowchart of a process for capturing a set
of actions depicted in accordance with an illustrative
embodiment; and

[0016] FIG. 8 is a block diagram of a data processing
system depicted in accordance with an illustrative embodi-
ment.

DETAILED DESCRIPTION

[0017] The illustrative embodiments recognize and take
into account one or more different considerations. The
illustrative embodiments recognize and take into account
that unstructured documents may organize information in a
way that is understandable to humans but not to machines.
For example, texts can be arranged on a page in a tabular
form, so that row or column headers might be associated
with values in the body of the table, but it is non-trivial for
a computer to identify this tabular structure and associate its
contents correctly. This complicates the automated extrac-
tion of information from such documents.

[0018] The illustrative embodiments also recognize and
take into account that current methods include parsing
components of unstructured documents into machine-read-

US 2023/0237269 Al

able formats, e.g., identifying and parsing tables, forms,
images and free-text. Commercial products exist that accept
a raw document (including images or scans of documents),
identify, and segment structures from the document, and
return their contents in a machine-readable form (e.g., Excel,
CSV, or JSON files). These solutions are faithful to the
structures as they are represented on the page. However,
remaining faithful to the structures as represented on page is
inadequate if a user intends to database information that is
represented in documents that vary in format or presenta-
tion.

[0019] The illustrative embodiments provide a method to
intelligently perform automated data discovery and extrac-
tion tasks from both structured and unstructured documents
using dynamic ontology. The extraction service might be
accessed via an application programming interface (API)
that allows a user to pass in a minimal set of information.
Specifically, the user might establish (1) what entities he or
she is looking for in the document; (2) aliases for these
entities, or other means of identifying mentions of these
entities in text; and (3) what combinations of entities should
be extracted together.

[0020] For example, the user might indicate that a docu-
ment could contain two types of data items: a numeric item,
such as dollars of revenue, which is accompanied with units,
and a text item, such as a positive or negative recommen-
dation, which is not accompanied by units. For each entity
(including units), the user supplies aliases that assist the
system in identifying the entity. This process enables the
development of an end-to-end automated structured data
extraction system. Schemas are passed to the system via an
API. The schemas can be associated with sets of documents,
and a unique implementation is then used to perform data
extraction.

[0021] With reference now to the figures and, in particular,
with reference to FIG. 1, a pictorial representation of a
network of data processing systems is depicted in which
illustrative embodiments may be implemented. Network
data processing system 100 is a network of computers in
which the illustrative embodiments may be implemented.
Network data processing system 100 contains network 102,
which is the medium used to provide communications links
between various devices and computers connected together
within network data processing system 100. Network 102
might include connections, such as wire, wireless commu-
nication links, or fiber optic cables.

[0022] In the depicted example, server computer 104 and
server computer 106 connect to network 102 along with
storage unit 108. In addition, client devices 110 connect to
network 102. In the depicted example, server computer 104
provides information, such as boot files, operating system
images, and applications to client devices 110. Client
devices 110 can be, for example, computers, workstations,
or network computers. As depicted, client devices 110
include client computers 112, 114, and 116. Client devices
110 can also include other types of client devices such as
mobile phone 118, tablet computer 120, and smart glasses
122.

[0023] In this illustrative example, server computer 104,
server computer 106, storage unit 108, and client devices
110 are network devices that connect to network 102 in
which network 102 is the communications media for these
network devices. Some or all of client devices 110 may form
an Internet of things (IoT) in which these physical devices

Jul. 27,2023

can connect to network 102 and exchange information with
each other over network 102.

[0024] Client devices 110 are clients to server computer
104 in this example. Network data processing system 100
may include additional server computers, client computers,
and other devices not shown. Client devices 110 connect to
network 102 utilizing at least one of wired, optical fiber, or
wireless connections.

[0025] Program code located in network data processing
system 100 can be stored on a computer-recordable storage
medium and downloaded to a data processing system or
other device for use. For example, the program code can be
stored on a computer-recordable storage medium on server
computer 104 and downloaded to client devices 110 over
network 102 for use on client devices 110.

[0026] In the depicted example, network data processing
system 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers consisting of thousands of commercial, governmental,
educational, and other computer systems that route data and
messages. Of course, network data processing system 100
also may be implemented using a number of different types
of networks. For example, network 102 can be comprised of
at least one of the Internet, an intranet, a local area network
(LAN), a metropolitan area network (MAN), or a wide area
network (WAN). FIG. 1 is intended as an example, and not
as an architectural limitation for the different illustrative
embodiments.

[0027] As used herein, “a number of,” when used with
reference to items, means one or more items. For example,
“a number of different types of networks™ is one or more
different types of networks.

[0028] Further, the phrase “at least one of,” when used
with a list of items, means different combinations of one or
more of the listed items can be used, and only one of each
item in the list may be needed. In other words, “at least one
of” means any combination of items and number of items
may be used from the list, but not all of the items in the list
are required. The item can be a particular object, a thing, or
a category.

[0029] For example, without limitation, “at least one of
item A, item B, or item C” may include item A, item A and
item B, or item B. This example also may include item A,
item B, and item C or item B and item C. Of course, any
combinations of these items can be present. In some illus-
trative examples, “at least one of” can be, for example,
without limitation, two of item A; one of item B; and ten of
item C; four of item B and seven of item C; or other suitable
combinations.

[0030] In this illustrative example, user 124 at client
computer 112 can send documents 126 to data management
system 128 for analysis. In this illustrative example, data
management system 128 might extract data items from
documents 126 according to a data schema 130 populated
from a dynamic ontology 132.

[0031] In this illustrative example, data management sys-
tem 128 can receive unstructured data from a number of
different sources. Using a dynamic data schema populated
from a dynamic ontology, data management system 128
identifies data items their inter-relationships within the

US 2023/0237269 Al

unstructured data. Data items that are not recognized within
the schema can stored and used to dynamically update the
schema and ontology according to calculated relationship
weights between the unrecognized data item and known data
items within the ontology.

[0032] With reference now to FIG. 2, a block diagram of
an application environment is depicted in accordance with
an illustrative embodiment. In this illustrative example,
application environment 200 includes components that can
be implemented in hardware such as the hardware shown in
network data processing system 100 in FIG. 1.

[0033] In this illustrative example, data management sys-
tem 202 in application environment 200 can perform meth-
ods for intelligent data discovery with dynamic ontology. As
documents are ingested, data management system 202 iden-
tifies data items within the documents, and extracts data
items that are recognized according to a dynamic schema,
populated from the ontology. Data management system 202
updates the schema and ontology according to calculated
weights for data items that are not recognized.

[0034] As depicted, data management system 202 com-
prises computer system 204 and data manager 206. Data
manager 206 runs in computer system 204. Data manager
206 can be implemented in software, hardware, firmware, or
a combination thereof. When software is used, the opera-
tions performed by data manager 206 can be implemented in
program code configured to run on hardware, such as a
processor unit. When firmware is used, the operations per-
formed by data manager 206 can be implemented in pro-
gram code and data and stored in persistent memory to run
on a processor unit. When hardware is employed, the
hardware may include circuits that operate to perform the
operations in data manager 206.

[0035] In the illustrative examples, the hardware may take
a form selected from at least one of a circuit system, an
integrated circuit, an application specific integrated circuit
(ASIC), a programmable logic device, or some other suit-
able type of hardware configured to perform a number of
operations. With a programmable logic device, the device
can be configured to perform the number of operations. The
device can be reconfigured at a later time or can be perma-
nently configured to perform the number of operations.
Programmable logic devices include, for example, a pro-
grammable logic array, a programmable array logic, a field
programmable logic array, a field programmable gate array,
and other suitable hardware devices. Additionally, the pro-
cesses can be implemented in organic components inte-
grated with inorganic components and can be comprised
entirely of organic components excluding a human being.
For example, the processes can be implemented as circuits
in organic semiconductors.

[0036] Computer system 204 is a physical hardware sys-
tem and includes one or more data processing systems.
When more than one data processing system is present in
computer system 204, those data processing systems are in
communication with each other using a communications
medium. The communications medium can be a network.
The data processing systems can be selected from at least
one of a computer, a server computer, a tablet computer, or
some other suitable data processing system.

[0037] In this illustrative example, human machine inter-
face 208 can enable user 216 to interact with one or more
computers or other types of computing devices in computer
system 204. For example, these computing devices can be

Jul. 27,2023

client devices such as client devices 110 in FIG. 1. As
depicted, human machine interface 208 comprises display
system 210 and input system 212.

[0038] Display system 210 is a physical hardware system
and includes one or more display devices on which graphical
user interface 214 can be displayed. The display devices can
include at least one of a light emitting diode (LED) display,
a liquid crystal display (LCD), an organic light emitting
diode (OLED) display, a computer monitor, a projector, a
flat panel display, a heads-up display (HUD), or some other
suitable device that can output information for the visual
presentation of information.

[0039] Input system 212 is a physical hardware system
and can be selected from at least one of a mouse, a keyboard,
a trackball, a touchscreen, a stylus, a motion sensing input
device, a gesture detection device, a cyber glove, or some
other suitable type of input device. User 216 is a person that
can interact with graphical user interface 214 through user
input generated by input system 212 for computer system
204.

[0040] In this illustrative example, data manager 206 in
computer system 204 is configured to perform intelligent
data discovery using dynamic ontology 220. Dynamic ontol-
ogy 220 defines the terms used to describe and represent an
area of knowledge. Ontological terms are concepts and
properties which capture the knowledge of a domain area.
Concepts are organized in a hierarchy that expresses the
relationships among them by means of superclasses repre-
senting higher level concepts, and subclasses representing
specific (constrained) concepts. Properties are of two types:
those that describe attributes (features) of the concepts, and
those that introduce binary relations between the concepts.

[0041] In the illustrative examples, the concepts and prop-
erties in dynamic ontology 220 are dynamic. In other words,
dynamic ontology 220 automatically evolves to introduce
further concepts and properties that are identified as addi-
tional documents are processed.

[0042] In this illustrative example, data manager 206
identifies a set of data items 222 in unstructured content 224
using a dynamic data schema 226 populated from a dynamic
ontology 220.

[0043] Unstructured content 224 can be one or more
documents received from one or more different sources. As
used here in, “unstructured content” is information, i.e., a
document, that is not arranged according to a pre-set data
model or schema, and therefore cannot be stored in a
traditional relational database or RDBMS. For example,
unstructured content can include text, multimedia, email,
videos, photos, webpages, and audio files.

[0044] Data schema 226 provides a structure for what kind
of data are sought in the Unstructured content 224 (e.g.,
numeric values, financial periods, financial metrics, account-
ing standards, units, currencies, and scales, etc.), how to find
that information (aliases), and where the information is
expected to be located (free floating text, table content, table
headers, etc.).

[0045] For example, the dynamic ontology 220 might
establish (1) what entities should be looked for in the data;
(2) aliases for these entities, or other means of identifying
mentions of these entities in text; and (3) what combinations
of entities should be extracted together. The dynamic ontol-
ogy 220 and the data schema 226 might be associated via an
application programming interface (API) that allows popu-

US 2023/0237269 Al

lation of the data schema 226 directly from the dynamic
ontology 220 based on queried concepts or relationships.

[0046] In some illustrative examples, data manager 206
can use artificial intelligence system 250. Artificial intelli-
gence system 250 is a system that has intelligent behavior
and can be based on the function of a human brain. An
artificial intelligence system comprises at least one of an
artificial neural network, a cognitive system, a Bayesian
network, a fuzzy logic, an expert system, a natural language
system, or some other suitable system. Machine learning is
used to train the artificial intelligence system. Machine
learning involves inputting data to the process and allowing
the process to adjust and improve the function of the
artificial intelligence system.

[0047] In this illustrative example, artificial intelligence
system 250 can include a set of machine learning models
252. A machine learning model is a type of artificial intel-
ligence model that can learn without being explicitly pro-
grammed. A machine learning model can learn based on
training data input into the machine learning model. The
machine learning model can learn using various types of
machine learning algorithms. The machine learning algo-
rithms include at least one of a supervised learning, an
unsupervised learning, a feature learning, a sparse dictionary
learning, and anomaly detection, association rules, or other
types of learning algorithms. Examples of machine learning
models include an artificial neural network, a decision tree,
a support vector machine, a Bayesian network, a genetic
algorithm, and other types of models. These machine learn-
ing models can be trained using data and process additional
data to provide a desired output.

[0048] Data manager 206 may identify data items 222 by
employing natural language processing (NLP) techniques
such as, e.g., named entity recognition, part-of-speech tag-
ging, and word embedding. Data manager 206 may also
identifying a set of relationships between the data item and
other identified data items through a relation detection.

[0049] The natural language processing and relation
detection may employ machine learning algorithms such
comprising at least one of an Expectation-Maximization
algorithm, a Spy algorithm, a partially supervised classifier,
a weakly supervised classifier, a semi-supervised classifier,
a positive-unlabeled classifier, a bag-of-words model, a term
frequency model-inverse document frequency (tf-idf) vec-
torization, a Naive Bayes classifier, a Complement Naive
Bayes classifier, a Logistic Regression classifier, an artificial
neural network classifier, a random forest classifier, a sup-
port vector machine classifier, a distributed word embed-
ding, or some other suitable machine learning algorithm.

[0050] It may be the case that much of the text in a
document is not matched to any entity in data schema 226.
In response to identifying a data item that is not recognized
in the data schema 226, data manager 206 stores the data
item, together with any labels generated that may describing
the context of the document and relationships among the
data items 222 identified therein.

[0051] Data manager 206 generates a weight for the data
item, based on a proximity, such as a pairwise cosine
similarity, to other data items in the dynamic ontology 220.
As additional documents are processed, data manager 206
can dynamically adjust the weight of the data item, adding
the data item to the dynamic schema when the weight
exceeding a threshold.

Jul. 27,2023

[0052] One or more machine learning models 252 can be
retrained based on the updated dynamic ontology 220,
generating updated models to classity documents according
to the updated ontology. Data manager 206 can then classify
the unstructured content 224 according to the dynamic
ontology 220 and the set of data items 222 identified in the
unstructured content 224.

[0053] Computer system 204 can be configured to perform
at least one of the steps, operations, or actions described in
the different illustrative examples using software, hardware,
firmware, or a combination thereof. As a result, computer
system 204 operates as a special purpose computer system
in data manager 206 in computer system 204. In particular,
data manager 206 transforms computer system 204 into a
special purpose computer system as compared to currently
available general computer systems that do not have data
manager 206. In this example, computer system 204 oper-
ates as a tool that can increase at least one of speed,
accuracy, or usability of computer system 204. In particular,
this increase in performance of computer system 204 can be
for the intelligent discovery and classification of unstruc-
tured data.

[0054] The illustration of application environment 200 in
FIG. 2 is not meant to imply physical or architectural
limitations to the manner in which an illustrative embodi-
ment can be implemented. Other components in addition to
or in place of the ones illustrated may be used. Some
components may be unnecessary. Also, the blocks are pre-
sented to illustrate some functional components. One or
more of these blocks may be combined, divided, or com-
bined and divided into different blocks when implemented in
an illustrative embodiment.

[0055] With reference next to FIG. 3, an architecture of an
artificial intelligence model to classify an entity is depicted
in accordance with an illustrative embodiment. Architecture
300 is an example of an architecture used to make one or
more artificial intelligence models. In the illustrative
examples, the same reference numeral may be used in more
than one figure. This reuse of a reference numeral in
different figures represents the same element in the different
figures.

[0056] As used herein, a “sentence” can be an arbitrary
span of contiguous text, rather than an actual linguistic
sentence. A “sequence” refers to the input token sequence to
BERT, which may be a single sentence or multiple sentences
packed together.

[0057] Embeddings 310 are vector representation of
words in the natural language descriptions found in docu-
ments. In architecture 300, each of embeddings 310 is a
combination of three embeddings: positional embeddings to
express the position of words in a sentence, segment embed-
ding to distinguish between sentence pairs, and token
embeddings learned for the specific token from a training
corpus token vocabulary.

[0058] As used herein, a “sentence” can be an arbitrary
span of contiguous text, rather than an actual linguistic
sentence. A “sequence” refers to the input token sequence,
which may be a single sentence or multiple sentences
packed together.

[0059] Embeddings 310 of the input sequence are passed
to all the transformers 312 in a first layer of the stack. The
embeddings are then transformed and propagated to addi-
tional transformers in a next layer (not shown) of the stack.
The output from the last encoder in the encoder-stack is

US 2023/0237269 Al

passed to all the decoders 314 in the decoder-stack, which
output the final contextualized representation 316 of each
input word.

[0060] Turning now to FIG. 4, a task-specific classifica-
tion model is depicted in accordance with an illustrative
embodiment. Model 400 is one example of architecture 300
of FIG. 3.

[0061] Model 400 is a sequence-level task for classifying
a single sentence. As depicted, E represents the input embed-
ding, such as embeddings 310 of FIG. 3. T represents the
contextual representation of a token, such as contextual
representation 316 of FIG. 3. CLS is the special symbol for
classification output.

[0062] Turning next to FIG. 5, a flowchart of a process for
real-time visual guidance is depicted in accordance with an
illustrative embodiment. The process in FIG. 5 can be
implemented in hardware, software, or both. When imple-
mented in software, the process can take the form of
program code that is run by one or more processor units
located in one or more hardware devices in one or more
computer systems. For example, the process can be imple-
mented in data manager 206 in computer system 204 in FI1G.
2

[0063] The process begins by identifying a set of data
items in unstructured content using a dynamic data schema
populated from a dynamic ontology (step 510). The schema
can include known attributes of data items, known aliases of
data items, and specified relationships between data items.

[0064] Responsive to identifying a data item that is not
recognized in the data schema, the process stores the data
item with labels (step 520) and generates a weight for the
data item (step 530). The weight can be based on a proximity
to data elements in the ontology.

[0065] Responsive to the weight exceeding a threshold,
the process updates the schema to include the data item that
was not recognized, (step 540). The process terminates
thereafter.

[0066] With reference next to FIG. 6, a flowchart of a
process for capturing a set of actions is depicted in accor-
dance with an illustrative embodiment.

[0067] Continuing from step 530 of FIG. 5, the process
determines if the weight exceeding a threshold (step 610).
Responsive to determining that the weight does not exceed
a threshold (“no” at step 610), the process dynamically
adjusts the weight of the data item as additional documents
are processed (step 620). Thereafter, the process can you
iterate back to step 610.

[0068] Returning now to step 610, Responsive to deter-
mining that the weight exceeds a threshold (“yes™ at step
610), the process updates the schema to include the data item
that was not recognized, as shown in step 540 of FIG. 5. The
process may terminate thereafter.

[0069] With reference next to FIG. 7, a flowchart of a
process for capturing a set of actions is depicted in accor-
dance with an illustrative embodiment. The process in FIG.
7 is second example of additional processing steps that can
be implemented in conjunction with process 500 of FIG. 5.

[0070] Continuing from step 540, the process updates the
ontology according to the updated schema (step 710). An
artificial intelligence system may use the updated schema to
train, or retrain, one or more machine learning models.
Using these machine learning models, the process classifies

Jul. 27,2023

the unstructured content according to the set of data items
and the dynamic ontology (step 720). Thereafter, the process
terminates.

[0071] The flowcharts and block diagrams in the different
depicted embodiments illustrate the architecture, function-
ality, and operation of some possible implementations of
apparatuses and methods in an illustrative embodiment. In
this regard, each block in the flowcharts or block diagrams
may represent at least one of a module, a segment, a
function, or a portion of an operation or step. For example,
one or more of the blocks can be implemented as program
code, hardware, or a combination of the program code and
hardware. When implemented in hardware, the hardware
may, for example, take the form of integrated circuits that
are manufactured or configured to perform one or more
operations in the flowcharts or block diagrams. When imple-
mented as a combination of program code and hardware, the
implementation may take the form of firmware. Each block
in the flowcharts or the block diagrams can be implemented
using special purpose hardware systems that perform the
different operations or combinations of special purpose
hardware and program code run by the special purpose
hardware.

[0072] In some alternative implementations of an illustra-
tive embodiment, the function or functions noted in the
blocks may occur out of the order noted in the figures. For
example, in some cases, two blocks shown in succession can
be performed substantially concurrently, or the blocks may
sometimes be performed in the reverse order, depending
upon the functionality involved. Also, other blocks can be
added in addition to the illustrated blocks in a flowchart or
block diagram.

[0073] Turning now to FIG. 8, a block diagram of a data
processing system is depicted in accordance with an illus-
trative embodiment. Data processing system 800 can be
used to implement server computer 104, server computer
106, client devices 110, in FIG. 1. Data processing system
800 can also be used to implement computer system 204 in
FIG. 2. In this illustrative example, data processing system
800 includes communications framework 802, which pro-
vides communications between processor unit 804, memory
806, persistent storage 808, communications unit 810, input/
output (I/O) unit 812, and display 814. In this example,
communications framework 802 takes the form of a bus
system.

[0074] Processor unit 804 serves to execute instructions
for software that can be loaded into memory 806. Processor
unit 804 includes one or more processors. For example,
processor unit 804 can be selected from at least one of a
multicore processor, a central processing unit (CPU), a
graphics processing unit (GPU), a physics processing unit
(PPU), a digital signal processor (DSP), a network proces-
sor, or some other suitable type of processor. Further,
processor unit 804 can may be implemented using one or
more heterogeneous processor systems in which a main
processor is present with secondary processors on a single
chip. As another illustrative example, processor unit 804 can
be a symmetric multi-processor system containing multiple
processors of the same type on a single chip.

[0075] Memory 806 and persistent storage 808 are
examples of storage devices 816. A storage device is any
piece of hardware that is capable of storing information,
such as, for example, without limitation, at least one of data,
program code in functional form, or other suitable informa-

US 2023/0237269 Al

tion either on a temporary basis, a permanent basis, or both
on a temporary basis and a permanent basis. Storage devices
816 may also be referred to as computer-readable storage
devices in these illustrative examples. Memory 806, in these
examples, can be, for example, a random-access memory or
any other suitable volatile or non-volatile storage device.
Persistent storage 808 may take various forms, depending on
the particular implementation.

[0076] For example, persistent storage 808 may contain
one or more components or devices. For example, persistent
storage 808 can be a hard drive, a solid-state drive (SSD), a
flash memory, a rewritable optical disk, a rewritable mag-
netic tape, or some combination of the above. The media
used by persistent storage 808 also can be removable. For
example, a removable hard drive can be used for persistent
storage 808.

[0077] Communications unit 810, in these illustrative
examples, provides for communications with other data
processing systems or devices. In these illustrative
examples, communications unit 810 is a network interface
card.

[0078] Input/output unit 812 allows for input and output of
data with other devices that can be connected to data
processing system 800. For example, input/output unit 812
may provide a connection for user input through at least one
of'a keyboard, a mouse, or some other suitable input device.
Further, input/output unit 812 may send output to a printer.
Display 814 provides a mechanism to display information to
a user.

[0079] Instructions for at least one of the operating sys-
tem, applications, or programs can be located in storage
devices 816, which are in communication with processor
unit 804 through communications framework 802. The
processes of the different embodiments can be performed by
processor unit 804 using computer-implemented instruc-
tions, which may be located in a memory, such as memory
806.

[0080] These instructions are program instructions and are
also referred to as program code, computer usable program
code, or computer-readable program code that can be read
and executed by a processor in processor unit 804. The
program code in the different embodiments can be embodied
on different physical or computer-readable storage media,
such as memory 806 or persistent storage 808.

[0081] Program code 818 is located in a functional form
on computer-readable media 820 that is selectively remov-
able and can be loaded onto or transferred to data processing
system 800 for execution by processor unit 804. Program
code 818 and computer-readable media 820 form computer
program product 822 in these illustrative examples. In the
illustrative example, computer-readable media 820 is com-
puter-readable storage media 824.

[0082] In these illustrative examples, computer-readable
storage media 824 is a physical or tangible storage device
used to store program code 818 rather than a medium that
propagates or transmits program code 818. Computer-read-
able storage media 824, as used herein, is not to be construed
as being transitory signals per se, such as radio waves or
other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a
fiber-optic cable), or electrical signals transmitted through a
wire. The term “non-transitory” or “tangible”, as used

Jul. 27,2023

herein, is a limitation of the medium itself (i.e., tangible, not
a signal) as opposed to a limitation on data storage persis-
tency (e.g., RAM vs. ROM).

[0083] Alternatively, program code 818 can be transferred
to data processing system 800 using a computer-readable
signal media. The computer-readable signal media are sig-
nals and can be, for example, a propagated data signal
containing program code 818. For example, the computer-
readable signal media can be at least one of an electromag-
netic signal, an optical signal, or any other suitable type of
signal. These signals can be transmitted over connections,
such as wireless connections, optical fiber cable, coaxial
cable, a wire, or any other suitable type of connection.
[0084] Further, as wused herein, “computer-readable
media” can be singular or plural. For example, program code
818 can be located in computer-readable media 820 in the
form of a single storage device or system. In another
example, program code 818 can be located in computer-
readable media 820 that is distributed in multiple data
processing systems. In other words, some instructions in
program code 818 can be located in one data processing
system while other instructions in program code 818 can be
located in one data processing system. For example, a
portion of program code 818 can be located in computer-
readable media 820 in a server computer while another
portion of program code 818 can be located in computer-
readable media 820 located in a set of client computers.
[0085] The different components illustrated for data pro-
cessing system 800 are not meant to provide architectural
limitations to the manner in which different embodiments
can be implemented. In some illustrative examples, one or
more of the components may be incorporated in or otherwise
form a portion of, another component. For example,
memory 806, or portions thereof, may be incorporated in
processor unit 804 in some illustrative examples. The dif-
ferent illustrative embodiments can be implemented in a
data processing system including components in addition to
or in place of those illustrated for data processing system
800. Other components shown in FIG. 8 can be varied from
the illustrative examples shown. The different embodiments
can be implemented using any hardware device or system
capable of running program code 818.

[0086] The description of the different illustrative embodi-
ments has been presented for purposes of illustration and
description and is not intended to be exhaustive or limited to
the embodiments in the form disclosed. The different illus-
trative examples describe components that perform actions
or operations. In an illustrative embodiment, a component
can be configured to perform the action or operation
described. For example, the component can have a configu-
ration or design for a structure that provides the component
an ability to perform the action or operation that is described
in the illustrative examples as being performed by the
component. Further, to the extent that terms “includes”,
“including”, “has”, “contains”, and variants thereof are used
herein, such terms are intended to be inclusive in a manner
similar to the term “comprises” as an open transition word
without precluding any additional or other elements.
[0087] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration but are not intended to be exhaustive or limited
to the embodiments disclosed. Not all embodiments will
include all of the features described in the illustrative
examples. Further, different illustrative embodiments may

US 2023/0237269 Al

provide different features as compared to other illustrative
embodiments. Many modifications and variations will be
apparent to those of ordinary skill in the art without depart-
ing from the scope and spirit of the described embodiment.
The terminology used herein was chosen to best explain the
principles of the embodiment, the practical application or
technical improvement over technologies found in the mar-
ketplace, or to enable others of ordinary skill in the art to
understand the embodiments disclosed here.
What is claimed is:

1. A computer-implemented method for intelligent data
discovery with dynamic ontology, the method comprising:
using a number of processors to perform the steps of:

identifying a set of data items in unstructured content
using a dynamic data schema populated from a
dynamic ontology;
responsive to identifying a data item that is not recog-
nized in the data schema:
storing the data item with labels;
generating a weight for the data item; and
responsive to the weight exceeding a threshold,
updating the schema to include the data item that
was not recognized.
2. The method of claim 1, wherein the schema comprises:
known attributes of data items;
known aliases of data items; and
specified relationships between data items.
3. The method of claim 1, further comprising:
identifying the data item using a named entity recogni-
tion; and
identifying a set of relationships that relate the data item
to the set of data items through a relation detection.
4. The method of claim 1, wherein the weight is based on
a proximity to data elements in the ontology.
5. The method of claim 4, further comprising:
dynamically adjusting the weight of the data item as
additional documents are processed.
6. The method of claim 1, further comprising:
responsive to updating the schema, updating the ontology
according to the schema.
7. The method of claim 1, further comprising:
classifying the unstructured content according to the set of
data items and the dynamic ontology.
8. A computer system for intelligent data discovery with
dynamic ontology, the computer system comprising:
a storage device configured to store program instructions;
and
one or more processors operably connected to the storage
device and configured to execute the program instruc-
tions to cause the system to:
identify a set of data items in unstructured content
using a dynamic data schema populated from a
dynamic ontology;
responsive to identifying a data item that is not recog-
nized in the data schema:
store the data item with labels;
generate a weight for the data item; and
responsive to the weight exceeding a threshold,
update the schema to include the data item that
was not recognized.

Jul. 27,2023

9. The computer system of claim 8, wherein the schema
comprises:

known attributes of data items;

known aliases of data items; and

specified relationships between data items.

10. The computer system of claim 8, wherein the one or
more processors are further configured to execute the pro-
gram instructions to cause the system to:

identify the data item using a named entity recognition;
and

identify a set of relationships that relate the data item to
the set of data items through a relation detection.

11. The computer system of claim 8, wherein the weight

is based on a proximity to data elements in the ontology.

12. The computer system of claim 11, further comprising:

dynamically adjusting the weight of the data item as
additional documents are processed.

13. The computer system of claim 8, wherein the one or
more processors are further configured to execute the pro-
gram instructions to cause the system to:

responsive to updating the schema, update the ontology
according to the schema.

14. The computer system of claim 8, wherein the one or
more processors are further configured to execute the pro-
gram instructions to cause the system to:

classify the unstructured content according to the set of
data items and the dynamic ontology.

15. A computer program product for intelligent data
discovery with dynamic ontology, the computer program
product comprising:

a computer-readable storage medium having program
instructions embodied thereon to perform the steps of:
identifying a set of data items in unstructured content

using a dynamic data schema populated from a

dynamic ontology;

responsive to identifying a data item that is not recog-

nized in the data schema:

storing the data item with labels;

generating a weight for the data item; and

responsive to the weight exceeding a threshold,
updating the schema to include the data item that
was not recognized.

16. The computer program product of claim 15, wherein
the schema comprises:

known attributes of data items;

known aliases of data items; and

specified relationships between data items.

17. The computer program product of claim 15, further
comprising:

identifying the data item using a named entity recogni-
tion; and

identifying a set of relationships that relate the data item
to the set of data items through a relation detection.

18. The computer program product of claim 15, wherein
the weight is based on a proximity to data elements in the
ontology.

19. The computer program product of claim 18, further
comprising:

dynamically adjusting the weight of the data item as
additional documents are processed.

20. The computer program product of claim 15, further

comprising:

responsive to updating the schema, updating the ontology
according to the schema.

US 2023/0237269 Al Jul. 27,2023

21. The computer program product of claim 15, further
comprising:
classifying the unstructured content according to the set of
data items and the dynamic ontology.

#* #* #* #* #*

