
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0258797 A1

Gorman et al.

US 20140258797A1

(43) Pub. Date: Sep. 11, 2014

(54)

(71)

(72)

(73)

(21)

(22)

BUILT-IN-SELF-TEST (BIST) TEST TIME
REDUCTION

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventors: Kevin W. Gorman, Fairfax, VT (US);
Deepak I. Hanagandi, Karnataka (IN);
Krishnendu Mondal, Bangalore (IN);
Michael R. Ouellette, Westford, VT
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Appl. No.: 13/786,572

Filed: Mar. 6, 2013

Latch 12A

First Compression Stage 14A

Second Compression Stage 16A

Publication Classification

(51) Int. Cl.
GITC 29/40 (2006.01)

(52) U.S. Cl.
CPC GI IC 29/40 (2013.01)
USPC .. 714/719

(57) ABSTRACT
Aspects of the invention provide for reducing BIST test time
for a memory of an IC chip. In one embodiment, a BIST
architecture for reducing BIST test time of a memory for an
integrated circuit (IC) chip, the architecture comprising: a
pair of latches for receiving bursts of data from a memory; a
first compression stage for receiving a burst of data and com
pressing the burst of data into a plurality of latches; a second
compression stage for comparing the compressed bursts of
data with expected data; and a logic gate for determining
whether there is a fail in the burst of data.

Latch 12B

First Compression Stage 14B

Second Compression Stage 16B

Fail Latch

20

Fail output 22

US 2014/0258797 A1 Sep. 11, 2014 Sheet 1 of 6 Patent Application Publication

ZZ

US 2014/0258797 A1 Sep. 11, 2014 Sheet 2 of 6 Patent Application Publication

aa

§§§§§§xxxxxxxxxxxxxxxxxxxxxxx, XXXXX

a.

e

§§§§ *****

% 2.

$$$$$$$$$$$$$$$$$$
&a

§§

§§ §§§***************** :?
ssssssssssssssss? *******

§********************
p
%

a.

&

--

US 2014/0258797 A1 Sep. 11, 2014 Sheet 3 of 6 Patent Application Publication

HOLÝT

US 2014/0258797 A1 Sep. 11, 2014 Sheet 4 of 6

?pou „CIVEHTI SVH,

Patent Application Publication

US 2014/0258797 A1 Sep. 11, 2014 Sheet 5 of 6 Patent Application Publication

| SI? ?Sned

?pou „CIVEHTI SVH,

Patent Application Publication Sep. 11, 2014 Sheet 6 of 6 US 2014/0258797 A1

O
N f
O O

O

O
OO
O

O
O
o

s

US 2014/0258797 A1

BUILT-IN-SELF-TEST (BIST) TEST TIME
REDUCTION

FIELD OF THE INVENTION

0001. The subject matter disclosed herein relates gener
ally to integrated circuits. More specifically, the disclosure
provided herein relates to a method and architecture for
reducing the test time of a built-in-self-test (BIST) for a
memory of an integrated circuit (IC) chip.

BACKGROUND OF THE INVENTION

0002 Modern day digital signal processors, microproces
sors, and network chips process lots of information and store
the processed data into memory. Memory typically occupies
almost half of the chip area. With decreasing technology
nodes, more and more memory cells are closely packed
together, thereby increasing the frequency and number of
memory faults being detected. Each new technology gives
rise to new fault models which require new sets of patterns to
test the different kinds of faults in the memories. These new
sets of patterns which may be added on top of legacy patterns
from older technologies, require more test time, thereby
increasing the test cost and the cost of the chip.
0003. A conventional BIST architecture tests the memory
at-speed by sending out a “burst' of instructions at a time. The
burst may include, for example, four (4) instructions. The
number of instructions is chosen to minimize the area and
physical design turnaround time. The BIST engine operates
using a slow clock, and generates the burst of instructions and
then sends the burst of instructions to the memory interface
block. The memory interface block then applies the burst of
instructions to the memory using a high speed (or fast) clock.
While the current instructions are being executed by the
memory and the result of any read operation is being com
pared with the expected data in the memory interface logic,
the BIST engine generates the next set of instructions for the
next burst.
0004 While performing a write sweep on the full address
space of the memory, the BIST writes to a different address
location for each instruction of every burst operation. For
example, the BIST may write to 4 different address locations
in 4 instructions of every burst. But during reading of the
memory, data from only 1 out of every 4 of the set of instruc
tions in each burst is read and compared with the expect data.
This is because it is desirable to compare the read data in the
low speed domain, not the high speed domain.
0005 One reason a high speed comparison is undesirable

is because a high speed comparison becomes prohibitive from
an area perspective (e.g., the comparator circuitry gets bigger,
the logic for assigning redundant elements to make repairs
gets more complicated/larger, and at-speed diagnostics
requires a cycle counter and two pass testing to stop on the
correct cycle). However, to perform the comparison at a low
speed, the test circuitry would need to capture the data in the
high speed domain and hold it until the burst completes. It
would be preferable to capture data from multiple cycles, but
this would normally mean multiple capture registers, which is
again prohibitive from an area perspective. This leads to the
current architectural limitation of only capture data from one
read instruction per burst being available.

BRIEF DESCRIPTION OF THE INVENTION

0006 Aspects of the invention provide for reducing BIST
test time for a memory of an IC chip. In one embodiment, a

Sep. 11, 2014

BIST architecture for reducing BIST test time of a memory
for an integrated circuit (IC) chip, the architecture compris
ing: a pair of latches for receiving bursts of data from a
memory; a first compression stage for receiving a burst of data
and compressing the burst of data into a plurality of latches; a
second compression stage for comparing the compressed
bursts of data with expected data; and a logic gate for deter
mining whether there is a fail in the burst of data.
0007. A first aspect of the invention provides a built-in
self-test (BIST) architecture for reducing BIST test time of a
memory for an integrated circuit (IC) chip, the architecture
comprising: a pair of latches for receiving bursts of data from
a memory; a first compression stage for receiving a burst of
data and compressing the burst of data into a plurality of
latches; a second compression stage for comparing the com
pressed bursts of data with expected data; and a logic gate for
determining whether there is a fail in the burst of data.
0008. A second aspect of the invention provides a method
of reducing test time for a built-in-self-test (BIST) architec
ture, the method comprising: performing a fast read of the
BIST, wherein the performing includes: receiving a burst of
data from memory at a pair of latches; compressing the burst
of data in a first compression stage; and comparing the com
pressed burst of data with expected data; determining whether
there is fail in the burst of data; and in response to a fail in the
burst of data, performing a slow read of the BIST for the failed
burst of data.
0009. A third aspect of the invention provides a design
structure tangibly embodied in a machine readable medium
for designing, manufacturing, or testing a memory of an
integrated circuit by performing a built-in-self-test (BIST),
the design structure comprising: a pair of latches for receiving
bursts of data from a memory; a first compression stage for
receiving a burst of data and compressing the burst of data
into a plurality of latches; a second compression stage for
comparing the compressed bursts of data with expected data;
and a logic gate for determining whether there is a fail in the
burst of data.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. These and other features of this invention will be
more readily understood from the following detailed descrip
tion of the various aspects of the invention taken in conjunc
tion with the accompanying drawings that depict various
embodiments of the invention, in which:
0011 FIG. 1 shows a block diagram of a BIST architecture
according to embodiments of the invention.
0012 FIG. 2 shows a block diagram of the first compres
sion stage according to embodiments of the invention.
0013 FIG. 3 shows a block diagram of the second com
pression stage according to embodiments of the invention.
0014 FIG. 4 shows a flow diagram of a method according
to embodiments of the invention.
0015 FIG. 5 shows a flow diagram of a method according
to embodiments of the invention.
0016 FIG. 6 shows a flow diagram according to embodi
ments of the invention.
0017. It is noted that the drawings of the invention are not
to scale. The drawings are intended to depict only typical
aspects of the invention, and therefore should not be consid
ered as limiting the scope of the invention. In the drawings,
like numbering represents like elements between the draw
1ngS.

US 2014/0258797 A1

DETAILED DESCRIPTION OF THE INVENTION

0018. The subject matter disclosed herein relates gener
ally to integrated circuits. More specifically, the disclosure
provided herein relates to a method and architecture for
reducing the test time of a built-in-self-test (BIST) for a
memory of an integrated circuit (IC) chip.
0019 Modern day digital signal processors, microproces
sors, and network chips process lots of information and store
the processed data into memory. Memory typically occupies
almost half of the chip area. With decreasing technology
nodes, more and more memory cells are closely packed
together, thereby increasing the frequency and number of
memory faults being detected. Each new technology gives
rise to new fault models which require new sets of patterns to
test the different kinds of faults in the memories. New patterns
on top of legacy patterns from older technologies require
more test time, thereby increasing the test cost and the cost of
the chip.
0020. A conventional BIST architecture tests the memory
at-speed by sending out a burst of instructions at a time. The
burst may include, for example, four (4) instructions. The
number of instructions is chosen to minimize the area and
physical design turnaround time. The BIST engine operates
using a slow clock, and generates the burst of instructions and
then sends the burst of instructions to the memory interface
block. The memory interface block then applies the burst of
instructions to the memory using a high speed (or fast) clock.
While the current instructions are being executed by the
memory and the result of any read operation is being com
pared with the expected data in the memory interface logic,
the BIST engine generates the next set of instructions for the
next burst.
0021 While performing a write sweep on the full address
space of the memory, the BIST writes to a different address
location for each instruction of every burst operation. For
example, the BIST may write to 4 different address locations
in 4 instructions of every burst. But during reading of the
memory, read data from only 1 out of every 4 of the set of
instructions in each burst is captured, to be later compared
with the expect data. This is because it is desirable to compare
the read data in between bursts, in the low speed domain, not
the high speed domain.
0022. One reason a high speed comparison is undesirable

is because a high speed comparison becomes prohibitive from
an area perspective (e.g., the comparator circuitry gets bigger,
the logic for assigning redundant elements to make repairs
gets more complicated/larger, and at-speed diagnostics
requires a cycle counter and two pass testing to stop on the
correct cycle). However, to perform the comparison at a low
speed, the test circuitry would need to capture the data in the
high speed domain and hold it until the burst completes. It
would be preferable to capture data from multiple cycles, but
this would normally mean multiple capture registers, which is
again prohibitive from an area perspective. This leads to the
current architectural limitation of only capture data from one
read-capture instruction per burst.
0023 Aspects of the invention provide for reducing BIST

test time for a memory of an IC chip. In one embodiment, a
BIST architecture for reducing BIST test time of a memory
for an integrated circuit (IC) chip, the architecture compris
ing: a pair of latches for receiving bursts of data from a
memory; a first compression stage for receiving a burst of data
and compressing the burst of data into a plurality of latches; a
second compression stage for comparing the compressed

Sep. 11, 2014

bursts of data with expected data; and a logic gate for deter
mining whether there is a fail in the burst of data.
0024 Turning now to FIG. 1, a block diagram of a BIST
architecture 1 for reducing BIST test time of a memory 10 for
an IC chip according to embodiments of the invention is
shown. The BIST architecture 1 includes a pair of latches
12A, and 12B for receiving bursts of data from memory 10.
The bursts of data are compressed using a set of first com
pression stages 14A and 14B and a set of second compression
stages 16A and 16B.
0025. The first compression stages 14A and 14B, receive
the burst of data from latches 12A and 12B. In the embodi
ment shown in FIG. 2, for each 16 bits of data, there is an
“AND” gate 15A and an “OR” gate 17A. There may be, for
example, 72 bits of data all together, so there would be a total
of four (4) 16-bit AND gates 15A and four (4) 16-bit OR gates
17A, and then an 8-bit AND gate 15N and an 8-bit OR gate
17N. Each group, e.g., 16-bits, of data is compressed into a
single signal and held by a corresponding latch 21, and/or 23.
For example, the output of AND gate 15A is held by AND
latch 21, while the output of OR gate 17A is held by OR latch
23. Although FIG. 2 is only shown in reference to first com
pression stage 14A, it is understood that first compression
stage 14B may be identical to first compression stage 14A.
0026 Turning now to FIG. 3, a block diagram of the sec
ond compression stage 16A according to embodiments of the
invention is shown. The second compression stage 16A com
pares the compressed bursts of data from latches 21 and 23
with expected data 33. The comparison is performed via a
plurality of multiplexors 37. The expected data 33 is used as
the selection signal for each of the multiplexors 37.
0027. In operation, if the data from memory 10 is a logic
high “1”, the output of AND latch 21 should be a logic high
“1” as well. However, if there is a fail, the output of AND latch
21 will be a logic low “0” Alternatively, if the data from
memory 10 is a logic low “0”, the output of OR latch 23
should be a logic low “0” as well. However, if there is a fail,
the output of OR latch 23 will be a logic high “1.”
0028. As mentioned above, the expected data 33 is used as
the selection signal for each of the multiplexors 37. There
fore, if the expected data 33 is a logic high “1,” the output of
AND latch 21 will be passed by multiplexor 37. Conversely,
if the expected data 33 is a logic low “0” the inverted output
of OR latch 23, (e.g., inverted by inverter 35), will be passed
by multiplexor 37. Under a normal BIST operation, multi
plexor 37 should always pass a logic high “1” for either case,
since the output of OR latch 23 is inverted. Therefore, if
multiplexor 37 ever passes a logic low “0” there is a fail.
(0029. For each pair of AND and OR latches 21 and 23,
there is a multiplexor 37. The outputs of the multiplexors 37
are ANDed using AND gate 39. If there is a normal BIST
operation, and no fail, the output of AND gate 39 is a logic
high “1.” However, if there is a fail in the burst of data, the
output of AND gate 39 is a logic low “0”
0030 The BIST architecture 1 also includes a logic gate 18
(e.g., an AND gate) for determining whether there is a fail in
the burst of data. If the output of an AND gate 39 of either
second compression stage 16A or 16B is a logic low “0”, a fail
latch 20 will hold that value, and feed it back to the AND gate
39. Therefore, for all instructions (e.g., the four instructions)
in the burst, even if there is only a fail in the first instruction,
the fail latch 20 will continue to hold the logic low “0” value
as the fail output 22.

US 2014/0258797 A1

0031 Turning now to FIG. 4, and with continuing refer
ence to FIGS. 1-3, a flow diagram of a method according to
embodiments of the invention is shown. In 51, the BIST
architecture 1 is run in a fast mode. That is, during operation
of a BIST read sweep (BIST patterns that perform four reads
of four different addresses during each burst in order to read
all addresses in the memory), a BIST engine (not shown) will
generate a different address for each instruction in the burst
during the read sweep BIST pattern. The read data from all
instructions of the burst are compressed into a signature
string. The burst of data is compressed using first compres
sion stage 14A, as shown in FIG. 2. The signature string is
then compared with the expected signature string (i.e.,
expected data 33) to determine whether there is a fail in the
burst (S2). In this way, the fail is determined for the entire
burst of data and there is no determination on which read
instruction within the burst actually failed. If there are no fails
in the burst, and if the BIST is done (yes at S3), then the test
is finished. If there are no fails in the burst, but if the BIST is
not complete (no at S3), then test will resume in fast mode for
the next burst of instructions.

0032. As mentioned above, if there is a fail (yes at S2), the
fail is for the entire burst of data, without any knowledge of
which instruction within the burst actually failed. At S4, the
BIST is paused and the BIST resumes for only a read and
compare of one of the four instructions of the failed burst of
data, by setting a burst address of the BIST to a previous burst
address. The failing burst is then run four times, where during
each time, one of the read instructions is set to be captured and
then compared to the expect data. Alternatively stated, during
a slow read of the failed burst, each instruction is read, cap
tured and compared individually to expect data, to determine
which instruction within the burst of instructions actually
failed. Once the entire set of the instructions for the failing
burst in a slow mode BIST is complete (yes at S6), the BIST
is resumed in fast read mode, starting at the next burst fol
lowing the failing burst. This will help to significantly reduce
the test time, since the vast majority of bursts do not contain
fails, and hence the majority of bursts will all be run in fast
read mode only.
0033. The method shown in FIG. 4 works efficiently to
reduce BIST test time for simple read-only BIST patterns. For
example, the method in FIG. 4 works well with patterns that
include instructions within a burst that only performs read
operations, usually from different addresses. However, if a
burst of instructions includes a pattern that reads and writes to
a single address, multiple times, then reverting to a previous
burst address and simply re-running the burst in slow-mode
four separate times, as described, may not effectively deter
mine which instruction in the burst of data has failed. For
example, a burst of instructions may contain four separate
instructions that perform, respectively, a read of “initial data'
from address “X” followed by a write of “inverse data” to
address “X” followed by a read of “inverse data from
address “X” and lastly followed by a write of “inverse data'
to address “X” In this case, address 'X' ends with a data state
(inverse data) that is opposite of the starting data state (initial
data). As such, simply re-running the burst (e.g., in the event
the burst fails) in slow read and compare mode is not practi
cable, since the content of address “X” is now “inverse data'
and is no longer in the desired starting state of “initial data.”
AS Such, it may not be possible to simply re-perform the burst,
since the content of address “X” is not in the correct start state.

Sep. 11, 2014

0034 Turning now to FIG. 5, and with continuing refer
ence to FIGS. 1-3, a method according to embodiments of the
invention is shown. This method is similar to the method
shown in FIG.4, in that, at S10, the BIST architecture 1 is run
in a fast mode. That is, during operation, a BIST engine (not
shown) will generate the same address for each instruction in
the burst of instructions during a read/write/read/write sweep.
The read data from all read instructions of the burst of instruc
tions are compressed into a signature string. The burst of data
is compressed using first compression stage 14A, as shown in
FIG. 2. The signature string is then compared with the
expected signature string (i.e., expected data 33) to determine
whether there is a fail in the burst (S.11). In this way, the fail
is determined for the entire burst of instructions and there is
no determination on which read instruction within the burst
actually failed. If there is not a no fail in the burst, if the BIST
is done (yes at S12), then the test is finished. If there is no fail
in the burst, but the BIST is not complete (no at S12), then test
will resume in fast mode for the next burst of instructions.

0035. However, in the method shown in FIG.5, when there
is a fail (yes at S11), the BIST is paused, and the BIST engine
will back up to the start of the current BIST pattern sweep or
pattern sub-set to the beginning (S13). Then, the BIST engine
will run the failing BIST pattern sweep (e.g., the entire failing
BIST pattern sweep) in slow read mode (S14). Once the
failing BIST pattern sweep is complete (yes at S15), the fast
read mode BIST will resume for subsequent BIST pattern
Sweeps.

0036) The compression of the read data, within the burst of
instructions, using set of first compression stages 14A and
14B, into a single string, allows for the entire burst of instruc
tions for every burst within a pattern sweep, to be analyzed in
a fast read mode. That way, only those failed BIST pattern
sweeps are tested in slow read mode by the BIST engine. In
most cases, where memories do not fail within the BIST
pattern sweep, this will help to reduce the BIST test time.
0037 FIG. 6 shows a block diagram of an exemplary
design flow 900 used for example, in semiconductor IC logic
design, simulation, test, layout, and manufacture. Design
flow 900 includes processes, machines and/or mechanisms
for processing design structures or devices to generate logi
cally or otherwise functionally equivalent representations of
the design structures and/or devices described above and
shown in FIG. 1. The design structures processed and/or
generated by design flow 900 may be encoded on machine
readable transmission or storage media to include data and/or
instructions that when executed or otherwise processed on a
data processing system generate a logically, structurally,
mechanically, or otherwise functionally equivalent represen
tation of hardware components, circuits, devices, or systems.
Machines include, but are not limited to, any machine used in
an IC design process. Such as designing, manufacturing, or
simulating a circuit, component, device, or system. For
example, machines may include: lithography machines,
machines and/or equipment for generating masks (e.g.
e-beam writers), computers or equipment for simulating
design structures, any apparatus used in the manufacturing or
test process, or any machines for programming functionally
equivalent representations of the design structures into any
medium (e.g. a machine for programming a programmable
gate array).
0038. Design flow 900 may vary depending on the type of
representation being designed. For example, a design flow
900 for building an application specific IC (ASIC) may differ

US 2014/0258797 A1

from a design flow 900 for designing a standard component or
from a design flow 900 for instantiating the design into a
programmable array, for example a programmable gate array
(PGA) or a field programmable gate array (FPGA) offered by
Altera R, Inc. or XilinxOR Inc.

0039 FIG. 6 illustrates multiple such design structures
including an input design structure 920 that is preferably
processed by a design process 910. Design structure 920 may
be a logical simulation design structure generated and pro
cessed by design process 910 to produce a logically equiva
lent functional representation of a hardware device. Design
structure 920 may also or alternatively comprise data and/or
program instructions that when processed by design process
910, generate a functional representation of the physical
structure of a hardware device. Whether representing func
tional and/or structural design features, design structure 920
may be generated using electronic computer-aided design
(ECAD) such as implemented by a core developer/designer.
When encoded on a machine-readable data transmission, gate
array, or storage medium, design structure 920 may be
accessed and processed by one or more hardware and/or
software modules within design process 910 to simulate or
otherwise functionally represent an electronic component,
circuit, electronic or logic module, apparatus, device, or sys
tem. Such as those shown in FIG.1. As such, design structure
920 may comprise files or other data structures including
human and/or machine-readable source code, compiled
structures, and computer-executable code structures that
when processed by a design or simulation data processing
system, functionally simulate or otherwise represent circuits
or other levels of hardware logic design. Such data structures
may include hardware-description language (HDL) design
entities or other data structures conforming to and/or compat
ible with lower-level HDL design languages such as Verilog
and VHDL, and/or higher level design languages such as C or
C++.

0040. Design process 910 preferably employs and incor
porates hardware and/or Software modules for synthesizing,
translating, or otherwise processing a design/simulation
functional equivalent of the components, circuits, devices, or
logic structures shown in FIG. 1 to generate a netlist 980
which may contain design structures such as design structure
920. Netlist 980 may comprise, for example, compiled or
otherwise processed data structures representing a list of
wires, discrete components, logic gates, control circuits, I/O
devices, models, etc. that describes the connections to other
elements and circuits in an integrated circuit design. Netlist
98.0 may be synthesized using an iterative process in which
netlist 980 is resynthesized one or more times depending on
design specifications and parameters for the device. As with
other design structure types described herein, netlist980 may
be recorded on a machine-readable data storage medium or
programmed into a programmable gate array. The medium
may be a non-volatile storage medium such as a magnetic or
optical disk drive, a programmable gate array, a compact
flash, or other flash memory. Additionally, or in the alterna
tive, the medium may be a system or cache memory, buffer
space, or electrically or optically conductive devices and
materials on which data packets may be transmitted and inter
mediately stored via the Internet, or other networking suitable
CaS.

0041. Design process 910 may include hardware and soft
ware modules for processing a variety of input data structure
types including netlist 980. Such data structure types may

Sep. 11, 2014

reside, for example, within library elements 930 and include
a set of commonly used elements, circuits, and devices,
including models, layouts, and symbolic representations, for
a given manufacturing technology (e.g., different technology
nodes, 32 nm, 45 nm, 90 nm, etc.). The data structure types
may further include design specifications 940, characteriza
tion data 950, verification data 960, design rules 970, and test
data files 985 which may include input test patterns, output
test results, and other testing information. Design process 910
may further include, for example, standard mechanical
design processes such as stress analysis, thermal analysis,
mechanical event simulation, process simulation for opera
tions such as casting, molding, and die press forming, etc.
One of ordinary skill in the art of mechanical design can
appreciate the extent of possible mechanical design tools and
applications used in design process 910 without deviating
from the scope and spirit of the invention. Design process 910
may also include modules for performing standard circuit
design processes such as timing analysis, Verification, design
rule checking, place and route operations, etc.
0042. Design process 910 employs and incorporates logic
and physical design tools such as HDL compilers and simu
lation model build tools to process design structure 920
together with some or all of the depicted Supporting data
structures along with any additional mechanical design or
data (if applicable), to generate a second design structure990.
Design structure 990 resides on a storage medium or pro
grammable gate array in a data format used for the exchange
of data of mechanical devices and structures (e.g. information
stored in an IGES, DXF, Parasolid XT.JT, DRG, or any other
Suitable format for storing or rendering Such mechanical
design structures). Similar to design structure 920, design
structure 990 preferably comprises one or more files, data
structures, or other computer-encoded data or instructions
that reside on transmission or data storage media and that
when processed by an ECAD system generate a logically or
otherwise functionally equivalent form of one or more of the
embodiments of the invention shown in FIG. 1. In one
embodiment, design structure 990 may comprise a compiled,
executable HDL simulation model that functionally simu
lates the devices shown in FIG. 1.

0043. Design structure 990 may also employ a data format
used for the exchange of layout data of integrated circuits
and/or symbolic data format (e.g. information stored in a
GDSII (GDS2), GL1, OASIS, map files, or any other suitable
format for storing such design data structures). Design struc
ture 990 may comprise information such as, for example,
symbolic data, map files, test data files, design content files,
manufacturing data, layout parameters, wires, levels of metal,
vias, shapes, data for routing through the manufacturing line,
and any other data required by a manufacturer or other
designer/developer to produce a device or structure as
described above and shown in FIG. 1. Design structure 990
may then proceed to a stage 995 where, for example, design
structure 990: proceeds to tape-out, is released to manufac
turing, is released to a mask house, is sent to another design
house, is sent back to the customer, etc.
0044) The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises' and/
or “comprising, when used in this specification, specify the

US 2014/0258797 A1

presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0045. This written description uses examples to disclose
the invention, including the best mode, and also to enable any
person skilled in the art to practice the invention, including
making and using any devices or systems and performing any
incorporated methods. The patentable scope of the invention
is defined by the claims, and may include other examples that
occur to those skilled in the art. Such other examples are
intended to be within the scope of the claims if they have
structural elements that do not differ from the literal language
of the claims, or if they include equivalent structural elements
with insubstantial differences from the literal languages of
the claims.
What is claimed is:
1. A built-in-self-test (BIST) architecture for reducing

BIST test time of a memory for an integrated circuit (IC) chip,
the architecture comprising:

a pair of latches for receiving bursts of data from a memory;
a first compression stage for receiving a burst of data and

compressing the burst of data into a plurality of
latches;

a second compression stage for comparing the com
pressed bursts of data with expected data; and

a logic gate for determining whether there is a fail in the
burst of data.

2. The BIST architecture of claim 1, wherein the first
compression stage includes a plurality of AND gates and a
plurality of OR gates for receiving the burst of data.

3. The BIST architecture of claim 2, further comprising a
plurality of AND latches for receiving the outputs of the
plurality of AND gate.

4. The BIST architecture of claim 3, further comprising a
plurality of OR latches for receiving the outputs of the plu
rality of OR gate.

5. The BIST architecture of claim 4, wherein the second
compression stage includes a plurality of multiplexors for
receiving the outputs of the plurality of AND latches and the
outputs of the plurality of OR latches.

6. The BIST architecture of claim 5, wherein the expected
data is a selection signal for each of the plurality of multi
plexors.

7. A method of reducing test time for a built-in-self-test
(BIST) architecture, the method comprising:

performing a fast read of the BIST, wherein the performing
includes:
receiving a burst of data from a memory at a pair of

latches;
compressing the burst of data in a first compression

stage; and
comparing the compressed burst of data with expected

data;
determining whether there is fail in the burst of data; and
in response to a fail in the burst of data, performing a

slow read of the BIST for the failed burst of data.

Sep. 11, 2014

8. The method of claim 7, further comprising, in response
to the fail in the burst of data,:

pausing the fast read of the BIST; and
setting a burst address to a previous burst address.
9. The method of claim 8, further comprising resuming the

fast read of the BIST after the slow read of the BIST for the
failed burst of data.

10. The method of claim 7, further comprising, in response
to the fail in the burst of data:

pausing the fast read of the BIST; and
setting a pattern address of the BIST to a beginning of the

pattern.
11. The method of claim 10, further comprising resuming

the fast read of the BIST after the slow read of the BIST for the
failed BIST pattern.

12. The method of claim 7, wherein compressing the burst
of data in the first compression stage includes sending the
burst of data to a plurality of AND gates and a plurality of OR
gates.

13. The method of claim 12, further comprising sending an
output of the plurality of AND gates to a plurality of AND
latches.

14. The method of claim 13, further comprising sending an
output of the plurality of OR gates to a plurality of OR latches.

15. The method of claim 14, wherein comparing the com
pressed burst of data with expected data includes sending the
outputs of the plurality of AND latches and the outputs of the
plurality of OR latches to a plurality of multiplexors.

16. The method of claim 15, wherein the expected data is a
selection signal for each of the plurality of multiplexors.

17. A design structure tangibly embodied in a machine
readable medium for designing, manufacturing, or testing a
memory of an integrated circuit by performing a built-in-self
test (BIST), the design structure comprising:

a pair of latches for receiving bursts of data from a memory;
a first compression stage for receiving a burst of data and

compressing the burst of data into a plurality of
latches;

a second compression stage for comparing the com
pressed bursts of data with expected data; and

a logic gate for determining whether there is a fail in the
burst of data.

18. The design structure of claim 17, wherein the first
compression stage includes a plurality of AND gates and a
plurality of OR gates for receiving the burst of data.

19. The design structure of claim 18, further comprising a
plurality of AND latches for receiving the plurality of AND
gate outputs and a plurality of OR latches for receiving the
outputs of the OR gate.

20. The design structure of claim 19, wherein the second
compression stage includes a plurality of multiplexors for
receiving the outputs of the plurality of AND latches and the
plurality of OR latches, wherein the expected data is a selec
tion signal for each of the plurality of multiplexors.

k k k k k

