US 20160357637A1

a2y Patent Application Publication o) Pub. No.: US 2016/0357637 A1

a9y United States

Volvovski et al.

43) Pub. Date: Dec. 8, 2016

(54) ADJUSTING DISPERSED STORAGE
NETWORK TRAFFIC DUE TO REBUILDING

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Ilya Volvevski, Chicago, IL (US); S.
Christopher Gladwin, Chicago, I,
(US); Gary W. Grube, Barrington
Hills, IL (US); Timothy W. Markison,
Mesa, AZ (US); Jason K. Resch,
Chicago, IL (US); Thomas Franklin
Shirley, JR., Wauwatosa, W1 (US);
Greg Dhuse, Chicago, IL. (US); Manish
Motwani, Chicago, IL. (US); Andrew
Baptist, Mt. Pleasant, WI (US); Wesley
Leggette, Chicago, IL. (US)

(21) Appl. No.: 15/242,858
(22) Filed: Aug. 22, 2016
Related U.S. Application Data

(63) Continuation of application No. 14/256,205, filed on
Apr. 18, 2014, now Pat. No. 9,424,132.

(60) Provisional application No. 61/828,883, filed on May
30, 2013.

Publication Classification

(51) Int. CL

GOGF 11/10 (2006.01)
GOGF 3/06 (2006.01)
HO4L 29/08 (2006.01)
(52) US.CL
CPC ... GOGF 11/1092 (2013.01); HO4L 67/10

(2013.01); GO6F 3/0619 (2013.01); GO6F
3/064 (2013.01); GO6F 3/0659 (2013.01);
GO6F 3/067 (2013.01)

(57) ABSTRACT

A method includes identifying an encoded data slice for
rebuilding. The method further includes determining
whether a rebuilding threshold for the set of encoded data
slices has been reached. When the rebuilding threshold has
been reached, the method further includes determining,
based on a condition of the DSN, whether to execute a
rebuilding function, to delay execution of the rebuilding
function, to adjust a rebuilding network protocol, or to
modifying rebuilding criteria. When the determination is to
execute the rebuilding function, the method further includes
rebuilding the encoded data slice.

user davice 12 DST processing unit 16
computing core 29 data 40 &Jor task
i < computing core 28 re::aest 8
DET client R 2
3 ST client -
mcd:ﬂb = module 34 cc;gar;;u;xfg
Y]

¥ i

interface 32 interface 32

| ! interface 30 }:

interface 30

A &

user device 14

network 24

k-
interface 33

&

#i interface 33

computing
core 28

DSTN managing
unit 18

¥

DST execution
unit 36

computing

DST execution

DST integrity
pracessing unit 20

|
i
|
core 28 i
|
!
|

distributed storage &/or
task network (DSTN) module 22

i
i
i
unit 36 E
i
f
§

distributed computing system 10

US 2016/0357637 Al

iiiiiiiiiiii!i!i!i!i!ii J
BT weishs Bunnduwiod painguasp i 7¢ SInpou (N1SQ) YOMBL S i U7 un Buissancld
m 109 afel0ls peInguIsp { Auberu 18q
Lold m m o
i — p—— ! 97 8w
| g un 86® g¢ jiLn ! Bunndwios
i uoinIANg 180 UOINIBXa | 5(] {
i Y & { H
— S N I TF a0Ba)
gl uun 3
BuiBeusi NSO
7 800
Bunndwon

€% aorpio)

7 Momisu

¥

Dec. 8,2016 Sheet 1 of 53

Patent Application Publication

T

L aolnap tasn
& 4
0% 9oepsiyl —t-p OCo0spely | | 7Hevepew | FE soRpaUl
w H r)
GZ 8100 = ;
ndeos [po —
Bugndwioa I3 1S FE gnpow
— jusife 184
gowsenbes | 57 2.00 Buinduwion T
ys81 109 0% aiep §7 s109 Bugnduwios
BT wun Buissasoid | 2(7T oolnap Josn

g7 ainpou ¥/ sinpow 21 |npow soBLsl 77 smpow 85 ainpow 33 sinpow
a0EMaul N1S(soeUat (OH yeey SUELBJUL JI0MgBU IELSIU YEH a0kl G580

b \% M [
,W.‘:‘ .:%M‘

US 2016/0357637 Al

85 soBpalul 10d 73 soig
- WOY

f

f !
I {
I i
i i
f !
f i
I !
f {
M Y — 73 ainpolu M
i G Ja|l0ucs R e mgm.uﬁc_ i
m e | H m
m o o 5013p O m
f i
I !
f i
f !
f {
I i
i]
f !
f i
I !
f i
f !
f {

¥
k4

Dec. 8,2016 Sheet 2 of 53

¥

¢ snpow
Suissaooud

¥S
Aowsuw uew

O

B
¥

IBEOALOT Aouiow

&

¥

TZ yun Buissasoud
s01udest oapia

G7 aing Bugndwog
b e e e e e e e e e e e e e e e e

Patent Application Publication

US 2016/0357637 Al

Dec. 8,2016 Sheet 3 of 53

Patent Application Publication

U# HUN UOINOSXe | S(]

]
i
i
§
§
“
“ 08 sinpow T einpow
; uoynoexe g jusid 18d
m
i
i
;
_ — I 8 sinpows
: i P .
M &g Auowsi §% Japonues Bussaooud
m
R
ug (shinsai eed
Lt S201S paAaLIl
U yse) [ened ”
u# dnoib @

s | b

@

@

V& (SHnSe] EET
b Jun 4 S80])S ponsiel
uonaexs 180 e
L4 4sE) feed

L4 dnoud 2018

7 SIoNIBU

¢ Old

aar

. B8
\ syse} [epred

76 Buisssnoud
LSG punogu

Kflﬁ?iii’liifggii

%
sBuidnolb soie

% Buissanoid
18Q punogno

FE ainpou Jusip 18g

o s o e o 2o e a0 a0 o o e A 2o

US 2016/0357637 Al

8 Buissaooud | g punogino

i
i
nkn

Dec. 8,2016 Sheet 4 of 53

Patent Application Publication

§ i
§ 8
[} i
§ i
§ 8
8 - [
w gIT a;npou !

: — . JOJIUOD 4SBY | ! T vse}

sysel |B ,
! 80 158} [Ee peInLASp !
: ' ;
] 8
¢ i 8
¢ g
” ST oo "
. ug dnoib sois i 911 enpot "
U Jun H " —— N p— '
' < U IONUGs GILOS

LORMDOXS m 09} [ohu m GT [04U0D w
%]
150 uf ¥se) m 79T o400 m
w ¥ & "
— g

w g RIOMIBU .. “ YL IORBES 217 buipodue | mc_%oﬁg_ma &.....d.........w 26 eep
® e Homst. i Buidno.b A oussg | OBt :
; ejep M
§ §

4 Se

v | L ! \ o voedemy | M
uoexe | ' 9% sbuidnodf sols o mmu___w 0BpOOLD Oc) suogiyed glgp 1
180 T L dnoib sois : . !
8 L}

US 2016/0357637 Al

Dec. 8,2016 Sheet 5 of 53

Patent Application Publication

& Ol

0} ¥sE)

shUN | S eAloadsal
ensed Buipuodsaios
pue sBuidnolf aoijs puss

el

-9

sisjeweled Buisssooud ejep
pUE SHUN | S BU3 U0 paseq
Buiiciinied YSB] BUILLISISD

s8]

[ered sonpoud 0} Buoniued %se;
8y} uo paseq {shHsey sy uonied

apennenn &

4y

B

el

-3

Spun 180
poseq BIED sS4}
Buissasoud

SOWINU 83 LD
10 sisjeueied
BUILLIBIRP

sBuidnoib aois eonpod

o} sigpolueied Buisssocud syl yym
SOUBDICO0R Ul BIED oy Buisssowud

s 4

El

rel

1

15040 Jagun

{s)yse] ey} poddns o) syun

U B ouiwieiep

&

748

B

(sises Buipuodsanos

4t

B PUR BJED SAIR08)

US 2016/0357637 Al

Dec. 8,2016 Sheet 6 of 53

Patent Application Publication

727 uojjed
giep Jad 58018
BIED POpoous

uonied eiep

9 "5
351 eep
poepoIus 0GT eiep $GT sjusubas
peoys pepOIUS peInNaes
aa _
71T Buipoous jous 9
087 ¥ 5T
Buissanoud g% %7 Buipoous Puisssooid _
5 % o % fBuissannid
Aunoes Buisiis lols Aunoss o
. R juswbas
8018 Jad Juswbss
z A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 5T omuos ||
- — A
091 [HU0S | BTT einpow 091 10U0Y gqiuswbas ejep
104U
{9} |1o4ues {9} |1o4ues

Yo
=
“
% o juswbas wiep ¢ uswbas siep uswbas eep 7 wewbes mep £°OH
S Gvp || wpD | evP || avp | v || OvP | 6ep || 9ep | sep || 9ep | qep || vep | cep || zep | iep
= oep || 6z | s2p || zzp | ozp || Sp | vep 1| €zp | zzp || bz | ozp || 6Lp | 8ip || LiP | oip
S sib fbwp e [l up || o | sp e | p 9 | gp w oo | P
- 2 welwBos giep G Juowbas gep ¢ juowibas viep , JuowBas glep
er)
' g)
s
e | ovp | w0 | v | cvp | P | Ovp | 6Ep | 9ep | zep | 9P | o | vep | eep | zep | iep |
[-P]
2 | ocp | 62p | 9zp | zzp | o0 | szp | vap | sop | zep [vz | oz | ewp L aip { ap | oip |
° Lsip (v b lap fup o) e | oo | o oo | oo | w0 lap | 1p|
>
(o]
oS
K
2

Svp | 0 | 9P | 0P | P =57 syuawbos epep
- ovp | 6ep | 98P | Jep | 9¢p
S Gep | vep | €€p | 7ep | igp
S ogp | 620 | szp | sz | 9ep 75T .
2 oo | vep | cop | cep | P Buissaooid je— 09V
& wawibas 1013u00
. ozp | 8l | @lp | b | oip :
2 GIp | ¥IP | EIP | 2LP | iIP
S o | oep | s | ip | o -
Aw ap 1 ep P Ve upnped 2yep
- {77 uonied ejep
=
e
«
[~™

US 2016/0357637 Al

Dec. 8,2016 Sheet 8 of 53

Patent Application Publication

AR
| 7953 | 1833 | cpPesq | 0Sp9SQ | Gipesq | B#IUSWDSS 10y SR0YS BED PpOsUe JO 188
®
®
e
[7es3 | res3 | 909SEP €S0 | L2807P €501 | 9¥SP ggq | ©HUBDSS 1oy saols ejep papoous 0 e
| 27s3 | 1763 | ye3EEp oSO | 6198LP CSQ | REP g5Q | A UBLDIS o) Sa0us Eep papoous 4o e
m AEE m L 153 _ 2ERLEP 150 m 2L89LP 18Q _ ZRLP 150 m L WiswBas Joj S90iiS BIED POPOJUS 0 188
Gal wmﬂ ’ §¥7 bupoous q@..m
10JU0D Buioys 1049 jonuos
AN
g juswbas gep g juswbas eep t uowbos gep Z wawhss giep
GyR 2 Y 4 a 1Y ove | BEP BER | JEP 9gp | SEp yep | EEP cep | LEP
gep 6P | 8ap FRASEE I TAY G20 | P AL EAAY Lep | oep GLR | 8ip LR} gip
Gip tLp | Elp B LR QLp Y ap p ap &p ¥p i 4y P
/2 luouwifios gjep g juswbos gyep ¢ Jewbas yep | Juewlas ewep

US 2016/0357637 Al

Dec. 8,2016 Sheet 9 of 53

Patent Application Publication

zes3 | . 953 | swesg | | opesa | | spesg | RSTE!
] @ L] [L
& @ & @ &
& L] & [®
7es3 | CE | oogsepesa | | Loeoeresa | | osspesa |
253 | L 253 | voscep zsa | | sivelp zsa | | veep zsq |
27183 | NEE | zesiepisg | | asopTisal | zepisq |
S¢ 150 0 7% 150 0 24 180 O #1809 V180 0)
T% shuidnosf so)s N;\IWL
YT lopses T 104003
Sudno [OOF 040
\..
| 79s3 | 1953 | shpesa | 0P esa | Spssy |
&
&
[
| ZeS3 | L £S3 | 9699CP €50 | 179020 €50 | 9%6P €3G | 55T
uonued Blep o}
77783 | 173 | veWecP 7SO | 61R9LPTISa | weepzsqg | 0 SIS pepoous
Po7183 | 1IS3 | zewier1sal Ao isa | zeplsa |

US 2016/0357637 Al

Dec. 8,2016 Sheet 10 of 53

Patent Application Publication

SHUN XA LSO vHUNXT LSO £UUN X3 LST

ZIUNXI3 180 LN X3 Ls8d

{Munyo BlEp {uonised {uoniued Giunus eyep | (unyo BiEp
snonfipuoa) | oL eep 0 | ojzeen a3 | snonbiuoo) snonBiueo)
17X P X §7X X 7%
dnauB aoijs dnosb aois dneJf aols dnioub 8215 dnoif aoils
RN XI LSO PN XILSQ cA X3 L8O 2N XE 180 LR X3 Lsd

(unyoeep | Ounyoelep | (winyo egep (uoned (uonned
snonBiuos) 1 snonBiyuos) | osnonBijucn} oz BB AT | A0 L BeD O)
£ ¢ ¢ b g g¢ ve
dnouf soys dnoub sois dnouf eoys dnoub sogs dnob eoys
CRNXI LSO PN XIASQ SR XI LST 2N XE 180 LA X3 Lsd
{uogped Ounyoeep | Ounuoeep | ungd ggep {uopied
oy eep s bosnonBauod) | osnonBuuco) | osnonBiuon) | iopz eep o)
12K 4 ¢ L T §¢
dno.b aois dnoub aos dnoub eoys dnoub soijs dno.b sons
GIUAXI LSO PIUNXI LSA cWNXZ 18 2wn X3 480 1IN X3 1sd

{uonnued {uonnied Cunuoeep | (unuosep | Ownuo Blep
oizerpn3 P opLewep a3l osnonbyuco) | osnonBuon) | snonBiuoco)
51 7l el Zl Pl
dno.b aois anodd eos dnoJB 2018 dnoJb aoijs anodl aois
SN X3 180 pIUN X3 180 SN X3 L0 7N X3 150 1 Iun X3 154

N P e

O
Ot
-

coﬁcecmg%oa
pue Buipoous

36 syse} jeied

Y
uoiiped eep

o
uogiued eep

o
uoiped ejep

{19s yunyp)

£
uoiped ejep

76 4S8l

019

26 ejep

US 2016/0357637 Al

Dec. 8,2016 Sheet 11 of 53

Patent Application Publication

L HUD UoanoeXe |0

gl
0400

184

A4

ZE 3|npous
W32 154G

xR

& \@.

&6 (shise)
jened
§3 i3|j0JIU0D (e
oI .
{0300 TIT |04u0D
358 Alowsw
¥ A G5 seous | &
sonmoaxa g [T owau K
e Ld voL sunsel| G
) g | E
(01 s80)s
s ¥

701 sunsal eiued

7T SisEl

o,
>

enjed-gns pue 7T sBudnoib asys-ans

891 #oEGpes; |Sd

LN 1 o)
{shisey jened

77
g1ep snonbijuod

]
L
&

L € eep 03

TARALZ e

L1 (unyo;
g1ep snonbijuoo

L# N X3
18 Jo} sdnoif so)s

X4 uoijed

¢4 uoged

Z# uopped

L4 uoped

7150 |
| uonied

oy yse) jened

US 2016/0357637 Al

JiUN LoAnoaxe 180

i
i
14

. |

W,]

— 3

S §7T [0JLCO Y58 ;

s g3 isjjouoo | ! T e
= ;

P>y]

7 | pLBeLp s
© GLP | PP} CLP | iR | LR “

3 i CLRLLP €50
M, 1Y 144 %Y 4y 2Y fouau m

< Z ¥ ; | | 0reep esq
2 L uonied 1o S0/ BlED ;

28

snonBiucy pejquuesse-al TF AIOWBW g 9910 650

“
]
]
“
m
]
“
m o | 80 | ogp | P] oop FIT 104103

86 aimpow !
UOINIaXs 1g i g%ap €80
YO0 BIED PBIUIOSSE :
-aJ Uo {sjuonoun; m yREP 750
yse) ieied wioued ;
i 8P 184

L uonied 1o | dnosf

o : L BuidnosB aous u
04 (Shnsed jeised P L

L uoniied 1o seols
E}Ep POpooUs

Patent Application Publication

US 2016/0357637 Al

Dec. 8,2016 Sheet 13 of 53

Patent Application Publication

€1 Ol

78 Buissacosd 1S punoqu

. ¥l

56T |onu0o

$R0Ij3 PBABLIA
S80li$ papoous

§
§
§
8
8
! 5aT eInpous
L Jun : — Bl 0IIUOD Y5E)
LOINIEXS w 201 synse: equed PENGLISIP
150 m 5
; v
8
w
ug (synsed jeed w 981 SNpoul
M GBT 10u00 (0403
U# S81S PBABUIE) !
® ' 061 1onu00
8 X ¥ .
® ! N i
{ 77 yiomiau m [| 787 Buppossp
L . N A 3 “ Buidnoif-ep / 1018 §q
LONDaYS L# {shinsal enied ' /
' 8
I A — 727 vonied
L SR01IS PaABLIR) b gjep Jod
w
L}
8

© {shinseu

P (6 EIEp

US 2016/0357637 Al

Dec. 8,2016 Sheet 14 of 53

Patent Application Publication

A E

{shinseu
ay3 sonpoud o Buissaooud
SHNSS S} Y3 SOUBRICOE Ul
synsas jeed ey Buisssooid

J— -

0

[

%$B] BU) U0 paseq
Buissasocid ynsal Buiiiueiep

p— A

bl

synses jgnied sy o
Buipuodsainoo yse; Sulaslgas

mw\ a8

<o

sunea) jeied aamoa)

US 2016/0357637 Al

&1 "9

44

$20YS 0 s}es O uoped

Dec. 8,2016 Sheet 15 of 53

| 7953 | 1863 | Swpesq | (EPRSa | Sipesa |
L]
L]
L]
7€S3	1£S3	96956P €94	129020 €30	9%%P €50
7SI	V7SI	voweepusa	6198107	veepsa
7us3	1T1s3	zemierTisa	29elpTisa	zsieTisa
TBT 40038 1y m27 onuoo				
BuidnosB-op _				
$O0US POABIAAY PD				
zwes3		ivess		sypesq
2 & @ L] L				
@ [] L] & @				
& & B & @				
7633		€83		9oc9sepesal
	vesa	Dwewseepesa		elsebesa
L Zus3 | | s3] lewerisal L 4sepTlsa| | Z8lpIsa |
GHNTLSQWON ENTLISOWOL €4NILSCUOY Z#NI LSQWON L#N3I LSQ w0y

Patent Application Publication
C\i!
&
1L

£ i0} SR0IIS PaAsUIa

L uonined oj

US 2016/0357637 Al

Dec. 8,2016 Sheet 16 of 53

Patent Application Publication

)

a3

91 "2
JCT 2ep 0T e1ep e siuswbas
DOPOIUD PATNS pepoae DAINNSS

" 3

: g1 buipooap Joua pasiadsip
[}

: 07 m

[rr— L

“ 5 0 ; Buissanoid e :

: L8880 EYiva 867 Bu i

i u i R 1902 bupoosp | | 1 Aunoes . . i

w m M funoes s2s 1 Buios-ep " 0B 1 uswbes ! mewwwcmo%m J
jod aslaat ; i !
[© u : S8IDAL] H
\ m 05T joquoo]| ; m /
!!! L
(443 T act
vonped e Joj 081 1oauos | o7 enpow | OB IWOD guuswBes eyep uolied eep
s ponaled (OO0
087 10auoo G871 |ohuoo

US 2016/0357637 Al

Dec. 8,2016 Sheet 17 of 53

Patent Application Publication

FA IR
g wowbes eyep g Juowhos elep yuswbos emwp 7 lowbas gpep
5144 vE | EPP crB | PP rp | 62P gep 1 iep gge | gep pER § EEP ZEb | iEP
0ep 6Zp | 8ép FrALE Ay 1A B4y (AL /AL AV BRTAY 8L § 8ip e | 9P
Gip PLE O ELP Ll | LLp ailp | ap 8P ip ap ap 144 £b 42 P
/ juswbes eep g Wwewhas glep ¢ wswhas eyep | uewbas gep

- 307 Buipoosp w02 -
(gL |0Au0s ¥ 1048 < 7 Bupys-s e BT IGIU0D
/
GGT eiep \ N
papoduR i W;W;memwmu
DEpOSUS DEOLS
_ 7 683 _ 0EP 880 m gL 980 M a4 Juawbas ioy 58018 J0 5198
]
&
&
[7ess | ves3 | sewsep esd | 4 uawbes 1oy seols Jo sies
| pO9EEP 700 | 61901780 | y9Ep ZSa | z# 1euwiBas 1o} s801s 0 5108
| 709160 150 | 21991P 1SQ | 79iP 150 | L4 uewBas 10} S80[S Jo 8198

US 2016/0357637 Al

Dec. 8,2016 Sheet 18 of 53

Patent Application Publication

Luoied gjep
GPP | pyD | EYP | ZPP | iPP 5T
81 9id OyP | 6€P | 9€p | J€p | 9gp uojied ejep
GEP | $EP | €eP | ZEP | iep

ogp | 62p | szp | izp | gep

: - ¥ —
szp | vzp | sp | wep | Lep bussooord T
0zp | 6P | aup | 2P | aip Jewibos-ap (00D

GiP 1 PR L EIP | TP LR
Oip | &P 8p ip 9P

gp 124 134 [4Y 1Y Z8r
sjusuibes ejep

L spo | vop | cvp | zop | wp | ovp | 6ep | ep | dep | oep

[To]
o3
3

yep | cep | zep | lep |

61 | 9P | 4P | 9ip |

|
670 | azp | Jszp [oo | szp | wep | cep | Top | iz | oep
|

Lcip {wip b fzib | up Lo | 60 | 8p | 2p | op | oep | o | 1P |

()
3

¢ 1pwbas eep ¢ juawibas eep $ uslubas epep Z wawifss gep

Gvp pre @ £vP [Oye | 6tp gep | IEP 8ep | Gep yep | LEp P 1 LEP

.
(]
R*]

ocp 6P | 8P 9gp Gep | vib top | 4eP bep | ogp BLE | 8P Lib | 9P
GLp pLE | CLP e LLP oLp § 6P ap ip ap ap ¥e &P p |P

J Wwewbes eep ¢ juswbes gep ¢ wawbes viep L uawbas eep

US 2016/0357637 Al

Dec. 8,2016 Sheet 19 of 53

Patent Application Publication

{uny egep {uoned {uoned Punyoelep | Ounyd elep
snonBiuos) fuor L eep ad) Lioizeep o) | osnonBauos) | snonBiues)
17X ¥ §X oYX X
dnoub aoys drosf song dnoib s dnoub a01s dnoif soys
SIAXI LSO PN XI LSO CIUNXZ LSA 2N XI Lsa L Iun X3 183

Ounyoeep | OGunuoelep | (unyo exep {uoniped (uoned
snonbiuod) snonBiuos) | osnonBiuoco} | oz Bien A | oL | B1ep 03)
€t Z¢ P € g¢ pe
dnolB aois dnoJB aols dnoJB aois dnosb sois dnoib aoiis
GIUA KA LSO PUUNXE LSC N XZ LSO WA X 1SQ LN X3 1sd
(uonned (unyoejep | (unuoegep | {(wunyd ejep {uoged
jopeepadl | osnonBiuod) | osnonbpuca) | snonBiuos) | o7 elep nd)
Ve €e AR A §¢
dnob aoys dnoub ams dnoub aoys dncub aois dnotf sos
GIN X LSO PINN X3 LST N XF LSA TN X3 LS50 L N X3 1S3J

(uoped (uoped Gunyoelep | (unyorep | HUNU Blep
ojzeRp N3 {400 L eep 93 snonBiyuos) | osnonbiuos) | snonbiuod)
! vl £l Zl Pl
dnosb aols anoub sois dnoub a0is anoub soijs dnoub agis
SWAXELST PN X3 LSO N XF 180 TN X3 1Sa LN X3 180

Buipoosp
puE
Buidnodb-e

e

Xy
uonpled elep

89

o#
uonEd Blep

T
uoliLed ejep

(198 yunyo)

¥

uolued ejep

(24
Bumonned

..mmu

7

E

76 eiep

US 2016/0357637 Al

Dec. 8,2016 Sheet 20 of 53

Patent Application Publication

U TN UONRDeXS |80

{6 sinpow
uepnoExs 1g

FC sinpoul
Jualo 153

a8 Aolwsw 00 18jionuog
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE §
&
Uf SIS PAASLIRI
®
®
®
U S3911S
Vi |4 SO0HS PAADLIIR

JUN HORNoaXs | S

i 59048

U¢ ald

AT se0is pensLel

78 Buissanoid

e

gic

28]

i m —
Pl lgapunogy [T CEEED
M
H
§
§
¢
H
H
[
H
m
T8 Buissano.d] o
1SQ punogino 1 75 Ep

T einpow 1usio 150

US 2016/0357637 Al

Dec. 8,2016 Sheet 21 of 53

Patent Application Publication

¥ A]E

08 Suissanoad 16 punoging

wpun |
X318A | seops
10 ug Jejid
&
@ . .
& F 4o 3
{ 77 JoMI3Y Wy —
M M
g | P
X3 18d $601IS b
10 | Jeppd :
H

gil sinpoul
[0JU00 %SE)
pangLsip

&

F1T lopoejes
Buidno.f

”

37T sinpouw
[0JJU0D

Tc SSedAg

T 04U

91¢
Se21i$ j0 sieyid

71T Bupoous
1018 8¢

8ic

S201jS papooua

o
Buonnied
gjep

6 ejep

US 2016/0357637 Al

Dec. 8,2016 Sheet 22 of 53

Patent Application Publication

67X ¥ X £7X X X
| s2 | vz | g2 | 7z | 1z
TRy
&
Butoys g
Buponue
]
i
_ ! T
o 8ie “ Buissennid 5T w
Em_&mmmm Emmmaa ATLM.EE fynoss [Bupys |* m%wéa ¥
38015 papoue “ s3s Jad 1048
! K &) 3
_ {9} {04u0d
B e o o oo e mm s e cxr o e] e o om0 e e 0 £ B cxn e Em e R £ R0
{57 104u03 9} anpow
{0IU00
47 auod

x4 Juawbes ejep

L L2]

| z#weulbes ejep |

w L4 jusbes ejep m

€< O

4%
i1 -
Buissanoid 41
fnses [Buissaooud
1uawBas jusiibas
5 y Y

cql

(G |G4u00

sjiswibes viep

347 oauce

US 2016/0357637 Al

Dec. 8,2016 Sheet 23 of 53

Patent Application Publication

x Bas 0 x Bos i0 x Bas 0 % Bas jo
pulls Gueld | edyspleld | suisgaed | oedgs 7 epd
8
@
®
¢ Baso o Bes o ¢ Basio ¢ Bes o
soscuemd | eousvuepd | sansgdend | oeous zagpd
2 Bas jo 7 Bos jo 7 Bss jo 7 Bas jo 2 Bas jo
pols qued | eosvaend | osonscdepd | oeouszaend | oons | e
| Bas jo |, Bas jo | Bes jo |, Bos jo | Dss jo
30lis ¢ Jeyid 20115 ¥ eind 3018 ¢ Jepd 2ol 7 ed 2018 | Jejiid
GIUAXI LSO PN XA LSO cWNXI LSO 2N X4 180 LN X3 1sd

744
Buidnosb seyd 5
Buolie ‘Buipoous

€< 'Oid

¢t elEp

US 2016/0357637 Al

Dec. 8,2016 Sheet 24 of 53

Patent Application Publication

L4 3N UOIRDBXS | ()

Erac

PE snpow
W32 150

102 Buindwios

06 sinpow

Nl

y

UOIIN2aXa (4

¥i1 1oau0s
Aol

A4

72 "D

9§ Jajjodiuos

g8 Aowsuwl

00t
S80I8

interface 169

x Bas jo
aoiis | Jej|id

&8 8

¢ fas jo
acys | Jejjid

z Bas 1o
8oys | Jejd

L Bas jo
80iis | Jeqid

sa0)|s | # sejd

US 2016/0357637 Al

Dec. 8,2016 Sheet 25 of 53

Patent Application Publication

gt Jun
LOINOEXS
184

U# S801|S PeASH}B)

]
@
]

LN
LOHNOaXS

184

Li S801IS DAABLDI

....W.M.vf@?ﬁ@ﬁ.@ b

@07 sinpoul
[OILOS YsE]
peynquisip

[

T6T (04300

DBT 1041U09

78 uissanosd [S5¢ punogu

k4

Gze ssedAq

A 4

| 757 Buppooap

Buidnost-ap

ool
$HOIIS POABLS)

1018 8

y8i
Buiuonied

-30 RJED

\
juswbes eyep Jad
Saols peposUs

TEeEp

US 2016/0357637 Al

Dec. 8,2016 Sheet 26 of 53

Patent Application Publication

9Z "Dl
G X X £ A L X X# jsiubss giep
®
®
&
- - - - 76 Ejep
sz | ve | gz | e | 17 | |z uewbos ejep |
[i[4
T | L4 uswhsseiep | Jusuibes-ep
544
Buipooap
DU 2315-9p
T T e T i
! 751 Bujpooap joua passedsip ¢
] i
§ J—
i —- : i)
= I Li§8800. -
mm“\m d m Buissaooid T 5 sUe funoes 5 Oic q m
uswhas elep jad N N ol BU > Hn o Bui
t%w__w Mowcw T Agnoss Buplis-ap rwmewmn uowbes mc.“mmw%uw ! aimawl%
SSHHIS ﬁﬂ.u “ @Qm_m mm._w\/ﬂ_ 04k SSISAUI U2 mvummu M \
w N A 3 : A ! /
: 08T 1osuoo b
L Y e s =t 4_.
L — F 76 ejep
061 jo4uoo @@H. NPoU Bl J04QUGD m.wcmwm&m@w Bl
[oL0s
06T 1ohuod 867 johuon

US 2016/0357637 Al

Dec. 8,2016 Sheet 27 of 53

Patent Application Publication

g Jun m m Wi 3N m m By pun m m O un m ; L# Hun
uofrosxe 180 | uogmoaxe 15Q m | uogmake 15Q m m Uognosxe 1SQ | P uognoxe 180
; i ! i ! ; ! i
$E anpoi W ®®8® | | TTonpou m see | | 7T anpow m ses i | T onpow w ®8e | | T onpou
wep 18 | | P weplsa | {| weplsa | L weplisa | L e isa
; ; i ! : !

m i (55 saqonuon i + 55 soqonuoo i t [55 seqoauos i + 755 soqonuon
i ; i ! i ! ! !
gEenpow | i | | D5 emnpou : m mEempow | i m 06 ampow | 1 | 58 anpow
Lognosxe 1 | | || uognoaxs 1@ | || uounoexs 1@ | | uopsxe 1q | | i | uognoaxe |
i ! : ! : } 1 !
! ! - v [! 1 !
m m 3 8p00 YSE] PAPOSUS S m m m
" m : i T e " m
: “ : “ Loe ! “
: i ; ; : ® ~ ;
m “ m] m M _ mm D05 %58) PED0IUs _
; ; i : i : i ;
W m m m m _ 7 BP0 YSE} PAROILS S M m
H i ; § ; T T H §
U BIED PApOaUs S0 | m | opooysepspoousgg |
3]
W ! R m ! ; !
M “ ; 8 ! “ : ! ;
] £ Ejep papoous 9 | | “
m i ! “ B | 7 jep papoous §Q _
]] 3 3 5 T 3
m] m m m | BIER PAPOJLS S _
— ? — § —] p— T —
® ;] g : m % : m 7 : m %
Aowsiw m “ Aiowsu m ! fiouisw m M Aiowsu m “ fiousaw
,,,,,,,,,,,,,, ! I————— A————— A————— S

US 2016/0357637 Al

Dec. 8,2016 Sheet 28 of 53

Patent Application Publication

T

o e o o e o e ot o o e o e o o o o o o e o o o o e e o o e e e -
!

U BIBD PBPOOLUS JOLS ()

&
&
L4

¢ RIBD PEPOOUS JOLD (]

7 €IBp PBPOOLS 10418 §(]

| EIBD PSPOIUS JOLD 8

L7 S o
eFe UDNRLUONY

UGHEULIOL LONEIONE |

H_Smm._ Hiatd “m h..rmﬁ

UORNGUISID YSE]

7T7 anpow

01 sunse

A4

z 3
(eiora ove

gieep ey
poooles | popsio

7 ajnpow
wais 18

2

S

i ses -

(i 2 sey -
al L vse -

g7 S8p0s YeET J0 1

2 ainpowl (NLSQ) omiau ysey
© afeicis pangUIsp w

| apoo yse) papoous loue 8g |

| 78poo yse; pepoous loua ¢q |

| | spooysey pspoous soue sq |

Qi v Egep -

Qi Z Ejep -
i | etep -
¥t¢ B1ep JO 15

1724
7VZ UCRBULCI (AT
UDIESCHE 1 S0 uonew.oul
T ynsal
TTE Snpow
Usingiisip xeey
A B
w R |
qeeep jgiysey | POl supsal
pOJOsIes 1PaIoeIos &
T# anpow
Ui 18d
(i o usel - Qi 6 eep -
ai v yse] - a1 eep -
Qi vmwﬂ - Qi g eiep -
“...N...!....En.l._..........l......i g | oegp -
YT S2PU0 X860 i8] o
Fod Eiel J0 1Y

US 2016/0357637 Al

Dec. 8,2016 Sheet 29 of 53

Patent Application Publication

0¥ qivser BEC i Eiep
pajales

7F7 LONBLUIOM|
Uojieo0l[E 1S

&L Tog Sinpow
. LoiNGLISIp e

q
e
%

AN

6¢ "D el
sel
Lopsel foyxsel
g greel
Leysel | eysel
THSEL | Zeel
IS 328
AR EIE
CLdseL | psel
§5¢ 8%
YSERGRS | N
N 972 de
// //. ¥8B1-ONG <> YSBY
/ //
/ /
/

VDTS UTDIES GHOL | 2X U ppy
€078 € 93T GE | AA CPDY
70187 03SGe | A TPy
FOIS D3R EE | XX L Py

v7¢ SIS FAFAY
50 PRy

|- e

Els

e

gl

27078 187038 944
20182 93 w.
o LY

Qg7 sigjslieied

408 UTHIS 9IS

Q4 uippy | 04 u

gd €4ppy | 89)
gy ¢appy | gy ¢
WYL PRY | WY b
9 | 082
79¢ Olul CrIS]

4

ooy BIBf] | EEl]

Zy

Py Y

A

L€ €

Lz [4

gl

z i

oL b

8lC | SIC

pow | A

L E]

g | Isa
SEE SSINPOLW uolnISKe |

757 uonewuoiul ofeiois yse)

Tp7 unieiion) obeiols ejep

US 2016/0357637 Al

Dec. 8,2016 Sheet 30 of 53

Patent Application Publication

0t Oid

<14
pajEsuBL
Aposlios
SPIDA JO 131

ChE BRIom
-Uou 01 8np
Si019 J0 38)

soseiyd 1o/ SpIom 2ads puy - 776 dsE)
ejeisuel - | ¢ O4SE)

067 SPIoM
snbiun jo 184

1T suone|suel

1084502

¥6e
DSjBISURY
ApoaLosu;
SPIOM JO 18]

71E sioue
uolE[SuBs
pJOM-UOL

067 SDICM
-UOU {0184

~1
~ —
IS spiom anhiun
G1E MO S
A Ot siols) o) siedwios
Vecewen | . [ZHCEEP A om
pajsuen-a: | o | pojgsuey | S| OHP
§0¢ oeq g0t m—
o7 (seseiyd) ajeisten Je|suel
SpIOM DBIE[SURY A
Q1410808 18] T seseid Io/g Spiom paleisur oyiseds
1
<

[r— \
H

7he (Aleuoipip e U jou B8} spiom-Uou

a7 (soseiyd) »&

spiom oyosds sy |

{77} pue ¢ | Joyk palepio) suose i
(L1 pue G | YSE} JOYUE DIIAPIC) SICLS UOE|SURY) PIOM-UOL SUILLIDIED - §
{p~1 ¥SE] JBUE DBIePIT) &)

SREI TO SR aaUS PUT R

(0% soseiyd 109 Spiom Hy10ads

SURJ} 108.I00 BUILLSIRR -

| ¥se]
T} ysey

0418 (i 01 siedwiog - ¢ X8|

{£71 ySBl isliE pRIBpIOo) OB S8
{paiepio-uoy) Siv
{pasepio-uou) spuom anbiun Anuap) - 77| yse;

suel -] ¥sel
sueq - £7] ¥e

{poUspio-usuy) spiom-uou Aquap: - || xeey SIBREBUE T

SIS

US 2016/0357637 Al

Dec. 8,2016 Sheet 31 of 53

Patent Application Publication

O 2 R SN A" S S S ST S
JIUR UORNOSXS ¢ | JUN UOHNISXS § ! JUN UORNOSXS ; ¢ JIUN UOHNOSXS ; | JiUN LOJNOSXS ; | JIUN UOIN0SXS ; | JIUN UCKNISXS ;
S N S 1« S S ¢ N O S ¢ NN A S -« N N 1« N N ¢ N
FE ainpou m m BT sinpou m m FF sinpouw m m BT anpoty m m B¢ amnpoul m m ¢ ainpou m m 7T snpouw m
W0 LSA |1 H) WIS LSO |1] WSO LSA |y] WSO 18T |1} WeIo 1SQ |1] weo 18Q |1) el 18 |
L TBloauos |! || 19]j0U00 m | G Jojjouoo m | 19]j0jU00] 1 ¢ Jajjonuod w | 7 J9jj0su0o] | i9jjosu0o m
Pl ;o bl b . P ;

L 7L einpow i 1 L1 eimpow {3 LG eipow | LTy einpoul {1 L TE eInpous {1 H | Z Bnpow 1 || SInpou |
uoynosxe ! if UCHNCSXe ! i UOBNOBXS [f i LOUNDBXS i ;| UORNOSXS |1] uo#nosXs |l .| uojnosxe |
10 ¥ 14 a 10 a 14 x e a 1d . L{ m

il P :) t] ol ¢ !]

N ! | | L]] m

by I m £ apoa YSE} paposue gQ “

] _ i I I I ¥ L]

Z 8p02 ¥js&} papooua §(N a m

™ ™)) L Ly “

x ! | 8p09 Y5€} Paposus §Q !

b ; T) HEl) ;

¥ m 7 €jep papoous §(m

. ! T T ™ ™ !

G5 Aowaw {1 1 B8 Aowsw {; i} B8 Aowew [} 1} TG Aowew | 1} §F Aowsw i 1 §F Aowsw | 1| B8 Moweuwr 1}
3 § 8 H ' § 3 H § H § 8
aaaaaaaaaaaa S S i SV A SR o NS I SR A SR,

US 2016/0357637 Al

Dec. 8,2016 Sheet 32 of 53

Patent Application Publication

G-

vl

el
(AR
-Lu

$EE
BUER]

VSRV e T

PaR e 2

LERTPILEL 2

R S A)

oY T

€7y asn

7712

7742

Ly L vy

G
Rz LR | L)

g
gLLoye | gy

vl ee g7l

£l aoye vl

BLOY ey
BLOY 7l
Loy

X e
ol
R el

gL o' N 1saf Guun 1sa SN 184
-1 'L SHUN 18G L3un 184 LHUN 184
L€ sjun 18 giun 134 RN 154
9-Z sjun 18 N 154 3N 150
§-1 spun 180 Lpunjsq | Lun 18
-8 sjun 189 £Iun 150 £HUN 150
g-Z sjun 1843 Ziun 154 g HUN 184
G-L sjun 18 LN 150 P RN 180
§-1 siun 18Q Lpunlsg | Luungsa
4189
O BB GCTEpEINE | BURSTION
YRS LTI VN TR
Fee OJUI JNsal ayipauLe]

72¢ OJUI LONNTOXA YSB]

LDIJEDIPL UDISISALOD JBULIC)

‘uniped Yoes 1o} Gl IppY

‘suoned jo oN gl Bepn AEE o uonied eep

US 2016/0357637 Al

Dec. 8,2016 Sheet 33 of 53

Patent Application Publication

ist of unigue words

result 1 2 {

S \ 4t Old
i 20l . 08 ‘
| swnsas [C) spowxa | _
#..W |ened 100188 v/uv A uoiied
: & ® EE L unsal
i & & [
; @ ® : 868
=] ZRT AR 1}
| § 20l 06 i _
- ; / unied
2 | s |G| wows | o |
81 11 (eped 1geps | i
i ¥
; i1 uopped
W B] e bunsal
- «/N synsar || spowna | T
m eed Collamies m
u piceq siejsuen) y) wyeey
1 o oo cxn e e R R G K of
e o
; 201 6 “
b1 osynsar | <) spow k3 | _—
Rw ened | | iaoes |15 |z uoned
' & ® ! eep
I [] i
' 8 8 ! see o
; Z0% 06 ; S =i
_ m . | ¢ uoniued | o
NH“U sinsal wwos X3 AH ejep AH 3
] fensed 1040ws | i
i
m Vo) uoned
~ | @ | 06 |y =ep
b synsal AU SpoW X3 J‘ _—
P jened 1giRs | i
“ [SpioRBRUN Q1 771 ysB

,.«"”\"

3

1

resull

]]
; ot u 05 i
. | synsas XJ Spow X3 | s m —
Q jeiued ioles TV Z U0RhiEG
: & ® : gjep
H & &]
qo) @ ! eee® “
; 2or 06 ; “ | D
AH synsal AU SPoU X3 AU ¢ uonped Am 2
; : glep 3
i eiped 1qjoes | ¢
| L[uoned
_ 7o ® V| mer
ﬂ)\fv synses AL SPOL X3 Jmaw |
m fered Lo |
; {Ble[SUBL) £ vsey “
o o o om0 0 0 cxm e 0 0 1 0 x> € > 0 wE EE A]
_iilllii!illiil!!ill.a.l!. llllll] O CExT b
] Synses Hospow X3 |
8 W\W/ jeied 110 Tw/x\ z uolyped
gi § ® | ejep
M] & & 1
s i & ® i PR
S i aN..QH @:m i -
2|3 | smses | () spow g | (e 2UOMHEd)
1 peed 1qsoes | ep
|
e m m |, uoned
=5 i — — i
@lre | W0 % Yl eep
TV sinsal A_W PO X3 I_‘w
i | jensed 1aiomes |
: |

{SDIOM-UOU (1) |}, YSEl

data 92

9t ol
: . | z uoped
s - 77 unss - —
S - ® 1ile S 5
w, - 1 G _ \\MJ SpoW Y4 “/W_ 2 CO_M_.KMN& 1 = m R
S mnm AH synsal it 1glowes w o) 1nsas \ _L W_ © M
= 2N e BER oy S
2 g e ® ! ® z 5 e e R N
» = w o ® “ 8 - e 05 || vy nsel B
z g " ® ! 3 ! <0y) spowxa | =
[ei L e
wm | i 1} vopned - : ﬁ__jwm 1gioe (1 7 yopped o
e N ® | |2) unsas -k Au e b eep E
") e T - 223
- 2 w ¢l THi spot XH AL ied £ m “ =
© P nsay Al i 12 b | vonied = i @ ! & S
oy _ s Lgio%es | _ ; > i ® @ ; @ —
“ - i eied = sey 1 |G binsal S m ® ® ! ®
E Z | uomepie P L% | SE| ® m —
7 B e Eel o1 uone
5 ! = 1 ynss
o ionnied < i 08 MERR o
s ! Z Uoijied % i T _J &
= i IR HaTY=Y, o 1 ¢l) y Spow X3 . \r =
& ; W \N g1) AJ 8nsa. f\,_%u Mm JLREE /m | uojped |7, &
S _ i ¢dl AL SROU X3 _L z uoied Au = _ [ellEC L ; Eiep
“ W ww_nmmL Qwo 198 w ._jwm._ mrsw " AQLMQEOQ\,W wvmvmu IIIII “
&= od L ; L LY e vy A
_ P ! [ElE . ! P e
® " ® ® m - S
8 ® -
g 2 | & L e S
= SICH i oned =g
m @ .m ! ' wxf_omfnm\m Aﬁrl_ - m
= S = i \,I gL uns g
= = " P : W : Z 2
u © _ nsei | (7| spou X3 N o &
= i w_r “ ..N-m .._.Owﬁm H m\ .
= = IN iened - Col Ty e
- =) i e Nt A
® | {wovuosopsois gy
= ERREEEEEIL RS
>
«
~—
g
=
A

US 2016/0357637 Al

Dec. 8,2016 Sheet 35 of 53

Patent Application Publication

\

S)

£
]

fic transiated words/phrase

I result 3 (speci

W = &2
6t Ol 2 3 = g o =
= w 0 @ = &2 L
g2 G & £ 9 8
=) = = m 7. b
B = ST 5 — s 8 g
mrame <) |23 |k |S2|dh| s |db| 2 R |SE|db| g
I N B £ B 2 = 5
7J @ = ﬂnv =, T Mw &= nw&v
..1..,, m © ™, H_ 5y ,w&sw
@ 5 g E: A
- @ L
FF7 udfeuliol ynsal
8C "Old L8 Old
Rstebolintobindotuiitbdetebuiaete il : ittty heettteubbniate |
Z01 Ub m — m <0 6 m
sinsa) \ 1} spow X3 4 e AN il spow g |
lenied C 1 igioes ﬂ/v N.m_o_ﬁtma m 71 jented 1Goes WM;\ z uojyed
) @ © e L insa = ! & @ ! erep
@ @ ! £ ! ® @ i
@ @ : 08 o e ! 2 % ' 289
=ET F 3 , - <} i T Fi '
cOl S ik 4| 7 uonned . S m?. A % . 7 uonned | .
srse, | sowxa | G 2SI CA S |S)| e | o s | (o ¢S
: { p 1T : T3
eed sqomps | LE MY ® gl | lened Lgows | ep
3 §]
D | 1 uogied et B bl | uonpied
p— = i — 3 o= L
Z0b _ 06 W\W £ ynse. = oD 6 Ma\w ejep
synss: AJ spow Xz | T o 21~y | sl A”I spowrx3 | T
eied 1a40ms i - m ienied 1040188 |
{soseiyd i i (Soserqdjspiom ayoads) 7 ysey
§ § s s an i an AR R A U L AR A A R S AR R AR A ll
§
§

> 1
S——
e

/SDIOM D10adS POIBISUBL) § YSE]

data 92

US 2016/0357637 Al

Dec. 8,2016 Sheet 36 of 53

Patent Application Publication

ippe WeL
NSO | = A8y xapu;
ippe T ST
NSO = A2y xepui
ppe | HWSTA
NSO | = A9y xopul
ippe T WS L
NSQ | = Aoy xapui

[

= Aay xapur ui Buijgis

¢ dnoub

linu= Jppe NSQ buijgis

Jes)| = adhy apnu

Yoy Oid

-
1ppe CHES Y P ippe LIS M ippe WS '3
NSG | =fewxspur i 1 1 Nsg | =Asxepu NSO | = Asy xapuj
ippz HHWS 'd P ippe QUG H ippe YHwg g
NSQ | =Aewxspur i 1 b L NSO I = Ay xepul NSO = A8y xapul
Ippe HHWS "IN oo ippe EHENNES ippe WBws g
NGQ | =Aeyxepu ¢ f | _NSQ | =43 xepul NSO 1 = Ay xepul
ppe g T ippe Wiwg 4 ippe WIS Y
NSQ | = Aoy xepul P NSQ | = Aey xepul NS I = Aoy xopti
Wwg L [YRS HHWS
= Koy xapur uiy Bulqis L Aoy epui ulkl Buygis = Aoy ¥apui uiw Buijais
Z onoub P L dnodb | dnoib
Jppe NS Bulais ATE[T ippe NS Buigrs IppE NSQ Bujgss
183 = adA; spou | ieat = 80A] apou 189| = adf) spoy
. 3 N N Y I 7y
g6t N T °1 43 _
7 droyh Lo | dnou
ippe WS 'L
NSO | = Ao xepu uiu
1ppe RHENSI
1 NSO | = AN Xepu uiw
1ppe CHENSRE
NSO | = Aoy xepuruiw
ippe WS 'Y
NSO | o= Ao xepuluiw
[inu = Aey xopul uiw Buygis
iy = Jppe NS Bulgs
5T X8pul = adh epou

Patent Application Publication Dec. 8,2016 Sheet 37 of 53 US 2016/0357637 Al

w index group N slice info
[& >
3
o] "
= slice access response 368
2 2
= a2 i .
i g slice access request 366
oy [4+]
Q} >
[]
(&)
o
=z
=
e
n
bt @
@ @]
D B @
g5 <
[I
3
GL) . Bao
< =) Ll
~ A %3 2T o
e _q_,g % él; Pl o
@ = £ 8@ = o0
&2 o %) : L. =)
F = -~ index group 2 slice info = =
] E B
© & @ g T 2
S; % » "g = L
= e) = " oy
B D 2 & slice access response 368 b
% « ‘» 2 ®
@& & Q m A
% % § slice access request 366
& ég S vt
@ o o4
ar 22,
8 =
< e
<hn
2
=
B
2 - index group 1 slice info
S @ Bt Ll
o =
a 2 : P
2 2 slice access response 368
B "
&2 stice access request 360
3] o
3

US 2016/0357637 Al

Dec. 8,2016 Sheet 38 of 53

Patent Application Publication

UCRBUILGH $8a09e dnoif Jsyung
au3 uo paseq Anus Bugsanbal e o) asuedsal
$S2008 UB ‘9npoL J00adp oy AG ‘anss)

i) i

SINPOLI JOIBIIP BY) 0} UOHBULIOIUI 558008
dnosl Joyung ‘BINpow §$9938 aY3 A ‘anss)

1

[
=%
o

dnoss
BAUNOSHI BY; 0} SpiRba Ylm Xapul [RoyIBIBY
wm@mammn a3 ‘sinpoly 858008 aij Ag ‘erepdn

i

GO
("'J

uoijewolul ssaae dnafl sy uo paseq
AIoWBl NS B ‘a|npolu $52008 8L Ag ‘S88008

ore i

dno.B sainosal pagiuspl
M PRIBISOSSE SINPOW 38008 LB 0}
‘ssanbas 58008 BY) S8PIGUL IR ‘U0IRULIOE
363008 dnouf ‘einpouw J0108BER By} Ag ‘enss

i

<

[ap

L

dnosB sounosad e Apuep: 0) E_Ecmu_
sigeysJeas ay; Buish Xspul BooIBe)
DASIACSIP B ‘sinpoi Jojoaup aip g _t_mmm

1 i

121IIUBD! BIRLOIRES B mmv:_u; 1eup 1senbs)
SSE00E UB ‘O|RPOWI J0J024p B Ag '0AIR00)

O
[age!

o F

20v Ol

US 2016/0357637 Al

Dec. 8,2016 Sheet 39 of 53

Patent Application Publication

5T LOINGLASIP JUBIUOD

Yiv Oid

TOT Alows N

&

slice access response 368
slice access request 368

%

1

T8¢ 1Usjuoo peosid

g

TET oinpow 888008

— B
76F uonoesues

4
201ABD Jasn

dnyoea Jusjuod

&8

peeeny g
7AT UONORSUES

[
30IASP Jasn

4miseq waoo

14

D)

A

P
LonoRSURS dmyseq JUsios

4
S0IABD Josn

BT SUDIDESUR JUSIUOD

US 2016/0357637 Al

Dec. 8,2016 Sheet 40 of 53

Patent Application Publication

div 9id

Jsijizuap
JSILOT BU} OpNISU! 03 181 JUSLI0D oy ajepdn

& 1 w

AOWDUL NSE 9L Ul SoaNg 1sanbai Jusiuon dnvoeq
JUSIUGD POPOIUS JO S10% BICW 10 BUO BY} 81018 DU LM POJEINCASE JOIUSp! JUSIUCO B Ajuap
15 + 7% +
SHOHS JUBIUOT DBPOOLS 10 5198 Apus Bupsenbal
BICUI 10 DU S0NPOJd 0] JUDILIOT DI PSS £ o4 sanbai jauod dnyoeq g aapsal
{75 0 i 0
finus Bunsenbal sy} WO JUSILOD SU BAIS0S. Rlousll NS B Ui S90S JUBJUOS POpOOUS

10 5386 J0 sonlzinid 210U J0 BU0 BU) 21018

ki i

fon)
L
<F

1

JURILI0D
B} pUDS D} $3E0IpUI 1B Algus Bugsenba)
34 0} asucdsal JusIoD dinjoeg B ansst

3018
WSl Paposta Jo $19S Jo sayjeind siow
10 BUC 2onposd 0} JUSIU00 pEOjRIT BY) BpOOLS

07

Q)

O

b 1

UBIL0D
pUSS 10U 0 SajEnmu 1B Anue
Buisenbay sy o) ssucdssl
JUSHIDD dMmyoBg B anss)

181 jUBUo0 B
30npo.d 0} LSO pRORId 813 UM POIBIDOSSE
SiaiRUaDI JUSiU0s o Aieinid B oeieush

80v

<O
I3
<7

1

sijilusp! 1UsiLos SIOINGLASIP JU2IU0D
Bt} SOPNIOUI 1SI| JUBIUOT BY} JOLIOUM SUHUISISD 310U J0 BUO WO JWSIUOD peojald sA03.

O
3
¥

<7

1 e T

US 2016/0357637 Al

Dec. 8,2016 Sheet 41 of 53

Patent Application Publication

§ey yun
abeicls

&
]
2

abeioys

92y yun
abeicls

ey Oid

FET S|npow $8a008

i
!
i
!
i
!
M 575 wun
{
{
|
!
i
!

T »
Aowsw NSJ |

Ter sisenbal 8

S DiliMm

f7F 1senbal eyep ai0ls

71 801A8D
18sn

US 2016/0357637 Al

Dec. 8,2016 Sheet 42 of 53

Patent Application Publication

AT E
1ps jusuwited abesols Sa0|I8) _
. o T _ $3008 0 165 Jad $301jS SI0U
leuoijippe Buiaoa) usym 10198 Jad §801|8 IO IO BUC
L C . 10 BUC JO UCIAIDP 21EY|ID8)
poued suly sbeI0js 8y puee 0] 558208 BUPO0I] 81B}|I08] . v
ey Ferar 3 berarm -\
7) gy gy
582398
pusdsns
sBieyodn Aljigeieae
apeibumaop

uonoun uoneadxe pousd
Sl B SR ‘santne pousd 8wl Bl usym

i

walshs Neg
e ui Jsonbal obeiis a1y Joy o82.0)5 21B)I08)

% i

LOROUNg
Aoijod abeiois e pue ypaio wswled abeiogs
843 UC paseq pousd s eBe.0)s 2 suLIBIOD

057 T

UpsuD wswAed
abeiols sepnpul ey) 1enba) ofriois B oA1308)

e f

vt

-

US 2016/0357637 Al

Dec. 8,2016 Sheet 43 of 53

Patent Application Publication

0= S301|S poob

8= Uipim sejjd

9= piousSaly pingal
G= DIOYSBIL] Bp0%ap
5% sisiouwieied
[esssdsip

§= £804|S poob

8= Yipim sejjd

§= pipusail] pingal
G= HOUSBIY 3poosp
TFF sispsweled
[esiedsip

/= S80ijs poob

8= Yipia Jeyyid

9= Diousaiy piingal
§= PoUsaiy] 8poosp
TFF sieppweed
[esiadsip

0= $80i|5 poob

g= Yipin seyd

9= pioysaily piingal
G= DIOUSaIY} 8poosp
FHE slgmwieied
[esiadsip

ey "Old

|

R IERHEN] B IERIER] R RESTRER | R {IERREN | R LERRER | R IERTHCR | J IESH | BHIEEES mw

w guunsa || iuunsa |l | ouungg | | sunsg | | puunsa | | eunsa || zunsa || Luunsa |
i

m

ZFP 168 Jun 50 |
e g i S T
WHALE
el e el e il |
RHESHER| RIEFERI R IE: (SR B IERHEN] RIESRER I R IIE: 50 BESIEN] MERID ww
M guunsa | | zwunsal fownsg | | cuunsg || yunsa || euinsg || zwunsa || 1wnsa |
m 7FF 188 Jun 5 M
Lo coemn e omxm e s wmms e mmme e mem mmxms noe anann mnon nnan eonee onem oanne aee aoae eoee v v sovs wonn ooy o wwn o one e own e s
HEY Ol
il 1
RECHEN] B ESEN R ESEER | R IERREN | R LERHEN! L3008 | L3008 mw
M guungg | | Lyunsg |l fownsg || swnsg || ywunsg guwnsg | | LN sa |
| ZFF 1es yun 5 w
Lo o aee avn aie aavn i e i Aan G e AU RN KUY NOWS SURN UG TR ARKUR GO AR KA R KRR R AKKAK K KRN R AR Saee oo e mem oasas
VEY Ol
e T T T T T T T T T T -
RUESHER IR UERRER | R IESRER | RUERTREN I R UESHER R UERRER IR HIERRER | RHIERS mw
w BUUNST | | ZWUNSQ | | ouunSa | | SHnSa | [yWNSa | | euunsd | | 2iunsa | | Luunsa | |
| TPF 198 Jun g w
b mon o e e s wan wave enn s wwe W m e Gam mme SIn G GEIn Gxme Gm e e e o e o e e Gna me ewn eeaw oawe e onan

US 2016/0357637 Al

Dec. 8,2016 Sheet 44 of 53

Patent Application Publication

NS(84) Ul $3948
BIED PSPOOUS JJINGA] SI0U JO BUO B} 2I0IS

<<

2] 1

3E01|S BIED DRPOOIUS JiNGa) S0
o a0 eanpoid o wewbes eiep oy spooua

i3 1

wawbas exep e sonpodsy
0] $8315 BJED DODOOUS 981-30L8 BIRIIEAE
10 JBCRUNU PIOUSBIY} SpCOBD 8L 8pooap

P
=3

0% 1

SIS BJEp PEpoIUs JO 188 8U} JO SaDIS
BJBp POpOOUS 884-I0LI8 SIGE)IBAR JO JeqUnY
DIOLSAIL] SPODSD B DAGLIEI 'SIGRIOABIUN LBLM

o0
<

5 1

JBGUING PIOYSAIY) piinga)
g 03 AGBIOABIUN $3RAWICD $S80IS BIBD pepoous
BIUBHBAR JO JSQUINU BY) JBUIBUM BUILLISIBP

%7 1

S30S BIEP POPOOUS
9|qe|iRAR JO JOqUINU B sonpoid o) $20is
BJEp papeoUs O 198 8Y1 0 S80S BIBP PEpOIUS
984j-I0118 B|URIRAR |0 JSQUINY & BLILISIBD

£ 1

NS(] E Ul SS0HS BIEp POpOsUS J0 198 B j0
8015 B1BP PEPOOLS UE J0 Jous aBrICIs 8 osiep

.u f

LS AGIE

US 2016/0357637 Al

Dec. 8,2016 Sheet 45 of 53

Patent Application Publication

g 3un X3 184

e
g sebessew NiSO

A

Z3un X3 18d

B S —
/ sabesssw NSO

%

g3un X3 184

S K3 184

[ie)
[22]

BSSBUW N1SG

A

I IR
¢ sebessouw NSO

A

PN X3 184

y sebesssw N1gQ

E-3

£In X3 184

P —
¢ sabessal N1SQ

A

23N X3 184

R

¥y

LN X3 154

¢ 8npou NLSA

N O 1S
| sebessaw N1a

Y¥b Ol

727 anpow Buipingas

oy

7% sebessaw
Buipings.

77 vopewol

SHIRL HiOMIBY

anpols eoueuLoued

= 3918 pooh

= Wpim Jeyjid
pioysaiy] pinGal
= DIOYSaIY) sponap
FI% smpeied
esisdsip

8
9
G

< 7 sobessoll §58008

£ SINpoUusio 150

888

g selesssll 888208

g S{npow usiP 180

Y SoDESSSW 583038

Y S[npow JUald 150

US 2016/0357637 Al

Dec. 8,2016 Sheet 46 of 53

Patent Application Publication

gy Ol

(oggen Buipingas - (ouyen Buipjings)

aseanUl) aanpas)

A E— gieuly L1 aui

357 swi

o= o mm r mm fmmn mmm mmn = wmn wm mms Ewm rmms mmm rms mm e mmw s mm s mmm s mmm mms SO e m mmm mm mm e wmw e mm e e

FaF ouyen womeu Buipingas

p— 785 Aousig
S8830E Elep

OF Aouoie] $S8008 BIBD palIsep Xew

US 2016/0357637 Al

Dec. 8,2016 Sheet 47 of 53

Patent Application Publication

- 3

R
41N X3 150

A

(RF uoneuLo/Ul

Buippinga.

giun X3 18Q

B

(RP uojBuilo

Buipjingai

Giun X3 18d

(6% Lonewou:

Buipjings.

PiUnE 180

A

A

6% uoijBuLOi

Buippinga.

BB uonBuLou

Buipimgsi

.

N

TEF uonawiou

Buipjingai

LIUNXE 180

(B8P UCHBULIOI

Buipiinga.

£

72 SInpow NLSQ

G6F uogeuLlou

Buippingai

a%F DI
¢Ly anpous Bipings: 8INpOU BoUBULOLST
37 1512
LORBLLIOMUI UCIIRULIOUI /= 88018 POOD
pIngs 0= WP sepd

e Hiomsu

L= Pioysaiy; pingal
G= DIOYSaIY) Bpo0ap
GF siojolueied

Rs 08D

Z 9Npou s 184G

&8s

g einpow jusip 13d

v ajnpow Juald 16

US 2016/0357637 Al

Dec. 8,2016 Sheet 48 of 53

Patent Application Publication

[giesE]
g un X3 150

vy "Old

715 anpou Buipingas

0lp

sinpow soueuLIoyad

3N X3 150

m sanbei sos
J 85U0dSa 89S pes: e oy 0T
, e s/ / _
[/ sesuodssl
013 pes)

SN X3 18a

g S5U0CSRI 8915 pesl

9= $30l|8 pooh

8= LIPIM Je

4= PIOYsaIY] pingad
G= PICYSBIL 8podap
ThT siaeweiRdg
maiadsip

¢ 88U0GSaS 801S pre:

4 m:w mm §
gAN X3 180

57 womeu

Z-i 8ois

Zun X4 1sd

¢ 1senba; 8518 N8l SjUM

Z anpounuald 184

B8

|-| 80is

|

paun X3 1Sd

7 esU0dsas 80ls pEs.

72 8RO N1SQ

g Ainpow sl 150

L 88UDSA) 8318 pesd

¥ 8jnpow Jualis 1Sa

US 2016/0357637 Al

Dec. 8,2016 Sheet 49 of 53

Patent Application Publication

$2018 Blep papoous pabbey
33 jo Buip|ingsd 83 0} anp SIBS Womsy
au) 40 uoliod sy} 80NPal JsUNN} ‘UoKoUn)
D11 YOAIBU PaUISap au O} AigRIOABIN
2JECLLOD 0] SSNUGUCD DILIRA YIOMISU S} LUByM

g

813 0] Aigeloariun saiedwion e Yomsu

05 ')
UGIOUNY Die) YIOMIBL D8,ISeD

AFP Ol

10203044 Ziiel Momsy Buipinge) pue
elaln Bumings) Jo sue 188 12 jo Bulbusys
OpuUN ‘UCHOUN SLEI; YOMIBL PBIISSp o)

0 ARIOAB] S8JBCW00 DIYBI MIOAIBY SL UBUM

L

0

0
UO[OUNY DI MIOMIBU PBIISSP
ay] 0] AjgeIcAB] S8JBdWIOO DRl YIOMBU

NSO 84}

L3 DILEN MIOMIBU BU) JORUOW 0] 8NURUOD
‘sa011s B1ED papocus pebbey Pupingss ¢ enp
JUEN LOMBU 8L 10 uood sty Buionpsl Jeye

1

530118 B1ED papoous pobbey)
INGS. 0} BNP JI4RL YIoMIBU U} JO uoipod
E 80NPas ‘UOHOUN] DILEL MIOMIBU DOJISEp B 0}
AGRICABIUN SSUBAUIOD Jilel] MIOMISU SH) USUM

<04

1

yiomiau abeloys
pasiadsip B UIUIM DILRIL MIOMISU JOJUOW

05

1

US 2016/0357637 Al

Dec. 8,2016 Sheet 50 of 53

oom Gmoe oo G wop COOGE J00O% GSGGS MOOD OOGP 00ON GOGGD TO0OD SOOOO MONR AAAAY AMAN RAAMS MMAAN GAAAS MMM BRGNS A AANAN OAAN Araas

Patent Application Publication

Yot 'Did
EEEEEEEEEEEEEEEEEEEEEEEEEEE —
A Em !
b 2% un |
| obeios m !
| g | |
- e
I hd H - 3
p— | BOT sesundsal
f 1 Sckiun I sso00e soijs
j | abeiogs | lg w ;
| SEe i | BT sisenbal
e o e e e [S$9008 8048
e, |T T Tm |
® || S5 || |
{1 obeios | |
| | m o T
| - i J— N y
— | B0T sasundsas | SIhpow
52Fwun | | Ny
P 9ovs | sssooE aoys | SSOMOE
(| ofeiops | lg ; ;
| e ! m TOE sisenbol
b o e e e m SE30E 8318
m T ———y
p— f
P o2 uun M m 558 »
| | ofieiois M -
| P asuodssi 70
m : -t e wmwcon_.év ssesoe BlEp | S0IMep
— | BYe SUSHLLES Jasn
} | 9ckuun M | $88008 205
| ofeiols | ig — &
| e m 99t sisenbol 578 1senbay
=5 KIOWOW NSQ NS | ' $Sa008 2248 550302 EJED

US 2016/0357637 Al

Dec. 8,2016 Sheet 51 of 53

Patent Application Publication

Biep sy} aonpoidas 0} $801S BIRP PAPOOLS
i0 JBGWNU PIOUSAIL} 9POOSP BY) 9p0oap

P35 +

syun abRICIS BIOW IO BUC BU] WY S80IIS Blep
DAPOIUS JO JOGUINU PIOUSEIL) BP00SD B IBA0IS

%5 1

DIOUSAIYY BDO0SaD au pue
‘edipnw seweied s ‘sousulousd pelBULS:
B U0 poseq sHUN aBEICIS BIOW IO BUD 109(BS

055 +

syun abeiois
40 19§ a4 10 sousuLicuad DOjRUMISE SUILLIGIRD

o +

W

spun oBeiass jo 188 sy Anusp

1

L
R

L

aidipinw Jsjouwleied sUj UG PESEQ ploYSaIL
SPODBH 8L} PUE YIpW JB|IC 8y sonpouday

FFG +
218D 89U o) 15onbal |[BABLIB) B BAIB08)
[AZ])
e [EABLIU
sidnnw iejouizied sy alojs
i +

syun s0eI0lS JO 198 BU3 U S901S Blep peplous
10 §188 JO Arunid au3 1o 2B80}5 S1RJICEL

o

55 1

g5y Oid

83018
Blep popoous Jo $198 jo Ajjeinid B sonpod

0] P|OYS8.L) 8pOoap AL PUB LIPIM J
AU} UM SOUBDI0ISE Ul uonouny Buipos iols
abei0)s pasiadsip e Buisn Blep sy} spodLe

1

<

U3

3

plousalLy) spodsp
g pue yipim Jejid & aonpoid 0 plousaig
2p039p BU||858q 8y pue Yipim Jejjid sujeseq
8 Jo yoes Ag aidyinuw Jeewelsd auy Aidiynw

=¥
U3

1

DIOYSSILY] BRO0Ap SUIRSEQ SU) pUB LIpIA
Eid suieseq sy pue souBwLIoed polBILISS
2U] UO paseq s|dinw Jojoweled B suuLeiep

us 1

anun sbziols
10 185 8U} 10 aouBWIOLed DOIBLNSS BuilLSlap

~

0% i

plousaIy) 8poasp
aulaseq B pue wpim se|id auleseq e Aiuspl

0]
(o
LL3;

8% i

spun oBeios 10108 B 19998

1

)
o
el

NS e Ul oBBioss 10) BlRp BAIB02:

T f

US 2016/0357637 Al

Dec. 8,2016 Sheet 52 of 53

Patent Application Publication

9cy
jlun sbesois

Yo "Oid

556 ssuodsal uayol yim 1senbes ssac0id

B TOT ojnpow
58008

$OC 1sanbay usyo) Y 1sanbal $88204d

205G usyoy

(0% asuodssal usyo} sjeisusb

GCG anpou
Buiziouyne

06 1senbas usyo) sjessust

US 2016/0357637 Al

Dec. 8,2016 Sheet 53 of 53

Patent Application Publication

pasidxs sey uan
8L} 10 Ad0T PBICES AjBO0] U3 LBUM USHDY 843 J0
Adoo pasoss Aeao) & ‘Yun abeiois auy Aq ‘epsiep

i 1

JINS8l 84} U0 paseq asuodsas Uso] Wiim
1sanbai ssaooud g Siun abeiois sy Ag ‘enss)

5% T

JInsa) & aonpodd 0} j6anbas $83504d ot
‘yun abeiols su Ag ‘wioped ‘pazuUoLINg LBLM

2 i

1sanbal usyo} LM 1senba)
ssa00.d ayy ‘un ebeioys sy A ‘ezuoyine

o4

5 1

g9y 'Oid

uay 0} BuIpuOdSaLIT aL} $9pNoL
1sonbai yorpa sisym ‘syun obeiois siow Jo

auo sy} o 1sanbai usy o} Yim 18anbal §83004d
B ‘gnpow sss0oe s1ehaep aul Ag ‘enss)

fowss
fee;
[

1

2npou
ssanoe syebaep v o) syun abeicis alow
30 3UC 8y 40 yoea oy usyo] Bulpuodsalion
e ‘ginpow Buizuoyne sy Ag ‘puss

1

o2

[Ee

i
L

USHOL B $8pNI0U asuodssl sUY) sisym ‘gnpoil
Buizuoyine s o) esuodsas uaxo; ejeisusd
g Jun abrils 8y AQ ‘'anss| ‘pazUCLINE USUM

8 1

18enbal
uanol aeseuab oy pun obeiois e Ag ‘ezuouying

N3

Ko/

o7
L

1

siun 2Be101$ 20w 40 aUo 0} 1sanbal ueKo)
sjeisust sy ‘9npow Buizucying syl Aq ‘puss

ouxE 1

[

(Ko

1senbal uaxo) aieisuab
e ‘amnpou Buizuowyine auy Ag ‘sjrisush

(i T

LSYOY B
asnboe o} ‘g|npow Buizuoyne ue AgQ ‘SIS

= f

US 2016/0357637 Al

ADJUSTING DISPERSED STORAGE
NETWORK TRAFFIC DUE TO REBUILDING

CROSS REFERENCE TO RELATED PATENTS

[0001] The present U.S. Utility Patent Application claims
priority pursuant to 35 U.S.C. §120 as a continuation of U.S.
Utility application Ser. No. 14/256,205, entitled “ADJUST-
ING DISPERSED STORAGE NETWORK TRAFFIC DUE
TO REBUILDING?”, filed Apr. 18, 2014, issuing as U.S. Pat.
No. 9,424,132 on Aug. 23, 2016, which claims priority
pursuant to 35 U.S.C. §119(e) to U.S. Provisional Applica-
tion No. 61/828,883, entitled “ACCESSING DATA IN A
DISPERSED STORAGE NETWORK?, filed May 30, 2013,
all of which are hereby incorporated herein by reference in
their entirety and made part of the present U.S. Utility Patent
Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR
DEVELOPMENT—NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC—NOT APPLICABLE

BACKGROUND OF THE INVENTION

Technical Field of the Invention

[0002] This invention relates generally to computer net-
works and more particularly to dispersed storage of data and
distributed task processing of data.

Description of Related Art

[0003] Computing devices are known to communicate
data, process data, and/or store data. Such computing
devices range from wireless smart phones, laptops, tablets,
personal computers (PC), work stations, and video game
devices, to data centers that support millions of web
searches, stock trades, or on-line purchases every day. In
general, a computing device includes a central processing
unit (CPU), a memory system, user input/output interfaces,
peripheral device interfaces, and an interconnecting bus
structure.

[0004] As is further known, a computer may effectively
extend its CPU by using “cloud computing” to perform one
or more computing functions (e.g., a service, an application,
an algorithm, an arithmetic logic function, etc.) on behalf of
the computer. Further, for large services, applications, and/or
functions, cloud computing may be performed by multiple
cloud computing resources in a distributed manner to
improve the response time for completion of the service,
application, and/or function. For example, Hadoop is an
open source software framework that supports distributed
applications enabling application execution by thousands of
computers.

[0005] In addition to cloud computing, a computer may
use “cloud storage” as part of its memory system. As is
known, cloud storage enables a user, via its computer, to
store files, applications, etc. on an Internet storage system.
The Internet storage system may include a RAID (redundant
array of independent disks) system and/or a dispersed stor-
age system that uses an error correction scheme to encode
data for storage.

Dec. 8, 2016

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

[0006] FIG. 1 is a schematic block diagram of an embodi-
ment of a distributed computing system in accordance with
the present invention;

[0007] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core in accordance with the present
invention;

[0008] FIG. 3 is a diagram of an example of a distributed
storage and task processing in accordance with the present
invention;

[0009] FIG. 4 is a schematic block diagram of an embodi-
ment of an outbound distributed storage and/or task (DST)
processing in accordance with the present invention;
[0010] FIG. 5 is a logic diagram of an example of a
method for outbound DST processing in accordance with the
present invention;

[0011] FIG. 6 is a schematic block diagram of an embodi-
ment of a dispersed error encoding in accordance with the
present invention;

[0012] FIG. 7 is a diagram of an example of a segment
processing of the dispersed error encoding in accordance
with the present invention;

[0013] FIG. 8 is a diagram of an example of error encod-
ing and slicing processing of the dispersed error encoding in
accordance with the present invention;

[0014] FIG. 9 is a diagram of an example of grouping
selection processing of the outbound DST processing in
accordance with the present invention;

[0015] FIG. 10 is a diagram of an example of converting
data into slice groups in accordance with the present inven-
tion;

[0016] FIG. 11 is a schematic block diagram of an embodi-
ment of a DST execution unit in accordance with the present
invention;

[0017] FIG. 12 is a schematic block diagram of an
example of operation of a DST execution unit in accordance
with the present invention;

[0018] FIG. 13 is a schematic block diagram of an
embodiment of an inbound distributed storage and/or task
(DST) processing in accordance with the present invention;
[0019] FIG. 14 is a logic diagram of an example of a
method for inbound DST processing in accordance with the
present invention;

[0020] FIG. 15 is a diagram of an example of de-grouping
selection processing of the inbound DST processing in
accordance with the present invention;

[0021] FIG. 16 is a schematic block diagram of an
embodiment of a dispersed error decoding in accordance
with the present invention;

[0022] FIG. 17 is a diagram of an example of de-slicing
and error decoding processing of the dispersed error decod-
ing in accordance with the present invention;

[0023] FIG. 18 is a diagram of an example of a de-segment
processing of the dispersed error decoding in accordance
with the present invention;

[0024] FIG. 19 is a diagram of an example of converting
slice groups into data in accordance with the present inven-
tion;

[0025] FIG. 20 is a diagram of an example of a distributed
storage within the distributed computing system in accor-
dance with the present invention;

US 2016/0357637 Al

[0026] FIG. 21 is a schematic block diagram of an
example of operation of outbound distributed storage and/or
task (DST) processing for storing data in accordance with
the present invention;

[0027] FIG. 22 is a schematic block diagram of an
example of a dispersed error encoding for the example of
FIG. 21 in accordance with the present invention;

[0028] FIG. 23 is a diagram of an example of converting
data into pillar slice groups for storage in accordance with
the present invention;

[0029] FIG. 24 is a schematic block diagram of an
example of a storage operation of a DST execution unit in
accordance with the present invention;

[0030] FIG. 25 is a schematic block diagram of an
example of operation of inbound distributed storage and/or
task (DST) processing for retrieving dispersed error encoded
data in accordance with the present invention;

[0031] FIG. 26 is a schematic block diagram of an
example of a dispersed error decoding for the example of
FIG. 25 in accordance with the present invention;

[0032] FIG. 27 is a schematic block diagram of an
example of a distributed storage and task processing net-
work (DSTN) module storing a plurality of data and a
plurality of task codes in accordance with the present
invention;

[0033] FIG. 28 is a schematic block diagram of an
example of the distributed computing system performing
tasks on stored data in accordance with the present inven-
tion;

[0034] FIG. 29 is a schematic block diagram of an
embodiment of a task distribution module facilitating the
example of FIG. 28 in accordance with the present inven-
tion;

[0035] FIG. 30 is a diagram of a specific example of the
distributed computing system performing tasks on stored
data in accordance with the present invention;

[0036] FIG. 31 is a schematic block diagram of an
example of a distributed storage and task processing net-
work (DSTN) module storing data and task codes for the
example of FIG. 30 in accordance with the present inven-
tion;

[0037] FIG. 32 is a diagram of an example of DST
allocation information for the example of FIG. 30 in accor-
dance with the present invention;

[0038] FIGS. 33-38 are schematic block diagrams of the
DSTN module performing the example of FIG. 30 in accor-
dance with the present invention;

[0039] FIG. 39 is a diagram of an example of combining
result information into final results for the example of FIG.
30 in accordance with the present invention;

[0040] FIG. 40A is a diagram of an embodiment of a
structure of a dispersed hierarchical index in accordance
with the present invention;

[0041] FIG. 40B is a schematic block diagram of an
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention;

[0042] FIG. 40C is a flowchart illustrating an example of
processing an access request in accordance with the present
invention;

[0043] FIG. 41A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention;

[0044] FIG. 41B is a flowchart illustrating an example of
backing up data in accordance with the present invention;

Dec. 8, 2016

[0045] FIG. 42A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention;

[0046] FIG. 42B is a flowchart illustrating an example of
storing data in accordance with the present invention;
[0047] FIGS. 43A-43D are schematic block diagrams of
an embodiment of a dispersed storage (DS) unit set and
associated dispersal parameters illustrating a rebuilding
sequence example in accordance with the present invention;
[0048] FIG. 43E is a flowchart illustrating an example of
rebuilding an encoded data slice in accordance with the
present invention;

[0049] FIGS. 44A, C, D are schematic block diagrams of
another embodiment of a dispersed storage network (DSN)
illustrating an example of adjusting dispersed storage net-
work traffic due to rebuilding in accordance with the present
invention;

[0050] FIG. 44B is a timing diagram illustrating an
example of adjusting rebuilding network traffic in accor-
dance with the present invention;

[0051] FIG. 44E is a flowchart illustrating an example of
adjusting dispersed storage network (DSN) traffic due to
rebuilding in accordance with the present invention;

[0052] FIG. 45A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention;

[0053] FIG. 45B is a flowchart illustrating an example of
accessing data in accordance with the present invention;
[0054] FIG. 46A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
in accordance with the present invention; and

[0055] FIG. 46B is a flowchart illustrating an example of
authorizing access in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0056] FIG. 1 is a schematic block diagram of an embodi-
ment of a distributed computing system 10 that includes a
user device 12 and/or a user device 14, a distributed storage
and/or task (DST) processing unit 16, a distributed storage
and/or task network (DSTN) managing unit 18, a DST
integrity processing unit 20, and a distributed storage and/or
task network (DSTN) module 22. The components of the
distributed computing system 10 are coupled via a network
24, which may include one or more wireless and/or wire
lined communication systems; one or more private intranet
systems and/or public internet systems; and/or one or more
local area networks (LLAN) and/or wide area networks
(WAN).

[0057] The DSTN module 22 includes a plurality of
distributed storage and/or task (DST) execution units 36 that
may be located at geographically different sites (e.g., one in
Chicago, one in Milwaukee, etc.). Each of the DST execu-
tion units is operable to store dispersed error encoded data
and/or to execute, in a distributed manner, one or more tasks
on data. The tasks may be a simple function (e.g., a
mathematical function, a logic function, an identify func-
tion, a find function, a search engine function, a replace
function, etc.), a complex function (e.g., compression,
human and/or computer language translation, text-to-voice
conversion, voice-to-text conversion, etc.), multiple simple
and/or complex functions, one or more algorithms, one or
more applications, etc.

US 2016/0357637 Al

[0058] Each of'the user devices 12-14, the DST processing
unit 16, the DSTN managing unit 18, and the DST integrity
processing unit 20 include a computing core 26 and may be
a portable computing device and/or a fixed computing
device. A portable computing device may be a social net-
working device, a gaming device, a cell phone, a smart
phone, a personal digital assistant, a digital music player, a
digital video player, a laptop computer, a handheld com-
puter, a tablet, a video game controller, and/or any other
portable device that includes a computing core. A fixed
computing device may be a personal computer (PC), a
computer server, a cable set-top box, a satellite receiver, a
television set, a printer, a fax machine, home entertainment
equipment, a video game console, and/or any type of home
or office computing equipment. User device 12 and DST
processing unit 16 are configured to include a DST client
module 34.

[0059] With respect to interfaces, each interface 30, 32,
and 33 includes software and/or hardware to support one or
more communication links via the network 24 indirectly
and/or directly. For example, interface 30 supports a com-
munication link (e.g., wired, wireless, direct, via a LAN, via
the network 24, etc.) between user device 14 and the DST
processing unit 16. As another example, interface 32 sup-
ports communication links (e.g., a wired connection, a
wireless connection, a LAN connection, and/or any other
type of connection to/from the network 24) between user
device 12 and the DSTN module 22 and between the DST
processing unit 16 and the DSTN module 22. As yet another
example, interface 33 supports a communication link for
each of the DSTN managing unit 18 and DST integrity
processing unit 20 to the network 24.

[0060] The distributed computing system 10 is operable to
support dispersed storage (DS) error encoded data storage
and retrieval, to support distributed task processing on
received data, and/or to support distributed task processing
on stored data. In general, and with respect to DS error
encoded data storage and retrieval, the distributed comput-
ing system 10 supports three primary operations: storage
management, data storage and retrieval (an example of
which will be discussed with reference to FIGS. 20-26), and
data storage integrity verification. In accordance with these
three primary functions, data can be encoded, distributedly
stored in physically different locations, and subsequently
retrieved in a reliable and secure manner. Such a system is
tolerant of a significant number of failures (e.g., up to a
failure level, which may be greater than or equal to a pillar
width minus a decode threshold minus one) that may result
from individual storage device failures and/or network
equipment failures without loss of data and without the need
for a redundant or backup copy. Further, the system allows
the data to be stored for an indefinite period of time without
data loss and does so in a secure manner (e.g., the system is
very resistant to attempts at hacking the data).

[0061] The second primary function (i.e., distributed data
storage and retrieval) begins and ends with a user device
12-14. For instance, if a second type of user device 14 has
data 40 to store in the DSTN module 22, it sends the data 40
to the DST processing unit 16 via its interface 30. The
interface 30 functions to mimic a conventional operating
system (OS) file system interface (e.g., network file system
(NFS), flash file system (FFS), disk file system (DFS), file
transfer protocol (FTP), web-based distributed authoring
and versioning (WebDAV), etc.) and/or a block memory

Dec. 8, 2016

interface (e.g., small computer system interface (SCSI),
internet small computer system interface (iSCSI), etc.). In
addition, the interface 30 may attach a user identification
code (ID) to the data 40.

[0062] To support storage management, the DSTN man-
aging unit 18 performs DS management services. One such
DS management service includes the DSTN managing unit
18 establishing distributed data storage parameters (e.g.,
vault creation, distributed storage parameters, security
parameters, billing information, user profile information,
etc.) for a user device 12-14 individually or as part of a
group of user devices. For example, the DSTN managing
unit 18 coordinates creation of a vault (e.g., a virtual
memory block) within memory of the DSTN module 22 for
a user device, a group of devices, or for public access and
establishes per vault dispersed storage (DS) error encoding
parameters for a vault. The DSTN managing unit 18 may
facilitate storage of DS error encoding parameters for each
vault of a plurality of vaults by updating registry information
for the distributed computing system 10. The facilitating
includes storing updated registry information in one or more
of the DSTN module 22, the user device 12, the DST
processing unit 16, and the DST integrity processing unit 20.
[0063] The DS error encoding parameters (e.g., or dis-
persed storage error coding parameters) include data seg-
menting information (e.g., how many segments data (e.g., a
file, a group of files, a data block, etc.) is divided into),
segment security information (e.g., per segment encryption,
compression, integrity checksum, etc.), error coding infor-
mation (e.g., pillar width, decode threshold, read threshold,
write threshold, etc.), slicing information (e.g., the number
of encoded data slices that will be created for each data
segment); and slice security information (e.g., per encoded
data slice encryption, compression, integrity checksum,
etc.).

[0064] The DSTN managing unit 18 creates and stores
user profile information (e.g., an access control list (ACL))
in local memory and/or within memory of the DSTN module
22. The user profile information includes authentication
information, permissions, and/or the security parameters.
The security parameters may include encryption/decryption
scheme, one or more encryption keys, key generation
scheme, and/or data encoding/decoding scheme.

[0065] The DSTN managing unit 18 creates billing infor-
mation for a particular user, a user group, a vault access,
public vault access, etc. For instance, the DSTN managing
unit 18 tracks the number of times a user accesses a private
vault and/or public vaults, which can be used to generate a
per-access billing information. In another instance, the
DSTN managing unit 18 tracks the amount of data stored
and/or retrieved by a user device and/or a user group, which
can be used to generate a per-data-amount billing informa-
tion.

[0066] Another DS management service includes the
DSTN managing unit 18 performing network operations,
network administration, and/or network maintenance. Net-
work operations includes authenticating user data allocation
requests (e.g., read and/or write requests), managing cre-
ation of vaults, establishing authentication credentials for
user devices, adding/deleting components (e.g., user
devices, DST execution units, and/or DST processing units)
from the distributed computing system 10, and/or establish-
ing authentication credentials for DST execution units 36.
Network administration includes monitoring devices and/or

US 2016/0357637 Al

units for failures, maintaining vault information, determin-
ing device and/or unit activation status, determining device
and/or unit loading, and/or determining any other system
level operation that affects the performance level of the
system 10. Network maintenance includes facilitating
replacing, upgrading, repairing, and/or expanding a device
and/or unit of the system 10.

[0067] To support data storage integrity verification within
the distributed computing system 10, the DST integrity
processing unit 20 performs rebuilding of ‘bad’ or missing
encoded data slices. At a high level, the DST integrity
processing unit 20 performs rebuilding by periodically
attempting to retrieve/list encoded data slices, and/or slice
names of the encoded data slices, from the DSTN module
22. For retrieved encoded slices, they are checked for errors
due to data corruption, outdated version, etc. If a slice
includes an error, it is flagged as a ‘bad’ slice. For encoded
data slices that were not received and/or not listed, they are
flagged as missing slices. Bad and/or missing slices are
subsequently rebuilt using other retrieved encoded data
slices that are deemed to be good slices to produce rebuilt
slices. The rebuilt slices are stored in memory of the DSTN
module 22. Note that the DST integrity processing unit 20
may be a separate unit as shown, it may be included in the
DSTN module 22, it may be included in the DST processing
unit 16, and/or distributed among the DST execution units
36.

[0068] To support distributed task processing on received
data, the distributed computing system 10 has two primary
operations: DST (distributed storage and/or task processing)
management and DST execution on received data (an
example of which will be discussed with reference to FIGS.
3-19). With respect to the storage portion of the DST
management, the DSTN managing unit 18 functions as
previously described. With respect to the tasking processing
of the DST management, the DSTN managing unit 18
performs distributed task processing (DTP) management
services. One such DTP management service includes the
DSTN managing unit 18 establishing DTP parameters (e.g.,
user-vault affiliation information, billing information, user-
task information, etc.) for a user device 12-14 individually
or as part of a group of user devices.

[0069] Another DTP management service includes the
DSTN managing unit 18 performing DTP network opera-
tions, network administration (which is essentially the same
as described above), and/or network maintenance (which is
essentially the same as described above). Network opera-
tions include, but are not limited to, authenticating user task
processing requests (e.g., valid request, valid user, etc.),
authenticating results and/or partial results, establishing
DTP authentication credentials for user devices, adding/
deleting components (e.g., user devices, DST execution
units, and/or DST processing units) from the distributed
computing system, and/or establishing DTP authentication
credentials for DST execution units.

[0070] To support distributed task processing on stored
data, the distributed computing system 10 has two primary
operations: DST (distributed storage and/or task) manage-
ment and DST execution on stored data. With respect to the
DST execution on stored data, if the second type of user
device 14 has a task request 38 for execution by the DSTN
module 22, it sends the task request 38 to the DST process-
ing unit 16 via its interface 30. An example of DST
execution on stored data will be discussed in greater detail

Dec. 8, 2016

with reference to FIGS. 27-39. With respect to the DST
management, it is substantially similar to the DST manage-
ment to support distributed task processing on received data.
[0071] FIG. 2 is a schematic block diagram of an embodi-
ment of a computing core 26 that includes a processing
module 50, a memory controller 52, main memory 54, a
video graphics processing unit 55, an input/output (TO)
controller 56, a peripheral component interconnect (PCI)
interface 58, an 10 interface module 60, at least one 10
device interface module 62, a read only memory (ROM)
basic input output system (BIOS) 64, and one or more
memory interface modules. The one or more memory inter-
face module(s) includes one or more of a universal serial bus
(USB) interface module 66, a host bus adapter (HBA)
interface module 68, a network interface module 70, a flash
interface module 72, a hard drive interface module 74, and
a DSTN interface module 76.

[0072] The DSTN interface module 76 functions to mimic
a conventional operating system (OS) file system interface
(e.g., network file system (NFS), flash file system (FFS),
disk file system (DFS), file transfer protocol (FTP), web-
based distributed authoring and versioning (WebDAV), etc.)
and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iSCSI), etc.). The DSTN interface module 76
and/or the network interface module 70 may function as the
interface 30 of the user device 14 of FIG. 1. Further note that
the 10 device interface module 62 and/or the memory
interface modules may be collectively or individually
referred to as 10 ports.

[0073] FIG. 3 is a diagram of an example of the distributed
computing system performing a distributed storage and task
processing operation. The distributed computing system
includes a DST (distributed storage and/or task) client
module 34 (which may be in user device 14 and/or in DST
processing unit 16 of FIG. 1), a network 24, a plurality of
DST execution units 1-» that includes two or more DST
execution units 36 of FIG. 1 (which form at least a portion
of DSTN module 22 of FIG. 1), a DST managing module
(not shown), and a DST integrity verification module (not
shown). The DST client module 34 includes an outbound
DST processing section 80 and an inbound DST processing
section 82. Each of the DST execution units 1-» includes a
controller 86, a processing module 84, memory 88, a DT
(distributed task) execution module 90, and a DST client
module 34.

[0074] In an example of operation, the DST client module
34 receives data 92 and one or more tasks 94 to be performed
upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few
Terabytes), the content (e.g., secure data, etc.), and/or task(s)
(e.g., MIPS intensive), distributed processing of the task(s)
on the data is desired. For example, the data 92 may be one
or more digital books, a copy of a company’s emails, a
large-scale Internet search, a video security file, one or more
entertainment video files (e.g., television programs, movies,
etc.), data files, and/or any other large amount of data (e.g.,
greater than a few Terabytes).

[0075] Within the DST client module 34, the outbound
DST processing section 80 receives the data 92 and the
task(s) 94. The outbound DST processing section 80 pro-
cesses the data 92 to produce slice groupings 96. As an
example of such processing, the outbound DST processing
section 80 partitions the data 92 into a plurality of data

US 2016/0357637 Al

partitions. For each data partition, the outbound DST pro-
cessing section 80 dispersed storage (DS) error encodes the
data partition to produce encoded data slices and groups the
encoded data slices into a slice grouping 96. In addition, the
outbound DST processing section 80 partitions the task 94
into partial tasks 98, where the number of partial tasks 98
may correspond to the number of slice groupings 96.
[0076] The outbound DST processing section 80 then
sends, via the network 24, the slice groupings 96 and the
partial tasks 98 to the DST execution units 1-z of the DSTN
module 22 of FIG. 1. For example, the outbound DST
processing section 80 sends slice group 1 and partial task 1
to DST execution unit 1. As another example, the outbound
DST processing section 80 sends slice group #n and partial
task #n to DST execution unit #n.

[0077] Each DST execution unit performs its partial task
98 upon its slice group 96 to produce partial results 102. For
example, DST execution unit #1 performs partial task #1 on
slice group #1 to produce a partial result #1, for results. As
a more specific example, slice group #1 corresponds to a
data partition of a series of digital books and the partial task
#1 corresponds to searching for specific phrases, recording
where the phrase is found, and establishing a phrase count.
In this more specific example, the partial result #1 includes
information as to where the phrase was found and includes
the phrase count.

[0078] Upon completion of generating their respective
partial results 102, the DST execution units send, via the
network 24, their partial results 102 to the inbound DST
processing section 82 of the DST client module 34. The
inbound DST processing section 82 processes the received
partial results 102 to produce a result 104. Continuing with
the specific example of the preceding paragraph, the
inbound DST processing section 82 combines the phrase
count from each of the DST execution units 36 to produce
a total phrase count. In addition, the inbound DST process-
ing section 82 combines the ‘where the phrase was found’
information from each of the DST execution units 36 within
their respective data partitions to produce ‘where the phrase
was found’ information for the series of digital books.
[0079] In another example of operation, the DST client
module 34 requests retrieval of stored data within the
memory of the DST execution units 36 (e.g., memory of the
DSTN module). In this example, the task 94 is retrieve data
stored in the memory of the DSTN module. Accordingly, the
outbound DST processing section 80 converts the task 94
into a plurality of partial tasks 98 and sends the partial tasks
98 to the respective DST execution units 1-z.

[0080] In response to the partial task 98 of retrieving
stored data, a DST execution unit 36 identifies the corre-
sponding encoded data slices 100 and retrieves them. For
example, DST execution unit #1 receives partial task #1 and
retrieves, in response thereto, retrieved slices #1. The DST
execution units 36 send their respective retrieved slices 100
to the inbound DST processing section 82 via the network
24.

[0081] The inbound DST processing section 82 converts
the retrieved slices 100 into data 92. For example, the
inbound DST processing section 82 de-groups the retrieved
slices 100 to produce encoded slices per data partition. The
inbound DST processing section 82 then DS error decodes
the encoded slices per data partition to produce data parti-
tions. The inbound DST processing section 82 de-partitions
the data partitions to recapture the data 92.

Dec. 8, 2016

[0082] FIG. 4 is a schematic block diagram of an embodi-
ment of an outbound distributed storage and/or task (DST)
processing section 80 of a DST client module 34 FIG. 1
coupled to a DSTN module 22 of a FIG. 1 (e.g., a plurality
of n DST execution units 36) via a network 24. The
outbound DST processing section 80 includes a data parti-
tioning module 110, a dispersed storage (DS) error encoding
module 112, a grouping selector module 114, a control
module 116, and a distributed task control module 118.
[0083] In an example of operation, the data partitioning
module 110 partitions data 92 into a plurality of data
partitions 120. The number of partitions and the size of the
partitions may be selected by the control module 116 via
control 160 based on the data 92 (e.g., its size, its content,
etc.), a corresponding task 94 to be performed (e.g., simple,
complex, single step, multiple steps, etc.), DS encoding
parameters (e.g., pillar width, decode threshold, write
threshold, segment security parameters, slice security
parameters, etc.), capabilities of the DST execution units 36
(e.g., processing resources, availability of processing
recourses, etc.), and/or as may be inputted by a user, system
administrator, or other operator (human or automated). For
example, the data partitioning module 110 partitions the data
92 (e.g., 100 Terabytes) into 100,000 data segments, each
being 1 Gigabyte in size. Alternatively, the data partitioning
module 110 partitions the data 92 into a plurality of data
segments, where some of data segments are of a different
size, are of the same size, or a combination thereof.
[0084] The DS error encoding module 112 receives the
data partitions 120 in a serial manner, a parallel manner,
and/or a combination thereof. For each data partition 120,
the DS error encoding module 112 DS error encodes the data
partition 120 in accordance with control information 160
from the control module 116 to produce encoded data slices
122. The DS error encoding includes segmenting the data
partition into data segments, segment security processing
(e.g., encryption, compression, watermarking, integrity
check (e.g., CRC), etc.), error encoding, slicing, and/or per
slice security processing (e.g., encryption, compression,
watermarking, integrity check (e.g., CRC), etc.). The control
information 160 indicates which steps of the DS error
encoding are active for a given data partition and, for active
steps, indicates the parameters for the step. For example, the
control information 160 indicates that the error encoding is
active and includes error encoding parameters (e.g., pillar
width, decode threshold, write threshold, read threshold,
type of error encoding, etc.).

[0085] The grouping selector module 114 groups the
encoded slices 122 of a data partition into a set of slice
groupings 96. The number of slice groupings corresponds to
the number of DST execution units 36 identified for a
particular task 94. For example, if five DST execution units
36 are identified for the particular task 94, the grouping
selector module groups the encoded slices 122 of a data
partition into five slice groupings 96. The grouping selector
module 114 outputs the slice groupings 96 to the corre-
sponding DST execution units 36 via the network 24.
[0086] The distributed task control module 118 receives
the task 94 and converts the task 94 into a set of partial tasks
98. For example, the distributed task control module 118
receives a task to find where in the data (e.g., a series of
books) a phrase occurs and a total count of the phrase usage
in the data. In this example, the distributed task control
module 118 replicates the task 94 for each DST execution

US 2016/0357637 Al

unit 36 to produce the partial tasks 98. In another example,
the distributed task control module 118 receives a task to
find where in the data a first phrase occurs, where in the data
a second phrase occurs, and a total count for each phrase
usage in the data. In this example, the distributed task
control module 118 generates a first set of partial tasks 98 for
finding and counting the first phrase and a second set of
partial tasks for finding and counting the second phrase. The
distributed task control module 118 sends respective first
and/or second partial tasks 98 to each DST execution unit
36.

[0087] FIG. 5 is a logic diagram of an example of a
method for outbound distributed storage and task (DST)
processing that begins at step 126 where a DST client
module receives data and one or more corresponding tasks.
The method continues at step 128 where the DST client
module determines a number of DST units to support the
task for one or more data partitions. For example, the DST
client module may determine the number of DST units to
support the task based on the size of the data, the requested
task, the content of the data, a predetermined number (e.g.,
user indicated, system administrator determined, etc.), avail-
able DST units, capability of the DST units, and/or any other
factor regarding distributed task processing of the data. The
DST client module may select the same DST units for each
data partition, may select different DST units for the data
partitions, or a combination thereof.

[0088] The method continues at step 130 where the DST
client module determines processing parameters of the data
based on the number of DST units selected for distributed
task processing. The processing parameters include data
partitioning information, DS encoding parameters, and/or
slice grouping information. The data partitioning informa-
tion includes a number of data partitions, size of each data
partition, and/or organization of the data partitions (e.g.,
number of data blocks in a partition, the size of the data
blocks, and arrangement of the data blocks). The DS encod-
ing parameters include segmenting information, segment
security information, error encoding information (e.g., dis-
persed storage error encoding function parameters including
one or more of pillar width, decode threshold, write thresh-
old, read threshold, generator matrix), slicing information,
and/or per slice security information. The slice grouping
information includes information regarding how to arrange
the encoded data slices into groups for the selected DST
units. As a specific example, if the DST client module
determines that five DST units are needed to support the
task, then it determines that the error encoding parameters
include a pillar width of five and a decode threshold of three.

[0089] The method continues at step 132 where the DST
client module determines task partitioning information (e.g.,
how to partition the tasks) based on the selected DST units
and data processing parameters. The data processing param-
eters include the processing parameters and DST unit capa-
bility information. The DST unit capability information
includes the number of DT (distributed task) execution units,
execution capabilities of each DT execution unit (e.g., MIPS
capabilities, processing resources (e.g., quantity and capa-
bility of microprocessors, CPUs, digital signal processors,
co-processor, microcontrollers, arithmetic logic circuitry,
and/or any other analog and/or digital processing circuitry),
availability of the processing resources, memory informa-
tion (e.g., type, size, availability, etc.)), and/or any informa-
tion germane to executing one or more tasks.

Dec. 8, 2016

[0090] The method continues at step 134 where the DST
client module processes the data in accordance with the
processing parameters to produce slice groupings. The
method continues at step 136 where the DST client module
partitions the task based on the task partitioning information
to produce a set of partial tasks. The method continues at
step 138 where the DST client module sends the slice
groupings and the corresponding partial tasks to respective
DST units.

[0091] FIG. 6 is a schematic block diagram of an embodi-
ment of the dispersed storage (DS) error encoding module
112 of an outbound distributed storage and task (DST)
processing section. The DS error encoding module 112
includes a segment processing module 142, a segment
security processing module 144, an error encoding module
146, a slicing module 148, and a per slice security process-
ing module 150. Each of these modules is coupled to a
control module 116 to receive control information 160
therefrom.

[0092] Inanexample of operation, the segment processing
module 142 receives a data partition 120 from a data
partitioning module and receives segmenting information as
the control information 160 from the control module 116.
The segmenting information indicates how the segment
processing module 142 is to segment the data partition 120.
For example, the segmenting information indicates how
many rows to segment the data based on a decode threshold
of an error encoding scheme, indicates how many columns
to segment the data into based on a number and size of data
blocks within the data partition 120, and indicates how many
columns to include in a data segment 152. The segment
processing module 142 segments the data 120 into data
segments 152 in accordance with the segmenting informa-
tion.

[0093] The segment security processing module 144,
when enabled by the control module 116, secures the data
segments 152 based on segment security information
received as control information 160 from the control module
116. The segment security information includes data com-
pression, encryption, watermarking, integrity check (e.g.,
cyclic redundancy check (CRC), etc.), and/or any other type
of digital security. For example, when the segment security
processing module 144 is enabled, it may compress a data
segment 152, encrypt the compressed data segment, and
generate a CRC value for the encrypted data segment to
produce a secure data segment 154. When the segment
security processing module 144 is not enabled, it passes the
data segments 152 to the error encoding module 146 or is
bypassed such that the data segments 152 are provided to the
error encoding module 146.

[0094] The error encoding module 146 encodes the secure
data segments 154 in accordance with error correction
encoding parameters received as control information 160
from the control module 116. The error correction encoding
parameters (e.g., also referred to as dispersed storage error
coding parameters) include identifying an error correction
encoding scheme (e.g., forward error correction algorithm, a
Reed-Solomon based algorithm, an online coding algorithm,
an information dispersal algorithm, etc.), a pillar width, a
decode threshold, a read threshold, a write threshold, etc.
For example, the error correction encoding parameters iden-
tify a specific error correction encoding scheme, specifies a
pillar width of five, and specifies a decode threshold of three.

US 2016/0357637 Al

From these parameters, the error encoding module 146
encodes a data segment 154 to produce an encoded data
segment 156.

[0095] The slicing module 148 slices the encoded data
segment 156 in accordance with the pillar width of the error
correction encoding parameters received as control infor-
mation 160. For example, if the pillar width is five, the
slicing module 148 slices an encoded data segment 156 into
a set of five encoded data slices. As such, for a plurality of
encoded data segments 156 for a given data partition, the
slicing module outputs a plurality of sets of encoded data
slices 158.

[0096] The per slice security processing module 150,
when enabled by the control module 116, secures each
encoded data slice 158 based on slice security information
received as control information 160 from the control module
116. The slice security information includes data compres-
sion, encryption, watermarking, integrity check (e.g., CRC,
etc.), and/or any other type of digital security. For example,
when the per slice security processing module 150 is
enabled, it compresses an encoded data slice 158, encrypts
the compressed encoded data slice, and generates a CRC
value for the encrypted encoded data slice to produce a
secure encoded data slice 122. When the per slice security
processing module 150 is not enabled, it passes the encoded
data slices 158 or is bypassed such that the encoded data
slices 158 are the output of the DS error encoding module
112. Note that the control module 116 may be omitted and
each module stores its own parameters.

[0097] FIG. 7 is a diagram of an example of a segment
processing of a dispersed storage (DS) error encoding mod-
ule. In this example, a segment processing module 142
receives a data partition 120 that includes 45 data blocks
(e.g., d1-d45), receives segmenting information (i.e., control
information 160) from a control module, and segments the
data partition 120 in accordance with the control information
160 to produce data segments 152. Each data block may be
of the same size as other data blocks or of a different size.
In addition, the size of each data block may be a few bytes
to megabytes of data. As previously mentioned, the seg-
menting information indicates how many rows to segment
the data partition into, indicates how many columns to
segment the data partition into, and indicates how many
columns to include in a data segment.

[0098] In this example, the decode threshold of the error
encoding scheme is three; as such the number of rows to
divide the data partition into is three. The number of
columns for each row is set to 15, which is based on the
number and size of data blocks. The data blocks of the data
partition are arranged in rows and columns in a sequential
order (i.e., the first row includes the first 15 data blocks; the
second row includes the second 15 data blocks; and the third
row includes the last 15 data blocks).

[0099] With the data blocks arranged into the desired
sequential order, they are divided into data segments based
on the segmenting information. In this example, the data
partition is divided into 8 data segments; the first 7 include
2 columns of three rows and the last includes 1 column of
three rows. Note that the first row of the 8 data segments is
in sequential order of the first 15 data blocks; the second row
of the 8 data segments in sequential order of the second 15
data blocks; and the third row of the 8 data segments in
sequential order of the last 15 data blocks. Note that the
number of data blocks, the grouping of the data blocks into

Dec. 8, 2016

segments, and size of the data blocks may vary to accom-
modate the desired distributed task processing function.
[0100] FIG. 8 is a diagram of an example of error encod-
ing and slicing processing of the dispersed error encoding
processing the data segments of FIG. 7. In this example, data
segment 1 includes 3 rows with each row being treated as
one word for encoding. As such, data segment 1 includes
three words for encoding: word 1 including data blocks d1
and d2, word 2 including data blocks d16 and d17, and word
3 including data blocks d31 and d32. Each of data segments
2-7 includes three words where each word includes two data
blocks. Data segment 8 includes three words where each
word includes a single data block (e.g., d15, d30, and d45).
[0101] In operation, an error encoding module 146 and a
slicing module 148 convert each data segment into a set of
encoded data slices in accordance with error correction
encoding parameters as control information 160. More spe-
cifically, when the error correction encoding parameters
indicate a unity matrix Reed-Solomon based encoding algo-
rithm, 5 pillars, and decode threshold of 3, the first three
encoded data slices of the set of encoded data slices for a
data segment are substantially similar to the corresponding
word of the data segment. For instance, when the unity
matrix Reed-Solomon based encoding algorithm is applied
to data segment 1, the content of the first encoded data slice
(DS1_d1&2) of the first set of encoded data slices (e.g.,
corresponding to data segment 1) is substantially similar to
content of the first word (e.g., d1 & d2); the content of the
second encoded data slice (DS1_d16&17) of the first set of
encoded data slices is substantially similar to content of the
second word (e.g., d16 & d17); and the content of the third
encoded data slice (DS1_d31&32) of the first set of encoded
data slices is substantially similar to content of the third
word (e.g., d31 & d32).

[0102] The content of the fourth and fifth encoded data
slices (e.g., ES1_1 and ES1_2) of the first set of encoded
data slices include error correction data based on the first-
third words of the first data segment. With such an encoding
and slicing scheme, retrieving any three of the five encoded
data slices allows the data segment to be accurately recon-
structed.

[0103] The encoding and slicing of data segments 2-7
yield sets of encoded data slices similar to the set of encoded
data slices of data segment 1. For instance, the content of the
first encoded data slice (DS2_d3&4) of the second set of
encoded data slices (e.g., corresponding to data segment 2)
is substantially similar to content of the first word (e.g., d3
& d4); the content of the second encoded data slice (DS2_
d18&19) of the second set of encoded data slices is sub-
stantially similar to content of the second word (e.g., d18 &
d19); and the content of the third encoded data slice (DS2_
d33&34) of the second set of encoded data slices is sub-
stantially similar to content of the third word (e.g., d33 &
d34). The content of the fourth and fifth encoded data slices
(e.g., ES1_1 and ES1_2) of the second set of encoded data
slices includes error correction data based on the first-third
words of the second data segment.

[0104] FIG. 9 is a diagram of an example of grouping
selection processing of an outbound distributed storage and
task (DST) processing in accordance with group selection
information as control information 160 from a control
module. Encoded slices for data partition 122 are grouped in
accordance with the control information 160 to produce slice
groupings 96. In this example, a grouping selector module

US 2016/0357637 Al

114 organizes the encoded data slices into five slice group-
ings (e.g., one for each DST execution unit of a distributed
storage and task network (DSTN) module). As a specific
example, the grouping selector module 114 creates a first
slice grouping for a DST execution unit #1, which includes
first encoded slices of each of the sets of encoded slices. As
such, the first DST execution unit receives encoded data
slices corresponding to data blocks 1-15 (e.g., encoded data
slices of contiguous data).

[0105] The grouping selector module 114 also creates a
second slice grouping for a DST execution unit #2, which
includes second encoded slices of each of the sets of
encoded slices. As such, the second DST execution unit
receives encoded data slices corresponding to data blocks
16-30. The grouping selector module 114 further creates a
third slice grouping for DST execution unit #3, which
includes third encoded slices of each of the sets of encoded
slices. As such, the third DST execution unit receives
encoded data slices corresponding to data blocks 31-45.

[0106] The grouping selector module 114 creates a fourth
slice grouping for DST execution unit #4, which includes
fourth encoded slices of each of the sets of encoded slices.
As such, the fourth DST execution unit receives encoded
data slices corresponding to first error encoding information
(e.g., encoded data slices of error coding (EC) data). The
grouping selector module 114 further creates a fifth slice
grouping for DST execution unit #5, which includes fifth
encoded slices of each of the sets of encoded slices. As such,
the fifth DST execution unit receives encoded data slices
corresponding to second error encoding information.

[0107] FIG. 10 is a diagram of an example of converting
data 92 into slice groups that expands on the preceding
figures. As shown, the data 92 is partitioned in accordance
with a partitioning function 164 into a plurality of data
partitions (1-x, where X is an integer greater than 4). Each
data partition (or chunkset of data) is encoded and grouped
into slice groupings as previously discussed by an encoding
and grouping function 166. For a given data partition, the
slice groupings are sent to distributed storage and task
(DST) execution units. From data partition to data partition,
the ordering of the slice groupings to the DST execution
units may vary.

[0108] For example, the slice groupings of data partition
#1 is sent to the DST execution units such that the first DST
execution receives first encoded data slices of each of the
sets of encoded data slices, which corresponds to a first
continuous data chunk of the first data partition (e.g., refer
to FIG. 9), a second DST execution receives second encoded
data slices of each of the sets of encoded data slices, which
corresponds to a second continuous data chunk of the first
data partition, etc.

[0109] For the second data partition, the slice groupings
may be sent to the DST execution units in a different order
than it was done for the first data partition. For instance, the
first slice grouping of the second data partition (e.g., slice
group 2_1) is sent to the second DST execution unit; the
second slice grouping of the second data partition (e.g., slice
group 2_2) is sent to the third DST execution unit; the third
slice grouping of the second data partition (e.g., slice group
2_3) is sent to the fourth DST execution unit; the fourth slice
grouping of the second data partition (e.g., slice group 2_4,
which includes first error coding information) is sent to the
fifth DST execution unit; and the fifth slice grouping of the

Dec. 8, 2016

second data partition (e.g., slice group 2_5, which includes
second error coding information) is sent to the first DST
execution unit.

[0110] The pattern of sending the slice groupings to the set
of DST execution units may vary in a predicted pattern, a
random pattern, and/or a combination thereof from data
partition to data partition. In addition, from data partition to
data partition, the set of DST execution units may change.
For example, for the first data partition, DST execution units
1-5 may be used; for the second data partition, DST execu-
tion units 6-10 may be used; for the third data partition, DST
execution units 3-7 may be used; etc. As is also shown, the
task is divided into partial tasks that are sent to the DST
execution units in conjunction with the slice groupings of
the data partitions.

[0111] FIG. 11 is a schematic block diagram of an embodi-
ment of a DST (distributed storage and/or task) execution
unit that includes an interface 169, a controller 86, memory
88, one or more DT (distributed task) execution modules 90,
and a DST client module 34. The memory 88 is of sufficient
size to store a significant number of encoded data slices
(e.g., thousands of slices to hundreds-of-millions of slices)
and may include one or more hard drives and/or one or more
solid-state memory devices (e.g., flash memory, DRAM,
etc.).

[0112] In an example of storing a slice group, the DST
execution module receives a slice grouping 96 (e.g., slice
group #1) via interface 169. The slice grouping 96 includes,
per partition, encoded data slices of contiguous data or
encoded data slices of error coding (EC) data. For slice
group #1, the DST execution module receives encoded data
slices of contiguous data for partitions #1 and #x (and
potentially others between 3 and x) and receives encoded
data slices of EC data for partitions #2 and #3 (and poten-
tially others between 3 and x). Examples of encoded data
slices of contiguous data and encoded data slices of error
coding (EC) data are discussed with reference to FIG. 9. The
memory 88 stores the encoded data slices of slice groupings
96 in accordance with memory control information 174 it
receives from the controller 86.

[0113] The controller 86 (e.g., a processing module, a
CPU, etc.) generates the memory control information 174
based on a partial task(s) 98 and distributed computing
information (e.g., user information (e.g., user ID, distributed
computing permissions, data access permission, etc.), vault
information (e.g., virtual memory assigned to user, user
group, temporary storage for task processing, etc.), task
validation information, etc.). For example, the controller 86
interprets the partial task(s) 98 in light of the distributed
computing information to determine whether a requestor is
authorized to perform the task 98, is authorized to access the
data, and/or is authorized to perform the task on this
particular data. When the requestor is authorized, the con-
troller 86 determines, based on the task 98 and/or another
input, whether the encoded data slices of the slice grouping
96 are to be temporarily stored or permanently stored. Based
on the foregoing, the controller 86 generates the memory
control information 174 to write the encoded data slices of
the slice grouping 96 into the memory 88 and to indicate
whether the slice grouping 96 is permanently stored or
temporarily stored.

[0114] With the slice grouping 96 stored in the memory
88, the controller 86 facilitates execution of the partial
task(s) 98. In an example, the controller 86 interprets the

US 2016/0357637 Al

partial task 98 in light of the capabilities of the DT execution
module(s) 90. The capabilities include one or more of MIPS
capabilities, processing resources (e.g., quantity and capa-
bility of microprocessors, CPUs, digital signal processors,
co-processor, microcontrollers, arithmetic logic circuitry,
and/or any the other analog and/or digital processing cir-
cuitry), availability of the processing resources, etc. If the
controller 86 determines that the DT execution module(s) 90
have sufficient capabilities, it generates task control infor-
mation 176. The task control information 176 may be a
generic instruction (e.g., perform the task on the stored slice
grouping) or a series of operational codes. In the former
instance, the DT execution module 90 includes a co-proces-
sor function specifically configured (fixed or programmed)
to perform the desired task 98. In the latter instance, the DT
execution module 90 includes a general processor topology
where the controller stores an algorithm corresponding to
the particular task 98. In this instance, the controller 86
provides the operational codes (e.g., assembly language,
source code of a programming language, object code, etc.)
of the algorithm to the DT execution module 90 for execu-
tion.

[0115] Depending on the nature of the task 98, the DT
execution module 90 may generate intermediate partial
results 102 that are stored in the memory 88 or in a cache
memory (not shown) within the DT execution module 90. In
either case, when the DT execution module 90 completes
execution of the partial task 98, it outputs one or more partial
results 102. The partial results 102 may also be stored in
memory 88.

[0116] If, when the controller 86 is interpreting whether
capabilities of the DT execution module(s) 90 can support
the partial task 98, the controller 86 determines that the DT
execution module(s) 90 cannot adequately support the task
98 (e.g., does not have the right resources, does not have
sufficient available resources, available resources would be
too slow, etc.), it then determines whether the partial task 98
should be fully offloaded or partially offloaded.

[0117] If the controller 86 determines that the partial task
98 should be fully offloaded, it generates DST control
information 178 and provides it to the DST client module 34.
The DST control information 178 includes the partial task
98, memory storage information regarding the slice group-
ing 96, and distribution instructions. The distribution
instructions instruct the DST client module 34 to divide the
partial task 98 into sub-partial tasks 172, to divide the slice
grouping 96 into sub-slice groupings 170, and identify other
DST execution units. The DST client module 34 functions in
a similar manner as the DST client module 34 of FIGS. 3-10
to produce the sub-partial tasks 172 and the sub-slice
groupings 170 in accordance with the distribution instruc-
tions.

[0118] The DST client module 34 receives DST feedback
168 (e.g., sub-partial results), via the interface 169, from the
DST execution units to which the task was offloaded. The
DST client module 34 provides the sub-partial results to the
DST execution unit, which processes the sub-partial results
to produce the partial result(s) 102.

[0119] If the controller 86 determines that the partial task
98 should be partially offloaded, it determines what portion
of the task 98 and/or slice grouping 96 should be processed
locally and what should be offloaded. For the portion that is
being locally processed, the controller 86 generates task
control information 176 as previously discussed. For the

Dec. 8, 2016

portion that is being offloaded, the controller 86 generates
DST control information 178 as previously discussed.
[0120] When the DST client module 34 receives DST
feedback 168 (e.g., sub-partial results) from the DST execu-
tions units to which a portion of the task was offloaded, it
provides the sub-partial results to the DT execution module
90. The DT execution module 90 processes the sub-partial
results with the sub-partial results it created to produce the
partial result(s) 102.

[0121] The memory 88 may be further utilized to retrieve
one or more of stored slices 100, stored results 104, partial
results 102 when the DT execution module 90 stores partial
results 102 and/or results 104 in the memory 88. For
example, when the partial task 98 includes a retrieval
request, the controller 86 outputs the memory control 174 to
the memory 88 to facilitate retrieval of slices 100 and/or
results 104.

[0122] FIG. 12 is a schematic block diagram of an
example of operation of a distributed storage and task (DST)
execution unit storing encoded data slices and executing a
task thereon. To store the encoded data slices of a partition
1 of slice grouping 1, a controller 86 generates write
commands as memory control information 174 such that the
encoded slices are stored in desired locations (e.g., perma-
nent or temporary) within memory 88.

[0123] Once the encoded slices are stored, the controller
86 provides task control information 176 to a distributed
task (DT) execution module 90. As a first step of executing
the task in accordance with the task control information 176,
the DT execution module 90 retrieves the encoded slices
from memory 88. The DT execution module 90 then recon-
structs contiguous data blocks of a data partition. As shown
for this example, reconstructed contiguous data blocks of
data partition 1 include data blocks 1-15 (e.g., d1-d15).
[0124] With the contiguous data blocks reconstructed, the
DT execution module 90 performs the task on the recon-
structed contiguous data blocks. For example, the task may
be to search the reconstructed contiguous data blocks for a
particular word or phrase, identify where in the recon-
structed contiguous data blocks the particular word or phrase
occurred, and/or count the occurrences of the particular
word or phrase on the reconstructed contiguous data blocks.
The DST execution unit continues in a similar manner for
the encoded data slices of other partitions in slice grouping
1. Note that with using the unity matrix error encoding
scheme previously discussed, if the encoded data slices of
contiguous data are uncorrupted, the decoding of them is a
relatively straightforward process of extracting the data.
[0125] If, however, an encoded data slice of contiguous
data is corrupted (or missing), it can be rebuilt by accessing
other DST execution units that are storing the other encoded
data slices of the set of encoded data slices of the corrupted
encoded data slice. In this instance, the DST execution unit
having the corrupted encoded data slices retrieves at least
three encoded data slices (of contiguous data and of error
coding data) in the set from the other DST execution units
(recall for this example, the pillar width is 5 and the decode
threshold is 3). The DST execution unit decodes the
retrieved data slices using the DS error encoding parameters
to recapture the corresponding data segment. The DST
execution unit then re-encodes the data segment using the
DS error encoding parameters to rebuild the corrupted
encoded data slice. Once the encoded data slice is rebuilt, the
DST execution unit functions as previously described.

US 2016/0357637 Al

[0126] FIG. 13 is a schematic block diagram of an
embodiment of an inbound distributed storage and/or task
(DST) processing section 82 of a DST client module coupled
to DST execution units of a distributed storage and task
network (DSTN) module via a network 24. The inbound
DST processing section 82 includes a de-grouping module
180, a DS (dispersed storage) error decoding module 182, a
data de-partitioning module 184, a control module 186, and
a distributed task control module 188. Note that the control
module 186 and/or the distributed task control module 188
may be separate modules from corresponding ones of out-
bound DST processing section or may be the same modules.
[0127] In an example of operation, the DST execution
units have completed execution of corresponding partial
tasks on the corresponding slice groupings to produce partial
results 102. The inbound DST processing section 82
receives the partial results 102 via the distributed task
control module 188. The inbound DST processing section 82
then processes the partial results 102 to produce a final
result, or results 104. For example, if the task was to find a
specific word or phrase within data, the partial results 102
indicate where in each of the prescribed portions of the data
the corresponding DST execution units found the specific
word or phrase. The distributed task control module 188
combines the individual partial results 102 for the corre-
sponding portions of the data into a final result 104 for the
data as a whole.

[0128] In another example of operation, the inbound DST
processing section 82 is retrieving stored data from the DST
execution units (i.e., the DSTN module). In this example, the
DST execution units output encoded data slices 100 corre-
sponding to the data retrieval requests. The de-grouping
module 180 receives retrieved slices 100 and de-groups
them to produce encoded data slices per data partition 122.
The DS error decoding module 182 decodes, in accordance
with DS error encoding parameters, the encoded data slices
per data partition 122 to produce data partitions 120.
[0129] The data de-partitioning module 184 combines the
data partitions 120 into the data 92. The control module 186
controls the conversion of retrieved slices 100 into the data
92 using control signals 190 to each of the modules. For
instance, the control module 186 provides de-grouping
information to the de-grouping module 180, provides the DS
error encoding parameters to the DS error decoding module
182, and provides de-partitioning information to the data
de-partitioning module 184.

[0130] FIG. 14 is a logic diagram of an example of a
method that is executable by distributed storage and task
(DST) client module regarding inbound DST processing.
The method begins at step 194 where the DST client module
receives partial results. The method continues at step 196
where the DST client module retrieves the task correspond-
ing to the partial results. For example, the partial results
include header information that identifies the requesting
entity, which correlates to the requested task.

[0131] The method continues at step 198 where the DST
client module determines result processing information
based on the task. For example, if the task were to identify
a particular word or phrase within the data, the result
processing information would indicate to aggregate the
partial results for the corresponding portions of the data to
produce the final result. As another example, if the task were
to count the occurrences of a particular word or phrase
within the data, results of processing the information would

Dec. 8, 2016

indicate to add the partial results to produce the final results.
The method continues at step 200 where the DST client
module processes the partial results in accordance with the
result processing information to produce the final result or
results.

[0132] FIG. 15 is a diagram of an example of de-grouping
selection processing of an inbound distributed storage and
task (DST) processing section of a DST client module. In
general, this is an inverse process of the grouping module of
the outbound DST processing section of FIG. 9. Accord-
ingly, for each data partition (e.g., partition #1), the de-
grouping module retrieves the corresponding slice grouping
from the DST execution units (EU) (e.g., DST 1-5).

[0133] As shown, DST execution unit #1 provides a first
slice grouping, which includes the first encoded slices of
each of the sets of encoded slices (e.g., encoded data slices
of contiguous data of data blocks 1-15); DST execution unit
#2 provides a second slice grouping, which includes the
second encoded slices of each of the sets of encoded slices
(e.g., encoded data slices of contiguous data of data blocks
16-30); DST execution unit #3 provides a third slice group-
ing, which includes the third encoded slices of each of the
sets of encoded slices (e.g., encoded data slices of contigu-
ous data of data blocks 31-45); DST execution unit #4
provides a fourth slice grouping, which includes the fourth
encoded slices of each of the sets of encoded slices (e.g., first
encoded data slices of error coding (EC) data); and DST
execution unit #5 provides a fifth slice grouping, which
includes the fifth encoded slices of each of the sets of
encoded slices (e.g., first encoded data slices of error coding
(EC) data).

[0134] The de-grouping module de-groups the slice
groupings (e.g., received slices 100) using a de-grouping
selector 180 controlled by a control signal 190 as shown in
the example to produce a plurality of sets of encoded data
slices (e.g., retrieved slices for a partition into sets of slices
122). Each set corresponding to a data segment of the data
partition.

[0135] FIG. 16 is a schematic block diagram of an
embodiment of a dispersed storage (DS) error decoding
module 182 of an inbound distributed storage and task
(DST) processing section. The DS error decoding module
182 includes an inverse per slice security processing module
202, a de-slicing module 204, an error decoding module 206,
an inverse segment security module 208, a de-segmenting
processing module 210, and a control module 186.

[0136] In an example of operation, the inverse per slice
security processing module 202, when enabled by the con-
trol module 186, unsecures each encoded data slice 122
based on slice de-security information received as control
information 190 (e.g., the compliment of the slice security
information discussed with reference to FIG. 6) received
from the control module 186. The slice security information
includes data decompression, decryption, de-watermarking,
integrity check (e.g., CRC verification, etc.), and/or any
other type of digital security. For example, when the inverse
per slice security processing module 202 is enabled, it
verifies integrity information (e.g., a CRC value) of each
encoded data slice 122, it decrypts each verified encoded
data slice, and decompresses each decrypted encoded data
slice to produce slice encoded data 158. When the inverse
per slice security processing module 202 is not enabled, it
passes the encoded data slices 122 as the sliced encoded data

US 2016/0357637 Al

158 or is bypassed such that the retrieved encoded data slices
122 are provided as the sliced encoded data 158.

[0137] The de-slicing module 204 de-slices the sliced
encoded data 158 into encoded data segments 156 in accor-
dance with a pillar width of the error correction encoding
parameters received as control information 190 from the
control module 186. For example, if the pillar width is five,
the de-slicing module 204 de-slices a set of five encoded
data slices into an encoded data segment 156. The error
decoding module 206 decodes the encoded data segments
156 in accordance with error correction decoding parameters
received as control information 190 from the control module
186 to produce secure data segments 154. The error correc-
tion decoding parameters include identifying an error cor-
rection encoding scheme (e.g., forward error correction
algorithm, a Reed-Solomon based algorithm, an information
dispersal algorithm, etc.), a pillar width, a decode threshold,
a read threshold, a write threshold, etc. For example, the
error correction decoding parameters identify a specific error
correction encoding scheme, specify a pillar width of five,
and specify a decode threshold of three.

[0138] The inverse segment security processing module
208, when enabled by the control module 186, unsecures the
secured data segments 154 based on segment security infor-
mation received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment
security processing module 208 is enabled, it verifies integ-
rity information (e.g., a CRC value) of each secure data
segment 154, it decrypts each verified secured data segment,
and decompresses each decrypted secure data segment to
produce a data segment 152. When the inverse segment
security processing module 208 is not enabled, it passes the
decoded data segment 154 as the data segment 152 or is
bypassed.

[0139] The de-segment processing module 210 receives
the data segments 152 and receives de-segmenting informa-
tion as control information 190 from the control module 186.
The de-segmenting information indicates how the de-seg-
ment processing module 210 is to de-segment the data
segments 152 into a data partition 120. For example, the
de-segmenting information indicates how the rows and
columns of data segments are to be rearranged to yield the
data partition 120.

[0140] FIG. 17 is a diagram of an example of de-slicing
and error decoding processing of a dispersed error decoding
module. A de-slicing module 204 receives at least a decode
threshold number of encoded data slices 158 for each data
segment in accordance with control information 190 and
provides encoded data 156. In this example, a decode
threshold is three. As such, each set of encoded data slices
158 is shown to have three encoded data slices per data
segment. The de-slicing module 204 may receive three
encoded data slices per data segment because an associated
distributed storage and task (DST) client module requested
retrieving only three encoded data slices per segment or
selected three of the retrieved encoded data slices per data
segment. As shown, which is based on the unity matrix
encoding previously discussed with reference to FIG. 8, an
encoded data slice may be a data-based encoded data slice
(e.g., DS1_d1&d2) or an error code based encoded data slice
(e.g., ES3_1).

Dec. 8, 2016

[0141] An error decoding module 206 decodes the
encoded data 156 of each data segment in accordance with
the error correction decoding parameters of control infor-
mation 190 to produce secured segments 154. In this
example, data segment 1 includes 3 rows with each row
being treated as one word for encoding. As such, data
segment 1 includes three words: word 1 including data
blocks d1 and d2, word 2 including data blocks d16 and d17,
and word 3 including data blocks d31 and d32. Each of data
segments 2-7 includes three words where each word
includes two data blocks. Data segment 8 includes three
words where each word includes a single data block (e.g.,
di15, d30, and d45).

[0142] FIG. 18 is a diagram of an example of a de-segment
processing of an inbound distributed storage and task (DST)
processing. In this example, a de-segment processing mod-
ule 210 receives data segments 152 (e.g., 1-8) and rearranges
the data blocks of the data segments into rows and columns
in accordance with de-segmenting information of control
information 190 to produce a data partition 120. Note that
the number of rows is based on the decode threshold (e.g.,
3 in this specific example) and the number of columns is
based on the number and size of the data blocks.

[0143] The de-segmenting module 210 converts the rows
and columns of data blocks into the data partition 120. Note
that each data block may be of the same size as other data
blocks or of a different size. In addition, the size of each data
block may be a few bytes to megabytes of data.

[0144] FIG. 19 is a diagram of an example of converting
slice groups into data 92 within an inbound distributed
storage and task (DST) processing section. As shown, the
data 92 is reconstructed from a plurality of data partitions
(1-x, where x is an integer greater than 4). Each data
partition (or chunk set of data) is decoded and re-grouped
using a de-grouping and decoding function 212 and a
de-partition function 214 from slice groupings as previously
discussed. For a given data partition, the slice groupings
(e.g., at least a decode threshold per data segment of
encoded data slices) are received from DST execution units.
From data partition to data partition, the ordering of the slice
groupings received from the DST execution units may vary
as discussed with reference to FIG. 10.

[0145] FIG. 20 is a diagram of an example of a distributed
storage and/or retrieval within the distributed computing
system. The distributed computing system includes a plu-
rality of distributed storage and/or task (DST) processing
client modules 34 (one shown) coupled to a distributed
storage and/or task processing network (DSTN) module, or
multiple DSTN modules, via a network 24. The DST client
module 34 includes an outbound DST processing section 80
and an inbound DST processing section 82. The DSTN
module includes a plurality of DST execution units. Each
DST execution unit includes a controller 86, memory 88,
one or more distributed task (DT) execution modules 90, and
a DST client module 34.

[0146] In an example of data storage, the DST client
module 34 has data 92 that it desires to store in the DSTN
module. The data 92 may be a file (e.g., video, audio, text,
graphics, etc.), a data object, a data block, an update to a file,
an update to a data block, etc. In this instance, the outbound
DST processing module 80 converts the data 92 into
encoded data slices 216 as will be further described with
reference to FIGS. 21-23. The outbound DST processing

US 2016/0357637 Al

module 80 sends, via the network 24, to the DST execution
units for storage as further described with reference to FIG.
24.

[0147] In an example of data retrieval, the DST client
module 34 issues a retrieve request to the DST execution
units for the desired data 92. The retrieve request may
address each DST executions units storing encoded data
slices of the desired data, address a decode threshold number
of DST execution units, address a read threshold number of
DST execution units, or address some other number of DST
execution units. In response to the request, each addressed
DST execution unit retrieves its encoded data slices 100 of
the desired data and sends them to the inbound DST pro-
cessing section 82, via the network 24.

[0148] When, for each data segment, the inbound DST
processing section 82 receives at least a decode threshold
number of encoded data slices 100, it converts the encoded
data slices 100 into a data segment. The inbound DST
processing section 82 aggregates the data segments to pro-
duce the retrieved data 92.

[0149] FIG. 21 is a schematic block diagram of an
embodiment of an outbound distributed storage and/or task
(DST) processing section 80 of a DST client module coupled
to a distributed storage and task network (DSTN) module
(e.g., a plurality of DST execution units) via a network 24.
The outbound DST processing section 80 includes a data
partitioning module 110, a dispersed storage (DS) error
encoding module 112, a grouping selector module 114, a
control module 116, and a distributed task control module
118.

[0150] In an example of operation, the data partitioning
module 110 is by-passed such that data 92 is provided
directly to the DS error encoding module 112. The control
module 116 coordinates the by-passing of the data partition-
ing module 110 by outputting a bypass 220 message to the
data partitioning module 110.

[0151] The DS error encoding module 112 receives the
data 92 in a serial manner, a parallel manner, and/or a
combination thereof. The DS error encoding module 112 DS
error encodes the data in accordance with control informa-
tion 160 from the control module 116 to produce encoded
data slices 218. The DS error encoding includes segmenting
the data 92 into data segments, segment security processing
(e.g., encryption, compression, watermarking, integrity
check (e.g., CRC, etc.)), error encoding, slicing, and/or per
slice security processing (e.g., encryption, compression,
watermarking, integrity check (e.g., CRC, etc.)). The control
information 160 indicates which steps of the DS error
encoding are active for the data 92 and, for active steps,
indicates the parameters for the step. For example, the
control information 160 indicates that the error encoding is
active and includes error encoding parameters (e.g., pillar
width, decode threshold, write threshold, read threshold,
type of error encoding, etc.).

[0152] The grouping selector module 114 groups the
encoded slices 218 of the data segments into pillars of slices
216. The number of pillars corresponds to the pillar width of
the DS error encoding parameters. In this example, the
distributed task control module 118 facilitates the storage
request.

[0153] FIG. 22 is a schematic block diagram of an
example of a dispersed storage (DS) error encoding module
112 for the example of FIG. 21. The DS error encoding
module 112 includes a segment processing module 142, a

Dec. 8, 2016

segment security processing module 144, an error encoding
module 146, a slicing module 148, and a per slice security
processing module 150. Each of these modules is coupled to
a control module 116 to receive control information 160
therefrom.

[0154] Inanexample of operation, the segment processing
module 142 receives data 92 and receives segmenting infor-
mation as control information 160 from the control module
116. The segmenting information indicates how the segment
processing module is to segment the data. For example, the
segmenting information indicates the size of each data
segment. The segment processing module 142 segments the
data 92 into data segments 152 in accordance with the
segmenting information.

[0155] The segment security processing module 144,
when enabled by the control module 116, secures the data
segments 152 based on segment security information
received as control information 160 from the control module
116. The segment security information includes data com-
pression, encryption, watermarking, integrity check (e.g.,
CRC, etc.), and/or any other type of digital security. For
example, when the segment security processing module 144
is enabled, it compresses a data segment 152, encrypts the
compressed data segment, and generates a CRC value for the
encrypted data segment to produce a secure data segment.
When the segment security processing module 144 is not
enabled, it passes the data segments 152 to the error encod-
ing module 146 or is bypassed such that the data segments
152 are provided to the error encoding module 146.
[0156] The error encoding module 146 encodes the secure
data segments in accordance with error correction encoding
parameters received as control information 160 from the
control module 116. The error correction encoding param-
eters include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed-
Solomon based algorithm, an information dispersal algo-
rithm, etc.), a pillar width, a decode threshold, a read
threshold, a write threshold, etc. For example, the error
correction encoding parameters identify a specific error
correction encoding scheme, specifies a pillar width of five,
and specifies a decode threshold of three. From these param-
eters, the error encoding module 146 encodes a data segment
to produce an encoded data segment.

[0157] The slicing module 148 slices the encoded data
segment in accordance with a pillar width of the error
correction encoding parameters. For example, if the pillar
width is five, the slicing module slices an encoded data
segment into a set of five encoded data slices. As such, for
a plurality of data segments, the slicing module 148 outputs
a plurality of sets of encoded data slices as shown within
encoding and slicing function 222 as described.

[0158] The per slice security processing module 150,
when enabled by the control module 116, secures each
encoded data slice based on slice security information
received as control information 160 from the control module
116. The slice security information includes data compres-
sion, encryption, watermarking, integrity check (e.g., CRC,
etc.), and/or any other type of digital security. For example,
when the per slice security processing module 150 is
enabled, it may compress an encoded data slice, encrypt the
compressed encoded data slice, and generate a CRC value
for the encrypted encoded data slice to produce a secure
encoded data slice tweaking. When the per slice security
processing module 150 is not enabled, it passes the encoded

US 2016/0357637 Al

data slices or is bypassed such that the encoded data slices
218 are the output of the DS error encoding module 112.
[0159] FIG. 23 is a diagram of an example of converting
data 92 into pillar slice groups utilizing encoding, slicing
and pillar grouping function 224 for storage in memory of a
distributed storage and task network (DSTN) module. As
previously discussed the data 92 is encoded and sliced into
a plurality of sets of encoded data slices; one set per data
segment. The grouping selector module organizes the sets of
encoded data slices into pillars of data slices. In this
example, the DS error encoding parameters include a pillar
width of 5 and a decode threshold of 3. As such, for each
data segment, 5 encoded data slices are created.

[0160] The grouping selector module takes the first
encoded data slice of each of the sets and forms a first pillar,
which may be sent to the first DST execution unit. Similarly,
the grouping selector module creates the second pillar from
the second slices of the sets; the third pillar from the third
slices of the sets; the fourth pillar from the fourth slices of
the sets; and the fifth pillar from the fifth slices of the set.
[0161] FIG. 24 is a schematic block diagram of an
embodiment of a distributed storage and/or task (DST)
execution unit that includes an interface 169, a controller 86,
memory 88, one or more distributed task (DT) execution
modules 90, and a DST client module 34. A computing core
26 may be utilized to implement the one or more DT
execution modules 90 and the DST client module 34. The
memory 88 is of sufficient size to store a significant number
of'encoded data slices (e.g., thousands of slices to hundreds-
of-millions of slices) and may include one or more hard
drives and/or one or more solid-state memory devices (e.g.,
flash memory, DRAM, etc.).

[0162] In an example of storing a pillar of slices 216, the
DST execution unit receives, via interface 169, a pillar of
slices 216 (e.g., pillar #1 slices). The memory 88 stores the
encoded data slices 216 of the pillar of slices in accordance
with memory control information 174 it receives from the
controller 86. The controller 86 (e.g., a processing module,
a CPU, etc.) generates the memory control information 174
based on distributed storage information (e.g., user infor-
mation (e.g., user ID, distributed storage permissions, data
access permission, etc.), vault information (e.g., virtual
memory assigned to user, user group, etc.), etc.). Similarly,
when retrieving slices, the DST execution unit receives, via
interface 169, a slice retrieval request. The memory 88
retrieves the slice in accordance with memory control infor-
mation 174 it receives from the controller 86. The memory
88 outputs the slice 100, via the interface 169, to a request-
ing entity.

[0163] FIG. 25 is a schematic block diagram of an
example of operation of an inbound distributed storage
and/or task (DST) processing section 82 for retrieving
dispersed error encoded data 92. The inbound DST process-
ing section 82 includes a de-grouping module 180, a dis-
persed storage (DS) error decoding module 182, a data
de-partitioning module 184, a control module 186, and a
distributed task control module 188. Note that the control
module 186 and/or the distributed task control module 188
may be separate modules from corresponding ones of an
outbound DST processing section or may be the same
modules. In an example of operation, the inbound DST
processing section 82 is retrieving stored data 92 from the
DST execution units (i.e., the DSTN module). In this
example, the DST execution units output encoded data slices

Dec. 8, 2016

corresponding to data retrieval requests from the distributed
task control module 188. The de-grouping module 180
receives pillars of slices 100 and de-groups them in accor-
dance with control information 190 from the control module
186 to produce sets of encoded data slices 218. The DS error
decoding module 182 decodes, in accordance with the DS
error encoding parameters received as control information
190 from the control module 186, each set of encoded data
slices 218 to produce data segments, which are aggregated
into retrieved data 92. The data de-partitioning module 184
is by-passed in this operational mode via a bypass signal 226
of control information 190 from the control module 186.
[0164] FIG. 26 is a schematic block diagram of an
embodiment of a dispersed storage (DS) error decoding
module 182 of an inbound distributed storage and task
(DST) processing section. The DS error decoding module
182 includes an inverse per slice security processing module
202, a de-slicing module 204, an error decoding module 206,
an inverse segment security module 208, and a de-segment-
ing processing module 210. The dispersed error decoding
module 182 is operable to de-slice and decode encoded
slices per data segment 218 utilizing a de-slicing and decod-
ing function 228 to produce a plurality of data segments that
are de-segmented utilizing a de-segment function 230 to
recover data 92.

[0165] In an example of operation, the inverse per slice
security processing module 202, when enabled by the con-
trol module 186 via control information 190, unsecures each
encoded data slice 218 based on slice de-security informa-
tion (e.g., the compliment of the slice security information
discussed with reference to FIG. 6) received as control
information 190 from the control module 186. The slice
de-security information includes data decompression,
decryption, de-watermarking, integrity check (e.g., CRC
verification, etc.), and/or any other type of digital security.
For example, when the inverse per slice security processing
module 202 is enabled, it verifies integrity information (e.g.,
a CRC value) of each encoded data slice 218, it decrypts
each verified encoded data slice, and decompresses each
decrypted encoded data slice to produce slice encoded data.
When the inverse per slice security processing module 202
is not enabled, it passes the encoded data slices 218 as the
sliced encoded data or is bypassed such that the retrieved
encoded data slices 218 are provided as the sliced encoded
data.

[0166] The de-slicing module 204 de-slices the sliced
encoded data into encoded data segments in accordance with
a pillar width of the error correction encoding parameters
received as control information 190 from a control module
186. For example, if the pillar width is five, the de-slicing
module de-slices a set of five encoded data slices into an
encoded data segment. Alternatively, the encoded data seg-
ment may include just three encoded data slices (e.g., when
the decode threshold is 3).

[0167] The error decoding module 206 decodes the
encoded data segments in accordance with error correction
decoding parameters received as control information 190
from the control module 186 to produce secure data seg-
ments. The error correction decoding parameters include
identifying an error correction encoding scheme (e.g., for-
ward error correction algorithm, a Reed-Solomon based
algorithm, an information dispersal algorithm, etc.), a pillar
width, a decode threshold, a read threshold, a write thresh-
old, etc. For example, the error correction decoding param-

US 2016/0357637 Al

eters identify a specific error correction encoding scheme,
specify a pillar width of five, and specify a decode threshold
of three.

[0168] The inverse segment security processing module
208, when enabled by the control module 186, unsecures the
secured data segments based on segment security informa-
tion received as control information 190 from the control
module 186. The segment security information includes data
decompression, decryption, de-watermarking, integrity
check (e.g., CRC, etc.) verification, and/or any other type of
digital security. For example, when the inverse segment
security processing module is enabled, it verifies integrity
information (e.g., a CRC value) of each secure data segment,
it decrypts each verified secured data segment, and decom-
presses each decrypted secure data segment to produce a
data segment 152. When the inverse segment security pro-
cessing module 208 is not enabled, it passes the decoded
data segment 152 as the data segment or is bypassed. The
de-segmenting processing module 210 aggregates the data
segments 152 into the data 92 in accordance with control
information 190 from the control module 186.

[0169] FIG. 27 is a schematic block diagram of an
example of a distributed storage and task processing net-
work (DSTN) module that includes a plurality of distributed
storage and task (DST) execution units (#1 through #n,
where, for example, n is an integer greater than or equal to
three). Each of the DST execution units includes a DST
client module 34, a controller 86, one or more DT (distrib-
uted task) execution modules 90, and memory 88.

[0170] In this example, the DSTN module stores, in the
memory of the DST execution units, a plurality of DS
(dispersed storage) encoded data (e.g., 1 through n, where n
is an integer greater than or equal to two) and stores a
plurality of DS encoded task codes (e.g., 1 through k, where
k is an integer greater than or equal to two). The DS encoded
data may be encoded in accordance with one or more
examples described with reference to FIGS. 3-19 (e.g.,
organized in slice groupings) or encoded in accordance with
one or more examples described with reference to FIGS.
20-26 (e.g., organized in pillar groups). The data that is
encoded into the DS encoded data may be of any size and/or
of any content. For example, the data may be one or more
digital books, a copy of a company’s emails, a large-scale
Internet search, a video security file, one or more entertain-
ment video files (e.g., television programs, movies, etc.),
data files, and/or any other large amount of data (e.g., greater
than a few Terabytes).

[0171] The tasks that are encoded into the DS encoded
task code may be a simple function (e.g., a mathematical
function, a logic function, an identify function, a find
function, a search engine function, a replace function, etc.),
a complex function (e.g., compression, human and/or com-
puter language translation, text-to-voice conversion, voice-
to-text conversion, etc.), multiple simple and/or complex
functions, one or more algorithms, one or more applications,
etc. The tasks may be encoded into the DS encoded task
code in accordance with one or more examples described
with reference to FIGS. 3-19 (e.g., organized in slice group-
ings) or encoded in accordance with one or more examples
described with reference to FIGS. 20-26 (e.g., organized in
pillar groups).

[0172] Inan example of operation, a DST client module of
a user device or of a DST processing unit issues a DST
request to the DSTN module. The DST request may include

Dec. 8, 2016

a request to retrieve stored data, or a portion thereof, may
include a request to store data that is included with the DST
request, may include a request to perform one or more tasks
on stored data, may include a request to perform one or more
tasks on data included with the DST request, etc. In the cases
where the DST request includes a request to store data or to
retrieve data, the client module and/or the DSTN module
processes the request as previously discussed with reference
to one or more of FIGS. 3-19 (e.g., slice groupings) and/or
20-26 (e.g., pillar groupings). In the case where the DST
request includes a request to perform one or more tasks on
data included with the DST request, the DST client module
and/or the DSTN module process the DST request as pre-
viously discussed with reference to one or more of FIGS.
3-19.

[0173] In the case where the DST request includes a
request to perform one or more tasks on stored data, the DST
client module and/or the DSTN module processes the DST
request as will be described with reference to one or more of
FIGS. 28-39. In general, the DST client module identifies
data and one or more tasks for the DSTN module to execute
upon the identified data. The DST request may be for a
one-time execution of the task or for an on-going execution
of the task. As an example of the latter, as a company
generates daily emails, the DST request may be to daily
search new emails for inappropriate content and, if found,
record the content, the email sender(s), the email recipient
(s), email routing information, notify human resources of the
identified email, etc.

[0174] FIG. 28 is a schematic block diagram of an
example of a distributed computing system performing tasks
on stored data. In this example, two distributed storage and
task (DST) client modules 1-2 are shown: the first may be
associated with a user device and the second may be
associated with a DST processing unit or a high priority user
device (e.g., high priority clearance user, system adminis-
trator, etc.). Each DST client module includes a list of stored
data 234 and a list of tasks codes 236. The list of stored data
234 includes one or more entries of data identifying infor-
mation, where each entry identifies data stored in the DSTN
module 22. The data identifying information (e.g., data ID)
includes one or more of a data file name, a data file directory
listing, DSTN addressing information of the data, a data
object identifier, etc. The list of tasks 236 includes one or
more entries of task code identitying information, when
each entry identifies task codes stored in the DSTN module
22. The task code identifying information (e.g., task ID)
includes one or more of a task file name, a task file directory
listing, DSTN addressing information of the task, another
type of identifier to identify the task, etc.

[0175] As shown, the list of data 234 and the list of tasks
236 are each smaller in number of entries for the first DST
client module than the corresponding lists of the second
DST client module. This may occur because the user device
associated with the first DST client module has fewer
privileges in the distributed computing system than the
device associated with the second DST client module.
Alternatively, this may occur because the user device asso-
ciated with the first DST client module serves fewer users
than the device associated with the second DST client
module and is restricted by the distributed computing system
accordingly. As yet another alternative, this may occur
through no restraints by the distributed computing system, it
just occurred because the operator of the user device asso-

US 2016/0357637 Al

ciated with the first DST client module has selected fewer
data and/or fewer tasks than the operator of the device
associated with the second DST client module.

[0176] In an example of operation, the first DST client
module selects one or more data entries 238 and one or more
tasks 240 from its respective lists (e.g., selected data ID and
selected task ID). The first DST client module sends its
selections to a task distribution module 232. The task
distribution module 232 may be within a stand-alone device
of the distributed computing system, may be within the user
device that contains the first DST client module, or may be
within the DSTN module 22.

[0177] Regardless of the task distribution module’s loca-
tion, it generates DST allocation information 242 from the
selected task ID 240 and the selected data ID 238. The DST
allocation information 242 includes data partitioning infor-
mation, task execution information, and/or intermediate
result information. The task distribution module 232 sends
the DST allocation information 242 to the DSTN module 22.
Note that one or more examples of the DST allocation
information will be discussed with reference to one or more
of FIGS. 29-39.

[0178] The DSTN module 22 interprets the DST alloca-
tion information 242 to identify the stored DS encoded data
(e.g., DS error encoded data 2) and to identify the stored DS
error encoded task code (e.g., DS error encoded task code 1).
In addition, the DSTN module 22 interprets the DST allo-
cation information 242 to determine how the data is to be
partitioned and how the task is to be partitioned. The DSTN
module 22 also determines whether the selected DS error
encoded data 238 needs to be converted from pillar grouping
to slice grouping. If so, the DSTN module 22 converts the
selected DS error encoded data into slice groupings and
stores the slice grouping DS error encoded data by over-
writing the pillar grouping DS error encoded data or by
storing it in a different location in the memory of the DSTN
module 22 (i.e., does not overwrite the pillar grouping DS
encoded data).

[0179] The DSTN module 22 partitions the data and the
task as indicated in the DST allocation information 242 and
sends the portions to selected DST execution units of the
DSTN module 22. Each of the selected DST execution units
performs its partial task(s) on its slice groupings to produce
partial results. The DSTN module 22 collects the partial
results from the selected DST execution units and provides
them, as result information 244, to the task distribution
module. The result information 244 may be the collected
partial results, one or more final results as produced by the
DSTN module 22 from processing the partial results in
accordance with the DST allocation information 242, or one
or more intermediate results as produced by the DSTN
module 22 from processing the partial results in accordance
with the DST allocation information 242.

[0180] The task distribution module 232 receives the
result information 244 and provides one or more final results
104 therefrom to the first DST client module. The final
result(s) 104 may be result information 244 or a result(s) of
the task distribution module’s processing of the result infor-
mation 244.

[0181] In concurrence with processing the selected task of
the first DST client module, the distributed computing
system may process the selected task(s) of the second DST
client module on the selected data(s) of the second DST
client module. Alternatively, the distributed computing sys-

Dec. 8, 2016

tem may process the second DST client module’s request
subsequent to, or preceding, that of the first DST client
module. Regardless of the ordering and/or parallel process-
ing of the DST client module requests, the second DST
client module provides its selected data 238 and selected
task 240 to a task distribution module 232. If the task
distribution module 232 is a separate device of the distrib-
uted computing system or within the DSTN module, the task
distribution modules 232 coupled to the first and second
DST client modules may be the same module. The task
distribution module 232 processes the request of the second
DST client module in a similar manner as it processed the
request of the first DST client module.

[0182] FIG. 29 is a schematic block diagram of an
embodiment of a task distribution module 232 facilitating
the example of FIG. 28. The task distribution module 232
includes a plurality of tables it uses to generate distributed
storage and task (DST) allocation information 242 for
selected data and selected tasks received from a DST client
module. The tables include data storage information 248,
task storage information 250, distributed task (DT) execu-
tion module information 252, and task < sub-task mapping
information 246.

[0183] The data storage information table 248 includes a
data identification (ID) field 260, a data size field 262, an
addressing information field 264, distributed storage (DS)
information 266, and may further include other information
regarding the data, how it is stored, and/or how it can be
processed. For example, DS encoded data #1 has a data ID
of 1, a data size of AA (e.g., a byte size of a few Terabytes
or more), addressing information of Addr_1_AA, and DS
parameters of 3/5; SEG_1; and SLC_1. In this example, the
addressing information may be a virtual address correspond-
ing to the virtual address of the first storage word (e.g., one
or more bytes) of the data and information on how to
calculate the other addresses, may be a range of virtual
addresses for the storage words of the data, physical
addresses of the first storage word or the storage words of
the data, may be a list of slice names of the encoded data
slices of the data, etc. The DS parameters may include
identity of an error encoding scheme, decode threshold/
pillar width (e.g., 3/5 for the first data entry), segment
security information (e.g., SEG_1), per slice security infor-
mation (e.g., SLC_1), and/or any other information regard-
ing how the data was encoded into data slices.

[0184] The task storage information table 250 includes a
task identification (ID) field 268, a task size field 270, an
addressing information field 272, distributed storage (DS)
information 274, and may further include other information
regarding the task, how it is stored, and/or how it can be used
to process data. For example, DS encoded task #2 has a task
ID of 2, a task size of XY, addressing information of
Addr_2_XY, and DS parameters ot 3/5; SEG_2; and SLC_2.
In this example, the addressing information may be a virtual
address corresponding to the virtual address of the first
storage word (e.g., one or more bytes) of the task and
information on how to calculate the other addresses, may be
a range of virtual addresses for the storage words of the task,
physical addresses of the first storage word or the storage
words of the task, may be a list of slices names of the
encoded slices of the task code, etc. The DS parameters may
include identity of an error encoding scheme, decode thresh-
old/pillar width (e.g., 3/5 for the first data entry), segment
security information (e.g., SEG_2), per slice security infor-

US 2016/0357637 Al

mation (e.g., SLC_2), and/or any other information regard-
ing how the task was encoded into encoded task slices. Note
that the segment and/or the per-slice security information
include a type of encryption (if enabled), a type of com-
pression (if enabled), watermarking information (if
enabled), and/or an integrity check scheme (if enabled).
[0185] The task <s sub-task mapping information table
246 includes a task field 256 and a sub-task field 258. The
task field 256 identifies a task stored in the memory of a
distributed storage and task network (DSTN) module and
the corresponding sub-task fields 258 indicates whether the
task includes sub-tasks and, if so, how many and if any of
the sub-tasks are ordered. In this example, the task <
sub-task mapping information table 246 includes an entry
for each task stored in memory of the DSTN module (e.g.,
task 1 through task k). In particular, this example indicates
that task 1 includes 7 sub-tasks; task 2 does not include
sub-tasks, and task k includes r number of sub-tasks (where
r is an integer greater than or equal to two).

[0186] The DT execution module table 252 includes a
DST execution unit ID field 276, a DT execution module 1D
field 278, and a DT execution module capabilities field 280.
The DST execution unit ID field 276 includes the identity of
DST units in the DSTN module. The DT execution module
1D field 278 includes the identity of each DT execution unit
in each DST unit. For example, DST unit 1 includes three
DT executions modules (e.g., 1_1, 1_2, and 1_3). The DT
execution capabilities field 280 includes identity of the
capabilities of the corresponding DT execution unit. For
example, DT execution module 1_1 includes capabilities X,
where X includes one or more of MIPS capabilities, pro-
cessing resources (e.g., quantity and capability of micropro-
cessors, CPUs, digital signal processors, co-processor,
microcontrollers, arithmetic logic circuitry, and/or any other
analog and/or digital processing circuitry), availability of the
processing resources, memory information (e.g., type, size,
availability, etc.), and/or any information germane to execut-
ing one or more tasks.

[0187] From these tables, the task distribution module 232
generates the DST allocation information 242 to indicate
where the data is stored, how to partition the data, where the
task is stored, how to partition the task, which DT execution
units should perform which partial task on which data
partitions, where and how intermediate results are to be
stored, etc. If multiple tasks are being performed on the same
data or different data, the task distribution module factors
such information into its generation of the DST allocation
information.

[0188] FIG. 30 is a diagram of a specific example of a
distributed computing system performing tasks on stored
data as a task flow 318. In this example, selected data 92 is
data 2 and selected tasks are tasks 1, 2, and 3. Task 1
corresponds to analyzing translation of data from one lan-
guage to another (e.g., human language or computer lan-
guage); task 2 corresponds to finding specific words and/or
phrases in the data; and task 3 corresponds to finding specific
translated words and/or phrases in translated data.

[0189] In this example, task 1 includes 7 sub-tasks: task
1_1—identify non-words (non-ordered); task 1_2—identity
unique words (non-ordered); task 1_3—translate (non-or-
dered); task 1_4—translate back (ordered after task 1_3);
task 1_5—compare to ID errors (ordered after task 1-4); task
1_6—determine non-word translation errors (ordered after
task 1_5 and 1_1); and task 1_7—determine correct trans-

Dec. 8, 2016

lations (ordered after 1_5 and 1_2). The sub-task further
indicates whether they are an ordered task (i.e., are depen-
dent on the outcome of another task) or non-order (i.e., are
independent of the outcome of another task). Task 2 does not
include sub-tasks and task 3 includes two sub-tasks: task 3_1
translate; and task 3_2 find specific word or phrase in
translated data.

[0190] In general, the three tasks collectively are selected
to analyze data for translation accuracies, translation errors,
translation anomalies, occurrence of specific words or
phrases in the data, and occurrence of specific words or
phrases on the translated data. Graphically, the data 92 is
translated 306 into translated data 282; is analyzed for
specific words and/or phrases 300 to produce a list of
specific words and/or phrases 286; is analyzed for non-
words 302 (e.g., not in a reference dictionary) to produce a
list of non-words 290; and is analyzed for unique words 316
included in the data 92 (i.e., how many different words are
included in the data) to produce a list of unique words 298.
Each of these tasks is independent of each other and can
therefore be processed in parallel if desired.

[0191] The translated data 282 is analyzed (e.g., sub-task
3_2) for specific translated words and/or phrases 304 to
produce a list of specific translated words and/or phrases
288. The translated data 282 is translated back 308 (e.g.,
sub-task 1_4) into the language of the original data to
produce re-translated data 284. These two tasks are depen-
dent on the translate task (e.g., task 1_3) and thus must be
ordered after the translation task, which may be in a pipe-
lined ordering or a serial ordering. The re-translated data 284
is then compared 310 with the original data 92 to find words
and/or phrases that did not translate (one way and/or the
other) properly to produce a list of incorrectly translated
words 294. As such, the comparing task (e.g., sub-task 1_5)
310 is ordered after the translation 306 and re-translation
tasks 308 (e.g., sub-tasks 1_3 and 1_4).

[0192] The list of words incorrectly translated 294 is
compared 312 to the list of non-words 290 to identify words
that were not properly translated because the words are
non-words to produce a list of errors due to non-words 292.
In addition, the list of words incorrectly translated 294 is
compared 314 to the list of unique words 298 to identify
unique words that were properly translated to produce a list
of correctly translated words 296. The comparison may also
identify unique words that were not properly translated to
produce a list of unique words that were not properly
translated. Note that each list of words (e.g., specific words
and/or phrases, non-words, unique words, translated words
and/or phrases, etc.,) may include the word and/or phrase,
how many times it is used, where in the data it is used, and/or
any other information requested regarding a word and/or
phrase.

[0193] FIG. 31 is a schematic block diagram of an
example of a distributed storage and task processing net-
work (DSTN) module storing data and task codes for the
example of FIG. 30. As shown, DS encoded data 2 is stored
as encoded data slices across the memory (e.g., stored in
memories 88) of DST execution units 1-5; the DS encoded
task code 1 (of task 1) and DS encoded task 3 are stored as
encoded task slices across the memory of DST execution
units 1-5; and DS encoded task code 2 (of task 2) is stored
as encoded task slices across the memory of DST execution
units 3-7. As indicated in the data storage information table
and the task storage information table of FIG. 29, the

US 2016/0357637 Al

respective data/task has DS parameters of 3/5 for their
decode threshold/pillar width; hence spanning the memory
of five DST execution units.

[0194] FIG. 32 is a diagram of an example of distributed
storage and task (DST) allocation information 242 for the
example of FIG. 30. The DST allocation information 242
includes data partitioning information 320, task execution
information 322, and intermediate result information 324.
The data partitioning information 320 includes the data
identifier (ID), the number of partitions to split the data into,
address information for each data partition, and whether the
DS encoded data has to be transformed from pillar grouping
to slice grouping. The task execution information 322
includes tabular information having a task identification
field 326, a task ordering field 328, a data partition field ID
330, and a set of DT execution modules 332 to use for the
distributed task processing per data partition. The interme-
diate result information 324 includes tabular information
having a name ID field 334, an ID of the DST execution unit
assigned to process the corresponding intermediate result
336, a scratch pad storage field 338, and an intermediate
result storage field 340.

[0195] Continuing with the example of FIG. 30, where
tasks 1-3 are to be distributedly performed on data 2, the data
partitioning information includes the ID of data 2. In addi-
tion, the task distribution module determines whether the DS
encoded data 2 is in the proper format for distributed
computing (e.g., was stored as slice groupings). If not, the
task distribution module indicates that the DS encoded data
2 format needs to be changed from the pillar grouping
format to the slice grouping format, which will be done by
the DSTN module. In addition, the task distribution module
determines the number of partitions to divide the data into
(e.g., 2_1 through 2_z) and addressing information for each
partition.

[0196] The task distribution module generates an entry in
the task execution information section for each sub-task to
be performed. For example, task 1_1 (e.g., identify non-
words on the data) has no task ordering (i.e., is independent
of the results of other sub-tasks), is to be performed on data
partitions 2_1 through 2_z by DT execution modules 1_1,
2.1,3_1,4_1,and 5_1. For instance, DT execution modules
1.1,2.1,3 1,4 1, and 5_1 search for non-words in data
partitions 2_1 through 2_z to produce task 1_1 intermediate
results (R1-1, which is a list of non-words). Task 1_2 (e.g.,
identify unique words) has similar task execution informa-
tion as task 1_1 to produce task 1_2 intermediate results
(R1-2, which is the list of unique words).

[0197] Task 1_3 (e.g., translate) includes task execution
information as being non-ordered (i.e., is independent),
having DT execution modules 1_1,2_1,3_1,4_1,and 5_1
translate data partitions 2_1 through 2_4 and having DT
execution modules 1_2, 2_2, 3 2, 4_2, and 5_2 translate
data partitions 2_5 through 2_z to produce task 1_3 inter-
mediate results (R1-3, which is the translated data). In this
example, the data partitions are grouped, where different sets
of DT execution modules perform a distributed sub-task (or
task) on each data partition group, which allows for further
parallel processing.

[0198] Task 1_4 (e.g., translate back) is ordered after task
1_3 and is to be executed on task 1_3’s intermediate result
(e.g., R1-3_1) (e.g., the translated data). DT execution
modules 1.1, 2.1, 3_1, 4.1, and 5_1 are allocated to
translate back task 1_3 intermediate result partitions R1-3_1

Dec. 8, 2016

through R1-3_4 and DT execution modules 1_2, 2_2, 6_1,
71, and 7 2 are allocated to translate back task 1_3
intermediate result partitions R1-3_5 through R1-3_z to
produce task 1-4 intermediate results (R1-4, which is the
translated back data).

[0199] Task1_5 (e.g., compare data and translated data to
identify translation errors) is ordered after task 1_4 and is to
be executed on task 1_4’s intermediate results (R4-1) and on
the data. DT execution modules1_1,2 1,3 1,4 1,and5_1
are allocated to compare the data partitions (2_1 through
2_z) with partitions of task 1-4 intermediate results parti-
tions R1-4_1 through R1-4_z to produce task 1_5 interme-
diate results (R1-5, which is the list words translated incor-
rectly).

[0200] Task 1_6 (e.g., determine non-word translation
errors) is ordered after tasks 1_1 and 1_5 and is to be
executed on tasks 1_1’s and 1_5’s intermediate results (R1-1
and R1-5). DT execution modules 1_1,2_1,3_1,4_1, and
5_1 are allocated to compare the partitions of task 1_1
intermediate results (R1-1_1 through R1-1_z) with parti-
tions of task 1-5 intermediate results partitions (R1-5_1
through R1-5_z) to produce task 1_6 intermediate results
(R1-6, which is the list translation errors due to non-words).
[0201] Task 1_7 (e.g., determine words correctly trans-
lated) is ordered after tasks 1_2 and 1_5 and is to be
executed on tasks 1_2’s and 1_5’s intermediate results (R1-1
and R1-5). DT execution modules 1_2,2_2,3_2.4_2, and
5_2 are allocated to compare the partitions of task 1_2
intermediate results (R1-2_1 through R1-2_z) with parti-
tions of task 1-5 intermediate results partitions (R1-5_1
through R1-5_z) to produce task 1_7 intermediate results
(R1-7, which is the list of correctly translated words).
[0202] Task2 (e.g., find specific words and/or phrases) has
no task ordering (i.e., is independent of the results of other
sub-tasks), is to be performed on data partitions 2_1 through
2_z by DT execution modules 3_1,4_1,5_1,6_1, and 7_1.
For instance, DT execution modules 3_1,4_1,5_1,6_1, and
7_1 search for specific words and/or phrases in data parti-
tions 2_1 through 2_z to produce task 2 intermediate results
(R2, which is a list of specific words and/or phrases).
[0203] Task3_2 (e.g., find specific translated words and/or
phrases) is ordered after task 1_3 (e.g., translate) is to be
performed on partitions R1-3_1 through R1-3_z by DT
execution modules 1_2, 2.2, 3 2, 4 2, and 5_2. For
instance, DT execution modules 1_2,2_2,3 2,4 2, and5_2
search for specific translated words and/or phrases in the
partitions of the translated data (R1-3_1 through R1-3_z) to
produce task 3_2 intermediate results (R3-2, which is a list
of specific translated words and/or phrases).

[0204] For each task, the intermediate result information
indicates which DST unit is responsible for overseeing
execution of the task and, if needed, processing the partial
results generated by the set of allocated DT execution units.
In addition, the intermediate result information indicates a
scratch pad memory for the task and where the correspond-
ing intermediate results are to be stored. For example, for
intermediate result R1-1 (the intermediate result of task
1_1), DST unit 1 is responsible for overseeing execution of
the task 1_1 and coordinates storage of the intermediate
result as encoded intermediate result slices stored in memory
of DST execution units 1-5. In general, the scratch pad is for
storing non-DS encoded intermediate results and the inter-
mediate result storage is for storing DS encoded intermedi-
ate results.

US 2016/0357637 Al

[0205] FIGS. 33-38 are schematic block diagrams of the
distributed storage and task network (DSTN) module per-
forming the example of FIG. 30. In FIG. 33, the DSTN
module accesses the data 92 and partitions it into a plurality
of partitions 1-z in accordance with distributed storage and
task network (DST) allocation information. For each data
partition, the DSTN identifies a set of its DT (distributed
task) execution modules 90 to perform the task (e.g., identify
non-words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation informa-
tion. From data partition to data partition, the set of DT
execution modules 90 may be the same, different, or a
combination thereof (e.g., some data partitions use the same
set while other data partitions use different sets).

[0206] For the first data partition, the first set of DT
execution modules (e.g.,1_1,2_1,3_1,4_1, and 5_1 per the
DST allocation information of FIG. 32) executes task 1_1 to
produce a first partial result 102 of non-words found in the
first data partition. The second set of DT execution modules
(e.g,1.1,2.1,3_1, 4 1, and 5_1 per the DST allocation
information of FIG. 32) executes task 1_1 to produce a
second partial result 102 of non-words found in the second
data partition. The sets of DT execution modules (as per the
DST allocation information) perform task 1_1 on the data
partitions until the “z” set of DT execution modules per-
forms task 1_1 on the “zth” data partition to produce a “zth”
partial result 102 of non-words found in the “zth” data
partition.

[0207] As indicated in the DST allocation information of
FIG. 32, DST execution unit 1 is assigned to process the first
through “zth” partial results to produce the first intermediate
result (R1-1), which is a list of non-words found in the data.
For instance, each set of DT execution modules 90 stores its
respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or
may be determined by DST execution unit 1). A processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate
result (e.g., R1_1). The processing module stores the first
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

[0208] DST execution unit 1 engages its DST client mod-
ule to slice grouping based DS error encode the first inter-
mediate result (e.g., the list of non-words). To begin the
encoding, the DST client module determines whether the list
of non-words is of a sufficient size to partition (e.g., greater
than a Terabyte). If yes, it partitions the first intermediate
result (R1-1) into a plurality of partitions (e.g., R1-1_1
through R1-1_m). If the first intermediate result is not of
sufficient size to partition, it is not partitioned.

[0209] For each partition of the first intermediate result, or
for the first intermediate result, the DST client module uses
the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-5).

[0210] In FIG. 34, the DSTN module is performing task
1_2 (e.g., find unique words) on the data 92. To begin, the
DSTN module accesses the data 92 and partitions it into a
plurality of partitions 1-z in accordance with the DST
allocation information or it may use the data partitions of

Dec. 8, 2016

task 1_1 if the partitioning is the same. For each data
partition, the DSTN identifies a set of its DT execution
modules to perform task 1_2 in accordance with the DST
allocation information. From data partition to data partition,
the set of DT execution modules may be the same, different,
or a combination thereof. For the data partitions, the allo-
cated set of DT execution modules executes task 1_2 to
produce partial results (e.g., 1% through “zth”) of unique
words found in the data partitions.

[0211] As indicated in the DST allocation information of
FIG. 32, DST execution unit 1 is assigned to process the first
through “zth” partial results 102 of task 1_2 to produce the
second intermediate result (R1-2), which is a list of unique
words found in the data 92. The processing module of DST
execution 1 is engaged to aggregate the first through “zth”
partial results of unique words to produce the second inter-
mediate result. The processing module stores the second
intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 1.

[0212] DST execution unit 1 engages its DST client mod-
ule to slice grouping based DS error encode the second
intermediate result (e.g., the list of non-words). To begin the
encoding, the DST client module determines whether the list
of unique words is of a sufficient size to partition (e.g.,
greater than a Terabyte). If yes, it partitions the second
intermediate result (R1-2) into a plurality of partitions (e.g.,
R1-2_1 through R1-2_m). If the second intermediate result
is not of sufficient size to partition, it is not partitioned.
[0213] For each partition of the second intermediate result,
or for the second intermediate results, the DST client module
uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-5).

[0214] In FIG. 35, the DSTN module is performing task
1_3 (e.g., translate) on the data 92. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality
of partitions 1-z in accordance with the DST allocation
information or it may use the data partitions of task 1_1 if
the partitioning is the same. For each data partition, the
DSTN identifies a set of its DT execution modules to
perform task 1_3 in accordance with the DST allocation
information (e.g., DT executionmodules 1_1,2_1,3_1,4_1,
and 5_1 translate data partitions 2_1 through 2_4 and DT
execution modules 1_2, 2_2, 3 2, 4_2, and 5_2 translate
data partitions 2_5 through 2_z). For the data partitions, the
allocated set of DT execution modules 90 executes task 1_3
to produce partial results 102 (e.g., 1* through “zth”) of
translated data.

[0215] As indicated in the DST allocation information of
FIG. 32, DST execution unit 2 is assigned to process the first
through “zth” partial results of task 1_3 to produce the third
intermediate result (R1-3), which is translated data. The
processing module of DST execution 2 is engaged to aggre-
gate the first through “zth” partial results of translated data
to produce the third intermediate result. The processing
module stores the third intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 2.

[0216] DST execution unit 2 engages its DST client mod-
ule to slice grouping based DS error encode the third

US 2016/0357637 Al

intermediate result (e.g., translated data). To begin the
encoding, the DST client module partitions the third inter-
mediate result (R1-3) into a plurality of partitions (e.g.,
R1-3_1 through R1-3_y). For each partition of the third
intermediate result, the DST client module uses the DS error
encoding parameters of the data (e.g., DS parameters of data
2, which includes 3/5 decode threshold/pillar width ratio) to
produce slice groupings. The slice groupings are stored in
the intermediate result memory (e.g., allocated memory in
the memories of DST execution units 2-6 per the DST
allocation information).

[0217] As is further shown in FIG. 35, the DSTN module
is performing task 1_4 (e.g., retranslate) on the translated
data of the third intermediate result. To begin, the DSTN
module accesses the translated data (from the scratchpad
memory or from the intermediate result memory and
decodes it) and partitions it into a plurality of partitions in
accordance with the DST allocation information. For each
partition of the third intermediate result, the DSTN identifies
a set of its DT execution modules 90 to perform task 1_4 in
accordance with the DST allocation information (e.g., DT
execution modules 1_1,2_1,3_1,4_1, and 5_1 are allocated
to translate back partitions R1-3_1 through R1-3_4 and DT
execution modules 1_2,2_2,6_1,7_1, and 7_2 are allocated
to translate back partitions R1-3_5 through R1-3_z). For the
partitions, the allocated set of DT execution modules
executes task 1_4 to produce partial results 102 (e.g., 1%
through “zth”) of re-translated data.

[0218] As indicated in the DST allocation information of
FIG. 32, DST execution unit 3 is assigned to process the first
through “zth” partial results of task 1_4 to produce the fourth
intermediate result (R1-4), which is retranslated data. The
processing module of DST execution 3 is engaged to aggre-
gate the first through “zth” partial results of retranslated data
to produce the fourth intermediate result. The processing
module stores the fourth intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 3.

[0219] DST execution unit 3 engages its DST client mod-
ule to slice grouping based DS error encode the fourth
intermediate result (e.g., retranslated data). To begin the
encoding, the DST client module partitions the fourth inter-
mediate result (R1-4) into a plurality of partitions (e.g.,
R1-4_1 through R1-4_z). For each partition of the fourth
intermediate result, the DST client module uses the DS error
encoding parameters of the data (e.g., DS parameters of data
2, which includes 3/5 decode threshold/pillar width ratio) to
produce slice groupings. The slice groupings are stored in
the intermediate result memory (e.g., allocated memory in
the memories of DST execution units 3-7 per the DST
allocation information).

[0220] In FIG. 36, a distributed storage and task network
(DSTN) module is performing task 1_5 (e.g., compare) on
data 92 and retranslated data of FIG. 35. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality
of partitions in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. The DSTN module also accesses
the retranslated data from the scratchpad memory, or from
the intermediate result memory and decodes it, and parti-
tions it into a plurality of partitions in accordance with the
DST allocation information. The number of partitions of the
retranslated data corresponds to the number of partitions of
the data.

Dec. 8, 2016

[0221] For each pair of partitions (e.g., data partition 1 and
retranslated data partition 1), the DSTN identifies a set of its
DT execution modules 90 to perform task 1_5 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1, 2_1, 3_1, 4_1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_5 to produce partial results 102 (e.g., 1%
through “zth”) of a list of incorrectly translated words and/or
phrases.

[0222] As indicated in the DST allocation information of
FIG. 32, DST execution unit 1 is assigned to process the first
through “zth” partial results of task 1_5 to produce the fifth
intermediate result (R1-5), which is the list of incorrectly
translated words and/or phrases. In particular, the processing
module of DST execution 1 is engaged to aggregate the first
through “zth” partial results of the list of incorrectly trans-
lated words and/or phrases to produce the fifth intermediate
result. The processing module stores the fifth intermediate
result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution
unit 1.

[0223] DST execution unit 1 engages its DST client mod-
ule to slice grouping based DS error encode the fifth
intermediate result. To begin the encoding, the DST client
module partitions the fifth intermediate result (R1-5) into a
plurality of partitions (e.g., R1-5_1 through R1-5_z). For
each partition of the fifth intermediate result, the DST client
module uses the DS error encoding parameters of the data
(e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 1-5 per the DST allocation information).

[0224] As is further shown in FIG. 36, the DSTN module
is performing task 1_6 (e.g., translation errors due to non-
words) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list
of non-words (e.g., the first intermediate result R1-1). To
begin, the DSTN module accesses the lists and partitions
them into a corresponding number of partitions.

[0225] For each pair of partitions (e.g., partition R1-1_1
and partition R1-5_1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_6 in accordance
with the DST allocation information (e.g., DT execution
modules 1_1, 2_1, 3_1, 4_1, and 5_1). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_6 to produce partial results 102 (e.g., 1%
through “zth”) of a list of incorrectly translated words and/or
phrases due to non-words.

[0226] As indicated in the DST allocation information of
FIG. 32, DST execution unit 2 is assigned to process the first
through “zth” partial results of task 1_6 to produce the sixth
intermediate result (R1-6), which is the list of incorrectly
translated words and/or phrases due to non-words. In par-
ticular, the processing module of DST execution 2 is
engaged to aggregate the first through “zth” partial results of
the list of incorrectly translated words and/or phrases due to
non-words to produce the sixth intermediate result. The
processing module stores the sixth intermediate result as
non-DS error encoded data in the scratchpad memory or in
another section of memory of DST execution unit 2.
[0227] DST execution unit 2 engages its DST client mod-
ule to slice grouping based DS error encode the sixth
intermediate result. To begin the encoding, the DST client

US 2016/0357637 Al

module partitions the sixth intermediate result (R1-6) into a
plurality of partitions (e.g., R1-6_1 through R1-6_z). For
each partition of the sixth intermediate result, the DST client
module uses the DS error encoding parameters of the data
(e.g., DS parameters of data 2, which includes 3/5 decode
threshold/pillar width ratio) to produce slice groupings. The
slice groupings are stored in the intermediate result memory
(e.g., allocated memory in the memories of DST execution
units 2-6 per the DST allocation information).

[0228] As is still further shown in FIG. 36, the DSTN
module is performing task 1_7 (e.g., correctly translated
words and/or phrases) on the list of incorrectly translated
words and/or phrases (e.g., the fifth intermediate result
R1-5) and the list of unique words (e.g., the second inter-
mediate result R1-2). To begin, the DSTN module accesses
the lists and partitions them into a corresponding number of
partitions.

[0229] For each pair of partitions (e.g., partition R1-2_1
and partition R1-5_1), the DSTN identifies a set of its DT
execution modules 90 to perform task 1_7 in accordance
with the DST allocation information (e.g., DT execution
modules 1_2, 2 2, 3_2, 4_2, and 5_2). For each pair of
partitions, the allocated set of DT execution modules
executes task 1_7 to produce partial results 102 (e.g., 1%
through “zth) of a list of correctly translated words and/or
phrases.

[0230] As indicated in the DST allocation information of
FIG. 32, DST execution unit 3 is assigned to process the first
through “zth™ partial results of task 1_7 to produce the
seventh intermediate result (R1-7), which is the list of
correctly translated words and/or phrases. In particular, the
processing module of DST execution 3 is engaged to aggre-
gate the first through “zth” partial results of the list of
correctly translated words and/or phrases to produce the
seventh intermediate result. The processing module stores
the seventh intermediate result as non-DS error encoded data
in the scratchpad memory or in another section of memory
of DST execution unit 3.

[0231] DST execution unit 3 engages its DST client mod-
ule to slice grouping based DS error encode the seventh
intermediate result. To begin the encoding, the DST client
module partitions the seventh intermediate result (R1-7) into
a plurality of partitions (e.g., R1-7_1 through R1-7_z). For
each partition of the seventh intermediate result, the DST
client module uses the DS error encoding parameters of the
data (e.g., DS parameters of data 2, which includes 3/5
decode threshold/pillar width ratio) to produce slice group-
ings. The slice groupings are stored in the intermediate result
memory (e.g., allocated memory in the memories of DST
execution units 3-7 per the DST allocation information).

[0232] InFIG. 37, the distributed storage and task network
(DSTN) module is performing task 2 (e.g., find specific
words and/or phrases) on the data 92. To begin, the DSTN
module accesses the data and partitions it into a plurality of
partitions 1-z in accordance with the DST allocation infor-
mation or it may use the data partitions of task 1_1 if the
partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules 90 to perform
task 2 in accordance with the DST allocation information.
From data partition to data partition, the set of DT execution
modules may be the same, different, or a combination
thereof. For the data partitions, the allocated set of DT

Dec. 8, 2016

execution modules executes task 2 to produce partial results
102 (e.g., 1* through “zth™) of specific words and/or phrases
found in the data partitions.

[0233] As indicated in the DST allocation information of
FIG. 32, DST execution unit 7 is assigned to process the first
through “zth” partial results of task 2 to produce task 2
intermediate result (R2), which is a list of specific words
and/or phrases found in the data. The processing module of
DST execution 7 is engaged to aggregate the first through
“zth” partial results of specific words and/or phrases to
produce the task 2 intermediate result. The processing
module stores the task 2 intermediate result as non-DS error
encoded data in the scratchpad memory or in another section
of memory of DST execution unit 7.

[0234] DST execution unit 7 engages its DST client mod-
ule to slice grouping based DS error encode the task 2
intermediate result. To begin the encoding, the DST client
module determines whether the list of specific words and/or
phrases is of a sufficient size to partition (e.g., greater than
a Terabyte). If yes, it partitions the task 2 intermediate result
(R2) into a plurality of partitions (e.g., R2_1 through R2_m).
If the task 2 intermediate result is not of sufficient size to
partition, it is not partitioned.

[0235] For each partition of the task 2 intermediate result,
or for the task 2 intermediate results, the DST client module
uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, and 7).

[0236] InFIG. 38, the distributed storage and task network
(DSTN) module is performing task 3 (e.g., find specific
translated words and/or phrases) on the translated data
(R1-3). To begin, the DSTN module accesses the translated
data (from the scratchpad memory or from the intermediate
result memory and decodes it) and partitions it into a
plurality of partitions in accordance with the DST allocation
information. For each partition, the DSTN identifies a set of
its DT execution modules to perform task 3 in accordance
with the DST allocation information. From partition to
partition, the set of DT execution modules may be the same,
different, or a combination thereof. For the partitions, the
allocated set of DT execution modules 90 executes task 3 to
produce partial results 102 (e.g., 1° through “zth”) of spe-
cific translated words and/or phrases found in the data
partitions.

[0237] As indicated in the DST allocation information of
FIG. 32, DST execution unit 5 is assigned to process the first
through “zth” partial results of task 3 to produce task 3
intermediate result (R3), which is a list of specific translated
words and/or phrases found in the translated data. In par-
ticular, the processing module of DST execution 5 is
engaged to aggregate the first through “zth” partial results of
specific translated words and/or phrases to produce the task
3 intermediate result. The processing module stores the task
3 intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST
execution unit 7.

[0238] DST execution unit 5 engages its DST client mod-
ule to slice grouping based DS error encode the task 3
intermediate result. To begin the encoding, the DST client
module determines whether the list of specific translated
words and/or phrases is of a sufficient size to partition (e.g.,

US 2016/0357637 Al

greater than a Terabyte). If yes, it partitions the task 3
intermediate result (R3) into a plurality of partitions (e.g.,
R3_1 through R3_m). If the task 3 intermediate result is not
of sufficient size to partition, it is not partitioned.

[0239] For each partition of the task 3 intermediate result,
or for the task 3 intermediate results, the DST client module
uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/
pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g.,
allocated memory in the memories of DST execution units
1-4, 5, and 7).

[0240] FIG. 39 is a diagram of an example of combining
result information into final results 104 for the example of
FIG. 30. In this example, the result information includes the
list of specific words and/or phrases found in the data (task
2 intermediate result), the list of specific translated words
and/or phrases found in the data (task 3 intermediate result),
the list of non-words found in the data (task 1 first interme-
diate result R1-1), the list of unique words found in the data
(task 1 second intermediate result R1-2), the list of transla-
tion errors due to non-words (task 1 sixth intermediate result
R1-6), and the list of correctly translated words and/or
phrases (task 1 seventh intermediate result R1-7). The task
distribution module provides the result information to the
requesting DST client module as the results 104.

[0241] FIG. 40A is a diagram of an embodiment of a
structure of a dispersed hierarchical index portion that
includes an index node 350 and a plurality of leaf nodes 352,
354, 356, and 358. The index node 350 includes one or more
of'a node type entry indicating an index node type in a node
type field, a null sibling dispersed storage network (DSN)
address entry in a sibling DSN address field, a null entry
sibling minimum index key entry in a sibling minimum
index key field, and a plurality of child node entries in a
plurality of child node fields, where each child node field
includes a minimum index key field and a DSN address field
associated with a corresponding child node. Each leaf node
352-358 includes one or more of a node type entry indicating
a leaf node in a node type field, a sibling DSN address entry
in a sibling DSN address field, a group entry in a resource
group field, a sibling minimum index key entry in a sibling
minimum index key field, and a plurality of data object
entries in a plurality of data object fields, where each data
object field includes an index key field and a corresponding
DSN address field.

[0242] Each of the plurality of leaf nodes 352-358 are
associated with one or more resource groups, where a
resource group includes one or more dispersed storage
network (DSN) resource elements (e.g., a dispersed storage
(DS) processing unit, a DS unit, a set of DS units, a DS
module, etc.). For example, resource group 1 includes an
association with leaf nodes 352-354, resource group 2
includes an association with leaf node 356, and resource
group 3 includes an association with leaf node 358. Each of
the plurality of leaf nodes 352-358 are child nodes with
respect to the index node 350. Leaf node 354 is a sibling
node to leaf node 352, leaf node 356 is a sibling node to leaf
node 354, leaf node 358 is a sibling node to leaf node 356,
and leaf node 358 has no sibling node.

[0243] The plurality of leaf nodes 352-358 includes a
corresponding plurality of data object index keys that are
ordered in accordance with ordering of attributes of an
attribute category where each data object index key of the

Dec. 8, 2016

plurality of data object index keys uniquely identifies one of
a plurality of data objects stored in the DSN in accordance
with the attribute category. For example, the plurality of leaf
nodes 352-358 includes a plurality of data object index keys
that includes names of a portion of a phonebook where the
plurality of object keys are ordered in accordance with an
alphabetical ordering of an alphabetical attribute category.
For instance, leaf node 352 includes index keys for phone-
book names A. Smith through E. Smith, leaf node 354
includes index keys for phonebook names F. Smith through
K. Smith, leaf node 356 includes index keys for phonebook
names L. Smith through Q. Smith, and leaf node 358
includes index keys for phonebook names T. Smith through
A. Tait. The data object index key identifies the one of the
plurality of data objects by an associated DSN address that
corresponds to a storage location for the one of the plurality
of data objects within a DSN. For example, the associated
DSN address is utilized to generate a plurality of sets of slice
names associated with a plurality of sets of encoded data
slices, where the one of the plurality of data objects is
encoded using a dispersed storage error coding function to
produce the plurality of sets of encoded data slices.

[0244] The dispersed index enables generation of a data
index list that identifies data objects having one or more
common attributes of an attribute category where indexing
of the plurality of data objects is organized in accordance
with the ordering of attributes of the attribute category. For
example, generation of a data index list includes identifying
data objects associated with data object index keys G. Smith,
H. Smith, K. Smith, L. Smith, and M. Smith when the one
or more common attributes includes identifying data objects
associated with data object index keys starting with G. Smith
and ending with M. Smith and the attribute category
includes alphabetized names. As another example, genera-
tion of a data index list includes identifying data objects
associated with data object index keys Q. Smith, T. Smith,
V. Smith, W. Smith, and A. Tait when the one or more
common attributes includes identifying data objects associ-
ated with data object index keys starting with Q. Smith and
higher (e.g., in an ascending alphabetized ordering) and the
attribute category includes alphabetized names. As yet
another example, generation of a data index list includes
identifying data objects associated with data object index
keys F. Smith, E. Smith, D. Smith, B. Smith, and A. Smith
when the one or more common attributes includes identify-
ing data objects associated with data object index keys
starting with F. Smith and lower (e.g., in a descending
alphabetized ordering) and the attribute category includes
alphabetized names.

[0245] Inan example of operation, a request is received to
retrieve a data object associated with an index key value of
G. Smith. The hierarchical ordered index structure that maps
the indexing of the plurality of data objects is searched to
identify data object level leat node 354 of the index structure
that includes a data object index key (e.g., G. Smith)
corresponding to the data object. A resource group 1 entry
corresponding to leaf node 354 is extracted from leaf node
354. The request is forwarded to an access module resource
(e.g., a DS processing unit) that corresponds to resource
group 1 to facilitate retrieving the data object.

[0246] FIG. 40B is a schematic block diagram of an
embodiment of a dispersed storage network (DSN) system
that includes the user device 12 of FIG. 1, at least one
director module 360, a plurality of N access modules, and a

US 2016/0357637 Al

dispersed storage network (DSN) memory 362. The director
module 360 may be implemented by at least one of the user
device 12, an access module, a processing module, the
distributed storage and task (DST) processing unit 16 of
FIG. 1, and a dispersed storage (DS) processing unit. Each
access module may be implemented by at least one of a
processing module, a user device, the DST processing unit
16 of FIG. 1, and a DS processing unit.

[0247] An example of operation, the user device 12 issues
an access request 364 (e.g., write, read) to the director
module 360, where the request includes an object name. The
director module 360 searches a dispersed hierarchical index
stored as one or more sets of encoded index slices in the
DSN memory 362 based on the object name to identify a
resource group. For example, the director module exchanges
index slice information 370 with the DSN memory 362 to
identify and retrieve slices of one or more nodes of the
dispersed hierarchical index based on a searchable attribute
associated with the object name. The director module 360
identifies an access module of the plurality of access mod-
ules associated with the identified resource group. The
director module 360 issues group access information to the
identified access module, where the group access informa-
tion includes the access request 364. For instance, one of,
group 1 access information is sent to access module 1, group
2 access information is sent to access module 2, through
group N access information is sent to access module N.
[0248] The access module issues slice access requests 366
(e.g., write slice requests, read slice requests) to the DSN
memory 362 based on the group access information and
receives slice access responses 368 (e.g., write slice
responses, read slice responses) from the DSN memory in
response to the requests. The access module may update the
dispersed hierarchical index by exchanging index group
slice information with the DSN memory (e.g., index group
1 slice information is associated with access module 1, index
group 2 slice information is associated with access module
2, through group index N slice information is associated
with access module N). For example, when writing data, the
index group slice information includes write slice requests
that includes new encoded index slices associated with a leaf
node associated with a data object of the object name (e.g.,
adding a data object entry to the leaf node that includes an
index key associated with the data object and a DSN address
utilized to store the data object in the DSN).

[0249] Next, the access module sends group access infor-
mation to the director module 360, where the group access
information includes a response based on the slice access
responses 368 (e.g., a write acknowledgment, the data object
when the data object has been read). The director module
360 issues an access response 365 to the user device 12
based on the group access information received from the
access module (e.g., forwards the response generated by the
access module).

[0250] FIG. 40C is a flowchart illustrating an example of
processing an access request. The method begins at step 370
where a director module receives an access request that
includes a searchable identifier. The searchable identifier
includes at least one of an object name, a data type, a user
identifier, a data owner identifier, and a data attribute. The
method continues at step 372 where the director module
searches a dispersed hierarchical index using the searchable
identifier to identify a resource group. The dispersed hier-
archical index may be stored in one or more of a local

Dec. 8, 2016

memory associated with the director module and a dispersed
storage network (DSN) memory. The searching includes
identifying a leaf node associated with the searchable iden-
tifier (e.g., best match in accordance with a searching
approach) and extracting a resource group identifier from the
identified leaf node.

[0251] The method continues at step 374 where the direc-
tor module issues group access information to an access
module associated with the identified resource group, where
the group access information includes the access request.
The issuing includes identifying the access module based on
the identified resource group (e.g., initiating a query, access-
ing a list, receiving an identifier of the access module),
generating the group access information to include one or
more of the access request, contents of the leaf node
associated with the searchable identifier, and a DSN address
associated with a data object for access, and sending the
group access information to the identified access module.
The method continues at step 376 where the access module
accesses the DSN memory based on the group access
information. For example, the access module issues slice
access requests to the DSN memory using the DSN address
associated with the data object for access, receives slice
access responses from the DSN memory, and generates a
response based on the slice access responses.

[0252] The method continues at step 378 where the access
module updates the dispersed hierarchical index with
regards to the resource group. The updating includes deter-
mining whether to update the dispersed hierarchical index
based on the access request and updating the dispersed
hierarchical index when the access module determines to
perform the update. For example, the access module deter-
mines to update the dispersed hierarchical index when the
access request includes at least one of a write request and a
delete request. For instance, when the access request
includes the delete request, the access module updates the
dispersed hierarchical index to delete an entry of the leaf
node corresponding to the data object, where the entry
corresponds to the data object. As another instance, when the
access request includes the write request, the access module
updates the dispersed hierarchical index to add an entry to
the leaf node corresponding to the data object, where the
entry corresponds to the data object.

[0253] The method continues at step 380 where the access
module issues further group access information to the direc-
tor module. The issuing includes generating the further
group access information to include the response based on
the slice access responses and sending the further group
access information to the director module. The method
continues at step 382 where the director module issues an
access response to a requesting entity based on the further
group access information. The issuing includes generating
the access response to include the response based on the
slice access responses and sending the access response to the
requesting entity.

[0254] FIG. 41A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
that includes a plurality of user devices 12 of FIG. 1, an
access module 384, the DSN memory 362 of FIG. 40B, and
at least one content distributor 386. The system functions to
distribute content to one or more of the plurality of user
devices 12. For example, the content distributor 386 sends
content directly to the one or more of the plurality of user
devices 12. As another example, the content distributor 386

US 2016/0357637 Al

sends the content via the access module 384 to the one or
more of the plurality of user devices 12.

[0255] The content may include one or more of movies,
music, books, copyrighted material, data files, and any type
of content for controlled access (e.g., license agreement,
purchase). When the content distributor 386 sends the con-
tent to the one or more of the plurality of user devices 12,
the content distributor 386 and a user device 12 exchange
content transactions 390. The content transactions 390
includes at least one of a list content request, a list content
response, a request to acquire content, and acquired content
for download. For example, the user device 12 issues a
request to purchase content to the content distributor 386
and the content distributor 386 sends content of the request
to purchase content directly to the user device 12.

[0256] In an example of operation, the content distributor
386 sends preload content 388 to the access module 384
from time to time, where the preload content 388 includes
one or more selections of content distributed by the content
distributor 386. For example, the content distributor 386
sends a new movie as the preload content 388 to the access
module 384 when the new movie becomes available.

[0257] A user device 12 of the plurality of user devices
may, from time to time, initiate a backup process with the
access module 384 to backup content stored by the user
device 12 using the DSN memory 362 as a backup storage
facility. The backup process includes a series of steps. In a
first step, the access module 384 receives the preload content
388 from at least one content distributor 386. In a second
step, the access module 384 generates one or more content
identifiers for the preload content 388 to update a content
list. In a third step, the access module 384 encodes the
preload content 388 using a dispersed storage error coding
function to produce one or more pluralities of sets of
encoded data slices. In a fourth step, the access module 384
stores the one or more pluralities of sets of encoded data
slices in the DSN memory 362. The storing includes issuing
slice access requests 366 to the DSN memory 362, where the
slice access requests 366 includes the one or more pluralities
of sets of encoded data slices. The access module 384 may
receive slice access responses 368 indicating status of the
storing from the DSN memory 362.

[0258] In a fifth step, the access module 384 receives a
content backup transaction message 392 from the user
device 12, where the content backup transaction message
392 includes a store content request and a content identifier.
In a sixth step, the access module 384 determines whether
the content identifier is included in the content list. When the
content identifier is not included in the content list, in a
seventh step, the access module 384 issues another content
backup transaction message 392 to the user device 12, where
the other content backup message 392 issued to the user
device 12 includes a store content response indicating to
send the content to the access module 384. In an eighth step,
the access module 384 receives the content from the user
device 12 (e.g., in yet another content backup transaction
message). In a ninth step, the access module 384 facilitates
storage of the content in the DSN memory 362 (e.g., the
access module encodes the content using the dispersed
storage error coding function to produce a plurality of sets
of encoded content slices, issues one or more sets of slice
access requests 366 to the DSN memory 362 where the one
or more sets of slice access requests 366 includes the

Dec. 8, 2016

plurality of sets of encoded content slices). In a tenth step,
the access module 384 adds the content identifier to the
content list.

[0259] Alternatively, after the sixth step, when the content
identifier is included in the content list, in an alternate
seventh step, the access module 384 issues the other content
backup transaction message 392 to the user device 12, where
the content backup transaction message 392 issued to the
user device 12 includes an alternate store content response
indicating to not send the content to the access module 384.
In another alternative to acquire content, the content dis-
tributor 386 issues another content transaction response to
the user device 12 that includes a DSN identifier associated
with storage of the content in the DSN memory 362 when
the content distributor 386 receives a corresponding content
transaction 390 from the user device 12 to purchase the
content. Next, the user device 12 issues yet another content
backup transaction message 392 to the access module 384
that includes a content restore request, where the content
restore request includes the DSN identifier associated with
storage of the content. The user device 12 may issue yet
another content backup transaction message 392 to the
access module 384 when previously stored content within
the user device has been lost and recovery is desired. The
access module 384 recovers the content from the DSN
memory 362 using the DSN identifier (e.g., issuing slice
access request 366 that includes read slice requests, receiv-
ing slice access responses 368 that includes read slice
responses, and decoding received slices to reproduce the
content) and sends the content to the user device via a still
further content backup transaction message 392. Alterna-
tively, or in addition to, the content backup transactions
messages 392 and content transactions 390 from the user
device 12 may be subject to an authorization verification to
verify that the user device 12 is authorized to hold the
content based on an authorization level granted by a corre-
sponding content distributor 386.

[0260] FIG. 41B is a flowchart illustrating an example of
backing up data. The method begins at step 394 where a
processing module (e.g., an access module) receives preload
content from one or more content distributors. The receiving
includes at least one of receiving an unsolicited content
distribution message and receiving a solicited content dis-
tribution message based on types of content backup from
user devices that has not been preloaded directly from the
one or more content distributors. The method continues at
step 396 where the processing module generates a plurality
of content identifiers associated with the preload content to
produce a content list. The generating includes at least one
of receiving the content identifier and performing a deter-
ministic function on at least a portion of the content to
produce the content identifier. The method continues at step
398 where the processing module encodes the preload
content using a dispersed storage error coding function to
produce one or more pluralities of sets of encoded content
slices. The method continues at step 400 where the process-
ing module stores the one or more pluralities of sets of
encoded content slices in a dispersed storage network (DSN)
memory.

[0261] The method continues at step 402 where the pro-
cessing module receives a backup content request from a
requesting entity (e.g., a user device). The method continues
at step 404 where the processing module identifies a content
identifier associated with the backup content request. The

US 2016/0357637 Al

identifying includes at least one of receiving the content
identifier and instructing the requesting entity to perform the
deterministic function on the content to produce the content
identifier and send the content identifier to the processing
module. The method continues at step 406 where the pro-
cessing module determines whether the content list includes
the content identifier. The method branches to step 410 when
the content list does not include the content identifier. The
method continues to step 408 when the content list includes
the content identifier. The method continues at step 408
where the processing module issues a backup content
response to the requesting entity that indicates to not send
the content when the content list includes the content
identifier.

[0262] The method continues at step 410 where the pro-
cessing module issues a backup content response to the
requesting entity that indicates to send the content when the
content list does not include the content identifier. The
indicator may further include instructions to encode the
content before sending. The method continues at step 412
where the processing module receives the content from the
requesting entity. The method continues at step 414 where
the processing module encodes the content using the dis-
persed storage error coding function to produce one or more
sets of encoded content slices when the content has not
previously been encoded. The method continues at step 416
where the processing module stores the one or more sets of
encoded content slices in the DSN memory (e.g., issue one
or more sets of write slice requests that includes the one or
more sets of encoded content slices). The method continues
at step 418 where the processing module updates the content
list to include the content identifier. The updating includes
one or more of adding the content identifier to the content
list of produce an updated content list and storing the
updated content list in one or more of a local memory and
the DSN memory.

[0263] In an example of content retrieval, the requesting
entity issues a retrieve content request (e.g., a restore
request) to the processing module that includes a content
identifier. The processing module recovers the requested
content from the DSN memory (e.g., issue one or more sets
of read slice requests) based on the content identifier and
sends the recovered content to the requesting entity.
[0264] FIG. 42A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
that includes at least one user device 12 of FIG. 1, at least
one access module 384 of FIG. 41A, and the DSN memory
362 of FIG. 40B. The DSN memory 362 includes a plurality
of storage units 426. A storage unit 426 may be implemented
utilizing the distribute storage and task (DST) execution unit
36 of FIG. 1.

[0265] The system is operable to store data from the user
device 12 in the DSN memory 362 in accordance with a
payment-for-storage scheme. The payment-for-storage
scheme includes a processing module (e.g., of one or more
of the access module 384 and a storage unit 426 of the
plurality of storage units) receiving a storage request (e.g.,
a store data request 420, a write slice request 422) from a
requesting entity (e.g., from the user device 12, from the
access module 384), where the storage request includes a
storage payment credit and at least one of a data object for
storage in the DSN memory 362 and an encoded data slice
for storage in the storage unit 426. The storage request may
further include a requesting entity identifier and a data

Dec. 8, 2016

owner identifier. The storage payment credit includes at least
one of pre-paid payment card information, electronic money
information, pre-paid debit card information, credit account
information, credit card information, third-party payer infor-
mation, billing account information, and any electronic
payment mechanism to represent storage payment credits.
[0266] The processing module determines a storage time
period based on the storage payment credit and a storage
policy function. The storage policy function includes storage
time information (e.g., how long to store, what action to take
when time of storage has expired) based on one or more of
a payer identity, a type of data for storage, an amount of data
for storage, a data identifier of the data for storage, a vault
identifier associated with the data for storage, volume dis-
count information, an amount of data previously stored
indicator, a credit rating, and a storage time formula. For
example, the processing module determines to store the data
for one month when the storage payment credit is one dollar
and the storage policy function indicates that one month of
storage time is allowed for one dollar of payment. As
another example, the processing module determines to store
the data indefinitely when the storage payment credit is
greater than or equal to a minimum storage credit required
for infinite storage.

[0267] The processing module facilitates storage for the
storage request for the storage time period. The processing
module detects whether the time period has expired. When
the time period has expired, the processing module performs
one or more steps of a variety of steps in accordance with the
storage policy function. A first of the variety of steps
includes facilitating permanent deletion (e.g., of a slice, of a
set of slices, of a plurality of sets of slices). A second of the
variety of steps includes facilitating changing a reliability
performance level (e.g., deleting one or more slices of a set
of'slices leaving at least a decode threshold number of slices
of the set of slices intact). A third of the variety of steps
includes facilitating blocking access (e.g., inhibiting read-
ing) to one or more slices. A fourth of the variety of steps
includes extending the time period when receiving addi-
tional storage payment credit. The receiving may include
prompting a payer for the additional storage payment credit.
[0268] FIG. 42B is a flowchart illustrating an example of
storing data. The method begins at step 428 where a pro-
cessing module (e.g., of an access module, of a storage unit)
receives a storage request that includes storage payment
credit. The method continues at step 430 where the process-
ing module determines a storage time period based on the
storage payment credit and a storage policy function. The
method continues at step 432 where the processing module
facilitates storage for the storage request in a dispersed
storage network (DSN) system. When storing a data object,
the facilitating includes encoding a data object of the request
to produce a plurality of sets of slices and issuing write slice
requests to the DSN to include the plurality of sets of slices
and the storage time period in accordance with the storage
policy function. When storing a slice, the facilitating
includes storing the slice in a local memory in accordance
with the storage time period.

[0269] The method continues at step 434 where the pro-
cessing module determines whether the time period expires
and when the time period expires, the processing module
initiates a time period expiration function in accordance with
the storage policy function. When the time period function
includes downgrading availability (e.g., to provide lowered

US 2016/0357637 Al

performance of write availability and/or recovery reliabil-
ity), the method continues to step 436 where the processing
module facilitates deletion of one or more slices per set of
slices of the plurality of sets of slices. For example, the
processing module deletes all slices of the data object. As
another example, the processing module deletes all slices of
one or more sets of slices of the data object.

[0270] When the time period function includes suspending
access, the method continues to step 438 where the process-
ing module facilitates blocking access to one or more slices
per set of slices. The facilitating includes at least one of
rejecting read requests for slice names affiliated with the one
or more slices per set of slices and flagging the one or more
slices per set of slices as unavailable. When the time period
function includes up charging, the method continues to step
440 where the processing module facilitates extending the
storage time period when receiving additional storage pay-
ment credit. The scanning includes issuing an additional
storage payment credit request to one or more of a request-
ing entity, a payer, and a data owner, receiving the additional
storage payment credit, and extending the storage time
period based on the received additional storage payment
credit and in accordance with the storage policy function.
[0271] FIGS. 43A-43D are schematic block diagrams of
an embodiment of a dispersed storage (DS) unit set 442 and
associated dispersal parameters 444, 446, 448, and 450
illustrating a rebuilding sequence example where the DS
unit set 442 includes a set of DS units 1-8. Each DS unit may
be implemented utilizing the distribute storage and task
(DST) execution unit 36 of FIG. 1.

[0272] FIG. 43A illustrates a data segment that has been
encoded to produce a set of slices that are stored in the set
of DS units 1-8. Associated dispersal parameters 444
includes a decode threshold of 5, a rebuild threshold of 6, a
pillar width of 8, and all eight slices of the set of slices are
good (e.g., available with valid integrity). As such, a mini-
mum of 5 slices are required to recover the data segment by
decoding any combination of a decode threshold number of
slices of the set of slices. The rebuild threshold indicates a
number of good slices threshold (e.g., when the number of
good slices is less than or equal to the rebuilt threshold
number) where a rebuilding process is activated to rebuild
one or more slices associated with one or more storage
errors.

[0273] FIG. 43B illustrates a storage error associated with
a third slice of the set of slices thus lowering the number of
good slices to 7 from 8. A determination is made as to
whether the number of good slices is less than or equal to the
rebuild threshold of the dispersal parameters 446. Rebuild-
ing is not initiated yet since the number of good slices (e.g.,
7) is greater than the rebuild threshold (e.g., 6).

[0274] FIG. 43C illustrates when another storage error is
detected, where the other storage error is associated with a
sixth slice of the set of slices lowering the number of good
slices to 6 from 8. A determination is made as to whether the
number of good slices is less than or equal to the rebuilt
threshold of the dispersal parameters 448. Rebuilding is
initiated since the number of good slices (e.g., 6) is equal to
the rebuild threshold (e.g., 6).

[0275] FIG. 43D illustrates resolving the storage errors
associated with the third slice and the sixth slice such that all
eight slices of the set of slices are good slices after rebuild-
ing in accordance with the dispersal parameters 450. Alter-
natively, the rebuilding may be initiated when a number of

Dec. 8, 2016

storage errors of the set of slices is greater than or equal to
an alternate rebuild threshold when the rebuild threshold is
represented as a number of storage errors threshold. For
example, the rebuilding is initiated when the number of
storage errors is 2 when the alternate rebuild threshold is 2
storage errors.

[0276] FIG. 43E is a flowchart illustrating an example of
rebuilding an encoded data slice. The method begins at step
452 where a processing module (e.g., of an access module)
detects a storage error of an encoded data slice of a set of
encoded data slices in a dispersed storage network (DSN).
The storage error includes at least one of a missing encoded
data slice and an integrity value of the encoded data slice
comparing unfavorably to a stored integrity value for the
encoded data slice. The detecting includes one or more of
receiving an error message and performing a slice scanning
function (e.g., issue list requests to a set of storage units,
receive a set of list responses, compare the list responses to
identify the storage error). The method continues at step 454
where the processing module determines a number of avail-
able error-free encoded data slices of the set of encoded data
slices to produce a number of available encoded data slices.
The determining includes one or more of initiating a slice
integrity query, comparing slice scanning results, and receiv-
ing an error message.

[0277] The method continues at step 456 where the pro-
cessing module determines whether the number of available
encoded data slices compares unfavorably to a rebuild
threshold number. The processing module determines that
the comparison is unfavorable when the number of available
encoded data slices is less than or equal to the rebuild
threshold number. When the comparison is unfavorable, the
method continues at step 458 where the processing module
retrieves a decode threshold number of available error-free
encoded data slices of the set of encoded data slices. The
retrieving includes issuing at least a decode threshold num-
ber of read slice requests to a corresponding at least a decode
threshold number of storage units of the set of storage units
and receiving the decode threshold number of available
error-free encoded data slices.

[0278] The method continues at step 460 where the pro-
cessing module decodes the decode threshold number of
available error-free encoded data slices to reproduce a data
segment. The decoding includes decoding the decode
threshold number of available error-free encoded data slices
using a dispersed storage error coding function to reproduce
the data segment. The method continues at step 462 where
the processing module encodes the data segment to produce
one or more rebuilt encoded data slices. The encoding
includes encoding the data segment using the dispersed
storage error coding function to produce the one or more
rebuilt encoded data slices. The method continues at step
464 where the processing module stores the one or more
rebuilt encoded data slices in the DSN. The storing includes,
for each rebuilt encoded data slice, issuing a write slice
request to a corresponding storage unit of the set of storage
units.

[0279] FIGS. 44A, C, D are schematic block diagrams of
another embodiment of a dispersed storage network (DSN)
illustrating an example of adjusting dispersed storage net-
work traffic due to rebuilding. The DSN includes a plurality
of distributed storage and task (DST) client modules A-Z,
the network 24 of FIG. 1, the distributed storage and task
network (DSTN) module 22 of FIG. 1, a performance

US 2016/0357637 Al

module 470, and a rebuilding module 472. The DST client
modules A-Z may be implemented using the DST client
module 34 of FIG. 1. The DSTN module 22 includes a set
of DST execution units 1-8. Each DST execution unit may
be implemented utilizing the DST execution unit 36 of FIG.
1. Alternatively, the DSTN module 22 includes any number
of sets of DST execution unit sets. Hereafter, the DST
execution units 1-8 may be referred to interchangeably as
storage units 1-8. The performance module 470 and the
rebuilding module 472 may be implemented utilizing one or
more of the DST client module 34 of FIG. 1, the DST
execution unit 36 of FIG. 1, a server, a user device, the
distributed storage and task network (DSTN) managing unit
18 of FIG. 1, and the DST integrity processing unit 20 of
FIG. 1.

[0280] A computer readable storage medium of the DSN
includes one or more memory sections. Each memory sec-
tion stores operational instructions. Each of the DST client
modules A-Z, the DST execution units 1-8, a performance
module 470, and the rebuilding module 472 includes one or
more processing modules of one or more computing devices
of the DSN. The one or more processing modules execute
the operational instructions stored by the one or more
memory sections. As a specific example, a first memory
section stores operational instructions that are executed by
the one or more processing modules of the performance
module 470 to cause the one or more computing devices to
perform functions of the performance module 470. As
another specific example, a second memory section stores
operational instructions that are executed by the one or more
processing modules of the performance module 470 to cause
the one or more computing devices to perform further
functions of the performance module 470. As yet another
specific example, the second memory section stores opera-
tional instructions that are executed by the one or more
processing modules of the rebuilding module 472 to cause
the one or more computing devices to perform functions of
the rebuilding module 472. As a still further specific
example, a third memory section stores operational instruc-
tions that are executed by the one or more processing
modules of the rebuilding module 472 to cause the one or
more computing devices to perform further functions of the
rebuilding module 472. As yet a still further specific
example, one or more of the first, second, and third memory
sections stores operational instructions that are executed by
the one or more processing modules of one or more of the
DST execution units 1-8 to cause the one or more computing
devices to perform any function associated with the perfor-
mance module 470 and/or the rebuilding module 472.

[0281] The DSN is operable to access data stored in the
DSTN module 22, to adjust DSN traffic levels, and to rebuild
the stored data. As a specific example of accessing the data,
the DST client modules A-Z exchanges, via the network 24,
access messages A-Z to the DSTN module 22 as DSTN
messages 1-8. Each access message includes one or more of
a write slice request, a write slice response, a read slice
request, a read slice response, a list slice request, a list slice
response, a delete slice request, a delete slice response, and
network traffic information 478. Each DSTN message
includes one or more of the access messages, the network
traffic information 478, and rebuilding messages 476. For
example, DST client module A dispersed storage error
encodes the data in accordance with dispersal parameters
474 to produce a plurality of sets of encoded data slices,

Dec. 8, 2016

where a set of encoded data slices includes encoded data
slices 1-1, 1-2, 1-3, through 1-8; generates a set of access
messages A that includes a set of DSTN messages 1-8,
where the set of DSTN messages 1-8 includes a set of write
slice requests and where the set of write slice requests
includes the plurality of sets of encoded data slices; and
sends, via the network 24, the set of write slice requests to
the set of DST execution units 1-8. The set of DST execution
units 1-8 stores the plurality of sets of encoded data slices in
local memory that is associated with the DST execution
units 1-8.

[0282] The dispersal parameters 474 includes one or more
of'a decode threshold, a rebuild threshold, a pillar width, and
may further indicate a number of good encoded data slices
of a set of encoded data slices. Each set of encoded data
slices includes the pillar width number of encoded data
slices. A data segment that was encoded to produce a set of
encoded data slices may be recovered when at least the
decode threshold number of encoded data slices (e.g., good
encoded data slices) are available from the set of encoded
data slices. The rebuild threshold is greater than or equal to
the decode threshold and less than or equal to the pillar
width minus 1.

[0283] As a specific example of rebuilding the data, the
rebuilding module 472 exchanges the rebuilding messages
476 with the set of DST execution units 1-8. The rebuilding
messages 476 includes one or more of a list slice message
(e.g., a list slice request, a list slice response, a list slice
digest request, a list slice digest response), a read slice
message (e.g., a read slice request, a read slice response),
and a write rebuilt slice message (e.g., a write slice request,
a write slice response). For the example, the rebuilding
module 472 issues, via the network 24, rebuilding messages
476 that includes a set of DSTN messages 1-8 that includes
a set of list slice requests 1-8 to the set of DST execution
units 1-8; receives rebuilding messages 476 that includes
other DSTN messages 1-8 that includes a set of list slice
responses; and identifies an encoded data slice for rebuilding
by detecting a storage error based on at least some of the set
of list slice responses. For instance, the rebuilding module
472 compares list slice responses from the set of DST
execution units 1-8 and identifies encoded data slice 1-3 as
the encoded data slice for rebuilding when the list slice
response 3 from the DST execution unit 3 indicates that
encoded data slice 1-3 is missing and/or corrupted.

[0284] Having identified the encoded data slice for
rebuilding, the rebuilding module 472 indicates encoded
data slice 1-3 as a flagged encoded data slice for rebuilding.
The indicating includes one or more of updating a local list
of flagged encoded data slices; issuing a rebuilding request
to another rebuilding module, where the rebuilding request
identifies encoded data slice 1-3 as the flagged encoded data
slice; and facilitating initiation of rebuilding of one or more
flagged encoded data slices of a common set of encoded data
slices based on rebuilding criteria.

[0285] The rebuilding criteria includes one or more of the
rebuilding threshold, which triggers a rebuilding process for
one of the flagged encoded data slices; a wait time for a
storage unit storing a flagged encoded data slice to come
back online (e.g., detection hysteresis); and a rebuilding
queue priority of the flagged encoded data slices. For
example, the rebuilding module 472 initiates the rebuilding
when a number of available encoded data slices of the
common set of encoded data slices is less than or equal to the

US 2016/0357637 Al

rebuilding threshold. For instance, the rebuilding module
does not initiate the rebuilding when the number of available
encoded data slices of the common set of encoded data slices
is 7 and the rebuild threshold is 6. As another instance, the
rebuilding module initiates the rebuilding when the number
of available encoded data slices of the common set of
encoded data slices is 6 and the rebuild threshold is 6.
[0286] The network traffic information 478 includes an
indicator of a level of network traffic of the DSN. The
network traffic of the DSN includes a portion of the network
traffic due to the rebuilding of the flagged encoded data
slices and a portion due to the accessing of the data. The
indicators of the portion of the network traffic due to the
rebuilding of the flagged encoded data slices based on the
exchanging of the rebuilding messages 476 includes one or
more of a rebuilding message latency level, a rebuilding
message request volume level, a system level rebuilding
message response latency (e.g., DST client module C
receives a request to rebuild the data object), a system level
rebuilding message volume level, and storage error infor-
mation (e.g., statistics associated with a failure of writing
and/or reading). The indicators of the portion of the network
traffic due to the accessing of the data based on the exchang-
ing of the access messages A-Z includes one or more of a
data access request latency level, a data access request
volume level, a system level access request response latency
level (e.g., latency of processing a request to store data
where the request is received by DST client module Z), and
a system level access request volume level (e.g., volume of
all requests to access data received by the DST client
modules A-Z).

[0287] FIG. 44A illustrates initial steps of the example of
the adjusting of the DSN traffic due to rebuilding where the
performance module 470 monitors the network traffic within
the DSN. The monitoring of the network traffic includes one
or more of monitoring the latency in responding to the data
access requests, monitoring the volume of the data access
request, monitoring latency in responding to the system
level access request, and monitoring the volume of the
system level access requests. As a specific example, the
performance module 470 issues, via the network 24, a
network traffic information request to the DST client mod-
ules A-Z and the set of DST execution units 1-8 and receives
the network traffic information 478 from at least some of the
DST client modules A-Z and the set of DST execution units
1-8.

[0288] Having monitored the network traffic within the
DSN, the performance module 470 adjusts the portion of the
network traffic due to the rebuilding network traffic when the
network traffic compares unfavorably to a desired network
traffic function. The desired network traffic function includes
one or more of a threshold level of an indicator of the
network traffic and a trigger point of a curve of the indicators
of the network traffic. When the network traffic compares
unfavorably to the desired network traffic function, the
performance module 470 reduces the portion of the network
traffic due to the rebuilding flagged encoded data slices by
at least one of changing the rebuilding criteria for the flagged
encoded data slices and changing rebuilding network traffic
protocols. The comparing of the network traffic to the
desired network traffic function is discussed in greater detail
with reference to FIG. 44B.

[0289] FIG. 44B is a timing diagram illustrating an
example of adjusting rebuilding network traffic, where the

Dec. 8, 2016

desired network traffic function includes the curve versus
time 486. As a specific example, the desired network traffic
function includes a maximum desired data access latency
level 480 to which a curve of data access latency 482 is
compared. A curve trigger point is reached when an unfa-
vorable comparison to the curve of the desired network
traffic function occurs. For instance, the data access latency
482 reaches the maximum desired data access latency level
480.

[0290] When the curve trigger point is reached, the portion
of the network traffic due to the rebuilding of the flagged
encoded data slices is reduced. For instance, the rebuilding
threshold is reduced when the curve trigger point is detected
at time t1. When the data access latency 482 continues to
climb, the performance module 470 of FIG. 44A increas-
ingly changes the at least one of the rebuilding criteria and
the rebuilding network traffic protocols as the network traffic
increases the unfavorable comparison to the curve of the
desired network traffic function.

[0291] After reducing the portion of the network traffic
due to rebuilding the flagged encoded data slices, the per-
formance module 470 continues to monitor the network
traffic within the DSN. When the network traffic compares
favorably to the desired network traffic function, the perfor-
mance module 470 shall undo the changing of the at least
one of the rebuilding criteria and the rebuilding network
traffic 484 protocols. For example, when the data access
latency 482 is detected to fall below the maximum desired
data access latency level 480 at time t2, the performance
module 470 allows the portion of the network traffic asso-
ciated with the rebuilding of the flagged encoded data slices
to rise. For instance, the performance module 470 increases
the rebuilding threshold. When the network traffic continues
to compare unfavorably to the desired network traffic func-
tion, the performance module 470 further reduces the por-
tion of the network traffic due to the rebuilding of the flagged
encoded data slices by at least one of further changing the
rebuilding criteria and further changing the rebuilding net-
work traffic protocols.

[0292] FIG. 44C illustrates further steps of the example of
the adjusting of the DSN traffic due to rebuilding. As a
specific example, the performance module 470 generates
rebuilding information 490 when the network traffic com-
pares unfavorably to the desired network traffic function and
the performance module 470 reduces the portion of the
network traffic due to the rebuilding flagged encoded data
slices by the at least one of the changing the rebuilding
criteria for the flagged encoded data slices and the changing
of the rebuilding network traffic protocols. The rebuilding
information 490 includes one or more of the rebuilding
criteria, the rebuilding network traffic protocols, and the
dispersal parameters 488. Having generated the rebuilding
information 490, the performance module 470 sends, via the
network 24, the rebuilding information 490 to one or more
of the rebuilding module 472 and the set of DST execution
units 1-8.

[0293] As a specific example of the changing the rebuild-
ing criteria, the performance module 470 decreases the
rebuilding threshold (e.g., the rebuilding threshold triggers
the rebuilding process for one of the flagged encoded data
slices) such that more encoded data slices of a common set
of encoded data slices are simultaneously rebuilt thus low-
ering the portion of the network traffic associated with the
rebuilding of the flagged encoded data slices. As another

US 2016/0357637 Al

specific example, the performance module 470 increases a
wait time for a DST execution unit storing a flagged encoded
data slice of the flagged encoded data slices to come back on
line. As yet another example, the performance module 470
adjusts rebuild queue priorities of the flagged encoded data
slices. For instance, the performance module 470 increases
priority of rebuilding for a particular flagged encoded data
slice and lowers priority of rebuilding for another particular
flagged encoded data slice based on an association of
encoded data slices and priorities.

[0294] After reducing the portion of the network traffic
due to rebuilding flagged encoded data slices (e.g., by
lowering the rebuild threshold), the performance module
470 continues to monitor the network traffic within the DSN.
When the network traffic compares favorably to the desired
network traffic function, the performance module 470
undoes the changing of the at least one of the rebuilding
criteria and the rebuilding network traffic protocols. For
example, the performance module 470 raises the rebuild
threshold after lowering the rebuild threshold. For instance,
the performance module 470 raises the rebuild threshold
from 6 to 7. When the network traffic continues to compare
unfavorably to the desired network traffic function, the
performance module 470 further reduces the portion of the
network traffic due to the rebuilding of the flagged encoded
data slices by at least one of further changing the rebuilding
criteria and further changing the rebuilding network traffic
protocols. The changing of the rebuilding network traffic
protocols is discussed in greater detail with reference to FIG.
44D.

[0295] FIG. 44D illustrates final steps of the example of
the adjusting of the DSN traffic due to rebuilding. As an
example of the rebuilding of the flagged encoded data slices,
for the flagged encoded data slice 1-3 of the corresponding
set of encoded data slices 1-1 through 1-8, the rebuilding
module 472 receives, via the network 24, read slice
responses 494 from at least some of the set of DST execution
units 1-8 in response to read slice requests, where the read
slice responses 494 includes at least some of read slice
responses 1, 2, 5, 6, and 7 from DST execution units 1, 2, 5,
6, and 7. Having received the read slice responses 494, the
rebuilding module 472 dispersed storage error decodes a
decode threshold number of encoded data slices from the
received read slice responses 494 in accordance with the
dispersal parameters 492 to reproduce a data segment cor-
responding to the set of encoded data slices 1-1 through 1-8.
[0296] Having reproduced the data segment, the rebuild-
ing module 472 dispersed storage error encodes the repro-
duced data segment to produce a rebuilt set of encoded data
slices 1-1 through 1-8 that includes a rebuilt encoded data
slice 3. Having produced the rebuilt encoded data slice 1-3,
the rebuilding module 472 issues, via the network 24, a write
rebuilt slice request 3 to the DST execution unit 3, where the
write rebuilt slice request 3 includes the rebuilt encoded data
slice 1-3. The DST execution unit 3 stores the rebuilt
encoded data slice 1-3.

[0297] As a specific example of the adjusting of the DSN
traffic by changing the rebuilding network traffic protocols,
the rebuilding module 472 bundles rebuilding requests to a
storage unit for multiple ones of the flagged encoded data
slices. The rebuilding requests includes one or more of the
read slice requests and the write rebuilt slice request. For
instance, the rebuilding module 472 issues a single write
rebuilt slice request to the DST execution unit 3 when the

Dec. 8, 2016

flagged encoded data slices includes the encoded data slice
1-3 and another encoded data slice x-3 of another set of
encoded data slices, where the single write rebuilt slice
request includes the rebuilt encoded data slice 1-3 and a
rebuilt encoded data slice x-3.

[0298] As another specific example of the adjusting of the
DSN traffic by changing the rebuilding network traffic
protocols, the rebuilding module 472 serializes transmission
of a set of rebuilding requests to storage units regarding one
of the flagged encoded data slices. For instance, the rebuild-
ing module 472 generates a set of read slice requests to read
the set of encoded data slices 1-1 through 1-8 and issues,
serially with respect to time, each of the read slice requests
to the set of DST execution units 1-8 (e.g., except for DST
execution unit 3).

[0299] As yet another specific example of the adjusting of
the DSN traffic by changing the rebuilding network traffic
protocols, the rebuilding module 472 assigns an individual
response timeslot to each of multiple storage units for
individually responding to a rebuild request regarding one or
more of the flagged encoded data slices. For example, the
rebuilding module 472 generates the set of read slice
requests to include a timeslot identifier such that each of the
DST execution units issues a corresponding read slice
response within an assigned timeslot associated with a
timeslot identifier.

[0300] FIG. 44E is a flowchart illustrating an example of
adjusting dispersed storage network (DSN) traffic due to
rebuilding. The method begins at step 500 where a process-
ing module (e.g., of a performance module of a DSN; of a
rebuilding module of the DSN) monitors network traffic
within the DSN. As a specific example, the processing
module monitors latency in responding to data access
requests (e.g., for typical data access, for access with regards
to rebuilding). As another specific example, the processing
module monitors volume of the data access requests. As yet
another specific example, the processing module monitors
latency in responding to system level access requests. As a
still further specific example, the processing module moni-
tors volume of the system level access requests.

[0301] When the network traffic compares unfavorably to
a desired network traffic function, the method continues at
step 502 where the processing module reduces a portion of
the network traffic due to rebuilding flagged encoded data
slices by at least one of changing rebuilding criteria for the
flagged encoded data slices and changing rebuilding net-
work traffic protocols. As a specific example of the changing
the rebuilding criteria, the processing module decreases a
rebuilding threshold which triggers a rebuilding process for
one of the flagged encoded data slices. As another specific
example, the processing module increases a wait time for a
storage unit storing a flagged encoded data slice of the
flagged encoded data slices to come back on line. As yet
another specific example, the processing module adjusts
rebuild queue priorities of the flagged encoded data slices.

[0302] As a specific example of the changing the rebuild-
ing network traffic protocols, the processing module bundles
rebuilding requests to a storage unit for multiple ones of the
flagged encoded data slices. As another specific example, the
processing module serializes transmission of a set of
rebuilding requests to storage units regarding one of the
flagged encoded data slices. As yet another specific example,
the processing module assigns an individual response

US 2016/0357637 Al

timeslot to each of multiple storage units for individually
responding to a rebuild request regarding one or more of the
flagged encoded data slices.

[0303] After reducing the portion of the network traffic
due to rebuilding flagged encoded data slices, the method
continues at step 504 where the processing module contin-
ues monitoring the network traffic within the DSN. When
the network traffic compares favorably to the desired net-
work traffic function, the method continues at step 506
where the processing module undoes the changing of the at
least one of the rebuilding criteria and the rebuilding net-
work traffic protocols.

[0304] When the network traffic continues to compare
unfavorably to the desired network traffic function, the
method continues at step 508 where the processing module
further reduces the portion of the network traffic due to the
rebuilding of the flagged encoded data slices by at least one
of further changing the rebuilding criteria and further chang-
ing the rebuilding network traffic protocols. As a specific
example, the desired network traffic function includes a
curve and the processing module increasingly changes the at
least one of the rebuilding criteria and the rebuilding net-
work traffic protocols as the network traffic increases the
unfavorable comparison to the curve of the desired network
traffic function. For example, the processing module further
reduces the rebuilding threshold.

[0305] FIG. 45A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
that includes the user device 12 of FIG. 1, the access module
384 of FIG. 41A, and the dispersed storage network (DSN)
memory 362 of FIG. 40A. The DSN memory 362 includes
a plurality of sites 1-S, where each site includes one or more
storage units 426 of FIG. 42A. Storage units 426 of the
plurality of sites form a set of storage units for storage of one
or more sets of encoded data slices, where a data segment is
encoded using a dispersed storage error coding function to
produce the one or more sets of encoded data slices. Access
performance between the access module 384 and each site of
the plurality of sites 1-S may vary from site to site based on
one or more of network loading, network connectivity
capabilities, network availability, network connectivity
costs, distance between the access module and the site,
storage unit performance capability, and storage unit load-
ing.

[0306] The system is operable to encode data using the
dispersed storage error coding function in accordance with
dispersed storage error coding function parameters, where a
parameter multiple of baseline parameters are utilized as the
dispersed storage error coding function parameters. The
dispersed storage error coding function parameters includes
at least a pillar width number and a decode threshold
number. For example, the system encodes data using dis-
persed storage error coding function parameters that
includes a pillar width of 45 and a decode threshold of 30
when baseline parameters includes a baseline pillar width of
15 and a baseline decode threshold number of 10 and a
parameter multiple is 3. As another example, the system
encodes the data using dispersed storage error coding func-
tion parameters that includes a pillar width of 15 and a
decode threshold of 10 when baseline parameters includes
the baseline pillar width of 15 and the baseline decode
threshold number of 10 and a parameter multiple is 1.
[0307] System storage and retrieval performance may be
enhanced by accessing more encoded data slices via storage

Dec. 8, 2016

units associated with better performance than other storage
units. For example, enhanced performance may be provided
when accessing encoded data slices using one or more
storage units at site 1 rather than using one or more storage
units at site 3 when access performance between the access
module and site 1 is superior (e.g., faster access) to access
performance between the access module and site 3. For
instance, the access module accesses three slices per storage
unit of the one or more storage units at site 1 when the
parameter multiple is 3.

[0308] In an example of operation of the access module
384 when storing the data, the access module 384 receives
a data access request 520 from the user device 12, where the
data access request 520 includes the data. The access module
384 selects the set of storage units. The access module 384
identifies a baseline pillar width and a baseline decode
threshold. The identifying includes at least one of perform-
ing a lookup based on an identifier associated with one or
more of the user device 12, the data access request 520, and
a vault identifier. The access module 384 determines esti-
mated performance of each storage unit 426 of the set of
storage units (e.g., initiating a test, issuing a query, perform-
ing a lookup).

[0309] The access module 384 determines the parameter
multiple based on one or more of the estimated performance,
the baseline pillar width, and the baseline decode threshold.
The access module 384 multiplies the parameter multiple by
each of the baseline pillar width and the baseline decode
threshold to produce a pillar width and a decode threshold
respectively. The access module 384 encodes the data using
the dispersed storage error coding function and in accor-
dance with the pillar width and the decode threshold to
produce a plurality of sets of encoded data slices.

[0310] The access module 384 facilitates storing the plu-
rality of sets of encoded data slices in the set of storage units,
where each storage unit 426 receives a parameter multiple
number of encoded data slices for each set of encoded data
slices of the plurality of sets of encoded data slices. The
facilitating includes generating a slice access request 366 for
each storage unit 426 of the set of storage units, where slice
access requests 366 includes write slice requests that
includes, for each storage unit, the parameter multiple
number of encoded data slices. The access module 384
stores the parameter multiplier in one or more of a vault, a
directory, a local memory, and a dispersed hierarchical
index. The access module 384 may issue a data access
response 522 to the user device 12 that indicates confirma-
tion of storage of the data.

[0311] In an example of operation of the access module
384 when retrieving the data, the access module 384
receives another data access request 520 from the user
device 12 that includes a data retrieval request for the data.
The access module 384 recovers the parameter multiple and
retrieves the baseline decode threshold number and the
baseline pillar width. The access module 384 reproduces the
pillar width number and the decode threshold number by
multiplying the recovered parameter multiple by the
retrieved baseline pillar width number and the baseline
decode threshold number. The access module 384 identifies
the set of storage units. The access module 384 determines
an updated estimated performance of the set of storage units.
[0312] The access module 384 selects one or more storage
units 426 of the set of storage units based on the updated
estimated performance of the set of storage units and the

US 2016/0357637 Al

recovered parameter multiple. For example, the access mod-
ule 384 selects storage units associated with best estimated
performance of the set of storage units such that a parameter
multiple number of encoded data slices are to be retrieved
from each of the selected storage units to produce at least a
decode threshold number of retrieved encoded data slices.

[0313] The access module 384 facilitates recovering the
decode threshold number of retrieved encoded data slices
from the selected storage units. For example, the access
module generates slice access requests 366 for each storage
unit of the selected storage units to request retrieval of the
parameter multiple number of encoded data slices. The
access module 384 issues the slice access requests 366 to the
selected storage units. The access module 384 receives slice
access responses 368 from the selected storage units to
recover the decode threshold number of retrieved encoded
data slices. The access module 384 decodes the decode
threshold number of retrieved encoded data slices to repro-
duce a data segment of the data. The retrieval continues to
reproduce each data segment of a plurality of data segments
of the data.

[0314] FIG. 45B is a flowchart illustrating an example of
accessing data. The method begins at step 524 where a
processing module (e.g., of an access module) receives data
for storage in a dispersed storage network (DSN). The
receiving may further include receiving one or more of a
data identifier, a data owner identifier, a requesting entity
identifier, a DSN address, baseline parameters, and a data
type indicator. The method continues at step 526 where the
processing module selects a set of storage units. The select-
ing may be based on one or more of a lookup, the data owner
identifier, a vault identifier, the requesting entity identifier,
and the data type indicator. The method continues at step 528
where the processing module identifies a baseline pillar
width and a baseline decode threshold. The identifying may
be based on one or more of a lookup, the data owner
identifier, the vault ID, the requesting entity 1D, and the data
type indicator. The method continues at step 530 where the
processing module determines estimated performance of the
set of storage units. The determining may include one or
more of receiving, performing a lookup, initiating a query,
initiating a test, accessing a historical record, and retrieving
a predetermination.

[0315] The method continues at step 532 where the pro-
cessing module determines a parameter multiple based on
the estimated performance and the baseline pillar width and
the baseline decode threshold. The determining is based on
optimizing expected access performance such that a decode
threshold number of encoded data slices can be retrieved
from selected storage units of the DSN with favorable
performance. Alternatively, the determining is based on
optimizing expected access performance such that at least a
write threshold number of encoded data slices can be stored
to the set of storage units of the DSN with favorable
performance.

[0316] The method continues at step 534 where the pro-
cessing module multiplies the parameter multiple by each of
the baseline pillar width and the baseline decode threshold
to produce a pillar width and a decode threshold respec-
tively. The method continues at step 536 where the process-
ing module encodes the data using a dispersed storage error
coding function in accordance with the pillar width and the
decode threshold to produce a plurality of sets of encoded
data slices. The method continues at step 538 where the

Dec. 8, 2016

processing module facilitates storage of the plurality of sets
of encoded data slices in the set of storage units. The
facilitating includes issuing write slice requests to each
storage unit of the set of storage units, where each storage
unit receives a parameter multiple number of encoded data
slices. The method continues at step 540 where the process-
ing module stores the parameter multiple. The storing
includes one or more of storing the parameter multiple in a
local memory, a vault, a directory, and in a hierarchical
dispersed index.

[0317] When retrieving the data, the method continues at
step 542 where the processing module receives a retrieval
request for the data. The method continues at step 544 where
the processing module reproduces the pillar width and the
decode threshold based on the parameter multiple. The
reproducing includes retrieving the baseline decode thresh-
old and the baseline pillar width, recovering the parameter
multiple, and multiplying the parameter multiple by the
baseline decode threshold and the baseline pillar width to
reproduce the decode threshold and the pillar width. The
method continues at step 546 where the processing module
identifies the set of storage units (e.g., receive identifiers,
performing a lookup based on a data identifier). The method
continues at step 548 where the processing module deter-
mines estimated performance of the set of storage units.
[0318] The method continues at step 550 where the pro-
cessing module selects one or more storage units of the set
of storage units based on the estimated performance, the
parameter multiple, and the decode threshold. For example,
the processing module starts with best-performing storage
units to retrieve a parameter multiple number of encoded
data slices from each storage unit until a decode threshold
number of encoded data slices can be retrieved. The method
continues at step 552 where the processing module recovers
the decode threshold number of encoded data slices from the
selected one or more storage units. The recovering includes
issuing read slice requests, receiving read slice responses,
where the read slice responses from the storage unit includes
a parameter multiple number of encoded data slices. The
method continues at step 554 where the processing module
decodes the decode threshold number of encoded data slices
using the dispersed storage error coding function to repro-
duce the data (e.g., a data segment of a plurality of data
segments of the data).

[0319] FIG. 46A is a schematic block diagram of another
embodiment of a dispersed storage network (DSN) system
that includes an authorizing module 556, the access module
384 of FIG. 41A, and the storage unit 426 of FIG. 42A.
Alternatively, or in addition to, the system may include one
or more of a plurality of authorizing modules 556, a plurality
of access modules 384, a set of storage units 426, and a
plurality of storage units 426. The authorizing module 556
may be implemented utilizing one or more of another access
module 384, the access module 384, a dispersed storage
(DS) processing unit, the distributed storage and task (DST)
processing unit 16 of FIG. 1, a DS processing module, and
a DSN managing unit.

[0320] The system functions to temporarily authorize the
access module 384 (e.g., as a delegate) to access the storage
unit 426 based on utilization of a token 562 provided by the
authorizing module 556. In an example of operation, the
authorizing module 556 determines to acquire the token 562
for the access module 384 as the delegate. The determining
may be based on at least one of a predetermination, a lookup,

US 2016/0357637 Al

receiving a request (e.g., receiving a token request from the
access module), and receiving an error message. The autho-
rizing module 556 issues a generate token request 558 to the
storage unit 426, where the generate token request 558
includes one or more of a delegate identifier, an identifier of
the authorizing module, a token valid timeframe, a number
of uses, one or more allowed request types, one or more
allowed DSN address ranges, and any other allowable access
constraints. Alternatively, or in addition to, the authorizing
module 556 issues a generate token request 558 to each of
the set of storage units.

[0321] The storage unit 426 validates the generate token
request 558. The validating includes comparing the generate
token request 558 to an authorization record associated with
the authorizing module (e.g., an access control list) to
determine whether the authorizing module is authorized to
perform storage unit access described by the generate token
request 558. When the storage unit 426 determines that the
generate token request 558 is authorized, the storage unit
426 issues a generate token response 560 to the authorizing
module 556, where the generate token response 560 includes
one or more of the token 562 (e.g., a long random string), the
delegate identifier, the authorizing module identifier, the
valid timeframe, the number of uses, the allowed request
types, the allowed DSN address ranges, and the other
allowed constraints. The storage unit 426 stores the generate
token response 560 in a local memory for subsequent
utilization during an access request from the delegate. The
storage unit 426 initializes and stores a number of uses
remaining, where the number of uses remaining is initially
set to the number of uses from the request.

[0322] The authorizing module 556 sends the token 562 to
the access module 384. The sending includes identifying the
access module 384 based on the delegate identifier. The
access module 384 issues a process request with token
request 564 to the storage unit 426, where the process
request with token request 564 includes the token 562. The
storage unit 426 validates the process request with token
request 564 based on a stored representation of the token 562
and the token of the request. The validating includes one or
more of determining whether the process request with token
request 564 compares favorably to the stored representation
of the token, determining that the delegate identifier sub-
stantially matches an identifier of the access module, deter-
mining that a current time frame matches a time frame of the
token, determining that an access type of the request sub-
stantially matches an allowed access type of the token, and
that a number of uses remaining associated with the stored
representation of the token is greater than zero.

[0323] When valid, the storage unit 426 decrements the
number of uses remaining and processes the request type of
the request (e.g., performs a write slice operation, performs
a read slice operation, performs a delete slice operation,
etc.). The storage unit issues a process request with token
response 566 to the access module 384 based on the pro-
cessing of the request type (e.g., issuing includes including
a write acknowledgment for a write request, including an
encoded data slice for a read request, etc.) The storage unit
426 deletes the stored representation of the token when the
decrementing the number of uses remaining from 1 to O.
When not valid, the storage unit 426 issues a process request
with token response 566 to the access module 384 that
indicates that the process request with token request 564 is
rejected.

Dec. 8, 2016

[0324] FIG. 46B is a flowchart illustrating an example of
authorizing access. The method begins at step 568 where an
authorizing module determines to acquire a token. The
determining may be based on one or more of receiving a
request, a predetermination, receiving an error message, and
detecting a system loading level greater than a system
loading threshold. The method continues at step 570 where
the authorizing module generates a generate token request.
The generating includes identifying a delegate access mod-
ule and determining parameters of the generate token
request. The determining may be based on one or more of a
token request from the delegate access module, a predeter-
mination, a historical request transaction record, a task list,
and a system loading level. The method continues at step
572 where the authorizing module sends the generate token
request to one or more storage units. The sending includes
identifying the one or more storage units based on the
generate token request (e.g., identifying which storage units
are required for access by the delicate access module).
[0325] The method continues at step 574 where a storage
unit of the one or more storage units authorizes the generate
token request. The authorizing includes determining
whether the authorizing module is allowed to perform
request types in accordance with constraints of the token
request. When authorized, the method continues at step 576
where the storage unit issues a generate token response to
the authorizing module, where the generate token response
includes a token. The issuing includes generating the token
in accordance with the generate token request. Alternatively,
or in addition to, the storage unit stores the token locally as
a representation of the token and initializes a number of uses
remaining indicator to be equivalent to a number of uses of
the generate token request.

[0326] The method continues at step 578 where the autho-
rizing module sends a corresponding token for each of the
one or more storage units to the delegate access module. The
method continues at step 580 where the delegate access
module issues, for each of the one or more storage units, a
process request with token request to the storage unit, where
the process request with token request includes a corre-
sponding token associated with the storage unit (e.g.,
received from the storage unit of the one or more storage
units).

[0327] The method continues at step 582 where the stor-
age unit authorizes the process request with token request.
When authorized, the method continues at step 584 where
the storage unit performs the process requests to produce a
result. Alternatively, or in addition to, the storage unit
decrements the number of uses remaining. The method
continues at step 586 where the storage unit issues a process
request with token response to the delegate access module
based on the result. The method continues at step 588 where
the storage unit deletes a locally stored copy of the token
when the locally stored copy of the token has expired. The
delete includes detecting that the locally stored copy of the
token has expired by at least one of determining that a
current time is beyond a time frame allowable by the token
and determining that a number of uses remaining is zero.
[0328] As may be used herein, the terms “substantially”
and “approximately” provides an industry-accepted toler-
ance for its corresponding term and/or relativity between
items. Such an industry-accepted tolerance ranges from less
than one percent to fifty percent and corresponds to, but is
not limited to, component values, integrated circuit process

US 2016/0357637 Al

variations, temperature variations, rise and fall times, and/or
thermal noise. Such relativity between items ranges from a
difference of a few percent to magnitude differences. As may
also be used herein, the term(s) “operably coupled to”,
“coupled to”, and/or “coupling” includes direct coupling
between items and/or indirect coupling between items via an
intervening item (e.g., an item includes, but is not limited to,
a component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc.,
to perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term ““associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more items, signals, etc., provides a desired relation-
ship. For example, when the desired relationship is that
signal 1 has a greater magnitude than signal 2, a favorable
comparison may be achieved when the magnitude of signal
1 is greater than that of signal 2 or when the magnitude of
signal 2 is less than that of signal 1.

[0329] As may also be used herein, the terms “processing
module”, “processing circuit”, and/or “processing unit” may
be a single processing device or a plurality of processing
devices. Such a processing device may be a microprocessor,
micro-controller, digital signal processor, microcomputer,
central processing unit, field programmable gate array, pro-
grammable logic device, state machine, logic circuitry, ana-
log circuitry, digital circuitry, and/or any device that
manipulates signals (analog and/or digital) based on hard
coding of the circuitry and/or operational instructions. The
processing module, module, processing circuit, and/or pro-
cessing unit may be, or further include, memory and/or an
integrated memory element, which may be a single memory
device, a plurality of memory devices, and/or embedded
circuitry of another processing module, module, processing
circuit, and/or processing unit. Such a memory device may
be a read-only memory, random access memory, volatile
memory, non-volatile memory, static memory, dynamic
memory, flash memory, cache memory, and/or any device
that stores digital information. Note that if the processing
module, module, processing circuit, and/or processing unit
includes more than one processing device, the processing
devices may be centrally located (e.g., directly coupled
together via a wired and/or wireless bus structure) or may be
distributedly located (e.g., cloud computing via indirect
coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,

Dec. 8, 2016

the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.
[0330] The present invention has been described above
with the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claimed invention. Further, the boundaries of
these functional building blocks have been arbitrarily
defined for convenience of description. Alternate boundaries
could be defined as long as the certain significant functions
are appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soft-
ware and the like or any combination thereof.

[0331] The present invention may have also been
described, at least in part, in terms of one or more embodi-
ments. An embodiment of the present invention is used
herein to illustrate the present invention, an aspect thereof,
a feature thereof, a concept thereof, and/or an example
thereof. A physical embodiment of an apparatus, an article of
manufacture, a machine, and/or of a process that embodies
the present invention may include one or more of the
aspects, features, concepts, examples, etc. described with
reference to one or more of the embodiments discussed
herein. Further, from figure to figure, the embodiments may
incorporate the same or similarly named functions, steps,
modules, etc. that may use the same or different reference
numbers and, as such, the functions, steps, modules, etc.
may be the same or similar functions, steps, modules, etc. or
different ones.

[0332] While the transistors in the above described figure
(s) is/are shown as field effect transistors (FETs), as one of
ordinary skill in the art will appreciate, the transistors may
be implemented using any type of transistor structure includ-
ing, but not limited to, bipolar, metal oxide semiconductor
field effect transistors (MOSFET), N-well transistors, P-well
transistors, enhancement mode, depletion mode, and zero
voltage threshold (VT) transistors.

[0333] Unless specifically stated to the contra, signals to,
from, and/or between elements in a figure of any of the
figures presented herein may be analog or digital, continu-
ous time or discrete time, and single-ended or differential.
For instance, if a signal path is shown as a single-ended path,
it also represents a differential signal path. Similarly, if a
signal path is shown as a differential path, it also represents

US 2016/0357637 Al

a single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.

[0334] The term “module” is used in the description of the
various embodiments of the present invention. A module
includes a processing module, a functional block, hardware,
and/or software stored on memory for performing one or
more functions as may be described herein. Note that, if the
module is implemented via hardware, the hardware may
operate independently and/or in conjunction software and/or
firmware. As used herein, a module may contain one or more
sub-modules, each of which may be one or more modules.
[0335] While particular combinations of various functions
and features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.

What is claimed is:

1. A method for execution by a device of a dispersed
storage network (DSN), the method comprises:

identifying an encoded data slice for rebuilding, wherein

a data segment of data is dispersed storage error
encoded to produce a set of encoded data slices, which
originally included the encoded data slice for rebuild-
ing;

determining whether a rebuilding threshold for the set of

encoded data slices has been reached;
when the rebuilding threshold has been reached, deter-
mining, based on a condition of the DSN, whether to
execute a rebuilding function, to delay execution of the
rebuilding function, to adjust a rebuilding network
protocol, or to modifying rebuilding criteria; and

when the determination is to execute the rebuilding func-
tion, rebuilding the encoded data slice.

2. The method of claim 1, wherein the device comprises
one or more of:

a computing device;

a storage unit;

a processing module within the computing device;

a processing module within the storage unit;

an integrity unit; and

a processing module within the integrity unit.

3. The method of claim 1, wherein the determining
whether the rebuilding threshold has been reached com-
prises:

incrementing a rebuild count based on the identifying of

the encoded data slice;

subtracting the rebuild count from a total number of

encoded data slices in the set of encoded data slices to
object a good encoded data slice count; and

when the good encoded data slice count is equal to or less

than the rebuilding threshold, determining that the
rebuilding threshold has been reached.

4. The method of claim 1 further comprises:

when the determination is to delay execution of the

rebuilding function:

determining, based the condition of the DSN, a delay
period;

queueing the rebuilding of the encoded data slice; and

Dec. 8, 2016

when the delay period expires:
determining whether the condition of the DSN has
been resolved; and
when the condition of the DSN has been resolved,
executing the rebuilding of the encoded data slice.
5. The method of claim 4 further comprises:
when the condition of the DSN has not been resolved:
determining whether a rebuild count has increase since
the encoded data slices was identified for rebuilding;
when the rebuild count has increased, comparing a
rebuild urgency to the condition of the DSN, wherein
the rebuild urgency increases proportionally with the
rebuild count;
when the rebuild urgency compares unfavorably to
the condition of the DSN,
executing the rebuilding of the encoded data slice;
and
when the rebuild urgency compares favorably to the
condition of the DSN, extending the delay period.
6. The method of claim 1 further comprises:
when the determination is to adjust the rebuilding network
protocol, implementing one or more of:
bundling rebuilding requests to a storage unit for mul-
tiple encoded data slices that have been identified for
rebuilding;
serializing transmission of a set of rebuilding requests
to storage units regarding the multiple encoded data
slices that have been identified for rebuilding; and
assigning an individual response timeslot to each of
multiple storage units for individually responding to
a rebuild request regarding the multiple encoded data
slices that have been identified for rebuilding.
7. The method of claim 1 further comprises:
when the determination is to modifying rebuilding crite-
ria, implementing one or more of:
decreasing the rebuilding threshold;
increasing a wait time for a storage unit to come back
on line, wherein the storage unit has encoded data
slices identified for rebuilding; and
adjusting rebuild queue priorities of encoded data slices
that have been identified for rebuilding.
8. The method of claim 1, wherein the condition of the
DSN comprises one or more of:
latency in responding to data access requests;
volume of the data access requests;
latency in responding to system level access requests; and
volume of the system level access requests.
9. A device of a dispersed storage network (DSN),
wherein the device comprises:
a network interface;
memory; and
a processing module operably coupled to the network
interface and the memory, wherein the processing mod-
ule is operable to:
identify an encoded data slice for rebuilding, wherein a
data segment of data is dispersed storage error
encoded to produce a set of encoded data slices,
which originally included the encoded data slice for
rebuilding;
determine whether a rebuilding threshold for the set of
encoded data slices has been reached;
when the rebuilding threshold has been reached, deter-
mine, based on a condition of the DSN, whether to
execute a rebuilding function, to delay execution of

US 2016/0357637 Al
34

the rebuilding function, to adjust a rebuilding net-
work protocol, or to modifying rebuilding criteria;
and

when the determination is to execute the rebuilding func-

tion, rebuild the encoded data slice.

10. The device of claim 9, wherein the device comprises
one or more of:

a computing device;

a storage unit; and

an integrity unit.

11. The device of claim 9, wherein the processing module
further functions to determine whether the rebuilding thresh-
old has been reached by:

incrementing a rebuild count based on the identifying of

the encoded data slice;

subtracting the rebuild count from a total number of

encoded data slices in the set of encoded data slices to
object a good encoded data slice count; and

when the good encoded data slice count is equal to or less

than the rebuilding threshold, determining that the
rebuilding threshold has been reached.

12. The device of claim 9, wherein the processing module
further functions to:

when the determination is to delay execution of the

rebuilding function:
determine, based the condition of the DSN, a delay
period;
queue the rebuilding of the encoded data slice; and
when the delay period expires:
determine whether the condition of the DSN has
been resolved; and
when the condition of the DSN has been resolved,
execute the rebuilding of the encoded data slice.

13. The device of claim 12, wherein the processing
module further functions to:

when the condition of the DSN has not been resolved:

determine whether a rebuild count has increase since
the encoded data slices was identified for rebuilding;

Dec. 8, 2016

when the rebuild count has increased, compare a
rebuild urgency to the condition of the DSN, wherein
the rebuild urgency increases proportionally with the
rebuild count;
when the rebuild urgency compares unfavorably to

the condition of the DSN, execute the rebuilding
of the encoded data slice; and
when the rebuild urgency compares favorably to the
condition of the DSN, extend the delay period.
14. The device of claim 9, wherein the processing module
further functions to:
when the determination is to adjust the rebuilding network
protocol, implementing one or more of:

bundle rebuilding requests to a storage unit for multiple
encoded data slices that have been identified for
rebuilding;

serialize transmission of a set of rebuilding requests to
storage units regarding the multiple encoded data
slices that have been identified for rebuilding; and

assign an individual response timeslot to each of mul-
tiple storage units for individually responding to a
rebuild request regarding the multiple encoded data
slices that have been identified for rebuilding.

15. The device of claim 9, wherein the processing module
further functions to:
when the determination is to modifying rebuilding crite-
ria, implementing one or more of:

decrease the rebuilding threshold;

increase a wait time for a storage unit to come back on
line, wherein the storage unit has encoded data slices
identified for rebuilding; and

adjust rebuild queue priorities of encoded data slices
that have been identified for rebuilding.

16. The device of claim 9, wherein the condition of the
DSN comprises one or more of:

latency in responding to data access requests;

volume of the data access requests;

latency in responding to system level access requests; and

volume of the system level access requests.

#* #* #* #* #*

