
US 20210209161A1 
MIN TIT IN 

( ( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2021/0209161 A1 

Yuan et al . ( 43 ) Pub . Date : Jul . 8 , 2021 

( 54 ) COGNITIVELY GENERATING PARAMETER 
SETTINGS FOR A GRAPH DATABASE 

( 71 ) Applicant : INTERNATIONAL BUSINESS 
MACHINES CORPORATION , 
Armonk , NY ( US ) 

( 72 ) Inventors : Zhong Fang Yuan , Xian ( CN ) ; Yi 
Ming Wang , Xi'an ( CN ) ; Kun Yan 
Yin , NINGBO ( CN ) ; Xue Ying Zhang , 
Beijing ( CN ) ; Tong Liu , Xian ( CN ) ; He 
Li , Beijing ( CN ) 

( 52 ) U.S. CI . 
CPC G06F 16/9024 ( 2019.01 ) ; G06F 17/16 

( 2013.01 ) ; GO6N 3/04 ( 2013.01 ) ; G06F 
16/9027 ( 2019.01 ) 

( 57 ) ABSTRACT 
An approach is provided for generating graph database 
parameter settings . Parameter settings for importing data 
into a graph database are determined . A speed of importing 
simulated data into the graph database and a system resource 
usage are determined by executing an importing of the 
simulated data using the parameter settings and a simulated 
hardware environment . A reward associated with the param 
eter settings is determined . Using a policy network that 
includes convolutional neural networks and based on the 
reward and the settings , candidates of adjusted parameter 
settings are determined . Using a Monte Carlo tree search in 
multiple iterations to estimate changes in speeds of import 
ing the simulated data and changes in system resource 
usages for candidates of the adjusted parameter settings , 
rewards for the candidates are determined . Based on the 
rewards , a candidate is selected as including final 
settings that optimize an importing speed and system 
resource usage . 

( 21 ) Appl . No .: 16 / 734,488 

( 22 ) Filed : Jan. 6 , 2020 

Publication Classification 

( 51 ) Int . Ci . 
G06F 16/901 
GO6N 3/04 
G06F 17/16 

parameter ( 2006.01 ) 
( 2006.01 ) 
( 2006.01 ) 

200 
GENERATING OPTIMIZED PARAMETER SETTINGS 

202 
DETERMINE FIRST PARAMETER SETTINGS FOR IMPORTING DATA INTO A 

GRAPH DATABASE 

204 
USING THE FIRST PARAMETER SETTINGS AND SIMULATED ENVIRONMENT , 

DETERMINE SPEED OF IMPORTING SIMULATED DATA INTO THE 
GRAPH DATABASE AND USAGE OF SYSTEM RESOURCES 

206 
BASED ON SPEED OF IMPORTING AND USAGE OF SYSTEM RESOURCES , 
DETERMINE REWARD ASSOCIATED WITH FIRST PARAMETER SETTINGS 

208 
BASED ON REWARD AND FIRST PARAMETER SETTINGS AND USING A POLICY 

NETWORK CONSISTING OF CONVOLUTIONAL NEURAL NETWORKS , 
GENERATE CANDIDATES OF ADJUSTED PARAMETER SETTINGS 

210 
USING AN N - STEP SIMULATION IN A MONTE CARLO TREE SEARCH IN MULTIPLE 

ITERATIONS TO ESTIMATE CHANGES IN IMPORTING SPEED AND SYSTEM 
RESOURCE USAGE FOR RESPECTIVE CANDIDATES , DETERMINE REWARDS FOR 

THE RESPECTIVE CANDIDATES BASED ON THE ESTIMATED CHANGES 

212 
DETERMINE THAT THE ITERATIONS ARE COMPLETED AND BASED ON THE 

REWARDS FOR THE CANDIDATES , SELECT ONE CANDIDATE AS THE 
OPTIMIZED PARAMETER SETTINGS 

214 
END 



Patent Application Publication Jul . 8 , 2021 Sheet 1 of 7 US 2021/0209161 A1 

100 

102 

COMPUTER 104 

PARAMETER SETTINGS OPTIMIZATION SYSTEM 
110 106 

/ 
DATA AND ACTION 

MOCKER 

108 
Z 

ENVIRONMENT MOCKER REWARD 
COMPONENT 

112 

ACTION COMPONENT 
114 116 

/ 
POLICY NETWORK MONTE CARLO TREE 

SEARCH COMPONENT 

118-1 118 - N 120 

VIRTUAL AGENT IN 
STATE 1 

I. 
VIRTUAL AGENT IN 

STATEN 
OPTIMIZED 
PARAMETER 
SETTINGS 

FIG . 1 



Patent Application Publication Jul . 8 , 2021 Sheet 2 of 7 US 2021/0209161 A1 

200 
GENERATING OPTIMIZED PARAMETER SETTINGS 

202 
DETERMINE FIRST PARAMETER SETTINGS FOR IMPORTING DATA INTO A 

GRAPH DATABASE 

204 
USING THE FIRST PARAMETER SETTINGS AND SIMULATED ENVIRONMENT , 

DETERMINE SPEED OF IMPORTING SIMULATED DATA INTO THE 
GRAPH DATABASE AND USAGE OF SYSTEM RESOURCES 

206 
BASED ON SPEED OF IMPORTING AND USAGE OF SYSTEM RESOURCES , 
DETERMINE REWARD ASSOCIATED WITH FIRST PARAMETER SETTINGS 

208 
BASED ON REWARD AND FIRST PARAMETER SETTINGS AND USING A POLICY 

NETWORK CONSISTING OF CONVOLUTIONAL NEURAL NETWORKS , 
GENERATE CANDIDATES OF ADJUSTED PARAMETER SETTINGS 

210 
USING AN N - STEP SIMULATION IN A MONTE CARLO TREE SEARCH IN MULTIPLE 

ITERATIONS TO ESTIMATE CHANGES IN IMPORTING SPEED AND SYSTEM 
RESOURCE USAGE FOR RESPECTIVE CANDIDATES , DETERMINE REWARDS FOR 

THE RESPECTIVE CANDIDATES BASED ON THE ESTIMATED CHANGES 

212 
DETERMINE THAT THE ITERATIONS ARE COMPLETED AND BASED ON THE 

REWARDS FOR THE CANDIDATES , SELECT ONE CANDIDATE AS THE 
OPTIMIZED PARAMETER SETTINGS 

214 

END 

FIG . 2 



Patent Application Publication Jul . 8 , 2021 Sheet 3 of 7 US 2021/0209161 A1 

300 
GENERATING PARAMETER SETTINGS IN A VECTOR OF 

UNIFORM DIMENSIONS 

302 
USE ONE - HOT ENCODING TO ENCODE INITIAL PARAMETER SETTINGS INTO A 

ONE - HOT VECTOR 

304 
USE EMBEDDING TO CONVERT THE ONE - HOT VECTOR INTO AN 

EMBEDDING VECTOR 

306 
USE BATCH NORMALIZATION TECHNIQUES TO GENERATE A VECTOR OF 

UNIFORM DIMENSIONS BY NORMALIZING DIFFERENT RANGES OF FEATURES 
REPRESENTED IN THE EMBEDDING VECTOR TO THE SAME FEATURE RANGE 

308 
USING THE VECTOR HAVING FEATURES OF UNIFORM DIMENSIONS , 

FACILITATE TRAINING FOR DEEP REINFORCEMENT LEARNING THAT EMPLOYS 
CONVOLUTIONAL NEURAL NETWORKS 

310 

END 

FIG . 3 



Patent Application Publication Jul . 8 , 2021 Sheet 4 of 7 US 2021/0209161 A1 

400 

Vertex.commitNum = 100 
Edge.commitNum = 100 
Vertex.workers = 8 

402 
Speed of inserting 
graph database = 
938 seconds 

Edge.workers = 8 
ids.block - size = 10 

? 
Vertex.commitNum = 101 
Edge.commitNum = 99 
Vertex.workers = 9 

404 
Speed of inserting 
graph database = 
911 seconds III 

Edge.workers = 9 
ids.block - size = 12 

? After multiple 
iterations 

Vertex.commitNum = 3000 
Edge.commitNum = 1000 
Vertex.workers = 64 

406 
Speed of inserting 
graph database = 
106 seconds III 

Edge.workers = 64 
ids.block - size = 50000 

FIG . 4 



Patent Application Publication Jul . 8 , 2021 Sheet 5 of 7 US 2021/0209161 A1 

500 

502 

waiting 
time 

ID block 
size 

worker 
number 

buffer 
size 

( 4 ) 

? ( 1 ) 504 114 
/ 

POLICY NETWORK 
memory I / O 

speed 
CPU 

occupancy LOSS 
FUNCTION 

514 

OPTIMIZE ( LOSS ) 
516 

? ( 2 ) COMBINED NETWORK 512 
506 

REWARD CURRENT 
NETWORK 

510 HI ( 3 ) 
HISTORY 
NETWORK 

508 

REPLAY BUFFER 518 

( 5 ) 

520 

522 524 526 

Thread number +2 
Waiting time - 10 ms 

Thread number -1 
Worker number +2 
Buffer size + 16M 

Thread number +8 
ID Block size - 16M 

FIG . 5 



Patent Application Publication Jul . 8 , 2021 Sheet 6 of 7 US 2021/0209161 A1 

600 

602 

114 
( 1-2 ) memory 1/0 

speed 
CPU 

occupancy ? POLICY 
NETWORK 

M T ( 1-1 ) ( 1-3 ) 
604 Step 1 

waiting 
time 

ID block 
size 

worker 
number 

buffer 
size 

606 608 610 1 + E 

652 

114 
memory ..... I / O 

speed 
CPU 

occupancy 
( 2-2 ) 
? . POLICY 

NETWORK 

T ( 2-1 ) ( 2-3 ) 
654 Step 2 

waiting 
time 

ID block 
size 

worker 
number 

buffer 
size 

656 658 660 

FIG . 6 



Patent Application Publication Jul . 8 , 2021 Sheet 7 of 7 US 2021/0209161 A1 

102 

COMPUTER 

702 

704 
CPU 

MEMORY 714 
708 

PROGRAM CODE FOR 
PARAMETER SETTINGS OPTIMIZATION 

SYSTEM 
706 

I / O INTERFACE 

710 712 

COMPUTER DATA STORAGE 
UNIT I / O DEVICES 

714 

FIG . 7 



US 2021/0209161 Al Jul . 8 , 2021 
1 

BRIEF DESCRIPTION OF THE DRAWINGS COGNITIVELY GENERATING PARAMETER 
SETTINGS FOR A GRAPH DATABASE 

BACKGROUND 

[ 0001 ] The present invention relates to graph database management , and more particularly to generating optimized 
parameter settings of a graph database . 
[ 0002 ] A graph database is a database that uses graph 
structures for semantic queries , where the structures have 
nodes , edges , and properties that represent and store data . A 
graph provided by the graph database relates the data items 
in the store to a collection of nodes and edges , where the 
edges represent relationships between the nodes . A Janus 
Graph® graph database is an open source , distributed graph 
database . A JanusGraph® graph database cluster consists of 
one or more JanusGraph® instances . A configuration is 
needed to open a JanusGraph® instance . The configuration 
specifies the components that the graph database should use , 
controls the operational aspects of a deployment of the graph 
database , and provides tuning options which a human expert 
uses to improve the performance of the graph database 
cluster . Performance of importing batch data into a graph 
database varies as different parameters are set based on 
different cluster hardware conditions . JanusGraph is a reg 
istered trademark of The Linux Foundation located in San 
Francisco , Calif . 

[ 0005 ] FIG . 1 is a block diagram of a system for gener 
ating parameter settings for a graph database , in accordance 
with embodiments of the present invention . 
[ 0006 ] FIG . 2 is a flowchart of a process of generating 
parameter settings for a graph database , where the process is 
implemented in the system of FIG . 1 , in accordance with 
embodiments of the present invention . 
[ 0007 ] FIG . 3 is a flowchart of a process of generating 
parameter settings in a vector of uniform dimensions , where 
the generated parameters settings are used in the process of 
FIG . 2 , in accordance with embodiments of the present 
invention . 
[ 0008 ] FIG . 4 is an example of initial parameter settings 
for a graph database and candidates of adjusted parameter 
settings used in the process of FIG . 2 , in accordance with 
embodiments of the present invention . 
[ 0009 ] FIG . 5 is an example of a policy network generat 
ing candidates of adjusted parameter settings based on 
previous parameter settings and a reward the process of 
FIG . 2 , in accordance with embodiments of the present 
invention . 
[ 0010 ] FIG . 6 is an example of a Monte Carlo tree search 
operating on candidate parameter settings in the process of 
FIG . 2 , in accordance with embodiments of the present 
invention . 
[ 0011 ] FIG . 7 is a block diagram of a computer that is 
included in the system of FIG . 1 and that implements the 
processes of FIG . 2 and FIG . 3 , in accordance with embodi 
ments of the present invention . 

SUMMARY 

DETAILED DESCRIPTION 

Overview 

[ 0003 ] In one embodiment , the present invention provides 
a method of generating parameter settings for a graph 
database . The method includes determining , by one or more 
processors , first settings for parameters for importing data 
into a graph database . The method further includes deter 
mining , by the one or more processors , a first speed of 
importing simulated data into the graph database and a first 
usage of system resources by executing an importing of the 
simulated data using the first settings for the parameters and 
a simulated environment of the graph database . The method 
further includes based on the first speed and the first usage , 
determining , by the one or more processors , a reward 
associated with the first settings . The method further 
includes using a policy network that includes convolutional 
neural networks ( CNNs ) and based on the reward and the 
first settings , generating , by the one or more processors , 
candidates of adjusted settings for the parameters . The 
method further includes using a Monte Carlo tree search 
( MCTS ) in multiple iterations to estimate changes in speeds 
of importing the simulated data and changes in usages of 
system resources for respective candidates of the adjusted 
settings , determining , by the one or more processors , 
rewards for the respective candidates . The method further 
includes determining , by the one or more processors , that the 
iterations are completed . In response to the iterations being 
completed and based on the rewards for the respective 
candidates , selecting , by the one or more processors , a 
candidate from the candidates as including final settings for 
the parameters that optimize ( i ) a speed of importing the 
simulated data into the graph database and ( ii ) a usage of the 
system resources during the importing of the simulated data . 
[ 0004 ] Other embodiments of the present invention pro 
vide a computer program product and a computer system 
that employ respective methods analogous to the method 
described above . 

[ 0012 ] Using traditional approaches , tuning a graph data 
base for improved performance of importing data and que 
rying data requires experienced human developers and a 
significant amount of time ( e.g. , more than a week ) to hard 
code the graph database par neters . In an actual customer 
scenario , there are often very few developers with extensive 
tuning experience and the time that can be assigned to tuning 
work is often limited . Tuning results under a particular 
hardware configuration are often difficult to re - use in other 
hardware configurations . 
[ 0013 ] Embodiments of the present invention address the 
aforementioned unique challenges of tuning a graph data 
base for optimal performance . In one embodiment , a param 
eter tuning system automatically generates a configuration 
guidance strategy that optimizes performance of data import 
and querying of the graph database under given cluster 
hardware conditions , where the strategy is generated in an 
amount of time that is significantly shorter than the known 
tuning approaches that use human experts , and so that the 
strategy can be re - used on different hardware configurations , 
thereby avoiding costly , time - consuming , and error - prone 
efforts to use expert developers to generate different sets of 
tuned parameter settings for the different sets of hardware 
configurations . In one embodiment , the parameter tuning 
system uses cognitive computing techniques including deep 
reinforcement learning and Monte Carlo search trees to 
automatically generate the configuration guidance strategy . 
[ 0014 ] In one embodiment , the performance of data 
import and querying in the graph database is advantageously 
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optimized prior to deploying the graph database , thereby 
avoiding costly changes made after the graph database goes 
live . 
[ 0015 ] As used herein , “ cognitive ” and “ cognitively ” are 
defined as pertaining to a system or process that provides 
artificial intelligence ( AI ) capabilities that perform deep 
reinforcement learning . As used herein , “ cognitive ” and its 
variants are not to be construed as being or pertaining to 
mental processes or concepts performed in the human mind . 
System for Generating Parameter Settings for a Graph 
Database 

[ 0016 ] FIG . 1 is a block diagram of a system 100 for 
generating parameter settings for a graph database , in accor 
dance with embodiments of the present invention . System 
100 includes a computer 102 , which executes a software 
based parameter settings optimization system 104 , which 
includes a data and action mocker 106 , an environment 
mocker 108 , and a reward component 110. Parameter set 
tings optimization system 104 also includes an action com 
ponent 112 , which includes a policy network 114 and a 
Monte Carlo tree search ( MCTS ) component 116 . 
[ 0017 ] Parameter settings optimization system 104 also 
includes virtual agents 118-1 , ... , 118 - N , which are in 
respective states 1 , N , where N is an integer greater than 
one . Virtual agents 118-1 , 118 - N automatically generate 
respective sets of settings for parameters of a graph database 
( not shown ) . The parameters specify a configuration of the 
graph database and affect a performance of importing data 
into the graph database and / or a performance of querying 
data in the graph database . Virtual agents 118-1 , ... , 118 - N 
send the parameter settings to environment mocker 108. In 
response to receiving feedback from reward component 110 , 
a given virtual agent included in virtual agent 118-1 , 
118 - N generates another set of parameter settings where at 
least one of the parameter settings is adjusted from param 
eter settings in the previous state of the given virtual agent . 
The adjusted parameter settings may cause an improvement 
in the performance of the importing of data into the graph 
database and / or the querying of data in the graph database . 
In one embodiment , the improvement in the performance of 
the importing of the data includes an increase in the speed 
of importing the data and a decrease in the usage of system 
resources as a result of importing the data . 
[ 0018 ] In one embodiment , the aforementioned param 
eters are configuration items ( i.e. , items specifying a con 
figuration guidance strategy ) and include , but are not limited 
to , an identifier ( ID ) block size , a renew timeout , read 
attempts , write attempts , an attempt wait , buffer size , and 
waiting time ( also known as “ wait time ” ) . The aforemen 
tioned parameters are described below : 
[ 0019 ] ID block size : indicates a size of a block of storage 
in which a graph element ID is reserved . An ID pool 
manager acquires a graph element ID in blocks for a 
particular graph database instance . Increasing ID block size 
can reduce the number of times the block is acquired , but if 
the value of ID block size is too large , there will be extra IDs 
that are unassigned and therefore wasted . 
[ 0020 ] Renew timeout : indicates an amount of time ( e.g. , 
number of milliseconds ) that a graph database ID pool 
manager will wait in total while attempting to acquire a new 
ID block before failing . Renew timeout may be configured 
as large as feasible without allowing a wait for unrecover 
able failures to be too long . 

[ 0021 ] Read attempts : indicates the number of times the 
graph database will attempt to execute a read operation 
against the storage backend before giving up . Read attempts 
may be increased if a high load on the backend during bulk 
loading is expected . 
[ 0022 ] Write attempts : indicates the number of times the 
graph database will attempt to execute a write operation 
against the storage backend before giving up . Write attempts 
may be increased if a high load on the backend during bulk 
loading is expected . 
[ 0023 ] Attempt wait : the time interval ( e.g. , number of 
milliseconds ) that the graph database will wait before re 
attempting a read or write operation after a read or write 
operation failed . A higher value of the attempt wait ensures 
that the re - attempts of the read or write operations do not 
further increase the load on the backend . 
[ 0024 ] Buffer size : The graph database buffers write 
operations and executes the write operations in small 
batches to reduce the number of requests against the storage 
backend . The buffer size parameter controls the size of these 
batches . When executing many write operations in a short 
period of time , the storage backend can become overloaded 
with write requests . In that case , increasing the buffer size 
can avoid failure by increasing the number of write opera 
tions per request and thereby lowering the number of 
requests . 
[ 0025 ] Waiting time : indicates the amount of time ( e.g. , 
number of milliseconds ) the system waits for an ID block 
reservation to be acknowledged by the storage backend . As 
the waiting time is decreased , it is more likely that an 
application will fail on a congested cluster . 
[ 0026 ] Data and action mocker 106 includes a script that 
generates a large amount of simulated data based on a 
schema of data to be imported into the graph database . 
Parameter settings optimization system 104 can trigger data 
and action mocker 106 to start and stop the generation of the 
simulated data . Data and action mocker 106 also imports 
( i.e. , uploads ) the simulated data into one or more simulated 
environments with a fixed speed . Data and action mocker 
106 can configure the aforementioned speed with different 
values . Environment mocker 108 automatically simulates 
different environments for the graph database . In one 
embodiment , environment mocker 108 includes multiple 
scripts which clears a simulated ( i.e. , mocked ) environment , 
generates a new simulated environment , and sets new 
parameters . The clearing of a simulated environment 
includes clearing old mocked environments and related 
parameters and is a pre - condition for building the next 
mocked environment . The generation of the new simulated 
environment includes using scripts to automatically set up a 
virtual environment with expected disks , CPUs , memory , 
and software . The setting of new parameters includes using 
scripts to set values to the parameters ( i.e. , provide param 
eter settings ) related to the simulated environment . 
[ 0027 ] Reward component 110 evaluates results of data 
and action mocker 106 simulating the importing of data into 
the simulated environment generated by environment 
mocker 108. In one embodiment , reward component 110 
generates a reward ( i.e. , a score ) that evaluates the perfor 
mance results of the importing of the data into the graph 
database . In one embodiment , if the performance results are 
included in a first predetermined range of results that indi 
cate good or satisfactory results , then reward component 110 
generates a reward which is a positive numerical value , and 
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if the performance results are included in a second prede 
termined range or results that indicate bad or unsatisfactory 
results , then reward component 110 generates a reward 
which is a negative numerical value . Action component 112 
employs CNNs to provide deep reinforcement learning and 
uses the reward to generate an adjusted set of parameter 
settings which are included in a next state of the virtual 
agent . The results of the importing of the data includes the 
speed of the importing of the data and the usage of system 
resources required by the importing of the data . In one 
embodiment , action component 112 generates adjusted sets 
of parameter settings in iterations , where an amount of an 
adjustment of a parameter setting in a given iteration is a 
predetermined amount . 
[ 0028 ] In one embodiment , reward component 110 gen 
erates a reward value that is divided into a long - term reward 
and a short - term reward . The short - term reward indicates a 
change in the speed at which data is imported into the graph 
database between two states of a virtual agent ( i.e. , an 
increase or decrease in the speed of importing the data 
between using a first set of parameter settings in the virtual 
agent in a first state and using a second set of parameter 
settings in the virtual agent in a second state ) . The long - term 
reward combines the short - term reward with an indication of 
a change in system resource usage ( i.e. , environmental 
performance consumption ) between the two states of the 
virtual agent . 
[ 0029 ] In one embodiment , the long - term reward includes 
a speed reward and a resource reward , where the speed 
reward is the increase in the speed of importing data divided 
by the theoretical maximum speed of importing the data , and 
the resource reward is the usage of system resources ( i.e. , 
occupied system resources ) required by the importing of the 
data divided by the theoretical maximum system resource 
usage required by the importing of the data . 
[ 0030 ] In one embodiment , reward component 110 evalu 
ates a function of the resource reward form system 
resources as expressed in equation ( 1 ) presented below . 

f ( resource reward ) = ( n = 1 " log ( cn / Sn ) ) / m ( 1 ) 

[ 0031 ] In equation ( 1 ) , c , is a measure of usage of the n - th 
system resource and S , is the theoretical maximum usage of 
the n - th system resource . In one embodiment , policy net 
work 114 receives the value of m as a parameter . In another 
embodiment , policy network 114 randomly assigns the value 

[ 0037 ] In one embodiment , parameter settings optimiza 
tion system 104 maximizes the speed reward while mini 
mizing the resource reward to obtain optimized parameter 
settings 120 . 
[ 0038 ] Action component 112 adjusts the settings of the 
parameters that were set by environment mocker 108 , where 
the adjustment of the settings is based on the reward 
generated by reward component 110. Policy network 114 
receives as input the reward generated by reward component 
110 and current parameter settings provided by a virtual 
agent ( e.g. , virtual agent 118-1 ) in a current state . Policy 
network 114 generates as output a set of candidates of 
adjusted parameter settings . The adjusted setting ( s ) in each 
of the candidates in the output of policy network 114 can be 
associated with one or more than one of the parameters . 
MCTS component 116 uses a Monte Carlo tree search 
method to perform an n - step simulation on each of the 
candidates in the output of policy network 114 , receives 
corresponding rewards at each step of the simulation , and 
selects optimized parameter settings 120 ( i.e. , a final optimal 
combination of parameter settings ) based on the rewards . To 
determine each corresponding reward , the virtual agent in a 
current state converts the embedding parameter settings into 
physical parameter settings ( i.e. , settings in the original 
dimensions of the parameters ) via a fully connected network 
( not shown ) . 
[ 0039 ] The functionality of the components shown in FIG . 
1 is described in more detail in the discussion of FIG . 2 , FIG . 
3 , FIG . 4 , FIG . 5 , FIG . 6 , and FIG . 7 presented below . 

Process for Generating Parameter Settings for a Graph 
Database 

of m . 
[ 0032 ] In one embodiment , reward component 110 gen 
erates : 
[ 0033 ] ( i ) a small positive reward in response to the speed 
reward indicating an increase in import speed and the 
resource reward indicating an increase in system resource 
usage ; 
[ 0034 ] ( ii ) a large negative reward in response to the speed 
reward indicating a decrease in import speed and the 
resource reward indicating an increase in system resource 
usage ; 
[ 0035 ] ( iii ) a large positive reward in response to the speed 
reward indicating an increase in import speed and the 
resource reward indicating a decrease in system resource 

[ 0040 ] FIG . 2 is a flowchart of a process of generating 
parameter settings for a graph database , where the process is 
implemented in the system of FIG . 1 , in accordance with 
embodiments of the present invention . The process of FIG . 
2 starts at step 200. In step 202 , parameter settings optimi 
zation system 104 ( see FIG . 1 ) determines first parameter 
settings for importing data into a graph database . 
[ 0041 ] In step 204 , parameter settings optimization system 
104 ( see FIG . 1 ) determines a speed of importing simulated 
data generated by data and action mocker 106 ( see FIG . 1 ) 
into the graph database and a measure of usage of system 
resources required by the importing of the simulated data . 
The determination of the speed of importing and the mea 
sure of the usage of system resources in step 204 uses the 
first parameter settings determined in step 202 and a simu 
lated environment generated by environment mocker 108 
( see FIG . 1 ) . 
[ 0042 ] In step 206 , based on the speed of importing the 
simulated data and the measure of the usage of system 
resources determined in step 204 , parameter settings opti 
mization system 104 ( see FIG . 1 ) determines a reward 
associated with the first parameter settings determined in 
step 202 . 
[ 0043 ] In step 208 , based on the reward determined in step 
206 and the first parameter settings determined in step 202 
and using policy network 114 ( see FIG . 1 ) which employs 
CNNs , parameter settings optimization system 104 ( see FIG . 
1 ) generates candidates of adjusted parameter settings . 
[ 0044 ] In step 210 , using an n - step simulation in a Monte 
Carlo tree search provided by MCTS component 116 ( see 
FIG . 1 ) in multiple iterations to estimate changes in the 
speed of importing the data and changes in measures of 

usage ; and 
[ 0036 ] ( iv ) a small negative reward in response to the 
speed reward indicating a decrease in import speed and the 
resource reward indicating a decrease in system resource 
usage . 
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usage of the system resources for respective candidates 
generated in step 208 , parameter settings optimization sys 
tem 104 ( see FIG . 1 ) determines rewards for the respective 
candidates based on the estimated changes . 
[ 0045 ] In step 212 , parameter settings optimization system 
104 ( see FIG . 1 ) determines that the iterations are completed 
and in response to the iterations being completed and based 
on the rewards for the candidates , parameter settings opti 
mization system 104 ( see FIG . 1 ) selects one of the candi 
dates as being optimized parameter settings 120 ( see FIG . 
1 ) . In one embodiment , action component 112 ( see FIG . 1 ) 
determines the multiple iterations are completed ( i.e. , the 
parameter settings in the virtual agent are in a final state ) in 
response to determining that loss between one iteration and 
the next iteration is steady . 
[ 0046 ] The process of FIG . 2 ends at step 214 . 
[ 0047 ] FIG . 3 is a flowchart of a process of generating 
parameter settings in a vector of uniform dimensions , where 
the generated parameters settings are used in the process of 
FIG . 2 , in accordance with embodiments of the present 
invention . The process of FIG . 3 begins at step 300. In step 
302 , parameter settings optimization system 104 ( see FIG . 
1 ) encodes initial parameter settings into a one - hot vector by 
using a one - hot encoding technique . 
[ 0048 ] In step 304 , parameter settings optimization system 
104 ( see FIG . 1 ) converts the one - hot vector encoded in step 
302 into an embedding vector by using an embedding 
technique . 
[ 0049 ] In step 306 , parameter settings optimization system 
104 ( see FIG . 1 ) generates a vector of uniform dimensions 
by using batch normalization techniques that include nor 
malizing different ranges of features to the same feature 
range , where the features are represented in the embedding 
vector that resulted from step 304 . 
[ 0050 ] In step 308 , parameter settings optimization system 
104 ( see FIG . 1 ) trains deep reinforcement learning that 
employs the CNNs , where the training if facilitated by using 
the vector having features of uniform dimensions ( i.e. , the 
vector generated in step 306 ) . 
[ 0051 ] The process of FIG . 3 ends at step 310 . 
[ 0052 ] In one embodiment , step 202 ( see FIG . 2 ) includes 
steps 302 , 304 , and 306 in FIG . 3. In one embodiment , a 
virtual agent included in virtual agent 118-1 , ... , virtual 
agent 118 - N ( see FIG . 1 ) consists of different parameters 
that need to be adjusted during the importing of data into the 
graph database . Since the parameters to be adjusted have 
different measurement units and physical meanings ( i.e. , 
meanings in the physical world ) , parameter settings optimi 
zation system 104 ( see FIG . 1 ) converts the parameters into 
a vector representation of uniform dimensions ( i.e. , the 
vector generated in step 306 ) in order to facilitate training 
for the deep reinforcement learning provided by policy 
network 114 ( see FIG . 1 ) . 
[ 0053 ] After converting the parameters of the virtual agent 
to the corresponding embedding parameters , the MCTS 
component 116 ( see FIG . 1 ) and the policy network 114 ( see 
FIG . 1 ) convert the embedding parameters into physical 
parameters ( i.e. , parameters whose values are in measure 
ment units that have meanings in the physical world ) 
through a fully connected network . 

parameter settings used in step 210 in the process of FIG . 2 , 
in accordance with embodiments of the present invention . 
Example 400 includes a virtual agent 402 in an initial state , 
which has parameters settings that include Vertex.commit 
Num = 100 , Edge.commitNum = 100 , etc. Parameter settings 
optimization system 104 ( see FIG . 1 ) uses ( i ) data generated 
by data and action mocker 106 ( see FIG . 1 ) and ( ii ) a 
simulated environment generated by environment mocker 
108 ( see FIG . 1 ) to determine that the speed of importing 
( i.e. , inserting ) the data into the graph database is 938 
seconds when the parameter settings in virtual agent 402 are 
used to import the data into the graph database . 
[ 0055 ] Using a reward generated by reward component 
110 ( see FIG . 1 ) , action component 112 ( see FIG . 1 ) adjusts 
the parameter settings in virtual agent 402 to generate a new 
set of parameter settings ( i.e. , Vertex.commitNum = 101 , 
Edge.commitNum = 99 , etc. ) in virtual agent 404 ( i.e. , the 
virtual agent in a second state ) . Parameter settings optimi 
zation system 104 ( see FIG . 1 ) uses ( i ) the data generated by 
data and action mocker 106 ( see FIG . 1 ) and ( ii ) a simulated 
environment generated by environment mocker 108 ( see 
FIG . 1 ) to determine that the speed of importing ( i.e. , 
inserting ) the data into the graph database is 911 seconds 
when the parameter settings in virtual agent 404 are used to 
import the data into the graph database ( i.e. , an improvement 
in speed over the 938 seconds associated with the parameter 
settings in the virtual agent in the initial state ) . 
[ 0056 ] After multiple iterations of using rewards corre 
sponding to the virtual agent in respective states , action 
component 112 ( see FIG . 1 ) adjusts the parameter settings in 
a next - to - last state ( not shown ) to generate final parameters 
settings ( see FIG . 1 ) ( i.e. , Vertex.commitNum = 3000 , Edge . 
commitNum = 1000 , etc. ) in virtual agent 406 ( i.e. , the virtual 
agent in the final state ) . Parameter settings optimization 
system 104 ( see FIG . 1 ) uses ( i ) the data generated by data 
and action mocker 106 ( see FIG . 1 ) and ( ii ) a simulated 
environment generated by environment mocker 108 ( see 
FIG . 1 ) to determine that the speed of importing the data into 
the graph database is 106 seconds when the parameter 
settings in virtual agent 406 are used to import the data into 
the graph database ( i.e. , an improvement in speed over the 
938 seconds associated with the parameter settings in virtual 
agent 402 , the 911 seconds associated with the parameters 
settings in virtual agent 404 , and other speeds ( not shown ) 
associated with other parameter settings in the virtual agent 
in other states ( not shown ) ) . 
[ 0057 ] FIG . 5 is an example 500 of a policy network 
generating candidates of adjusted parameter settings based 
on previous parameter settings and a reward in step 208 in 
the process of FIG . 2 , in accordance with embodiments of 
the present invention . In step ( 1 ) , parameter settings opti 
mization system 104 ( see FIG . 1 ) uses parameter settings 
502 in environment 504 to import data into the graph 
database and in step ( 2 ) generates a reward 506 that indicates 
the speed of the import and the usage of system resources 
required by the import . Policy network 114 includes a 
history network 508 ( i.e. , a history CNN ) to save historical 
parameter settings that were processed in previous iterations 
by policy network 114. Policy network also includes a 
current network 510 ( i.e. , a current CNN ) that is used for the 
training of a current action by a deep reinforcement learning 
technique and takes as input the reward 506 and the current 
parameter settings 502. Policy network 114 merges current 
network 510 with history network 508 to form a combined 

EXAMPLES 

[ 0054 ] FIG . 4 is an example 400 of initial parameter 
settings for a graph database and candidates of adjusted 
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network 512. In steps ( 3 ) and ( 4 ) , policy network 114 
receives reward 506 and parameter settings 502 , respec 
tively . In step ( 5 ) , policy network 114 inputs parameter 
settings 502 and reward 506 , and uses a deep reinforcement 
learning technique that employs a loss function 514 , an 
optimization 516 of the loss function , and a replay buffer 
518 to generate candidates 520 of sets of adjusted parameter 
settings , which include sets 522 , 524 , and 526 . 
[ 0058 ] FIG . 6 is an example 600 of a Monte Carlo tree 
search operating on candidate parameter settings in the 
process of FIG . 2 , in accordance with embodiments of the 
present invention . Example 600 illustrates a Step 1 and a 
Step 2 as part of an n - step simulation performed by MCTS 
component 116 ( see FIG . 1 ) . Step 1 has three sub - steps : 1-1 , 
1-2 , and 1-3 . Similarly , Step 2 has three sub - steps : 2-1 , 2-2 , 
and 2-3 . In sub - step 1-1 , an environment 602 receives 
parameter settings in a virtual agent 604 ( i.e. , the virtual 
agent in Step 1 ) and generates a reward ( not shown ) . In 
sub - step 1-2 , policy network 114 receives the reward and the 
parameter settings from virtual agent 604. In sub - step 1-3 , 
MCTS component 116 ( see FIG . 1 ) generates multiple 
candidates of parameter adjustment combinations ( i.e. , 
adjustments to parameter settings in virtual agent 604 ) by 
the Monte Carlo search tree method , where the multiple 
candidates include parameter adjustment combinations 606 , 
608 , and 610. MCTS component 116 ( see FIG . 1 ) performs 
an n - step simulation on each of the candidates of parameter 
adjustment combinations to estimate the speed of importing 
the data into the graph database and the associated system 
resource usage . 
[ 0059 ] Step 2 is a subsequent step in the n - step simulation 
that indicates further processing of the parameter settings in 
parameter adjustment combination 608. In sub - step 2-1 , an 
environment 652 receives parameter settings in a virtual 
agent 654 ( i.e. , the virtual agent in Step 2 , which includes the 
adjusted parameter settings in combination 608 ) and gener 
ates a reward ( not shown ) . In sub - step 2-2 , policy network 
114 receives the reward and the parameter settings from 
virtual agent 654. In sub - step 2-3 , MCTS component 116 
( see FIG . 1 ) generates multiple candidates of parameter 
adjustment combinations ( i.e. , adjustments to parameter 
settings in virtual agent 654 ) by the Monte Carlo search tree 
method , where the multiple candidates include parameter 
adjustment combinations 656 , 658 , and 660 . 
[ 0060 ] Although not shown completely in FIG . 6 , MCTS 
component 116 ( see FIG . 1 ) continues performing the n - step 
simulation to select a final parameter adjustment combina 
tion that provides a maximized speed of importing the data 
and a minimized usage of system resources required by the 
importing of the data . The final parameter adjustment com 
bination includes optimized parameter settings 120 ( see 
FIG . 1 ) . 

code 714 for a system that includes parameter settings 
optimization system 104 ( see FIG . 1 ) to perform a method 
of generating optimized parameter settings , where the 
instructions are executed by CPU 702 via memory 704. CPU 
702 may include a single processing unit or be distributed 
across one or more processing units in one or more locations 
( e.g. , on a client and server ) . 
[ 0062 ] Memory 704 includes a known computer readable 
storage medium , which is described below . In one embodi 
ment , cache memory elements of memory 704 provide 
temporary storage of at least some program code ( e.g. , 
program code 714 ) in order to reduce the number of times 
code must be retrieved from bulk storage while instructions 
of the program code are executed . Moreover , similar to CPU 
702 , memory 704 may reside at a single physical location , 
including one or more types of data storage , or be distributed 
across a plurality of physical systems in various forms . 
Further , memory 704 can include data distributed across , for 
example , a local area network ( LAN ) or a wide area network 
( WAN ) . 
[ 0063 ] I / O interface 706 includes any system for exchang 
ing information to or from an external source . I / O devices 
710 include any known type of external device , including a 
display , keyboard , etc. Bus 708 provides a communication 
link between each of the components in computer 102 , and 
may include any type of transmission link , including elec 
trical , optical , wireless , etc. 
[ 0064 ] I / O interface 706 also allows computer 102 to store 
information ( e.g. , data or program instructions such as 
program code 714 ) on and retrieve the information from 
computer data storage unit 712 or another computer data 
storage unit ( not shown ) . Computer data storage unit 712 
includes a known computer readable storage medium , which 
is described below . In one embodiment , computer data 
storage unit 712 is a non - volatile data storage device , such 
as , for example , a solid - state drive ( SSD ) , a network 
attached storage ( NAS ) array , a storage area network ( SAN ) 
array , a magnetic disk drive ( i.e. , hard disk drive ) , or an 
optical disc drive ( e.g. , a CD - ROM drive which receives a 
CD - ROM disk or a DVD drive which receives a DVD disc ) . 
[ 0065 ] Memory 704 and / or storage unit 712 may store 
computer program code 714 that includes instructions that 
are executed by CPU 702 via memory 704 to generate 
optimized parameter settings . Although FIG . 7 depicts 
memory 704 as including program code , the present inven 
tion contemplates embodiments in which memory 704 does 
not include all of code 714 simultaneously , but instead at one 
time includes only a portion of code 714 . 
[ 0066 ] Further , memory 704 may include an operating 
system ( not shown ) and may include other systems not 
shown in FIG . 7 . 
[ 0067 ] As will be appreciated by one skilled in the art , in 
a first embodiment , the present invention may be a method ; 
in a second embodiment , the present invention may be a 
system ; and in a third embodiment , the present invention 
may be a computer program product . 
[ 0068 ] Any of the components of an embodiment of the 
present invention can be deployed , managed , serviced , etc. 
by a service provider that offers to deploy or integrate 
computing infrastructure with respect to generating opti 
mized parameter settings . Thus , an embodiment of the 
present invention discloses a process for supporting com 
puter infrastructure , where the process includes providing at 
least one support service for at least one of integrating , 

Computer System 
[ 0061 ] FIG . 7 is a block diagram of a computer that is 
included in the system of FIG . 1 and that implements the 
processes of FIG . 2 and FIG . 3 , in accordance with embodi 
ments of the present invention . Computer 102 is a computer 
system that generally includes a central processing unit 
( CPU ) 702 , a memory 704 , an input / output ( 1/0 ) interface 
706 , and a bus 708. Further , computer 102 is coupled to I / O 
devices 710 and a computer data storage unit 712. CPU 702 
performs computation and control functions of computer 
102 , including executing instructions included in program 
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hosting , maintaining and deploying computer - readable code 
( e.g. , program code 714 ) in a computer system ( e.g. , com 
puter 102 ) including one or more processors ( e.g. , CPU 
702 ) , wherein the processor ( s ) carry out instructions con 
tained in the code causing the computer system to generate 
optimized parameter settings . Another embodiment dis 
closes a process for supporting computer infrastructure , 
where the process includes integrating computer - readable 
program code into a computer system including a processor . 
The step of integrating includes storing the program code in 
a computer - readable storage device of the computer system 
through use of the processor . The program code , upon being 
executed by the processor , implements a method of gener 
ating optimized parameter settings . 
[ 0069 ] While it is understood that program code 714 for 
generating optimized parameter settings may be deployed by 
manually loading directly in client , server and proxy com 
puters ( not shown ) via loading a computer - readable storage 
medium ( e.g. , computer data storage unit 712 ) , program 
code 714 may also be automatically or semi - automatically 
deployed into computer 102 by sending program code 714 
to a central server or a group of central servers . Program 
code 714 is then downloaded into client computers ( e.g. , 
computer 102 ) that will execute program code 714. Alter 
natively , program code 714 is sent directly to the client 
computer via e - mail . Program code 714 is then either 
detached to a directory on the client computer or loaded into 
a directory on the client computer by a button on the e - mail 
that executes a program that detaches program code 714 into 
a directory . Another alternative is to send program code 714 
directly to a directory on the client computer hard drive . In 
a case in which there are proxy servers , the process selects 
the proxy server code , determines on which computers to 
place the proxy servers ' code , transmits the proxy server 
code , and then installs the proxy server code on the proxy 
computer . Program code 714 is transmitted to the proxy 
server and then it is stored on the proxy server . 
[ 0070 ] Another embodiment of the invention provides a 
method that performs the process steps on a subscription , 
advertising and / or fee basis . That is , a service provider can 
offer to create , maintain , support , etc. a process of generating 
optimized parameter settings . In this case , the service pro 
vider can create , maintain , support , etc. a computer infra 
structure that performs the process steps for one or more 
customers . In return , the service provider can receive pay 
ment from the customer ( s ) under a subscription and / or fee 
agreement , and / or the service provider can receive payment 
from the sale of advertising content to one or more third 
parties . 
[ 0071 ] The present invention may be a system , a method , 
and / or a computer program product at any possible technical 
detail level of integration . The computer program product 
may include a computer readable storage medium ( or media ) 
( i.e. , memory 704 and computer data storage unit 712 ) 
having computer readable program instructions 714 thereon 
for causing a processor ( e.g. , CPU 702 ) to carry out aspects 
of the present invention . 
[ 0072 ] The computer readable storage medium can be a 
tangible device that can retain and store instructions ( e.g. , 
program code 714 ) for use by an instruction execution 
device ( e.g. , computer 102 ) . The computer readable storage 
medium may be , for example , but is not limited to , an 
electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 

semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 
( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e.g. , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0073 ] Computer readable program instructions ( e.g. , pro 
gram code 714 ) described herein can be downloaded to 
respective computing / processing devices ( e.g. , computer 
102 ) from a computer readable storage medium or to an 
external computer or external storage device ( e.g. , computer 
data storage unit 712 ) via a network ( not shown ) , for 
example , the Internet , a local area network , a wide area 
network and / or a wireless network . The network may com 
prise copper transmission cables , optical transmission fibers , 
wireless transmission , routers , firewalls , switches , gateway 
computers and / or edge servers . A network adapter card ( not 
shown ) or network interface ( not shown ) in each computing / 
processing device receives computer readable program 
instructions from the network and forwards the computer 
readable program instructions for storage in a computer 
readable storage medium within the respective computing 
processing device . 
[ 0074 ) Computer readable program instructions ( e.g. , pro 
gram code 714 ) for carrying out operations of the present 
invention may be assembler instructions , instruction - set 
architecture ( ISA ) instructions , machine instructions , 
machine dependent instructions , microcode , firmware 
instructions , state - setting data , configuration data for inte 
grated circuitry , or either source code or object code written 
in any combination of one or more programming languages , 
including an object oriented programming language such as 
Smalltalk , C ++ , or the like , and procedural programming 
languages , such as the “ C ” programming language or similar 
programming languages . The computer readable program 
instructions may execute entirely on the user's computer , 
partly on the user's computer , as a stand - alone software 
package , partly on the user's computer and partly on a 
remote computer or entirely on the remote computer or 
server . In the latter scenario , the remote computer may be 
connected to the user's computer through any type of 
network , including a local area network ( LAN ) or a wide 
area network ( WAN ) , or the connection may be made to an 
external computer ( for example , through the Internet using 
an Internet Service Provider ) . In some embodiments , elec tronic circuitry including , for example , programmable logic 
circuitry , field - programmable gate arrays ( FPGA ) , or pro 
grammable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
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of the computer readable program instructions to personalize 
the electronic circuitry , in order to perform aspects of the 
present invention . 
[ 0075 ] Aspects of the present invention are described 
herein with reference to flowchart illustrations ( e.g. , FIG . 2 
and FIG . 3 ) and / or block diagrams ( e.g. , FIG . 1 and FIG . 7 ) 
of methods , apparatus ( systems ) , and computer program 
products according to embodiments of the invention . It will 
be understood that each block of the flowchart illustrations 
and / or block diagrams , and combinations of blocks in the 
flowchart illustrations and / or block diagrams , can be imple 
mented by computer readable program instructions ( e.g. , 
program code 714 ) . 
[ 0076 ] These computer readable program instructions may 
be provided to a processor ( e.g. , CPU 702 ) of a general 
purpose computer , special purpose computer , or other pro 
grammable data processing apparatus ( e.g. , computer 102 ) 
to produce a machine , such that the instructions , which 
execute via the processor of the computer or other program 
mable data processing apparatus , create means for imple 
menting the functions / acts specified in the flowchart and / or 
block diagram block or blocks . These computer readable 
program instructions may also be stored in a computer 
readable storage medium ( e.g. , computer data storage unit 
712 ) that can direct a computer , a programmable data 
processing apparatus , and / or other devices to function in a 
particular manner , such that the computer readable storage 
medium having instructions stored therein comprises an 
article of manufacture including instructions which imple 
ment aspects of the function / act specified in the flowchart 
and / or block diagram block or blocks . 
[ 0077 ] The computer readable program instructions ( e.g. , 
program code 714 ) may also be loaded onto a computer ( e.g. 
computer 102 ) , other programmable data processing appa 
ratus , or other device to cause a series of operational steps 
to be performed on the computer , other programmable 
apparatus or other device to produce a computer imple 
mented process , such that the instructions which execute on 
the computer , other programmable apparatus , or other 
device implement the functions / acts specified in the flow 
chart and / or block diagram block or blocks . 
[ 0078 ] The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the block may occur out of the order noted 
in the Figures . For example , two blocks shown in succession 
may , in fact , be accomplished as one step , executed concur 
rently , substantially concurrently , in a partially or wholly 
temporally overlapping manner , or the blocks may some 
times be executed in the reverse order , depending upon the 
functionality involved . It will also be noted that each block 
of the block diagrams and / or flowchart illustration , and 
combinations of blocks in the block diagrams and / or flow 
chart illustration , can be implemented by special purpose 
hardware - based systems that perform the specified functions 
or acts or carry out combinations of special purpose hard 
ware and computer instructions . 

[ 0079 ] While embodiments of the present invention have 
been described herein for purposes of illustration , many 
modifications and changes will become apparent to those 
skilled in the art . Accordingly , the appended claims are 
intended to encompass all such modifications and changes as 
fall within the true spirit and scope of this invention . 
What is claimed is : 
1. A method of generating parameter settings for a graph 

database , the method comprising : 
determining , by one or more processors , first settings for 

parameters for importing data into a graph database ; 
determining , by the one or more processors , a first speed 

of importing simulated data into the graph database and 
a first usage of system resources by executing an 
importing of the simulated data using the first settings 
for the parameters and a simulated hardware environ 
ment of the graph database ; 

based on the first speed and the first usage , determining , 
by the one or more processors , a reward associated with 
the first settings ; 

using a policy network that includes convolutional neural 
networks ( CNNs ) and based on the reward and the first 
settings , generating , by the one or more processors , 
candidates of adjusted settings for the parameters ; 

using a Monte Carlo tree search ( MCTS ) in multiple 
iterations to estimate changes in speeds of importing 
the simulated data and changes in usages of system 
resources for respective candidates of the adjusted 
settings , determining , by the one or more processors , 
rewards for the respective candidates ; and 

determining , by the one or more processors , that the 
iterations are completed and in response to the itera 
tions being completed and based on the rewards for the 
respective candidates , selecting , by the one or more 
processors , a candidate from the candidates as includ 
ing final settings for the parameters that optimize ( i ) a 
speed of importing the simulated data into the graph 
database and ( ii ) a usage of the system resources during 
the importing of the simulated data . 

2. The method of claim 1 , further comprising : 
generating , by the one or more processors , a one - hot 

vector by encoding initial parameter settings by using 
one - hot encoding ; 

converting , by the one or more processors , the one - hot 
vector into an embedding vector by using an embed 
ding technique that maps entries in the one - hot vector 
to respective real numbers ; and 

using a batch normalization technique , generating , by the 
one or more processors , a vector of uniform dimensions 
by normalizing different ranges of features represented 
in the embedding vector to a uniform range of features , 
wherein the generated vector of the uniform dimen 
sions includes the first settings for the parameters , and 
wherein the generated vector of the uniform dimen 
sions improves a training for deep reinforcement learn 
ing performed by the policy network employs the 
CNNs . 

3. The method of claim 1 , further comprising : 
based on the first settings for the parameters , the reward , 

and historical settings for the parameters stored in a 
history CNN , training , by the one or more processors , 
the importing of the simulated data to generate the 
candidates of the adjusted settings for the parameters 
by using a current CNN ; 
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merging , by the one or more processors , the history CNN 
with the current CNN to form a combined CNN ; and 

using the combined CNN , generating , by the one or more 
processors , other candidates of other adjusted settings 
for the parameters , wherein the CNNs include the 
history CNN , the current CNN , and the combined 
CNN . 

4. The method of claim 1 , further comprising using the 
MCTS , performing , by the one or more processors , an n - step 
simulation on each of the candidates of the adjusted settings , 
wherein the rewards for the candidates are based on the 
n - step simulation . 

5. The method of claim 1 , wherein the determining the 
rewards includes determining a given reward included in the 
rewards as a combination of a speed reward and a resource 
reward , wherein the speed reward and the resource reward 
are for a given set of parameters in a given candidate 
included in the candidates , wherein the speed reward is a 
ratio of an increase in a speed of importing the simulated 
data using the given set of parameters to a maximum speed 
of importing the simulated data , and wherein the resource 
reward is another ratio of a usage of the system resources 
during the importing using the given set of parameters to a 
maximum usage of the system resources . 

6. The method of claim 5 , further comprising : 
determining , by the one or more processors , that the given 

reward is a combination of a maximized speed reward 
and a minimized resource reward ; and 

based on the given reward being the combination of the 
maximized speed reward and the minimized resource 
reward , determining , by the one or more processors , 
that the given set of parameters is the final settings for 
the parameters . 

7. The method of claim 1 , further comprising : 
generating , by the one or more processors and using an 

environment simulator , the simulated hardware envi 
ronment to include a virtual environment of central 
processing units and memory ; and 

generating , by the one or more processors and using a data 
simulator , the simulated data based on schema of data 
to be imported by the graph database , wherein the 
determining the first speed of the importing and the first 
usage of the system resources is based on the simulated 
hardware environment and the simulated data . 

8. The method of claim 1 , further comprising the step of : 
providing at least one support service for at least one of 

creating , integrating , hosting , maintaining , and deploy 
ing computer readable program code in the computer , 
the program code being executed by a processor of the 
computer to implement the determining the first set 
tings for the parameters , the determining the first speed 
of the importing the simulated data , the determining the 
reward associated with the first settings , the generating 
the candidates of the adjusted settings for the param 
eters , determining the rewards for the respective can 
didates , the determining that the iterations are com 
pleted , and the selecting the candidate from the 
candidates as including the final settings for the param 
eters . 

9. A computer program product for generating parameter 
settings for a graph database , the computer program product 
comprising : 

one or more computer readable storage media having 
computer readable program code collectively stored on 

the one or more computer readable storage media , the 
computer readable program code being executed by a 
central processing unit ( CPU ) of a computer system to 
cause the computer system to perform a method com 
prising the steps of : 
the computer system determining first settings for 

parameters for importing data into a graph database ; 
the computer system determining a first speed of 

importing simulated data into the graph database and 
a first usage of system resources by executing an 
importing of the simulated data using the first set 
tings for the parameters and a simulated hardware 
environment of the graph database ; 

based on the first speed and the first usage , the com 
puter system determining a reward associated with 
the first settings ; 

using a policy network that includes convolutional 
neural networks ( CNNs ) and based on the reward 
and the first settings , the computer system generating 
candidates of adjusted settings for the parameters ; 

using a Monte Carlo tree search ( MCTS ) in multiple 
iterations to estimate changes in speeds of importing 
the simulated data and changes in usages of system 
resources for respective candidates of the adjusted 
settings , the computer system determining rewards 
for the respective candidates ; and 

the computer system determining that the iterations are 
completed and in response to the iterations being 
completed and based on the rewards for the respec 
tive candidates , the computer system selecting a 
candidate from the candidates as including final 
settings for the parameters that optimize ( i ) a speed 
of importing the simulated data into the graph data 
base and ( ii ) a usage of the system resources during 
the importing of the simulated data . 

10. The computer program product of claim 9 , wherein 
the method further comprises : 

the computer system generating a one - hot vector by 
encoding initial parameter settings by using one - hot 
encoding ; 

the computer system converting the one - hot vector into an 
embedding vector by using an embedding technique 
that maps entries in the one - hot vector to respective real 
numbers ; and 

using a batch normalization technique , the computer 
system generating a vector of uniform dimensions by 
normalizing different ranges of features represented in 
the embedding vector to a uniform range of features , 
wherein the generated vector of the uniform dimen 
sions includes the first settings for the parameters , and 
wherein the generated vector of the uniform dimen 
sions improves a training for deep reinforcement learn 
ing performed by the policy network employs the 
CNNs . 

11. The computer program product of claim 9 , wherein the 
method further comprises : 

based on the first settings for the parameters , the reward , 
and historical settings for the parameters stored in a 
history CNN , the computer system training the import 
ing of the simulated data to generate the candidates of 
the adjusted settings for the parameters by using a 
current CNN ; 

the computer system merging the history CNN with the 
current CNN to form a combined CNN ; and 
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using the combined CNN , the computer system generat 
ing other candidates of other adjusted settings for the 
parameters , wherein the CNNs include the history 
CNN , the current CNN , and the combined CNN . 

12. The computer program product of claim 9 , wherein 
the method further comprises using the MCTS , the computer 
system performing an n - step simulation on each of the 
candidates of the adjusted settings , wherein the rewards for 
the candidates are based on the n - step simulation . 

13. The computer program product of claim 9 , wherein 
the determining the rewards includes determining a given 
reward included in the rewards as a combination of a speed 
reward and a resource reward , wherein the speed reward and 
the resource reward are for a given set of parameters in a 
given candidate included in the candidates , wherein the 
speed reward is a ratio of an increase in a speed of importing 
the simulated data using the given set of parameters to a 
maximum speed of importing the simulated data , and 
wherein the resource reward is another ratio of a usage of the 
system resources during the importing using the given set of 
parameters to a maximum usage of the system resources . 

14. The computer program product of claim 13 , wherein 
the method further comprises : 

the computer system determining that the given reward is 
a combination of a maximized speed reward and a 
minimized resource reward ; and 

based on the given reward being the combination of the 
maximized speed reward and the minimized resource 
reward , the computer system determining that the given 
set of parameters is the final settings for the parameters . 

15. A computer system comprising : 
a central processing unit ( CPU ) ; 
a memory coupled to the CPU ; and 
a computer readable storage medium coupled to the CPU , 

the computer readable storage medium containing 
instructions that are executed by the CPU via the 
memory to implement a method comprising the steps 
of : 
the computer system determining first settings for 

parameters for importing data into a graph database ; 
the computer system determining a first speed of 

importing simulated data into the graph database and 
a first usage of system resources by executing an 
importing of the simulated data using the first set 
tings for the parameters and a simulated hardware 
environment of the graph database ; 

based on the first speed and the first usage , the com 
puter system determining a reward associated with 
the first settings ; 

using a policy network that includes convolutional 
neural networks ( CNNs ) and based on the reward 
and the first settings , the computer system generating 
candidates of adjusted settings for the parameters ; 

using a Monte Carlo tree search ( MCTS ) in multiple 
iterations to estimate changes in speeds of importing 
the simulated data and changes in usages of system 
resources for respective candidates of the adjusted 
settings , the computer system determining rewards 
for the respective candidates ; and 

the computer system determining that the iterations are 
completed and in response to the iterations being 
completed and based on the rewards for the respec 
tive candidates , the computer system selecting a 
candidate from the candidates as including final 

settings for the parameters that optimize ( i ) a speed 
of importing the simulated data into the graph data 
base and ( ii ) a usage of the system resources during 
the importing of the simulated data . 

16. The computer system of claim 15 , wherein the method 
further comprises : 

the computer system generating a one - hot vector by 
encoding initial parameter settings by using one - hot 
encoding ; 

the computer system converting the one - hot vector into an 
embedding vector by using an embedding technique 
that maps entries in the one - hot vector to respective real 
numbers ; and 

using a batch normalization technique , the computer 
system generating a vector of uniform dimensions by 
normalizing different ranges of features represented in 
the embedding vector to a uniform range of features , 
wherein the generated vector of the uniform dimen 
sions includes the first settings for the parameters , and 
wherein the generated vector of the uniform dimen 
sions improves a training for deep reinforcement learn 
ing performed by the policy network employs the 
CNNs . 

17. The computer system of claim 15 , wherein the method 
further comprises : 

based on the first settings for the parameters , the reward , 
and historical settings for the parameters stored in a 
history CNN , the computer system training the import 
ing of the simulated data to generate the candidates of 
the adjusted settings for the parameters by using a 
current CNN ; 

the computer system merging the history CNN with the 
current CNN to form a combined CNN ; and 

using the combined CNN , the computer system generat 
ing other candidates of other adjusted settings for the 
parameters , wherein the CNNs include the history 
CNN , the current CNN , and the combined CNN . 

18. The computer system of claim 15 , wherein the method 
further comprises using the MCTS , the computer system 
performing an n - step simulation on each of the candidates of 
the adjusted settings , wherein the rewards for the candidates 
are based on the n - step simulation . 

19. The computer system of claim 15 , wherein the deter 
mining the rewards includes determining a given reward 
included in the rewards as a combination of a speed reward 
and a resource reward , wherein the speed reward and the 
resource reward are for a given set of parameters in a given 
candidate included in the candidates , wherein the speed 
reward is a ratio of an increase in a speed of importing the 
simulated data using the given set of parameters to a 
maximum speed of importing the simulated data , and 
wherein the resource reward is another ratio of a usage of the 
system resources during the importing using the given set of 
parameters to a maximum usage of the system resources . 

20. The computer system of claim 19 , wherein the method 
further comprises : 

the computer system determining that the given reward is 
a combination of a maximized speed reward and a 
minimized resource reward ; and 

based on the given reward being the combination of the 
maximized speed reward and the minimized resource 
reward , the computer system determining that the given 
set of parameters is the final settings for the parameters . 

* * 


