
(19) United States
US 2016O170666A1

(12) Patent Application Publication (10) Pub. No.: US 2016/0170666 A1
Hsu et al. (43) Pub. Date: Jun. 16, 2016

(54)

(71)

(72)

(21)

(22)

(63)

(51)

SYSTEMAND METHOD FOR FULL VIRTUAL
MACHINE BACKUP USING STORAGE
SYSTEM FUNCTIONALITY

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Windsor W. Hsu, San Jose, CA (US);
Jian Xing. Pleasanton, CA (US)

Appl. No.: 15/050,383

Filed: Feb. 22, 2016

Related U.S. Application Data
Continuation of application No. 14/797,048, filed on
Jul. 10, 2015, now Pat. No. 9,298,392, which is a
continuation of application No. 13/631,774, filed on
Sep. 28, 2012, now Pat. No. 9,110,604.

Publication Classification

Int. C.
G06F 3/06 (2006.01)
G06F 9/455 (2006.01)

Client
1O2

Storage
116

g 4. Fullbackup
2. WMM to Establish a request with

Consistent state of the WM. WM state info.

VM Disk File(s)
(e.g., WMDK files)

186

Storage System 18O

1. Backup request to a VMM
with WMD.

ldentify
WM

State.

(52) U.S. Cl.
CPC G06F 3/0617 (2013.01); G06F 3/065

(2013.01); G06F 3/0683 (2013.01); G06F
9/45558 (2013.01); G06F 2009/45583

(2013.01); G06F 2009/45595 (2013.01)

(57) ABSTRACT

AVM management server receives a request from a backup
application server to back up a first VM. The VM manage
ment server determines a first of the host systems based on the
request, wherein the first host system hosts the first VM. A
first request is transmitted from the VM management serverto
aVMM of the first host system hosting the first VM via a VM
application programming interface (VMAPI) over a network.
The first request requests the VMM to capture a VM snapshot
representing a consistent state of the first VM. In response to
determining that the consistent state of the VM has been
captured, a second request is transmitted to a first storage
system associated with the first host system to send one or
more VM disk images associated with the consistent state of
the first VM to a second storage system over the network.

1OO

Backup Application Server 105

Backup
Catalog Backup Engine

106

-
Deduplication Storage Engine

12O

Backup
Storage
System
104

-L 5. Backup the
requested WM
image(s).

Storage
Unit(s)
109

Storage Backup

US 2016/0170666 A1 Jun. 16, 2016 Sheet 1 of 10 Patent Application Publication

US 2016/0170666 A1 Jun. 16, 2016 Sheet 2 of 10 Patent Application Publication

US 2016/0170666 A1 Jun. 16, 2016 Sheet 3 of 10 Patent Application Publication

009

9. "SOIH

ZO9

US 2016/0170666 A1 Jun. 16, 2016 Sheet 4 of 10

007

Patent Application Publication

US 2016/0170666 A1 Jun. 16, 2016 Sheet 5 of 10 Patent Application Publication

|- – – – – – – –?senbe}} ºg

|

US 2016/0170666 A1 Jun. 16, 2016 Sheet 6 of 10 Patent Application Publication

009
909 909

US 2016/0170666 A1 Jun. 16, 2016 Sheet 7 of 10 Patent Application Publication

00/

US 2016/0170666 A1 Jun. 16, 2016 Sheet 8 of 10 Patent Application Publication

008
909 909 709

8 "SDI

US 2016/0170666 A1 Jun. 16, 2016 Sheet 9 of 10 Patent Application Publication

006

906 906 706 ZO6

US 2016/0170666 A1 Jun. 16, 2016 Sheet 10 of 10 Patent Application Publication

US 2016/0170666 A1

SYSTEMAND METHOD FOR FULL VIRTUAL
MACHINE BACKUP USING STORAGE

SYSTEM FUNCTIONALITY

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 14/797,048, filed Jul. 10, 2015, which is
a continuation of U.S. patent application Ser. No. 13/631,774,
filed Sep. 28, 2012, which is related to U.S. patent application
Ser. No. 13/436,454, filed Mar. 30, 2012, now U.S. Pat. No.
8,719,286, issued May 6, 2014, U.S. patent application Ser.
No. 13/436,460, filed Mar. 30, 2012, now U.S. Pat. No. 8,751,
515, issued Jun. 10, 2014, and co-pending U.S. patent appli
cation Ser. No. 13/631,794, filed Sep. 28, 2012. The disclo
sure of the above applications is incorporated by reference
herein in its entirety.

FIELD OF THE INVENTION

0002 Embodiments of the present invention relate gener
ally to data storage systems. More particularly, embodiments
of the invention relate to virtual machine (VM) backup.

BACKGROUND

0003 Organizations are increasingly deploying applica
tions on virtual machines (VMs) to improve Information
Technology (IT) efficiency and application availability. A key
benefit of adopting virtual machines is that they can be hosted
on a smaller number of physical servers (VM servers). This
results in higher server utilization but also means that there
are fewer server resources available to perform backup and/or
restore. The problem is compounded by the unabated growth
in data and applications, which makes it ever more difficult to
complete backup and/or restore within the available time
window.
0004 One approach to backup and restore in a VM envi
ronment is to handle each VM as though it is a physical
machine. This typically means installing and running a
backup agent in each VM. This approach is server resource
intensive and becomes unwieldy from a management per
spective as the number of virtual machines increases.
0005. Another approach is to back up a VM at the storage
level by making a copy of the storage containers that contain
the VM. Identifying exactly the storage containers that con
tain the VM and getting them to be in a consistent state are,
however, challenging.
0006 Another approach is to back up at the VM level.
Virtualization vendors such as VMware provide a set of appli
cation programming interface (API) for a backup application.
One may use a VMAPI such as VMware's VStorage APIs for
Data Protection (VADP) to pull the data out of the virtual
infrastructure and onto a backup system. This typically
requires routing the data through a proxy server and con
Sumes precious IT resources.
0007. On incremental backup, a backup software may
walk the file system and find which of the files that has been
changed. However, walking the file system is slow and
resource intensive. Another conventional method of incre
mental backup uses a changed block training (CBT) feature
provided by a virtual machine monitor or manager to keep
track of data blocks changed since last backup. The CBT
feature, however, imposes an overhead on the operation of the
VM, and may no track changes across unexpected system

Jun. 16, 2016

shutdowns. Furthermore, not all virtualization vendors pro
vide the feature of CBT, which limit the effective usage of this
approach.

BRIEF DESCRIPTION OF THE DRAWINGS

0008 Embodiments of the invention are illustrated by way
of example and not limitation in the figures of the accompa
nying drawings in which like references indicate similar ele
mentS.

0009 FIG. 1 is a block diagram illustrating a fullbackup
process according to one embodiment of the invention.
0010 FIG. 2 is another block diagram illustrating a full
backup process according to one embodiment of the inven
tion.
0011 FIG. 3 is a flow diagram illustrating a method of
backup according to one embodiment of the invention.
0012 FIG. 4 is another flow diagram illustrating a method
of backup according to one embodiment of the invention.
0013 FIG. 5 is a block diagram illustrating a restoration
process according to one embodiment of the invention.
0014 FIG. 6 is a flow diagram illustrating a method of
restoration according to one embodiment of the invention.
0015 FIG. 7 is a block diagram illustrating an incremental
VM backup process according to one embodiment of the
invention.
0016 FIG. 8 is a flow diagram illustrating a method for
incremental VM backup according to one embodiment of the
invention.
0017 FIG. 9 is a flow diagram illustrating a method for
incremental VM backup according to one embodiment of the
invention.
0018 FIG. 10 is a block diagram illustrating a segment
storage engine according to one embodiment of the invention.

DETAILED DESCRIPTION

0019 Various embodiments and aspects of the inventions
will be described with reference to details discussed below,
and the accompanying drawings will illustrate the various
embodiments. The following description and drawings are
illustrative of the invention and are not to be construed as
limiting the invention. Numerous specific details are
described to provide a thorough understanding of various
embodiments of the present invention. However, in certain
instances, well-known or conventional details are not
described in order to provide a concise discussion of embodi
ments of the present inventions.
0020 Reference in the specification to “one embodiment'
or “an embodiment’ means that a particular feature, structure,
or characteristic described in conjunction with the embodi
ment can be included in at least one embodiment of the
invention. The appearances of the phrase “in one embodi
ment' in various places in the specification do not necessarily
all refer to the same embodiment.
0021. According to some embodiment, a client has one or
more virtual machine monitor or manager (VMM), and each
hosts one or more VM. In this specification, the terms “VM
monitor' and “VM manager are used interchangeably. The
client has a storage system associated with it to store data, and
the client also contains a VMapplication programming inter
face (VMAPI) via which the VMs are managed. An example
of VM API is VMware's vStorage APIs for Data Protection
(VADP). A request for backing up a VM is sent from a backup
application server to the client. Through the VM API, the

US 2016/0170666 A1

VMM hosting the VM establishes a consistent state of the
VM. In one embodiment, this involves taking a snapshot of
the VM which causes the VM to be quiesced and snapshots of
the disks associated with the VM to be taken. The backup
application server then identifies the disk Snapshots via the
VM API. After the disk snapshots are identified, the backup
application server notifies the storage system containing the
identified disk Snapshots to copy the Snapshots to a target
backup storage system. The storage system then copies the
identified disk Snapshots to the target backup storage system.
Finally, the backup application server uses VM API to ask
VMM to delete the VM snapshot taken, which causes the
corresponding disk Snapshots to be deleted.
0022. According to another embodiment, a virtual center
(VC) manages multiple clients. Each client contains one or
more VMS, and each client has access to a storage system. The
storage system stores content files of VMs in disks of the
storage system. In one embodiment, the VC stores a list of
attributes associated with VMs and the list of attributes are
stored as VM configuration information files. Abackup appli
cation server may send backup request to backup a VM to the
VC. The VC then remotely (e.g., over a network such as the
Internet) requests a VMM hosting the VM to establish a
consistent state of the VM. Afterward, the backup process is
similar to the embodiment where the request is sent to VMM
directly.
0023. In one embodiment, the copied disk snapshots are
parsed in the target backup storage system. Metadata in the
disk snapshots are interpreted to determine information about
the files contained in the disk snapshots. Such information
includes file attributes such as file name, access control infor
mation, and information about layout of the file within the
disk Snapshots. Such information is then used to populate a
backup catalog of the files in the backed up VM. The copied
disk snapshots may further be deduplicated and stored in the
backup storage system as deduplicated segments.
0024. According to some embodiments, a VM can be
restored from a target backup storage system. The backup
application server identifies the disk Snapshots associated
with a backup of the VM through the backup catalog. In one
embodiment, the backup application server then remotely
requests a VMM to provision a new VM to be the target of the
restoration via a VMAPI. In one embodiment, provisioning a
newVM to be the target of the restoration includes identifying
the list of the attributes associated with the backup of the VM
and provisioning the new VM using the identified list of the
attributes. After new VM is provisioned, the backup applica
tion server sends the identified disk snapshots from the target
backup storage system to the storage system via a VM API.
The copied disk snapshots are added to the newly provisioned
VM via the VMAPI. The VM is then restored.

0025. According to some embodiment, a user may also
utilize a backup application server for incremental backup of
a VM. In one embodiment, a request for incrementally back
ing up a VM is sent from a backup application server to a
VMM of a client hosting the VM. The backup application
server then remotely takes a snapshot of the VM through a
VM API. This includes quiescing the VM and taking a VM
Snapshot, which causes disk Snapshots associated with the
VM to be taken. The backup application server notifies the
storage system containing the identified disk Snapshots to
copy the identified disk Snapshots to a target backup storage
system. The storage system then identifies the changes that
have occurred since a last backup, for example, by comparing

Jun. 16, 2016

the disk snapshots of the VM with disk snapshots associated
with a previous backup of the same VM. In one embodiment,
the storage system sends only the changes between the Snap
shots to the backup storage system, without having to trans
mit the entire disk Snapshots.
0026 FIG. 1 is a block diagram illustrating a backup pro
cess according to one embodiment of the invention. Referring
to FIG. 1, system 100 includes, but is not limited to, one or
more client systems 101-102 communicatively coupled to
backup storage system 104, backup application server 105
and storage system 180 over network 103. Clients 101-102
may be any type of clients such as a server, a personal com
puter (e.g., desktops, laptops, and tablets), a “thin' client, a
personal digital assistant (PDA), a Web enabled system, a
gaming device, a media player, or a mobile phone (e.g.,
Smartphone), etc. Network 103 may be any type of network
Such as a local area network (LAN), a wide area network
(WAN) such as Internet, a corporate intranet, a metropolitan
area network (MAN), a storage area network (SAN), a bus, or
a combination thereof, wired and/or wireless.
0027 Backup storage system 104 may include any type of
server or cluster of servers. For example, backup storage
system 104 may be a storage server used for any of various
different purposes, such as to provide multiple users with
access to shared data and/or to back up mission critical data.
Backup storage system 104 may be, for example, a file server
(e.g., an appliance used to provide NAS capability), a block
based storage server (e.g., used to provide SAN capability), a
unified storage device (e.g., one which combines NAS and
SAN capabilities), a nearline storage device, a direct attached
storage (DAS) device, a tape backup device, or essentially
any other type of data storage device. Backup storage system
104 may have a distributed architecture, or all of its compo
nents may be integrated into a single unit. Backup storage
system 104 may be implemented as part of an archive and/or
backup storage system such as a de-duplication storage sys
tem available from EMCR) Corporation of Hopkinton, Mass.
0028. In one embodiment, backup application server 105
includes, but not limited to, a backup engine 106, which
contains a backup catalog111. Backup application server 105
coordinates with backup storage system 104, storage system
180, and clients 101-102 to run various backup operations.
Backup engine 106 may perform both backup and restore
functions.
0029. In one embodiment, backup storage system 104
includes, but is not limited to, deduplication storage engine
107, and one or more storage units 108-109 communicatively
coupled to each other. Storage units 108-109 may be imple
mented locally (e.g., single node operating environment) or
remotely (e.g., multi-node operating environment) via inter
connect 120, which may be a bus and/or a network. In one
embodiment, one of the storage units 108-109 operates as an
active storage to receive and store external or fresh user data,
while the other storage unit operates as a target storage unit to
periodically archive data from the active storage unit accord
ing to an archiving policy or scheme. Storage units 108-109
may be, for example, conventional magnetic disks, optical
disks such as CD-ROM or DVD based storage, magnetic tape
storage, magneto-optical (MO) storage media, Solid state
disks, flash memory based devices, or any other type of non
Volatile storage devices Suitable for storing large Volumes of
data. Storage units 108-109 may also be combinations of such
devices. In the case of disk storage media, the storage units
108-109 may be organized into one or more volumes of

US 2016/0170666 A1

Redundant Array of Inexpensive Disks (RAID). Note that in
one embodiment, backup application server 105 and backup
storage system 104 are integrated into one single system.
0030. In response to a data file to be stored in storage units
108-109, optional deduplication storage engine 107 is con
figured to segment the data file into multiple segments
according to a variety of segmentation policies or rules.
Deduplication storage engine 107 only stores a segment in a
storage unit if the segment has not been previously stored in
the storage unit. In the event that a segment has been previ
ously stored, metadata stores information enabling the recon
struction of a file using the previously stored segment. As a
result, segments of data files are stored in a deduplicated
manner, either within each of storage units 108-109 or across
at least some of storage units 108-109. Data stored in the
storage units may be stored in a compressed form (e.g., loss
less compression: Huffman coding, Lempel–Ziv Welch cod
ing; delta encoding: a reference to a segment plus a differ
ence; Subsegmenting: a list of Subsegments or references to
Subsegments, etc.). In one embodiment, different storage
units may use different compression methods (e.g., main or
active storage unit from other storage units, one storage unit
from another storage unit, etc.).
0031. The metadata may be stored in at least some of
storage units 108-109, such that files can be accessed inde
pendent of another storage unit. Metadata of each storage unit
includes enough information to provide access to the files it
contains. When an active storage unit fails, metadata con
tained in another storage unit may be utilized to recover the
active storage unit. When one storage unit is unavailable (e.g.,
the storage unit has failed, or is being upgraded, etc.), the
system remains up to provide access to any file not stored in
the failed storage unit. When a file is deleted, the metadata
associated with the files in the system is updated to reflect that
the file has been deleted.

0032. In one embodiment, the metadata information
includes a file name, a storage unit where the segments asso
ciated with the file name are stored, reconstruction informa
tion for the file using the segments, and any other appropriate
metadata information. In one embodiment, a copy of the
metadata is stored on a storage unit for files Stored on a
storage unit so that files that are stored on the storage unit can
be accessed using only the information stored on the storage
unit. In one embodiment, a main set of metadata information
can be reconstructed by using information of other storage
units associated with the backup storage system in the event
that the main metadata is lost, corrupted, damaged, etc. Meta
data for a storage unit can be reconstructed using metadata
information stored on a main storage unit or other storage unit
(e.g., replica storage unit). Metadata information further
includes index information (e.g., location information for
segments in Storage units).
0033. In one embodiment, the backup storage system as
shown in FIG. 1 may be used as a tier of storage in a storage
hierarchy that comprises other tiers of storage. One or more
tiers of storage in this hierarchy may utilize different kinds of
storage devices and/or may be optimized for different char
acteristics such as random update performance Files are peri
odically moved among the tiers based on data management
policies to achieve a cost-effective match to the current stor
age requirements of the files. For example, a file may initially
be stored in a tier of storage that offers high performance for
reads and writes. As the file ages, it may be moved into a tier
of storage according to one embodiment of the invention. In

Jun. 16, 2016

various embodiments, tiers include different storage tech
nologies (e.g., tape, hard drives, semiconductor-based memo
ries, optical drives, etc.), different locations (e.g., local com
puter storage, local network storage, remote network storage,
distributed storage, cloud storage, archive storage, Vault Stor
age, etc.), or any other appropriate storage for a tiered data
Storage System.
0034 Referring back to FIG. 1, backup engine 106 is
configured to backup data from client systems 101-102 and to
store the backed up data in one or more of storage units 108 of
backup storage system 104, where the data may be dedupli
cated by deduplication storage engine 107. In this example, a
user (e.g., an administrator) initiates a backup request,
directly or through a backup schedule, of a VM, such as VM
113 within client 102. The user issues the request with the
identification of the VM, VM113.
0035. As shown in FIG. 1, the to-be-backed-up VM113
resides at client 102. Client 102 includes one or more VMs
113-114 hosted by VMM 112. VMM 112 also includes an
application programming interface (API) 132, through which
VMM 112 manages VMs 113-114. In one embodiment, the
API is a VMAPI such as VMware's vStorage APIs for Data
Protection (VADP). In addition, client 102 is communica
tively coupled with storage system 180.
0036 Storage system 180 may include any type of server
or cluster of servers. For example, storage system 180 may be
a storage server used for any of various different purposes,
Such as to provide multiple users with access to shared data
and/or to back up mission critical data. Storage system 180
may be, for example, a file server (e.g., an appliance used to
provide NAS capability), a block-based storage server (e.g.,
used to provide SAN capability), a unified storage device
(e.g., one which combines NAS and SAN capabilities), a
nearline storage device, a direct attached storage (DAS)
device, or essentially any other type of data storage device.
Storage system 180 may have a distributed architecture, or all
of its components may be integrated into a single unit. Stor
age system 180 may be implemented as part of a storage
system available from EMCR) Corporation of Hopkinton,
Mass.
0037 Storage system 180 contains backup logic 184 that
manages both backup and restore processes within the Stor
age system. Storage system 180 also contains VM disk files
186 that are the content files of the VMs. Note that a storage
system of a client may also be called the primary storage of
the client to distinguish the storage from backup storage
systems.
0038 A virtual machine represents a completely isolated
operating environment with a dedicated set of virtual
resources associated with it. A virtual machine may be
installed or launched as a guest operating system (OS) hosted
by a host OS or a hypervisor. Typically, a host OS or hyper
visor represents a virtual machine monitor (VMM) for man
aging the hosted virtual machines. A virtual machine can be
any type of virtual machines, such as, for example, hardware
emulation, full virtualization, para-virtualization, and oper
ating system-level virtualization virtual machines. Different
virtual machines hosted by a server may have the same or
different privilege levels for accessing different resources.
Here VMM 112 manages both VM 113 and VM 114.
0039 Referring back to FIG. 1, task boxes 1 to 5 illustrate
the order in which operations are performed according to one
embodiment of the invention. The process is initiated with a
request to back up a VM. The request may come from a client

US 2016/0170666 A1

based on a backup schedule, or it may come from a user
directly through a user interface. At taskbox 1, backup engine
106 sends out a request to backup with a VM identifier (indi
cating VM 113 in this example) to VMM 112, which hosts the
to-be-backed-up VM 113. Backup engine 106 directs the
request to VMM 112 as backup application server 105 knows
VM location information. Backup application server 105 may
obtain VM information through various ways. For example,
backup application server 105 may synchronize with VMM
112 remotely. Onward to task box 2, VMM 112 then estab
lishes a consistent state of VM113. In one embodiment,
VMM 112 establishes the consistent state of VM113 by tak
ing a VM snapshot. The VM snapshot triggers the creation of
one or more Snapshots of the content files associated with the
VM (e.g. VM disk images) in and/or by storage system 180.
Such Snapshots are referred to as disk Snapshots in this speci
fication. In task box 3, via API 132, backup engine 106
remotely identifies the consistent state of VM 113, which
includes a list of the disk Snapshots created in storage system
180 in one embodiment. Backup engine 106 then requests
storage system 180 to send VM disk images associated with
the consistent state of the VM to a target backup storage at
task box 4. In one embodiment, the VM disk images are disk
snapshots resulting from VM snapshot initiated by VMM
112. Finally at taskbox5, backup logic 184 then identifies the
requested VM disk images. In this example, they are repre
sented by VM disk file 186. VM disk file 186 may take a
format of a virtual machine disk (VMDK) provided by
VMware. Backup logic 184 copies VM disk file 186 associ
ated with VM113 to backup storage system 104. In one
embodiment, the disk snapshots for VM 113 are parsed and
metadata in the disk Snapshots are interpreted to determine
information about the files contained in the disk Snapshots.
Such information includes file attributes such as file name,
access control information, and information about layout of
the files within the disk snapshot. The information is then
used to populate a backup catalog 111 of the files in the VM
that was backed up. The disk snapshots are then saved as VM
backup files 142 in storage unit 108. According to one
embodiment, the backup content may be further deduplicated
into deduplicated segments and the deduplicated segments
are then stored in one or more physical disks of the backup
storage system. In one embodiment, backup storage system
104 remotely requests VMM 112 to delete the VM snapshot
taken of VM 113, which causes the corresponding disk snap
shots of VM113 to be deleted. Note that in one embodiment,
the target backup storage system may be proxy server. In one
embodiment, a proxy server is utilized when storage system
180 and backup storage system 104 are not compatible.
0040. In one embodiment, storage system 180 divides the
disk Snapshots into segments and copies only the segments
that do not already exist in backup storage system 104 when
backup storage system 104 is a deduplicating storage system.
In one embodiment, the segments are variable sized and the
segment boundaries are defined by the content of the data.
Such segments (also referred to as chunks) may be segmented
within storage system 180 using a predetermined chunking
algorithm. For each of the segments, a fingerprint is generated
using a predetermined hash function. Storage system 180
may initially transmit fingerprints of the segments to backup
storage system 104 without transmitting the actual segments.
Based on the fingerprints received from storage system 180,
deduplication storage engine 107 may determine which of the
segments have already been stored in storage units 108-109,

Jun. 16, 2016

for example, by comparing the fingerprints received from
storage system 180 and those maintained locally within
backup storage system 104. For those segments that have not
been stored in storage units 108-109, backup storage system
104 transmits identifying information of the missing seg
ments to storage system 180. Such as the fingerprints of the
missing segments. In response, storage system 180 identifies
the missing segments based on the identifying information
received from backup storage system 104 and only transmits
the missing segments over to backup storage system 104.
0041. In one embodiment, via API 132, backup engine 106
collects attributes associated with the VM being backed up
(e.g. CPU, memory, disk configuration) and stores the VM
attributes in backup catalog 111. The attributes are subse
quently used to provision a new VM to be the target of resto
ration.

0042 FIG. 2 is another block diagram illustrating a full
backup process according to one embodiment of the inven
tion. The systems in FIG. 2 are similar to the systems in FIG.
1 and the same or similar references indicate elements or
components having the same or similar functionalities. Also
similar to FIG.1, taskboxes 1 to 6 illustrate the order in which
operations are performed according to one embodiment of the
invention. As shown in FIG. 2, virtual center 150 manages
VM configuration information of client 102, where the to-be
backed-up VM113 resides. A virtual center may manage VM
configuration information of multiple clients, and each client
contains one or more VMs managed by a VMM running
therein. A virtual center may be communicatively coupled
with clients, backup application server, and backup storage
systems. VC150 may obtainVMinformation through various
ways. For example, VC 150 may remotely synchronize with
VMMs within the network, or VMMs may update VC 150
whenever status change happens with VMS. In this example,
virtual center 150 communicatively coupled with backup
application server 105 and clients 101 and 102. Backup
engine 106 sends out a request to backup with a VM identifier
(indicating VM 113 in this example) to VC 150. VC 150
identifies that client 102 manages VMM112, which hosts VM
113. Then at task box 2, VC 150 requests VMM 112 to
establish a consistent state of VM113. The following steps in
taskboxes 3-6 are similar to the task boxes 2-5 as illustrated
in FIG. 1.

0043 FIG. 3 is a flow diagram illustrating a method of
backup according to one embodiment of the invention.
Method 300 may be performed by backup application server
105, more specifically backup engine 106, which may be
implemented as processing logic in Software, hardware, or a
combination thereof. At block 302, the method starts by a
backup application server sending a request of VM backup
with a requested VM identifier specified. The request may be
sent to a VMM hosting the VM directly when the backup
application server knows the VM location information in one
embodiment. The request may be sent to a virtual center when
the backup application server does not know VM location
information in another embodiment. In the latter case, the
virtual center then locates the VM and the VMM hosting the
VM and requests a backup. The request to establish consistent
state involves generating a VM snapshot at VMM in one
embodiment. Then at block 304, backup engine 106 remotely
identifies the consistent state of the VM via a VM API.
Backup engine 106 then requests a storage system associated
with the VM to copyVM disk images associated with the VM
to a targetbackup storage system at block 306. In one embodi

US 2016/0170666 A1

ment, the requested VM disk images are disk Snapshots based
on a VM snapshot initiated by a VMM hosting the VM being
backed up. Optionally, backup engine 106 may parse the
copied VM disk images associated with the requested VM at
block 308 to determine information about the files contained
in the VM disk images. Based on the parsing, backup engine
106 associates the files contained in the VM disk images with
backup of the VM in a backup catalog. The backup catalog
then can be queried Subsequently for backup and restore
purposes. In addition, the VM disk images may further be
deduplicated into deduplicated segments and stored in a stor
age unit of the backup storage system in a deduplicated man
ner Note that in one embodiment, the backup VM disk images
from the storage system may be copied to a proxy server first
before they are stored in a backup storage system.
0044 FIG. 4 is another flow diagram illustrating a method
of backup according to one embodiment of the invention.
Method 400 may be performed by storage system 180, more
specifically backup logic 184. At block 402, the method starts
with receiving a request for backing up VM disk images
associated with a specified VM. In one embodiment, the
requested VM disk images are disk snapshots based on a VM
snapshot initiated by a VMM hosting the VM being backed
up. Then at block 404, the requested VM disk images are
identified. The identified disk snapshots are then sent to a
target backup storage system at block 406. Note the identified
VM disk images may be sent to a proxy server instead in some
embodiment. After the disk Snapshots are sent, optionally in
one embodiment when the VM disk images are disk snap
shots, the disk snapshots may be erased at block 408. The
erasing of disk Snapshots is triggered by a deleting VM Snap
shot initiated remotely by a backup application server via a
VM API in one embodiment. Note when the target storage is
a deduplicating backup storage, storage system 180 may
divide the disk Snapshots into segments and send over only
the segments that do not already exist in the target storage, as
described above. In one embodiment, the segments are vari
able sized and the segment boundaries are defined by the
content of the data.

0045 FIG. 5 is a block diagram illustrating a restoration
process according to one embodiment of the invention. The
systems in FIG. 5 are similar to systems in FIG. 1 and the
same or similar references indicate elements or components
having the same or similar functionalities. Also similar to
FIG. 1, task boxes 1 to 5 illustrate the order in which opera
tions are performed according to one embodiment of the
invention. In this example, VM113 is requested to be restored
at client 102. At task box 1, backup engine 106 receives a
request to restore with a VM identification, which indicates
the requested VM is VM 113. The request may come from a
client based on a user request, or it may come from a user
directly through a user interface. At taskbox 2, backup engine
106 identifies the VM disk images associated with the backup
of the VM. In one embodiment, the VM disk images associ
ated with the backup of the VM are disk snapshots. In one
embodiment, it may get the information about VM disk
images through backup catalog 111. Backup catalog 111
contains file name, access control information, and informa
tion about layout of the files within a particular VM disk
image. Through backup catalog111, backup engine 106 iden
tifies the requested VM disk images, which is VM backup
files 142 stored in storage unit 108 in this example. Then at
taskbox 3, backup engine 106 requests VMM 112, where the
restored VM113 will be hosted, to create a new VM to be the

Jun. 16, 2016

target of restoration via API 132. In one embodiment, VM
attributes stored in backup catalog 111 is sent over to VMM
112. VMM 112 then creates a VM and provisions the VM
using the VM attributes sent over by backup engine 106. At
task box 4, backup engine 106 requests backup storage sys
tem 104 to copy VM disk images associated with VM 113,
which is stored as VM backup files 142 in backup storage
system 104, to storage system 180. In storage system 180, the
VM disk images will then associated with the new provi
sioned VM. Note in one embodiment, storage system 180 is a
deduplicating storage system. In which case, backup storage
system 104 divides the saved VM disk images (VM backup
files 142 in the example) into segments and sends over only
the segments that do not already exist in storage system 180.
The final step in the process is task box 5, where the copied
over VM disk images are then associated with the newly
provisioned VM 113.
0046 Embodiments of the invention may also be used to
restore a file within a backed up VM. FIG. 6 is a flow diagram
illustrating a method of restoration according to one embodi
ment of the invention. Method 600 may be performed by
backup application server 105, more specifically backup
engine 106. At block 602, a request to restore a file within a
VM is received at a backup application server, the backup
application server is communicatively coupled with a backup
storage system that contains backup of the file. The request
may come from a client based on a user request, or it may
come from a user directly through a user interface. A backup
engine of the backup application server then identifies the VM
disk images containing the requested file or deduplicated
segments associated with the requested file through backup
catalog. In one embodiment, the VM disk images are disk
snapshots associated with the VM. The disk snapshots may be
stored in the storage units of the backup storage system, for
example storage unit 108 as a part of VMbackup files 142 as
shown in FIG. 5. The backup engine then determines the
layout of the requested file through a backup catalog or other
metadata such as fingerprints of the deduplicated segments at
block 606. The identified file is then copied to a storage
system associated with the requesting client at block 608. In
one embodiment, based on the layout of the requested file, the
file is reconstructed at the backup storage system and then
sent over to the storage system. At the storage system, the file
is then copied to the specified location and the VM requesting
the restoration then will be able to access to the file. In a
deduplicated Storage system, the file may be reconstructed by
deduplicated storage engine 107 from the deduplicated seg
ments using the metadata such as fingerprints. Alternatively,
the metadata may be transmitted to storage system 180 and
the file is reconstructed by the storage system 180 based on
the metadata. If storage system 180 is a deduplicated Storage
system, only the segments that do not exist in storage system
180 may be transmitted from backup storage system 104.
0047 According to one embodiment, a storage system
performs a comparison such as a “diff operation of the
identified VM disk images against the corresponding VM
disk images associated with a previous Snapshot of the VM to
determine the changes since the last backup (e.g., the delta
between the VM disk image and the last backup). In one
embodiment, the VM disk image is a disk Snapshot. In another
embodiment, the storage system tracks the changes to a disk
since the last disk Snapshot was taken and determines the
changes since the last backup by using this tracking informa
tion.

US 2016/0170666 A1

0048. The changes since the last backup are copied to the
backup storage system for backup. In one embodiment, the
backup storage system creates a copy of the previous full
backup in the backup storage system and applies the copied
changes to the copy of the previous full backup to obtain a
synthetic full backup. In another embodiment, the storage
system sends the changes since last backup together with
recipes to the backup storage system to enable the backup
storage system to create a synthetic full backup based on
contents of the previous fullbackup.
0049 FIG. 7 is a block diagram illustrating an incremental
VM backup process according to one embodiment of the
invention. The systems in FIG. 7 are similar to the systems in
FIG. 1 and the same or similar references indicate elements
having the same or similar functionalities. Also similar to
FIG. 1, task boxes 1 to 6 illustrate the order in which opera
tions are performed according to one embodiment of the
invention. The process starts with a request of incremental
backup of a VM at task box 1. The request may come from a
client based on a user request, or it may come from a user
directly through a user interface. At taskbox 1, backup engine
106 sends out a request for VM configuration information
with a VM identifier (VM 113 in this example) to VMM 112,
which hosts VM 113 at client 102. Note when backup appli
cation server 105 is unclear of the VM location, it may send
the incremental VM backup request to virtual center 105,
which manages client of a network, similarly as shown in
FIG. 2. Then attaskbox2, VMM establishes a consistent state
of VM 113. The consistent state of VM 113 may be estab
lished by taking a VM snapshot through VM API 132. The
VM snapshot may result in the creation of one or more disk
snapshots in and/or by storage system 180. Onward to task
box 3, backup application server 105 then identifies the VM
consistent state via API 132. Backup application server 105
then sends a request for incremental backup to storage system
180 at taskbox 4 with consistent VM state information speci
fied.

0050. At task box 5, the VM disk images associated with
the VM are identified. In one embodiment, the VM disk
images are disk Snapshots based on VM Snapshot taken by
VMM 112. Backup logic 184 identifies the VM disk images
associated with the VM, and they are represented by VM disk
files 186. VM disk files 186 may take a format of a virtual
machine disk (VMDK) provided by VMware. For each iden
tified VM disk image, disk change tracker 788 determines the
changes since the last backup. In one embodiment, disk
change tracker 788 performs a comparison such as a “diff
operation of the identified disk Snapshot against the corre
sponding disk Snapshot associated with a previous Snapshot
of the VM to determine the changes since the last backup. In
another embodiment, disk change tracker 788 tracks the
changes to a disk since the last disk Snapshot was taken and
determines the changes since the last backup by using this
tracking information. At task box 6, the identified changes of
VM disk images are backed up to backup storage system 104.
After completion of the backup, optionally backup applica
tion server 105 sends a request to VMM 112 to delete the VM
Snapshot taken and causes storage system 180 to deletes the
corresponding disk Snapshot, when the VM disk images are
disk Snapshots based on VM Snapshots in some embodi
ments. Note in one embodiment, VMM may keep track of
disk changes within the associated storage system. In the
example, VMM 112 may keep track of disk changes within
storage system 180.

Jun. 16, 2016

0051 FIG. 8 is a flow diagram illustrating a method for
incremental VM backup according to one embodiment of the
invention. Method 800 may be performed by backup engine
106 of FIG.1, which may be implemented as processing logic
in software, hardware, or a combination thereof. Referring to
FIG. 8, at block 802, a backup engine of a backup application
server receives a request for an incremental backup of a VM
at a backup storage system. The backup engine then sends a
request to establish a consistent state of the VM at block 804.
In one embodiment, the request may be sent to a VMM
hosting the VM directly. In another embodiment, the request
may be sent to a virtual center managing the clients with a
network, where the virtual center contains VM location infor
mation. The VM consistent state may be established by taking
aVM snapshot by the hosting VMM. The VM snapshots may
result in disk Snapshots associated with the VM at a storage
system associated with the client managing the VM. Once the
VM consistent state is established, the backup application
server may remotely identify the consistent state of the VM
via a VM API at block 806. Then the backup engine requests
the storage system to copy incremental VM disk images asso
ciated with the VM to a target backup storage system.
0.052 FIG. 9 is a flow diagram illustrating a method for
incremental VM backup according to one embodiment of the
invention. Method 900 may be performed by storage system
108 of FIG. 7. At block 902, the method starts with receiving
a request for incremental backing up a VM with a known
consistent state information of the VMata storage system. As
shown in FIG. 7, the known consistent state information of the
VM may be received from a backup application server like
backup application server 105. In one embodiment, the
known consistent state information of the VM is disk snap
shots resulting from a VM snapshot. One or more VM disk
images that have been changed from known states of the disks
are identified at block 904. Subsequently the method deter
mines the changes of VM disk images from a known state of
the disks at block 906. In one embodiment, disk change
tracker 788 may perform the operations of blocks 906 and
808. In another embodiment, disk change tracker 788 is inte
grated with backup logic 184, and backup logic 184 performs
both operations. In one embodiment, the VM disk images are
disk Snapshots, and the changes of disk Snapshots may be
determined by a comparison such as “diff operation of the
identified disk Snapshot against the corresponding disk Snap
shot associated with a previous snapshot of the VM. In
another embodiment, the changes of disk Snapshots are
tracked by either disk change tracker 788 or backup logic 184.
The changes of VM disk images are thenbacked up to a target
backup storage system at block 908. Note even through in one
embodiment of FIG. 7, disk change tracker 788 are illustrated
as implemented within a storage system, disk change tracker
may be implemented at a client, and it may be associated with
a VMM managing VMs. VMM may keep track of disk
changes of an associated storage system. After the changes of
disk Snapshots are backed up, optionally the backup storage
system may remotely delete the VM snapshot taken via the
VM API, and the deletion results in the disk snapshots being
erased when the VM disk images are disk Snapshots in one
embodiment at block 910.

0053 FIG. 10 is a block diagram illustrating a segment
storage engine according to one embodiment of the invention.
For example, deduplication storage engine 1000 may be
implemented as part of a deduplication storage system as
described above, such as deduplication storage engine 107 of

US 2016/0170666 A1

FIG. 1. Referring to FIG. 10, in one embodiment, deduplica
tion storage engine 1000 includes file service interface 1002,
segmenter 1004, duplicate eliminator 1006, file system con
trol 1008, and storage unit interface 1012. Deduplication
storage engine 1000 receives a file or files (or data item(s)) via
file service interface 1002, which may be part of a file system
namespace of a file system associated with the deduplication
storage engine 1000. The file system namespace refers to the
way files are identified and organized in the system. An
example is to organize the files hierarchically into directories
or folders. File service interface 1002 supports a variety of
protocols, including a network file system (NFS), a common
Internet file system (CIFS), and a virtual tape library interface
(VTL), etc.
0054 The file(s) is/are processed by segmenter 1004 and

file system control 1008. Segmenter 1004 breaks the file(s)
into variable-length segments based on a variety of rules or
considerations. For example, the file(s) may be broken into
segments by identifying segment boundaries using a content
based technique (e.g., a function is calculated at various loca
tions of a file, when the function is equal to a value or when the
value is a minimum, a maximum, or other value relative to
other function values calculated for the file), a non-content
based technique (e.g., based on size of the segment), or any
other appropriate technique. In one embodiment, a segment is
restricted to a minimum and/or maximum length, to a mini
mum or maximum number of segments per file, or any other
appropriate limitation.
0055. In one embodiment, file system control 1008 pro
cesses information to indicate the segment(s) association
with a file. In some embodiments, a list offingerprints is used
to indicate segment(s) associated with a file. File system
control 1008 passes segment association information (e.g.,
representative data such as a fingerprint) to an index (not
shown). The index is used to locate stored segments in storage
units 1010 via storage unit interface 1012. Duplicate elimi
nator 1006 identifies whether a newly received segment has
already been stored in storage units 1010. In the event that a
segment has already been stored in storage unit(s), a reference
to the previously stored segment is stored, for example, in a
segment tree associated with the file, instead of storing the
newly received segment. A segment tree of a file may include
one or more nodes and each node represents or references one
of the deduplicated segments stored in storage units 1010 that
make up the file. Segments are then packed by a container
manager (not shown) into one or more storage containers
stored in storage units 1010. The deduplicated segments may
be further compressed using a variation of compression algo
rithms, such as a Lempel–Ziv algorithm before being stored.
0056. When a file is to be retrieved, file service interface
1002 is configured to communicate with file system control
1008 to identify appropriate segments stored in storage units
1010 via storage unit interface 1012. Storage unit interface
1012 may be implemented as part of a container manager. File
system control 1008 communicates with an index (not
shown) to locate appropriate segments stored in Storage units
via storage unit interface 1012. Appropriate segments are
retrieved from the associated containers via the container
manager and are used to construct the requested file. The file
is provided via interface 1002 in response to the request. In
one embodiment, file system control 1008 utilizes a tree (e.g.,
a segment tree) of content-based identifiers (e.g., fingerprints)
to associate a file with data segments and their locations in
storage unit(s). In the event that a segment associated with a

Jun. 16, 2016

given file or file changes, the content-based identifiers will
change and the changes will ripple from the bottom to the top
of the tree associated with the file efficiently since the appro
priate content-based identifiers are easily identified using the
tree Structure.

0057. Some portions of the preceding detailed descrip
tions have been presented in terms of algorithms and sym
bolic representations of operations on data bits within a com
puter memory. These algorithmic descriptions and
representations are the ways used by those skilled in the data
processing arts to most effectively convey the Substance of
their work to others skilled in the art. An algorithm is here,
and generally, conceived to be a self-consistent sequence of
operations leading to a desired result. The operations are
those requiring physical manipulations of physical quantities.
0058. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as those set forth in the claims below, refer to the action and
processes of a computer system, or similar electronic com
puting device, that manipulates and transforms data repre
sented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly
represented as physical quantities within the computer sys
tem memories or registers or other Such information storage,
transmission or display devices.
0059 Embodiments of the invention also relate to an appa
ratus for performing the operations herein. Such a computer
program is stored in a non-transitory computer readable
medium. A machine-readable medium includes any mecha
nism for storing information in a form readable by a machine
(e.g., a computer). For example, a machine-readable (e.g.,
computer-readable) medium includes a machine (e.g., a com
puter) readable storage medium (e.g., read only memory
(“ROM), random access memory (“RAM), magnetic disk
storage media, optical storage media, flash memory devices).
0060. The processes or methods depicted in the preceding
figures may be performed by processing logic that comprises
hardware (e.g. circuitry, dedicated logic, etc.), software (e.g.,
embodied on a non-transitory computer readable medium), or
a combination of both. Although the processes or methods are
described above in terms of some sequential operations, it
should be appreciated that some of the operations described
may be performed in a different order. Moreover, some opera
tions may be performed in parallel rather than sequentially.
0061 Embodiments of the present invention are not
described with reference to any particular programming lan
guage. It will be appreciated that a variety of programming
languages may be used to implement the teachings of
embodiments of the invention as described herein.
0062. In the foregoing specification, embodiments of the
invention have been described with reference to specific
exemplary embodiments thereof. It will be evident that vari
ous modifications may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the following claims. The specification and drawings are,
accordingly, to be regarded in an illustrative sense rather than
a restrictive sense.
What is claimed is:
1. A computer-implemented method for performing

backup operations, the method comprising:

US 2016/0170666 A1

receiving, at a virtual machine (VM) management server, a
request from a backup application server to back up a
first VM, wherein the VM management server manages
a plurality of VMs hosted by a plurality of host systems,
and wherein the backup application server manages
backup operations of a plurality of storage systems;

determining at the VM management server a first of the
host systems based on the request, wherein the first host
system hosts the first VM; and

transmitting a first request from the VM management
server to a VM monitor (VMM) of the first host system
hosting the first VM via a VMapplication programming
interface (VM API) over a network, the first request
requesting the VMM to capture a VM snapshot repre
senting a consistent state of the first VM, wherein in
response to determining that the consistent state of the
VM has been captured, a second request is transmitted to
a first storage system associated with the first host sys
tem to send one or more VM disk images associated with
the consistent state of the first VM to a second storage
system over the network, wherein the first host system is
a separate system communicatively coupled to the first
Storage System.

2. The method of claim 1, wherein the VM management
server maintains VM configuration information of the plural
ity of VMs hosted in the plurality of host systems.

3. The method of claim 1, wherein the consistent state of
the first VM is generated based on the VM snapshot captured
by the VMM.

4. The method of claim 1, wherein the second storage
system is a separate system with respect to the backup appli
cation server.

5. The method of claim 4, wherein the one or more VM disk
images associated with the consistent state of the first VM are
disk Snapshots stored at the first storage system.

6. The method of claim 5, wherein the backup application
server requests the VMM via the VM API to delete the VM
Snapshot taken after the disk Snapshots have been backed up
from the first storage system to the second storage system.

7. The method of claim 1, wherein the first storage system
sends only segments of the requested VM images that have
not been stored in the second storage system.

8. The method of claim 1, wherein the second storage
system invokes a deduplicated segment storage engine to
store segments of the requested VM disk images that have not
been stored in the second storage system.

9. The method of claim 1, wherein the backup application
server parses the received VM disk images associated with
the first VM to determine information about files contained in
the received VM disk images and saving the determined file
information in a backup catalog.

10. A non-transitory machine-readable medium having
instructions stored therein, which when executed by a pro
cessor, cause the processor to perform operations, the opera
tions comprising:

receiving, at a virtual machine (VM) management server, a
request from a backup application server to back up a
first VM, wherein the VM management server manages
a plurality of VMs hosted by a plurality of host systems,
and wherein the backup application server manages
backup operations of a plurality of storage systems;

determining at the VM management server a first of the
host systems based on the request, wherein the first host
system hosts the first VM; and

Jun. 16, 2016

transmitting a first request from the VM management
server to a VM monitor (VMM) of the first host system
hosting the first VM via a VMapplication programming
interface (VM API) over a network, the first request
requesting the VMM to capture a VM snapshot repre
senting a consistent state of the first VM, wherein in
response to determining that the consistent state of the
VM has been captured, a second request is transmitted to
a first storage system associated with the first host sys
tem to send one or more VM disk images associated with
the consistent state of the first VM to a second storage
system over the network, wherein the first host system is
a separate system communicatively coupled to the first
Storage System.

11. The non-transitory machine-readable medium of claim
10, wherein the VM management server maintains VM con
figuration information of the plurality of VMs hosted in the
plurality of host systems.

12. The non-transitory machine-readable medium of claim
10, wherein the consistent state of the first VM is generated
based on the VM snapshot captured by the VMM.

13. The non-transitory machine-readable medium of claim
10, wherein the second storage system is a separate system
with respect to the backup application server.

14. The non-transitory machine-readable medium of claim
13, wherein the one or more VM disk images associated with
the consistent state of the first VMare disk snapshots stored at
the first storage system.

15. The non-transitory machine-readable medium of claim
14, wherein the backup application server requests the VMM
via the VMAPI to delete the VM snapshot taken after the disk
Snapshots have been backed up from the first storage system
to the second storage system.

16. The non-transitory machine-readable medium of claim
10, wherein the first storage system sends only segments of
the requested VM images that have not been stored in the
second storage system.

17. The non-transitory machine-readable medium of claim
10, wherein the second storage system invokes a deduplicated
segment storage engine to store segments of the requested
VM disk images that have not been stored in the second
Storage System.

18. The non-transitory machine-readable medium of claim
10, wherein the backup application server parses the received
VM disk images associated with the first VM to determine
information about files contained in the received VM disk
images and saving the determined file information in a
backup catalog.

19. A data processing system operating as a virtual
machine (VM) management server, comprising:

a processor; and
a memory storing instructions, which when executed by

the processor, cause the processor to perform operations,
the operations including
receiving a request from a backup application server to
back up a first VM, wherein the VM management
server manages a plurality of VMs hosted by a plural
ity of host systems, and wherein the backup applica
tion server manages backup operations of a plurality
of storage systems;

determining a first of the host systems based on the
request, wherein the first host system hosts the first
VM; and

US 2016/0170666 A1

transmitting a first request to a VM monitor (VMM) of
the first host system hosting the first VM via a VM
application programming interface (VMAPI) over a
network, the first request requesting the VMM to cap
ture a VM Snapshot representing a consistent state of
the first VM, wherein in response to determining that
the consistent state of the VM has been captured, a
second request is transmitted to a first storage system
associated with the first host system to send one or
more VM disk images associated with the consistent
state of the first VM to a second storage system over
the network, wherein the first host system is a separate
system communicatively coupled to the first storage
system.

20. The system of claim 19, wherein the VM management
server maintains VM configuration information of the plural
ity of VMs hosted in the plurality of host systems.

21. The system of claim 19, wherein the consistent state of
the first VM is generated based on the VM snapshot captured
by the VMM.

22. The system of claim 19, wherein the second storage
system is a separate system with respect to the backup appli
cation server.

Jun. 16, 2016

23. The system of claim 22, wherein the one or more VM
disk images associated with the consistent state of the first
VM are disk Snapshots stored at the first storage system.

24. The system of claim 23, wherein the backup application
server requests the VMM via the VM API to delete the VM
Snapshot taken after the disk Snapshots have been backed up
from the first storage system to the second storage system.

25. The system of claim 19, wherein the first storage sys
tem sends only segments of the requested VM images that
have not been stored in the second storage system.

26. The system of claim 19, wherein the second storage
system invokes a deduplicated segment storage engine to
store segments of the requested VM disk images that have not
been stored in the second storage system.

27. The system of claim 19, wherein the backup application
server parses the received VM disk images associated with
the first VM to determine information about files contained in
the received VM disk images and saving the determined file
information in a backup catalog.

k k k k k

