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METADATA CONTROL IN A 
LOAD - BALANCED DISTRIBUTED STORAGE 

SYSTEM 

BACKGROUND 

[ 0001 ] Limitations and disadvantages of conventional 
approaches to data storage will become apparent to one of 
skill in the art , through comparison of such approaches with 
some aspects of the present method and system set forth in 
the remainder of this disclosure with reference to the draw 
ings . 

INCORPORATION BY REFERENCE 

[ 0002 ] U.S. patent application Ser . No. 15 / 243,519 titled 
“ Distributed Erasure Coded Virtual File System ” is hereby 
incorporated herein by reference in its entirety . 

BRIEF SUMMARY 

[ 0003 ] Methods and systems are provided for metadata 
control in load balanced distributed storage system substan 
tially as illustrated by and / or described in connection with at 
least one of the figures , as set forth more completely in the 
claims . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0004 ] FIG . 1 illustrates various example configurations of 
a virtual file system in accordance with aspects of this 
disclosure . 
[ 0005 ] FIG . 2 illustrates an example configuration of a 
virtual file system node in accordance with aspects of this 
disclosure . 
[ 0006 ] FIG . 3 illustrates another representation of a virtual 
file system in accordance with an example implementation 
of this disclosure . 
[ 0007 ] FIG . 4 illustrates an example of metadata bucket 
control in a load balanced distributed storage system after a 
VFS is added in accordance with an example implementa 
tion of this disclosure . 
[ 0008 ] FIG . 5 illustrates an example of splitting metadata 
buckets in a load balanced distributed storage system in 
accordance with an example implementation of this disclo 

servers in a traditional clustered system is limited to small 
numbers , such systems are unable to scale . 
[ 0012 ] The systems in this disclosure are applicable to 
small clusters and can also scale to many , many thousands 
of nodes . An example embodiment is discussed regarding 
non - volatile memory ( NVM ) , for example , flash memory 
that comes in the form of a solid - state drive ( SSD ) . The 
NVM may be divided into 4 kB “ blocks ” and 128 MB 
“ chunks . ” “ Extents ” may be stored in volatile memory , e.g. , 
RAM for fast access , backed up by NVM storage as well . An 
extent may store pointers for blocks , e.g. , 256 pointers to 1 
MB of data stored in blocks . In other embodiments , larger or 
smaller memory divisions may also be used . Metadata 
functionality in this disclosure may be effectively spread 
across many servers . For example , in cases of " hot spots ” 
where a large load is targeted at a specific portion of the 
filesystem's namespace , this load can be distributed across 
a plurality of nodes . 
[ 0013 ] FIG . 1 illustrates various example configurations of 
a virtual file system ( VFS ) in accordance with aspects of this 
disclosure . Shown in FIG . 1 is a local area network ( LAN ) 
102 comprising one or more VFS nodes 120 ( indexed by 
integers from 1 to J , for jæl ) , and optionally comprising 
( indicated by dashed lines ) : one or more dedicated storage 
nodes 106 ( indexed by integers from 1 to M , for Mz1 ) , one 
or more compute nodes 104 ( indexed by integers from 1 to 
N , for Nz1 ) , and / or an edge router that connects the LAN 
102 to a remote network 118. The remote network 118 
optionally comprises one or more storage services 114 
( indexed by integers from 1 to K , for Kzl ) , and / or one or 
more dedicated storage nodes 115 ( indexed by integers from 
1 to L , for L21 ) . 
[ 0014 ] Each VFS node 120 ; ( an integer , where 1sjsJ ) is 
a networked computing device ( e.g. , a server , personal 
computer , or the like ) that comprises circuitry for running 
VFS processes and , optionally , client processes ( either 
directly on an operating system of the device 104 ,, and / or in 
one or more virtual machines running in the device 104n ) . 
[ 0015 ] The compute nodes 104 are networked devices that 
may run a VFS frontend without a VFS backend . A compute 
node 104 may run VFS frontend by taking an SR - IOV into 
the NIC and consuming a complete processor core . Alter 
natively , the compute node 104 may run the VFS frontend by 
routing the networking through a Linux kernel networking 
stack and using kernel process scheduling , thus not having 
the requirement of a full core . This is useful if a user does 
not want to allocate a complete core for the VFS or if the 
networking hardware is incompatible with the VFS require 
ments . 
[ 0016 ] FIG . 2 illustrates an example configuration of a 
VFS node in accordance with aspects of this disclosure . A 
VFS node comprises a VFS frontend 202 and driver 208 , a 
VFS memory controller 204 , a VFS backend 206 , and a VFS 
SSD agent 214. As used in this disclosure , a “ VFS process ” 
is a process that implements one or more of : the VFS 
frontend 202 , the VFS memory controller 204 , the VFS 
backend 206 , and the VFS SSD agent 214. Thus , in an 
example implementation , resources ( e.g. , processing and 
memory resources ) of the VFS node may be shared among 
client processes and VFS processes . The processes of the 
VFS may be configured to demand relatively small amounts 
of the resources to minimize the impact on the performance 
of the client applications . The VFS frontend 202 , the VFS 
memory controller 204 , and / or the VFS backend 206 and / or 

sure . 

[ 0009 ] FIG . 6 illustrates an example of metadata control in 
a load - balanced distributed storage system after a VFS 
failure in accordance with an example implementation of 
this disclosure . 
[ 0010 ] FIG . 7 is flowcharts illustrating an example method 
for metadata control in a load balanced distributed storage 
system . 

DETAILED DESCRIPTION 

[ 0011 ] Traditionally , filesystems use a centralized control 
over the metadata structure ( e.g. , directories , files , attributes , 
file contents ) . If a local filesystem is accessible from a single 
server and that server fails , the filesystem's data may be lost 
if as there is no further protection . To add protection , some 
filesystems ( e.g. , as provided by NetApp ) have used one or 
more pairs of controllers in an active - passive manner to 
replicate the metadata across two or more computers . Other 
solutions have used multiple metadata servers in a clustered 
way ( e.g. , as provided by IBM GPFS , Dell EMC Isilon , 
Lustre , etc. ) . However , because the number of metadata 
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the VFS SSD agent 214 may run on a processor of the host 
201 or on a processor of the network adaptor 218. For a 
multi - core processor , different VFS process may run on 
different cores , and may run a different subset of the ser 
vices . From the perspective of the client process ( es ) 212 , the 
interface with the virtual file system is independent of the 
particular physical machine ( s ) on which the VFS process ( es ) 
are running . Client processes only require driver 208 and 
frontend 202 to be present in order to serve them . 
[ 0017 ] The VFS node may be implemented as a single 
tenant server ( e.g. , bare - metal ) running directly on an oper 
ating system or as a virtual machine ( VM ) and / or container 
( e.g. , a Linux container ( LXC ) ) within a bare - metal server . 
The VFS may run within an LXC container as a VM 
environment . Thus , inside the VM , the only thing that may 
run is the LXC container comprising the VFS . In a classic 
bare - metal environment , there are user - space applications 
and the VFS runs in an LXC container . If the server is 
running other containerized applications , the VFS may run 
inside an LXC container that is outside the management 
scope of the container deployment environment ( e.g. 
Docker ) . 
[ 0018 ] The VFS node may be serviced by an operating 
system and / or a virtual machine monitor ( VMM ) ( e.g. , a 
hypervisor ) . The VMM may be used to create and run the 
VFS node on a host 201. Multiple cores may reside inside 
the single LXC container running the VFS , and the VFS may 
run on a single host 201 using a single Linux kernel . 
Therefore , a single host 201 may comprise multiple VFS 
frontends 202 , multiple VFS memory controllers 204 , mul 
tiple VFS backends 206 , and / or one or more VFS drivers 
208. A VFS driver 208 may run in kernel space outside the 
scope of the LXC container . 
[ 0019 ] A single root input / output virtualization ( SR - IOV ) 
PCIe virtual function may be used to run the networking 
stack 210 in user space 222. SR - IOV allows the isolation of 
PCI Express , such that a single physical PCI Express can be 
shared on a virtual environment and different virtual func 
tions may be offered to different virtual components on a 
single physical server machine . The I / O stack 210 enables 
the VFS node to bypasses the standard TCP / IP stack 220 and 
communicate directly with the network adapter 218. A 
Portable Operating System Interface for uniX ( POSIX ) VFS 
functionality may be provided through lockless queues to 
the VFS driver 208. SR - IOV or full PCIe physical function 
address may also be used to run non - volatile memory 
express ( NVMe ) driver 214 in user space 222 , thus bypass 
ing the Linux IO stack completely . NVMe may be used to 
access non - volatile storage media 216 attached via a PCI 
Express ( PCIe ) bus . The non - volatile storage media 220 may 
be , for example , flash memory that comes in the form of a 
solid - state drive ( SSD ) or Storage Class Memory ( SCM ) 
that may come in the form of an SSD or a memory module 
( DIMM ) . Other example may include storage class memory 
technologies such as 3D - XPoint . 
[ 0020 ] The SSD may be implemented as a networked 
device by coupling the physical SSD 216 with the SSD agent 
214 and networking 210. Alternatively , the SSD may be 
implemented as a network - attached NVMe SSD 222 or 224 
by using a network protocol such as NVMe - oF ( NVMe over 
Fabrics ) . NVMe - oF may allow access to the NVMe device 
using redundant network links , thereby providing a higher 
level or resiliency . Network adapters 226 , 228 , 230 and 232 
may comprise hardware acceleration for connection to the 

NVMe SSD 222 and 224 to transform them into networked 
NVMe - of devices without the use of a server . The NVMe 
SSDs 222 and 224 may each comprise two physical ports , 
and all the data may be accessed through either of these 
ports . 
[ 0021 ] Each client process / application 212 may run 
directly on an operating system or may run in a virtual 
machine and / or container serviced by the operating system 
and / or hypervisor . A client process 212 may read data from 
storage and / or write data to storage in the course of per 
forming its primary function . The primary function of a 
client process 212 , however , is not storage - related ( i.e. , the 
process is only concerned that its data is reliably stored and 
is retrievable when needed , and not concerned with where , 
when , or how the data is stored ) . Example applications 
which give rise to such processes include : email servers , 
web servers , office productivity applications , customer rela 
tionship management ( CRM ) , animated video rendering , 
genomics calculation , chip design , software builds , and 
enterprise resource planning ( ERP ) . 
[ 0022 ] A client application 212 may make a system call to 
the kernel 224 which communicates with the VFS driver 
208. The VFS driver 208 puts a corresponding request on a 
queue of the VFS frontend 202. If several VFS frontends 
exist , the driver may load balance accesses to the different 
frontends , making sure a single file / directory is always 
accessed via the same frontend . This may be done by 
“ sharding ” the frontend based on the ID of the file or 
directory . The VFS frontend 202 provides an interface for 
routing file system requests to an appropriate VFS backend 
based on the bucket that is responsible for that operation . 
The appropriate VFS backend may be on the same host or 
it may be on another host . 
[ 0023 ] The VFS backend 206 hosts several buckets , each 
one of them services the file system requests that it receives 
and carries out tasks to otherwise manage the virtual file 
system ( e.g. , load balancing , journaling , maintaining meta 
data , caching , moving of data between tiers , removing stale 
data , correcting corrupted data , etc. ) 
[ 0024 ] The VFS SSD agent 214 handles interactions with 
a respective storage device 216. This may include , for 
example , translating addresses , and generating the com 
mands that are issued to the storage device ( e.g. , on a SATA , 
SAS , PCIe , or other suitable bus ) . Thus , the VFS SSD agent 
214 operates as an intermediary between a storage device 
216 and the VFS backend 206 of the virtual file system . The 
SSD agent 214 could also communicate with a standard 
network storage device supporting a standard protocol such 
as NVMe - oF ( NVMe over Fabrics ) . 
[ 0025 ] FIG . 3 illustrates another representation of a virtual 
file system in accordance with an example implementation 
of this disclosure . In FIG . 3 , the element 302 represents 
memory resources ( e.g. , DRAM and / or other short - term 
memory ) and processing ( e.g. , x86 processor ( s ) , ARM pro 
cessor ( s ) , NICS , ASICS , FPGAs , and / or the like ) resources 
of various node ( s ) ( compute , storage , and / or VFS ) on which 
resides a virtual file system , such as described regarding 
FIG . 2 above . The element 308 represents the one or more 
physical storage devices 216 which provide the long term 
storage of the virtual file system . 
[ 0026 ] As shown in FIG . 3 , the physical storage is orga 
nized into a plurality of distributed failure resilient address 
spaces ( DFRASs ) 518. Each of which comprises a plurality 
of chunks 310 , which in turn comprises a plurality of blocks 
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312. The organization of blocks 312 into chunks 310 is only 
a convenience in some implementations and may not be 
done in all implementations . Each block 312 stores com 
mitted data 316 ( which may take on various states , discussed 
below ) and / or metadata 314 that describes or references 
committed data 316 . 
[ 0027 ] The organization of the storage 308 into a plurality 
of DFRASs enables high performance parallel commits 
from many — perhaps all of the nodes of the virtual file 
system ( e.g. , all nodes 104 , -104N , 106 , -106m , and 120 , 
120 , of FIG . 1 may perform concurrent commits in parallel ) . 
In an example implementation , each of the nodes of the 
virtual file system may own a respective one or more of the 
plurality of DFRAS and have exclusive read / commit access 
to the DFRASs that it owns . 
[ 0028 ] Each bucket owns a DFRAS , and thus does not 
need to coordinate with any other node when writing to it . 
Each bucket may build stripes across many different chunks 
on many different SSDs , thus each bucket with its DFRAS 
can choose what " chunk stripe ” to write to currently based 
on many parameters , and there is no coordination required 
in order to do so once the chunks are allocated to that bucket . 
All buckets can effectively write to all SSDs without any 
need to coordinate . 
[ 0029 ] Each DFRAS being owned and accessible by only 
its owner bucket that runs on a specific node allows each of 
the nodes of the VFS to control a portion of the storage 308 
without having to coordinate with any other nodes ( except 
during [ rejassignment of the buckets holding the DFRASS 
during initialization or after a node failure , for example , 
which may be performed asynchronously to actual reads / 
commits to storage 308 ) . Thus , in such an implementation , 
each node may read / commit to its buckets ' DFRASs inde 
pendently of what the other nodes are doing , with no 
requirement to reach any consensus when reading and 
committing to storage 308. Furthermore , in the event of a 
failure of a particular node , the fact the particular node owns 
a plurality of buckets permits more intelligent and efficient 
redistribution of its workload to other nodes ( rather the 
whole workload having to be assigned to a single node , 
which may create a “ hot spot ” ) . In this regard , in some 
implementations the number of buckets may be large rela 
tive to the number of nodes in the system such that any one 
bucket may be a relatively small load to place on another 
node . This permits fine grained redistribution of the load of 
a failed node according to the capabilities and capacity of the 
other nodes ( e.g. , nodes with more capabilities and capacity 
may be given a higher percentage of the failed nodes 
buckets ) . 
[ 0030 ] To permit such operation , metadata may be main 
tained that maps each bucket to its current owning node such 
that reads and commits to storage 308 can be redirected to 
the appropriate node . 
[ 0031 ] Load distribution is possible because the entire 
filesystem metadata space ( e.g. , directory , file attributes , 
content range in the file , etc. ) can be broken ( e.g. , chopped 
or sharded ) into small , uniform pieces ( e.g. , " shards ” ) . For 
example , a large system with 30 k servers could chop the 
metadata space into 128 k or 256 k shards . 
[ 0032 ] Each such metadata shard may be maintained in a 
“ bucket . ” Each VFS node may have responsibility over 
several buckets . When a bucket is serving metadata shards 
on a given backend , the bucket is considered “ active ” or the 
“ leader ” of that bucket . Typically , there are many more 

buckets than VFS nodes . For example , a small system with 
6 nodes could have 120 buckets , and a larger system with 
1,000 nodes could have 8 k buckets . 
[ 0033 ] Each bucket may be active on a small set of nodes , 
typically 5 nodes that that form a penta - group for that 
bucket . The cluster configuration keeps all participating 
nodes up - to - date regarding the penta - group assignment for 
each bucket . 
[ 0034 ] Each penta - group monitors itself . For example , if 
the cluster has 10 k servers , and each server has 6 buckets , 
each server will only need to talk with 30 different servers 
to maintain the status of its buckets ( 6 buckets will have 6 
penta - groups , so 6 * 5 = 30 ) . This is a much smaller number 
than if a centralized entity had to monitor all nodes and keep 
a cluster - wide state . The use of penta - groups allows perfor 
mance to scale with bigger clusters , as nodes do not perform 
more work when the cluster size increases . This could pose 
a disadvantage that in a “ dumb ” mode a small cluster could 
actually generate more communication than there are physi 
cal nodes , but this disadvantage is overcome by sending just 
a single heartbeat between two servers with all the buckets 
they share ( as the cluster grows this will change to just one 
bucket , but if you have a small 5 server cluster then it will 
just include all the buckets in all messages and each server 
will just talk with the other 4 ) . The penta - groups may decide 
( i.e. , reach consensus ) using an algorithm that resembles the 
Raft consensus algorithm . 
[ 0035 ] Each bucket may have a group of compute nodes 
that can run it . For example , five VFS nodes can run one 
bucket . However , only one of the nodes in the group is the 
controller / leader at any given moment . Further , no two 
buckets share the same group , for large enough clusters . If 
there are only 5 or 6 nodes in the cluster , most buckets may 
share backends . In a reasonably large cluster there many 
distinct node groups . For example , with 26 nodes , there are 
more than 

64,00 ( 51 2626-5 ) :) 26 ! 
15 ! * ( 26-5 ) ! 

possible five - node groups ( i.e. , penta - groups ) . 
[ 0036 ] All nodes in a group know and agree ( i.e. , reach 
consensus ) on which node is the actual active controller ( i.e. , 
leader ) of that bucket . A node accessing the bucket may 
remember ( “ cache " ) the last node that was the leader for that 
bucket out of the ( e.g. , five ) members of a group . If it 
accesses the bucket leader , the bucket leader performs the 
requested operation . If it accesses a node that is not the 
current leader , that node indicates the leader to " redirect ” the 
access . If there is a timeout accessing the cached leader 
node , the contacting node may try a different node of the 
same penta - group . All the nodes in the cluster share common 
" configuration " of the cluster , which allows the nodes to 
know which server may run each bucket . 
[ 0037 ] Each bucket may have a load / usage value that 
indicates how heavily the bucket is being used by applica 
tions running on the filesystem . For example , a server node 
with 11 lightly used buckets may receive another bucket of 
metadata to run before a server with 9 heavily used buckets , 
even though there will be an imbalance in the number of 
buckets used . Load value may be determined according to 
average response latencies , number of concurrently run 
operations , memory consumed or other metrics . 
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4 ! 
3 ! * ( 4 – 3 ) ! 

possible three - node groups . With five nodes , there are 

5 ! 
1003 ! * ( 5 – 3 ) ! 

possible three - node groups . With six nodes , there are 

20 ( 31-6-3 ) 6 ! 
3 ! * ( 6 - 3 ) ! 

1 

[ 0038 ] Redistribution may also occur even when a VFS 
node does not fail . If the system identifies that one node is 
busier than the others based on the tracked load metrics , the 
system can move ( i.e. , “ fail over ” ) one of its buckets to 
another server that is less busy . However , before actually 
relocating a bucket to a different host , load balancing may be 
achieved by diverting writes and reads . Since each write 
may end up on a different group of nodes , decided by the 
DFRAS , a node with a higher load may not be selected to be 
in a stripe to which data is being written . The system may 
also opt to not serve reads from a highly loaded node . For 
example , a “ degraded mode read ” may be performed , 
wherein a block in the highly loaded node is reconstructed 
from the other blocks of the same stripe . A degraded mode 
read is a read that is performed via the rest of the nodes in 
the same stripe , and the data is reconstructed via the failure 
protection . A degraded mode read may be performed when 
the read latency is too high , as the initiator of the read may 
assume that that node is down . If the load is high enough to 
create higher read latencies , the cluster may revert to reading 
that data from the other nodes and reconstructing the needed 
data using the degraded mode read . 
[ 0039 ] Each bucket manages its own distributed erasure 
coding instance ( i.e. , DFRAS 518 ) and does not need to 
cooperate with other buckets to perform read or write 
operations . There are potentially thousands of concurrent , 
distributed erasure coding instances working concurrently , 
each for the different bucket . This is an integral part of 
scaling performance , as it effectively allows any large file 
system to be divided into independent pieces that do not 
need to be coordinated , thus providing high performance 
regardless of the scale . 
[ 0040 ] Each bucket handles all the file systems operations 
that fall into its shard . For example , the directory structure , 
file attributes and file data ranges will fall into a particular 
bucket's jurisdiction . 
[ 0041 ] An operation done from any frontend starts by 
finding out what bucket owns that operation . Then the 
backend leader , and the node , for that bucket is determined . 
This determination may be performed by trying the last 
known leader . If the last - known leader is not the current 
leader , that node may know which node is the current leader . 
If the last - known leader is not part of the bucket’s penta 
group anymore , that backend will let the front end know that 
it should go back to the configuration to find a member of the 
bucket's penta - group . The distribution of operations allows 
complex operations to be handled by a plurality of servers , 
rather than by a single computer in a standard system . 
[ 0042 ] If the cluster of size is small ( e.g. , 5 ) and penta 
groups are used , there will be buckets that share the same 
group . As the cluster size grows , buckets are redistributed 
such that no two groups are identical . 
[ 0043 ] FIG . 4 illustrates an example of metadata bucket 
control in a load balanced distributed storage system after a 
VFS is added in accordance with an example implementa 
tion of this disclosure . With respect to FIGS . 4 , 5 , and 6 , 
three - member group is assumed for illustrative purposes . As 
discussed above , a group of VFS's may be any number . 
Because no two buckets in this example share the same 
group , the buckets can also be labeled according to their 
group . With four nodes , there are 

possible three - node groups . 
[ 0044 ] FIG . 4 illustrates five VFS backends 206 , -2065 . 
The first four VFS backends 206 -2064 are present initially . 
The last backend VFS backend 206 , is added later . Four 
unique groups ( A , B , C , and D ) are initially formed in a 
cluster of the first four VFS backends 206 , -2064 . 
[ 0045 ] VFS backend 206 , initially comprises a group A 
bucket , a group B bucket and a group C bucket . The VFS 
comprising VFS backend 206 , is the leader of group C and 
is the only VFS that can access the DFRAS associated with 
the metadata in bucket C. VFS backend 206 , initially com 
prises a group A bucket , a group B bucket and a group D 
bucket , and the VFS comprising VFS backend 2062 is the 
leader of group A and is the only VFS that can access the 
DFRAS associated with the metadata in bucket A. VFS 
backend 2063 initially comprises a group A bucket , a group 
C bucket and a group D bucket , and the VFS comprising 
VFS backend 2063 is the leader of group D and is the only 
VFS that can access the DFRAS associated with the meta 
data in bucket D. VFS backend 2064 initially comprises a 
group B bucket , a group C bucket and a group D bucket , and 
the VFS comprising VFS backend 2064 is the leader of 
group B and is the only VFS that can access the DFRAS 
associated with the metadata in bucket B. Also , if a backend 
is not a group leader , it can identify the group leader . 
[ 0046 ] Each time a new backend node joins the cluster , the 
groups for each bucket may be reconfigured , and the new 
groups ' configuration is communicated to all current nodes . 
The configuration change may be performed such that the 
leader node of each group does not change , and no leader 
changes may be allowed while that new node is being added . 
This ensures that the overhead of such operation does not 
limit the overall performance of the system and does not 
impact the scalability . 
[ 0047 ] After the new group's configuration is sent to all 
the nodes , it is deemed active , and that new node can now 
control some buckets as well . That new node will be part of 
one or more groups and may take responsibility for some of 
the buckets in order to make the cluster most load balanced . 
[ 0048 ] Several nodes may be added concurrently with one 
configuration re - calculation and communication . When all 
of the new nodes are added , workload may then re - spread 
across the new cluster's resources for all the buckets that are 
required for rebalancing . It may take a few load balancing 
iterations for the system to stabilize to an optimal state when 
multiple nodes are added . 

a 
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[ 0049 ] When the VFS backend 2065 joins the cluster , the 
groups for each bucket re - calculated , and the new group's 
configuration is communicated to all current nodes . As 
illustrated in FIG . 4 , for example , bucket A from VFS 
backend 2063 and bucket C from VFS backend 2064 may be 
moved into VFS backend 206 , as a result of this reconfigu 
ration . 

[ 0050 ] Each bucket may be split in half to double the 
number of buckets . By increasing the number of buckets , the 
system is able to scale to support a bigger cluster of nodes . 
Also , if a single bucket ends up very busy ( e.g. , hot spotted ) , 
the buckets can be split in half until the single busiest bucket 
becomes small enough for one CPU core . Even though the 
data is cryptographically hashed and uniformly sharded 
across the buckets , still there could be a case where the 
workload is able to " attack ” a single bucket with a lot of 
work . Being able to perform this splitting allows a relief for 
such cases . 

[ 0051 ] FIG . 5 illustrates an example of splitting metadata 
buckets in a load balanced distributed storage system in 
accordance with an example implementation of this disclo 
sure . FIG . 5 also illustrates an example where one backend 
is the leader for more than one bucket . For example , the 
second VFS backend 2062 is the leader for buckets A1 and 
C2 . And buckets B1 and D1 are in the " standby ” mode in 
VFS backend 2062 . 
[ 0052 ] The initial cluster of FIG . 4 , comprising four VFS 
backends 206 , -2064 and group A , B , C and D buckets is 
assumed to be the starting point of FIG . 5. FIG . 5 adds two 
new VFS backends 2065 and 206. Then , the group A , B , C 
and D buckets are each split , thereby forming group A1 , A2 , 
B1 , B2 , C1 , C2 , D1 and D2 buckets . The previous leaders of 
group A , B , C and D buckets are the leaders of group A1 , B1 , 
C1 and D1 buckets respectively . Group A2 , B2 , C2 and D2 
buckets will start off being led by the same backends to 
preserve continuous operation , but are going to be quickly 
redistributed according to load into the four original VFS 
backends 206 , -2064 and the two new VFS backends 2065 

fails . As illustrated in FIG . 6 , the buckets A1 , C1 , D1 and B2 
are redistributed to VFS backends 2064 , 2006 , 2065 , and 
206 , respectively . 
[ 0055 ] FIG . 7 is flowcharts illustrating an example method 
for metadata control in a load balanced distributed storage 
system . In block 702 , metadata shards are distributed into 
buckets , where each bucket is associated with a unique 
group of VFS backends having a known leader . The servers 
in each group decide among themselves which is best to run 
the buckets . There a lot of parallel small decisions , no 
central authority , as we try to have as little central decisions 
as we can . Once we let all nodes know what is the option to 
run ( the centralized configuration of what nodes are present 
and the groups ) , all decisions become local to their groups . 
As discussed above , the group leader is the only VFS 
backend with the ability to access the memory associated 
with a particular metadata shard . 
[ 0056 ] In block 704 , the bucket leaders monitor the load 
balance across the backends and determine whether chang 
ing group leadership and / or splitting buckets can improve 
the load balance . In block 706 , if a VFS backend fails , the 
buckets on that backend are redistributed . In block 708 , if 
one or more VF backends are added , the buckets from the 
previous VFS backends are redistributed into the new VFS 
backends without changing group leadership . 
[ 0057 ] Each backend compares its own load ( and its 
perceived load by the latency it provides to its peers ) to the 
other backends it shares buckets with . If a backend notices 
that its load is too high , it would look across its lead bucket 
and all its peers and optimize what bucket move would make 
most sense . Even if the cluster comprises a large number of 
servers , each such local improvement may involve a smaller 
number of servers . 
[ 0058 ] While the present method and / or system has been 
described with reference to certain implementations , it will 
be understood by those skilled in the art that various changes 
may be made and equivalents may be substituted without 
departing from the scope of the present method and / or 
system . In addition , many modifications may be made to 
adapt a particular situation or material to the teachings of the 
present disclosure without departing from its scope . There 
fore , it is intended that the present method and / or system not 
be limited to the particular implementations disclosed , but 
that the present method and / or system will include all 
implementations falling within the scope of the appended 
claims . 
[ 0059 ] As utilized herein the terms " circuits ” and “ cir 
cuitry ” refer to physical electronic components ( i.e. hard 
ware ) and any software and / or firmware ( “ code ” ) which may 
configure the hardware , be executed by the hardware , and or 
otherwise be associated with the hardware . As used herein , 
for example , a particular processor and memory may com 
prise first “ circuitry ” when executing a first one or more 
lines of code and may comprise second “ circuitry ” when 
executing a second one or more lines of code . As utilized 
herein , “ and / or ” means any one or more of the items in the 
list joined by “ and / or ” . As an example , “ x and / or y ” means 
any element of the three - element set { ( x ) , ( y ) , ( x , y ) } . In 
other words , " x and / or y ” means " one or both of x and y ” . 
As another example , " x , y , and / or z ” means any element of 
the seven - element set { f ( x ) , ( y ) , ( 2 ) , ( x , y ) , ( x , z ) , ( y , z ) , ( x , 
y , z ) } . In other words , “ x , y and / or z ” means “ one or more 
of x , y and z ” . As utilized herein , the term " exemplary ” 
means serving as a non - limiting example , instance , or illus 

and 2066 
[ 0053 ] If a server fails , that server's metadata shards ( for 
which the server is the bucket leader ) are moved to other 
servers based on their load . The redistribution can be deter 
mined according to how many buckets each node controls . 
For example , if each VFS node in a system controls 10 
active buckets of metadata and one of the servers fails , the 
workload of 10 other servers will increase by 10 % . The 
redistribution can also be determined according to actual 
load , similarly to a load balancing operation . The redistri 
bution of buckets from a failed server may first fill the 
servers with the lowest current load . Load can be calculated 
by amount of operations each bucket handles , or by the 
latency of that bucket as perceived by its peers . Observing 
load by effective latency to peers accounts for cases outside 
the control of the system , such as congested networking 
links , etc. By moving the active buckets of the failed servers 
to the least busy servers , the load variability across all 
servers may be reduced . The ability to reduce load variabil 
ity contributes to linear performance scalability . 
[ 0054 ] FIG . 6 illustrates an example of metadata control in 
a load - balanced distributed storage system after a VFS 
failure in accordance with an example implementation of 
this disclosure . Assume that VFS backends 2063 in FIG . 5 
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access 

tration . As utilized herein , the terms “ e.g. , ” and “ for 
example " set off lists of one or more non - limiting examples , 
instances , or illustrations . As utilized herein , circuitry is 
“ operable " to perform a function whenever the circuitry 
comprises the necessary hardware and code ( if any is 
necessary ) to perform the function , regardless of whether 
performance of the function is disabled or not enabled ( e.g. , 
by a user - configurable setting , factory trim , etc. ) . 
What is claimed is : 
1-10 . ( canceled ) 11. A method for controlling memory access , comprising : 
distributing metadata into a plurality of buckets , wherein 

each bucket is associated with a group of computing 
devices of a plurality of computing devices ; and 

allowing access to a particular address space only by a 
leader of the bucket to which metadata associated with 
that particular address space has been distributed . 

12. The method of claim 11 , wherein the plurality of 
computing devices comprises a plurality of virtual file 
system ( VFS ) nodes . 

13. The method of claim 11 , wherein each unique group 
of computing devices comprises five VFS nodes of a plu 
rality of VFS nodes . 

14. The method of claim 12 , wherein all VFS nodes in a 
group know and agree on a leader . 

15. The method of claim 11 , wherein each address space 
has only one leader at any given time . 

16. The method of claim 11 , wherein each of the com 
puting devices is a leader of multiple buckets . 

17. The method of claim 11 , wherein the method com 
prises , in the event of a failure of one of the plurality of 
computing devices , redistributing metadata that was on the 
failed computing devices . 

18. The method of claim 11 , wherein the method com 
prises , in the event of a change in the number of computing 
devices in the plurality of computing devices , redistributing 
metadata according to a load value associated with each 
computing device in the plurality of computing devices . 

19. The method of claim 11 , wherein the method com 
prises changing group leadership in the event of a load 
imbalance . 

20. The method of claim 11 , wherein the method com 
prises splitting and redistributing buckets of the plurality of 
buckets in the event of load imbalance . 

21. A system , the system comprising : 
a plurality of computing devices ; and 
a plurality of buckets configured to store metadata , 

wherein each bucket is associated with a group of 
computing devices of the plurality of computing 
devices , and wherein one computing device of each 
group of computing devices is a leader , and wherein 

a particular address space is allowed only by 
a leader of a group of computing devices associated 
with a bucket that stores metadata associated with the 
particular address space . 

22. The system of claim 21 , wherein the plurality of 
computing devices comprises a plurality of virtual file 
system ( VFS ) nodes . 

23. The system of claim 21 , wherein each unique group of 
computing devices comprises five VFS nodes of a plurality 
of VFS nodes . 

24. The system of claim 22 , wherein all VFS nodes in a 
group know and agree on a leader . 

25. The system of claim 21 , wherein each address space 
is associated with only one leader at any given time . 

26. The system of claim 21 , wherein each of the com 
puting devices is a leader of multiple buckets . 

27. The system of claim 21 , wherein in the event of a 
failure of one of the plurality of computing devices , meta 
data that was on the failed computing devices is redistrib 
uted . 

28. The system of claim 21 , wherein in the event of a 
change in the number of computing devices in the plurality 
of computing devices , metadata is redistributed according to 
a load value associated with each computing device in the 
plurality of computing devices . 

29. The system of claim 21 , wherein group leadership is 
changed in the event of a load imbalance . 

30. The system of claim 21 , wherein one or more buckets 
of the plurality of buckets are split and redistributed in the 
event of a load imbalance . 


