
US 20200159699A1

(19) United
(12) Patent

IN
States
Application Publication (10) Pub . No .: US 2020/0159699 A1

Ben Dayan et al . (43) Pub . Date : May 21 , 2020

(54) METADATA CONTROL IN A
LOAD - BALANCED DISTRIBUTED STORAGE
SYSTEM

(71) Applicant : Weka.IO LTD , Tel Aviv (IL)

GOOF 16/13 (2006.01)
G06F 11/20 (2006.01)

(52) U.S. CI .
CPC G06F 16/176 (2019.01) ; G06F 16/188

(2019.01) ; G06F 16/182 (2019.01) ; G06F
16/164 (2019.01) ; G06F 11/1076 (2013.01) ;

GO6F 16/13 (2019.01) ; GO6F 11/2094
(2013.01) ; GO6F 2201/82 (2013.01) ; GO6F

2201/805 (2013.01) ; G06F 16/122 (2019.01)

(72) Inventors : Maor Ben Dayan , Tel Aviv (IL) ; Omri
Palmon , Tel Aviv (IL) ; Liran Zvibel ,
Tel Aviv (IL)

(21) Appl . No .: 16 / 716,555
(57) ABSTRACT

(22) Filed : Dec. 17 , 2019

Related U.S. Application Data
(63) Continuation of application No. 157670,189 , filed on

Aug. 7 , 2017 , now Pat . No. 10,545,921 .

Publication Classification

A plurality of computing devices are communicatively
coupled to each other via a network , and each of the plurality
of computing devices is operably coupled to one or more of
a plurality of storage devices . A plurality of failure resilient
address spaces are distributed across the plurality of storage
devices such that each of the plurality of failure resilient
address spaces spans a plurality of the storage devices . The
plurality of computing devices maintains metadata that maps
each failure resilient address space to one of the plurality of
computing devices . The metadata is grouped into buckets .
Each bucket is stored in a group of computing devices .
However , only the leader of the group is able to directly
access a particular bucket at any given time .

(51) Int . Ci .
G06F 16/176
G06F 16/188
GO6F 16/182
G06F 16/16
GOOF 16/11

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

Local network 102

Compute node
1041

Compute node
104N

Dedicated
storage node

1061

Dedicated
storage node

106M

VFS node
1201

VFS node
120j

Remote network 118
storage service

1141
storage service

114K

Dedicated
storage node

1151

Dedicated
storage node

1151

Local network 102

Compute node 1041

Dedicated storage node 1061

Patent Application Publication

Compute node 104N

Dedicated storage node 106M

VES node 1201

VFS node 1204

May 21 , 2020 Sheet 1 of 7

Remote network 118

storage service

storage service 1141

114K

Dedicated storage node 1151

???
Dedicated storage node 1151

US 2020/0159699 A1

FIG . 1

Network adaptor 226

Host 201

Networking 210

Patent Application Publication

NVMe SSD 222

VES Backend 206

VFS memory controller 204

VES Frontend 202

Client Applications 212

Network adaptor 228

SSD Agent 214

User 222

makanan

May 21 , 2020 Sheet 2 of 7

Kernel 224

Network adaptor 230

TCP / IP Stack 220

VES Driver 208

U

NVMe SSD 224

Storage device 216

Network adaptor 218

US 2020/0159699 A1

FIG . 2

Network adaptor 232

Memory & Processing Resources 302

SSDs 308 Chunk 310

Metadata 304

Patent Application Publication

102

Block 312 Metadata 314

Data to be committed 306

Committed data 316

-

May 21 , 2020 Sheet 3 of 7

Distributed Failure Resilient Address Space 5181 Distributed Failure Resilient Address Space 5182

} }

Distributed Failure Resilient Address Space 518A

US 2020/0159699 A1

}

-

FIG . 3

Patent Application Publication

VFS Backend 2061

VFS Backend 2062

VFS Backend 2063

VES Backend 2064

VFS Backend 2065

Bucket A

Bucket A

Bucket A leader = 2

Rucket lender

Bucket B TELE

leader = 2

Bucket

Bucket B leader = 4

Bucket B leader = 4

Bucket C leader = 1

Bucket C leader = 1

lencies

Bucket C LOADER

Bucket D leader = 3

Bucket D TER

Bucket D leader 3

May 21 , 2020 Sheet 4 of 7

FIG . 4

US 2020/0159699 A1

VES Backend 2061

VFS Backend 2062

VFS Backend 2063

VFS Backend 2064

VFS Backend 2065

VFS Backend 2066

Patent Application Publication

Bucket A1

Bucket B1

Bucket A1 leader = 2

Bucket A1 leader = 2

Bucket A2 leader = 4

Bucket A2 leader = 4

Bucket B1 leader = 4

Bucket B1 leader 4

Bucket C1 leader = 1

Bucket C1 leader 1

Bucket C2 leader = 2

Bucket B2
le

Bucket D1

Bucket C1 AUDI

Bucket D1 leader = 3

Bucket D1 leader = 3

Bucket D2 Ipatter

Bucket C2 leader = 2

lead

May 21 , 2020 Sheet 5 of 7

Bucket D2 leader 3

Bucket C2 leader

Bucket B2 leader 6

Bucket A2 levet

Bucket B2 leader - 6

Bucket D2 leader - 5

FIG . 5

US 2020/0159699 A1

VFS Backend 2061

VES Backend 2062

VFS Backend 2063

VFS Backend 2064

VPS Backend 2065

VFS Backend 2066

Patent Application Publication

Bucket A1

Bucket B1

Bucket A1 leader 2

Bucket A1 leader 2

Bucket A2 leader 4

Bucket A2 leader = 4

Bucket B1 leader = 4

Bucket B1 leader = 4

Bucket C1 leader = 1

Bucket C1 leader = 1

Bucket C2 leader = 2

Bucket B2 PL

???

Bucket C1 aus

Bucket D1 leader = 3

Bucket D1 Dante

Bucket D1 leader - 3

Bucket D2 batter

Bucket C2 leader = 2

May 21 , 2020 Sheet 6 of 7

Bucket A2

Bucket D2 leader = 3

Bucket C2 TAGNE

Bucket B leader = 6

Bucket B2 leader = 5

Bucket D2 leader = 5

Bucket B2 leader = 6

Bucket A1 leader = 2

Bucket D1 lehet

Bucket C1 leader = 1

FIG . 6

US 2020/0159699 A1

with the ability to access the memory associated

Patent Application Publication May 21 , 2020 Sheet 7 of 7 US 2020/0159699 A1

Distribute metadata shards into buckets ,
where each bucket is associated with a unique 702
group of VFS backends having a known leader ,
the group leader being the only VFS backend

with the particular metadata shard

704 Monitor the load balance across all VSF
backends and determine whether changing
group leadership and / or splitting buckets can

improve the load balance

706
If a VFS backend fails , redistribute that VSF

backend's buckets

708 If one or more VFS backends are added ,
redistribute some of the buckets from the old
VSF backends into the new VSF backends

without changing group leadership

FIG . 7

US 2020/0159699 Al May 21 , 2020
1

METADATA CONTROL IN A
LOAD - BALANCED DISTRIBUTED STORAGE

SYSTEM

BACKGROUND

[0001] Limitations and disadvantages of conventional
approaches to data storage will become apparent to one of
skill in the art , through comparison of such approaches with
some aspects of the present method and system set forth in
the remainder of this disclosure with reference to the draw
ings .

INCORPORATION BY REFERENCE

[0002] U.S. patent application Ser . No. 15 / 243,519 titled
“ Distributed Erasure Coded Virtual File System ” is hereby
incorporated herein by reference in its entirety .

BRIEF SUMMARY

[0003] Methods and systems are provided for metadata
control in load balanced distributed storage system substan
tially as illustrated by and / or described in connection with at
least one of the figures , as set forth more completely in the
claims .

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG . 1 illustrates various example configurations of
a virtual file system in accordance with aspects of this
disclosure .
[0005] FIG . 2 illustrates an example configuration of a
virtual file system node in accordance with aspects of this
disclosure .
[0006] FIG . 3 illustrates another representation of a virtual
file system in accordance with an example implementation
of this disclosure .
[0007] FIG . 4 illustrates an example of metadata bucket
control in a load balanced distributed storage system after a
VFS is added in accordance with an example implementa
tion of this disclosure .
[0008] FIG . 5 illustrates an example of splitting metadata
buckets in a load balanced distributed storage system in
accordance with an example implementation of this disclo

servers in a traditional clustered system is limited to small
numbers , such systems are unable to scale .
[0012] The systems in this disclosure are applicable to
small clusters and can also scale to many , many thousands
of nodes . An example embodiment is discussed regarding
non - volatile memory (NVM) , for example , flash memory
that comes in the form of a solid - state drive (SSD) . The
NVM may be divided into 4 kB “ blocks ” and 128 MB
“ chunks . ” “ Extents ” may be stored in volatile memory , e.g. ,
RAM for fast access , backed up by NVM storage as well . An
extent may store pointers for blocks , e.g. , 256 pointers to 1
MB of data stored in blocks . In other embodiments , larger or
smaller memory divisions may also be used . Metadata
functionality in this disclosure may be effectively spread
across many servers . For example , in cases of " hot spots ”
where a large load is targeted at a specific portion of the
filesystem's namespace , this load can be distributed across
a plurality of nodes .
[0013] FIG . 1 illustrates various example configurations of
a virtual file system (VFS) in accordance with aspects of this
disclosure . Shown in FIG . 1 is a local area network (LAN)
102 comprising one or more VFS nodes 120 (indexed by
integers from 1 to J , for jæl) , and optionally comprising
(indicated by dashed lines) : one or more dedicated storage
nodes 106 (indexed by integers from 1 to M , for Mz1) , one
or more compute nodes 104 (indexed by integers from 1 to
N , for Nz1) , and / or an edge router that connects the LAN
102 to a remote network 118. The remote network 118
optionally comprises one or more storage services 114
(indexed by integers from 1 to K , for Kzl) , and / or one or
more dedicated storage nodes 115 (indexed by integers from
1 to L , for L21) .
[0014] Each VFS node 120 ; (an integer , where 1sjsJ) is
a networked computing device (e.g. , a server , personal
computer , or the like) that comprises circuitry for running
VFS processes and , optionally , client processes (either
directly on an operating system of the device 104 ,, and / or in
one or more virtual machines running in the device 104n) .
[0015] The compute nodes 104 are networked devices that
may run a VFS frontend without a VFS backend . A compute
node 104 may run VFS frontend by taking an SR - IOV into
the NIC and consuming a complete processor core . Alter
natively , the compute node 104 may run the VFS frontend by
routing the networking through a Linux kernel networking
stack and using kernel process scheduling , thus not having
the requirement of a full core . This is useful if a user does
not want to allocate a complete core for the VFS or if the
networking hardware is incompatible with the VFS require
ments .
[0016] FIG . 2 illustrates an example configuration of a
VFS node in accordance with aspects of this disclosure . A
VFS node comprises a VFS frontend 202 and driver 208 , a
VFS memory controller 204 , a VFS backend 206 , and a VFS
SSD agent 214. As used in this disclosure , a “ VFS process ”
is a process that implements one or more of : the VFS
frontend 202 , the VFS memory controller 204 , the VFS
backend 206 , and the VFS SSD agent 214. Thus , in an
example implementation , resources (e.g. , processing and
memory resources) of the VFS node may be shared among
client processes and VFS processes . The processes of the
VFS may be configured to demand relatively small amounts
of the resources to minimize the impact on the performance
of the client applications . The VFS frontend 202 , the VFS
memory controller 204 , and / or the VFS backend 206 and / or

sure .

[0009] FIG . 6 illustrates an example of metadata control in
a load - balanced distributed storage system after a VFS
failure in accordance with an example implementation of
this disclosure .
[0010] FIG . 7 is flowcharts illustrating an example method
for metadata control in a load balanced distributed storage
system .

DETAILED DESCRIPTION

[0011] Traditionally , filesystems use a centralized control
over the metadata structure (e.g. , directories , files , attributes ,
file contents) . If a local filesystem is accessible from a single
server and that server fails , the filesystem's data may be lost
if as there is no further protection . To add protection , some
filesystems (e.g. , as provided by NetApp) have used one or
more pairs of controllers in an active - passive manner to
replicate the metadata across two or more computers . Other
solutions have used multiple metadata servers in a clustered
way (e.g. , as provided by IBM GPFS , Dell EMC Isilon ,
Lustre , etc.) . However , because the number of metadata

US 2020/0159699 A1 May 21 , 2020
2

the VFS SSD agent 214 may run on a processor of the host
201 or on a processor of the network adaptor 218. For a
multi - core processor , different VFS process may run on
different cores , and may run a different subset of the ser
vices . From the perspective of the client process (es) 212 , the
interface with the virtual file system is independent of the
particular physical machine (s) on which the VFS process (es)
are running . Client processes only require driver 208 and
frontend 202 to be present in order to serve them .
[0017] The VFS node may be implemented as a single
tenant server (e.g. , bare - metal) running directly on an oper
ating system or as a virtual machine (VM) and / or container
(e.g. , a Linux container (LXC)) within a bare - metal server .
The VFS may run within an LXC container as a VM
environment . Thus , inside the VM , the only thing that may
run is the LXC container comprising the VFS . In a classic
bare - metal environment , there are user - space applications
and the VFS runs in an LXC container . If the server is
running other containerized applications , the VFS may run
inside an LXC container that is outside the management
scope of the container deployment environment (e.g.
Docker) .
[0018] The VFS node may be serviced by an operating
system and / or a virtual machine monitor (VMM) (e.g. , a
hypervisor) . The VMM may be used to create and run the
VFS node on a host 201. Multiple cores may reside inside
the single LXC container running the VFS , and the VFS may
run on a single host 201 using a single Linux kernel .
Therefore , a single host 201 may comprise multiple VFS
frontends 202 , multiple VFS memory controllers 204 , mul
tiple VFS backends 206 , and / or one or more VFS drivers
208. A VFS driver 208 may run in kernel space outside the
scope of the LXC container .
[0019] A single root input / output virtualization (SR - IOV)
PCIe virtual function may be used to run the networking
stack 210 in user space 222. SR - IOV allows the isolation of
PCI Express , such that a single physical PCI Express can be
shared on a virtual environment and different virtual func
tions may be offered to different virtual components on a
single physical server machine . The I / O stack 210 enables
the VFS node to bypasses the standard TCP / IP stack 220 and
communicate directly with the network adapter 218. A
Portable Operating System Interface for uniX (POSIX) VFS
functionality may be provided through lockless queues to
the VFS driver 208. SR - IOV or full PCIe physical function
address may also be used to run non - volatile memory
express (NVMe) driver 214 in user space 222 , thus bypass
ing the Linux IO stack completely . NVMe may be used to
access non - volatile storage media 216 attached via a PCI
Express (PCIe) bus . The non - volatile storage media 220 may
be , for example , flash memory that comes in the form of a
solid - state drive (SSD) or Storage Class Memory (SCM)
that may come in the form of an SSD or a memory module
(DIMM) . Other example may include storage class memory
technologies such as 3D - XPoint .
[0020] The SSD may be implemented as a networked
device by coupling the physical SSD 216 with the SSD agent
214 and networking 210. Alternatively , the SSD may be
implemented as a network - attached NVMe SSD 222 or 224
by using a network protocol such as NVMe - oF (NVMe over
Fabrics) . NVMe - oF may allow access to the NVMe device
using redundant network links , thereby providing a higher
level or resiliency . Network adapters 226 , 228 , 230 and 232
may comprise hardware acceleration for connection to the

NVMe SSD 222 and 224 to transform them into networked
NVMe - of devices without the use of a server . The NVMe
SSDs 222 and 224 may each comprise two physical ports ,
and all the data may be accessed through either of these
ports .
[0021] Each client process / application 212 may run
directly on an operating system or may run in a virtual
machine and / or container serviced by the operating system
and / or hypervisor . A client process 212 may read data from
storage and / or write data to storage in the course of per
forming its primary function . The primary function of a
client process 212 , however , is not storage - related (i.e. , the
process is only concerned that its data is reliably stored and
is retrievable when needed , and not concerned with where ,
when , or how the data is stored) . Example applications
which give rise to such processes include : email servers ,
web servers , office productivity applications , customer rela
tionship management (CRM) , animated video rendering ,
genomics calculation , chip design , software builds , and
enterprise resource planning (ERP) .
[0022] A client application 212 may make a system call to
the kernel 224 which communicates with the VFS driver
208. The VFS driver 208 puts a corresponding request on a
queue of the VFS frontend 202. If several VFS frontends
exist , the driver may load balance accesses to the different
frontends , making sure a single file / directory is always
accessed via the same frontend . This may be done by
“ sharding ” the frontend based on the ID of the file or
directory . The VFS frontend 202 provides an interface for
routing file system requests to an appropriate VFS backend
based on the bucket that is responsible for that operation .
The appropriate VFS backend may be on the same host or
it may be on another host .
[0023] The VFS backend 206 hosts several buckets , each
one of them services the file system requests that it receives
and carries out tasks to otherwise manage the virtual file
system (e.g. , load balancing , journaling , maintaining meta
data , caching , moving of data between tiers , removing stale
data , correcting corrupted data , etc.)
[0024] The VFS SSD agent 214 handles interactions with
a respective storage device 216. This may include , for
example , translating addresses , and generating the com
mands that are issued to the storage device (e.g. , on a SATA ,
SAS , PCIe , or other suitable bus) . Thus , the VFS SSD agent
214 operates as an intermediary between a storage device
216 and the VFS backend 206 of the virtual file system . The
SSD agent 214 could also communicate with a standard
network storage device supporting a standard protocol such
as NVMe - oF (NVMe over Fabrics) .
[0025] FIG . 3 illustrates another representation of a virtual
file system in accordance with an example implementation
of this disclosure . In FIG . 3 , the element 302 represents
memory resources (e.g. , DRAM and / or other short - term
memory) and processing (e.g. , x86 processor (s) , ARM pro
cessor (s) , NICS , ASICS , FPGAs , and / or the like) resources
of various node (s) (compute , storage , and / or VFS) on which
resides a virtual file system , such as described regarding
FIG . 2 above . The element 308 represents the one or more
physical storage devices 216 which provide the long term
storage of the virtual file system .
[0026] As shown in FIG . 3 , the physical storage is orga
nized into a plurality of distributed failure resilient address
spaces (DFRASs) 518. Each of which comprises a plurality
of chunks 310 , which in turn comprises a plurality of blocks

US 2020/0159699 A1 May 21 , 2020
3

312. The organization of blocks 312 into chunks 310 is only
a convenience in some implementations and may not be
done in all implementations . Each block 312 stores com
mitted data 316 (which may take on various states , discussed
below) and / or metadata 314 that describes or references
committed data 316 .
[0027] The organization of the storage 308 into a plurality
of DFRASs enables high performance parallel commits
from many — perhaps all of the nodes of the virtual file
system (e.g. , all nodes 104 , -104N , 106 , -106m , and 120 ,
120 , of FIG . 1 may perform concurrent commits in parallel) .
In an example implementation , each of the nodes of the
virtual file system may own a respective one or more of the
plurality of DFRAS and have exclusive read / commit access
to the DFRASs that it owns .
[0028] Each bucket owns a DFRAS , and thus does not
need to coordinate with any other node when writing to it .
Each bucket may build stripes across many different chunks
on many different SSDs , thus each bucket with its DFRAS
can choose what " chunk stripe ” to write to currently based
on many parameters , and there is no coordination required
in order to do so once the chunks are allocated to that bucket .
All buckets can effectively write to all SSDs without any
need to coordinate .
[0029] Each DFRAS being owned and accessible by only
its owner bucket that runs on a specific node allows each of
the nodes of the VFS to control a portion of the storage 308
without having to coordinate with any other nodes (except
during [rejassignment of the buckets holding the DFRASS
during initialization or after a node failure , for example ,
which may be performed asynchronously to actual reads /
commits to storage 308) . Thus , in such an implementation ,
each node may read / commit to its buckets ' DFRASs inde
pendently of what the other nodes are doing , with no
requirement to reach any consensus when reading and
committing to storage 308. Furthermore , in the event of a
failure of a particular node , the fact the particular node owns
a plurality of buckets permits more intelligent and efficient
redistribution of its workload to other nodes (rather the
whole workload having to be assigned to a single node ,
which may create a “ hot spot ”) . In this regard , in some
implementations the number of buckets may be large rela
tive to the number of nodes in the system such that any one
bucket may be a relatively small load to place on another
node . This permits fine grained redistribution of the load of
a failed node according to the capabilities and capacity of the
other nodes (e.g. , nodes with more capabilities and capacity
may be given a higher percentage of the failed nodes
buckets) .
[0030] To permit such operation , metadata may be main
tained that maps each bucket to its current owning node such
that reads and commits to storage 308 can be redirected to
the appropriate node .
[0031] Load distribution is possible because the entire
filesystem metadata space (e.g. , directory , file attributes ,
content range in the file , etc.) can be broken (e.g. , chopped
or sharded) into small , uniform pieces (e.g. , " shards ”) . For
example , a large system with 30 k servers could chop the
metadata space into 128 k or 256 k shards .
[0032] Each such metadata shard may be maintained in a
“ bucket . ” Each VFS node may have responsibility over
several buckets . When a bucket is serving metadata shards
on a given backend , the bucket is considered “ active ” or the
“ leader ” of that bucket . Typically , there are many more

buckets than VFS nodes . For example , a small system with
6 nodes could have 120 buckets , and a larger system with
1,000 nodes could have 8 k buckets .
[0033] Each bucket may be active on a small set of nodes ,
typically 5 nodes that that form a penta - group for that
bucket . The cluster configuration keeps all participating
nodes up - to - date regarding the penta - group assignment for
each bucket .
[0034] Each penta - group monitors itself . For example , if
the cluster has 10 k servers , and each server has 6 buckets ,
each server will only need to talk with 30 different servers
to maintain the status of its buckets (6 buckets will have 6
penta - groups , so 6 * 5 = 30) . This is a much smaller number
than if a centralized entity had to monitor all nodes and keep
a cluster - wide state . The use of penta - groups allows perfor
mance to scale with bigger clusters , as nodes do not perform
more work when the cluster size increases . This could pose
a disadvantage that in a “ dumb ” mode a small cluster could
actually generate more communication than there are physi
cal nodes , but this disadvantage is overcome by sending just
a single heartbeat between two servers with all the buckets
they share (as the cluster grows this will change to just one
bucket , but if you have a small 5 server cluster then it will
just include all the buckets in all messages and each server
will just talk with the other 4) . The penta - groups may decide
(i.e. , reach consensus) using an algorithm that resembles the
Raft consensus algorithm .
[0035] Each bucket may have a group of compute nodes
that can run it . For example , five VFS nodes can run one
bucket . However , only one of the nodes in the group is the
controller / leader at any given moment . Further , no two
buckets share the same group , for large enough clusters . If
there are only 5 or 6 nodes in the cluster , most buckets may
share backends . In a reasonably large cluster there many
distinct node groups . For example , with 26 nodes , there are
more than

64,00 (51 2626-5) :) 26 !
15 ! * (26-5) !

possible five - node groups (i.e. , penta - groups) .
[0036] All nodes in a group know and agree (i.e. , reach
consensus) on which node is the actual active controller (i.e. ,
leader) of that bucket . A node accessing the bucket may
remember (“ cache ") the last node that was the leader for that
bucket out of the (e.g. , five) members of a group . If it
accesses the bucket leader , the bucket leader performs the
requested operation . If it accesses a node that is not the
current leader , that node indicates the leader to " redirect ” the
access . If there is a timeout accessing the cached leader
node , the contacting node may try a different node of the
same penta - group . All the nodes in the cluster share common
" configuration " of the cluster , which allows the nodes to
know which server may run each bucket .
[0037] Each bucket may have a load / usage value that
indicates how heavily the bucket is being used by applica
tions running on the filesystem . For example , a server node
with 11 lightly used buckets may receive another bucket of
metadata to run before a server with 9 heavily used buckets ,
even though there will be an imbalance in the number of
buckets used . Load value may be determined according to
average response latencies , number of concurrently run
operations , memory consumed or other metrics .

US 2020/0159699 A1 May 21 , 2020
4

4 !
3 ! * (4 – 3) !

possible three - node groups . With five nodes , there are

5 !
1003 ! * (5 – 3) !

possible three - node groups . With six nodes , there are

20 (31-6-3) 6 !
3 ! * (6 - 3) !

1

[0038] Redistribution may also occur even when a VFS
node does not fail . If the system identifies that one node is
busier than the others based on the tracked load metrics , the
system can move (i.e. , “ fail over ”) one of its buckets to
another server that is less busy . However , before actually
relocating a bucket to a different host , load balancing may be
achieved by diverting writes and reads . Since each write
may end up on a different group of nodes , decided by the
DFRAS , a node with a higher load may not be selected to be
in a stripe to which data is being written . The system may
also opt to not serve reads from a highly loaded node . For
example , a “ degraded mode read ” may be performed ,
wherein a block in the highly loaded node is reconstructed
from the other blocks of the same stripe . A degraded mode
read is a read that is performed via the rest of the nodes in
the same stripe , and the data is reconstructed via the failure
protection . A degraded mode read may be performed when
the read latency is too high , as the initiator of the read may
assume that that node is down . If the load is high enough to
create higher read latencies , the cluster may revert to reading
that data from the other nodes and reconstructing the needed
data using the degraded mode read .
[0039] Each bucket manages its own distributed erasure
coding instance (i.e. , DFRAS 518) and does not need to
cooperate with other buckets to perform read or write
operations . There are potentially thousands of concurrent ,
distributed erasure coding instances working concurrently ,
each for the different bucket . This is an integral part of
scaling performance , as it effectively allows any large file
system to be divided into independent pieces that do not
need to be coordinated , thus providing high performance
regardless of the scale .
[0040] Each bucket handles all the file systems operations
that fall into its shard . For example , the directory structure ,
file attributes and file data ranges will fall into a particular
bucket's jurisdiction .
[0041] An operation done from any frontend starts by
finding out what bucket owns that operation . Then the
backend leader , and the node , for that bucket is determined .
This determination may be performed by trying the last
known leader . If the last - known leader is not the current
leader , that node may know which node is the current leader .
If the last - known leader is not part of the bucket’s penta
group anymore , that backend will let the front end know that
it should go back to the configuration to find a member of the
bucket's penta - group . The distribution of operations allows
complex operations to be handled by a plurality of servers ,
rather than by a single computer in a standard system .
[0042] If the cluster of size is small (e.g. , 5) and penta
groups are used , there will be buckets that share the same
group . As the cluster size grows , buckets are redistributed
such that no two groups are identical .
[0043] FIG . 4 illustrates an example of metadata bucket
control in a load balanced distributed storage system after a
VFS is added in accordance with an example implementa
tion of this disclosure . With respect to FIGS . 4 , 5 , and 6 ,
three - member group is assumed for illustrative purposes . As
discussed above , a group of VFS's may be any number .
Because no two buckets in this example share the same
group , the buckets can also be labeled according to their
group . With four nodes , there are

possible three - node groups .
[0044] FIG . 4 illustrates five VFS backends 206 , -2065 .
The first four VFS backends 206 -2064 are present initially .
The last backend VFS backend 206 , is added later . Four
unique groups (A , B , C , and D) are initially formed in a
cluster of the first four VFS backends 206 , -2064 .
[0045] VFS backend 206 , initially comprises a group A
bucket , a group B bucket and a group C bucket . The VFS
comprising VFS backend 206 , is the leader of group C and
is the only VFS that can access the DFRAS associated with
the metadata in bucket C. VFS backend 206 , initially com
prises a group A bucket , a group B bucket and a group D
bucket , and the VFS comprising VFS backend 2062 is the
leader of group A and is the only VFS that can access the
DFRAS associated with the metadata in bucket A. VFS
backend 2063 initially comprises a group A bucket , a group
C bucket and a group D bucket , and the VFS comprising
VFS backend 2063 is the leader of group D and is the only
VFS that can access the DFRAS associated with the meta
data in bucket D. VFS backend 2064 initially comprises a
group B bucket , a group C bucket and a group D bucket , and
the VFS comprising VFS backend 2064 is the leader of
group B and is the only VFS that can access the DFRAS
associated with the metadata in bucket B. Also , if a backend
is not a group leader , it can identify the group leader .
[0046] Each time a new backend node joins the cluster , the
groups for each bucket may be reconfigured , and the new
groups ' configuration is communicated to all current nodes .
The configuration change may be performed such that the
leader node of each group does not change , and no leader
changes may be allowed while that new node is being added .
This ensures that the overhead of such operation does not
limit the overall performance of the system and does not
impact the scalability .
[0047] After the new group's configuration is sent to all
the nodes , it is deemed active , and that new node can now
control some buckets as well . That new node will be part of
one or more groups and may take responsibility for some of
the buckets in order to make the cluster most load balanced .
[0048] Several nodes may be added concurrently with one
configuration re - calculation and communication . When all
of the new nodes are added , workload may then re - spread
across the new cluster's resources for all the buckets that are
required for rebalancing . It may take a few load balancing
iterations for the system to stabilize to an optimal state when
multiple nodes are added .

a

US 2020/0159699 A1 May 21 , 2020
5

[0049] When the VFS backend 2065 joins the cluster , the
groups for each bucket re - calculated , and the new group's
configuration is communicated to all current nodes . As
illustrated in FIG . 4 , for example , bucket A from VFS
backend 2063 and bucket C from VFS backend 2064 may be
moved into VFS backend 206 , as a result of this reconfigu
ration .

[0050] Each bucket may be split in half to double the
number of buckets . By increasing the number of buckets , the
system is able to scale to support a bigger cluster of nodes .
Also , if a single bucket ends up very busy (e.g. , hot spotted) ,
the buckets can be split in half until the single busiest bucket
becomes small enough for one CPU core . Even though the
data is cryptographically hashed and uniformly sharded
across the buckets , still there could be a case where the
workload is able to " attack ” a single bucket with a lot of
work . Being able to perform this splitting allows a relief for
such cases .

[0051] FIG . 5 illustrates an example of splitting metadata
buckets in a load balanced distributed storage system in
accordance with an example implementation of this disclo
sure . FIG . 5 also illustrates an example where one backend
is the leader for more than one bucket . For example , the
second VFS backend 2062 is the leader for buckets A1 and
C2 . And buckets B1 and D1 are in the " standby ” mode in
VFS backend 2062 .
[0052] The initial cluster of FIG . 4 , comprising four VFS
backends 206 , -2064 and group A , B , C and D buckets is
assumed to be the starting point of FIG . 5. FIG . 5 adds two
new VFS backends 2065 and 206. Then , the group A , B , C
and D buckets are each split , thereby forming group A1 , A2 ,
B1 , B2 , C1 , C2 , D1 and D2 buckets . The previous leaders of
group A , B , C and D buckets are the leaders of group A1 , B1 ,
C1 and D1 buckets respectively . Group A2 , B2 , C2 and D2
buckets will start off being led by the same backends to
preserve continuous operation , but are going to be quickly
redistributed according to load into the four original VFS
backends 206 , -2064 and the two new VFS backends 2065

fails . As illustrated in FIG . 6 , the buckets A1 , C1 , D1 and B2
are redistributed to VFS backends 2064 , 2006 , 2065 , and
206 , respectively .
[0055] FIG . 7 is flowcharts illustrating an example method
for metadata control in a load balanced distributed storage
system . In block 702 , metadata shards are distributed into
buckets , where each bucket is associated with a unique
group of VFS backends having a known leader . The servers
in each group decide among themselves which is best to run
the buckets . There a lot of parallel small decisions , no
central authority , as we try to have as little central decisions
as we can . Once we let all nodes know what is the option to
run (the centralized configuration of what nodes are present
and the groups) , all decisions become local to their groups .
As discussed above , the group leader is the only VFS
backend with the ability to access the memory associated
with a particular metadata shard .
[0056] In block 704 , the bucket leaders monitor the load
balance across the backends and determine whether chang
ing group leadership and / or splitting buckets can improve
the load balance . In block 706 , if a VFS backend fails , the
buckets on that backend are redistributed . In block 708 , if
one or more VF backends are added , the buckets from the
previous VFS backends are redistributed into the new VFS
backends without changing group leadership .
[0057] Each backend compares its own load (and its
perceived load by the latency it provides to its peers) to the
other backends it shares buckets with . If a backend notices
that its load is too high , it would look across its lead bucket
and all its peers and optimize what bucket move would make
most sense . Even if the cluster comprises a large number of
servers , each such local improvement may involve a smaller
number of servers .
[0058] While the present method and / or system has been
described with reference to certain implementations , it will
be understood by those skilled in the art that various changes
may be made and equivalents may be substituted without
departing from the scope of the present method and / or
system . In addition , many modifications may be made to
adapt a particular situation or material to the teachings of the
present disclosure without departing from its scope . There
fore , it is intended that the present method and / or system not
be limited to the particular implementations disclosed , but
that the present method and / or system will include all
implementations falling within the scope of the appended
claims .
[0059] As utilized herein the terms " circuits ” and “ cir
cuitry ” refer to physical electronic components (i.e. hard
ware) and any software and / or firmware (“ code ”) which may
configure the hardware , be executed by the hardware , and or
otherwise be associated with the hardware . As used herein ,
for example , a particular processor and memory may com
prise first “ circuitry ” when executing a first one or more
lines of code and may comprise second “ circuitry ” when
executing a second one or more lines of code . As utilized
herein , “ and / or ” means any one or more of the items in the
list joined by “ and / or ” . As an example , “ x and / or y ” means
any element of the three - element set { (x) , (y) , (x , y) } . In
other words , " x and / or y ” means " one or both of x and y ” .
As another example , " x , y , and / or z ” means any element of
the seven - element set { f (x) , (y) , (2) , (x , y) , (x , z) , (y , z) , (x ,
y , z) } . In other words , “ x , y and / or z ” means “ one or more
of x , y and z ” . As utilized herein , the term " exemplary ”
means serving as a non - limiting example , instance , or illus

and 2066
[0053] If a server fails , that server's metadata shards (for
which the server is the bucket leader) are moved to other
servers based on their load . The redistribution can be deter
mined according to how many buckets each node controls .
For example , if each VFS node in a system controls 10
active buckets of metadata and one of the servers fails , the
workload of 10 other servers will increase by 10 % . The
redistribution can also be determined according to actual
load , similarly to a load balancing operation . The redistri
bution of buckets from a failed server may first fill the
servers with the lowest current load . Load can be calculated
by amount of operations each bucket handles , or by the
latency of that bucket as perceived by its peers . Observing
load by effective latency to peers accounts for cases outside
the control of the system , such as congested networking
links , etc. By moving the active buckets of the failed servers
to the least busy servers , the load variability across all
servers may be reduced . The ability to reduce load variabil
ity contributes to linear performance scalability .
[0054] FIG . 6 illustrates an example of metadata control in
a load - balanced distributed storage system after a VFS
failure in accordance with an example implementation of
this disclosure . Assume that VFS backends 2063 in FIG . 5

US 2020/0159699 A1 May 21 , 2020
6

access

tration . As utilized herein , the terms “ e.g. , ” and “ for
example " set off lists of one or more non - limiting examples ,
instances , or illustrations . As utilized herein , circuitry is
“ operable " to perform a function whenever the circuitry
comprises the necessary hardware and code (if any is
necessary) to perform the function , regardless of whether
performance of the function is disabled or not enabled (e.g. ,
by a user - configurable setting , factory trim , etc.) .
What is claimed is :
1-10 . (canceled) 11. A method for controlling memory access , comprising :
distributing metadata into a plurality of buckets , wherein

each bucket is associated with a group of computing
devices of a plurality of computing devices ; and

allowing access to a particular address space only by a
leader of the bucket to which metadata associated with
that particular address space has been distributed .

12. The method of claim 11 , wherein the plurality of
computing devices comprises a plurality of virtual file
system (VFS) nodes .

13. The method of claim 11 , wherein each unique group
of computing devices comprises five VFS nodes of a plu
rality of VFS nodes .

14. The method of claim 12 , wherein all VFS nodes in a
group know and agree on a leader .

15. The method of claim 11 , wherein each address space
has only one leader at any given time .

16. The method of claim 11 , wherein each of the com
puting devices is a leader of multiple buckets .

17. The method of claim 11 , wherein the method com
prises , in the event of a failure of one of the plurality of
computing devices , redistributing metadata that was on the
failed computing devices .

18. The method of claim 11 , wherein the method com
prises , in the event of a change in the number of computing
devices in the plurality of computing devices , redistributing
metadata according to a load value associated with each
computing device in the plurality of computing devices .

19. The method of claim 11 , wherein the method com
prises changing group leadership in the event of a load
imbalance .

20. The method of claim 11 , wherein the method com
prises splitting and redistributing buckets of the plurality of
buckets in the event of load imbalance .

21. A system , the system comprising :
a plurality of computing devices ; and
a plurality of buckets configured to store metadata ,

wherein each bucket is associated with a group of
computing devices of the plurality of computing
devices , and wherein one computing device of each
group of computing devices is a leader , and wherein

a particular address space is allowed only by
a leader of a group of computing devices associated
with a bucket that stores metadata associated with the
particular address space .

22. The system of claim 21 , wherein the plurality of
computing devices comprises a plurality of virtual file
system (VFS) nodes .

23. The system of claim 21 , wherein each unique group of
computing devices comprises five VFS nodes of a plurality
of VFS nodes .

24. The system of claim 22 , wherein all VFS nodes in a
group know and agree on a leader .

25. The system of claim 21 , wherein each address space
is associated with only one leader at any given time .

26. The system of claim 21 , wherein each of the com
puting devices is a leader of multiple buckets .

27. The system of claim 21 , wherein in the event of a
failure of one of the plurality of computing devices , meta
data that was on the failed computing devices is redistrib
uted .

28. The system of claim 21 , wherein in the event of a
change in the number of computing devices in the plurality
of computing devices , metadata is redistributed according to
a load value associated with each computing device in the
plurality of computing devices .

29. The system of claim 21 , wherein group leadership is
changed in the event of a load imbalance .

30. The system of claim 21 , wherein one or more buckets
of the plurality of buckets are split and redistributed in the
event of a load imbalance .

