
US 20210209161A1
MIN TIT IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0209161 A1

Yuan et al . (43) Pub . Date : Jul . 8 , 2021

(54) COGNITIVELY GENERATING PARAMETER
SETTINGS FOR A GRAPH DATABASE

(71) Applicant : INTERNATIONAL BUSINESS
MACHINES CORPORATION ,
Armonk , NY (US)

(72) Inventors : Zhong Fang Yuan , Xian (CN) ; Yi
Ming Wang , Xi'an (CN) ; Kun Yan
Yin , NINGBO (CN) ; Xue Ying Zhang ,
Beijing (CN) ; Tong Liu , Xian (CN) ; He
Li , Beijing (CN)

(52) U.S. CI .
CPC G06F 16/9024 (2019.01) ; G06F 17/16

(2013.01) ; GO6N 3/04 (2013.01) ; G06F
16/9027 (2019.01)

(57) ABSTRACT
An approach is provided for generating graph database
parameter settings . Parameter settings for importing data
into a graph database are determined . A speed of importing
simulated data into the graph database and a system resource
usage are determined by executing an importing of the
simulated data using the parameter settings and a simulated
hardware environment . A reward associated with the param
eter settings is determined . Using a policy network that
includes convolutional neural networks and based on the
reward and the settings , candidates of adjusted parameter
settings are determined . Using a Monte Carlo tree search in
multiple iterations to estimate changes in speeds of import
ing the simulated data and changes in system resource
usages for candidates of the adjusted parameter settings ,
rewards for the candidates are determined . Based on the
rewards , a candidate is selected as including final
settings that optimize an importing speed and system
resource usage .

(21) Appl . No .: 16 / 734,488

(22) Filed : Jan. 6 , 2020

Publication Classification

(51) Int . Ci .
G06F 16/901
GO6N 3/04
G06F 17/16

parameter (2006.01)
(2006.01)
(2006.01)

200
GENERATING OPTIMIZED PARAMETER SETTINGS

202
DETERMINE FIRST PARAMETER SETTINGS FOR IMPORTING DATA INTO A

GRAPH DATABASE

204
USING THE FIRST PARAMETER SETTINGS AND SIMULATED ENVIRONMENT ,

DETERMINE SPEED OF IMPORTING SIMULATED DATA INTO THE
GRAPH DATABASE AND USAGE OF SYSTEM RESOURCES

206
BASED ON SPEED OF IMPORTING AND USAGE OF SYSTEM RESOURCES ,
DETERMINE REWARD ASSOCIATED WITH FIRST PARAMETER SETTINGS

208
BASED ON REWARD AND FIRST PARAMETER SETTINGS AND USING A POLICY

NETWORK CONSISTING OF CONVOLUTIONAL NEURAL NETWORKS ,
GENERATE CANDIDATES OF ADJUSTED PARAMETER SETTINGS

210
USING AN N - STEP SIMULATION IN A MONTE CARLO TREE SEARCH IN MULTIPLE

ITERATIONS TO ESTIMATE CHANGES IN IMPORTING SPEED AND SYSTEM
RESOURCE USAGE FOR RESPECTIVE CANDIDATES , DETERMINE REWARDS FOR

THE RESPECTIVE CANDIDATES BASED ON THE ESTIMATED CHANGES

212
DETERMINE THAT THE ITERATIONS ARE COMPLETED AND BASED ON THE

REWARDS FOR THE CANDIDATES , SELECT ONE CANDIDATE AS THE
OPTIMIZED PARAMETER SETTINGS

214
END

Patent Application Publication Jul . 8 , 2021 Sheet 1 of 7 US 2021/0209161 A1

100

102

COMPUTER 104

PARAMETER SETTINGS OPTIMIZATION SYSTEM
110 106

/
DATA AND ACTION

MOCKER

108
Z

ENVIRONMENT MOCKER REWARD
COMPONENT

112

ACTION COMPONENT
114 116

/
POLICY NETWORK MONTE CARLO TREE

SEARCH COMPONENT

118-1 118 - N 120

VIRTUAL AGENT IN
STATE 1

I.
VIRTUAL AGENT IN

STATEN
OPTIMIZED
PARAMETER
SETTINGS

FIG . 1

Patent Application Publication Jul . 8 , 2021 Sheet 2 of 7 US 2021/0209161 A1

200
GENERATING OPTIMIZED PARAMETER SETTINGS

202
DETERMINE FIRST PARAMETER SETTINGS FOR IMPORTING DATA INTO A

GRAPH DATABASE

204
USING THE FIRST PARAMETER SETTINGS AND SIMULATED ENVIRONMENT ,

DETERMINE SPEED OF IMPORTING SIMULATED DATA INTO THE
GRAPH DATABASE AND USAGE OF SYSTEM RESOURCES

206
BASED ON SPEED OF IMPORTING AND USAGE OF SYSTEM RESOURCES ,
DETERMINE REWARD ASSOCIATED WITH FIRST PARAMETER SETTINGS

208
BASED ON REWARD AND FIRST PARAMETER SETTINGS AND USING A POLICY

NETWORK CONSISTING OF CONVOLUTIONAL NEURAL NETWORKS ,
GENERATE CANDIDATES OF ADJUSTED PARAMETER SETTINGS

210
USING AN N - STEP SIMULATION IN A MONTE CARLO TREE SEARCH IN MULTIPLE

ITERATIONS TO ESTIMATE CHANGES IN IMPORTING SPEED AND SYSTEM
RESOURCE USAGE FOR RESPECTIVE CANDIDATES , DETERMINE REWARDS FOR

THE RESPECTIVE CANDIDATES BASED ON THE ESTIMATED CHANGES

212
DETERMINE THAT THE ITERATIONS ARE COMPLETED AND BASED ON THE

REWARDS FOR THE CANDIDATES , SELECT ONE CANDIDATE AS THE
OPTIMIZED PARAMETER SETTINGS

214

END

FIG . 2

Patent Application Publication Jul . 8 , 2021 Sheet 3 of 7 US 2021/0209161 A1

300
GENERATING PARAMETER SETTINGS IN A VECTOR OF

UNIFORM DIMENSIONS

302
USE ONE - HOT ENCODING TO ENCODE INITIAL PARAMETER SETTINGS INTO A

ONE - HOT VECTOR

304
USE EMBEDDING TO CONVERT THE ONE - HOT VECTOR INTO AN

EMBEDDING VECTOR

306
USE BATCH NORMALIZATION TECHNIQUES TO GENERATE A VECTOR OF

UNIFORM DIMENSIONS BY NORMALIZING DIFFERENT RANGES OF FEATURES
REPRESENTED IN THE EMBEDDING VECTOR TO THE SAME FEATURE RANGE

308
USING THE VECTOR HAVING FEATURES OF UNIFORM DIMENSIONS ,

FACILITATE TRAINING FOR DEEP REINFORCEMENT LEARNING THAT EMPLOYS
CONVOLUTIONAL NEURAL NETWORKS

310

END

FIG . 3

Patent Application Publication Jul . 8 , 2021 Sheet 4 of 7 US 2021/0209161 A1

400

Vertex.commitNum = 100
Edge.commitNum = 100
Vertex.workers = 8

402
Speed of inserting
graph database =
938 seconds

Edge.workers = 8
ids.block - size = 10

?
Vertex.commitNum = 101
Edge.commitNum = 99
Vertex.workers = 9

404
Speed of inserting
graph database =
911 seconds III

Edge.workers = 9
ids.block - size = 12

? After multiple
iterations

Vertex.commitNum = 3000
Edge.commitNum = 1000
Vertex.workers = 64

406
Speed of inserting
graph database =
106 seconds III

Edge.workers = 64
ids.block - size = 50000

FIG . 4

Patent Application Publication Jul . 8 , 2021 Sheet 5 of 7 US 2021/0209161 A1

500

502

waiting
time

ID block
size

worker
number

buffer
size

(4)

? (1) 504 114
/

POLICY NETWORK
memory I / O

speed
CPU

occupancy LOSS
FUNCTION

514

OPTIMIZE (LOSS)
516

? (2) COMBINED NETWORK 512
506

REWARD CURRENT
NETWORK

510 HI (3)
HISTORY
NETWORK

508

REPLAY BUFFER 518

(5)

520

522 524 526

Thread number +2
Waiting time - 10 ms

Thread number -1
Worker number +2
Buffer size + 16M

Thread number +8
ID Block size - 16M

FIG . 5

Patent Application Publication Jul . 8 , 2021 Sheet 6 of 7 US 2021/0209161 A1

600

602

114
(1-2) memory 1/0

speed
CPU

occupancy ? POLICY
NETWORK

M T (1-1) (1-3)
604 Step 1

waiting
time

ID block
size

worker
number

buffer
size

606 608 610 1 + E

652

114
memory I / O

speed
CPU

occupancy
(2-2)
? . POLICY

NETWORK

T (2-1) (2-3)
654 Step 2

waiting
time

ID block
size

worker
number

buffer
size

656 658 660

FIG . 6

Patent Application Publication Jul . 8 , 2021 Sheet 7 of 7 US 2021/0209161 A1

102

COMPUTER

702

704
CPU

MEMORY 714
708

PROGRAM CODE FOR
PARAMETER SETTINGS OPTIMIZATION

SYSTEM
706

I / O INTERFACE

710 712

COMPUTER DATA STORAGE
UNIT I / O DEVICES

714

FIG . 7

US 2021/0209161 Al Jul . 8 , 2021
1

BRIEF DESCRIPTION OF THE DRAWINGS COGNITIVELY GENERATING PARAMETER
SETTINGS FOR A GRAPH DATABASE

BACKGROUND

[0001] The present invention relates to graph database management , and more particularly to generating optimized
parameter settings of a graph database .
[0002] A graph database is a database that uses graph
structures for semantic queries , where the structures have
nodes , edges , and properties that represent and store data . A
graph provided by the graph database relates the data items
in the store to a collection of nodes and edges , where the
edges represent relationships between the nodes . A Janus
Graph® graph database is an open source , distributed graph
database . A JanusGraph® graph database cluster consists of
one or more JanusGraph® instances . A configuration is
needed to open a JanusGraph® instance . The configuration
specifies the components that the graph database should use ,
controls the operational aspects of a deployment of the graph
database , and provides tuning options which a human expert
uses to improve the performance of the graph database
cluster . Performance of importing batch data into a graph
database varies as different parameters are set based on
different cluster hardware conditions . JanusGraph is a reg
istered trademark of The Linux Foundation located in San
Francisco , Calif .

[0005] FIG . 1 is a block diagram of a system for gener
ating parameter settings for a graph database , in accordance
with embodiments of the present invention .
[0006] FIG . 2 is a flowchart of a process of generating
parameter settings for a graph database , where the process is
implemented in the system of FIG . 1 , in accordance with
embodiments of the present invention .
[0007] FIG . 3 is a flowchart of a process of generating
parameter settings in a vector of uniform dimensions , where
the generated parameters settings are used in the process of
FIG . 2 , in accordance with embodiments of the present
invention .
[0008] FIG . 4 is an example of initial parameter settings
for a graph database and candidates of adjusted parameter
settings used in the process of FIG . 2 , in accordance with
embodiments of the present invention .
[0009] FIG . 5 is an example of a policy network generat
ing candidates of adjusted parameter settings based on
previous parameter settings and a reward the process of
FIG . 2 , in accordance with embodiments of the present
invention .
[0010] FIG . 6 is an example of a Monte Carlo tree search
operating on candidate parameter settings in the process of
FIG . 2 , in accordance with embodiments of the present
invention .
[0011] FIG . 7 is a block diagram of a computer that is
included in the system of FIG . 1 and that implements the
processes of FIG . 2 and FIG . 3 , in accordance with embodi
ments of the present invention .

SUMMARY

DETAILED DESCRIPTION

Overview

[0003] In one embodiment , the present invention provides
a method of generating parameter settings for a graph
database . The method includes determining , by one or more
processors , first settings for parameters for importing data
into a graph database . The method further includes deter
mining , by the one or more processors , a first speed of
importing simulated data into the graph database and a first
usage of system resources by executing an importing of the
simulated data using the first settings for the parameters and
a simulated environment of the graph database . The method
further includes based on the first speed and the first usage ,
determining , by the one or more processors , a reward
associated with the first settings . The method further
includes using a policy network that includes convolutional
neural networks (CNNs) and based on the reward and the
first settings , generating , by the one or more processors ,
candidates of adjusted settings for the parameters . The
method further includes using a Monte Carlo tree search
(MCTS) in multiple iterations to estimate changes in speeds
of importing the simulated data and changes in usages of
system resources for respective candidates of the adjusted
settings , determining , by the one or more processors ,
rewards for the respective candidates . The method further
includes determining , by the one or more processors , that the
iterations are completed . In response to the iterations being
completed and based on the rewards for the respective
candidates , selecting , by the one or more processors , a
candidate from the candidates as including final settings for
the parameters that optimize (i) a speed of importing the
simulated data into the graph database and (ii) a usage of the
system resources during the importing of the simulated data .
[0004] Other embodiments of the present invention pro
vide a computer program product and a computer system
that employ respective methods analogous to the method
described above .

[0012] Using traditional approaches , tuning a graph data
base for improved performance of importing data and que
rying data requires experienced human developers and a
significant amount of time (e.g. , more than a week) to hard
code the graph database par neters . In an actual customer
scenario , there are often very few developers with extensive
tuning experience and the time that can be assigned to tuning
work is often limited . Tuning results under a particular
hardware configuration are often difficult to re - use in other
hardware configurations .
[0013] Embodiments of the present invention address the
aforementioned unique challenges of tuning a graph data
base for optimal performance . In one embodiment , a param
eter tuning system automatically generates a configuration
guidance strategy that optimizes performance of data import
and querying of the graph database under given cluster
hardware conditions , where the strategy is generated in an
amount of time that is significantly shorter than the known
tuning approaches that use human experts , and so that the
strategy can be re - used on different hardware configurations ,
thereby avoiding costly , time - consuming , and error - prone
efforts to use expert developers to generate different sets of
tuned parameter settings for the different sets of hardware
configurations . In one embodiment , the parameter tuning
system uses cognitive computing techniques including deep
reinforcement learning and Monte Carlo search trees to
automatically generate the configuration guidance strategy .
[0014] In one embodiment , the performance of data
import and querying in the graph database is advantageously

US 2021/0209161 A1 Jul . 8 , 2021
2

optimized prior to deploying the graph database , thereby
avoiding costly changes made after the graph database goes
live .
[0015] As used herein , “ cognitive ” and “ cognitively ” are
defined as pertaining to a system or process that provides
artificial intelligence (AI) capabilities that perform deep
reinforcement learning . As used herein , “ cognitive ” and its
variants are not to be construed as being or pertaining to
mental processes or concepts performed in the human mind .
System for Generating Parameter Settings for a Graph
Database

[0016] FIG . 1 is a block diagram of a system 100 for
generating parameter settings for a graph database , in accor
dance with embodiments of the present invention . System
100 includes a computer 102 , which executes a software
based parameter settings optimization system 104 , which
includes a data and action mocker 106 , an environment
mocker 108 , and a reward component 110. Parameter set
tings optimization system 104 also includes an action com
ponent 112 , which includes a policy network 114 and a
Monte Carlo tree search (MCTS) component 116 .
[0017] Parameter settings optimization system 104 also
includes virtual agents 118-1 , ... , 118 - N , which are in
respective states 1 , N , where N is an integer greater than
one . Virtual agents 118-1 , 118 - N automatically generate
respective sets of settings for parameters of a graph database
(not shown) . The parameters specify a configuration of the
graph database and affect a performance of importing data
into the graph database and / or a performance of querying
data in the graph database . Virtual agents 118-1 , ... , 118 - N
send the parameter settings to environment mocker 108. In
response to receiving feedback from reward component 110 ,
a given virtual agent included in virtual agent 118-1 ,
118 - N generates another set of parameter settings where at
least one of the parameter settings is adjusted from param
eter settings in the previous state of the given virtual agent .
The adjusted parameter settings may cause an improvement
in the performance of the importing of data into the graph
database and / or the querying of data in the graph database .
In one embodiment , the improvement in the performance of
the importing of the data includes an increase in the speed
of importing the data and a decrease in the usage of system
resources as a result of importing the data .
[0018] In one embodiment , the aforementioned param
eters are configuration items (i.e. , items specifying a con
figuration guidance strategy) and include , but are not limited
to , an identifier (ID) block size , a renew timeout , read
attempts , write attempts , an attempt wait , buffer size , and
waiting time (also known as “ wait time ”) . The aforemen
tioned parameters are described below :
[0019] ID block size : indicates a size of a block of storage
in which a graph element ID is reserved . An ID pool
manager acquires a graph element ID in blocks for a
particular graph database instance . Increasing ID block size
can reduce the number of times the block is acquired , but if
the value of ID block size is too large , there will be extra IDs
that are unassigned and therefore wasted .
[0020] Renew timeout : indicates an amount of time (e.g. ,
number of milliseconds) that a graph database ID pool
manager will wait in total while attempting to acquire a new
ID block before failing . Renew timeout may be configured
as large as feasible without allowing a wait for unrecover
able failures to be too long .

[0021] Read attempts : indicates the number of times the
graph database will attempt to execute a read operation
against the storage backend before giving up . Read attempts
may be increased if a high load on the backend during bulk
loading is expected .
[0022] Write attempts : indicates the number of times the
graph database will attempt to execute a write operation
against the storage backend before giving up . Write attempts
may be increased if a high load on the backend during bulk
loading is expected .
[0023] Attempt wait : the time interval (e.g. , number of
milliseconds) that the graph database will wait before re
attempting a read or write operation after a read or write
operation failed . A higher value of the attempt wait ensures
that the re - attempts of the read or write operations do not
further increase the load on the backend .
[0024] Buffer size : The graph database buffers write
operations and executes the write operations in small
batches to reduce the number of requests against the storage
backend . The buffer size parameter controls the size of these
batches . When executing many write operations in a short
period of time , the storage backend can become overloaded
with write requests . In that case , increasing the buffer size
can avoid failure by increasing the number of write opera
tions per request and thereby lowering the number of
requests .
[0025] Waiting time : indicates the amount of time (e.g. ,
number of milliseconds) the system waits for an ID block
reservation to be acknowledged by the storage backend . As
the waiting time is decreased , it is more likely that an
application will fail on a congested cluster .
[0026] Data and action mocker 106 includes a script that
generates a large amount of simulated data based on a
schema of data to be imported into the graph database .
Parameter settings optimization system 104 can trigger data
and action mocker 106 to start and stop the generation of the
simulated data . Data and action mocker 106 also imports
(i.e. , uploads) the simulated data into one or more simulated
environments with a fixed speed . Data and action mocker
106 can configure the aforementioned speed with different
values . Environment mocker 108 automatically simulates
different environments for the graph database . In one
embodiment , environment mocker 108 includes multiple
scripts which clears a simulated (i.e. , mocked) environment ,
generates a new simulated environment , and sets new
parameters . The clearing of a simulated environment
includes clearing old mocked environments and related
parameters and is a pre - condition for building the next
mocked environment . The generation of the new simulated
environment includes using scripts to automatically set up a
virtual environment with expected disks , CPUs , memory ,
and software . The setting of new parameters includes using
scripts to set values to the parameters (i.e. , provide param
eter settings) related to the simulated environment .
[0027] Reward component 110 evaluates results of data
and action mocker 106 simulating the importing of data into
the simulated environment generated by environment
mocker 108. In one embodiment , reward component 110
generates a reward (i.e. , a score) that evaluates the perfor
mance results of the importing of the data into the graph
database . In one embodiment , if the performance results are
included in a first predetermined range of results that indi
cate good or satisfactory results , then reward component 110
generates a reward which is a positive numerical value , and

US 2021/0209161 A1 Jul . 8 , 2021
3

if the performance results are included in a second prede
termined range or results that indicate bad or unsatisfactory
results , then reward component 110 generates a reward
which is a negative numerical value . Action component 112
employs CNNs to provide deep reinforcement learning and
uses the reward to generate an adjusted set of parameter
settings which are included in a next state of the virtual
agent . The results of the importing of the data includes the
speed of the importing of the data and the usage of system
resources required by the importing of the data . In one
embodiment , action component 112 generates adjusted sets
of parameter settings in iterations , where an amount of an
adjustment of a parameter setting in a given iteration is a
predetermined amount .
[0028] In one embodiment , reward component 110 gen
erates a reward value that is divided into a long - term reward
and a short - term reward . The short - term reward indicates a
change in the speed at which data is imported into the graph
database between two states of a virtual agent (i.e. , an
increase or decrease in the speed of importing the data
between using a first set of parameter settings in the virtual
agent in a first state and using a second set of parameter
settings in the virtual agent in a second state) . The long - term
reward combines the short - term reward with an indication of
a change in system resource usage (i.e. , environmental
performance consumption) between the two states of the
virtual agent .
[0029] In one embodiment , the long - term reward includes
a speed reward and a resource reward , where the speed
reward is the increase in the speed of importing data divided
by the theoretical maximum speed of importing the data , and
the resource reward is the usage of system resources (i.e. ,
occupied system resources) required by the importing of the
data divided by the theoretical maximum system resource
usage required by the importing of the data .
[0030] In one embodiment , reward component 110 evalu
ates a function of the resource reward form system
resources as expressed in equation (1) presented below .

f (resource reward) = (n = 1 " log (cn / Sn)) / m (1)

[0031] In equation (1) , c , is a measure of usage of the n - th
system resource and S , is the theoretical maximum usage of
the n - th system resource . In one embodiment , policy net
work 114 receives the value of m as a parameter . In another
embodiment , policy network 114 randomly assigns the value

[0037] In one embodiment , parameter settings optimiza
tion system 104 maximizes the speed reward while mini
mizing the resource reward to obtain optimized parameter
settings 120 .
[0038] Action component 112 adjusts the settings of the
parameters that were set by environment mocker 108 , where
the adjustment of the settings is based on the reward
generated by reward component 110. Policy network 114
receives as input the reward generated by reward component
110 and current parameter settings provided by a virtual
agent (e.g. , virtual agent 118-1) in a current state . Policy
network 114 generates as output a set of candidates of
adjusted parameter settings . The adjusted setting (s) in each
of the candidates in the output of policy network 114 can be
associated with one or more than one of the parameters .
MCTS component 116 uses a Monte Carlo tree search
method to perform an n - step simulation on each of the
candidates in the output of policy network 114 , receives
corresponding rewards at each step of the simulation , and
selects optimized parameter settings 120 (i.e. , a final optimal
combination of parameter settings) based on the rewards . To
determine each corresponding reward , the virtual agent in a
current state converts the embedding parameter settings into
physical parameter settings (i.e. , settings in the original
dimensions of the parameters) via a fully connected network
(not shown) .
[0039] The functionality of the components shown in FIG .
1 is described in more detail in the discussion of FIG . 2 , FIG .
3 , FIG . 4 , FIG . 5 , FIG . 6 , and FIG . 7 presented below .

Process for Generating Parameter Settings for a Graph
Database

of m .
[0032] In one embodiment , reward component 110 gen
erates :
[0033] (i) a small positive reward in response to the speed
reward indicating an increase in import speed and the
resource reward indicating an increase in system resource
usage ;
[0034] (ii) a large negative reward in response to the speed
reward indicating a decrease in import speed and the
resource reward indicating an increase in system resource
usage ;
[0035] (iii) a large positive reward in response to the speed
reward indicating an increase in import speed and the
resource reward indicating a decrease in system resource

[0040] FIG . 2 is a flowchart of a process of generating
parameter settings for a graph database , where the process is
implemented in the system of FIG . 1 , in accordance with
embodiments of the present invention . The process of FIG .
2 starts at step 200. In step 202 , parameter settings optimi
zation system 104 (see FIG . 1) determines first parameter
settings for importing data into a graph database .
[0041] In step 204 , parameter settings optimization system
104 (see FIG . 1) determines a speed of importing simulated
data generated by data and action mocker 106 (see FIG . 1)
into the graph database and a measure of usage of system
resources required by the importing of the simulated data .
The determination of the speed of importing and the mea
sure of the usage of system resources in step 204 uses the
first parameter settings determined in step 202 and a simu
lated environment generated by environment mocker 108
(see FIG . 1) .
[0042] In step 206 , based on the speed of importing the
simulated data and the measure of the usage of system
resources determined in step 204 , parameter settings opti
mization system 104 (see FIG . 1) determines a reward
associated with the first parameter settings determined in
step 202 .
[0043] In step 208 , based on the reward determined in step
206 and the first parameter settings determined in step 202
and using policy network 114 (see FIG . 1) which employs
CNNs , parameter settings optimization system 104 (see FIG .
1) generates candidates of adjusted parameter settings .
[0044] In step 210 , using an n - step simulation in a Monte
Carlo tree search provided by MCTS component 116 (see
FIG . 1) in multiple iterations to estimate changes in the
speed of importing the data and changes in measures of

usage ; and
[0036] (iv) a small negative reward in response to the
speed reward indicating a decrease in import speed and the
resource reward indicating a decrease in system resource
usage .

US 2021/0209161 A1 Jul . 8 , 2021
4

usage of the system resources for respective candidates
generated in step 208 , parameter settings optimization sys
tem 104 (see FIG . 1) determines rewards for the respective
candidates based on the estimated changes .
[0045] In step 212 , parameter settings optimization system
104 (see FIG . 1) determines that the iterations are completed
and in response to the iterations being completed and based
on the rewards for the candidates , parameter settings opti
mization system 104 (see FIG . 1) selects one of the candi
dates as being optimized parameter settings 120 (see FIG .
1) . In one embodiment , action component 112 (see FIG . 1)
determines the multiple iterations are completed (i.e. , the
parameter settings in the virtual agent are in a final state) in
response to determining that loss between one iteration and
the next iteration is steady .
[0046] The process of FIG . 2 ends at step 214 .
[0047] FIG . 3 is a flowchart of a process of generating
parameter settings in a vector of uniform dimensions , where
the generated parameters settings are used in the process of
FIG . 2 , in accordance with embodiments of the present
invention . The process of FIG . 3 begins at step 300. In step
302 , parameter settings optimization system 104 (see FIG .
1) encodes initial parameter settings into a one - hot vector by
using a one - hot encoding technique .
[0048] In step 304 , parameter settings optimization system
104 (see FIG . 1) converts the one - hot vector encoded in step
302 into an embedding vector by using an embedding
technique .
[0049] In step 306 , parameter settings optimization system
104 (see FIG . 1) generates a vector of uniform dimensions
by using batch normalization techniques that include nor
malizing different ranges of features to the same feature
range , where the features are represented in the embedding
vector that resulted from step 304 .
[0050] In step 308 , parameter settings optimization system
104 (see FIG . 1) trains deep reinforcement learning that
employs the CNNs , where the training if facilitated by using
the vector having features of uniform dimensions (i.e. , the
vector generated in step 306) .
[0051] The process of FIG . 3 ends at step 310 .
[0052] In one embodiment , step 202 (see FIG . 2) includes
steps 302 , 304 , and 306 in FIG . 3. In one embodiment , a
virtual agent included in virtual agent 118-1 , ... , virtual
agent 118 - N (see FIG . 1) consists of different parameters
that need to be adjusted during the importing of data into the
graph database . Since the parameters to be adjusted have
different measurement units and physical meanings (i.e. ,
meanings in the physical world) , parameter settings optimi
zation system 104 (see FIG . 1) converts the parameters into
a vector representation of uniform dimensions (i.e. , the
vector generated in step 306) in order to facilitate training
for the deep reinforcement learning provided by policy
network 114 (see FIG . 1) .
[0053] After converting the parameters of the virtual agent
to the corresponding embedding parameters , the MCTS
component 116 (see FIG . 1) and the policy network 114 (see
FIG . 1) convert the embedding parameters into physical
parameters (i.e. , parameters whose values are in measure
ment units that have meanings in the physical world)
through a fully connected network .

parameter settings used in step 210 in the process of FIG . 2 ,
in accordance with embodiments of the present invention .
Example 400 includes a virtual agent 402 in an initial state ,
which has parameters settings that include Vertex.commit
Num = 100 , Edge.commitNum = 100 , etc. Parameter settings
optimization system 104 (see FIG . 1) uses (i) data generated
by data and action mocker 106 (see FIG . 1) and (ii) a
simulated environment generated by environment mocker
108 (see FIG . 1) to determine that the speed of importing
(i.e. , inserting) the data into the graph database is 938
seconds when the parameter settings in virtual agent 402 are
used to import the data into the graph database .
[0055] Using a reward generated by reward component
110 (see FIG . 1) , action component 112 (see FIG . 1) adjusts
the parameter settings in virtual agent 402 to generate a new
set of parameter settings (i.e. , Vertex.commitNum = 101 ,
Edge.commitNum = 99 , etc.) in virtual agent 404 (i.e. , the
virtual agent in a second state) . Parameter settings optimi
zation system 104 (see FIG . 1) uses (i) the data generated by
data and action mocker 106 (see FIG . 1) and (ii) a simulated
environment generated by environment mocker 108 (see
FIG . 1) to determine that the speed of importing (i.e. ,
inserting) the data into the graph database is 911 seconds
when the parameter settings in virtual agent 404 are used to
import the data into the graph database (i.e. , an improvement
in speed over the 938 seconds associated with the parameter
settings in the virtual agent in the initial state) .
[0056] After multiple iterations of using rewards corre
sponding to the virtual agent in respective states , action
component 112 (see FIG . 1) adjusts the parameter settings in
a next - to - last state (not shown) to generate final parameters
settings (see FIG . 1) (i.e. , Vertex.commitNum = 3000 , Edge .
commitNum = 1000 , etc.) in virtual agent 406 (i.e. , the virtual
agent in the final state) . Parameter settings optimization
system 104 (see FIG . 1) uses (i) the data generated by data
and action mocker 106 (see FIG . 1) and (ii) a simulated
environment generated by environment mocker 108 (see
FIG . 1) to determine that the speed of importing the data into
the graph database is 106 seconds when the parameter
settings in virtual agent 406 are used to import the data into
the graph database (i.e. , an improvement in speed over the
938 seconds associated with the parameter settings in virtual
agent 402 , the 911 seconds associated with the parameters
settings in virtual agent 404 , and other speeds (not shown)
associated with other parameter settings in the virtual agent
in other states (not shown)) .
[0057] FIG . 5 is an example 500 of a policy network
generating candidates of adjusted parameter settings based
on previous parameter settings and a reward in step 208 in
the process of FIG . 2 , in accordance with embodiments of
the present invention . In step (1) , parameter settings opti
mization system 104 (see FIG . 1) uses parameter settings
502 in environment 504 to import data into the graph
database and in step (2) generates a reward 506 that indicates
the speed of the import and the usage of system resources
required by the import . Policy network 114 includes a
history network 508 (i.e. , a history CNN) to save historical
parameter settings that were processed in previous iterations
by policy network 114. Policy network also includes a
current network 510 (i.e. , a current CNN) that is used for the
training of a current action by a deep reinforcement learning
technique and takes as input the reward 506 and the current
parameter settings 502. Policy network 114 merges current
network 510 with history network 508 to form a combined

EXAMPLES

[0054] FIG . 4 is an example 400 of initial parameter
settings for a graph database and candidates of adjusted

US 2021/0209161 A1 Jul . 8 , 2021
5

network 512. In steps (3) and (4) , policy network 114
receives reward 506 and parameter settings 502 , respec
tively . In step (5) , policy network 114 inputs parameter
settings 502 and reward 506 , and uses a deep reinforcement
learning technique that employs a loss function 514 , an
optimization 516 of the loss function , and a replay buffer
518 to generate candidates 520 of sets of adjusted parameter
settings , which include sets 522 , 524 , and 526 .
[0058] FIG . 6 is an example 600 of a Monte Carlo tree
search operating on candidate parameter settings in the
process of FIG . 2 , in accordance with embodiments of the
present invention . Example 600 illustrates a Step 1 and a
Step 2 as part of an n - step simulation performed by MCTS
component 116 (see FIG . 1) . Step 1 has three sub - steps : 1-1 ,
1-2 , and 1-3 . Similarly , Step 2 has three sub - steps : 2-1 , 2-2 ,
and 2-3 . In sub - step 1-1 , an environment 602 receives
parameter settings in a virtual agent 604 (i.e. , the virtual
agent in Step 1) and generates a reward (not shown) . In
sub - step 1-2 , policy network 114 receives the reward and the
parameter settings from virtual agent 604. In sub - step 1-3 ,
MCTS component 116 (see FIG . 1) generates multiple
candidates of parameter adjustment combinations (i.e. ,
adjustments to parameter settings in virtual agent 604) by
the Monte Carlo search tree method , where the multiple
candidates include parameter adjustment combinations 606 ,
608 , and 610. MCTS component 116 (see FIG . 1) performs
an n - step simulation on each of the candidates of parameter
adjustment combinations to estimate the speed of importing
the data into the graph database and the associated system
resource usage .
[0059] Step 2 is a subsequent step in the n - step simulation
that indicates further processing of the parameter settings in
parameter adjustment combination 608. In sub - step 2-1 , an
environment 652 receives parameter settings in a virtual
agent 654 (i.e. , the virtual agent in Step 2 , which includes the
adjusted parameter settings in combination 608) and gener
ates a reward (not shown) . In sub - step 2-2 , policy network
114 receives the reward and the parameter settings from
virtual agent 654. In sub - step 2-3 , MCTS component 116
(see FIG . 1) generates multiple candidates of parameter
adjustment combinations (i.e. , adjustments to parameter
settings in virtual agent 654) by the Monte Carlo search tree
method , where the multiple candidates include parameter
adjustment combinations 656 , 658 , and 660 .
[0060] Although not shown completely in FIG . 6 , MCTS
component 116 (see FIG . 1) continues performing the n - step
simulation to select a final parameter adjustment combina
tion that provides a maximized speed of importing the data
and a minimized usage of system resources required by the
importing of the data . The final parameter adjustment com
bination includes optimized parameter settings 120 (see
FIG . 1) .

code 714 for a system that includes parameter settings
optimization system 104 (see FIG . 1) to perform a method
of generating optimized parameter settings , where the
instructions are executed by CPU 702 via memory 704. CPU
702 may include a single processing unit or be distributed
across one or more processing units in one or more locations
(e.g. , on a client and server) .
[0062] Memory 704 includes a known computer readable
storage medium , which is described below . In one embodi
ment , cache memory elements of memory 704 provide
temporary storage of at least some program code (e.g. ,
program code 714) in order to reduce the number of times
code must be retrieved from bulk storage while instructions
of the program code are executed . Moreover , similar to CPU
702 , memory 704 may reside at a single physical location ,
including one or more types of data storage , or be distributed
across a plurality of physical systems in various forms .
Further , memory 704 can include data distributed across , for
example , a local area network (LAN) or a wide area network
(WAN) .
[0063] I / O interface 706 includes any system for exchang
ing information to or from an external source . I / O devices
710 include any known type of external device , including a
display , keyboard , etc. Bus 708 provides a communication
link between each of the components in computer 102 , and
may include any type of transmission link , including elec
trical , optical , wireless , etc.
[0064] I / O interface 706 also allows computer 102 to store
information (e.g. , data or program instructions such as
program code 714) on and retrieve the information from
computer data storage unit 712 or another computer data
storage unit (not shown) . Computer data storage unit 712
includes a known computer readable storage medium , which
is described below . In one embodiment , computer data
storage unit 712 is a non - volatile data storage device , such
as , for example , a solid - state drive (SSD) , a network
attached storage (NAS) array , a storage area network (SAN)
array , a magnetic disk drive (i.e. , hard disk drive) , or an
optical disc drive (e.g. , a CD - ROM drive which receives a
CD - ROM disk or a DVD drive which receives a DVD disc) .
[0065] Memory 704 and / or storage unit 712 may store
computer program code 714 that includes instructions that
are executed by CPU 702 via memory 704 to generate
optimized parameter settings . Although FIG . 7 depicts
memory 704 as including program code , the present inven
tion contemplates embodiments in which memory 704 does
not include all of code 714 simultaneously , but instead at one
time includes only a portion of code 714 .
[0066] Further , memory 704 may include an operating
system (not shown) and may include other systems not
shown in FIG . 7 .
[0067] As will be appreciated by one skilled in the art , in
a first embodiment , the present invention may be a method ;
in a second embodiment , the present invention may be a
system ; and in a third embodiment , the present invention
may be a computer program product .
[0068] Any of the components of an embodiment of the
present invention can be deployed , managed , serviced , etc.
by a service provider that offers to deploy or integrate
computing infrastructure with respect to generating opti
mized parameter settings . Thus , an embodiment of the
present invention discloses a process for supporting com
puter infrastructure , where the process includes providing at
least one support service for at least one of integrating ,

Computer System
[0061] FIG . 7 is a block diagram of a computer that is
included in the system of FIG . 1 and that implements the
processes of FIG . 2 and FIG . 3 , in accordance with embodi
ments of the present invention . Computer 102 is a computer
system that generally includes a central processing unit
(CPU) 702 , a memory 704 , an input / output (1/0) interface
706 , and a bus 708. Further , computer 102 is coupled to I / O
devices 710 and a computer data storage unit 712. CPU 702
performs computation and control functions of computer
102 , including executing instructions included in program

US 2021/0209161 A1 Jul . 8 , 2021
6

hosting , maintaining and deploying computer - readable code
(e.g. , program code 714) in a computer system (e.g. , com
puter 102) including one or more processors (e.g. , CPU
702) , wherein the processor (s) carry out instructions con
tained in the code causing the computer system to generate
optimized parameter settings . Another embodiment dis
closes a process for supporting computer infrastructure ,
where the process includes integrating computer - readable
program code into a computer system including a processor .
The step of integrating includes storing the program code in
a computer - readable storage device of the computer system
through use of the processor . The program code , upon being
executed by the processor , implements a method of gener
ating optimized parameter settings .
[0069] While it is understood that program code 714 for
generating optimized parameter settings may be deployed by
manually loading directly in client , server and proxy com
puters (not shown) via loading a computer - readable storage
medium (e.g. , computer data storage unit 712) , program
code 714 may also be automatically or semi - automatically
deployed into computer 102 by sending program code 714
to a central server or a group of central servers . Program
code 714 is then downloaded into client computers (e.g. ,
computer 102) that will execute program code 714. Alter
natively , program code 714 is sent directly to the client
computer via e - mail . Program code 714 is then either
detached to a directory on the client computer or loaded into
a directory on the client computer by a button on the e - mail
that executes a program that detaches program code 714 into
a directory . Another alternative is to send program code 714
directly to a directory on the client computer hard drive . In
a case in which there are proxy servers , the process selects
the proxy server code , determines on which computers to
place the proxy servers ' code , transmits the proxy server
code , and then installs the proxy server code on the proxy
computer . Program code 714 is transmitted to the proxy
server and then it is stored on the proxy server .
[0070] Another embodiment of the invention provides a
method that performs the process steps on a subscription ,
advertising and / or fee basis . That is , a service provider can
offer to create , maintain , support , etc. a process of generating
optimized parameter settings . In this case , the service pro
vider can create , maintain , support , etc. a computer infra
structure that performs the process steps for one or more
customers . In return , the service provider can receive pay
ment from the customer (s) under a subscription and / or fee
agreement , and / or the service provider can receive payment
from the sale of advertising content to one or more third
parties .
[0071] The present invention may be a system , a method ,
and / or a computer program product at any possible technical
detail level of integration . The computer program product
may include a computer readable storage medium (or media)
(i.e. , memory 704 and computer data storage unit 712)
having computer readable program instructions 714 thereon
for causing a processor (e.g. , CPU 702) to carry out aspects
of the present invention .
[0072] The computer readable storage medium can be a
tangible device that can retain and store instructions (e.g. ,
program code 714) for use by an instruction execution
device (e.g. , computer 102) . The computer readable storage
medium may be , for example , but is not limited to , an
electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a

semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e.g. , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0073] Computer readable program instructions (e.g. , pro
gram code 714) described herein can be downloaded to
respective computing / processing devices (e.g. , computer
102) from a computer readable storage medium or to an
external computer or external storage device (e.g. , computer
data storage unit 712) via a network (not shown) , for
example , the Internet , a local area network , a wide area
network and / or a wireless network . The network may com
prise copper transmission cables , optical transmission fibers ,
wireless transmission , routers , firewalls , switches , gateway
computers and / or edge servers . A network adapter card (not
shown) or network interface (not shown) in each computing /
processing device receives computer readable program
instructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium within the respective computing
processing device .
[0074) Computer readable program instructions (e.g. , pro
gram code 714) for carrying out operations of the present
invention may be assembler instructions , instruction - set
architecture (ISA) instructions , machine instructions ,
machine dependent instructions , microcode , firmware
instructions , state - setting data , configuration data for inte
grated circuitry , or either source code or object code written
in any combination of one or more programming languages ,
including an object oriented programming language such as
Smalltalk , C ++ , or the like , and procedural programming
languages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user's computer ,
partly on the user's computer , as a stand - alone software
package , partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user's computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information

US 2021/0209161 A1 Jul . 8 , 2021
7

of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present invention .
[0075] Aspects of the present invention are described
herein with reference to flowchart illustrations (e.g. , FIG . 2
and FIG . 3) and / or block diagrams (e.g. , FIG . 1 and FIG . 7)
of methods , apparatus (systems) , and computer program
products according to embodiments of the invention . It will
be understood that each block of the flowchart illustrations
and / or block diagrams , and combinations of blocks in the
flowchart illustrations and / or block diagrams , can be imple
mented by computer readable program instructions (e.g. ,
program code 714) .
[0076] These computer readable program instructions may
be provided to a processor (e.g. , CPU 702) of a general
purpose computer , special purpose computer , or other pro
grammable data processing apparatus (e.g. , computer 102)
to produce a machine , such that the instructions , which
execute via the processor of the computer or other program
mable data processing apparatus , create means for imple
menting the functions / acts specified in the flowchart and / or
block diagram block or blocks . These computer readable
program instructions may also be stored in a computer
readable storage medium (e.g. , computer data storage unit
712) that can direct a computer , a programmable data
processing apparatus , and / or other devices to function in a
particular manner , such that the computer readable storage
medium having instructions stored therein comprises an
article of manufacture including instructions which imple
ment aspects of the function / act specified in the flowchart
and / or block diagram block or blocks .
[0077] The computer readable program instructions (e.g. ,
program code 714) may also be loaded onto a computer (e.g.
computer 102) , other programmable data processing appa
ratus , or other device to cause a series of operational steps
to be performed on the computer , other programmable
apparatus or other device to produce a computer imple
mented process , such that the instructions which execute on
the computer , other programmable apparatus , or other
device implement the functions / acts specified in the flow
chart and / or block diagram block or blocks .
[0078] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the Figures . For example , two blocks shown in succession
may , in fact , be accomplished as one step , executed concur
rently , substantially concurrently , in a partially or wholly
temporally overlapping manner , or the blocks may some
times be executed in the reverse order , depending upon the
functionality involved . It will also be noted that each block
of the block diagrams and / or flowchart illustration , and
combinations of blocks in the block diagrams and / or flow
chart illustration , can be implemented by special purpose
hardware - based systems that perform the specified functions
or acts or carry out combinations of special purpose hard
ware and computer instructions .

[0079] While embodiments of the present invention have
been described herein for purposes of illustration , many
modifications and changes will become apparent to those
skilled in the art . Accordingly , the appended claims are
intended to encompass all such modifications and changes as
fall within the true spirit and scope of this invention .
What is claimed is :
1. A method of generating parameter settings for a graph

database , the method comprising :
determining , by one or more processors , first settings for

parameters for importing data into a graph database ;
determining , by the one or more processors , a first speed

of importing simulated data into the graph database and
a first usage of system resources by executing an
importing of the simulated data using the first settings
for the parameters and a simulated hardware environ
ment of the graph database ;

based on the first speed and the first usage , determining ,
by the one or more processors , a reward associated with
the first settings ;

using a policy network that includes convolutional neural
networks (CNNs) and based on the reward and the first
settings , generating , by the one or more processors ,
candidates of adjusted settings for the parameters ;

using a Monte Carlo tree search (MCTS) in multiple
iterations to estimate changes in speeds of importing
the simulated data and changes in usages of system
resources for respective candidates of the adjusted
settings , determining , by the one or more processors ,
rewards for the respective candidates ; and

determining , by the one or more processors , that the
iterations are completed and in response to the itera
tions being completed and based on the rewards for the
respective candidates , selecting , by the one or more
processors , a candidate from the candidates as includ
ing final settings for the parameters that optimize (i) a
speed of importing the simulated data into the graph
database and (ii) a usage of the system resources during
the importing of the simulated data .

2. The method of claim 1 , further comprising :
generating , by the one or more processors , a one - hot

vector by encoding initial parameter settings by using
one - hot encoding ;

converting , by the one or more processors , the one - hot
vector into an embedding vector by using an embed
ding technique that maps entries in the one - hot vector
to respective real numbers ; and

using a batch normalization technique , generating , by the
one or more processors , a vector of uniform dimensions
by normalizing different ranges of features represented
in the embedding vector to a uniform range of features ,
wherein the generated vector of the uniform dimen
sions includes the first settings for the parameters , and
wherein the generated vector of the uniform dimen
sions improves a training for deep reinforcement learn
ing performed by the policy network employs the
CNNs .

3. The method of claim 1 , further comprising :
based on the first settings for the parameters , the reward ,

and historical settings for the parameters stored in a
history CNN , training , by the one or more processors ,
the importing of the simulated data to generate the
candidates of the adjusted settings for the parameters
by using a current CNN ;

US 2021/0209161 A1 Jul . 8 , 2021
8

merging , by the one or more processors , the history CNN
with the current CNN to form a combined CNN ; and

using the combined CNN , generating , by the one or more
processors , other candidates of other adjusted settings
for the parameters , wherein the CNNs include the
history CNN , the current CNN , and the combined
CNN .

4. The method of claim 1 , further comprising using the
MCTS , performing , by the one or more processors , an n - step
simulation on each of the candidates of the adjusted settings ,
wherein the rewards for the candidates are based on the
n - step simulation .

5. The method of claim 1 , wherein the determining the
rewards includes determining a given reward included in the
rewards as a combination of a speed reward and a resource
reward , wherein the speed reward and the resource reward
are for a given set of parameters in a given candidate
included in the candidates , wherein the speed reward is a
ratio of an increase in a speed of importing the simulated
data using the given set of parameters to a maximum speed
of importing the simulated data , and wherein the resource
reward is another ratio of a usage of the system resources
during the importing using the given set of parameters to a
maximum usage of the system resources .

6. The method of claim 5 , further comprising :
determining , by the one or more processors , that the given

reward is a combination of a maximized speed reward
and a minimized resource reward ; and

based on the given reward being the combination of the
maximized speed reward and the minimized resource
reward , determining , by the one or more processors ,
that the given set of parameters is the final settings for
the parameters .

7. The method of claim 1 , further comprising :
generating , by the one or more processors and using an

environment simulator , the simulated hardware envi
ronment to include a virtual environment of central
processing units and memory ; and

generating , by the one or more processors and using a data
simulator , the simulated data based on schema of data
to be imported by the graph database , wherein the
determining the first speed of the importing and the first
usage of the system resources is based on the simulated
hardware environment and the simulated data .

8. The method of claim 1 , further comprising the step of :
providing at least one support service for at least one of

creating , integrating , hosting , maintaining , and deploy
ing computer readable program code in the computer ,
the program code being executed by a processor of the
computer to implement the determining the first set
tings for the parameters , the determining the first speed
of the importing the simulated data , the determining the
reward associated with the first settings , the generating
the candidates of the adjusted settings for the param
eters , determining the rewards for the respective can
didates , the determining that the iterations are com
pleted , and the selecting the candidate from the
candidates as including the final settings for the param
eters .

9. A computer program product for generating parameter
settings for a graph database , the computer program product
comprising :

one or more computer readable storage media having
computer readable program code collectively stored on

the one or more computer readable storage media , the
computer readable program code being executed by a
central processing unit (CPU) of a computer system to
cause the computer system to perform a method com
prising the steps of :
the computer system determining first settings for

parameters for importing data into a graph database ;
the computer system determining a first speed of

importing simulated data into the graph database and
a first usage of system resources by executing an
importing of the simulated data using the first set
tings for the parameters and a simulated hardware
environment of the graph database ;

based on the first speed and the first usage , the com
puter system determining a reward associated with
the first settings ;

using a policy network that includes convolutional
neural networks (CNNs) and based on the reward
and the first settings , the computer system generating
candidates of adjusted settings for the parameters ;

using a Monte Carlo tree search (MCTS) in multiple
iterations to estimate changes in speeds of importing
the simulated data and changes in usages of system
resources for respective candidates of the adjusted
settings , the computer system determining rewards
for the respective candidates ; and

the computer system determining that the iterations are
completed and in response to the iterations being
completed and based on the rewards for the respec
tive candidates , the computer system selecting a
candidate from the candidates as including final
settings for the parameters that optimize (i) a speed
of importing the simulated data into the graph data
base and (ii) a usage of the system resources during
the importing of the simulated data .

10. The computer program product of claim 9 , wherein
the method further comprises :

the computer system generating a one - hot vector by
encoding initial parameter settings by using one - hot
encoding ;

the computer system converting the one - hot vector into an
embedding vector by using an embedding technique
that maps entries in the one - hot vector to respective real
numbers ; and

using a batch normalization technique , the computer
system generating a vector of uniform dimensions by
normalizing different ranges of features represented in
the embedding vector to a uniform range of features ,
wherein the generated vector of the uniform dimen
sions includes the first settings for the parameters , and
wherein the generated vector of the uniform dimen
sions improves a training for deep reinforcement learn
ing performed by the policy network employs the
CNNs .

11. The computer program product of claim 9 , wherein the
method further comprises :

based on the first settings for the parameters , the reward ,
and historical settings for the parameters stored in a
history CNN , the computer system training the import
ing of the simulated data to generate the candidates of
the adjusted settings for the parameters by using a
current CNN ;

the computer system merging the history CNN with the
current CNN to form a combined CNN ; and

US 2021/0209161 A1 Jul . 8 , 2021
9

using the combined CNN , the computer system generat
ing other candidates of other adjusted settings for the
parameters , wherein the CNNs include the history
CNN , the current CNN , and the combined CNN .

12. The computer program product of claim 9 , wherein
the method further comprises using the MCTS , the computer
system performing an n - step simulation on each of the
candidates of the adjusted settings , wherein the rewards for
the candidates are based on the n - step simulation .

13. The computer program product of claim 9 , wherein
the determining the rewards includes determining a given
reward included in the rewards as a combination of a speed
reward and a resource reward , wherein the speed reward and
the resource reward are for a given set of parameters in a
given candidate included in the candidates , wherein the
speed reward is a ratio of an increase in a speed of importing
the simulated data using the given set of parameters to a
maximum speed of importing the simulated data , and
wherein the resource reward is another ratio of a usage of the
system resources during the importing using the given set of
parameters to a maximum usage of the system resources .

14. The computer program product of claim 13 , wherein
the method further comprises :

the computer system determining that the given reward is
a combination of a maximized speed reward and a
minimized resource reward ; and

based on the given reward being the combination of the
maximized speed reward and the minimized resource
reward , the computer system determining that the given
set of parameters is the final settings for the parameters .

15. A computer system comprising :
a central processing unit (CPU) ;
a memory coupled to the CPU ; and
a computer readable storage medium coupled to the CPU ,

the computer readable storage medium containing
instructions that are executed by the CPU via the
memory to implement a method comprising the steps
of :
the computer system determining first settings for

parameters for importing data into a graph database ;
the computer system determining a first speed of

importing simulated data into the graph database and
a first usage of system resources by executing an
importing of the simulated data using the first set
tings for the parameters and a simulated hardware
environment of the graph database ;

based on the first speed and the first usage , the com
puter system determining a reward associated with
the first settings ;

using a policy network that includes convolutional
neural networks (CNNs) and based on the reward
and the first settings , the computer system generating
candidates of adjusted settings for the parameters ;

using a Monte Carlo tree search (MCTS) in multiple
iterations to estimate changes in speeds of importing
the simulated data and changes in usages of system
resources for respective candidates of the adjusted
settings , the computer system determining rewards
for the respective candidates ; and

the computer system determining that the iterations are
completed and in response to the iterations being
completed and based on the rewards for the respec
tive candidates , the computer system selecting a
candidate from the candidates as including final

settings for the parameters that optimize (i) a speed
of importing the simulated data into the graph data
base and (ii) a usage of the system resources during
the importing of the simulated data .

16. The computer system of claim 15 , wherein the method
further comprises :

the computer system generating a one - hot vector by
encoding initial parameter settings by using one - hot
encoding ;

the computer system converting the one - hot vector into an
embedding vector by using an embedding technique
that maps entries in the one - hot vector to respective real
numbers ; and

using a batch normalization technique , the computer
system generating a vector of uniform dimensions by
normalizing different ranges of features represented in
the embedding vector to a uniform range of features ,
wherein the generated vector of the uniform dimen
sions includes the first settings for the parameters , and
wherein the generated vector of the uniform dimen
sions improves a training for deep reinforcement learn
ing performed by the policy network employs the
CNNs .

17. The computer system of claim 15 , wherein the method
further comprises :

based on the first settings for the parameters , the reward ,
and historical settings for the parameters stored in a
history CNN , the computer system training the import
ing of the simulated data to generate the candidates of
the adjusted settings for the parameters by using a
current CNN ;

the computer system merging the history CNN with the
current CNN to form a combined CNN ; and

using the combined CNN , the computer system generat
ing other candidates of other adjusted settings for the
parameters , wherein the CNNs include the history
CNN , the current CNN , and the combined CNN .

18. The computer system of claim 15 , wherein the method
further comprises using the MCTS , the computer system
performing an n - step simulation on each of the candidates of
the adjusted settings , wherein the rewards for the candidates
are based on the n - step simulation .

19. The computer system of claim 15 , wherein the deter
mining the rewards includes determining a given reward
included in the rewards as a combination of a speed reward
and a resource reward , wherein the speed reward and the
resource reward are for a given set of parameters in a given
candidate included in the candidates , wherein the speed
reward is a ratio of an increase in a speed of importing the
simulated data using the given set of parameters to a
maximum speed of importing the simulated data , and
wherein the resource reward is another ratio of a usage of the
system resources during the importing using the given set of
parameters to a maximum usage of the system resources .

20. The computer system of claim 19 , wherein the method
further comprises :

the computer system determining that the given reward is
a combination of a maximized speed reward and a
minimized resource reward ; and

based on the given reward being the combination of the
maximized speed reward and the minimized resource
reward , the computer system determining that the given
set of parameters is the final settings for the parameters .

* *

