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DEDICATED RAY MEMORY FOR RAY TRACING

Background

Graphics rendering systems can be configured to produce images from 3-D scene
descriptions. The images can be photorealistic, or achieve other objectives. For

example, animated movies can be produced using 3-D rendering techniques.

A variety of techniques for performing 3-D rendering are known. Two principal
categories of 3-D rendering are rasterization oriented approaches, and ray tracing
oriented approaches. Rasterization involves defining a view point for a 3-D scene
containing geometry and a pixel array to be rendered from the scene. In most
rasterization approaches, the geometry Is reduced to triangular primitives, and
those primitives are transformed into 2-D coordinates, with a depth value. It is
determined what primitive 1s visible from each pixel (or part of a pixel), and that
visible surface is shaded. Rasterization benefits from being able to easily
parallelize computation, because each pixel is iIndependent, and geometry can be
streamed through a rasterization pipeline for processing. Therefore, rasterization
IS well suited to time sensitive rendering applications, such as video games.
However, It Is difficult and time consuming to produce sophisticated rendering

outputs using rasterization.

In contrast, ray tracing mimics the natural interaction of light with objects, and
sophisticated rendering features can naturally arise from ray tracing a 3-D scene.
Ray tracing can be parallelized relatively easily on the pixel by pixel level also,
because pixels generally are independent of each other. However, ray tracing
cannot be pipelined In the same way as rasterization, because of the distributed
and disparate positions and directions of travel of the rays in the 3-D scene, In
situations such as ambient occlusion, reflections, caustics, and so on. Ray tracing
allows for realistic Images to be rendered but often requires high levels of
processing power and large working memories, such that ray tracing can be
difficult to iImplement for rendering images in real-time (e.g. for use with gaming

applications), particularly on devices which may have tight constraints on silicon
1
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tablets, laptops, etc.).

Summary

There Is provided a ray tracing unit comprising:

processing logic configured to perform ray tracing operations on rays;

a dedicated ray memory coupled to the processing logic and configured to
store ray data for rays to be processed by the processing logic;

an Interface to a memory system; and

control logic configured to manage allocation of ray data to either the
dedicated ray memory or the memory system, such that core ray data for rays to
be processed by the processing logic Is stored In the dedicated ray memory, and
at least some non-core ray data for the rays Is stored in the memory system (e.g.

via said interface).

The processing logic may comprise ray intersection testing logic. In some
examples, the core ray data i1s for use by the ray intersection testing logic,
whereas the non-core ray data is not needed by the ray intersection testing logic.
For example, the core ray data for a ray may include one or more of: an origin of
the ray, a direction of the ray, a clipping length for the ray, a ray type of the ray,
one or more Indicators of the behaviour of the ray, a reference to a shader, an
iIndication of an object which intersects with the ray, an intersection distance along
the ray at which the intersection with the object occurs, barycentric coordinates
within an intersected primitive for the intersection, cached vertex positions of
vertices of an intersected primitive, and cached vertex attributes of the vertices of

an Intersected primitive. In some examples, the non-core ray data for a ray Is

defined by a shader that creates the ray.
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The ray tracing unit may be coupled to a Graphics Processing Unit (GPU), wherein
the GPU is configured to execute shaders thereby outputting rays to be processed

by the ray tracing unit.

In particular, there may be provided a graphics rendering system comprising:
a Graphics Processing Unit (GPU) configured to execute shaders for
processing graphics data;
a memory system; and
a ray tracing unit comprising:

processing logic configured to perform ray tracing operations on
rays,;

a dedicated ray memory coupled to the processing logic and
configured to store ray data for rays to be processed by the processing
logic; and

control logic configured to manage allocation of ray data to either the
dedicated ray memory or the memory system, such that core ray data for
rays to be processed by the processing logic is stored in the dedicated ray
memory, and at least some non-core ray data for the rays Is stored in the

memory system.

The memory system may comprise a cache which is coupled to both the GPU and

the ray tracing unit.

There Is also provided a machine-implemented method of ray tracing using a
dedicated ray memory configured to store ray data for rays, the method
comprising:

managing (e.g. by at least one processing element) allocation of ray data to
either the dedicated ray memory or a different memory system, such that core ray
data for rays to be processed by the ray tracing unit I1s stored in the dedicated ray
memory, and at least some non-core ray data for the rays Is stored in the memory
system; and

performing (e.g. by at least one processing element) ray tracing operations

on rays using the core ray data for the rays stored in the dedicated ray memory.
3
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In some examples, the dedicated ray memory Is part of a ray tracing unit and the
memory system Is external to the ray tracing unit, wherein the ray tracing

operations are performed at the ray tracing unit.

The ray tracing units described herein may be embodied In hardware on an
integrated circuit. There may be provided a method of manufacturing, at an
Integrated circuit manufacturing system, a ray tracing unit. There may be provided
an Integrated circuit definition dataset that, when processed In an integrated circuit
manufacturing system, configures the system to manufacture a ray tracing unit.
There may be provided a non-transitory computer readable storage medium
having stored thereon a computer readable description of an integrated circuit that,
when processed, causes a layout processing system to generate a circuit layout
description used In an integrated circuit manufacturing system to manufacture a

ray tracing unit.

There may be provided an integrated circuit manufacturing system comprising:

a non-transitory computer readable storage medium having stored thereon
a computer readable Iintegrated circuit description that describes any of the ray
tracing units described herein;

a layout processing system configured to process the Integrated circult
description so as to generate a circuit layout description of an integrated circuit
embodying any of the ray tracing units described herein; and

an Integrated circuit generation system configured to manufacture the ray

tracing unit according to the circuit layout description.

There may be provided computer program code for performing any of the methods
described herein. There may be provided non-transitory computer readable
storage medium having stored thereon computer readable Instructions that, when
executed at a computer system, cause the computer system to perform any of the

methods described herein.
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The above features may be combined as appropriate, as would be apparent to a

skilled person, and may be combined with any of the aspects of the examples

described herein.

Brief Description of the Drawings

Examples will now be described in detail with reference to the accompanying

drawings In which:

Figure 1 depicts an example of a graphics rendering system comprising a ray
tracing unit;

Figure 2 shows a scene to be rendered from a viewpoint;

Figure 3 shows a flow chart of a method of processing data in the graphics
rendering system;

Figure 4 shows the format of ray data according to a particular example;
Figure 5 shows a computer system in which a GPU and a ray tracing unit are
implemented; and

Figure 6 shows an integrated circuit manufacturing system for generating an

iIntegrated circuit embodying a ray tracing unit.

The accompanying drawings illustrate various examples. The skilled person will

appreciate that the illustrated element boundaries (e.g., boxes, groups of boxes, or

other shapes) In the drawings represent one example of the boundaries. It may be

that In some examples, one element may be designed as multiple elements or that

multiple elements may be designed as one element. Common reference numerals

are used throughout the figures, where appropriate, to indicate similar features.

Detailed Description

The following description 1s presented by way of example to enable a person
skilled In the art to make and use the invention. The present invention iIs not

Iimited to the embodiments described herein and various modifications to the

disclosed embodiments will be apparent to those skilled In the art.

Embodiments will now be described by way of example only.
S
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According to examples described herein a ray tracing unit 1Is implemented in a
graphics rendering system for performing ray tracing operations. The ray tracing
unit may be implemented (e.g. In hardware, such as In fixed-function circuitry) in
order to accelerate the execution of ray tracing tasks. The ray tracing unit is a
dedicated unit configured for performing ray tracing operations, and as such can
perform ray tracing operations in an efficient manner, e.g. more efficiently (in terms
of latency, power consumption and/or silicon size) compared to implementing ray
tracing functionality on more general purpose processing units. Rays are defined
by ray data which includes fields such as an origin and direction for the ray, and
may Include many other fields providing information relating to the ray. The ray
tracing unit includes a dedicated ray memory, which may be referred to herein as
a ‘ray RAM". The ray RAM may be implemented as a static Random Access
Memory (RAM) to allow fast and power-efficient access to the data stored In the
ray RAM for the ray tracing unit. The amount of ray data associated with a ray can

be different in different examples.

For example, some of the ray data may be defined by a shader which created the
ray, and as such it may be considered to be beneficial to allow some flexibility In
the types of ray data, and the amount of ray data, that can be stored for each ray.
However, In conflict with the flexibility in the ray data, it can be beneficial to have a
small amount of dedicated ray memory, specifically for use by the ray tracing unit.
This Is because the ray memory uses silicon area which Is a very limited resource.
Furthermore, at times when the ray tracing unit is not in use, the silicon used for
the dedicated ray memory will be “dark silicon”, 1.e. not In use and thereby wasted.
One option would be to reduce the number of rays that can be stored in the
dedicated ray memory. However, It can facilitate the ray tracing process to allow
ray data for a large number of rays to be stored in the ray memory, to reduce the
liIkelihood of stalls in the operation due to insufficient space In the ray memory for
storing new rays. Another option would be to reduce the amount of ray data that
can be stored for each ray. However, this may reduce the options for the ways In

which the ray data can be processed.
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In examples described herein, the size of the dedicated ray memory I1s kept at a
small size, whilst allowing the amount of ray data stored for each ray to be
relatively high and whilst allowing the number of rays for which ray data Is stored
In the ray memory to be relatively high. This i1s achieved by storing some ray data
(e.g. core ray data) for rays In the dedicated ray memory, but If more than a
threshold amount of ray data (e.g. 32, 48, 64 bytes, etc.) exists for a ray, some of
the ray data for the ray Is stored in a memory system which is different to the
dedicated ray memory. This may be referred to as “ray attribute spillover®. For
example, some non-core ray data for rays may be stored in a memory system
which includes a cache and a Dynamic Random Access Memory (DRAM). For
example, the non-core ray data may be data that is not needed by ray intersection
testers implemented at the ray tracing unit. This allows the intersection testers at
the ray tracing unit to access the core data from the dedicated ray memory, but
still allows extra, non-core, ray data to be defined by shaders without increasing
the size of the dedicated ray memory or reducing the number of rays that can have
ray data stored in the ray memory at any given time. The ray data for a ray may

be referred to as ray attribute data.

Figure 1 illustrates a graphics rendering system 100 which comprises a processing
chip 102 coupled to an external memory 104. In the example shown in Figure 1,
the memory 104 I1s implemented as a DRAM, but the memory 104 could be
Implemented as a different type of memory in other examples. The processing
chip 102 comprises a Graphics Processing Unit (GPU) 106, a scene hierarchy unit
108, a ray tracing unit 110 and a cache 112. In other examples, the GPU 106,
scene hierarchy unit 108, ray tracing unit 110 and cache 112 might not all be
implemented on the same chip. The cache 112 i1s shown as separate to the GPU
106, scene hierarchy 108 and ray tracing unit 110, but in some examples, the
cache 112 could be considered to be part of one of those units, e.g. part of the
GPU 106. The cache 112 and the memory 104 may be referred to herein as a
memory system 114. The GPU comprises compute engines 116 and control logic
118. The control logic 118 Is configured to control the operation of the GPU 106.

It is to be understood that Figure 1 i1s a much-simplified diagram, and the GPU 106
may Include further elements to those shown in Figure 1. The scene hierarchy

unit 108 Is configured to generate and store a scene hierarchy 120, as described
14
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IN more detall below. The ray tracing unit 110 comprises processing logic 122,
control logic 124, a ray memory (or ‘ray RAM”) 126 and an interface 128 to the
memory system 114. The control logic 124 Is configured to control the operation

of the ray tracing unit 110.

Figure 2 shows an example of a scene 202 which includes two surfaces 2044 and
204-. This Is a very simple example, and in other examples there would likely be
many more surfaces and objects within the scene. Figure 2 shows two light

sources 2061 and 206, which illuminate objects In the scene. The viewpoint from

which the scene Is viewed Is shown at 208 and the view plane of the frame to be

rendered Is represented at 210.

Operation of the graphics rendering system 100 is described with reference to the

flow chart shown In Figure 3.

In step S302, one or more shaders are executed at the GPU 106. For example,

shaders may be executed by the compute engines 116 of the GPU 106.

The operation of the scene hierarchy unit 108 Is slightly beyond the scope of the
current disclosure, but as a brief overview, the scene hierarchy unit 108 builds a
scene hierarchy 120, which may be referred to as an acceleration structure, and
which represents spatial positions of objects in the scene In a manner which
accelerates ray traversal of the geometry in the scene during ray intersection
testing. For example, the scene hierarchy could be implemented as a bounding
volume hierarchy of axis-aligned bounding boxes. The scene hierarchy unit 108
may read a control stream from the DRAM 104, allocate space for the shader
output and start the execution of shaders (e.g. vertex shaders) on the GPU 106.
The GPU may run one or more of vertex shaders, hull shaders, domain shaders
and geometry shaders to build primitives (e.g. triangles or other shapes) and
vertices In world space. The scene hierarchy unit 108 recelves indications of the
primitives, e.g. the vertex locations, and builds the scene hierarchy 120 for use
during ray traversal by the ray tracing unit110. The scene hierarchy 120 Is stored
(e.g. on chip 102, and/or In the memory system 114, e.g. In the cache 112 or in the

DRAM 104. In the main examples described herein just one scene hierarchy Is
8



10

15

20

22

30

referred to, but It I1s to be understood that one or more scene hierarchies may be
generated and stored for a particular render. Different scene hierarchies may
represent different sets of one or more objects within a scene, e.g. there may be a
first scene hierarchy for the background in a scene of a computer game, and a
second scene hierarchy for a user-controlled character in the scene of the
computer game. The generation of the scene hierarchy 120 may be performed In
a separate phase (a scene hierarchy phase) to a ray tracing phase described In

more detall below.

In the ray tracing phase, shaders that emit rays are executed on the GPU 106, the
ray tracing unit 110 traverses those rays against the scene hierarchy to find ray
Intersections, and In response to finding the ray intersections further shaders can
be executed on the GPU 106. The ray tracing unit 110 can accelerate the ray-
primitive traversal using the scene hierarchy 120 and can gather rays with similar
requirements into new tasks, which can improve the efficiency of the ray tracing
operations, €.g. when the tasks are implemented in a Single Instruction Multiple

Data (SIMD) manner on the processing logic 122.

The scene hierarchy phase for the next render (e.g. the next frame of a sequence
of frames) can be overlapped with the ray tracing phase of the current render (e.qg.

the current frame of a sequence of frames).

As another example of a shader that may be executed on the GPU 106, a frame
shader may be executed on the GPU 106 to generate primary rays in the scene.
A frame shader builds primary rays with an origin set at the location of the
viewpoint 208 and a direction pointing into the frame. Each ray may be assigned
to one pixel In the frame of the view plane 210, wherein each pixel may have one
or more rays assigned thereto. A frame shader may be programmed to represent
a simple pin-hole camera, or to include more complicated camera effects such as
depth of fleld. In some examples, a frame shader may not represent a camera,
and for example may instead be used for baking a light map or performing a

collision detection pass.
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When the graphics rendering system 100 Is arranged to implement ray tracing,
then some shaders will create one or more rays to be processed by the ray tracing
unit 110. In step S304 the GPU 106 (e.g. the control logic 118) determines
whether any rays have been created due to the execution of the shader(s) Iin step
S302. If no rays have been created then the method passes to step S306 in which
the GPU 106 (e.g. the control logic 118) determines whether there are any more
shaders to execute at the GPU 106. If there is at least one more shader to
execute then the method passes back to step S302 such that one or more shaders
are executed by the compute engines 116 of the GPU 106. If it is determined in

step S306 that there are currently no more shaders to execute at the GPU 106
then the method ends at step S308.

If it Is determined in step S304 that one or more rays are created due to the
shader execution in step S302 then the method passes to step S310 in which the
rays are passed to the ray tracing unit 110. The ray tracing unit 110 Is configured
to perform ray tracing operations, such as ray intersection testing on the rays it
receives from the GPU 106.

In step S312 the control logic 124 manages allocation of ray data to either the
dedicated ray memory 126 or the memory system 114. For example, at least the
core ray data for the rays may be stored in the ray RAM 126. In examples
described herein the core ray data for a ray Is the data relating to the ray which is
used by the processing logic 122, e.g. to perform ray tracing operations, such as
to Implement intersection testing. For example, the core ray data could be the
iINformation needed for intersection testing and also the result from the intersection

testing.

Figure 4 shows an example of the format of ray data 402 for a ray. The format of
the ray data includes a number of different ray data fields. The different fields do
not necessarily include the same number of bits of data. Some of the fields are

considered core ray data, whereas other fields are considered non-core ray data.
For example the non-core ray data may be defined by a shader which creates the
ray. These shader-defined fields are denoted in Figure 4 as “U data 1” to “U data

Y

n". Inthe example shown In Figure 4 the core ray data for a ray includes three

10
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flelds to define an origin of the ray (in world space), three fields to define a
direction of the ray, a clipping length for the ray, a ray type of the ray, one or more
iIndicators (e.g. flags) of the behaviour of the ray, an indication of an object which
iIntersects with the ray, and an intersection distance along the ray at which the

Intersection with the object occurs.

In other examples, the core ray data may include other fields such as one or more
of: a reference to a shader (e.g. an indication of a shader to be run in the event of
a miss In the intersection testing and/or an indication of a shader associated with

an Intersected object which may be appropriate to run to process the intersection),

parycentric coordinates within an intersected primitive for the intersection, cached
vertex positions of vertices of an intersected primitive, and cached vertex attributes
of the vertices of an Intersected primitive. The number of bytes used for the ray
data for a ray may vary In different examples, e.g. from between just a few bytes
up to kilobytes. Similarly, the amount of ray data that may be core ray data may
vary In different examples. The core ray data for the rays Is stored in the ray RAM
126. Figure 4 shows the ray RAM 126 storing data for a number of different rays,
e.g. from ray O up to ray 4K. The ray RAM 126 may be able to store up to a
predetermined maximum amount of ray data for a ray. As such, the control logic
124 may allocate (in step S312) up to the predetermined maximum amount of ray
data for a ray to the ray RAM 126. In some examples, some non-core ray data
may be stored Iin the ray RAM 126 with the core ray data. For example, the

amount of data stored in the ray RAM 126 for a ray may be rounded up to x bytes,

where x IS a power of two, e.g. x may be 32 or 64 or 128 to give some examples.
Therefore, If the number of bytes which Is taken up by the core ray data i1s not
equal to a power of two, then some non-core ray data would be stored in the ray
RAM 126. In the example shown In Figure 4 three non-core ray data fields (U data
1 to U data 3) are stored in the ray RAM 126 with the core ray data. In the
example shown In Figure 4, the same amount of ray data Is stored in the ray RAM
126 for each ray. In particular, in the example shown In Figure 4, the same fields
of ray data are stored In the ray RAM 126 for each ray. However, In the example
shown In Figure 4, not all of ray data for a ray Is stored In the ray RAM 126
because at least some non-core ray data for the rays Is stored in the memory

system 114.
11
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Figure 4) for the rays Is stored In the memory system 114. The ray data stored In
the memory system 114 iIs stored in the DRAM 104. If possible the ray data stored
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access to the ray tracing unit 110 and the GPU 106 if needed, but the cache might
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system 114.

The non-core ray data could be anything that a shader deems to be useful
iInformation for the ray, and examples include (but are not limited to):

e colour data, e.g. representing a colour of light that the ray represents, e.g.
the colour data may represent a wavelength of the light if the light Is

monochromatic,

e Information about an intersected object

e an Indication of the medium through which the ray is travelling, e.g. a

refractive index.
e a pixel location to which the ray pertains, and

e an ID of an object (e.g. a light source) towards which the ray I1s aimed.

The ray tracing unit 110 may consume ray data at a rate of the order of terabytes
per second, so If the dedicated ray RAM 126 was not implemented then huge
amounts of data would need to be transferred between the ray tracing unit 110
and the memory system 114. Implementing the ray RAM 126 as part of the ray
tracing unit 126 helps to reduce the amount of data passing between the ray

tracing unit 110 and the memory system 114

The ray tracing unit 110 may support variable ray sizes. In other words, the
amount of data for a ray may vary from ray to ray. In examples described herein,
the core ray size can be fixed (e.g. each ray may have 64 bytes of core ray data
Just to give an example), but the amount of non-core ray data may vary for
different rays, e.g. depending on the class, or type, of the ray. For example, an
application which Is causing the rendering process to be performed may set the

amount of non-core ray data used for rays according to the ray class of the rays.
12
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For example, there may be a predetermined number of different ray sizes which
are supported. The predetermined number of sizes can be different in different
examples, but just to give some examples the predetermined number could be In
the range from two to ten. Increasing the number of different ray sizes which are
supported would increase the flexibility in the amount of ray data stored for each
ray, but the amount of silicon area used would tend to increase. So there is a
trade-off to be made when deciding the number of different ray sizes to be
supported. The optimal number of supported ray sizes may be different In

different scenarios.

For example, there may be N different address spaces (which may also be
referred to "memory spaces”) for storing the non-core ray attributes in the DRAM
104, where N can be the number of supported ray sizes or in some examples N
may be one less than the number of supported ray sizes where one of the
supported sizes corresponds to there being no non-core ray data. Each memory
space I1s arranged to store non-core ray data for rays of a particular size. In other
words, within a particular memory space, all of the rays have the same amount of
non-core ray stored Iin the particular memory space. Rays of different sizes will
have their non-core ray data stored in different memory spaces. The control logic
124 sends the non-core ray attributes to one of the address spaces based on the

size of the Incoming ray.

When ray data for a new ray Is to be stored, the control logic 124 allocates a
location In the corresponding memory space (for the size of the ray) to which the
non-core ray attributes for the ray are to be written. This location is identified with
an Iidentifier, referred to herein as an Attribute Ray ID (ARID). The ARID Is stored
along with the core ray data in the ray RAM 126. To find the memory location
(denoted "Memory address(ray 1d)” below) in the DRAM 104 for the non-core ray
attributes of a ray, the ray ID Is used to determine the base address of the
appropriate memory space for the size of the ray (denoted

‘base address of ray size(ray 1d)” below), and then the ARID i1s used to go a
particular number of rays into the memory space to identify the location of the non-

core ray attributes for the ray. In other words, to find the memory location In the

13
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DRAM 104 for the non-core ray attributes of a ray, the following calculation can be

used:

Memory address(ray I1d) = base address of ray size(ray i1d) + ARID * Ray

attribute size.

The control logic 124 allocates the ARIDs in a manner so as to pack the non-core
ray attributes in the memory system 114 (e.g. in the DRAM 104). This achieves
the maximum benefit from the caching in the cache 112. This "packing” of the
non-core ray attributes into different memory spaces based on the amount of non-
core ray data to be stored for a ray ensures efficient memory usage, even after
non-core ray data for many rays has been written into and read from the memory
system 114. In particular, within In each memory space different rays store the
same amount of non-core ray data in the memory system 114, so when non-core
ray data for a ray the memory space Is no longer needed, it can be deallocated
thereby leaving exactly the right amount of space for non-core ray data for a new
ray of the same size to be written into the memory. Therefore efficient, contiguous
memory usage can be maintained within each memory space. Furthermore, since
there are multiple memory spaces for rays for different sizes, the ray tracing unit
110 still supports flexibility in ray size whilst achieving the efficient packing of non-
core ray data in the memory system 114. It is noted that when a ray result has
been read by a shader, the core ray data for the ray stored in the ray RAM 126
and the non-core ray data for the ray stored in the memory system 114 can be

deallocated and can be used for another ray.

In step S314 the ray tracing unit 110 performs ray tracing operations on rays using
the core ray data for the rays stored in the ray RAM 126. The ray tracing
operations may Include intersection testing of the rays against the scene hierarchy
120. The Intersection testing on a ray uses the core ray data for the ray but the
non-core ray data for the ray 1s not needed for the intersection testing. As well as
Intersection testing, the ray tracing unit 110 may perform shader coherency
gathering to bundle together rays which execute the same shader to be run on the

compute engines 116 of the GPU 106 at the same time.

14
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When an intersection between a ray and a primitive of an object Is determined In
step S314, a shader is invoked for execution on the GPU 106. In particular, a ray
shader associated with the intersected primitive 1s invoked and the ray shader can
load the ray results for the primitive intersection into the GPU and the method
passes back to step S302 to execute the ray shader on the compute engines of
the GPU 106. Ray shader programs can be associated with components in the
scene hierarchy or associated with the ray data of the ray. The ray's behaviour
Indicators and the geometry intersected or missed within the scene may determine
which (If any) shader program should be run as a result of the intersection testing.

If the Intersection testing for a ray does not hit any primitives then the ray tracing

unit 110 may launch a default shader or a shader defined In the ray data for the

ray, which is then passed to the GPU 106 for execution thereon.

The result of executing the ray shader at the GPU 106 could be the creation of
more rays, which may be referred to as "“secondary rays”. In particular, when a ray
hits a surface, the ray intersection can generate secondary rays based on the
material of the intersected object. Shaders which create secondary rays can
generate rays of various types, e.g. glossy reflections or ambient occlusion effects
or even Just terminate. A ray shader can also accumulate a value (or colour) to a

location In an Image buffer at the location of the originating pixel.

By storing some ray data for the rays, but not all of the ray data for the rays, In the
dedicated ray memory 126, the size of the dedicated ray memory 126 can be
prevented from becoming too large, whilst still allowing flexibility in the amount of
ray attribute data that can be stored for the rays. The efficiency of the ray tracing
unit 110 iImproves with more rays In flight and the number of rays In flight is usually
limited by the size of the ray RAM 126. Therefore, in most situations, it Is
beneficial to accept more rays In flight rather than storing more data for a smaller

set of rays In on-chip memory.

Furthermore, there are two clients that need to read and write information in ray
RAM 126: (1) shaders executing on the compute engines 116 of the GPU 106, and
(11) Intersection testers implemented by the processing logic 122 in the ray tracing

unit 110. In the life of a ray, a shader might write to the ray approximately once
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when 1t Is Initialized, and read from it approximately once when the result Is
shaded. The intersection testers, on the other hand might read the ray many
times (e.g. dozens to hundreds of times) as the ray Is tested against elements of
the acceleration structure, and update the ray a handful of times when a hit Is

found that replaces the current hit as the best intersection result candidate.

The Iintersection testers may be implemented as fixed function units, and may only
be able to interpret a subset of the ray data (e.g. the core ray data) for a ray that Is
part of the hardware ray format. The intersection testers don't care about the rest
of the ray data (e.g. the non-core ray data). Therefore, it can be beneficial for the
part of the ray that the intersection testers do care about (i.e. the core ray data) to
be resident as close to the intersection testers as possible (i.e. Iin the dedicated ray
memory 126 which may be implemented as SRAM), to minimize routing area.
However, to maximize flexibility of the graphics rendering system 100 and to
minimize silicon area that Is "wasted” when ray tracing Is not actively used, it can
be beneficial not to have too much extra SRAM on the ray tracing unit 110
because it will be dark when the graphics rendering system 100 Is not performing
ray tracing. Therefore, it can be beneficial to allow some of the ray data (e.g. non-
core ray data) to be stored in the memory system 114 to reduce the dedicated
silicon area needed to support only ray tracing, and allow the larger caches to
benefit all applications. It 1s noted that the cache 112 Is usable by processing units

other than the ray tracing unit 110 (e.g. the GPU 106 can use the cache 112).

Furthermore, dedicated SRAMs are more area and power efficient and faster to
access than bigger caches. The reasons are numerous Including the fact that the
dedicated RAMs don't need as many ports as a larger cache, they can be closer to
the clients (as discussed above), the extra coherency logic caches must have, etc.
Big contributors are also the concomitant routing area and also the fact that
general purpose caches must operate on cache line granularities, whereas
dedicated RAMs can be optimized to precisely the needed width for the format

being stored.

Therefore, the size of the ray RAM 126 Is a trade-off between the flexibility of the

design for many applications versus the efficiency while ray tracing.
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In the examples described above, ray data for individual rays is split between the
ray RAM 126 and the memory system 114. A portion of the software-defined ray
attributes live in the DRAM hierarchy, preferably still resident in the cache 112, but
they could be concelvably evicted between the time when the ray was written
during emission, and the time the result was shaded. It is noted that the core ray
data for a ray remains in the dedicated ray RAM 126 during ray traversal, even If
the ray’'s software-defined attributes were evicted from cache 112. The cache 112
could be implemented as an L2 cache, and preferably has enough capacity to hold
all the rays In the common case. However, cache logic which controls the
operation of the cache 112 will balance holding ray attributes with all of the other
clients of the cache 112, and make decisions about what to retain and what to
evict from the cache 112. The cache control logic for the cache 112 could be given
a hint to know that a given cache line contains ray attributes, and that may be

taken Into consideration when choosing what to evict/retain from/in the cache112.

In some examples, there may be an error-avoiding, slow-path for ray processing.

The ray tracing unit 110 can make scheduling decisions about which shaders to
run on the GPU 106 in order to maintain a suitable number of free slots in the on-
chip ray storage pool provided by the ray RAM 126. For example, the control logic
124 has information indicating what the worst case ray growth may be from
running a shader on the GPU 106 and can use that information to decide which
shaders to run in which order. However, sometimes a situation may be
encountered where the ray tracing operations cannot make forward progress
without exceeding the limit of ray storage in the ray RAM 126. In that case, the ray
tracing unit may enter a mode (which may be referred to as a "Dump Rays”™ mode),
where It faults some rays in hardware to DRAM, and makes their storage available
to shaders for new rays. VWhen a ray has been dumped, it cannot continue
traversing with the hardware ray tracing unit before it has been recovered.
Recovery of dumped rays may Involve beginning their processing again through
traversal of the hierarchy, but retaining their "best hit so far” information, so that
they can be traversed more cheaply the second time around. In some examples,

the ray tracing unit may fault additional data with the rays (e.g. data indicating the
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nodes of the scene hierarchy where the ray was waiting to be intersection tested),

and that would allow traversal to resume more-or-less where it left off.

In other words, If the ray tracing operations cannot progress because the
dedicated ray memory 126 does not have enough free space to store ray data for
new rays, then ray data for some existing rays which have not finished being
processed by the ray tracing operations can be evicted from the dedicated ray
memory 126 to allow ray data for new rays to be stored in the dedicated ray
memory 126, thereby allowing the ray tracing operations to progress. The evicted
ray data can be returned to the dedicated ray memory 126 at a later time when the
dedicated ray memory 126 has sufficient free space to store the evicted ray data.
In some examples, the evicted ray data may include an indication of the best
candidate for an intersection determined prior to the eviction for use In continuing

the ray tracing operations on the ray data.

The core ray data described herein 1s the minimum amount of data that represents
aray. Toput it another way, the core ray data includes all of the fields that the
Intersection testers implemented in the ray tracing unit 110 need to access (for
reading or writing purposes). Therefore In examples described herein, the core
ray data is kept in the dedicated ray memory 126 implemented in SRAM, on-chip
and close to the processing logic 122. Some examples involve compressing the
core ray data Iinto a small format so that less data needs to be stored in the ray
RAM 126 for each ray (which can result in data for more rays being able to be
stored in the ray RAM 126, and/or a smaller ray RAM 126. It Is noted that in some
examples the non-core ray data is compressed. Different data compression

techniques could be used In different examples for compressing the ray data.

As described above, the fields of the core ray data may comprise some or all of

the following fields, and may include further fields not mentioned below (e.g.

further software-defined fields):

Core fields initialized by shader may include some or all of:
e ray origin;

e ray direction;
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clipping length, which represents the maximum distance within which a hit

IS considered valid;
behaviour flags - a series of bits to dictate the behaviour of the ray;

ray class - assigning a type to a ray. Class can influence which shaders are

run, mask visibility to certain geometry, etc.; and

shader reference - a ‘ray-attached” shader to run for a miss or regardless,

depending on behaviour flags.

Core fields representing result data, updated by intersection testers may include

one or more of:

Hit object - an identifier for the best hit candidate, e.g. a primitive ID or
specific data loaded from the primitive during intersection testing in order to
save the memory traffic of re-reading that data when it is time to shade the

results.

Intersection Distance - The distance to the best hit, so we can discard

candidate objects that are already less suitable than the current best hit. It
IS noted that the clipping distance for the ray may be overloaded with the

Intersection distance for the ray.

Barycentric coordinates - alpha & gamma (or u,v) to determine where,
within a hit primitive, an intersection occurred. This can be stored here
because It IS a substantial amount of computation with additional memory
reads to compute this prior to shading, while it's basically a by-product of
the primitive-test algorithm.

Cached vertex positions - Testing a triangle requires reading vertex
positions from DRAM. Since they will need to be re-fetched for shading, it
may be useful to cache them here.

Cached vertex attributes - Same rationale as vertex positions. Sometimes
the memory bandwidth associated with reading vertex attributes can be
saved. This is especially true when the vertex positions are packed into the
same format structure as the vertex positions and are thus read as part of

the same cache line / memory burst.

Shader ID - A shader associated with the object hit, which may be

appropriate to run to process the intersection.
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The GPU 106, scene hierarchy unit 108 and ray tracing unit 110 are shown In
Figure 1 as separate components, but In some examples, these components may
not be iImplemented as separate units, such that the functionality of more than one
of these components could be implemented by a single unit. For example a GPU

could be implemented to perform the functionality of ray tracing unit 110 and the

scene hierarchy unit 108 described herein.

In some examples, the graphics rendering system 100 could be a hybrid rendering

system which combines rasterization functionality and ray tracing functionality.

Figure 5 shows a computer system in which the graphics rendering systems
described herein may be implemented. The computer system comprises a CPU
502, the GPU 106, the ray tracing unit 110, a memory 504 and other devices 506,
such as a display 508 and speakers 510. The components of the computer
system can communicate with each other via a communications bus 512. The

DRAM 104 may be implemented as part of the memory 504.

The graphics rendering system of Figure 1 are shown as comprising a number of
functional blocks. This Is schematic only and iIs not intended to define a strict
division between different logic elements of such entities. Each functional block
may be provided In any suitable manner. It Is to be understood that intermediate
values described herein as being formed by a graphics rendering system need not
be physically generated by the graphics rendering system at any point and may
merely represent logical values which conveniently describe the processing

performed by the graphics rendering system between its input and output.

The components of the graphics rendering system (e.g. the GPU and the ray
tracing unit) described herein may be embodied In hardware on an integrated
circuit. The components of the graphics rendering system (e.g. the GPU and the
ray tracing unit) described herein may be configured to perform any of the
methods described herein. Generally, any of the functions, methods, techniques or
components described above can be implemented in software, firmware, hardware

(e.g., fixed logic circuitry), or any combination thereof. The terms "module,
20
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2 1

‘functionality,” "component”, “element”, “unit”, "block™ and “logic’" may be used
herein to generally represent software, firmware, hardware, or any combination
thereof. In the case of a software implementation, the module, functionality,
component, element, unit, block or logic represents program code that performs
the specified tasks when executed on a processor. The algorithms and methods
described herein could be performed by one or more processors executing code
that causes the processor(s) to perform the algorithms/methods. Examples of a
computer-readable storage medium Iinclude a random-access memory (RAM),
read-only memory (ROM), an optical disc, flash memory, hard disk memory, and

other memory devices that may use magnetic, optical, and other techniques to

store Instructions or other data and that can be accessed by a machine.

The terms computer program code and computer readable Instructions as used
herein refer to any kind of executable code for processors, Including code
expressed In a machine language, an Interpreted language or a scripting
language. Executable code includes binary code, machine code, bytecode, code
defining an integrated circuit (such as a hardware description language or netlist),
and code expressed In a programming language code such as C, Java (RTM) or
OpenCL (RTM). Executable code may be, for example, any kind of software,
firmware, script, module or library which, when suitably executed, processed,
Interpreted, compiled, executed at a virtual machine or other software
environment, cause a processor of the computer system at which the executable

code Is supported to perform the tasks specified by the code.

A processor, computer, or computer system may be any kind of device, machine
or dedicated circult, or collection or portion thereof, with processing capability such
that it can execute Instructions. A processor may be any Kind of general purpose
or dedicated processor, such as a CPU, GPU, System-on-chip, state machine,
media processor, an application-specific integrated circuit (ASIC), a programmable
logic array, a field-programmable gate array (FPGA), or the like. A computer or

computer system may comprise one or more processors.

It 1Is also Intended to encompass software which defines a configuration of

hardware as described herein, such as HDL (hardware description language)
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software, as I1s used for designing Integrated circuits, or for configuring
programmable chips, to carry out desired functions. That Is, there may be
provided a computer readable storage medium having encoded thereon computer
readable program code In the form of an integrated circuit definition dataset that
when processed In an Integrated circuit manufacturing system configures the
system to manufacture a graphics rendering system, or one or more components
thereof (e.g. a ray tracing unit), configured to perform any of the methods
described herein, or to manufacture a graphics rendering system, or one or more
components thereof (e.g. a ray tracing unit) comprising any apparatus described

herein. An integrated circuit definition dataset may be, for example, an integrated

circuit description.

Therefore, there may be provided a method of manufacturing, at an integrated
circuit manufacturing system, a graphics rendering system, or one or more
components thereof (e.g. a ray tracing unit) as described herein. Furthermore,
there may be provided an integrated circuit definition dataset that, when processed
IN an Integrated circuit manufacturing system, causes the method of manufacturing
a graphics rendering system, or one or more components thereof (e.g. a ray

tracing unit) to be performed.

An Integrated circuit definition dataset may be In the form of computer code, for
example as a netlist, code for configuring a programmable chip, as a hardware
description language defining an integrated circuit at any level, Including as
register transfer level (RTL) code, as high-level circuit representations such as
Verilog or VHDL, and as low-level circuit representations such as OASIS (RTM)
and GDSIl.  Higher level representations which logically define an integrated
circuit (such as RTL) may be processed at a computer system configured for
generating a manufacturing definition of an integrated circuit in the context of a
software environment comprising definitions of circuit elements and rules for
combining those elements In order to generate the manufacturing definition of an
iIntegrated circuit so defined by the representation. As Is typically the case with
software executing at a computer system so as to define a machine, one or more
iIntermediate user steps (e.g. providing commands, variables etc.) may be required

INn order for a computer system configured for generating a manufacturing
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definition of an integrated circuit to execute code defining an integrated circuit so

as to generate the manufacturing definition of that integrated circuit.

An example of processing an integrated circuit definition dataset at an integrated
circuit manufacturing system so as to configure the system to manufacture a

graphics rendering system, or one or more components thereof (e.g. a ray tracing

unit), will now be described with respect to Figure 6.

Figure 6 shows an example of an integrated circuit (IC) manufacturing system 602
which comprises a layout processing system 604 and an Integrated -circuit
generation system 606. The IC manufacturing system 602 is configured to receive
an IC definition dataset (e.g. defining a graphics rendering system, or one or more
components thereof (e.g. a ray tracing unit), as described In any of the examples
herein), process the IC definition dataset, and generate an IC according to the IC
definition dataset (e.g. which embodies a graphics rendering system, or one or
more components thereof (e.g. a ray tracing unit), as described in any of the
examples herein). The processing of the IC definition dataset configures the IC
manufacturing system 602 to manufacture an integrated circuit embodying a
graphics rendering system, or one or more components thereof (e.g. a ray tracing

unit), as described In any of the examples herein.

The layout processing system 604 is configured to receive and process the IC
definition dataset to determine a circuit layout. Methods of determining a circuit
layout from an |C definition dataset are known in the art, and for example may
INnvolve synthesising RTL code to determine a gate level representation of a circuit
to be generated, e.g. in terms of logical components (e.g. NAND, NOR, AND, OR,
MUX and FLIP-FLOP components). A circuit layout can be determined from the
gate level representation of the circuit by determining positional information for the
logical components. This may be done automatically or with user involvement In
order to optimise the circuit layout. When the layout processing system 604 has
determined the circuit layout it may output a circuit layout definition to the IC
generation system 606. A circult layout definition may be, for example, a circuit

layout description.
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The IC generation system 606 generates an |C according to the circuit layout
definition, as is known in the art. For example, the IC generation system 606 may
implement a semiconductor device fabrication process to generate the IC, which
may Involve a multiple-step sequence of photo lithographic and chemical
processing steps during which electronic circuits are gradually created on a wafer
made of semiconducting material. The circuit layout definition may be In the form
of a mask which can be used in a lithographic process for generating an IC
according to the circuit definition. Alternatively, the circuit layout definition
provided to the IC generation system 606 may be in the form of computer-

readable code which the IC generation system 606 can use to form a suitable

mask for use in generating an IC.

The different processes performed by the IC manufacturing system 602 may be
implemented all in one location, e.g. by one party. Alternatively, the IC
manufacturing system 602 may be a distributed system such that some of the
processes may be performed at different locations, and may be performed by
different parties. For example, some of the stages of: (1) synthesising RTL code
representing the IC definition dataset to form a gate level representation of a
circuit to be generated, (il) generating a circuit layout based on the gate level
representation, (i) forming a mask In accordance with the circuit layout, and (iv)
fabricating an Integrated circuit using the mask, may be performed In different

locations and/or by different parties.

In other examples, processing of the Integrated circuit definition dataset at an
iIntegrated circuit manufacturing system may configure the system to manufacture
a graphics rendering system, or one or more components thereof (e.g. a ray
tracing unit), without the |C definition dataset being processed so as to determine
a circuit layout. For instance, an integrated circuit definition dataset may define
the configuration of a reconfigurable processor, such as an FPGA, and the
processing of that dataset may configure an IC manufacturing system to generate
a reconfigurable processor having that defined configuration (e.g. by loading
configuration data to the FPGA).
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In some embodiments, an integrated circuit manufacturing definition dataset, when
processed In an integrated circuit manufacturing system, may cause an integrated
circuit manufacturing system to generate a device as described herein. For
example, the configuration of an integrated circuit manufacturing system In the
manner described above with respect to Figure 6 by an Integrated circuit

manufacturing definition dataset may cause a device as described herein to be

manufactured.

In some examples, an integrated circuit definition dataset could include software
which runs on hardware defined at the dataset or in combination with hardware
defined at the dataset. In the example shown in Figure 6, the IC generation
system may further be configured by an integrated circuit definition dataset to, on
manufacturing an integrated circuit, load firmware onto that integrated circuit In
accordance with program code defined at the integrated circuit definition dataset
or otherwise provide program code with the Integrated circuit for use with the

iIntegrated circult.

The applicant hereby discloses In iIsolation each Individual feature described
herein and any combination of two or more such features, to the extent that such
features or combinations are capable of being carried out based on the present
specification as a whole In the light of the common general knowledge of a person
skilled In the art, iIrrespective of whether such features or combinations of features

solve any problems disclosed herein.
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Claims

1. A ray tracing unit comprising:
processing logic configured to perform ray tracing operations on rays;
a dedicated ray memory coupled to the processing logic and configured to
store ray data for rays to be processed by the processing logic;
an interface to a memory system; and
control logic configured to manage allocation of ray data to either the
dedicated ray memory or the memory system, such that:
ray data for a ray Is split into: (1) a first portion of ray data which
Includes core ray data for the ray to be processed by the processing logic,
and (I1) a second portion of ray data which includes non-core ray data for
the ray; and
the first portion of ray data for the ray i1s stored in the dedicated ray

memory, and the second portion of ray data for the ray Is stored In the

memory system.

2. The ray tracing unit of claim 1 wherein the processing logic comprises ray
Intersection testing logic, and wherein the core ray data i1s for use by the ray
Intersection testing logic, whereas the non-core ray data Is not needed by the ray

Intersection testing logic.

3. The ray tracing unit of claim 1 or 2 wherein the core ray data for a ray
Includes one or more of:

an origin of the ray,

a direction of the ray,

a clipping length for the ray,

a ray type of the ray,

one or more Indicators of the behaviour of the ray,

a reference to a shader,

an Indication of an object which intersects with the ray,

an intersection distance along the ray at which the intersection with the
object occurs,

pbarycentric coordinates within an intersected primitive for the intersection,
26



070720

10

15

20

22

30

cached vertex positions of vertices of an intersected primitive, and

cached vertex attributes of the vertices of an intersected primitive.

4 The ray tracing unit of any preceding claim wherein the non-core ray data

for a ray 1s defined by a shader which creates the ray.

d. The ray tracing unit of any preceding claim wherein the control logic is
configured to manage the allocation of ray data, such that the first portion of ray

data includes some non-core ray data for the ray.

o. The ray tracing unit of any preceding claim wherein the control logic Is
configured to allocate, to the dedicated ray memory, up to a predetermined

maximum amount of ray data for a ray.

/. The ray tracing unit of any preceding claim wherein the dedicated ray

memory Is a static Random Access Memory (RAM), and wherein the memory

system comprises a cache and a dynamic RAM.

8. The ray tracing unit of any preceding claim wherein the ray tracing unit Is
coupled to a Graphics Processing Unit (GPU), wherein the GPU is configured to

execute shaders thereby outputting rays to be processed by the ray tracing unit.

9. The ray tracing unit of any preceding claim wherein the second portion of

ray data does not include core ray data for the ray.

10. A graphics rendering system comprising:
a Graphics Processing Unit (GPU) configured to execute shaders for
processing graphics data;
a memory system; and
a ray tracing unit comprising:
processing logic configured to perform ray tracing operations on

rays:
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a dedicated ray memory coupled to the processing logic and
configured to store ray data for rays to be processed by the processing
logic; and

control logic configured to manage allocation of ray data to either the
dedicated ray memory or the memory system, such that:

ray data for a ray Is split into: (1) a first portion of ray data
which Includes core ray data for the ray to be processed by the
processing logic, and (i) a second portion of ray data which includes
non-core ray data for the ray; and

the first portion of ray data for the ray Is stored Iin the
dedicated ray memory, and the second portion of ray data for the ray

IS stored In the memory system.

11.  The graphics rendering system of claim 10 wherein the memory system

comprises a cache which is coupled to both the GPU and the ray tracing unit.

12.  The graphics rendering system of claim 10 or 11 wherein the ray tracing
unit supports a predetermined number of different ray sizes, and wherein the
memory system has a plurality of memory spaces for storing non-core ray data for
rays, each memory space being arranged to store non-core ray data for rays of a
particular size, and wherein the control logic I1s configured to send non-core ray
data for a particular ray to one of the memory spaces based on the size of the

particular ray.

13.  The graphics rendering system of claim 12 wherein the control logic Is

configured to pack the non-core ray data for rays into the memory spaces in the

memory system.
14.  The graphics rendering system of any of claims 10 to 13 wherein the GPU

IS configured to send rays, created by execution of a shader at the GPU, to the ray

tracing unit for processing thereon.
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15.  The graphics rendering system of any of claims 10 to 14 wherein the ray
tracing unit is configured to cause a shader to be executed on the GPU In

response to performing ray tracing operations on rays.

16. A machine-implemented method of ray tracing using a dedicated ray

memory configured to store ray data for rays, the method comprising:

splitting ray data for a ray into: (1) a first portion of ray data which includes
core ray data for the ray, and (i) a second portion of ray data which includes non-

core ray data for the ray;

allocating ray data to either the dedicated ray memory or a different
memory system, such that the first portion of ray data for the ray Is stored in the
dedicated ray memory, and the second portion of ray data for the ray Is stored In

the memory system; and

performing ray tracing operations on rays using the core ray data for the

rays stored In the dedicated ray memory.

17. The machine-implemented method of claim 16 wherein the dedicated ray
memory IS part of a ray tracing unit, and wherein said performing ray tracing

operations on rays Is performed at the ray tracing unit, and wherein the memory

system Is external to the ray tracing unit.

18.  The machine-implemented method of claim 16 or 17 wherein said
performing ray tracing operations on rays comprises performing intersection
testing on the rays using the core ray data, wherein the non-core ray data 1s not

needed for the intersection testing.

19.  The machine-implemented method of any of claims 16 to 18 wherein the

first portion of ray data includes some non-core ray data for the ray.

20.  The machine-implemented method of any of claims 16 to 19 wherein If the
ray tracing operations cannot progress because the dedicated ray memory does
not have enough free space to store ray data for new rays, then ray data for some

existing rays which have not finished being processed by the ray tracing

operations Is evicted from the dedicated ray memory to allow ray data for new rays
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to be stored In the dedicated ray memory thereby allowing the ray tracing
operations to progress,

wherein the evicted ray data Is returned to the dedicated ray memory at a
later time when the dedicated ray memory has sufficient free space to store the
evicted ray data, and wherein the evicted ray data includes an indication of the
best candidate for an intersection determined prior to the eviction for use In

continuing the ray tracing operations on the ray data.

21.  The ray tracing unit of any of claims 1 to 9 wherein the ray tracing unit Is

embodied In hardware on an integrated circulit.

22. Computer readable code configured to cause the method of any of claims

16 to 20 to be performed when the code Is run.

23. A computer readable storage medium having encoded thereon the

computer readable code of claim 22.

24.  An Integrated circuit definition dataset that, when processed in an
iIntegrated circuit manufacturing system, configures the integrated circuit
manufacturing system to manufacture a ray tracing unit as claimed in any of

clams 1 to 9 or 21.

25. A computer readable storage medium having stored thereon a computer
readable description of an integrated circuit that, when processed In an integrated
circuit manufacturing system, causes the integrated circuit manufacturing system

to manufacture a ray tracing unit as claimed in any of claims 1 to 9 or 21.

26.  Anintegrated circuit manufacturing system comprising:
a non-transitory computer readable storage medium having stored thereon
a computer readable description of an integrated circuit that describes a ray
tracing unit as claimed in any of claims 1 to 9or 21;
a layout processing system configured to process the integrated circuit
description so as to generate a circuit layout description of an integrated circuit

embodying the ray tracing unit as claimed in any of claims 1 to 9 or 21; and
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an integrated circuit generation system configured to manufacture the ray

tracing unit according to the circuit layout description.
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