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(57) ABSTRACT

Techniques related to implementing fully convolutional net-
works for semantic image segmentation are discussed. Such
techniques may include combining feature maps from mul-
tiple stages of a multi-stage fully convolutional network to
generate a hyper-feature corresponding to an input image,
up-sampling the hyper-feature and summing it with a feature
map of a previous stage to provide a final set of features, and
classifying the final set of features to provide semantic
image segmentation of the input image.
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COUPLED MULTI-TASK FULLY
CONVOLUTIONAL NETWORKS USING
MULTI-SCALE CONTEXTUAL
INFORMATION AND HIERARCHICAL
HYPER-FEATURES FOR SEMANTIC IMAGE
SEGMENTATION

BACKGROUND

[0001] Semantic image segmentation (SIS) is used to
predict pixel-wise category labels in images or video frames.
Unlike object classification or detection, SIS obtains seman-
tic labels for every pixel of an image or frame, not just
image-wise labels. Therefore, SIS plays an important role as
an independent component in numerous computer vision
tasks such as object tracking, scene understanding, and
human-machine interaction. Such techniques and systems
may be applied in products such as unmanned vehicles (e.g.,
drones or cars), somatosensory gaming, and robot vision.
Fast and accurate semantic image segmentation technology
is, therefore, of great significance.

[0002] Deep convolutional neural networks have attracted
attention in many fields including computer vision, pattern
recognition, and big data analysis. Current techniques may
be based on deep fully convolutional networks (FCN) that
deploy an end-to-end model jointly predicting labels of all
pixels in an image. Further techniques include using condi-
tional random fields to smooth the spatial prediction results
from the FCN, symmetric de-convolution networks to dis-
cover small scale objects, and multi-task learning frame-
works that include object detection, 2-class background
segmentation and classification in order. However, such
techniques suffer from various drawbacks including
increased computational costs and the like.

[0003] It may be advantageous to perform semantic image
segmentation with high accuracy and with less computa-
tional and memory resource requirements. It is with respect
to these and other considerations that the present improve-
ments have been needed. Such improvements may become
critical as the desire to perform semantic image segmenta-
tion and using the resultant semantic segmented images
becomes more widespread.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The material described herein is illustrated by way
of example and not by way of limitation in the accompa-
nying figures. For simplicity and clarity of illustration,
elements illustrated in the figures are not necessarily drawn
to scale. For example, the dimensions of some elements may
be exaggerated relative to other elements for clarity. Further,
where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements. In the figures:

[0005] FIG. 1 illustrates an example semantic image seg-
mentation system for performing semantic image segmen-
tation;

[0006] FIG. 2 illustrates example small and large sub-
regions of a training image for training semantic image
segmentation system;

[0007] FIG. 3 illustrates example ground truth semantic
labels corresponding to a training image;

[0008] FIG. 4 illustrates example ground truth objectness
labels corresponding to a training image;
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[0009] FIG. 5 is a flow diagram illustrating an example
process for training semantic image segmentation system;
[0010] FIG. 6 is a flow diagram illustrating an example
process for performing semantic image segmentation;
[0011] FIG. 7 is an illustrative diagram of an example
system for performing semantic image segmentation;

[0012] FIG. 8 is an illustrative diagram of an example
system; and
[0013] FIG. 9 illustrates an example device, all arranged in

accordance with at least some implementations of the pres-
ent disclosure.

DETAILED DESCRIPTION

[0014] One or more embodiments or implementations are
now described with reference to the enclosed figures. While
specific configurations and arrangements are discussed, it
should be understood that this is done for illustrative pur-
poses only. Persons skilled in the relevant art will recognize
that other configurations and arrangements may be
employed without departing from the spirit and scope of the
description. It will be apparent to those skilled in the
relevant art that techniques and/or arrangements described
herein may also be employed in a variety of other systems
and applications other than what is described herein.
[0015] While the following description sets forth various
implementations that may be manifested in architectures
such as system-on-a-chip (SoC) architectures for example,
implementation of the techniques and/or arrangements
described herein are not restricted to particular architectures
and/or computing systems and may be implemented by any
architecture and/or computing system for similar purposes.
For instance, various architectures employing, for example,
multiple integrated circuit (IC) chips and/or packages, and/
or various computing devices and/or consumer electronic
(CE) devices such as set top boxes, smart phones, etc., may
implement the techniques and/or arrangements described
herein. Further, while the following description may set
forth numerous specific details such as logic implementa-
tions, types and interrelationships of system components,
logic partitioning/integration choices, etc., claimed subject
matter may be practiced without such specific details. In
other instances, some material such as, for example, control
structures and full software instruction sequences, may not
be shown in detail in order not to obscure the material
disclosed herein.

[0016] The material disclosed herein may be implemented
in hardware, firmware, software, or any combination
thereof. The material disclosed herein may also be imple-
mented as instructions stored on a machine-readable
medium, which may be read and executed by one or more
processors. A machine-readable medium may include any
medium and/or mechanism for storing or transmitting infor-
mation in a form readable by a machine (e.g., a computing
device). For example, a machine-readable medium may
include read only memory (ROM); random access memory
(RAM); magnetic disk storage media; optical storage media;
flash memory devices; electrical, optical, acoustical or other
forms of propagated signals (e.g., carrier waves, infrared
signals, digital signals, etc.), and others.

[0017] References in the specification to “one implemen-
tation”, “an implementation”, “an example implementa-
tion”, etc., indicate that the implementation described may
include a particular feature, structure, or characteristic, but
every embodiment may not necessarily include the particu-
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lar feature, structure, or characteristic. Moreover, such
phrases are not necessarily referring to the same implemen-
tation. Further, when a particular feature, structure, or char-
acteristic is described in connection with an embodiment, it
is submitted that it is within the knowledge of one skilled in
the art to affect such feature, structure, or characteristic in
connection with other implementations whether or not
explicitly described herein.

[0018] Methods, devices, apparatuses, computing plat-
forms, and articles are described herein related to perform-
ing semantic image segmentation using fully convolutional
networks.

[0019] As described above, it may be advantageous to
perform semantic image segmentation (SIS) with high accu-
racy and with less computational and memory resource
requirements. The techniques discussed herein perform SIS
using a coupled multi-task (CMT) fully convolutional net-
work (FCN) incorporating multi-scale contextual (MC)
information and hierarchical hyper-features (HH) (CMT-
MCHH). The discussed CMT-MCHH systems and tech-
niques divide the SIS task into two coupled steps: learning
a 2-class objectness mask and classitying C-class (e.g., C
being the number of total classes) semantic labels. Such a
divide and conquer strategy may efficiently remove the
interference of image or video frame backgrounds. Further-
more, the discussed CMT-MCHH systems and techniques
may take different scales of contextual information into
consideration (e.g., during training), which can effectively
capture both global and local feature of objects. Also, the
discussed CMT-MCHH systems and techniques may deploy
multi-scale hyper-features, which can recognize objects of
different scale sizes. The discussed systems and techniques
provide high performance, strong generalization capacity,
and a small memory footprint. During an implementation
phase, the discussed CMT-MCHH systems and techniques
may receive an input image (e.g., from a memory or other
image or video source) and provide a semantic image
segmentation of the input (e.g., the semantic image segmen-
tation including pixel-level category labels for pixels of the
input image) and/or an objectness image segmentation of the
input (e.g., the objectness image segmentation including
pixel-level object or non-object labels for pixels of the input
image).

[0020] In some embodiments discussed herein, semantic
image segmentation may include training a fully convolu-
tional network system using training images (e.g., in a
training phase) and implementing the trained fully convo-
Iutional network system in an implementation or testing
phase. During implementation, the fully convolutional net-
work system may implement, by a multi-stage fully convo-
Iutional network, a number of stages based on an input
image. The stages may generate one or more feature maps
corresponding to the input image such that successive stages
provide feature maps at lower and lower resolutions. Fur-
thermore, feature maps from two or more later or middle
stages of the multi-stage fully convolutional network may be
combined (e.g., concatenated) to provide a hyper-feature
corresponding to the input image. The hyper-feature, having
a lower resolution than previous stages, is up-sampled to the
higher resolution of a previous stage and summed with the
output from the previous stage. The process of up-sampling
and summing may be repeated any number of times to
generate a final set of features corresponding to the input
image. Such techniques provide for a hierarchical hyper-
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feature (HH) architecture for detecting small objects in
images. The final set of features is then evaluated to provide
a semantic image segmentation of the input image. For
example, the evaluation may include application of a con-
volutional layer and a classifier. The semantic image seg-
mentation includes pixel-level category labels and/or pixel-
level probabilities of labels for pixels of the input image.

[0021] Furthermore, during implementation, the discussed
hyper-feature process may also be performed for an object-
ness classification. In an embodiment, the discussed hyper-
feature may be used for both semantic image segmentation
and objectness classification. In an embodiment, the hyper-
feature process or network for objectness classification is
different (e.g., different stages may be used, different inter-
polations may be provided and so on). The second hyper-
feature may be used to perform a fused objectness classifi-
cation and semantic image segmentation. For example, the
second hyper-feature may be provided to a convolutional
layer trained for objectness classification and the results of
the objectness classification convolutional layer and the
semantic image segmentation discussed above may be
summed or the results from a objectness classification
classifier and the semantic image segmentation classifier
discussed above may be summed. Based on the summation,
the classifications may work together (e.g., in a fused
manner) to provide most likely object labels for the pixels.
For example, a semantic image segmentation label that
provide a high confidence label (e.g., person or animal or the
like) for a pixel may be mitigated by an objectness classi-
fication indicating the pixel is not an object. Similarly, a
pixel with an objectness classification indicating a high
likelihood a pixel is an object may be labeled with the
highest confidence semantic image segmentation label even
though the confidence is relatively low.

[0022] During the training phase, the discussed fully con-
volutional network system may be trained with coupled
multi-task learning (CMT). As discussed, the fully convo-
Iutional network system may include two tasks (e.g., seman-
tic image segmentation labeling and objectness classifica-
tion labeling). During training, the loss function for the
semantic image segmentation labeling and the objectness
classification labeling may be fused such that the two tasks
share a fully convolutional neural network and the two tasks
supplement one another in training. Such training improves
the performance of the trained fully convolutional network
system significantly while reducing complexity. The loss
functions may be fused using any suitable technique or
techniques such as applying a first weighting to the semantic
image segmentation labeling loss function and a second
weighting to the objectness classification labeling loss func-
tion and summing the weighted loss functions.

[0023] Also during training, the two task networks may be
trained with multi-scale contextual (MC) images. First,
small scale images are cropped from the training images to
train the multi-stage fully convolutional network of the fully
convolutional neural network system. Then, large scale
images (e.g., images larger than the smaller images) are
cropped from the training images to refine the training of the
fully convolutional neural network system. Such techniques
offer the advantage of combining local and global features of
objects in the training of the fully convolutional neural
network. Furthermore, the training of the fully convolutional
network system may continue with training the hyper-
feature networks discussed above. Finally, the entire fully
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convolutional network system (e.g., multi-stage fully con-
volutional network, semantic image segmentation hyper-
feature network, and objectness classification labeling
hyper-feature network) is trained in an end-to-end manner
based on the training images to finalize the fully convolu-
tional neural network system.

[0024] Such a coupled multi-task fully convolutional net-
work system incorporating multi-scale contextual and hier-
archical hyper-feature (CMT-MCHH) techniques offer
enhanced performance and a small model size. The results
during implementation, a semantic image segmentation and/
or objectness segmentation of an input image, have a wide
range of uses in object tracking, scene understanding,
human-machine interaction, unmanned vehicles (e.g.,
drones or cars), somatosensory gaming, robot vision, and so
on.

[0025] FIG. 1 illustrates an example semantic image seg-
mentation system 100 for performing semantic image seg-
mentation, arranged in accordance with at least some imple-
mentations of the present disclosure. As shown in FIG. 1,
semantic image segmentation system 100 may include a
multi-stage fully convolutional network 105, a semantic
label hyper-feature network 108, an objectness label hyper-
feature network 109, and a fused semantic and objectness
classification module 106. Semantic image segmentation
system 100 may be implemented by any suitable form factor
device such as a server, a personal computer, a laptop
computer, a tablet, a phablet, a smart phone, a digital
camera, a gaming console, a wearable device, a display
device, an all-in-one device, a two-in-one device, or the like.
For example, semantic image segmentation system 100 may
perform semantic image segmentation and/or other com-
puter vision tasks as discussed herein. Semantic image
segmentation system 100 may provide a deep learning
system having a fully convolutional network using multi-
task learning, multi-scale contextual information, and hier-
archical hyper-features.

[0026] Also as shown, multi-stage fully convolutional
network 105 may include fully convolutional network stages
such as a first fully convolutional network stage 151, a
second fully convolutional network stage 152, a third fully
convolutional network stage 153, a fourth fully convolu-
tional network stage 154, and a fifth fully convolutional
network stage 155. In the illustrated example, multi-stage
fully convolutional network 105 has five stages. However,
multi-stage fully convolutional network 105 may have any
number of stages. As shown, multi-stage fully convolutional
network 105 receives an input image 111 and the stages of
multi-stage fully convolutional network 105 provide feature
maps 112, 113, 114, 115, 116, respectively. Input image 111
may include any suitable input image of any suitable size.
For example, input image 111 may be an image in the red,
green, blue (RGB) color space such that input image 111 has
NxM pixels each represented by three values corresponding
to the three RGB color channels. In an embodiment, input
image 111 has a resolution of 320x320. Although discussed
with respect to the RGB color space, the input pixel values
may be in any suitable color space such as the YUV (Y
luminance, U chroma, and V chroma) color space, the
YCbCr (luminance, blue difference, and red difference)
color space, the CMYK (cyan, magenta, yellow, key or
black) color space, or the like. Multi-stage fully convolu-
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tional network 105 may receive image data 103 from an
image sensor, an image processor, a memory, or any other
source

[0027] Each of convolutional network stages 151-155 may
include any number of convolutional layers, rectified linear
units, max pooling layers, local response normalization
layers, or the like. In an embodiment, first stage 151 includes
two fully convolutional layers followed by a max pooling
layer, second stage 152 includes two fully convolutional
layers followed by a max pooling layer, third stage 153
includes three fully convolutional layers followed by a max
pooling layer, fourth stage 154 includes three fully convo-
Iutional layers followed by a max pooling layer, and fifth
stage 155 includes three fully convolutional layers followed
by a max pooling layer. Network stages 151-155 may
include other optional layers (e.g., rectified linear units
and/or local response normalization) and network stages
151-155 any suitable fully convolutional layers and/or
stages. Furthermore, multi-stage fully convolutional net-
work 105 and semantic image segmentation system 100 may
be characterized as a fully convolutional network or system
as it does not include any fully connected neural network
layers.

[0028] As shown, first stage 151 outputs a feature map or
maps 112. For example, first stage 151 may apply one or
more convolutional layers and a max pooling layer or the
like based on input image 111 to generate feature maps 112.
In an embodiment, first stage 151 applies two convolutional
layers and a max pooling layer based on input image 111 to
generate feature maps 112. In an embodiment, feature maps
112 include a set of feature maps each at a resolution less
than that of input image 111. Furthermore, for each pixel
location of a feature map, feature maps 112 may include
multiple channels corresponding to a number of convolu-
tional filters applied in first stage 151. For example, if 100
filters are applied at first stage 151 with max pooling that
reduces the resolution by one half'in each dimension, feature
maps 112 may include 100 feature maps each having a
resolution of 1/2Nx1/2M. In an embodiment, feature maps
112 have a resolution of 160x160. Feature maps 112 and any
other feature maps discussed herein may be characterized as
a feature map, a set of feature maps, a response map, a set
of response maps, or the like.

[0029] Second stage 152 may receive feature maps 112
and second stage 152 outputs a feature map or maps 113. For
example, second stage 152 may apply one or more convo-
Iutional layers and a max pooling layer or the like based on
feature maps 112 to generate feature maps 113. In an
embodiment, second stage 152 applies two convolutional
layers and a max pooling layer to generate feature maps 113.
In an embodiment, feature maps 113 include a set of feature
maps each at a resolution less than that of feature maps 112.
Furthermore, for each pixel location of a feature map,
feature maps 113 may include multiple channels correspond-
ing to a number of convolutional filters applied in second
stage 152. For example, if 50 filters are applied at second
stage 152 with max pooling that reduces the resolution by
one half in each dimension, feature maps 113 may include
50 feature maps each having a resolution of 1/4Nx1/4M. In
an embodiment, feature maps 113 have a resolution of
80x80.

[0030] Similarly, third stage 153 may receive feature maps
113 and third stage 153 outputs a feature map or maps 114.
For example, third stage 153 may apply one or more
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convolutional layers and a max pooling layer or the like
based on feature maps 113 to generate feature maps 114. In
an embodiment, third stage 153 applies three convolutional
layers and a max pooling layer to generate feature maps 114.
In an embodiment, feature maps 114 include a set of feature
maps each at a resolution less than that of feature maps 113.
Furthermore, for each pixel location of a feature map,
feature maps 114 may include multiple channels correspond-
ing to a number of convolutional filters applied in second
stage 152. For example, if 25 filters are applied at third stage
152 with max pooling that reduces the resolution by one half
in each dimension, feature maps 114 may include 50 feature
maps each having a resolution of 1/8Nx1/8M. In an embodi-
ment, feature maps 114 have a resolution of 40x40.

[0031] Furthermore, fourth stage 154 may receive feature
maps 114 and fourth stage 154 outputs a feature map or
maps 115. For example, fourth stage 154 may apply one or
more convolutional layers based on feature maps 114 to
generate feature maps 115. In an embodiment, fourth stage
154 applies three convolutional layers to generate feature
maps 115. In an embodiment, feature maps 115 include a set
of feature maps each at a resolution equal to that of feature
maps 114. In an embodiment, feature maps 115 have a
resolution of 40x40. Furthermore, for each pixel location of
a feature map, feature maps 115 may include multiple
channels corresponding to a number of convolutional filters
applied as discussed above. Similarly, fifth stage 155 may
receive feature maps 115 and fifth stage 155 outputs a
feature map or maps 116. For example, fifth stage 155 may
apply one or more convolutional layers based on feature
maps 115 to generate feature maps 116. In an embodiment,
fifth stage 155 applies three convolutional layers to generate
feature maps 116. In an embodiment, feature maps 116
include a set of feature maps each at a resolution equal to
that of feature maps 114 and feature maps 115. In an
embodiment, feature maps 116 have a resolution of 40x40.
Furthermore, for each pixel location of a feature map,
feature maps 115 may include multiple channels correspond-
ing to a number of convolutional filters applied as discussed
above.

[0032] Also as shown in FIG. 1, feature maps 112-116 are
provided to semantic label hyper-feature network 108.
Semantic label hyper-feature network 108 receives feature
maps 112-116 and generates a final set of features 181 for
semantic segmentation. In an embodiment, feature maps
114, 115, 116 are combined by a combiner 187 to generate
hyper-feature 188. For example, feature maps 114, 115, 116
may be concatenated to generate hyper-feature 188. For
example, as discussed, feature maps 114, 115, 116 are of the
same resolution due to pooling layers (e.g., max pooling
layers) of the stages of multi-stage fully convolutional
network 105 decreasing the resolution of feature maps
through third stage 153. By combining feature maps 114,
115, 116 from middle layers or stages of multi-stage fully
convolutional network 105 to generate hyper-feature 188,
features corresponding to small scale objects in input image
111 may be maintained such that the small scale objects are
not lost by multi-stage fully convolutional network 105.

[0033] Hyper-feature 188 may include multiple feature
maps or a single map with multiple channels or the like. As
shown, hyper-feature 188 may be provided to an up-sampler
186, which may up-sample hyper-feature 188 to the reso-
Iution of feature maps 113. The up-sampled hyper-feature
may be provided to an adder 185 to generate an up-sampled

May 30, 2019

and summed features 182. The up-sampling and summing
may be performed using any suitable technique or tech-
niques. For example, up-sampler 186 may apply an up-
sample filter and/or refinement filtering. In an embodiment,
the resolution and channel depth of the up-sampled hyper-
feature may match the resolution and channel depth of
feature map 113 such that adder 185 sums, in a pixel-wise
and channel-wise manner, the values of the up-sampled
hyper-feature and the values of feature map 113.

[0034] Up-sampled and summed features 182 may be
provided to an up-sampler 184, which may up-sample
up-sampled and summed features 182 to the resolution of
feature maps 112. The up-sampled features may be provided
to an adder 183 to generate up-sampled and summed fea-
tures characterized as final set of features 181. The up-
sampling and summing may be performed using any suitable
technique or techniques. For example, up-sampler 184 may
apply an up-sample filter and/or refinement filtering. In an
embodiment, the resolution and channel depth of
up-sampled and summed features 182 may match the reso-
Iution and channel depth of feature map 112 such that adder
185 sums, in a pixel-wise and channel-wise manner, the
values of the up-sampled hyper-feature and the values of
feature map 113.

[0035] Although discussed with respect to three feature
maps 114, 115, 116 being combined to generate hyper-
feature 188, any number of feature maps (e.g., two, four, or
more) may be combined or concatenated. Furthermore,
semantic image segmentation system 100 illustrates feature
maps 114, 115, 116 having the same resolution being com-
bined. However, prior to being combined, any of such
feature maps may be up-sampled or down-sampled as
needed to provide the same resolution across the feature
maps. Further still, semantic image segmentation system
100 illustrates two up-sampling and summing operations to
incorporate previous stage feature maps into final set of
features 181. However, the discussed up-sampling and sum-
ming operations may be performed any number of times
such as once, three times, or more depending on number of
stages of multi-stage fully convolutional network 105 and/or
the architecture thereof. For example, such up-sampling and
summing operations may not be performed for each stage
such that stages may be skipped or the like.

[0036] With continued discussion of FIG. 1, feature maps
112-116 are also provided to objectness label hyper-feature
network 109. Objectness label hyper-feature network 109
receives feature maps 112-116 and generates a final set of
features 191 for objectness segmentation. In an embodiment,
feature maps 114, 115, 116 are combined by a combiner 197
to generate hyper-feature 198. For example, feature maps
114, 115, 116 may be concatenated to generate hyper-feature
198. As discussed, feature maps 114, 115, 116 are of the
same resolution due to pooling layers (e.g., max pooling
layers) and, by combining feature maps 114, 115, 116 from
middle layers or stages of multi-stage fully convolutional
network 105 to generate hyper-feature 198, features corre-
sponding to small scale objects in input image 111 may be
maintained.

[0037] Hyper-feature 198 may include multiple feature
maps or a single map with multiple channels or the like and
hyper-feature 198 may be provided to an up-sampler 196,
which may up-sample hyper-feature 198 to the resolution of
feature maps 113. The up-sampled hyper-feature may be
provided to an adder 195 to generate an up-sampled and
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summed features 192. The up-sampling and summing per-
formed by objectness label hyper-feature network 109 may
be performed using any suitable technique or techniques
such as those discussed with respect to semantic label
hyper-feature network 108. Up-sampled and summed fea-
tures 192 may be provided to an up-sampler 194, which may
up-sample up-sampled and summed features 192 to the
resolution of feature maps 112 and the up-sampled features
may be provided to an adder 193 to generate up-sampled and
summed features characterized as final set of features 191.

[0038] Although discussed with respect to feature maps
112, 113, 114, 115, 116 being used to generate final set of
features 191 in a manner analogous to that of semantic label
hyper-feature network 108, objectness label hyper-feature
network 109, objectness label hyper-feature network 109
may generate final set of features 191 using any suitable
technique or techniques. For example, semantic label hyper-
feature network 108 and objectness label hyper-feature
network 109 may be the same (e.g., such that one may be
eliminated as redundant), they may utilize different up-
sampling filters and/or refinement filters, or they may use
different architectures. For example, semantic label hyper-
feature network 108 and objectness label hyper-feature
network 109 may combine different feature maps to generate
their respective hyper-features. In addition or in the alter-
native, they may use differing numbers of up-sampling and
summing operations to incorporate previous stage feature
maps or the like. For example, objectness label hyper-
feature network 109 may skip stages while semantic label
hyper-feature network 108 performs up-sampling and sum-
ming for each stage of multi-stage fully convolutional
network 105.

[0039] Discussion now turns to fused semantic and object-
ness classification module 106. As shown, fused semantic
and objectness classification module 106 receives final set of
features 181 and final set of features 191. Fused semantic
and objectness classification module 106 includes a seman-
tic labels classification module 161 and an objectness labels
classification module 166. During a training phase, semantic
labels classification module 161 includes convolutional
layer 162, any other intervening layers, and loss function
module 164 and objectness labels classification module 166
includes convolutional layer 167, any other intervening
layers, and loss function module 169. As discussed, seman-
tic image segmentation system 100 provides an end-to-end
system for performing two tasks: semantic labeling and
objectness labeling. That is, semantic label hyper-feature
network 108 and semantic labels classification module 161
perform a C-class semantic label task (C being the number
of classifications being implemented) and objectness label
hyper-feature network 109 and objectness labels classifica-
tion module 166 perform a 2-class label task (either object
or non-object).

[0040] During the training phase, loss function module
164 and loss function module 169 are fused to provide
training for semantic image segmentation system 100. For
example, a loss function may be defined for the semantic
labeling task and another loss function may be defined for
the objectness labeling task. For example, semantic image
segmentation system 100 may be provided training images
as input image 111 to generate labeling results (both seman-
tic and objectness labels). The results during training may be
compared to ground truth labels (again for both semantic
and objectness labels) and the fused loss functions may

May 30, 2019

minimized over the training. In an embodiment, the two loss
functions may be weighted and summed by adder 165 over
the training images. The resultant loss values or parameters
are provided as training feedback 171 and the fused loss
functions may be minimized over the training images and
sub-regions from cropping of the training images (as dis-
cussed further below) to train and generate semantic image
segmentation system 100.

[0041] For example, given m training images labeled y,
with features x,, the fused loss functions may be weighed by
weighting values w,, w, fused or summed as shown below
with respect to Equation (1):

®

such that Equation (2) below provides a loss function for
semantic labeling and Equation (3) below provides a loss
function for objectness labeling.

c oT+0) @
o ¢
1y = jllog—
T
=y Z o
=1
2 #Tx0) 3)
S ¢
104" = fllog—
= A0

[0042] The discussed weights may include any suitable
values. In an embodiment, the weights sum to one. In an
embodiment, the weight applied to the semantic segmenta-
tion loss function is greater than the weight applied to the
objectness segmentation loss function. In an embodiment,
the weight applied to the semantic segmentation loss func-
tion is twice the weight applied to the objectness segmen-
tation loss function. The discussed fusing of loss functions
provides coupled multi-task (CMT) learning for semantic
image segmentation system 100 across semantic labeling
and objectness labeling. Thereby, the two tasks (semantic
labeling and objectness labeling) are coupled by sharing
multi-stage fully convolutional network 105 and by training
as discussed. For example, semantic label hyper-feature
network 108 and semantic labels classification module 161
(e.g., a semantics labeling network or the like) and object-
ness label hyper-feature network 109 and objectness labels
classification module 166 (e.g., an objectness labeling net-
work or the like) may supplement each other via such fusing
or summation to reduce the complexity of the semantic
image segmentation task and to provide higher accuracy
semantic image segmentation.
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[0043] Furthermore, during the training phase of semantic
image segmentation system 100, multi-scale contextual
image training may be provided. For example, during train-
ing, small scale images (e.g., small sub-regions cropped
from training images) are used to train an initial multi-stage
fully convolutional network 105 and/or other portions of
semantic image segmentation system 100. Such training of
multi-stage fully convolutional network 105 may be char-
acterized as initial training or local training or the like. For
example, such training may include training based on local
features of the training images.

[0044] Next, large scale images (e.g., larger regions
cropped from training images and/or the full size training
images themselves) are used to train the initial multi-stage
fully convolutional network 105 and/or other portions of
semantic image segmentation system 100. The large scale
image training may provide additional rich contextual infor-
mation to train a global multi-stage fully convolutional
network 105 and/or other portions of semantic image seg-
mentation system 100. For example, such training may
include training based on global features of the training
images. Such training may be provided such that all large
scale images are larger than all small scale images. Further-
more, the cropping of the training mages to generate the
small and large scale training sub-regions or images may be
performed using any suitable technique or techniques such
as randomly cropping the training images or the like.
Although discussed with respect to two level training (e.g.,
large and small sub-regions), any number of levels such as
three or four may be used such that each subsequent training
increases the sizes of the sub-regions. Such multi-scale
contextual (MC) image training offers the advantages of
detection with different context information may combining
global and local features of objects.

[0045] FIG. 2 illustrates example small and large sub-
regions of a training image 211 for training semantic image
segmentation system 100, arranged in accordance with at
least some implementations of the present disclosure. As
shown in FIG. 2, training image 211 may include any
suitable image for training semantic image segmentation
system 100 such as an image including objects of the
classification labels to be trained such as people, animals,
horses, birds, bikes, planes, automobiles, boats, background,
and so on. Furthermore, some training images may include
objects that do not correspond to the classification labels. As
discussed herein, any number or C-classification labels may
be provided.

[0046] FIG. 3 illustrates example ground truth semantic
labels 311 corresponding to training image 211, arranged in
accordance with at least some implementations of the pres-
ent disclosure. As shown in FIG. 3, ground truth semantic
labels 311 include labels 301 corresponding to a person,
labels 302 corresponding to a horse or animal, and labels
303 corresponding to no object. Although discussed with
respect to labels of person, horse or animal, and no object,
any suitable labels may be used such as more generic labels,
more specific labels, numeric labels that are indexed to
descriptive labels, or the like. As can be seen with respect to
FIG. 2, ground truth semantic labels 311 provide accurate
labels to each pixel of training image 211. Such ground truth
semantic labels 311 may be provided using any suitable
technique or techniques such as by hand labeling or the like.
[0047] FIG. 4 illustrates example ground truth objectness
labels 411 corresponding to training image 211, arranged in
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accordance with at least some implementations of the pres-
ent disclosure. As shown in FIG. 4, ground truth objectness
labels 411 include labels 401 corresponding to non-object,
not an object, background or the like and labels 402 corre-
sponding to object, object of interest, foreground, or the like.
As shown, ground truth objectness labels 411 provide a
binary map of training image 211 indicating on a pixel-by-
pixel basis whether the pixel corresponds to an object to be
labeled or not. For example, values of 1 may be provided for
pixels with an object to be labeled and values 0 may be
provided for pixels without an object to be labeled. As can
be seen with respect to FIG. 2, ground truth objectness labels
411 provide accurate labels to each pixel of training image
211. Such ground truth semantic labels 311 may be provided
using any suitable technique or techniques such as by hand
labeling or the like.

[0048] With reference to FIGS. 1 and 2, during the training
phase, smaller sub-regions such as small sub-region 201 of
training images such as training image 211 may be provided,
along with corresponding ground truth semantic and object-
ness information, during the initial training of multi-stage
fully convolutional network 105 and/or other portions of
semantic image segmentation system 100. For example,
training image 211 may be cropped randomly to generate
small sub-region 201 and/or other small sub-regions of
training image 211 and small sub-region 201 may be pro-
vided to multi-stage fully convolutional network 105 as
input image 111 to train multi-stage fully convolutional
network 105 and/or other portions of semantic image seg-
mentation system 100. In an embodiment, multi-stage fully
convolutional network 105 may be pre-trained based on
such small sub-regions without use of other components of
semantic image segmentation system 100. In an embodi-
ment, the entirety of semantic image segmentation system
100 may be trained based on such small sub-regions. As will
be appreciated, the training set of training images including
training image 211 may include hundreds, thousands, or
more training images and such small sub-regions may also
include hundreds, thousands, or more training sub-regions.

[0049] Furthermore, with continued reference to FIGS. 1
and 2, during the training phase, larger sub-regions such as
large sub-region 202 of training images such as training
image 211 may be provided, along with corresponding
ground truth semantic and objectness information, during
the global training of multi-stage fully convolutional net-
work 105 and/or other portions of semantic image segmen-
tation system 100. For example, training image 211 may be
cropped randomly to generate large sub-region 202 and/or
other large sub-region of training image 211 and large
sub-region 202 may be provided to multi-stage fully con-
volutional network 105 as input image 111 to train multi-
stage fully convolutional network 105 and/or other portions
of semantic image segmentation system 100. In an embodi-
ment, multi-stage fully convolutional network 105 may be
pre-trained based on such large sub-regions without use of
other components of semantic image segmentation system
100. In an embodiment, the entirety of semantic image
segmentation system 100 may be trained based on such large
sub-regions.

[0050] Returning now to FIG. 1 and discussion of fused
semantic and objectness classification module 106, during
an implementation or testing phase, semantic image seg-
mentation system 100 receives input image 111 for semantic
image segmentation. During implementation, input image
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111 is received for processing without ground truth infor-
mation and it is the purpose of semantic image segmentation
system 100 to provide pixel level (e.g., pixel-by-pixel)
output semantic labels 121 that correspond to input image
111. Output semantic labels 121 may include any suitable
information, data structure, or the like that provide semantic
image segmentation of input image 111. For example, output
semantic labels 121 provide pixel level category labels for
each pixel of input image 111 from available category labels
(e.g., C classification options) optionally including a non-
object classification.

[0051] In addition or in the alternative, output objectness
labels 122 may be provided corresponding to input image
111. Output objectness labels 122 may include any suitable
information, data structure, or the like that provide object-
ness image segmentation of input image 111. For example,
output objectness labels 122 provide pixel level (e.g., pixel-
by-pixel) object or non-object labels for each pixel of input
image 111. Output objectness labels 122 may be character-
ized as a objectness binary map, objectness binary mask, or
the like.

[0052] Output semantic labels 121 and/or output object-
ness labels 122 may be stored to memory, provided to
another application, transmitted to another device, or the
like. For example, such output semantic labels 121 and/or
output objectness labels 122 may be used in a wide array of
applications such as computer vision, gaming such as soma-
tosensory gaming, object detection, object tracking, scene
understanding, human-machine interaction, unmanned
vehicles (e.g., drones or cars), and so on. With respect to
FIGS. 2-4 it is the goal of semantic image segmentation
system 100 to, assuming the implementation phase input
image is image 211, to, as closely as possible, provide results
matching ground truth semantic labels 311 and ground truth
objectness labels 411.

[0053] During implementation, semantic image segmen-
tation system 100 receives input image 111. Fully convolu-
tional network stages 151-155 provide feature maps 112-116
as discussed herein. Two or more low resolution feature
maps such as feature maps 114-116 are combined to gener-
ate hyper-feature 188, which is up-sampled to the higher
resolution of feature maps 114 and combined with feature
maps 114. Such up-sampling and combining with an earlier
stage feature map may be repeated any number of times to
generate final set of features 181. Similarly, two or more low
resolution feature maps such as feature maps 114-116 are
combined to generate hyper-feature 198, which is
up-sampled to the higher resolution of feature maps 114 and
combined with feature maps 114 and such up-sampling and
combining with an earlier stage feature map may be repeated
any number of times to generate final set of features 191.

[0054] Final sets of features 181,191 are provided to fused
semantic and objectness classification module 106, which,
as discussed includes semantic labels classification module
161 and objectness labels classification module 166. During
the implementation or test phase, loss function modules
164,169 are removed and classification modules 163,168 are
provided. For example, convolutional layer 162, which may
be characterized as a semantic label based convolutional
layer, and/or additional layers are applied to final set of
features 181 to provide semantic scores corresponding to
input image 111. Similarly, convolutional layer 167, which
may be characterized as an objectness label based convolu-
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tional layer, and/or additional layers are applied to final set
of features 191 to provide objectness scores corresponding
to input image 111.

[0055] Based on the resultant semantic and objectness
scores, classification modules 163,168 and adder 165 pro-
vide a fused or summed classification to generate output
semantic labels 121 and/or output objectness labels 122. For
example, the resultant semantic scores and objectness scores
may be summed and the resultant summed scores may be
used for semantic segmentation by classification module
163. Such classification may be performed using any suit-
able technique or techniques. In an embodiment, the
summed scores may be compared to a threshold and only
those scores comparing favorably to the threshold (e.g.,
exceeding the threshold or the like) are provided a semantic
label. If a summed score does not compare favorably to the
threshold, an output label of no object is provided. In an
embodiment, a highest probability semantic label from the
resultant semantic scores is provided for each pixel deemed
to have an object corresponding thereto. In an embodiment,
a number of highest probability labels are provided along
with their corresponding probabilities. Furthermore, region
merging techniques, filtering techniques, or the like may be
applied to spatially smooth the semantic labels to generate
output semantic labels 121.

[0056] Furthermore, classification module 168 may gen-
erate output objectness labels 122 based on the resultant
objectness scores from convolutional layer 167 and/or the
resultant semantic scores from convolutional layer 162. In
an embodiment, output objectness labels 122 are based on
the resultant objectness scores from convolutional layer 167
without use of the resultant semantic scores from convolu-
tional layer 162. For example, output objectness labels 122
may provide the most probable result from the resultant
objectness scores indicating whether each pixel of input
image 111 is an object or not. In an embodiment, output
objectness labels 122 are based on the summed scores of the
resultant objectness scores and the resultant semantic scores
as discussed. For example, output objectness labels 122 may
provide the most probable result from the resultant summed
scores indicating whether each pixel of input image 111 is an
object or not.

[0057] FIG. 5 is a flow diagram illustrating an example
process 500 for training semantic image segmentation sys-
tem 100, arranged in accordance with at least some imple-
mentations of the present disclosure. Process 500 may
include one or more operations 501-507 as illustrated in
FIG. 5. Process 500 may be performed by a device (e.g.,
system 100, any other devices or systems discussed herein,
or an external training device such as a computer device or
the like) to train a semantic image segmentation system for
implementation as discussed herein. Process 500 or portions
thereof may be repeated for any training image sets, seman-
tic image segmentation system, or the like.

[0058] Process 500 may begin at operation 501, where a
training set of images or image data may be loaded. Such
training data may include any suitable training data such as
known or generated images, ground truth semantic labels
corresponding to such images, ground truth objectness
labels corresponding to such images, or the like.

[0059] Processing may continue at operation 502, where
small sub-regions may be cropped from the training images
to train a two-class objectness network. The small sub-
regions may be cropped from the training images using any
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suitable technique or techniques. In an embodiment, one or
more small sub-regions are cropped from each training
image randomly. In an embodiment, one or more small
sub-regions are cropped from each training image randomly
such that each small region has the same size. In an
embodiment, small (NgxNg) sub-regions are randomly
cropped from the training images to train a two-class object
network.

[0060] For example, semantic image segmentation system
100 may be trained by process 500 in a step-wise manner
that builds on previous training. For example, at operation
502, a two-class object network is trained. With reference to
FIG. 1, the two-class object network may include multi-
stage fully convolutional network 105 (without use of
semantic label hyper-feature network 108 and objectness
label hyper-feature network 109) trained using a loss func-
tion provided by loss function module 169. For example,
feature maps 116 or the like and suitable objectness classi-
fication may be used to initially train multi-stage fully
convolutional network 105 using small sub-regions and
two-class (e.g., objectness) classification only. For example,
training of semantic image segmentation system 100 may
begin on small sub-region images using a two-class object
sub-network of semantic image segmentation system 100.

[0061] Processing may continue at operation 503, where a
two task network may be jointly trained based on the trained
two-class objectness network and the small sub-regions. The
two task network may be jointly trained using any suitable
technique or techniques. In an embodiment, the two task
network includes the two-class objectness network trained at
operation 502 and a fused C-class semantic segmentation
network for C-class semantic segmentation. For example,
the two task network may include the initially trained
multi-stage fully convolutional network 105 (again without
use of semantic label hyper-feature network 108 and object-
ness label hyper-feature network 109) trained using a fused
loss function provided by loss function modules 164, 169
and adder 165 (e.g., a fused loss function such as the loss
function provided by Equation (1)). For example, feature
maps 116 or the like and suitable objectness classification
and suitable semantic classification may be used to continue
to train multi-stage fully convolutional network 105 using
small sub-regions and two task (e.g., objectness and seman-
tic) classification. For example, training of semantic image
segmentation system 100 may continue with small sub-
region images using a fused two task network of semantic
image segmentation system 100.

[0062] Processing may continue at operation 504, where
large sub-regions may be cropped from the training images
loaded at operation 501 to fine tune the two task object
network trained at operation 503. The large sub-regions may
be cropped from the training images using any suitable
technique or techniques. In an embodiment, one or more
large sub-regions are cropped from each training image
randomly. In an embodiment, one or more large sub-regions
are cropped from each training image randomly such that
each large region has the same size. In an embodiment, one
or more large sub-regions are cropped from each training
image randomly such that the large sub-regions all have a
larger size than the small sub-regions cropped at operation
502. In an embodiment, large (NANO sub-regions are
randomly cropped from the training images to fine tune the
two task (e.g., multi-task) networks including the objectness
network and the semantic segmentation network.
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[0063] For example, as discussed, the two task network
may fine tuned at operation 504 may be the two class
network discussed with respect operation 503. The fine
tuning performed at operation 504 may provide additional
contextual information with respect to the training provided
at operation 502 and 503.

[0064] Processing may continue at operation 505, where
feature maps of two or more final layers of the multi-stage
fully convolutional network may be combined (e.g., con-
catenated) to train hyper-feature networks. For example,
feature maps may be generated using small and/or large
sub-regions and/or entire training images based on the
multi-stage fully convolutional network fine tuned at opera-
tion 504. The feature maps (e.g., feature maps 114, 115,
116), at the same resolution or scale, are combined using any
suitable technique or techniques such as concatenation tech-
niques to generate hyper-features. The hyper-features are
used to train semantic label hyper-feature network 108
and/or objectness label hyper-feature network 109. For
example, the training of multi-stage fully convolutional
network 105 may continue along with the training of seman-
tic label hyper-feature network 108 and objectness label
hyper-feature network 109.

[0065] Processing may continue at operation 506, where
the hyper-feature may be up-sampled to the resolution or
size of a previous stage of the multi-stage fully convolu-
tional network, summed with the feature map or maps from
the previous stage, such up-sampling and summing may be
repeated any number of ties and the whole network of the
semantic image segmentation system may be trained hier-
archically. For example, hyper-feature 188 and hyper-fea-
ture 198 may be up-sampled and summed with feature maps
113 and the summation may be up-sampled and summed
with feature maps 112. As discussed, such processing may
be performed for any number of previous stages of multi-
stage fully convolutional network 105. The networks of
semantic image segmentation system 100 are then trained
hierarchically based on the up-sampled and summed feature
maps and final sets of features 181, 191.

[0066] Processing may continue at operation 507, where
the discussed networks are trained in an end-to-end manner.
For example, the networks of semantic image segmentation
system 100 may be trained based on the training images
(and/or sub-regions thereof) by providing them to semantic
image segmentation system 100 all at once (e.g., all com-
ponents or networks together) from the input to the output
based on the fused loss functions as discussed herein.
[0067] FIG. 6 is a flow diagram illustrating an example
process 600 for performing semantic image segmentation,
arranged in accordance with at least some implementations
of the present disclosure. Process 600 may include one or
more operations 601-609 as illustrated in FIG. 6. Process
600 may form at least part of a semantic image segmentation
process. By way of non-limiting example, process 600 may
form at least part of a semantic image segmentation process
performed by system 100. Furthermore, process 600 will be
described herein with reference to system 700 of FIG. 7.
[0068] FIG. 7 is an illustrative diagram of an example
system 700 for performing semantic image segmentation,
arranged in accordance with at least some implementations
of the present disclosure. As shown in FIG. 7, system 700
may include a central processor 701, a graphics processor
702, and memory storage 703. Also as shown, central
processor 701 may include or implement multi-stage fully
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convolutional network 105, fused semantic and objectness
classification module 106, semantic label hyper-feature net-
work 108, and objectness label hyper-feature network 109.
Such modules may be implemented to perform operations as
discussed herein. In the example of system 700, memory
storage 703 may store input image data, training image data,
image sub-regions, feature maps, hyper-features, output
semantic labels, output objectness labels, training feedback,
or any other information or data discussed herein.

[0069] As shown, in some examples, multi-stage fully
convolutional network 105, fused semantic and objectness
classification module 106, semantic label hyper-feature net-
work 108, and objectness label hyper-feature network 109
may be implemented via central processor 701. In other
examples, all, some, or portions of multi-stage fully convo-
Iutional network 105, fused semantic and objectness classi-
fication module 106, semantic label hyper-feature network
108, and objectness label hyper-feature network 109 may be
implemented via graphics processor 702 or an image pro-
cessing unit (not shown) of system 700. In yet other
examples, all, some, or portions of multi-stage fully convo-
Iutional network 105, fused semantic and objectness classi-
fication module 106, semantic label hyper-feature network
108, and objectness label hyper-feature network 109 may be
implemented via an imaging processing pipeline, graphics
pipeline, or the like.

[0070] Graphics processor 702 may include any number
and type of graphics processing units, that may provide the
operations as discussed herein. Such operations may be
implemented via software or hardware or a combination
thereof. For example, graphics processor 702 may include
circuitry dedicated to manipulate image data, semantic
image segmentation system data, or the like obtained from
memory storage 703. Central processor 701 may include any
number and type of processing units or modules that may
provide control and other high level functions for system
700 and/or provide any operations as discussed herein.
Memory storage 703 may be any type of memory such as
volatile memory (e.g., Static Random Access Memory
(SRAM), Dynamic Random Access Memory (DRAM), etc.)
or non-volatile memory (e.g., flash memory, etc.), and so
forth. In a non-limiting example, memory storage 703 may
be implemented by cache memory. In an embodiment, all,
some, or portions of multi-stage fully convolutional network
105, fused semantic and objectness classification module
106, semantic label hyper-feature network 108, and object-
ness label hyper-feature network 109 may be implemented
via an execution unit (EU) of graphics processor 702. The
EU may include, for example, programmable logic or cir-
cuitry such as a logic core or cores that may provide a wide
array of programmable logic functions. In an embodiment,
all, some, or portions of multi-stage fully convolutional
network 105, fused semantic and objectness classification
module 106, semantic label hyper-feature network 108, and
objectness label hyper-feature network 109 may be imple-
mented via dedicated hardware such as fixed function cir-
cuitry or the like. Fixed function circuitry may include
dedicated logic or circuitry and may provide a set of fixed
function entry points that may map to the dedicated logic for
a fixed purpose or function. In some embodiments, all,
some, or portions of multi-stage fully convolutional network
105, fused semantic and objectness classification module
106, semantic label hyper-feature network 108, and object-
ness label hyper-feature network 109 may be implemented
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via an application specific integrated circuit (ASIC). The
ASIC may include an integrated circuitry customized to
perform the operations discussed herein.

[0071] Returning to discussion of FIG. 6, process 600 may
begin at operation 601, where a semantic image segmenta-
tion system including a multi-stage fully convolutional
network may be trained. The semantic image segmentation
system may be trained using any suitable technique or
techniques. In an embodiment, central processor 701 may
train multi-stage fully convolutional network 105, fused
semantic and objectness classification module 106, semantic
label hyper-feature network 108, and objectness label hyper-
feature network 109. In an embodiment, the multi-stage
fully convolutional network to be trained includes a first
stage to output a first feature map at a first resolution, a
second stage, subsequent to the first stage in the multi-stage
fully convolutional network, to output a second feature map
at a second resolution less than the first resolution, and a
third stage, subsequent to the second stage in the multi-stage
fully convolutional network, to output a third feature map at
the second resolution. Furthermore, as discussed, training
the multi-stage fully convolutional network may include
training other components of a semantic image segmentation
system such as semantic and objectness classification mod-
ules (e.g., including semantic and objectness convolutional
layers, respectively), a semantic label hyper-feature net-
work, and an objectness label hyper-feature network.
[0072] In an embodiment, the training may include gen-
erating a final set of training features for a training image,
applying a semantic label based convolutional layer to the
final set of training features to provide semantic scores,
applying an objectness based convolutional layer to the final
set of features to provide objectness scores, and applying a
loss function based on both a comparison of the semantic
scores to ground truth semantic scores for the training image
and a comparison of the objectness scores to ground truth
objectness scores for the training image. In an embodiment,
applying the loss function comprises weighting a first loss
function including the comparison of the semantic scores to
the ground truth semantic scores with a first weight and
weighting a second loss function including the comparison
of'the objectness scores to the ground truth objectness scores
with a second weight different than the first weight.

[0073] As discussed, the training may include generating
a final set of training features for a training image. In an
embodiment, generating the final set of training features
includes applying the first stage of the multi-stage fully
convolutional network to output a first training feature map
at a first resolution, applying the second stage of the multi-
stage fully convolutional network to output a second training
feature map at a second resolution less than the first reso-
Iution, applying the third stage of the multi-stage fully
convolutional network to output a third training feature map
at the second resolution, combining at least the second and
third training feature maps to generate a training hyper-
feature corresponding to the training image, up-sampling the
training hyper-feature to the first resolution, and generating
the final set of training features by at least summing the
up-sampled training hyper-feature and the first training
feature map. For example, the final set of training features
may be generated as discussed with respect to operations
602-608 below.

[0074] In addition or in the alternative, the training may
include cropping one or more training images of the set of
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training images to generate first sub-regions, training, using
the sub-regions, an objectness network comprising the
multi-stage fully convolutional network and an objectness
based convolutional layer, refining the training, using the
sub-regions, of the objectness network and training, using
the sub-regions, a semantic label network comprising the
multi-stage fully convolutional network and a semantic label
based convolutional layer, cropping the one or more training
images of the set of training images to generate second
sub-regions, wherein all the second sub-regions are larger
than all the first sub-regions, training a hyper-feature net-
work, and end-to-end training a system including the object-
ness network, the semantic label network, and the hyper-
feature network to generate a final semantic image
segmentation system. For example, training the hyper-fea-
ture network may be performed by concatenating feature
maps, generated based on the second sub-regions, from the
second stage, the third stage, and a fourth stage subsequent
to the third stage to generate training hyper-features, up-
sampling the training hyper-features to the first resolution,
generating final sets of training features corresponding to the
second sub-regions by at least summing the up-sampled
training hyper-feature and a first set of training feature maps,
and hierarchically training the hyper-feature network based
on the final sets of training features.

[0075] Processing may continue at operation 602, where a
multi-stage fully convolutional network is implemented
based on an input image. For example, a multi-stage fully
convolutional network as trained at operation 601 may be
implemented at operation 602. As shown, implementing the
multi-stage fully convolutional network may include at least
sub-operations 603-605. For example, operation 602 may
include sub-operation 603, where a first stage of the multi-
stage fully convolutional network may be applied to output
a first feature map at a first resolution, sub-operation 604,
where a second stage of the multi-stage fully convolutional
network, subsequent to the first stage in the multi-stage fully
convolutional network, may be applied to output a second
feature map at a second resolution less than the first reso-
Iution, and sub-operation 605, where a third stage of the
multi-stage fully convolutional network, subsequent to the
second stage in the multi-stage fully convolutional network,
may be applied to output a third feature map at the second
resolution. The first, second, and third stages may each
include any number of convolutional layers, max pooling
layers, or the like. In an embodiment, the first stage includes
two convolutional layers and a max pooling layer and the
second stage includes three convolutional layers and a max
pooling layer.

[0076] Processing may continue at operation 606, where at
least the second and third feature maps are combined to
generate a hyper-feature corresponding to the input image.
The second and third feature maps may be combined using
any suitable technique or techniques. In an embodiment, the
second and third feature maps are combined by concatenat-
ing the second and third feature maps. In an embodiment, the
second and third feature maps are output from middle stages
of shared two task networks (e.g., an objectness network and
a semantic segmentation network). As discussed below, in
some embodiments the second and third feature maps are
further combined with another feature map at the same
resolution of the second and third feature maps to generate
the hyper-feature. In an embodiment, the hyper-feature may
be generated for use in a semantic segmentation network as
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discussed herein. In an embodiment, the hyper-feature is
also be used in an object segmentation network. In an
embodiment, a second hyper-feature may be generated for
use in the object segmentation network.

[0077] Processing may continue at operation 607, where
the hyper-feature is up-sampled to the first resolution. The
hyper-feature may be up-sampled using any suitable tech-
nique or techniques. Processing may continue at operation
608, where a final set of features corresponding to the input
image may be generated by at least summing the up-sampled
hyper-feature and the first feature map. For example, the
up-sampled hyper-feature and the first feature map may be
summed to generate a final set of features for a in a semantic
segmentation network as discussed herein. In an embodi-
ment, the final set of features are also be used in an object
segmentation network. In an embodiment, a second final set
of features may be generated for use in the object segmen-
tation network.

[0078] As discussed, two feature maps may be concat-
enated, up-sampled, and summed with an earlier stage
feature map to generate a final set of features. In an
embodiment, implementing the multi-stage fully convolu-
tional network for the input image further includes applying
a fourth stage, prior to the first stage, to output a fourth
feature map at a third resolution greater than the first
resolution and applying a fifth stage, subsequent to the third
stage in the multi-stage fully convolutional network, to
output a fifth feature map at the second resolution. Further-
more, combining at least the second and third feature maps
to generate the hyper-feature may include combining the
second, third, and fifth feature maps to generate the hyper-
feature and generating the final set of features may include
up-sampling the sum of the up-sampled hyper-feature and
the first feature map to the third resolution and summing the
up-sampled features and the fourth feature maps.

[0079] Processing may continue at operation 609, where
the final set of features are classified to provide a semantic
image segmentation of the input image such that the seman-
tic image segmentation includes pixel-level category labels
for pixels of the input image. The classification may be
performed using any suitable technique or techniques. In an
embodiment, classifying the final set of features includes
applying a semantic label based convolutional layer to the
final set of features to provide semantic scores, applying an
objectness based convolutional layer to the final set of
features (or a second set of final features) to provide object-
ness scores, and classifying the semantic scores and the
objectness scores to provide the semantic image segmenta-
tion. In an embodiment, classifying the semantic scores and
objectness scores includes summing the semantic scores and
objectness scores and classifying the summed scores.
[0080] As discussed, process 600 may provide a semantic
image segmentation of an input image. In an embodiment,
an objectness image segmentation of the input image may
also be provided. In an embodiment, the semantic scores and
the objectness scores are classified to provide an objectness
image segmentation of the input image such that the object-
ness image segmentation including pixel-level object or
non-object labels for pixels of the input image. The semantic
image segmentation and/or the objectness image segmenta-
tion may be stored in memory storage, transmitted to another
device, or used by another component of system 700. In an
embodiment, process 600 further includes performing,
based on the semantic image segmentation and/or the object-
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ness image segmentation, at least one of object detection,
object tracking, or scene understanding.

[0081] Process 600 may provide for generating semantic
image segmentation and/or objectness image segmentation
based on input image data such as an image frame, a picture
or frame of a video sequence, or the like. Process 600 may
be repeated any number of times either in series or in parallel
for any number of input images, input frames, or the like. As
discussed process 600 may provide for high quality semantic
image segmentation and/or objectness image segmentation
and in implementation (e.g., as implemented with respect to
system 700) may provide for reduced memory and compu-
tational requirements.

[0082] Various components of the systems described
herein may be implemented in software, firmware, and/or
hardware and/or any combination thereof. For example,
various components of the systems or devices discussed
herein may be provided, at least in part, by hardware of a
computing System-on-a-Chip (SoC) such as may be found
in a computing system such as, for example, a computer, a
laptop computer, a tablet, or a smart phone. For example,
such components or modules may be implemented via a
multi-core SoC processor. Those skilled in the art may
recognize that systems described herein may include addi-
tional components that have not been depicted in the cor-
responding figures.

[0083] While implementation of the example processes
discussed herein may include the undertaking of all opera-
tions shown in the order illustrated, the present disclosure is
not limited in this regard and, in various examples, imple-
mentation of the example processes herein may include only
a subset of the operations shown, operations performed in a
different order than illustrated, or additional operations.

[0084] In addition, any one or more of the operations
discussed herein may be undertaken in response to instruc-
tions provided by one or more computer program products.
Such program products may include signal bearing media
providing instructions that, when executed by, for example,
a processor, may provide the functionality described herein.
The computer program products may be provided in any
form of one or more machine-readable media. Thus, for
example, a processor including one or more graphics pro-
cessing unit(s) or processor core(s) may undertake one or
more of the blocks of the example processes herein in
response to program code and/or instructions or instruction
sets conveyed to the processor by one or more machine-
readable media. In general, a machine-readable medium
may convey software in the form of program code and/or
instructions or instruction sets that may cause any of the
systems or devices discussed herein, or any other module or
component as discussed herein.

[0085] As used in any implementation described herein,
the term “module” refers to any combination of software
logic, firmware logic, hardware logic, and/or circuitry con-
figured to provide the functionality described herein. The
software may be embodied as a software package, code
and/or instruction set or instructions, and “hardware”, as
used in any implementation described herein, may include,
for example, singly or in any combination, hardwired cir-
cuitry, programmable circuitry, state machine circuitry, fixed
function circuitry, execution unit circuitry, and/or firmware
that stores instructions executed by programmable circuitry.
The modules may, collectively or individually, be embodied
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as circuitry that forms part of a larger system, for example,
an integrated circuit (IC), system on-chip (SoC), and so
forth.

[0086] FIG. 8 is an illustrative diagram of an example
system 800, arranged in accordance with at least some
implementations of the present disclosure. In various imple-
mentations, system 800 may be a computing system
although system 800 is not limited to this context. For
example, system 800 may be incorporated into a personal
computer (PC), laptop computer, ultra-laptop computer,
tablet, phablet, touch pad, portable computer, handheld
computer, palmtop computer, personal digital assistant
(PDA), cellular telephone, combination cellular telephone/
PDA, television, smart device (e.g., smart phone, smart
tablet or smart television), mobile internet device (MID),
messaging device, data communication device, peripheral
device, gaming console, wearable device, display device,
all-in-one device, two-in-one device, and so forth.

[0087] In various implementations, system 800 includes a
platform 802 coupled to a display 820. Platform 802 may
receive content from a content device such as content
services device(s) 830 or content delivery device(s) 840 or
other similar content sources such as a camera or camera
module or the like. A navigation controller 850 including
one or more navigation features may be used to interact
with, for example, platform 802 and/or display 820. Each of
these components is described in greater detail below.
[0088] In various implementations, platform 802 may
include any combination of a chipset 805, processor 810,
memory 812, antenna 813, storage 814, graphics subsystem
815, applications 816 and/or radio 818. Chipset 805 may
provide intercommunication among processor 810, memory
812, storage 814, graphics subsystem 815, applications 816
and/or radio 818. For example, chipset 805 may include a
storage adapter (not depicted) capable of providing inter-
communication with storage 814.

[0089] Processor 810 may be implemented as a Complex
Instruction Set Computer (CISC) or Reduced Instruction Set
Computer (RISC) processors, x86 instruction set compatible
processors, multi-core, or any other microprocessor or cen-
tral processing unit (CPU). In various implementations,
processor 810 may be dual-core processor(s), dual-core
mobile processor(s), and so forth.

[0090] Memory 812 may be implemented as a volatile
memory device such as, but not limited to, a Random Access
Memory (RAM), Dynamic Random Access Memory
(DRAM), or Static RAM (SRAM).

[0091] Storage 814 may be implemented as a non-volatile
storage device such as, but not limited to, a magnetic disk
drive, optical disk drive, tape drive, an internal storage
device, an attached storage device, flash memory, battery
backed-up SDRAM (synchronous DRAM), and/or a net-
work accessible storage device. In various implementations,
storage 814 may include technology to increase the storage
performance enhanced protection for valuable digital media
when multiple hard drives are included, for example.
[0092] Graphics subsystem 815 may perform processing
of'images such as still images, graphics, or video for display.
Graphics subsystem 815 may be a graphics processing unit
(GPU), a visual processing unit (VPU), or an image pro-
cessing unit, for example. In some examples, graphics
subsystem 815 may perform scanned image rendering as
discussed herein. An analog or digital interface may be used
to communicatively couple graphics subsystem 815 and
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display 820. For example, the interface may be any of a
High-Definition Multimedia Interface, DisplayPort, wireless
HDMI, and/or wireless HD compliant techniques. Graphics
subsystem 815 may be integrated into processor 810 or
chipset 805. In some implementations, graphics subsystem
815 may be a stand-alone device communicatively coupled
to chipset 805.

[0093] The image or video processing techniques
described herein may be implemented in various hardware
architectures. For example, image processing functionality
may be integrated within a chipset. Alternatively, a discrete
graphics and/or image processor and/or application specific
integrated circuit may be used. As still another implemen-
tation, the image processing may be provided by a general
purpose processor, including a multi-core processor. In
further embodiments, the functions may be implemented in
a consumer electronics device.

[0094] Radio 818 may include one or more radios capable
of transmitting and receiving signals using various suitable
wireless communications techniques. Such techniques may
involve communications across one or more wireless net-
works. Example wireless networks include (but are not
limited to) wireless local area networks (WLANs), wireless
personal area networks (WPANs), wireless metropolitan
area network (WMANSs), cellular networks, and satellite
networks. In communicating across such networks, radio
818 may operate in accordance with one or more applicable
standards in any version.

[0095] In wvarious implementations, display 820 may
include any flat panel monitor or display. Display 820 may
include, for example, a computer display screen, touch
screen display, video monitor, television-like device, and/or
a television. Display 820 may be digital and/or analog. In
various implementations, display 820 may be a holographic
display. Also, display 820 may be a transparent surface that
may receive a visual projection. Such projections may
convey various forms of information, images, and/or
objects. For example, such projections may be a visual
overlay for a mobile augmented reality (MAR) application.
Under the control of one or more software applications 816,
platform 802 may display user interface 822 on display 820.

[0096] In various implementations, content services
device(s) 830 may be hosted by any national, international
and/or independent service and thus accessible to platform
802 via the Internet, for example. Content services device(s)
830 may be coupled to platform 802 and/or to display 820.
Platform 802 and/or content services device(s) 830 may be
coupled to a network 860 to communicate (e.g., send and/or
receive) media information to and from network 860. Con-
tent delivery device(s) 840 also may be coupled to platform
802 and/or to display 820.

[0097] In various implementations, content services
device(s) 830 may include a cable television box, personal
computer, network, telephone, Internet enabled devices or
appliance capable of delivering digital information and/or
content, and any other similar device capable of uni-direc-
tionally or bi-directionally communicating content between
content providers and platform 802 and/display 820, via
network 860 or directly. It will be appreciated that the
content may be communicated uni-directionally and/or bi-
directionally to and from any one of the components in
system 800 and a content provider via network 860.
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Examples of content may include any media information
including, for example, video, music, medical and gaming
information, and so forth.

[0098] Content services device(s) 830 may receive content
such as cable television programming including media infor-
mation, digital information, and/or other content. Examples
of content providers may include any cable or satellite
television or radio or Internet content providers. The pro-
vided examples are not meant to limit implementations in
accordance with the present disclosure in any way.

[0099] In various implementations, platform 802 may
receive control signals from navigation controller 850 hav-
ing one or more navigation features. The navigation features
of navigation controller 850 may be used to interact with
user interface 822, for example. In various embodiments,
navigation controller 850 may be a pointing device that may
be a computer hardware component (specifically, a human
interface device) that allows a user to input spatial (e.g.,
continuous and multi-dimensional) data into a computer.
Many systems such as graphical user interfaces (GUI), and
televisions and monitors allow the user to control and
provide data to the computer or television using physical
gestures.

[0100] Movements of the navigation features of naviga-
tion controller 850 may be replicated on a display (e.g.,
display 820) by movements of a pointer, cursor, focus ring,
or other visual indicators displayed on the display. For
example, under the control of software applications 816, the
navigation features located on navigation controller 850 may
be mapped to virtual navigation features displayed on user
interface 822, for example. In various embodiments, navi-
gation controller 850 may not be a separate component but
may be integrated into platform 802 and/or display 820. The
present disclosure, however, is not limited to the elements or
in the context shown or described herein.

[0101] In various implementations, drivers (not shown)
may include technology to enable users to instantly turn on
and off platform 802 like a television with the touch of a
button after initial boot-up, when enabled, for example.
Program logic may allow platform 802 to stream content to
media adaptors or other content services device(s) 830 or
content delivery device(s) 840 even when the platform is
turned “off”” In addition, chipset 805 may include hardware
and/or software support for 5.1 surround sound audio and/or
high definition 7.1 surround sound audio, for example.
Drivers may include a graphics driver for integrated graph-
ics platforms. In various embodiments, the graphics driver
may comprise a peripheral component interconnect (PCI)
Express graphics card.

[0102] In various implementations, any one or more of the
components shown in system 800 may be integrated. For
example, platform 802 and content services device(s) 830
may be integrated, or platform 802 and content delivery
device(s) 840 may be integrated, or platform 802, content
services device(s) 830, and content delivery device(s) 840
may be integrated, for example. In various embodiments,
platform 802 and display 820 may be an integrated unit.
Display 820 and content service device(s) 830 may be
integrated, or display 820 and content delivery device(s) 840
may be integrated, for example. These examples are not
meant to limit the present disclosure.

[0103] In various embodiments, system 800 may be
implemented as a wireless system, a wired system, or a
combination of both. When implemented as a wireless
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system, system 800 may include components and interfaces
suitable for communicating over a wireless shared media,
such as one or more antennas, transmitters, receivers, trans-
ceivers, amplifiers, filters, control logic, and so forth. An
example of wireless shared media may include portions of a
wireless spectrum, such as the RF spectrum and so forth.
When implemented as a wired system, system 800 may
include components and interfaces suitable for communi-
cating over wired communications media, such as input/
output (I/O) adapters, physical connectors to connect the [/O
adapter with a corresponding wired communications
medium, a network interface card (NIC), disc controller,
video controller, audio controller, and the like. Examples of
wired communications media may include a wire, cable,
metal leads, printed circuit board (PCB), backplane, switch
fabric, semiconductor material, twisted-pair wire, co-axial
cable, fiber optics, and so forth.

[0104] Platform 802 may establish one or more logical or
physical channels to communicate information. The infor-
mation may include media information and control infor-
mation. Media information may refer to any data represent-
ing content meant for a user. Examples of content may
include, for example, data from a voice conversation, vid-
eoconference, streaming video, electronic mail (“email”)
message, voice mail message, alphanumeric symbols,
graphics, image, video, text and so forth. Data from a voice
conversation may be, for example, speech information,
silence periods, background noise, comfort noise, tones and
so forth. Control information may refer to any data repre-
senting commands, instructions or control words meant for
an automated system. For example, control information may
be used to route media information through a system, or
instruct a node to process the media information in a
predetermined manner. The embodiments, however, are not
limited to the elements or in the context shown or described
in FIG. 8.

[0105] As described above, system 800 may be embodied
in varying physical styles or form factors. FIG. 9 illustrates
an example small form factor device 900, arranged in
accordance with at least some implementations of the pres-
ent disclosure. In some examples, system 800 may be
implemented via device 900. In other examples, system 100
or portions thereof may be implemented via device 900. In
various embodiments, for example, device 900 may be
implemented as a mobile computing device a having wire-
less capabilities. A mobile computing device may refer to
any device having a processing system and a mobile power
source or supply, such as one or more batteries, for example.
[0106] Examples of a mobile computing device may
include a personal computer (PC), laptop computer, ultra-
laptop computer, tablet, touch pad, portable computer, hand-
held computer, palmtop computer, personal digital assistant
(PDA), cellular telephone, combination cellular telephone/
PDA, smart device (e.g., smart phone, smart tablet or smart
mobile television), mobile internet device (MID), messaging
device, data communication device, cameras, and so forth.
[0107] Examples of a mobile computing device also may
include computers that are arranged to be worn by a person,
such as a wrist computers, finger computers, ring computers,
eyeglass computers, belt-clip computers, arm-band comput-
ers, shoe computers, clothing computers, and other wearable
computers. In various embodiments, for example, a mobile
computing device may be implemented as a smart phone
capable of executing computer applications, as well as voice
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communications and/or data communications. Although
some embodiments may be described with a mobile com-
puting device implemented as a smart phone by way of
example, it may be appreciated that other embodiments may
be implemented using other wireless mobile computing
devices as well. The embodiments are not limited in this
context.

[0108] As shown in FIG. 9, device 900 may include a
housing with a front 901 and a back 902. Device 900
includes a display 904, an input/output (I/O) device 906, and
an integrated antenna 908. Device 900 also may include
navigation features 912. /O device 906 may include any
suitable 1/O device for entering information into a mobile
computing device. Examples for /O device 906 may include
an alphanumeric keyboard, a numeric keypad, a touch pad,
input keys, buttons, switches, microphones, speakers, voice
recognition device and software, and so forth. Information
also may be entered into device 900 by way of microphone
(not shown), or may be digitized by a voice recognition
device. As shown, device 900 may include a camera 905
(e.g., including a lens, an aperture, and an imaging sensor)
and a flash 910 integrated into back 902 (or elsewhere) of
device 900. In other examples, camera 905 and flash 910
may be integrated into front 901 of device 900 or both front
and back cameras may be provided. Camera 905 and flash
910 may be components of a camera module to originate
image data processed into streaming video that is output to
display 904 and/or communicated remotely from device 900
via antenna 908 for example.

[0109] Various embodiments may be implemented using
hardware elements, software elements, or a combination of
both. Examples of hardware elements may include proces-
sors, microprocessors, circuits, circuit elements (e.g., tran-
sistors, resistors, capacitors, inductors, and so forth), inte-
grated circuits, application specific integrated -circuits
(ASIC), programmable logic devices (PLD), digital signal
processors (DSP), field programmable gate array (FPGA),
logic gates, registers, semiconductor device, chips, micro-
chips, chip sets, and so forth. Examples of software may
include software components, programs, applications, com-
puter programs, application programs, system programs,
machine programs, operating system software, middleware,
firmware, software modules, routines, subroutines, func-
tions, methods, procedures, software interfaces, application
program interfaces (API), instruction sets, computing code,
computer code, code segments, computer code segments,
words, values, symbols, or any combination thereof. Deter-
mining whether an embodiment is implemented using hard-
ware elements and/or software elements may vary in accor-
dance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, input data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints.

[0110] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as IP cores
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.
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[0111] While certain features set forth herein have been
described with reference to various implementations, this
description is not intended to be construed in a limiting
sense. Hence, various modifications of the implementations
described herein, as well as other implementations, which
are apparent to persons skilled in the art to which the present
disclosure pertains are deemed to lie within the spirit and
scope of the present disclosure.

[0112] In one or more first embodiments, a computer-
implemented method for performing semantic image seg-
mentation comprises implementing a multi-stage fully con-
volutional network based on an input image, wherein
implementing the multi-stage fully convolutional network
comprises applying a first stage to output a first feature map
at a first resolution, applying a second stage, subsequent to
the first stage in the multi-stage fully convolutional network,
to output a second feature map at a second resolution less
than the first resolution, and applying a third stage, subse-
quent to the second stage in the multi-stage fully convolu-
tional network, to output a third feature map at the second
resolution, combining at least the second and third feature
maps to generate a hyper-feature corresponding to the input
image, up-sampling the hyper-feature to the first resolution,
generating a final set of features corresponding to the input
image by at least summing the up-sampled hyper-feature
and the first feature map, and classifying the final set of
features to provide a semantic image segmentation of the
input image, the semantic image segmentation including
pixel-level category labels for pixels of the input image.
[0113] Further to the first embodiments, implementing the
multi-stage fully convolutional network based on the input
image further comprises applying a fourth stage, prior to the
first stage, to output a fourth feature map at a third resolution
greater than the first resolution and applying a fifth stage,
subsequent to the third stage in the multi-stage fully con-
volutional network, to output a fifth feature map at the
second resolution, wherein combining at least the second
and third feature maps to generate the hyper-feature com-
prises combining the second, third, and fifth feature maps to
generate the hyper-feature, and wherein generating the final
set of features further comprises up-sampling the sum of the
up-sampled hyper-feature and the first feature map to the
third resolution and summing the up-sampled features and
the fourth feature maps.

[0114] Further to the first embodiments, classifying the
final set of features comprises applying a semantic label
based convolutional layer to the final set of features to
provide semantic scores, applying an objectness based con-
volutional layer to the final set of features to provide
objectness scores, and classifying the semantic scores and
the objectness scores to provide the semantic image seg-
mentation.

[0115] Further to the first embodiments, classifying the
final set of features comprises applying a semantic label
based convolutional layer to the final set of features to
provide semantic scores, applying an objectness based con-
volutional layer to the final set of features to provide
objectness scores, and classifying the semantic scores and
the objectness scores to provide the semantic image seg-
mentation, wherein classifying the semantic scores and
objectness scores comprises summing the semantic scores
and objectness scores and classifying the summed scores.
[0116] Further to the first embodiments, classifying the
final set of features comprises applying a semantic label
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based convolutional layer to the final set of features to
provide semantic scores, applying an objectness based con-
volutional layer to the final set of features to provide
objectness scores, classifying the semantic scores and the
objectness scores to provide the semantic image segmenta-
tion, and classifying the semantic scores and the objectness
scores to provide an objectness image segmentation of the
input image, the objectness image segmentation including
pixel-level object or non-object labels for pixels of the input
image.

[0117] Further to the first embodiments, classifying the
final set of features comprises applying a semantic label
based convolutional layer to the final set of features to
provide semantic scores, applying an objectness based con-
volutional layer to the final set of features to provide
objectness scores, and classifying the semantic scores and
the objectness scores to provide the semantic image seg-
mentation, wherein classifying the semantic scores and
objectness scores comprises summing the semantic scores
and objectness scores and classifying the summed scores.
[0118] Further to the first embodiments, the method fur-
ther comprises training the multi-stage fully convolutional
network based on a training image by generating a final set
of training features for the training image, applying a
semantic label based convolutional layer to the final set of
training features to provide semantic scores, applying an
objectness based convolutional layer to the final set of
features to provide objectness scores, and applying a loss
function based on both a comparison of the semantic scores
to ground truth semantic scores for the training image and a
comparison of the objectness scores to ground truth object-
ness scores for the training image.

[0119] Further to the first embodiments, the method fur-
ther comprises training the multi-stage fully convolutional
network based on a training image by generating a final set
of training features for the training image, applying a
semantic label based convolutional layer to the final set of
training features to provide semantic scores, applying an
objectness based convolutional layer to the final set of
features to provide objectness scores, and applying a loss
function based on both a comparison of the semantic scores
to ground truth semantic scores for the training image and a
comparison of the objectness scores to ground truth object-
ness scores for the training image, wherein generating the
final set of training features comprises applying the first
stage to output a first training feature map at the first
resolution, applying the second stage to output a second
training feature map at the second resolution, applying the
third stage to output a third training feature map at the
second resolution, combining at least the second and third
training feature maps to generate a training hyper-feature
corresponding to the training image, up-sampling the train-
ing hyper-feature to the first resolution, and generating the
final set of training features by at least summing the up-
sampled training hyper-feature and the first training feature
map.

[0120] Further to the first embodiments, the method fur-
ther comprises training the multi-stage fully convolutional
network based on a training image by generating a final set
of training features for the training image, applying a
semantic label based convolutional layer to the final set of
training features to provide semantic scores, applying an
objectness based convolutional layer to the final set of
features to provide objectness scores, and applying a loss
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function based on both a comparison of the semantic scores
to ground truth semantic scores for the training image and a
comparison of the objectness scores to ground truth object-
ness scores for the training image, wherein applying the loss
function comprises weighting a first loss function compris-
ing the comparison of the semantic scores to the ground truth
semantic scores with a first weight and weighting a second
loss function comprising the comparison of the objectness
scores to the ground truth objectness scores with a second
weight different than the first weight.

[0121] Further to the first embodiments, the method fur-
ther comprises training the multi-stage fully convolutional
network based on a training image by generating a final set
of training features for the training image, applying a
semantic label based convolutional layer to the final set of
training features to provide semantic scores, applying an
objectness based convolutional layer to the final set of
features to provide objectness scores, and applying a loss
function based on both a comparison of the semantic scores
to ground truth semantic scores for the training image and a
comparison of the objectness scores to ground truth object-
ness scores for the training image, wherein generating the
final set of training features comprises applying the first
stage to output a first training feature map at the first
resolution, applying the second stage to output a second
training feature map at the second resolution, applying the
third stage to output a third training feature map at the
second resolution, combining at least the second and third
training feature maps to generate a training hyper-feature
corresponding to the training image, up-sampling the train-
ing hyper-feature to the first resolution, and generating the
final set of training features by at least summing the up-
sampled training hyper-feature and the first training feature
map, and/or wherein applying the loss function comprises
weighting a first loss function comprising the comparison of
the semantic scores to the ground truth semantic scores with
a first weight and weighting a second loss function com-
prising the comparison of the objectness scores to the
ground truth objectness scores with a second weight differ-
ent than the first weight.

[0122] Further to the first embodiments, the method fur-
ther comprises training the multi-stage fully convolutional
network based on a set of training images by cropping one
or more training images of the set of training images to
generate first sub-regions, training, using the sub-regions, an
objectness network comprising the multi-stage fully convo-
Iutional network and an objectness based convolutional
layer, refining the training, using the sub-regions, of the
objectness network and training, using the sub-regions, a
semantic label network comprising the multi-stage fully
convolutional network and a semantic label based convolu-
tional layer, cropping the one or more training images of the
set of training images to generate second sub-regions,
wherein all the second sub-regions are larger than all the first
sub-regions, training a hyper-feature network by concatenat-
ing feature maps, generated based on the second sub-
regions, from the second stage, the third stage, and a fourth
stage subsequent to the third stage to generate training
hyper-features, up-sampling the training hyper-features to
the first resolution, generating final sets of training features
corresponding to the second sub-regions by at least sum-
ming the up-sampled training hyper-feature and a first set of
training feature maps, and hierarchically training the hyper-
feature network based on the final sets of training features,
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and end-to-end training a system including the objectness
network, the semantic label network, and the hyper-feature
network to generate a final semantic image segmentation
system.

[0123] Further to the first embodiments, the first stage
comprises two convolutional layers and a max pooling layer
and the second stage comprises three convolutional layers
and a max pooling layer.

[0124] Further to the first embodiments, the method fur-
ther comprises performing, based on the semantic image
segmentation, at least one of object detection, object track-
ing, or scene understanding.

[0125] In one or more second embodiments, a system for
performing semantic image segmentation comprises a
memory storage configured to receive an input image and a
processor coupled to the memory storage, the processor to
implement a multi-stage fully convolutional network based
on an input image, wherein to implement the multi-stage
fully convolutional network, the processor is to apply a first
stage to output a first feature map at a first resolution, to
apply a second stage, subsequent to the first stage in the
multi-stage fully convolutional network, to output a second
feature map at a second resolution less than the first reso-
Iution, and to apply a third stage, subsequent to the second
stage in the multi-stage fully convolutional network, to
output a third feature map at the second resolution, combine
at least the second and third feature maps to generate a
hyper-feature corresponding to the input image, up-sample
the hyper-feature to the first resolution, generate a final set
of features corresponding to the input image by at least
summing the up-sampled hyper-feature and the first feature
map, and classify the final set of features to provide a
semantic image segmentation of the input image, the seman-
tic image segmentation including pixel-level category labels
for pixels of the input image.

[0126] Further to the second embodiments, the processor
to implement the multi-stage fully convolutional network
based on the input image further comprises the processor to
apply a fourth stage, prior to the first stage, to output a fourth
feature map at a third resolution greater than the first
resolution and to apply a fifth stage, subsequent to the third
stage in the multi-stage fully convolutional network, to
output a fifth feature map at the second resolution, wherein
the processor to combine at least the second and third feature
maps to generate the hyper-feature comprises the processor
to combine the second, third, and fifth feature maps to
generate the hyper-feature, and wherein the processor to
generate the final set of features further comprises the
processor to up-sample the sum of the up-sampled hyper-
feature and the first feature map to the third resolution and
sum the up-sampled features and the fourth feature maps.
[0127] Further to the second embodiments, the processor
to classify the final set of features comprises the processor
to apply a semantic label based convolutional layer to the
final set of features to provide semantic scores, apply an
objectness based convolutional layer to the final set of
features to provide objectness scores, and to classify the
semantic scores and the objectness scores to provide the
semantic image segmentation.

[0128] Further to the second embodiments, the processor
to classify the final set of features comprises the processor
to apply a semantic label based convolutional layer to the
final set of features to provide semantic scores, apply an
objectness based convolutional layer to the final set of
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features to provide objectness scores, and to classify the
semantic scores and the objectness scores to provide the
semantic image segmentation, wherein the processor to
classify the semantic scores and objectness scores comprises
the processor to sum the semantic scores and objectness
scores and classify the summed scores.

[0129] Further to the second embodiments, the processor
to classify the final set of features comprises the processor
to apply a semantic label based convolutional layer to the
final set of features to provide semantic scores, apply an
objectness based convolutional layer to the final set of
features to provide objectness scores, and to classify the
semantic scores and the objectness scores to provide the
semantic image segmentation, wherein the processor is
further to classify the semantic scores and the objectness
scores to provide an objectness image segmentation of the
input image, the objectness image segmentation including
pixel-level object or non-object labels for pixels of the input
image.

[0130] Further to the second embodiments, the processor
is further to train the multi-stage fully convolutional network
based on a training image, wherein to train the multi-stage
fully convolutional network the processor is to generate a
final set of training features for the training image, to apply
a semantic label based convolutional layer to the final set of
training features to provide semantic scores, to apply an
objectness based convolutional layer to the final set of
features to provide objectness scores, and to apply a loss
function based on both a comparison of the semantic scores
to ground truth semantic scores for the training image and a
comparison of the objectness scores to ground truth object-
ness scores for the training image.

[0131] Further to the second embodiments, the processor
is further to train the multi-stage fully convolutional network
based on a training image, wherein to train the multi-stage
fully convolutional network the processor is to generate a
final set of training features for the training image, to apply
a semantic label based convolutional layer to the final set of
training features to provide semantic scores, to apply an
objectness based convolutional layer to the final set of
features to provide objectness scores, and to apply a loss
function based on both a comparison of the semantic scores
to ground truth semantic scores for the training image and a
comparison of the objectness scores to ground truth object-
ness scores for the training image, wherein to generate the
final set of training features comprises the processor to apply
the first stage to output a first training feature map at the first
resolution, to apply the second stage to output a second
training feature map at the second resolution, to apply the
third stage to output a third training feature map at the
second resolution, to combine at least the second and third
training feature maps to generate a training hyper-feature
corresponding to the training image, to up-sample the train-
ing hyper-feature to the first resolution, and to generate the
final set of training features based on at least a sum of the
up-sampled training hyper-feature and the first training
feature map.

[0132] Further to the second embodiments, the processor
is further to train the multi-stage fully convolutional network
based on a training image, wherein to train the multi-stage
fully convolutional network the processor is to generate a
final set of training features for the training image, to apply
a semantic label based convolutional layer to the final set of
training features to provide semantic scores, to apply an
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objectness based convolutional layer to the final set of
features to provide objectness scores, and to apply a loss
function based on both a comparison of the semantic scores
to ground truth semantic scores for the training image and a
comparison of the objectness scores to ground truth object-
ness scores for the training image, wherein to apply the loss
function comprises the processor to weight a first loss
function comprising the comparison of the semantic scores
to the ground truth semantic scores with a first weight and
to weight a second loss function comprising the comparison
of'the objectness scores to the ground truth objectness scores
with a second weight different than the first weight.

[0133] Further to the second embodiments, the processor
is further to train the multi-stage fully convolutional network
based on a set of training images, wherein to train the
multi-stage fully convolutional network the processor is to
crop one or more training images of the set of training
images to generate first sub-regions, to train, using the
sub-regions, an objectness network comprising the multi-
stage fully convolutional network and an objectness based
convolutional layer, to refine the training, using the sub-
regions, of the objectness network and to train, using the
sub-regions, a semantic label network comprising the multi-
stage fully convolutional network and a semantic label based
convolutional layer, to crop the one or more training images
of the set of training images to generate second sub-regions,
wherein all the second sub-regions are larger than all the first
sub-regions, to train a hyper-feature network, wherein to
train the hyper-feature network, the processor is to concat-
enate feature maps, generated based on the second sub-
regions, from the second stage, the third stage, and a fourth
stage subsequent to the third stage to generate training
hyper-features, to up-sample the training hyper-features to
the first resolution, to generate final sets of training features
corresponding to the second sub-regions based on at least a
sum of the up-sampled training hyper-feature and a first set
of training feature maps, and to hierarchically train the
hyper-feature network based on the final sets of training
features, and to end-to-end train a system including the
objectness network, the semantic label network, and the
hyper-feature network to generate a final semantic image
segmentation system.

[0134] Further to the second embodiments, the first stage
comprises two convolutional layers and a max pooling layer
and the second stage comprises three convolutional layers
and a max pooling layer.

[0135] Further to the second embodiments, the processor
is further to perform, based on the semantic image segmen-
tation, at least one of object detection, object tracking, or
scene understanding.

[0136] In one or more third embodiments, a system for
performing semantic image segmentation comprises means
for implementing a multi-stage fully convolutional network
based on an input image, wherein the means for implement-
ing the multi-stage fully convolutional network comprise
means for applying a first stage to output a first feature map
at a first resolution, means for applying a second stage,
subsequent to the first stage in the multi-stage fully convo-
Iutional network, to output a second feature map at a second
resolution less than the first resolution, and means for
applying a third stage, subsequent to the second stage in the
multi-stage fully convolutional network, to output a third
feature map at the second resolution, means for combining
at least the second and third feature maps to generate a
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hyper-feature corresponding to the input image, means for
up-sampling the hyper-feature to the first resolution, means
for generating a final set of features corresponding to the
input image by at least summing the up-sampled hyper-
feature and the first feature map, and means for classifying
the final set of features to provide a semantic image seg-
mentation of the input image, the semantic image segmen-
tation including pixel-level category labels for pixels of the
input image.

[0137] Further to the third embodiments, the means for
implementing the multi-stage fully convolutional network
based on the input image further comprises means for
applying a fourth stage, prior to the first stage, to output a
fourth feature map at a third resolution greater than the first
resolution and means for applying a fifth stage, subsequent
to the third stage in the multi-stage fully convolutional
network, to output a fifth feature map at the second resolu-
tion, wherein the means for combining at least the second
and third feature maps to generate the hyper-feature com-
prise means for combining the second, third, and fifth
feature maps to generate the hyper-feature, and wherein the
means for generating the final set of features further com-
prise means for up-sampling the sum of the up-sampled
hyper-feature and the first feature map to the third resolution
and means for summing the up-sampled features and the
fourth feature maps.

[0138] Further to the third embodiments, the means for
classifying the final set of features comprises means for
applying a semantic label based convolutional layer to the
final set of features to provide semantic scores, means for
applying an objectness based convolutional layer to the final
set of features to provide objectness scores, and means for
classifying the semantic scores and the objectness scores to
provide the semantic image segmentation.

[0139] Further to the third embodiments, the means for
classifying the final set of features comprises means for
applying a semantic label based convolutional layer to the
final set of features to provide semantic scores, means for
applying an objectness based convolutional layer to the final
set of features to provide objectness scores, and means for
classifying the semantic scores and the objectness scores to
provide the semantic image segmentation, wherein the
means for classifying the semantic scores and objectness
scores comprises means for summing the semantic scores
and objectness scores and means for classifying the summed
scores.

[0140] Further to the third embodiments, the means for
classifying the final set of features comprises means for
applying a semantic label based convolutional layer to the
final set of features to provide semantic scores, means for
applying an objectness based convolutional layer to the final
set of features to provide objectness scores, means for
classifying the semantic scores and the objectness scores to
provide the semantic image segmentation, and means for
classifying the semantic scores and the objectness scores to
provide an objectness image segmentation of the input
image, the objectness image segmentation including pixel-
level object or non-object labels for pixels of the input
image.

[0141] Further to the third embodiments, the system fur-
ther comprises means for performing, based on the semantic
image segmentation, at least one of object detection, object
tracking, or scene understanding.
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[0142] In one or more fourth embodiments, at least one
machine readable medium comprises a plurality of instruc-
tions that, in response to being executed on a computing
device, cause the computing device to perform semantic
image segmentation by implementing a multi-stage fully
convolutional network based on an input image, wherein
implementing the multi-stage fully convolutional network
comprises applying a first stage to output a first feature map
at a first resolution, applying a second stage, subsequent to
the first stage in the multi-stage fully convolutional network,
to output a second feature map at a second resolution less
than the first resolution, and applying a third stage, subse-
quent to the second stage in the multi-stage fully convolu-
tional network, to output a third feature map at the second
resolution, combining at least the second and third feature
maps to generate a hyper-feature corresponding to the input
image, up-sampling the hyper-feature to the first resolution,
generating a final set of features corresponding to the input
image by at least summing the up-sampled hyper-feature
and the first feature map, and classifying the final set of
features to provide a semantic image segmentation of the
input image, the semantic image segmentation including
pixel-level category labels for pixels of the input image.
[0143] Further to the fourth embodiments, implementing
the multi-stage fully convolutional network based on the
input image further comprises applying a fourth stage, prior
to the first stage, to output a fourth feature map at a third
resolution greater than the first resolution and applying a
fifth stage, subsequent to the third stage in the multi-stage
fully convolutional network, to output a fifth feature map at
the second resolution, wherein combining at least the second
and third feature maps to generate the hyper-feature com-
prises combining the second, third, and fifth feature maps to
generate the hyper-feature, and wherein generating the final
set of features further comprises up-sampling the sum of the
up-sampled hyper-feature and the first feature map to the
third resolution and summing the up-sampled features and
the fourth feature maps.

[0144] Further to the fourth embodiments, classifying the
final set of features comprises applying a semantic label
based convolutional layer to the final set of features to
provide semantic scores, applying an objectness based con-
volutional layer to the final set of features to provide
objectness scores, and classifying the semantic scores and
the objectness scores to provide the semantic image seg-
mentation.

[0145] Further to the fourth embodiments, classifying the
final set of features comprises applying a semantic label
based convolutional layer to the final set of features to
provide semantic scores, applying an objectness based con-
volutional layer to the final set of features to provide
objectness scores, and classifying the semantic scores and
the objectness scores to provide the semantic image seg-
mentation, wherein classifying the semantic scores and
objectness scores comprises summing the semantic scores
and objectness scores and classifying the summed scores.
[0146] Further to the fourth embodiments, classifying the
final set of features comprises applying a semantic label
based convolutional layer to the final set of features to
provide semantic scores, applying an objectness based con-
volutional layer to the final set of features to provide
objectness scores, classifying the semantic scores and the
objectness scores to provide the semantic image segmenta-
tion, and classifying the semantic scores and the objectness
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scores to provide an objectness image segmentation of the
input image, the objectness image segmentation including
pixel-level object or non-object labels for pixels of the input
image.

[0147] Further to the fourth embodiments, the machine
readable medium further comprises a plurality of instruc-
tions that, in response to being executed on the computing
device, cause the computing device to perform, based on the
semantic image segmentation, at least one of object detec-
tion, object tracking, or scene understanding.

[0148] In one or more fifth embodiments, at least one
machine readable medium may include a plurality of
instructions that in response to being executed on a com-
puting device, causes the computing device to perform a
method according to any one of the above embodiments.
[0149] In one or more sixth embodiments, an apparatus
may include means for performing a method according to
any one of the above embodiments.

[0150] It will be recognized that the embodiments are not
limited to the embodiments so described, but can be prac-
ticed with modification and alteration without departing
from the scope of the appended . For example, the above
embodiments may include specific combination of features.
However, the above embodiments are not limited in this
regard and, in various implementations, the above embodi-
ments may include the undertaking only a subset of such
features, undertaking a different order of such features,
undertaking a different combination of such features, and/or
undertaking additional features than those features explicitly
listed. The scope of the embodiments should, therefore, be
determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled.

1-29. (canceled)
30. A computer-implemented method for performing
semantic image segmentation comprising:
implementing a multi-stage fully convolutional network
based on an input image, wherein implementing the
multi-stage fully convolutional network comprises:
applying a first stage to output a first feature map at a
first resolution;
applying a second stage, subsequent to the first stage in
the multi-stage fully convolutional network, to out-
put a second feature map at a second resolution less
than the first resolution; and
applying a third stage, subsequent to the second stage
in the multi-stage fully convolutional network, to
output a third feature map at the second resolution;
combining at least the second and third feature maps to
generate a hyper-feature corresponding to the input
image;
up-sampling the hyper-feature to the first resolution;
generating a final set of features corresponding to the
input image by at least summing the up-sampled hyper-
feature and the first feature map; and
classifying the final set of features to provide a semantic
image segmentation of the input image, the semantic
image segmentation including pixel-level category
labels for pixels of the input image.
31. The method of claim 30, wherein implementing the
multi-stage fully convolutional network based on the input
image further comprises:
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applying a fourth stage, prior to the first stage, to output
a fourth feature map at a third resolution greater than
the first resolution; and

applying a fifth stage, subsequent to the third stage in the

multi-stage fully convolutional network, to output a
fifth feature map at the second resolution,

wherein combining at least the second and third feature

maps to generate the hyper-feature comprises combin-
ing the second, third, and fifth feature maps to generate
the hyper-feature, and

wherein generating the final set of features further com-

prises up-sampling the sum of the up-sampled hyper-
feature and the first feature map to the third resolution
and summing the up-sampled features and the fourth
feature maps.

32. The method of claim 30, wherein classifying the final
set of features comprises:

applying a semantic label based convolutional layer to the

final set of features to provide semantic scores;
applying an objectness based convolutional layer to the
final set of features to provide objectness scores; and
classifying the semantic scores and the objectness scores
to provide the semantic image segmentation.

33. The method of claim 32, wherein classifying the
semantic scores and objectness scores comprises summing
the semantic scores and objectness scores and classifying the
summed scores.

34. The method of claim 32, further comprising:

classifying the semantic scores and the objectness scores

to provide an objectness image segmentation of the
input image, the objectness image segmentation includ-
ing pixel-level object or non-object labels for pixels of
the input image.

35. The method of claim 30, further comprising training
the multi-stage fully convolutional network based on a
training image by:

generating a final set of training features for the training

image;
applying a semantic label based convolutional layer to the
final set of training features to provide semantic scores;

applying an objectness based convolutional layer to the
final set of features to provide objectness scores; and

applying a loss function based on both a comparison of
the semantic scores to ground truth semantic scores for
the training image and a comparison of the objectness
scores to ground truth objectness scores for the training
image.

36. The method of claim 35, wherein generating the final
set of training features comprises applying the first stage to
output a first training feature map at the first resolution,
applying the second stage to output a second training feature
map at the second resolution, applying the third stage to
output a third training feature map at the second resolution,
combining at least the second and third training feature maps
to generate a training hyper-feature corresponding to the
training image, up-sampling the training hyper-feature to the
first resolution, and generating the final set of training
features by at least summing the up-sampled training hyper-
feature and the first training feature map.

37. The method of claim 35, wherein applying the loss
function comprises weighting a first loss function compris-
ing the comparison of the semantic scores to the ground truth
semantic scores with a first weight and weighting a second
loss function comprising the comparison of the objectness
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scores to the ground truth objectness scores with a second
weight different than the first weight.

38. The method of claim 30, further comprising training
the multi-stage fully convolutional network based on a set of
training images by:

cropping one or more training images of the set of training

images to generate first sub-regions;

training, using the sub-regions, an objectness network

comprising the multi-stage fully convolutional network
and an objectness based convolutional layer;

refining the training, using the sub-regions, of the object-

ness network and training, using the sub-regions, a
semantic label network comprising the multi-stage
fully convolutional network and a semantic label based
convolutional layer;

cropping the one or more training images of the set of

training images to generate second sub-regions,
wherein all the second sub-regions are larger than all
the first sub-regions;

training a hyper-feature network by:

concatenating feature maps, generated based on the
second sub-regions, from the second stage, the third
stage, and a fourth stage subsequent to the third stage
to generate training hyper-features;

up-sampling the training hyper-features to the first
resolution;

generating final sets of training features corresponding
to the second sub-regions by at least summing the
up-sampled training hyper-feature and a first set of
training feature maps; and

hierarchically training the hyper-feature network based
on the final sets of training features; and

end-to-end training a system including the objectness

network, the semantic label network, and the hyper-

feature network to generate a final semantic image

segmentation system.

39. The method of claim 30, wherein the first stage
comprises two convolutional layers and a max pooling layer
and the second stage comprises three convolutional layers
and a max pooling layer.

40. The method of claim 30, further comprising perform-
ing, based on the semantic image segmentation, at least one
of object detection, object tracking, or scene understanding.

41. A system for performing semantic image segmenta-
tion comprising:

a memory storage configured to receive an input image;

and

a processor coupled to the memory storage, the processor

to:

implement a multi-stage fully convolutional network
based on an input image, wherein to implement the
multi-stage fully convolutional network, the proces-
sor is to apply a first stage to output a first feature
map at a first resolution, to apply a second stage,
subsequent to the first stage in the multi-stage fully
convolutional network, to output a second feature
map at a second resolution less than the first reso-
lution, and to apply a third stage, subsequent to the
second stage in the multi-stage fully convolutional
network, to output a third feature map at the second
resolution;

combine at least the second and third feature maps to
generate a hyper-feature corresponding to the input
image;
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up-sample the hyper-feature to the first resolution;

generate a final set of features corresponding to the
input image by at least summing the up-sampled
hyper-feature and the first feature map; and

classify the final set of features to provide a semantic
image segmentation of the input image, the semantic
image segmentation including pixel-level category
labels for pixels of the input image.

42. The system of claim 41, wherein the processor to
implement the multi-stage fully convolutional network
based on the input image further comprises the processor to
apply a fourth stage, prior to the first stage, to output a fourth
feature map at a third resolution greater than the first
resolution and to apply a fifth stage, subsequent to the third
stage in the multi-stage fully convolutional network, to
output a fifth feature map at the second resolution, wherein
the processor to combine at least the second and third feature
maps to generate the hyper-feature comprises the processor
to combine the second, third, and fifth feature maps to
generate the hyper-feature, and wherein the processor to
generate the final set of features further comprises the
processor to up-sample the sum of the up-sampled hyper-
feature and the first feature map to the third resolution and
sum the up-sampled features and the fourth feature maps.

43. The system of claim 41, wherein the processor to
classify the final set of features comprises the processor to
apply a semantic label based convolutional layer to the final
set of features to provide semantic scores, apply an object-
ness based convolutional layer to the final set of features to
provide objectness scores, and to classify the semantic
scores and the objectness scores to provide the semantic
image segmentation.

44. The system of claim 43, wherein the processor to
classify the semantic scores and objectness scores comprises
the processor to sum the semantic scores and objectness
scores and classify the summed scores.

45. The system of claim 43, wherein the processor is
further to classify the semantic scores and the objectness
scores to provide an objectness image segmentation of the
input image, the objectness image segmentation including
pixel-level object or non-object labels for pixels of the input
image.

46. The system of claim 41, wherein the processor is
further to perform, based on the semantic image segmenta-
tion, at least one of object detection, object tracking, or
scene understanding.

47. At least one machine readable medium comprising a
plurality of instructions that, in response to being executed
on a computing device, cause the computing device to
perform semantic image segmentation by:

implementing a multi-stage fully convolutional network
based on an input image, wherein implementing the
multi-stage fully convolutional network comprises:

applying a first stage to output a first feature map at a
first resolution;

applying a second stage, subsequent to the first stage in
the multi-stage fully convolutional network, to out-
put a second feature map at a second resolution less
than the first resolution; and

applying a third stage, subsequent to the second stage
in the multi-stage fully convolutional network, to
output a third feature map at the second resolution;
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combining at least the second and third feature maps to
generate a hyper-feature corresponding to the input
image;

up-sampling the hyper-feature to the first resolution;

generating a final set of features corresponding to the

input image by at least summing the up-sampled hyper-
feature and the first feature map; and

classifying the final set of features to provide a semantic

image segmentation of the input image, the semantic
image segmentation including pixel-level category
labels for pixels of the input image.

48. The machine readable medium of claim 47, wherein
implementing the multi-stage fully convolutional network
based on the input image further comprises:

applying a fourth stage, prior to the first stage, to output

a fourth feature map at a third resolution greater than
the first resolution; and

applying a fifth stage, subsequent to the third stage in the

multi-stage fully convolutional network, to output a
fifth feature map at the second resolution,

wherein combining at least the second and third feature

maps to generate the hyper-feature comprises combin-
ing the second, third, and fifth feature maps to generate
the hyper-feature, and

wherein generating the final set of features further com-

prises up-sampling the sum of the up-sampled hyper-
feature and the first feature map to the third resolution
and summing the up-sampled features and the fourth
feature maps.
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49. The machine readable medium of claim 47, wherein
classifying the final set of features comprises:

applying a semantic label based convolutional layer to the

final set of features to provide semantic scores;
applying an objectness based convolutional layer to the
final set of features to provide objectness scores; and
classifying the semantic scores and the objectness scores
to provide the semantic image segmentation.

50. The machine readable medium of claim 49, wherein
classifying the semantic scores and objectness scores com-
prises summing the semantic scores and objectness scores
and classifying the summed scores.

51. The machine readable medium of claim 49, further
comprising a plurality of instructions that, in response to
being executed on the computing device, cause the comput-
ing device to perform semantic image segmentation by:

classifying the semantic scores and the objectness scores

to provide an objectness image segmentation of the
input image, the objectness image segmentation includ-
ing pixel-level object or non-object labels for pixels of
the input image.

52. The machine readable medium of claim 47, further
comprising a plurality of instructions that, in response to
being executed on the computing device, cause the comput-
ing device to perform, based on the semantic image seg-
mentation, at least one of object detection, object tracking,
or scene understanding.
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