US 20150178183A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0178183 A1

Tripp et al. (43) Pub. Date: Jun. 25, 2015
(54) PAYLOAD GENERATION FOR COMPUTER Publication Classification
SOFTWARE TESTING
(51) Imt.CL
(71) Applicant: International Business Machines GO6F 1136 (2006.01)
Corporation, Armonk, NY (US) GOGF 21/57 (2006.01)
(52) US.CL
(72) TInventors: Omer Tripp, Bronx, NY (US); CPC ... GO6F 11/3684 (2013.01); GO6F 21/577
Emmanuel Wurth, Saubens (FR) (2013.01)
57 ABSTRACT
A method of generating test payloads for a target system
(21) Appl. No.: 14/467,460 includes receiving a plurality of reference programs, each

reference program modelling at least one aspect of the target
system, building a specification for each received reference

(22) Filed: Aug. 25,2014 program, each specification defining illegal states for the
respective reference program, analyzing each specification to
(30) Foreign Application Priority Data determine one or more entry constraints that would generate
an illegal state from a specific input, and synthesizing one or

Dec. 24,2013 (GB) coceoveveiecieieicieie, 1322993.5 more payloads from the determined entry constraints.

RECEIVE PLURALITY OF | 21
REFERENCE PROGRAMS

BUILD SPECIFICATION | 542
DEFINING ILLEGAL STATES

ANALYSE SPECIFICATION | 543
FOR ENTRY CONSTRAINTS

SYNTHESISE PAYLOAD(S) | 524
FROM CONSTRAINTS

Patent Application Publication Jun. 25, 2015 Sheet 1 of 4 US 2015/0178183 A1

10

20

Figure 1

Patent Application Publication Jun. 25, 2015 Sheet 2 of 4 US 2015/0178183 A1

RECEIVE PLURALITY OF | 221
REFERENCE PROGRAMS

¥

BUILD SPECIFICATION | 522
DEFINING ILLEGAL STATES

¥

ANALYSE SPECIFICATION | 523
FOR ENTRY CONSTRAINTS

A4

SYNTHESISE PAYLOAD(S) | 524
FROM CONSTRAINTS

Figure 2

Patent Application Publication Jun. 25, 2015 Sheet 3 of 4 US 2015/0178183 A1

10

Figure 3

Patent Application Publication Jun. 25, 2015 Sheet 4 of 4 US 2015/0178183 A1

26
e
XSS
S
ATTACK 28
WS

Figure 4

US 2015/0178183 Al

PAYLOAD GENERATION FOR COMPUTER
SOFTWARE TESTING

FOREIGN PRIORITY

[0001] This application claims priority to Great Britain
Patent Application No. 13229935 filed Dec. 24,2013, and all
the benefits accruing therefrom under 35 U.S.C. §119, the
contents of which in its entirety are herein incorporated by
reference.

BACKGROUND

[0002] This invention relates to computer software testing
systems and, more specifically, to the automatic synthesis of
payloads for functional software testing with particular appli-
cation in the security testing of web services.

[0003] The functional testing of software systems has many
applications, including bug finding, security assessment,
accessibility and compatibility checking, for example. A key
difficulty in building and deploying a testing solution is to
come up with quality test payloads, which are likely to exer-
cise the subject application in an effective way. This has
traditionally been known to require domain knowledge and
expertise, which left the task of constructing effective pay-
loads in the hands of domain experts. For example, an entire
team of security experts may be assigned the job of building
tests and maintaining the test suite according to repositories
of attack reports.

SUMMARY

[0004] According to an illustrative embodiment, a method
of generating test payloads for a target system includes
receiving a plurality of reference programs, each reference
program modelling at least one aspect of the target system. A
specification for each received reference program is built in
which each specification defines illegal states for the respec-
tive reference program. Each specification is analyzed to
determine one or more entry constraints that would generate
anillegal state from a specific input. One or more payloads are
synthesized from the determined entry constraints.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0005] The subject matter which is regarded as embodi-
ments is particularly pointed out and distinctly claimed in the
claims at the conclusion of the specification. The forgoing and
other features, and advantages of the embodiments are appar-
ent from the following detailed description taken in conjunc-
tion with the accompanying drawings in which:

[0006] FIG. 1 is a schematic diagram of a computing sys-
tem in accordance with an embodiment;

[0007] FIG. 2 is a flowchart of a method of generating test
payloads in accordance with an embodiment;

[0008] FIG. 3 is a further schematic diagram of a comput-
ing system in accordance with an embodiment; and

[0009] FIG. 4 is a schematic diagram of a target system in
accordance with an embodiment.

DETAILED DESCRIPTION

[0010] An illustrative embodiment includes a method of
generating test payloads for a target system. The method
includes receiving a plurality of reference programs, each
reference program modelling at least one aspect of the target

Jun. 25, 2015

system. A specification for each received reference program
is built in which each specification defines illegal states for
the respective reference program. Each specification is ana-
lyzed to determine one or more entry constraints that would
generate an illegal state from a specific input. One or more
payloads are synthesized from the determined entry con-
straints.

[0011] Conventional application testing approaches have
several limitations. Firstly the labour going into synthesizing
high-quality payloads creates a significant manual burden.
This is a burdensome and error-prone task, which requires
considerable time and dedication. For this reason, as noted
earlier, leading commercial products assign large teams of top
researchers and engineers to this task. Secondly, there is a
requirement to stay in synchronization. Beyond authoring the
initial test suite, there is the continuous need to evolve the
suite, maintain it, update it and ensure its relevance. This is a
problem both for the development team (which goes back to
the first point about the large manual burden), but even more
importantly, this also impacts the end customers, who have to
continually install software updates and ensure that their ver-
sion of the product is in sync with the most recent test suite.
For many users, for example, this is an onerous requirement.
Thirdly, there is a requirement for specialized tests. Finally,
because the manual complications going into generating test
payloads are significant, the goal of tailoring different pay-
loads to different categories of subject applications is largely
out of reach. In practice, however, the business logic of an
online transaction processing application (such as a reserva-
tion system) is sufficiently different from the behavior of a
social application to merit different tests.

[0012] According to an aspect of the illustrative embodi-
ment, asystem for generating test payloads for a target system
includes a processor arranged to receive a plurality of refer-
ence programs, each reference program modelling at least
one aspect of the target system, build a specification for each
received reference program, each specification defining ille-
gal states for the respective reference program, analyze each
specification to determine one or more entry constraints that
would generate an illegal state from a specific input, and
synthesize one or more payloads from the determined entry
constraints.

[0013] According to another aspect, a computer program
product on a computer readable medium generates test pay-
loads for a target system. The program includes instructions
for receiving a plurality of reference programs, each refer-
ence program modelling at least one aspect of the target
system, building a specification for each received reference
program, each specification defining illegal states for the
respective reference program, analyzing each specification to
determine one or more entry constraints that would generate
an illegal state from a specific input, and synthesizing one or
more payloads from the determined entry constraints.
[0014] The embodiments thus provide for automatic syn-
thesis of test payloads for a target system. The entire task of
constructing the payloads is carried out automatically, which
overcomes all three of the serious challenges listed above.
The broad idea is to obtain a representative list of programs
that model relevant business logic, apply static analysis to
these programs to detect classes of payloads that would be
effective in testing them, and using these seeding payloads to
produce new payloads on their basis.

[0015] Forexample, this methodology works in the follow-
ing manner. Firstly there is obtained a number of representa-

US 2015/0178183 Al

tive programs (p) that model pertinent aspects of the target
business logic embodied by the target system. For each such
program p, there is then built a specification for p that
describes illegal states and control locations in the execution
of p with respect to the functional property in question (for
example a null receiver in a field-access statement in p, if the
property is illegal pointer dereferences). For each specifica-
tion, for each control location and violation state in the speci-
fication, p’s (inter-procedural) control flow graph is traversed
backwards to p’s entry location to obtain constraints on the
entry state of p, such that if the input state is compatible with
these constraints, then the violation would occur. There is
then applied a constraint solver to the entry constraints to
synthesize an input payload that yields the desired input state.
This operation can be carried out using, for example, analysis
techniques such as the conventional weakest precondition
methodology known as “snugglebug” referenced below.
[0016] Optionally, for the payloads obtained as described
above, it is possible to generalize these payloads by comput-
ing structural invariants over these payloads and synthesize
additional payloads that are compatible with these con-
straints. It can then be verified that these additional payloads
are compatible with the constraints computed above,
although another option is to request the constraint solver for
multiple inputs.

[0017] FIG. 1 shows a computing system 10, which
includes a display device 12, a processor 14 and a user inter-
face 16 in accordance with an embodiment. The processor 14
is connected to the display device 12 and the user interface 16.
The user interface 16 is a keyboard and additional user inter-
face devices may also be provided, such as a mouse, which is
also connected to the processor 14. The processor 14 controls
the operation of the computing system 10, receiving user
inputs from the user interface 16 and controlling the output of
the display device 12. A computer program product on a
computer readable medium 18, such as a CD-ROM, can be
used to operate the processor 14.

[0018] The computing system 10 can be used to generate
test payloads for a target system, using an application stored
as a computer program product on the computer readable
medium 18. The application includes a series of instructions
that are executed by the processor 14, the output of which is
one or more test payloads 20. The automatic generation of the
payloads 20 is described in detail below. The target system
can be any software system that needs to be tested for robust-
ness and/or security. One or more payloads 20 are used to test
the target system, for example to ensure that the target system
does not have obvious security weaknesses.

[0019] A payload 20 is essentially anything that can be
considered as an input to the target system. A payload 20 may
include a simple text file, an HTML file, a computer program
or a sequence of instructions or messages, for example. If the
target system is an enterprise computing system that provides
aweb service that is accessible by the general public through
the Internet, for example, then the security of the system will
be of paramount importance, as malicious attacks can easily
be made via the external interface to the web service. The
system will need to have a very high level of robustness that
is continually kept up-to-date.

[0020] The method of generating test payloads 20 for the
target system is summarized in FIG. 2 in accordance with an
embodiment. The procedure includes, firstly block S2.1,
which includes receiving a plurality of reference programs,
each reference program modelling at least one aspect of the

Jun. 25, 2015

target system. For example, in the security domain, a suitable
reference program might include a validator which is
designed to accept or reject an input. A validator is designed
to detect security attacks by detecting specific malicious
inputs to the target system and refusing the input. The refer-
ence programs are essentially the input to the process and they
can be sourced according to the nature of the target system for
which the new payloads 20 are being generated.

[0021] The next operation of the method illustrated by
block S2.2, which includes building a specification for each
received reference program, each specification defining ille-
gal states for the respective reference program. The specifi-
cations that are created for the received reference programs
can be defined, for example using conventional techniques,
such as those known as TAJ and/or M2L. This portion of the
method essentially transforms each received reference pro-
gram into a specification format that can be the basis for
synthesizing new payloads 20. Control locations within the
reference program can also be defined within the specifica-
tion as a basis for defining a control flow graph from the built
specifications.

[0022] The third element of the method, block S2.3,
includes analyzing each of the built specifications to deter-
mine one or more entry constraints that would generate an
illegal state from a specific input, and the final operation of the
method, block S2.4, includes synthesizing one or more pay-
loads from the determined entry constraints. Using the speci-
fication of a reference program which has been built in block
S2.2, constraints on the entry state of the respective reference
program are obtained, such that an input state compatible
with these constraints would generate an illegal state (block
S2.3). A constraint solver is then used to synthesize new
payloads that yield the desired input state (block S2.4).
[0023] The methodology for generating new test payloads
has particular applicability in the security testing of web
services. This can be explained in the following example,
illustrated in the embodiment shown in FIG. 3. Here the target
system is a web service. Firstly, there is obtained defence
measures used in commercial as well as public web services
to block security vulnerabilities as the reference programs.
These divide into two categories: validators 22, which either
accept or reject an input, and sanitizers 24, which condition-
ally modify the input data if it appears illegal or malicious.
Common sources of such defences are organizations and
consortiums whose theme is web security, such as open-
source web services and in-house web services.

[0024] For each of the defence measures, whether a sani-
tizer or a validator, a standard security specification, such as
TAJ or M2L which are referred to above, can be used to detect
which exit values are illegal for each specific defence mea-
sure. For example, this might be a return value containing the
“<” character in a cross-site scripting sanitizer. For each
defence measure and the built specification, there is then
applied the “snugglebug” analysis referred to above, to find
input constraints, such that an input satisfying these con-
straints would yield a result for the defence measure that is
considered incorrect. This static analysis determines the entry
constraints that would generate an illegal state from a specific
input and new payloads are synthesized from the constraints.
[0025] Tt is also possible to extract regular invariants over
the newly synthesized payloads, for example in an illegal
input, the “<”” token always appears before the script token. It
is then possible to synthesize additional payloads that match
these constraints, and verify that they match the input con-

US 2015/0178183 Al

straints already computed from the specifications. Essentially
this is applying a generalisation to the new payloads in order
to create additional payloads that are also compatible with the
input constraints that have been calculated from the static
analysis of the specifications built from the reference pro-
grams (the sanitizers and validators in this example).

[0026] For a more detailed example of the methodology,
applied to the context of security testing of a web service,
there follows an explanation in the context of an XSS attack,
which is illustrated in the embodiment shown in FIG. 4.
Cross-site scripting (XSS) is a type of computer security
vulnerability typically found in web applications. XSS
enables attackers to inject client side script into web pages
that would then be viewed by other users. A cross-site script-
ing vulnerability may be used by attackers to bypass access
controls such as a same origin policy. By design, such attacks
consist of attempts to inject code (client side scripting) into a
remote server 26 running a web service 28 using vulnerabili-
ties, for example due to the permeability to such an injection
due to a lack of sanitizer. Taking the example of a php script
that will ask for parameters and will return the result of the
input in terms of a form that compiles the previous param-
eters. In this example, the structure on the client side of the
call (the payload) executed against the server will be:

[0027] input.php?name=the input name etc . . .

[0028] The result of this page will be an html answer such
as for example:

<IDOCTYPE html><html><body>. . .
<INPUT TYPE ="TEXT" VALUE=" THE INPUT NAME "/>
. .. </body></html>

[0029] Note: in the next blocks, for ease of understanding,
the example will only focus on the <input/> answer element
for convenience. Assuming that there is no or only a partial
sanitization for this php page such input:

“/><IMG SRC="javascript:alert('’XSS");
could induce this answer:
<input type="text" value="*/>

[0030] which shows that the server is vulnerable, since alert
code has been injected. Existing organizations provides ref-
erences in terms of security sanitizers and validators. This
example illustrates the recognition and removal of specific
XSS attack related patterns.

PUBLIC STATIC STRING STRIPXSS(STRING VALUE) {

if (value !=null) {

// NOTE: It's highly recommended to use the ESAPI library and
uncomment the following line to // avoid encoded attacks.

value = ESAPLencoder().canonicalize(value);

// Avoid null characters

value = value.replaceAll("M0", "");

// Avoid anything between script tags

Pattern scriptPattern = Pattern.compile("<script>(.*?)</script >",
Pattern.CASE_INSENSITIVE);

value = scriptPattern.matcher(value).replace All("");

/I Avoid iframes

scriptPattern = Pattern.compile("<iframe(.*?) >(.*?)</iframe >",
Pattern.CASE_INSENSITIVE);

value = scriptPattern.matcher(value).replace All("");

// Avoid anything in a sre=". . ." type of expression

scriptPattern = Pattern.compile("sre[\i\n]*=[\r\n] WO,

Jun. 25, 2015

-continued

Pattern.CASE_INSENSITIVE | Pattern. MULTILINE | Pattern. DOTALL);

value = scriptPattern.matcher(value).replace All("");

scriptPattern = Pattern.compile("sre[\i\n]*=[\r\n] *\W' (F#2)\W ",
Pattern.CASE_INSENSITIVE | Pattern. MULTILINE | Pattern. DOTALL);

value = scriptPattern.matcher(value).replace All("");

scriptPattern = Pattern.compile(”src[\r\n]*=[\r\n]*([A >1+)",
Pattern.CASE_INSENSITIVE | Pattern. MULTILINE | Pattern. DOTALL);

value = scriptPattern.matcher(value).replace All("");

// Remove any lonesome </script> tag

scriptPattern = Pattern.compile("</script>",
Pattern.CASE_INSENSITIVE);

value = scriptPattern.matcher(value).replace All("");

// Remove any lonesome <script . . .>tag

scriptPattern = Pattern.compile("<script(.*?)>",
Pattern.CASE_INSENSITIVE | Pattern. MULTILINE | Pattern. DOTALL);

value = scriptPattern.matcher(value).replace All("");

// Avoid eval(. ..) expressions

scriptPattern = Pattern.compile("eval\\((*2)\)",
Pattern.CASE_INSENSITIVE | Pattern. MULTILINE | Pattern. DOTALL);

value = scriptPattern.matcher(value).replace All("");

// Avoid expression(. . .) expressions

scriptPattern = Pattern.compile("expression\\((.*?)\)",
Pattern. CASE_INSENSITIVE | Pattern. MULTILINE | Pattern.DOTALL);

value = scriptPattern.matcher(value).replace All("");

// Avoid javascript: . . . expressions

scriptPattern = Pattern.compile("javascript:”,
Pattern.CASE_INSENSITIVE);

value = scriptPattern.matcher(value).replace All("");

// Avoid vbscript: . . . expressions

scriptPattern = Pattern.compile("vbscript:",
Pattern.CASE_INSENSITIVE);

value = scriptPattern.matcher(value).replace All("");

// Avoid onload= expressions

scriptPattern = Pattern.compile("onload(.*?) =",
Pattern. CASE_INSENSITIVE | Pattern. MULTILINE | Pattern.DOTALL);

value = scriptPattern.matcher(value).replace All("");

¥
return value;
¥
[0031] The algorithm executed by the processor recognizes

the goal of this sanitizer (because it checks for <script>, eval
... and in a more general manner does not return <into its
answer) in terms of XSS attack sanitization which is then
modelled as the most general specification for this sanitizer in
the style of M2L:

[0032] “.*[<>].*”

[0033] The meaning of this specification (expressed using
M2L)is that returned values from this implementation should
always return strings without the “<” and “>” characters. This
specification is computed using goal recognition that allows
the algorithm to extract the implementation intent using static
analysis so that this intent is turned into an “ideal” security
specification. This security specification can then be used to
locate divergences into the implementation.

[0034] Now using the specification, the “snugglebug” static
analysis is applied to the implementation so that potential
input constraints that yield to an incorrect result for this
defence measure are determined The more general idea is to
apply static analysis to the sanitizer/validator, which com-
putes inputs, or input characteristics, that are able to drive the
sanitizer/validator into a given result state, where the result
state of interest is one thatis illegal. For example, the sanitizer
would fail to sanitize relevant security tokens, or the validator
would accept an illegal input. Considering the specification
built above, the application of the snugglebug algorithm
would try to discover specific inputs that, once sanitized,

US 2015/0178183 Al

would be turned into a string that still contains the “<” and/or
“>” character(s), which are violations of the security specifi-
cation.

[0035] Turning the previous sanitization implementation
into a simpler case imaging the same method only focusing on
the <script> case as follows:

// Avoid anything between script tags

Pattern scriptPattern = Pattern.compile("<script>(.*?)</script>",
Pattern. CASE_INSENSITIVE);

value = scriptPattern.matcher(value).replace All("");

[0036] The application of the algorithm will allow the dis-
covery of the following constraints:

[0037] inputs starting with “<” return string with “<”
inside.
[0038] inputs starting with “<” at second position return

string with “<” inside.

[0039] inputs starting with “<” at third position return
string with “<” inside. (ie: “/><img src="javascriptalert(‘xss-
javascript: alert(‘xss’))

[0040] etc...

[0041] Once these constraints on the illegal inputs are dis-
covered, afirst set of payloads that allow the testing of failures
of the implementation can created (i.e. any string with a “<”
character at the first position will result in a string that still
contains this character, for example). The method can then,
extracting regular invariants, turn them into additional pay-
loads that are both malicious from a security standpoint and
are accepted by this sanitizer. The additional payloads would,
for example with the context of this sanitization, consist of the
creation of payloads that contain well known XSS attacks
matching these constraints.

[0042] The methodology can be completed by extracting
regular invariants over the synthesized payloads, for example,
in an illegal input the “<” token always appears before the
script token. It is possible to synthesize additional payloads
that match these constraints, and verify that they match the
input constraints computed above.

[0043] For example, in this simple case, regular invariants
are for the third constraint that illegal inputs are starting with
< at the third place so additional payload to be tested could be:

/><img src="javascript:alert('xssjavascript:alert('’xss ');
/>
/><input type'=image" src ="javascript:alert(‘xss');">

[0044] and then tested with the implementation to check if
they are rejected. In this example, the fact that the sanitizer
will accept the malicious payloads will be checked by com-
puting the results of the sanitization of these new payloads
and checking that the resulting sanitized value still contains
the XSS attack, which is the case for the three examples listed
above.

[0045] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0046] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable

Jun. 25, 2015

storage medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an opti-
cal storage device, an electromagnetic storage device, a semi-
conductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

[0047] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may include
copper transmission cables, optical transmission fibers, wire-
less transmission, routers, firewalls, switches, gateway com-
puters and/or edge servers. A network adapter card or network
interface in each computing/processing device receives com-
puter readable program instructions from the network and
forwards the computer readable program instructions for
storage in a computer readable storage medium within the
respective computing/processing device.

[0048] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

[0049] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block

US 2015/0178183 Al

diagrams of methods, apparatus (systems), and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer readable program instructions.
[0050] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the instruc-
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein
includes an article of manufacture including instructions
which implement aspects of the function/act specified in the
flowchart and/or block diagram block or blocks.

[0051] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operations to be performed on the computer, other program-
mable apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other device
implement the functions/acts specified in the flowchart and/or
block diagram block or blocks.

[0052] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos-
sible implementations of systems, methods, and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which includes one or more executable
instructions for implementing the specified logical function
(s). In some alternative implementations, the functions noted
in the block may occur out of the order noted in the figures.
For example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may some-
times be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of
the block diagrams and/or flowchart illustration, and combi-
nations of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts or carry out combinations of special purpose hardware
and computer instructions.

[0053] The descriptions of the various embodiments of the
present invention have been presented for purposes of illus-
tration, but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations
will be apparent to those of ordinary skill in the art without
departing from the scope and spirit of the described embodi-
ments. The terminology used herein was chosen to best
explain the principles of the embodiments, the practical appli-
cation or technical improvement over technologies found in
the marketplace, or to enable others of ordinary skill in the art
to understand the embodiments disclosed herein.

1. A method of generating test payloads for a target system,
the method comprising:

Jun. 25, 2015

receiving a plurality of reference programs, each reference
program modelling at least one aspect of the target sys-
tem,

building a specification for each received reference pro-

gram, each specification defining illegal states for the
respective reference program,

analyzing each specification to determine one or more

entry constraints that would generate an illegal state
from a specific input, and

synthesizing one or more payloads from the determined

entry constraints.

2. A method according to claim 1, and further comprising
computing structural invariant constraints over the synthe-
sized payloads and synthesizing additional payloads compat-
ible with the computed constraints.

3. A method according to claim 2, and further comprising
verifying that the additional payloads are compatible with the
determined entry constraints.

4. A method according to claim 1, wherein each specifica-
tion further defines control locations in the execution of the
respective reference program and the step of analyzing each
specification comprises traversing backwards a control flow
graph of the control locations.

5. A system for generating test payloads for a target system,
the system comprising a processor arranged to:

receive a plurality of reference programs, each reference

program modelling at least one aspect of the target sys-
tem,

build a specification for each received reference program,

each specification defining illegal states for the respec-
tive reference program,

analyze each specification to determine one or more entry

constraints that would generate an illegal state from a
specific input, and

synthesize one or more payloads from the determined entry

constraints.

6. A system according to claim 5, wherein the processor is
further arranged to compute structural invariant constraints
over the synthesized payloads and synthesize additional pay-
loads compatible with the computed constraints.

7. A system according to claim 6, wherein the processor is
further arranged to verify that the additional payloads are
compatible with the determined entry constraints.

8. A system according to claim 5, wherein each specifica-
tion further defines control locations in the execution of the
respective reference program and the processor is arranged,
when analyzing each specification, to traverse backwards a
control flow graph of the control locations.

9. A computer program product comprising a computer
readable storage medium having program instructions
embodied therewith, the program instructions readable by a
processing circuit to cause the processing circuit to perform a
method comprising:

receiving a plurality of reference programs, each reference

program modelling at least one aspect of the target sys-
tem,

building a specification for each received reference pro-

gram, each specification defining illegal states for the
respective reference program,

analyzing each specification to determine one or more

entry constraints that would generate an illegal state
from a specific input, and

synthesizing one or more payloads from the determined

entry constraints.

US 2015/0178183 Al

10. A computer program product according to claim 9, and
further comprising instructions for computing structural
invariant constraints over the synthesized payloads and syn-
thesizing additional payloads compatible with the computed
constraints.

11. A computer program product according to claim 10,
and further comprising instructions for verifying that the
additional payloads are compatible with the determined entry
constraints.

12. A computer program product according to claim 9,
wherein each specification further defines control locations in
the execution of the respective reference program and the
instructions for analyzing each specification comprise
instructions for traversing backwards a control flow graph of
the control locations.

Jun. 25, 2015

