a2 United States Patent

Wesemann et al.

US011886868B2

US 11,886,868 B2
Jan. 30, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

BOOT AND UPDATE FROM RUNTIME
MERGED IMAGE FRAGMENTS

Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(Us)

Matthaus Alden Wesemann, Redmond,
WA (US); Hakki Tunc Bostanci,
Redmond, WA (US); Aaron Farmer,
Seattle, WA (US)

Inventors:

MICROSOFT TECHNOLOGY
LICENSING, LLC, Redmond, WA
(Us)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.
Appl. No.: 17/527,067
Filed: Nov. 15, 2021

Prior Publication Data

US 2023/0153105 Al May 18, 2023

Int. CL.

GO6F 8/656 (2018.01)

GO6F 8/65 (2018.01)

GO6F 9/4401 (2018.01)

HO4L 67/00 (2022.01)

U.S. CL

CPC ... GO6F 8/656 (2018.02); GOGF 8/66

(2013.01); GOGF 9/4408 (2013.01); HO4L
67/34 (2013.01)
Field of Classification Search

CPC ... GOGF 8/656; GOGF 8/66; GOGF 9/4408;
HO4L 67/34
USPC oo 717/168-178

See application file for complete search history.

g

(56) References Cited

U.S. PATENT DOCUMENTS
5,732,275 A * 3/1998 Kullickcccocuenne. GOGF 8/656
713/1
7,346,672 B2* 3/2008 Harvey, IV GOGF 8/654
709/221
7,366,824 B2* 4/2008 Chiangcc.c..... GOGF 8/658
711/100
8,209,680 B1* 6/2012 Le .ccccocovvvvvnccne GOG6F 16/188
713/1

9,141,368 B2 9/2015 Malkhasyan et al.

10,666,517 B2 5/2020 Maknojia et al.

10,936,296 B2* 3/2021 Mitracccocevvvvenene. GOG6F 8/36
2013/0167140 Al* 6/2013 Androncik GOG6F 8/61
717/177
2016/0291965 Al* 102016 Li GOGF 9/445
2020/0356354 Al* 112020 Mitracccceevennne GOG6F 16/903

OTHER PUBLICATIONS

Dilley, John, et al. “Globally distributed content delivery.” IEEE
Internet Computing 6.5 (2002): pp. 50-58. (Year: 2002).*

(Continued)

Primary Examiner — Satish Rampuria
(74) Attorney, Agent, or Firm — Newport IP, LL.C; Han
K. Gim

&7

A feature is updated on a computing device. One or more
composite image files are accessed that correspond to
updates to be implemented in the computing device. The
composite image files are signed containers. A runtime
in-memory merge of the composite image files is performed.
The merged composite image files are exposed as a read-
only volume. The features are made available to the com-
puting device. A system boot using the read-only volume can
be initiated.

ABSTRACT

20 Claims, 7 Drawing Sheets

302 determining an update that is
to be implemented in the operating
system

!

304 accessing a plurality of
composite image files that
correspond to the update

l

306 performing a runtime in-
memory merge of the composite
image files on the computing device

l

308 exposing the merged
composite image files as a read-
only volume

l

310 initiating a system boot of the
computing device using the read-
only volume

US 11,886,868 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Perkins, Jeff H., et al. “Automatically patching errors in deployed
software.” Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. 2009.pp. 87-102 (Year: 2009).*
Stewart, David B., Richard A. Volpe, and Pradeep K. Khosla.
“Design of dynamically reconfigurable real-time software using
port-based objects.” IEEE Transactions on software engineering
23.12 (1997): pp. 759-776. (Year: 1997).*

Doukas, Charalampos, Thomas Pliakas, and Ilias Maglogiannis.
“Mobile healthcare information management utilizing Cloud Com-
puting and Android OS.” 2010 Annual International Conference of
the IEEE Engineering in Medicine and Biology. IEEE, 2010. pp.
1037-1040 (Year: 2010).*

Enck, William, Machigar Ongtang, and Patrick McDaniel. “Under-
standing android security.” IEEE security & privacy 7.1 (2009): pp.
50-57. (Year: 2009).*

Shvachko, Konstantin, et al. “The hadoop distributed file system.”
2010 IEEE 26th symposium on mass storage systems and technolo-
gies (MSST). Ieee, 2010.pp. 1-10 (Year: 2010).*

“International Search Report and Written Opinion Issued in PCT
Application No. PCT/US22/041132”, dated Nov. 28, 2022, 11
Pages.

* cited by examiner

U.S. Patent Jan. 30, 2024 Sheet 1 of 7 US 11,886,868 B2

Remote

100
‘\ Source

142

Updates
108
Application 114
Registry 116 Libraries 118
Stack / Operating System (OS) 112
138) Network(s)
Drivers 110 144
APl 140
/\
Computing Device 102
Storage 104 — | Central Processing Unit
(CPU) 122
First Partition 106(1)
] System Updates 108 | Memory 124
| Drivers110 || Registry116 | RAM 126
] 0S 112 I] Libraries 118 [
Application 114
l i — l ROM 128
Second Partition 106(2
— Boot Manager 130

@

® a 170 Controller

® 132

N-th Partition 106(N) (Netwmmtefface
Bus 1§§)

FIG. 1A

U.S. Patent Jan. 30, 2024 Sheet 2 of 7 US 11,886,868 B2

0S Image
150

Servicing Stack
151

FIG. 1B

,,,,,,

Files
152

U.S. Patent Jan. 30, 2024 Sheet 3 of 7 US 11,886,868 B2

~
<
i
! 3
/ |
i |
f x
)
/" -
/
/
/
/
{)
H wpoead
[<
i)
I H
i €
{] on
Lo 4]
e
[

|
FIG. 1C

US 11,886,868 B2

Sheet 4 of 7

Jan. 30, 2024

U.S. Patent

¢ 'O

914 uoifay eieq |jews OFC

uoi8ay eieq 0€¢

|4 uoi8ay eiepeldiN 0Ze

9ji4 100y OTC

U.S. Patent Jan. 30, 2024 Sheet 5 of 7 US 11,886,868 B2

(83}
(e
o

start

302 determining an update that is
to be implemented in the operating
system

v

304 accessing a plurality of
composite image files that
correspond to the update

306 performing a runtime in-
memory merge of the composite
image files on the computing device

308 exposing the merged
composite image files as a read-
only volume

310 initiating a system boot of the
computing device using the read-
only volume

FIG. 3

U.S. Patent

Jan. 30, 2024 Sheet 6 of 7

ExY
Q
(e}

start

402 determining one or more
operating system updates that are
to be implemented in a computing

device

v

404 accessing a plurality of files and
data associated with the updates

406 generating a plurality of
composite image files for
implementing the update

408 sending the signed containers
to the computing device

FIG. 4

US 11,886,868 B2

U.S. Patent Jan. 30, 2024 Sheet 7 of 7 US 11,886,868 B2

200
start

502 accessing a plurality of
composite image files that
correspond to an update that is to
be implemented in the computing
device

504 performing a runtime in-
memory merge of the composite
image files

506 exposing the merged
composite image files as a read-
only volume

508 initiating a system boot using
the read-only volume

FIG. 5

US 11,886,868 B2

1

BOOT AND UPDATE FROM RUNTIME
MERGED IMAGE FRAGMENTS

BACKGROUND

In computing systems, operating systems, applications,
and other software are frequently updated to provide
improved features, fix bugs, and improve the security of a
computing device by protecting against new malware
threats. Software updates may be installed by running
update programs from media such as a CD-ROM. Updates
can also be downloaded via the Internet. Many applications
include an automatic update feature that checks for updated
versions and downloads/installs the updates, typically with
user permissions.

Operating systems may also have an update feature that
will download and install new versions and patches to the
operating system. In a typical update, various files and data
may be downloaded, and the process may involve additional
files and data being downloaded as the update process
continues. Once the update is completed and the updates are
installed, the updated software may be loaded for execution,
and the files and data that were used for the update may be
deleted.

It is with respect to these and other considerations that the
disclosure made herein is presented.

SUMMARY

Systems and methods are described that enable a com-
puting device to maintain and update applications and data,
such an operating system (OS), while improving the opera-
tion and efficiency of the mechanisms for doing so. Such
systems and methods may be implemented, for example, in
systems that use operating systems such as Windows. In an
embodiment, operating system images may be composed
using pre-packaged image fragments that contain a portion
of'the total file and registry payload for an image. There may
be a plurality of available fragments that an image can select
to include in the image. During boot, these fragments may
be merged together and exposed as a virtual volume/registry
and may be largely invisible to runtime code, thus allowing
for a quick and dynamic combination to create a clean,
read-only OS image.

The disclosed embodiments allow for the complex pro-
cessing of system updates to be moved off the device, for
example by having the fragments built and signed in a build
lab. Since the fragments are built and signed in the build lab,
the disclosed embodiments provide improved security com-
pared to current operating system update methods. The file
system metadata and registry hives may also be verified
during boot. The disclosed embodiments can enable faster
operating system updates as well as improvements in /O
speed due to the format for the image fragments.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key or essential features of the claimed
subject matter, nor is it intended to be used as an aid in
determining the scope of the claimed subject matter. The
term “techniques,” for instance, may refer to system(s),
method(s), computer-readable instructions, module(s), algo-
rithms, hardware logic, and/or operation(s) as permitted by
the context described above and throughout the document.

BRIEF DESCRIPTION OF THE DRAWINGS

The Detailed Description is described with reference to
the accompanying figures. In the figures, the left-most

10

15

20

25

30

35

40

45

50

55

60

65

2

digit(s) of a reference number identifies the figure in which
the reference number first appears. The same reference
numbers in different figures indicate similar or identical
items. References made to individual items of a plurality of
items can use a reference number with a letter or a sequence
of letters to refer to each individual item. Generic references
to the items may use the specific reference number without
the sequence of letters.

FIG. 1A an example computer architecture for a computer
capable of implementing a system update as described
herein.

FIG. 1B illustrates an example image build using flat files.

FIG. 1C illustrates an example image build using com-
posite images.

FIG. 2 illustrates an example image layout in one embodi-
ment.

FIG. 3 is a flow diagram of an illustrative process for
system updates in accordance with the present disclosure.

FIG. 4 is a flow diagram of an illustrative process for
system updates in accordance with the present disclosure.

FIG. 5 is a flow diagram of an illustrative process for
system updates in accordance with the present disclosure.

DETAILED DESCRIPTION

The frequency of system updates, such as operating
system updates, is increasing as system providers continue
to push out feature upgrades as well as address security
threats. Today, operating systems may run many loose files
on disk and keys/values in the registry. These files and
registry states may, for example, be defined by thousands of
components, e.g., XML, manifests, grouped into hundreds
of packages. Thus when a new OS image is desired, or the
OS composition is to be modified, or the OS is to be updated,
the servicing stack must perform complex and costly pro-
cessing in order to translate manifests into raw file and
registry operations. For any given update, the servicing stack
typically handles such operations, resulting in a significant
amount of processing which can introduce errors, consume
power, and is susceptible to corruption. It would be benefi-
cial in terms of speed, efficiency, and security if the update
methodology was converged to a single update model. Users
may also benefit in that consolidating testing resources can
provide a more reliable update process. Additionally, when
systems and applications are updated such as an operating
system update, when the update fails, it is desirable to return
the operating system to a known clean state. The known
clean state may refer generally to a user mode operational
state that is configured to support a specific operational
scenario. However, it may be difficult to return to such a
state, as some portion of the updates may remain in the
reverted operating system. In many cases, it may not be
possible to remove all updates that were added to the
operating system, thereby making it difficult or impossible to
completely achieve a clean separation between the previous
and new operating system.

While some closed systems may provide a high degree of
control and security by using a single signed container and
allowing for all block reads to be signed and verified, it is
difficult to provide flexibility and customization with such a
model. Furthermore, using a single static image does not
support customizable options. System providers may want
to select specific features, provide features on demand,
language packs, and the like. The present disclosure allows
for read only states that can be provided via pre-generated
packages for a given build, which may be referred to as
image fragments. In an embodiment, an image fragment

US 11,886,868 B2

3

may be created by front-loading the associated complex
processing on a per-package basis in the build lab and
capturing the result in a single archive file. Image fragments
are not expanded or applied to disk. Rather, a set of image
fragments may be logically merged at runtime into a com-
bined view of a complete OS image. This process is similar
to mounting a virtual disk but combines several archives into
a single namespace. This merge process can be performed
very quickly since the costly processing required to convert
packages/components into a file system and registry primi-
tives has already been completed.

In an embodiment, image fragments may be immutable,
and a mechanism may be provided to capture file system
modifications on the target system. In one example, a
mechanism may capture modifications made to a read-only
OS image and save the modifications in a separate and
persistent read-write layer. Such a mechanism may provide
a form of state separation, but does not require OS compo-
nents, applications, or drivers to be made state separation
aware. In one embodiment the modifications (e.g., adds,
modifications, deletes) can be captured in a system overlay
that includes a read-only underlay and a read-write overlay
where the modifications are captured. The underlay and
overlay may be combined to present a complete OS image
to the system.

Implementation of the disclosed embodiments allow for
adding, removing, or updating packages in the OS as a fast,
efficient configuration change, modifying the list of image
fragments contributing to an image. In an embodiment,
composable file system functionality may be implemented
that can be used to efficiently construct the desired
namespace. The OS may be laid out in a folder on a drive as
a collection of image fragment composable images (CIMs).
One or more of these image fragment CIMs can be merged
at boot time to construct a merged CIM that describes the
desired image. In some embodiments, the image fragment
CIMS may be merged at runtime.

In one embodiment, during an upgrade event, a new
volume may be manifested with the updated packages stored
as CIMs. The servicing stack may then configure the boot
configuration entries to merge the new CIMs with the
original base CIM if this is a hotfix, or set up a new merged
CIM if this is a full feature update. On the next reboot, the
new merged CIM may be generated, and the system may
boot from the new merged CIM.

In the description that follows, embodiments are
described with reference to operations that are performed by
one or more computing systems. If such operations are
implemented in software, one or more processors of the
associated computing system that performs the operations
may direct the operation of the computing system in
response to having executed computer-executable instruc-
tions. For example, such computer-executable instructions
may be embodied on one or more computer-readable media
that form a computer program product. An example of such
an operation involves the manipulation of data. The com-
puter-executable instructions (and the manipulated data)
may be stored in the memory of the computing system.

Embodiments described herein may comprise or utilize a
special purpose or general-purpose computer including
computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail
below. Embodiments described herein also include physical
and other computer-readable media for carrying or storing
computer-executable instructions and/or data structures.
Such computer-readable media can be any available media
that can be accessed by a general purpose or special purpose

10

15

20

25

30

35

40

45

50

55

60

65

4

computer system. Computer-readable media that store com-
puter-executable instructions are physical storage media.

Computer storage media includes RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
tangible medium which can be used to store desired program
code means in the form of computer-executable instructions
or data structures and which can be accessed by a general
purpose or special purpose computer.

Computer-executable instructions comprise, for example,
instructions and data which, when executed at a processor,
cause a general-purpose computer, special purpose com-
puter, or special purpose processing device to perform a
certain function or group of functions. The computer execut-
able instructions may be, for example, binaries, intermediate
format instructions such as assembly language, or even
source code. Although the subject matter has been described
in language specific to structural features and/or method-
ological acts, it is to be understood that the subject matter
defined in the appended claims is not necessarily limited to
the described features or acts described above. Rather, the
described features and acts are disclosed as example forms
of implementing the claims.

Those skilled in the art will appreciate that the invention
may be practiced in network computing environments with
many types of computer system configurations, including,
personal computers, desktop computers, laptop computers,
message processors, hand-held devices, multi-processor sys-
tems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe com-
puters, mobile telephones, PDAs, pagers, routers, switches,
and the like. The invention may also be practiced in distrib-
uted system environments where local and remote computer
systems, which are linked (either by hardwired data links,
wireless data links, or by a combination of hardwired and
wireless data links) through a network, both perform tasks.
In a distributed system environment, program modules may
be located in both local and remote memory storage devices.

In a computing environment, a volume system may use a
volume exposure system to expose a volume to a file system.
The computing environment may be, for example, imple-
mented in the computing system.

The volume may include storage represented in the form
of contiguous logical addresses. In this description and in the
claims, a “volume” is defined as any group of one or more
logical address extents that is presented to a file system in
the form of a single namespace. When the file system issues
a read or write request to the volume system, the file system
request may include a logical address. The volume system is
configured to recognize the part of the volume that is being
addressed using the logical address provided by the file
system. Thus, from the file system point of view, the file
system has access to the entire volume logically addressable
throughout the entire extent of the volume.

Because not all storage locations in the volume have the
same sets of features or characteristics, the volume may be
viewed as a heterogenic volume, being composed of por-
tions that have different sets of features or characteristics. A
mapping system may map each of at least some of the
logical storage locations of the volume to a corresponding
physical storage location in underlying storage systems.

The term “physical” storage location or “physical”
address may reference a storage location or address, respec-
tively, in the underlying storage systems, thus distinguishing
the addressing scheme (i.e., “logical addressing scheme”)
used by the file system when addressing the heterogenic
volume from the addressing scheme (i.e., “physical address-

US 11,886,868 B2

5

ing scheme”) used by the underlying storage system to
access storage offered by the corresponding underlying
storage system. For instance, the file system may use “logi-
cal” addresses to address the storage within the volume.
However, the storage systems may use “physical” addresses
to access the respective storage locations.

In some embodiments, there may be one or more further
levels of mapping abstraction that separate even the under-
lying storage system from the actual physical storage
medium. For example, the underlying storage system might
be physical storage systems such as flash memory, solid-
state disks, mechanical disks and so forth. However, the
storage system might also comprise some type of consoli-
dated storage system that offers up addresses that are
mapped to further underlying storage systems. Furthermore,
there may be one or more transformations (such as encryp-
tion or compression) that the storage system applies to the
data prior to storing to a given storage location, and one or
more reverse transformations (such as decryption or decom-
pression) that the storage system applies to the data after
reading data from the given storage location.

In some embodiments, granularity of storage locations
may be represented by a basic unit that the mapping system
works with in order to map storage locations. Each unit may
represent contiguous address locations (e.g., contiguous
logical blocks) in the logical addressing scheme recognized
by the file system. In order to simplify the mapping, each
unit may also represent contiguous address locations in the
physical addressing scheme.

Smaller units may have the advantage of having more
fine-grained control over the boundaries between storage of
different sets of features or characteristics in the volume, but
have the disadvantage of increasing the number of mappings
that the mapping system keeps track of.

The file system may include metadata about the volume
such as the size of the volume, and the size and logical
storage location(s) of each of the classes. The metadata
might also include the sets of features or characteristics of
each of the classes. The metadata may, for example, be
persisted. The file system may use this metadata to make
decisions regarding where to place a file system namespace
(such as a directory or file), or a portion thereof, into the
volume. There may be different types of metadata, e.g.
system metadata and user metadata. System metadata refers
to information kept by the file system to facilitate basic
operations, including data allocation, ensuring system integ-
rity, etc. User metadata refers to metadata that tracks file
names, directory structures, and other user generated infor-
mation

Turning now to FIG. 1A, illustrated is an example com-
puting architecture 100 that receives updates 108 on a
computing device 102. For example, updates may be
received to update one or more system components.
Example system components include, but are not limited to,
drivers 110, an operating system (OS) 112, an application
114, a registry 116, and/or libraries 118.

As illustrated in FIG. 1A, the computing device 102 may
include one or more drive(s) 104 (hereinafter referred to as
the “drive”) having computer-readable media that provides
nonvolatile storage for the computing device 102. Example
drives include, but are not limited to, SATA-type solid-state
hard drives, SATA-type hard disks, PATA-type solid-state
hard drives, PATA-type hard disks, and/or any other drive-
type suitable for providing non-volatile computer-readable
media to a computing device. The storage 104 may include
partitions 106 for logically separating one or more system
components and/or data objects. In the illustrated example,

20

30

40

45

50

55

6

the storage 104 is separated into a first partition 106(1), a
second partition 106(2), and an N-th partition 106(N). In
some embodiments, at least one of the partitions 106 stores
drivers 110 and an operating system (OS) 112 to enable a
boot manager 130 to initiate the drivers 110 and to load the
OS 112 into a memory 124. In the illustrated example, the
memory 124 includes a random-access memory (“RAM”)
126 and a read-only memory (“ROM”) 128. As further
illustrated, the computing device 102 includes a central
processing unit (“CPU”) 122 that is connected, via a bus
136, to the storage 104, the memory 124, and the boot
manager 130. In some embodiments, the bus 136 further
connects an input/output (I/O) controller 132 and/or a net-
work interface 134.

It can be appreciated that the system components
described herein (e.g., the drivers 110, the OS 112, and/or
the application 114) may, when loaded into the CPU 122 and
executed, transform the CPU 122 and the overall computing
device 102 from a general-purpose computing system into a
special-purpose computing system customized to facilitate
the functionality presented herein. The CPU 122 may be
constructed from any number of transistors or other discrete
circuit elements, which may individually or collectively
assume any number of states. More specifically, the CPU
122 may operate as a finite-state machine, in response to
executable instructions contained within the software mod-
ules disclosed herein. These computer-executable instruc-
tions may transform the CPU 122 by specifying how the
CPU 122 transitions between states, thereby transforming
the transistors or other discrete hardware elements consti-
tuting the CPU 122.

The storage 104 and associated computer-readable media
provide non-volatile storage for the computing device 102.
Although the description of computer-readable media con-
tained herein refers to one or more storage devices, such as
a solid-state drive and/or a hard disk, it should be appreci-
ated by those skilled in the art that computer-readable media
can be any available computer storage media or communi-
cation media that can be accessed by a computing architec-
ture such as, for example, the computing architecture 100.
Communication media includes computer-readable instruc-
tions, data structures, program modules, and/or other data in
a modulated data signal such as a carrier wave or other
transport mechanism and includes any delivery media. The
term “modulated data signal” means a signal that has one or
more of its characteristics changed or set in a manner so as
to encode information in the signal. By way of example, and
not limitation, communication media includes wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared and other
wireless media. Combinations of the any of the above are
also included within the scope of computer-readable media.

By way of example, and not limitation, computer storage
media may include volatile and non-volatile, removable and
non-removable media implemented in any method or tech-
nology for storage of information such as computer-readable
instructions, data structures, program modules or other data.
For example, computer storage media includes, but is not
limited to, RAM, ROM, EPROM, EEPROM, SSD, SCM,
flash memory or other solid-state memory technology, CD-
ROM, digital versatile disks (“DVD”), HD-DVD, BLU-
RAY, or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can be accessed by the
computing device 102. For purposes of the claims, the
phrase “computer storage medium,” “computer-readable

US 11,886,868 B2

7

storage medium,” and variations thereof, does not include
waves, signals, and/or other transitory and/or intangible
communication media, per se.

The boot manager 130 may access the OS 112 from the
storage 104 (or a partition thereof) and may load the OS 112
into the memory 124 for runtime execution by the comput-
ing device 102 (e.g., by invoking an OS boot loader). The
1/O controller 132 may receive and process input from a
number of other devices, including a keyboard, mouse, or
electronic stylus (not shown in FIG. 1). Similarly, the I/O
controller 132 may provide output to a display screen, a
printer, or other type of output device (also not shown in
FIG. 1). The network interface 134 may enable the comput-
ing device 102 to connect to one or more network(s) 144
such as a local area network (LAN), a wide area network
(WAN), a wireless local area network (WLAN), or any other
suitable network for passing information between the com-
puting device 102 and a remote resource 142.

As described above, the storage 104 may include multiple
partitions 106 for logically separating one or more system
components and/or data objects. In the illustrated example,
the storage 104 includes the first partition 106(1) which
stores instances of the drivers 110, the OS 112, the appli-
cation 114, the registry 116, and the libraries 118. The
drivers 110 may include one or more programs for control-
ling one or more devices that are communicatively coupled
to the computing device 102 such as, for example, printers,
displays, cameras, soundcards, network cards, computer
storage devices, etc. The OS 112 may be any suitable system
software for managing computer hardware and/or software
resources and for providing services to the application 114
and/or other applications (not shown). An example OS 112
may include, but is not limited to, various versions of
MICROSOFT WINDOWS (e.g., WINDOWS 8.1 or 10,
WINDOWS EMBEDDED STANDARD 7, etc.), Mac OS
X, 108, etc.

The application 114 may be a computer program that is
configured to be run by the OS 112 to perform one or more
coordinated functions, tasks, activities. The registry 116 may
correspond to a database containing information usable to
boot and/or configure the OS 112, system-wide software
settings that control the operation of the OS 112, security
databases, and/or user specific configuration settings. The
registry 116 may further contain information associated with
in-memory volatile data such as, for example, a current
hardware state of the OS 112 (e.g., which drivers are
currently loaded and in use by the OS 112).

The libraries 118 may include a collection of non-volatile
resources that are usable (e.g., callable) by the application
114 and/or other applications (not shown). Example
resources include, but are not limited to, pre-written code
and/or subroutines, configuration data, and/or classes (e.g.,
extensible program-code-templates for creating objects of
various types). In various implementations, the libraries 118
may enable the application 114 to call upon various system
services provided by the OS 112. For example, the libraries
118 may include one or more subsystem Dynamic Link
Libraries (DLLs) configured for implementing and/or
exposing Application Programming Interface (API) func-
tionalities of the OS 112 to the application 114.

Referring to FIG. 1B, illustrated are a plurality of loose
files 152 on disk that may be associated with keys/values in
the registry. The files 152 and registry state may be defined
as a plurality of components grouped into a plurality of
packages. In order to create a new OS image 150, the

10

15

20

25

30

35

40

45

50

55

60

65

8

servicing stack 151 must perform complex and costly pro-
cessing to translate manifests into raw file and registry
operations.

FIG. 1C illustrates an example embodiment in accordance
with the present disclosure. An image fragment 154 may be
created by front-loading the complex processing described
above on a per-package basis by a build process 153, for
example in a build lab, and capturing the result in a single
archive file. A set of image fragments 154 may be fragments
that can be logically merged at runtime into a combined
view of a complete OS image 150.

In some embodiments, the updates for a given package
may be provided as a signed container. A runtime in-memory
merge may be performed for the file system and registry,
thereby alleviating the need to persist the merge state. This
can improve security and make it easier to select desired
packages and thus provide different features (e.g., supple-
mental functionality, languages, keyboards, etc.).

In an embodiment, a composite image flat file (or com-
posite image file) can be mounted as a read-only volume or
container. A merged volume may be composed from mul-
tiple different composite image files, which may be referred
to herein as image fragments. The multiple composite image
files may be merged during boot, exposing a merged file-
system and registry.

Providing such a packaged methodology may provide an
efficient way to provide state separation, allowing for
improvements in update efficiency as well as a way to
separate mutable and immutable (e.g., read-only) states
without having to resort to loose files. In an embodiment, an
image fragment package may be structured as a full system
update that is packaged in a single container. In one embodi-
ment, the immutable state may be updated with the merged
image in the background, and during reboot the read only
states can be swapped. Additionally, the packaging of the
fragments enable more efficient running of processes such as
compression, which can enable further efficiencies with
regard to processing and memory resources.

In an embodiment, a package may be structured into
regions that are configured to hold different types and sizes
of data such as metadata; smaller data; and larger data
region. In an embodiment, at least one region may be sector
aligned.

In some embodiments, image fragment packages may
have the same priority, avoiding complex merging rules and
shadowing. In an embodiment, packages may be selected at
runtime without the need for a reboot, as well as the ability
to selectively release updates rather that performing a com-
plete system update.

FIG. 2 illustrates an example composite image file layout.
Each composite image file may be comprised of multiple
different files. A root file 210 may describe region files. In an
embodiment, a composite image file may have three types of
region files. A metadata region 220 may describe file,
directory, and other attributes, security, reparse data, hard
links, and the like. The metadata region 220 may also have
contain file content offset information (e.g., region number
and region offset). A data region 230 may have file content
that meets or exceeds a predetermined file size, such as 1 Kb.
The composite image file may have multiple data regions
230.

A small data region 240 may have file content that is less
than 1 Kb file size. The composite image file may have
multiple small data regions 240. In an embodiment, the
region files may be compressed. In one example, the region
files may be Windows Overlay Filter (WOF) compressed.

US 11,886,868 B2

9

A data region may align the start of each region to a page
size (e.g., 4K) which may provide improved performance.
Small data may not be aligned in order to use less space for
smaller files.

Conversion of packages into a composite image file may
allow for efficient composability across different image
types. Images may be placed into existing packaging and
imaging flows, for example. A composite image file may be
the same between different images, e.g., host, multiple
guests, virtual machines.

In an embodiment, as part of the conversion process to an
image fragment, a package may be installed to an offline
directory and a simplified offline installation may be per-
formed. Processes that are typical of full installations may be
reduced or avoided, such as writing of servicing stack
metadata.

Multiple composite image files may be merged by con-
structing a merged filesystem and registry views. In an
embodiment, no overlap is allowed so that files and registry
values can be efficiently handled.

In some scenarios, security may be computed during
merging because of inheritance. Children can inherit from
their parent, but their parent security may be defined in a
different package. Extra data may be stored in each package
to track what directory/key owns the security. The security
may be built top-down during the merge.

When booting from a merged composite image file, a
database for boot-time configuration data may be used to
control the boot volume. The boot-time configuration data
may include configuration data to determine what composite
images to boot from.

Boot applications (e.g., bootmgr, winload.exe) may be
configured to identify a new device type and to read and
mount composite image files. Composite image file configu-
ration information may be passed from the boot application
to the kernel.

For a non-state separated operating system, running appli-
cations need to see a read-write OS volume, but a mounted
composite image file volume is read-only. In an embodi-
ment, a read-write volume may be layered on top of the
read-only OS volume. Writes may be redirected to the
read-write volume. Registry overlays may be used for a
similar process for the registry.

The disclosed embodiments provide for a more simple
and efficient servicing model. For example, there is no need
to compute a set of file/registry operations to apply to the
composite image. The new composite image files may be put
into place, and the new set of composite image files may be
validated as a valid combination, for example, by check
signing, checking for overlap, overriding checks, etc.). The
updated list of composite image files to boot from may be
updated in the boot-time configuration data.

The disclosed embodiments provide may also enable
rebootless feature installations and uninstallations. The com-
posite image files may be prepared and validated as for
normal updates. The boot-time configuration data configu-
ration may be updated for the list of composite image files
to merge. In an embodiment, a service for binding file
system namespaces to different locations and hiding remap-
ping from the users may be used to map in new/deleted files
into a combined volume. Volatile registry writes may be
placed into a read-only OS registry. After reboot, the com-
posite image files may be merged similar to other composite
image files, therefore avoiding the need for mapping and
reapplying the above operations.

The disclosed embodiments provide improved security as
the operating system code is read-only and the composite

10

15

20

25

30

35

40

45

50

55

60

65

10

image files can be signed in the build lab. All metadata and
data reads from the composite image files can be verified.
The disclosed embodiments also provide improved boot
time performance as well as runtime performance post-boot
as reads may be faster. Additionally, very little work is
required from the servicing stack which results in short
downtimes and resets can be performed in near-instant
fashion. Finally, the disclosed embodiments can provide
greater simplicity and efficiency, for example by allowing
for efficient implementation of a single instance between
host and guest or across multiple guests. Optionality may be
easily supported in containers, and a cleaner rebootless
feature update model may be implemented. A simple, con-
verged servicing model may be implemented across multiple
editions.

While full volume encryption features (e.g., BitLocker)
may be used to protect against offline tampering, the device
may have to be rebooted through system initialization and
configuration processes. The present disclosure provides for
signed composite image files that can prevent tampering,
thus avoiding the need to implement full volume encryption
for the read-only OS content. The servicing stack only needs
to check that the list of the composite image files to merge
from are valid, which is very fast and can be an in-memory
operation.

Turning now to FIG. 3, illustrated is an example opera-
tional procedure for updating an operating system of a
computing device, in accordance with the present disclosure.
In an embodiment, the example operational procedure may
implement a method executing on one or more computing
devices. Such an operational procedure may provide for
implementing a storage reserve as described herein and as
illustrated in FIGS. 1-2.

Referring to FIG. 3, operation 302 illustrates determining
an update that is to be implemented in the operating system.
Operation 302 may be followed by operation 304. Operation
304 illustrates accessing a plurality of composite image files
that correspond to the update. In an embodiment, the com-
posite image files are signed containers containing files for
implementing the update to the operating system.

Operation 304 may be followed by operation 306. Opera-
tion 306 illustrates performing a runtime in-memory merge
of the composite image files on the computing device.

Operation 306 may be followed by operation 308. Opera-
tion 308 illustrates exposing the merged composite image
files as a read-only volume.

Operation 308 may be followed by operation 310. Opera-
tion 310 illustrates initiating a system boot of the computing
device using the read-only volume.

Turning now to FIG. 4, illustrated is an example opera-
tional procedure for updating a feature of a computing
device, in accordance with the present disclosure. In an
embodiment, the example operational procedure may imple-
ment a method executing on one or more computing devices.
Such an operational procedure may provide for implement-
ing a storage reserve as described herein and as illustrated in
FIGS. 1-2.

Referring to FIG. 4, operation 402 illustrates determining
one or more operating system updates that are to be imple-
mented in a computing device. Operation 402 may be
followed by operation 404. Operation 404 illustrates access-
ing a plurality of files and data associated with the updates.

Operation 404 may be followed by operation 406. Opera-
tion 406 illustrates generating a plurality of composite image
files for implementing the update. In an embodiment, the
composite image files are signed containers that are com-

US 11,886,868 B2

11

binable at the computing device by performing a runtime
in-memory merge of the composite image files.

Operation 406 may be followed by operation 408. Opera-
tion 408 illustrates sending the signed containers to the
computing device.

Turning now to FIG. 5, illustrated is an example opera-
tional procedure for updating a feature of a computing
device, in accordance with the present disclosure. In an
embodiment, the example operational procedure may imple-
ment a method executing on one or more computing devices.
Such an operational procedure may provide for implement-
ing a storage reserve as described herein and as illustrated in
FIGS. 1-2.

Referring to FIG. 5, operation 502 illustrates accessing
one or more composite image files that correspond to one or
more updates that are to be implemented in the computing
device. In an embodiment, the one or more composite image
files are signed containers. Operation 502 may be followed
by operation 504. Operation 504 illustrates performing a
runtime in-memory merge of the composite image files.

Operation 504 may be followed by operation 506. Opera-
tion 506 illustrates exposing the merged composite image
files as a read-only volume.

Operation 506 may be followed by operation 508. Opera-
tion 508 illustrates initiating a system boot using the read-
only volume.

Each of the processes, methods and algorithms described
in the preceding sections may be embodied in, and fully or
partially automated by, code modules executed by one or
more computers or computer processors. The code modules
may be stored on any type of non-transitory computer-
readable medium or computer storage device, such as hard
drives, solid state memory, optical disc and/or the like. The
processes and algorithms may be implemented partially or
wholly in application-specific circuitry. The results of the
disclosed processes and process steps may be stored, per-
sistently or otherwise, in any type of non-transitory com-
puter storage such as, e.g., volatile or non-volatile storage.

The various features and processes described above may
be used independently of one another, or may be combined
in various ways. All possible combinations and subcombi-
nations are intended to fall within the scope of this disclo-
sure. In addition, certain method or process blocks may be
omitted in some implementations. The methods and pro-
cesses described herein are also not limited to any particular
sequence, and the blocks or states relating thereto can be
performed in other sequences that are appropriate. For
example, described blocks or states may be performed in an
order other than that specifically disclosed, or multiple
blocks or states may be combined in a single block or state.
The example blocks or states may be performed in serial, in
parallel or in some other manner. Blocks or states may be
added to or removed from the disclosed example embodi-
ments. The example systems and components described
herein may be configured differently than described. For
example, elements may be added to, removed from or
rearranged compared to the disclosed example embodi-
ments.

It will also be appreciated that various items are illustrated
as being stored in memory or on storage while being used,
and that these items or portions of thereof may be transferred
between memory and other storage devices for purposes of
memory management and data integrity. Alternatively, in
other embodiments some or all of the software modules
and/or systems may execute in memory on another device
and communicate with the illustrated computing systems via
inter-computer communication. Furthermore, in some

20

40

45

55

12

embodiments, some or all of the systems and/or modules
may be implemented or provided in other ways, such as at
least partially in firmware and/or hardware, including, but
not limited to, one or more application-specific integrated
circuits (ASICs), standard integrated circuits, controllers
(e.g., by executing appropriate instructions, and including
microcontrollers and/or embedded controllers), field-pro-
grammable gate arrays (FPGAs), complex programmable
logic devices (CPLDs), etc. Accordingly, the present inven-
tion may be practiced with other computer system configu-
rations.

Conditional language used herein, such as, among others,
can,” “could,” “might,” “may,” “e.g.” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus,
such conditional language is not generally intended to imply
that features, elements and/or steps are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or steps are included or are to be performed in any
particular embodiment. The terms “comprising,” “includ-
ing,” “having” and the like are synonymous and are used
inclusively, in an open-ended fashion, and do not exclude
additional elements, features, acts, operations and so forth.
Also, the term “or” is used in its inclusive sense (and not in
its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or”” means one, some or
all of the elements in the list.

113

While certain example embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inventions
disclosed herein. Thus, nothing in the foregoing description
is intended to imply that any particular feature, character-
istic, step, module or block is necessary or indispensable.
Indeed, the novel methods and systems described herein
may be embodied in a variety of other forms; furthermore,
various omissions, substitutions and changes in the form of
the methods and systems described herein may be made
without departing from the spirit of the inventions disclosed
herein. The accompanying claims and their equivalents are
intended to cover such forms or modifications as would fall
within the scope and spirit of certain of the inventions
disclosed herein.

The disclosure presented herein also encompasses the
subject matter set forth in the following clauses:

Clause 1.

A computer-implemented method for updating an oper-
ating system of a computing device, the method comprising:

determining an update that is to be implemented in the
operating system;

accessing a plurality of composite image files that corre-
spond to the update, wherein the composite image files
are signed containers containing files for implementing
the update to the operating system;

performing a runtime in-memory merge of the composite
image files on the computing device;

exposing the merged composite image files as a read-only
volume; and

initiating a system boot of the computing device using the
read-only volume.

US 11,886,868 B2

13

Clause 2.

The computer-implemented method of clause 1, wherein
the in-memory merge comprises storing modifications to the
operating system defined by the composite image files as a
read-write layer.

Clause 3.

The computer-implemented method of any of clauses 1 or
2, wherein a layout of the composite image file comprises a
root file, a metadata region, and one or more data regions.

Clause 4.

The computer-implemented method of any of clauses 1-3,
wherein the one or more data regions include a small data
region and a data region.

Clause 5.

The computer-implemented method of any of clauses 1-4,
wherein the small data region is for file content that is less
than a predetermined size, and the data region is for file
content that meets or exceeds the predetermined size.

Clause 6.

The computer-implemented method of any of clauses 1-5,
wherein the data region is aligned with a start of each region
to a page size.

Clause 7.

The computer-implemented method of any of clauses 1-6,
wherein the signed containers include data to track what
directory/key owns security for the respective signed con-
tainer.

Clause 8.

The computer-implemented method of any of clauses 1-7,
wherein the composite image files are processed as indi-
vidual packages prior to delivery to the computing device.

Clause 9.

A system, comprising:

one or more processors;

a memory in communication with the one or more pro-
cessors, the memory having computer-readable instruc-
tions stored thereupon which, when executed by the
one or more processors, cause the system to perform
operations comprising:

determining one or more operating system updates that
are to be implemented in a computing device;

accessing a plurality of files and data associated with the
updates;

generating a plurality of composite image files for imple-
menting the update, wherein the composite image files
are signed containers that are combinable at the com-
puting device by performing a runtime in-memory
merge of the composite image files; and

sending the signed containers to the computing device.

Clause 10.

The system of clause 9, wherein a layout of the composite
image file comprises a root file, a metadata region, and one
or more data regions.

Clause 11.

The system of any of clauses 9 or 10, wherein the one or
more data regions include a small data region and a data
region.

Clause 12.

The system of any of clauses 9-11, wherein the one or
more data regions include a small data region and a data
region.

Clause 13.

The system of any of clauses 9-12, wherein the small data
region is for file content that is less than a predetermined
size, and the data region is for file content that meets or
exceeds the predetermined size.

10

15

20

25

30

35

40

45

50

55

60

65

14

Clause 14.

The system of any of clauses 9-13, wherein the data
region is aligned with a start of each region to a page size.

Clause 15.

The system of any of clauses 9-14, wherein the in-
memory merge comprises storing modifications to the oper-
ating system defined by the composite image files as a
read-write layer.

Clause 16.

A computer-readable medium having encoded thereon
computer-executable instructions that, when executed, cause
one or more processing units of a computing device to
execute a method comprising:

accessing a plurality of composite image files that corre-
spond to an update that is to be implemented in the com-
puting device, wherein the one or more composite image
files are signed containers;

performing a runtime in-memory merge of the composite
image files;

exposing the merged composite image files as a read-only
volume; and

initiating a system boot using the read-only volume.

Clause 17.

The computer-readable medium of clause 16, wherein the
in-memory merge comprises storing modifications defined
by the composite image files as a read-write layer.

Clause 18.

The computer-readable medium of clauses 16 or 17,
wherein the signed containers include data to track what
directory/key owns security for the respective signed con-
tainer.

Clause 19.

The computer-readable medium of any of clauses 16-18,
wherein a layout of the composite image file comprises a
root file, a metadata region, and one or more data regions.

Clause 20.

The computer-readable medium of any of clauses 16-19,
wherein the composite image files are processed as indi-
vidual packages prior to delivery to the computing device.

The invention claimed is:

1. A computer-implemented method for updating an oper-
ating system of a computing device, the method comprising:

determining an update that is to be implemented in the

operating system;

accessing a plurality of composite image files that corre-

spond to the update, each of the composite image files
comprising an image fragment of a set of image frag-
ments that form a complete operating system image,
wherein the composite image files are signed containers
containing files for implementing the update to the
operating system;

performing a runtime in-memory merge of the composite

image files on the computing device;

exposing the merged composite image files as a read-only

volume; and

initiating a system boot of the computing device using the

read-only volume.

2. The computer-implemented method of claim 1,
wherein the in-memory merge comprises storing modifica-
tions to the operating system defined by the composite
image files as a read-write layer.

3. The computer-implemented method of claim 1,
wherein a layout of the composite image file comprises a
root file, a metadata region, and one or more data regions.

4. The computer-implemented method of claim 3,
wherein the one or more data regions include a small data
region and a data region.

US 11,886,868 B2

15

5. The computer-implemented method of claim 4,
wherein the small data region is for file content that is less
than a predetermined size, and the data region is for file
content that meets or exceeds the predetermined size.

6. The computer-implemented method of claim 5,
wherein the data region is aligned with a start of each region
to a page size.

7. The computer-implemented method of claim 1,
wherein the signed containers include data to track what
directory/key owns security for the respective signed con-
tainer.

8. The computer-implemented method of claim 1,
wherein the composite image files are processed as indi-
vidual packages prior to delivery to the computing device.

9. A system comprising:

one or more processors;

a memory in communication with the one or more pro-
cessors, the memory having computer-readable instruc-
tions stored thereupon which, when executed by the
one or more processors, cause the system to perform
operations comprising:

determining one or more operating system updates that
are to be implemented in a computing device;

accessing a plurality of files and data associated with the
updates;

generating a plurality of composite image files for imple-
menting the update, each of the composite image files
comprising an image fragment of a set of image frag-
ments that form a complete operating system image,
wherein the composite image files are signed containers
that are combinable at the computing device by per-
forming a runtime in-memory merge of the composite
image files; and

sending the signed containers to the computing device.

10. The computing device of claim 9, wherein a layout of
the composite image file comprises a root file, a metadata
region, and one or more data regions.

11. The computing device of claim 10, wherein the one or
more data regions include a small data region and a data
region.

20

40

16

12. The computing device of claim 11, wherein the one or
more data regions include a small data region and a data
region.

13. The computing device of claim 12, wherein the small
data region is for file content that is less than a predeter-
mined size, and the data region is for file content that meets
or exceeds the predetermined size.

14. The computing device of claim 13, wherein the data
region is aligned with a start of each region to a page size.

15. The computing device of claim 9, wherein the in-
memory merge comprises storing modifications to the oper-
ating system defined by the composite image files as a
read-write layer.

16. A computer-readable medium having encoded thereon
computer-executable instructions that, when executed by
one or more processing units of a computing device, cause
the computing device to perform operations comprising:

accessing a plurality of composite image files that corre-

spond to an update that is to be implemented in the
computing device, each of the composite image files
comprising an image fragment of a set of image frag-
ments that form a complete operating system image,
wherein the one or more composite image files are
signed containers;

performing a runtime in-memory merge of the composite

image files;

exposing the merged composite image files as a read-only

volume; and

initiating a system boot using the read-only volume.

17. The computer-readable medium of claim 16, wherein
the in-memory merge comprises storing modifications
defined by the composite image files as a read-write layer.

18. The computer-readable medium of claim 16, wherein
the signed containers include data to track what directory/
key owns security for the respective signed container.

19. The computer-readable medium of claim 16, wherein
a layout of the composite image file comprises a root file, a
metadata region, and one or more data regions.

20. The computer-readable medium of claim 16, wherein
the composite image files are processed as individual pack-
ages prior to delivery to the computing device.

#* #* #* #* #*

