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METHODS AND SYSTEMS FOR RESTING 
STATE FMRI BRAIN MAPPING WITH 

REDUCED IMAGING TIME 

CROSS REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims priority to U.S. provisional 
application No. 63 / 158,627 filed Mar. 9 , 2021 , which is 
incorporated herein in its entirety . 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH & DEVELOPMENT 

[ 0002 ] This invention was made with government support 
under CA203861 awarded by the National Institutes of 
Health . The government has certain rights in the invention . 

BACKGROUND 

[ 0003 ] The field of the invention relates generally to the 
identification of functional networks in the brain derived 
from functional MRI data . Mapping brain functional brain 
networks have a wide array of applications , for example , 
they may be used for brain surgery planning and execution 
( e.g. , brain tumor and epilepsy resection procedures ) ; iden 
tifying in patients with various different brain diseases target 
brain locations to which therapy may be directed ; and 
psychiatric and brain disease diagnostic applications . 
[ 0004 ] In one exemplary example of using functional 
brain mapping information in connection with resecting 
brain tumors , a neurosurgeon must balance the benefit of 
maximal tumor resection against the risk of a functional 
impairment consequent to more aggressive approaches . 
These two factors , maximal resection and functional pres 
ervation , are often cited in the surgical literature as predic 
tors of long - term survival . Thus , preoperative and intraop 
erative functional localization is critical to optimizing these 
often - conflicting priorities . Functional MRI ( fMRI ) has been 
used as an adjunct measure for preoperative mapping of 
functional brain locations that make up what is known as the 
eloquent cortex , the location of which is particularly impor 
tant for the neurosurgeon to know in connection with 
preoperating planning and intraoperative navigation . One 
alternative way of identifying the location of the eloquent 
cortex is intraoperative mapping using electrical cortical 
stimulation mapping , which is performed during the surgery 
with the patient awake ( an awake craniotomy ) . Since elec 
trocortical stimulation carries clinical risk , preoperative 
mapping to optimize the intraoperative surgical approach is 
an effective means of preserving function and may in many 
cases make an awake craniotomy unnecessary . 
[ 0005 ] fMRI detects changes in the blood oxygen level 
dependent ( BOLD ) signal that reflect the neurovascular 
response to neural activity . In conventional fMRI , function 
is localized by presenting stimuli or imposing tasks ( such as 
finger tapping or object naming ) . More recently , resting state 
fMRI ( RS - fMRI ) , i.e. , fMRI obtained in the absence of 
stimuli or tasks , has been used to map the brain's functional 
organization . RS - fMRI is a neuroimaging method for study 
ing the connectivity and topography of functional networks 
in the brain by measuring the ratio of oxyhemoglobin to 
deoxyhemoglobin uniformly over time . The resulting BOLD 
signal , and analysis of spontaneous low - frequency ( < 0.1 Hz ) 
fluctuations in the BOLD signal , allows for the identification 
of spatial patterns of similarity in the brain . RS - fMRI data 

are simpler to acquire and do not require patient cooperation 
( important in children and neurologically impaired patients ) . 
RS - fMRI may be used in both clinical and research settings 
for numerous applications . Thus , RS - fMRI has opened new 
opportunities for pre - surgical planning . 
[ 0006 ] Current applications of RS - fMRI data include , 
among those discussed generally above , localization of brain 
functions for pre - surgical planning in patients with brain 
tumors and epilepsy . In addition , multiple new applications 
are currently being investigated and will provide diagnostic 
information for multiple diseases of the brain . It is well 
established that larger amounts of RS - fMRI data ( requiring 
longer MRI scanning sessions ) provide more accurate char 
acterization of these networks . Typical research applications 
obtain more than 30 minutes of fMRI data , and one com 
monly used methodology for acquiring RS - fMRI for clinical 
application acquires 12 minutes of RS - fMRI data , in two 
six - minute scanning periods conducted back to back with a 
short time between the two . It is desirable to minimize the 
time required for RS - fMRI image acquisition , for a whole 
host of reasons . For example , a long acquisition time may 
not be practical for clinical applications where image acqui 
sition time represents cost and ties up an important imaging 
resource . In addition , sick patients are often uncomfortable 
in the scanner and may not be able to tolerate long scans 
without moving . Thus , a method that can decrease the 
amount of patient MRI scanner time is desirable . 
[ 0007 ] Multiple techniques have been used to map the 
representation of function using RS - fMRI data . These tech 
niques include independent component analysis , seed - based 
correlation , and supervised machine learning methods using 
a neural network architecture known as a multi - layer per 
ceptron ( MLP ) . With typical fMRI acquisition times , at least 
some known methods are signal to noise limited and have 
limited sensitivity and specificity . 
[ 0008 ] To date , the majority of research involving RS 
fMRI has revolved around the use of seed - based correlation 
mapping or independent component analysis . These studies 
have yielded a better understanding of the pathological 
changes that occur due to Alzheimer's disease , HIV , autism , 
Parkinson's disease , Down syndrome , and numerous neu 
ropsychiatric disorders . Further and as discussed above , 
models of RS - fMRI have been used in connection with brain 
tumor surgery for preoperative and intraoperative functional 
localization , with the aim being to strike a balance between 
maximal resection and functional preservation , both of 
which are predictors of long - term survival and quality of 
life . Because RS - fMRI has the potential to advance our 
knowledge of the functional organization of the brain , as 
well as the pathogenesis of neurological diseases , it is 
imperative to develop new analysis methods to study resting 
state networks ( RSNs ) . 
[ 0009 ] Deep learning ( DL ) is a branch of machine learning a 
that has become widely used in multiple domains . DL is a 
form of artificial neural networks composed of multiple 
" hidden ” layers between the input and output layers , which 
simultaneously performs feature selection and input / output 
mapping by adjusting network weights during training . DL 
models may include many more parameters than some other 
known neural networks and other machine learning models . 
DL models have achieved state - of - the - art performance on 
numerous tasks , sometimes challenging , if not exceeding , 
their human counterparts . This has led to the adoption of DL 
in medical research , with the ultimate goal of achieving 
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precision medicine at the individual patient level . Applica 
tions of deep learning to neuroimaging data range from 
artifact removal , normalization / harmonization , quality 
enhancement , and lowering radiation / contrast dose . Further , 
because deep learning is able to detect abstract and complex 
patterns that are often characterized by subtle , tenuous , and 
diffuse changes , the application to neuroimaging data with 
pathology has allowed for the identification of novel bio 
markers of disease manifestation and evolution . 
[ 0010 ] This background section is intended to introduce 
the reader to various aspects of art that may be related to 
various aspects of the disclosure , which are described and / or 
claimed below . This discussion is believed to be helpful in 
providing the reader with background information to facili 
tate a better understanding of the various aspects of the 
present disclosure . Accordingly , it should be understood that 
these statements are to be read in this light , and not as 
admissions of prior art . 

neural network is trained beforehand using a plurality of 3D 
image frames including previously defined resting state 
networks obtained from a plurality of calibration subjects . 
One or more functional map of the plurality of resting state 
networks of the subject's brain is generated using the 
probabilities calculated by the artificial neural network . 
[ 0014 ] Still another aspect of the disclosure is a method 
for mapping functions of the brain including receiving an 
MRI data set for a subject comprising fMRI data acquired 
with the subject lying in MRI scanning equipment in a state 
of rest , generating , from the MRI data set , a voxel - wise 
correlation map that identifies , for each of a plurality of 
volume element ( voxel ) of the brain , a measure of the degree 
of time correlation between spontaneous brain activations at 
one voxel of the brain as revealed in the resting - state fMRI 
data and spontaneous brain activations at each of the other 
voxels of the plurality of bran voxels as revealed in the 
resting - state fMRI data . The voxel - wise correlation map is 
input to a trained three - dimensional convolutional neural 
network based machine learning algorithm to generate at 
least one functional connectivity map identifying a location 
where a predefined brain function is performed within the 
subject's brain by identifying the voxels involved in per 
forming that predefined brain function , and an output of the 
at least one functional connectivity map is generated . 
[ 0015 ] Various refinements exist of the features noted in 
relation to the above - mentioned aspects of the present 
disclosure . Further features may also be incorporated in the 
above - mentioned aspects of the present disclosure as well . 
These refinements and additional features may exist indi 
vidually or in any combination . For instance , various fea 
tures discussed below in relation to any of the illustrated 
embodiments of the present disclosure may be incorporated 
into any of the above - described aspects of the present 
disclosure , alone or in any combination . 

BRIEF DESCRIPTION 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0011 ] One aspect of this disclosure is a method for 
mapping brain function of a subject . The method includes 
receiving a dataset of resting state fMRI ( RS - fMRI ) three 
dimensional ( 3D ) image frames of the subject's brain . The 
dataset includes less than about 200 3D image frames . The 
3D image frames are input to an artificial neural network , 
wherein for each voxel of each 3D image frame and for each 
resting state network of a plurality of resting state networks , 
the artificial neural network calculates a probability that the 
voxel belongs to the resting state network . The artificial 
neural network is trained beforehand using a plurality of 3D 
image frames including previously defined resting state 
networks obtained from a plurality of calibration subjects . 
One or more functional map of the plurality of resting state 
networks of the subject's brain is generated using the 
probabilities calculated by the artificial neural network . 
[ 0012 ] According to another aspect of this disclosure , a 
method for mapping brain function of a subject includes 
receiving a dataset of resting state fMRI ( RS - fMRI ) three 
dimensional ( 3D ) image frames of the subject's brain , and 
inputting the 3D image frames to a deep learning artificial 
neural network . For each voxel of each 3D image frame and 
for each resting state network of a plurality of resting state 
networks , the deep learning artificial neural network calcu 
lates a probability that the voxel belongs to the resting state 
network . The deep learning artificial neural network is 
trained beforehand using a plurality of 3D image frames 
including previously defined resting state networks obtained 
from a plurality of calibration subjects . The method includes 
generating one or more functional map of the plurality of 
resting state networks of the subject's brain using the 
probabilities calculated by the artificial neural network . 
[ 0013 ] Another aspect is a method for mapping of brain 
function of a subject for a purpose for which a first number 
of resting state fMRI ( RS - fMRI ) three dimensional ( 3D ) 
image frames of the subject's brain is typically acquired . 
The method includes receiving a dataset of RS - fMRI 3D 
image frames of the subject's brain , the dataset comprising 
less than half of the first number of 3D image frames , and 
inputting the 3D image frames to an artificial neural net 
work . For each voxel of each 3D image frame and for each 
resting state network of a plurality of resting state networks , 
the artificial neural network calculates a probability that the 
voxel belongs to the resting state network . The artificial 

a 

a 

[ 0016 ] The patent or application file contains at least one 
drawing executed in color . Copies of this patent or patent 
application publication with color drawing ( s ) will be pro 
vided by the Office upon request and payment of the 
necessary fee . 
[ 0017 ] FIG . 1 is a block diagram of an exemplary system 
for task - less mapping of brain activity . 
[ 0018 ] FIG . 2 is a block diagram of an exemplary com 
puting device of the system shown in FIG . 1 . 
[ 0019 ] FIG . 3 depicts 3DCNN maps and T - fMRI 
responses focusing on language localization . 
[ 0020 ] FIG . 4 depicts 3DCNN maps of the CON , FPN , 
and DAN and T - fMRI responses . 
[ 0021 ] FIG . 5 depicts ROC curves for mapping the lan 
guage network . 
[ 0022 ] FIG . 6 depicts exemplar patient RS003 with glio 
blastoma multiforme in the left basal ganglia region . 
[ 0023 ] FIG . 7 depicts exemplar patient RS004 with high 
grade glioma with anaplastic features in the subcortical left 
frontal lobe . 
[ 0024 ] FIG . 8 shows examples of 3D similarity maps of 
the DMN used for training . 
[ 0025 ] FIG . 9 shows the age distribution of the data used 
for training 

a 
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[ 0026 ] FIG . 10 shows training and validation results for 
the 3DCNN . The model achieved 99 % accuracy on training 
data and 97 % accuracy on out of sample validation data after 
8 epochs . 
[ 0027 ] FIG . 11 shows the RSN segmentation based on the maximum probability produced by the 3DCNN averaged 
across all 2010 participants . 
[ 0028 ] FIG . 12A shows the mean probability values aver 
aged over each RSN based on the maximum probability 
mask shown in FIG . 11 . 
[ 0029 ] FIG . 12B shows the average geometric mean by 
RSN . 
[ 0030 ] FIG . 12C shows the average values for the mean 
scaled by the standard deviation . 
[ 0031 ] FIG . 12D shows the total area for each network , 
with VIS , DMN , and FPN covering the greatest area . 
[ 0032 ] FIG . 13 visualizes the metrics shown in FIG . 12 for 
the DMN . 
[ 0033 ] FIG . 14 shows the result of reducing the total 
number of BOLD time points averaged over the MSC data . 
[ 0034 ] FIG . 15 depicts the structural stability variance per 
network . 
[ 0035 ] FIG . 16 shows the structural similarity when com 
paring model results on processed MSC BOLD data to the 
same data injected with varying amounts of pink noise and 
reprocessed . 
[ 0036 ] FIG . 17 is a simplified diagram of a deep learning 
workflow using a 3DCNN to produce resting state neural 
network maps . 
[ 0037 ] Corresponding reference characters indicate corre 
sponding parts throughout the drawings . 

DETAILED DESCRIPTION OF THE DRAWINGS 

subject during a resting state . More specifically , sensing 
system 102 may generate an altered magnetic field within 
the brain to measure various parameters of the brain . In the 
example embodiment , sensing system 102 is a specialized 
MRI , such as a functional magnetic resonance imaging 
( fMRI ) device that is used to measure a variation in blood 
flow ( hemodynamic response ) related to neural activity in 
the brain or spinal cord ( not shown ) of the subject . In one 
example , the subject may lie within the sensing system 102 
( e.g. , within an MRI scanner ) in a state of quiet wakefulness , 
looking at a set of cross hairs presented in front of the 
subject's eyes within the scanner , and in this resting state , 
blood oxygen level dependent ( BOLD ) data from locations 
throughout the subject's brain are acquired , thereby acquir 
ing RS - fMRI data for the subject which may then be later 
subjected to software processing to generate a functional 
mapping . It should be noted that the present disclosure is not 
limited to any one particular type of imaging and electrical 
technique or device , and one of ordinary skill in the art will 
appreciate that the current disclosure may be used in con 
nection with any type of technique or device that enables 
system 100 to function as described herein . 
[ 0041 ] In the exemplary embodiment , system 100 also 
includes a computing device 104 coupled to sensing system 
102 via a data conduit 106. The reference number 104 may 
be representative of multiple different computing systems 
located at different locations , for example ( i ) one computing 
system may be involved in controlling operation of the 
image acquisition process and as such may be co - locating 
with the MRI scanning equipment , ( ii ) another computing 
system involved in communicating and storing acquired 
RS - fMRI image data in an image repository ( database ) 
where the image data may be retrieved for further processing 
( e.g. , the functional mapping function ) , and ( iii ) another 
computing system used in performing the mapping func 
tions to generate the functional mapping output that may be 
stored in the same or a different image repository as the 
related acquired RS - fMRI image data used to generate the 
mapping output are stored , such that the mapping output 
may then be accessed for use in making medical interpre 
tations and diagnoses including use in connection with 
pre - operative planning and in the operating room which may 
involve loading the output mapping on a separate surgical 
navigation system . One or more of the computing systems 
making up the computing device 104 may , in one embodi 
ment , comprise a picture archiving and communication 
system ( PACS ) . 
[ 0042 ] It should be noted that , as used herein , the term 
“ couple ” is not limited to a direct mechanical , electrical , 
and / or communication connection between components , but 
may also include an indirect mechanical , electrical , and / or 
communication connection between multiple components . 
Sensing system 102 may communicate with computing 
device 104 using a wired network connection ( e.g. , Ethernet 
or an optical fiber ) , a wireless communication means , such 
as radio frequency ( RF ) , e.g. , FM radio and / or digital audio 
broadcasting , an Institute of Electrical and Electronics Engi 
neers ( IEEE® ) 802.11 standard ( e.g. , 802.11 ( g ) or 802.11 
( n ) ) , the Worldwide Interoperability for Microwave Access 
( WIMAX® ) standard , a short - range wireless communica 
tion channel such as BLUETOOTH® , a cellular phone 
technology ( e.g. , the Global Standard for Mobile commu 
nication ( GSM ) ) , a satellite communication link , and / or any 
other suitable communication means . IEEE is a registered 

[ 0038 ] The exemplary systems , apparatus , and methods 
described herein overcome at least some known disadvan 
tages associated with the length of time associated to obtain 
function brain mapping . The approach described herein 
allows for high quality brain maps from a shorter amount of 
MRI time and from less MRI data . This makes brain 
mapping easier to implement because it does not compete 
with other imaging sequences . Additionally , with a similar 
amount of MRI data as used in other methods , the tech 
niques described herein may result in improved ( e.g. , more 
accurate ) analysis as compared to the other methods . 
[ 0039 ] FIG . 1 illustrates an exemplary system 100 for 
mapping brain activity of a subject ( not shown ) . It should be 
noted that the term “ brain activity ” as used herein includes 
the various activities within a brain of the subject that 
correspond to various tasks performed by the subject . For 
example , the brain transmits and receives signals in the form 
of hormones , nerve impulses , and chemical messengers that 
enable the subject to move , eat , sleep , and think . In the 
exemplary embodiment , system 100 is used to identify 
locations within a plurality of networks within the brain that 
are responsible for such brain activities . 
[ 0040 ] As seen in FIG . 1 , system 100 includes a sensing 
system 102 that is configured to detect or acquire a plurality 
of measurements of brain activity that is representative of at 
least one parameter of the brain of a subject during a resting 
state . In one suitable embodiment , sensing system 102 is a 
magnetic resonance imaging device ( MRI ) that is configured 
to generate at least one spectroscopic signal representative 
of a plurality of measurements of brain activity that is 
representative of at least one parameter of the brain of the 
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trademark of the Institute of Electrical and Electronics 
Engineers , Inc. , of New York , N.Y. WIMAX is a registered 
trademark of WiMax Forum , of Beaverton , Oreg . BLU 
ETOOTH is a registered trademark of Bluetooth SIG , Inc. of 
Kirkland , Wash . Although illustrated collocated with the 
sensing system 102 , the computing device 104 may be 
located remote from the sensing system 102 , and may 
include a cloud computing device , a distributed computing 
device , or any other suitable computing device . Moreover , 
more than one computing device 104 may be used to 
perform the actions described herein . 
[ 0043 ] In the exemplary embodiment , computing device 
104 is configured to receive at least one signal representative 
of a plurality of measurements of brain activity from sensing 
system 102. More specifically , computing device 104 is 
configured to receive at least one signal representative of an 
altered magnetic field within the brain of the subject from 
sensing system 102. Alternatively , computing device 104 
may be configured to receive at least one signal represen 
tative of at least one voltage fluctuation within the brain 
from at least one electrode . 
[ 0044 ] System 100 also includes a data management sys 
tem 108 that is coupled to computing device 104 via a 
network 109. Data management system 108 may be any 
device capable of accessing network 109 including , without 
limitation , a desktop computer , a laptop computer , or other 
web - based connectable equipment . The data management 
system 108 may be , or be part of , a PACS . More specifically , 
in the exemplary embodiment , data management system 108 
includes a database 110 that includes previously acquired 
data of other subjects . In the exemplary embodiment , data 
base 110 can be fully or partially implemented in a cloud 
computing environment such that data from the database is 
received from one or more computers ( not shown ) within 
system 100 or remote from system 100. In the exemplary 
embodiment , the previously acquired data of the other 
subjects may include , for example , a plurality of measure 
ments of brain activity that is representative of at least one 
parameter of a brain of each of the subjects during a resting 
state . Database 110 can also include any additional infor 
mation of each of the subjects that enables system 100 to 
function as described herein . 
[ 0045 ] Data management system 108 may communicate 
with computing device 104 using a wired network connec 
tion ( e.g. , Ethernet or an optical fiber ) , a wireless commu 
nication means , such as , but not limited to radio frequency 
( RF ) , e.g. , FM radio and / or digital audio broadcasting , an 
Institute of Electrical and Electronics Engineers ( IEEE ) 
802.11 standard ( e.g. , 802.11 ( g ) or 802.11 ( n ) ) , the World 
wide Interoperability for crowave Access ( WIMAX® ) 
standard , a cellular phone technology ( e.g. , the Global 
Standard for Mobile communication ( GSM ) ) , a satellite 
communication link , and / or any other suitable communica 
tion means . More specifically , in the exemplary embodi 
ment , data management system 108 transmits the data for 
the subjects to computing device 104. While the data is 
shown as being stored in database 110 within data manage 
ment system 108 , it should be noted that the data of the 
subjects may be stored in another system and / or device . For 
example , computing device 104 may store the data therein . 
[ 0046 ] During operation , while the subject is in a resting 
state for example as described above ( with the subject lying 
in the MRI scanning equipment in a state of quiet wakeful 
ness ) , sensing system 102 uses a magnetic field to align the 

magnetization of some atoms in the brain of the subject and 
radio frequency fields to systematically alter the alignment 
of this magnetization . As such , rotating magnetic fields are 
produced and are detectable by a scanner ( not shown ) within 
sensing system 102. More specifically , in the exemplary 
embodiment , sensing system 102 detects a plurality of 
measurements of brain activity that is representative of at 
least one parameter of the brain of the subject during the 
resting state . Sensing system 102 also generates at least one 
spectroscopic signal representative of the plurality of mea 
surements ( e.g. , RS - fMRI scan data ) and transmits the 
signal ( s ) to computing device 104 via data conduit 106 . 
Moreover , data of other subjects may be transmitted to 
computing device 104 from database 110 via network 109 . 
As explained in more detail below , computing device 104 
may also be used to further process RS - fMRI scan data to 
generate at least one functional map , such as a functional 
connectivity map , for each of the measurements based on a 
comparison of at least one resting state data point of the 
subject and a corresponding data point from the previously 
acquired data set from at least one other subject . Computing 
device 104 uses the map to categorize or classify the brain 
activity in a plurality of networks in the brain . 
[ 0047 ] FIG . 2 is a block diagram of computing device 104 , 
which again , as discussed above , may represent multiple 
different computing systems performing different functions 
( e.g. , controlling the RS - fMRI image acquisition , perform 
ing the functional mapping processing on acquired RS - fMRI 
data , and performing image communication and archiving 
functions ) . In the exemplary embodiment , computing device 
104 ( and each of multiple different computing systems 
represented by device 104 ) includes a user interface 204 that 
receives at least one input from a user , such as an operator 
of sensing system 102 ( shown in FIG . 1 ) . User interface 204 
may include a keyboard 206 that enables the user to input 
pertinent information . User interface 204 may also include , 
for example , a pointing device , a mouse , a stylus , a touch 
sensitive panel ( e.g. , a touch pad , a touch screen ) , a gyro 
scope , an accelerometer , a position detector , and / or an audio 
input interface ( e.g. , including a microphone ) . 
[ 0048 ] Moreover , in the exemplary embodiment , comput 
ing device 104 includes a presentation interface 207 that 
presents information , such as input events and / or validation 
results , to the user . Presentation interface 207 may also 
include a display adapter 208 that is coupled to at least one 
display device 210. More specifically , in the exemplary 
embodiment , display device 210 may be a visual display 
device , such as a cathode ray tube ( CRT ) , a liquid crystal 
display ( LCD ) , an organic LED ( OLED ) display , and / or an 
“ electronic ink ” display . Alter ively , presentation interface 
207 may include an audio output device ( e.g. , an audio 
adapter and / or a speaker ) and / or a printer . 
[ 0049 ] Computing device 104 also includes a processor 
214 and a memory device 218. Processor 214 is coupled to 
user interface 204 , presentation interface 207 , and to 
memory device 218 via a system bus 220. In the exemplary 
embodiment , processor 214 communicates with the user , 
such as by prompting the user via presentation interface 207 
and / or by receiving user inputs via user interface 204. The 
term “ processor ” refers generally to any programmable 
system including systems and microcontrollers , reduced 
instruction set circuits ( RISC ) , application specific inte 
grated circuits ( ASIC ) , programmable logic circuits ( PLC ) , 
and any other circuit or processor capable of executing the 
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functions described herein . The above examples are exem 
plary only , and thus are not intended to limit in any way the 
definition and / or meaning of the term “ processor . ” 
[ 0050 ] In the exemplary embodiment , memory device 218 
includes one or more devices that enable information , such 
as executable instructions and / or other data , to be stored and 
retrieved . Moreover , memory device 218 includes one or 
more computer readable media , such as , without limitation , 
dynamic random access memory ( DRAM ) , static random 
access memory ( SRAM ) , a solid state disk , and / or a hard 
disk . In the exemplary embodiment , memory device 218 
stores , without limitation , application source code , applica 
tion object code , configuration data , additional input events , 
application states , assertion statements , validation results , 
and / or any other type of data . Computing device 104 , in the 
exemplary embodiment , may also include a communication 
interface 230 that is coupled to processor 214 via system bus 
220. Moreover , communication interface 230 is communi 
catively coupled to sensing system 102 and to data man 
agement system 108 ( shown in FIG . 1 ) . 
[ 0051 ] In the exemplary embodiment , processor 214 may 
be programmed by encoding an operation using one or more 
executable instructions and providing the executable 
instructions in memory device 218. In the exemplary 
embodiment , processor 214 is programmed to select a 
plurality of measurements that are received from sensing 
system 102 of brain activity that is representative of at least 
one parameter of the brain of the subject during a resting 
state . The plurality of measurements may include , for 
example , a plurality of voxels of at least one image of the 
subject's brain , wherein the image may be generated by 
processor 214 within computing device 104. The image may 
also be generated by an imaging device ( not shown ) that 
may be coupled to computing device 104 and sensing 
system 102 , wherein the imaging device may generate the 
image based on the data received from sensing system 102 
and then the imaging device may transmit the image to 
computing device 104 for storage within memory device 
218. Alternatively , the plurality of measurements may 
include any other type measurement of brain activity that 
enables system 100 to function as described herein . 
[ 0052 ] Processor 214 may also be programmed to perform 
a correlation analysis . More specifically , in the exemplary 
embodiment , processor 214 may be programmed to compare 
at least one data point from each of the plurality of mea 
surements with a corresponding data point from a previously 
acquired data set from at least one other subject . For 
example , processor 214 may be programmed to compare a 
resting state data point from each selected voxel from an 
image of the subject with a corresponding data point that is 
located within the same voxel of the previously acquired 
data set of the other subject . Processor 214 may also be 
programmed to produce at least one map ( not shown in FIG . 
2 ) of the brain of the subject , such as a functional connec 
tivity map , for each of the plurality measurements . 
[ 0053 ] Processor 214 may also be programmed to catego 
rize or classify the measured brain activity in a plurality of 
networks in the brain based on the map . For example , 
processor 214 may be programmed to categorize the mea 
sured brain activity to a particular neural network of the 
brain of the subject based on the location of the measured 
brain activity on the map of the subject's brain . 
[ 0054 ] During operation , as the subject is in a resting state , 
sensing system 102 detects a plurality of measurements of 

brain activity that is representative of at least one parameter 
of the brain of the subject . Sensing system 102 transmits at 
least one signal representative of the measurements to 
computing device 104 via data conduit 106. More specifi 
cally , the signals are transmitted to and received by com 
munication interface 230 within computing device 104 . 
Communication interface 230 then transmits the signals to 
processor 214 for processing and / or to memory device 218 , 
wherein the data may be stored and transmitted to processor 
214 at a later time . Processor 214 may generate an image of 
the plurality of measurements . Alternatively , sensing system 
102 may transmit the signals to an imaging device ( not 
shown ) , wherein an image of the measurements may be 
generated . The image may then be transmitted to computing 
device 104 , wherein the image is stored within memory 
device 218 and transmitted to processor 214 for processing . 
[ 0055 ] Moreover , data of other subjects may be transmit 
ted to computing device 104 from database 110 ( shown in 
FIG . 1 ) via network 109 ( shown in FIG . 1 ) . More specifi 
cally , the data may be received by communication interface 
230 and then transmitted to processor 214 for processing 
and / or to memory device 218 , wherein the data may be 
stored and transmitted to processor 214 at a later time . 
Computing device 104 may obtain the data at any time 
during operation . 
[ 0056 ] In the exemplary embodiment , computing device 
104 produces at least one map for each of the plurality of 
measurements received . More specifically , processor 214 
first selects each of the plurality of measurements , received 
from sensing system 102. For example , in the exemplary 
embodiment , processor 214 selects each of the volume 
elements ( voxels ) from the image . Alternatively , processor 
214 may select any other types of measurements for brain 
activity that enables system 100 to function as described 
herein . Moreover , a user may see the image on the comput 
ing device 104 , via presentation interface 207 , and select the 
measurements , such as voxels , via user interface 204 . 
[ 0057 ] When each of the measurements has been selected , 
processor 214 then performs a correlation analysis . More 
specifically , processor 214 compares at least one data point 
from each of the selected measurements with a correspond 
ing data point from a previously acquired data set from at 
least one other subject , wherein computing device 104 
obtained the data set from database 110. For example , 
processor 214 may compare at least one resting state data 
point from each selected voxel of the image of the subject 
with a data point that is located within the same voxel of the 
previously acquired data set of at least one other subject . 
[ 0058 ] When processor 214 has completed the correlation 
analysis , processor 214 then produces at least one map ( not 
shown in FIG . 2 ) of the brain of the subject , such as a 
functional connectivity map , for each of the measurements . 
More specifically , processor 214 produces a map of the brain 
of the subject based on each of the comparisons of each of 
the resting state data points and the corresponding previ 
ously acquired data points . The map , for example , may 
illustrate the location within the brain of a measured brain 
activity . Processor 214 then categorizes or classifies the 
measured brain activity in a plurality of networks in the 
brain based on the map . For example , based on the location 
of the measured brain activity in the map , processor 214 
categorizes the measured brain activity to a particular neural 
network of the brain of the subject . The map may be 
presented to the user via presentation interface 207. More 
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over , a textual representation and / or a graphical output for 
the various categorizations may also be presented to the user 
via presentation interface 207 . 
( 0059 ] An example description of the use of the system 
100 and the computing device 104 will be described below 
with reference to the brain's language function mapping or 
localization , but the methods and systems described herein 
may be applied to detection and mapping of any functional 
neural networks . The language function is considered part of 
the brain's eloquent cortex , which also includes the brain's 
sensorimotor and vision functional networks . 
[ 0060 ] Pre - surgical functional localization of eloquent 
cortex with task - based functional MRI ( T - fMRI ) is part of 
the current standard of care prior to resection of brain 
tumors . Resting state fMRI ( RS - fMRI ) is an alternative 
method . Group level language localization can be compared 
using T - fMRI vs. RS - fMRI analyzed with 3D deep convo 
lutional neural networks ( 3DCNN ) . 
[ 0061 ] In one example , data was obtained in 35 patients 
with brain tumors that had both language T - fMRI and 
RS - MRI scans was analyzed during pre - surgical evaluation . 
The T - fMRI data were analyzed using conventional tech 
niques . The language associated resting state network was 
mapped using a 3DCNN previously trained with data 
acquired in > 2,700 normal subjects . Group level results 
obtained by both methods were evaluated using receiver 
operator characteristic analysis of probability maps of lan 
guage associated regions , taking as ground truth meta 
analytic maps of language T - fMRI responses generated on 
the Neurosynth platform . 
[ 0062 ] Both fMRT methods localized major components 
of the language system ( areas of Broca and Wernicke ) . 
Word - stem completion T - fMRI strongly activated Broca's 
area but also several task - general areas not specific to 
language . RS - fMRI provided a more specific representation 
of the language system . 
[ 0063 ] 3DCNN was able to accurately localize the lan 
guage network . Additionally , 3DCNN performance was 
remarkably tolerant of a limited quantity of RS - fMRI data . 
Without being bound to any particular theory , the system 
using the 3DCNN may outperform some other known 
systems ( such as those using a multilayer perceptron ) 
because resting state fMRI contains a high degree of spatial 
correlation at the voxel level ( i.e. in general , voxels that are 
close to each other are more correlated than voxels that are 
further from each other ) . Although , a multilayer perceptron 
( MLP ) and convolutional neural networks ( CNN ) can both 

be used for image classification segmentation , a MLP takes 
a vector ( 1xN ) as an input and CNN takes a tensor ( multi 
dimensional vector ) as an input . For example , the three 
dimensional fMRT brain images used herein are dimension 
[ 48 , 64 , 48 ] . In order for this to be processed by the MLP , 
it must be reduced down to a vector . This means the values 
are translated from something that is [ 48 , 64 , 48 ] down to 
something that is approximately [ 1 , 147456 ] . Once the data 
is “ vectorized ” , there is no longer a spatial relationship , and 
the network can no longer leverage this information to make 
accurate predictions . This is very important because , while 
there is significant variability in network boundaries at the 
individual level , overall these networks are located in the 
same general regions . The 3DCNN is designed to account 
for the spatial relationship between voxels by performing 
three dimensional convolutions . Thus , the 3DCNN can take 
the [ 48 , 64 , 48 ] volume directly as an input to the model . 
CNNs were designed specifically for operating on images 
( of any kind ) , because all images generally contain multiple , 
highly correlated components that are separated by moder 
ately well - defined boundaries . 
[ 0064 ] This patient cohort was used in a prior study 
targeting non - invasive localization of sensorimotor cortex . 
The following inclusion criteria were used : new diagnosis of 
primary brain tumor ; age above 18 years ; clinical need for 
an MRI scan including fMRI for presurgical planning as 
determined by the treating neurosurgeon . Additionally , 
patients had both a language task ( word - stem completion ) 
T - fMRI and RS - fMRI . Exclusion criteria included : prior 
surgery for brain tumor , inability to have an MRI scan , or a 
patient referred from an outside institute with an MRI scan . 
The cohort included N = 35 patients ( male / female 23/12 ) 
with a mean age of 44.8 years ( 23-71 years range ) . The mean 
preoperative enhancing tumor volume was 43.8 ml ( range : 
1.4-207 mL ) ; 28 patients had a left - hemisphere tumor ; 
pathology was most often oligoastrocytoma ( 11 cases ) and 
glioblastoma ( 10 cases ) . Handedness was recorded in 26 
patients . To decrease any uncertainty in regard to laterality 
the laterality index ( LI ) was included for all subjects based 
on previous work . Since the 3 left handed patients had LI > 0 , 
and two of the three patients with LI < 0 were right handed 
( the handedness on the third was not available ) language 
activation was averaged in all subjects as a single group . 
Patient demographics are summarized in Table 1. Clinical 
data were acquired during preoperative evaluation and 
reviewed retrospectively . 

TABLE 1 

Patient clinical and demographic data . 

Patient ID ( N = 35 ) = Age ( years ) Handedness Lat . index Tumor location Tumor size ( mL ) Tumor pathology 

RS_003 40-45 R 0.11 8.7 Glioblastoma 

RS_004 
RS_005 

20-25 
35-40 

R / 0.04 
NA / -0.08 

Anaplastic glioma 
Anaplastic mixed oligoastrocytoma 

RS_006 
RS_007 
RS 009 
RS_011 
RS 012 
RS 014 
RS_015 
RS_016 

35-40 
0-85 
60-65 
20-25 
40-45 
40-45 
60-65 
55-60 

NA / 0.32 
R / 0.15 
R / 0.10 
R / 0.67 
R / 0.38 
RS / 0.37 
NA / 0.05 
NA / 0.01 

Left basal ganglia 
Left temporal lobe 
Left frontal lobe 
Left frontal lobe 
Left frontal lobe 
Left inferior lobe 
Left - occipital 
Left yri - trigonal area 
Left frontotemporal 
Left frontal lobe 
Left frontal / insular lobe 
Left frontal lobe 
Left insula 

4.8 
56.2 
1.2 
0.2 

81.1 
85.1 

147 
30.4 

7.5 
69.2 
34.7 
16.2 

Anaplastic mixed oligoastrocytoma 
Glioblastoma 
Glioblastoma 
Mixed oligoastrocytoma 
Anaplastic oligodendroglioma 
Oligodendroglioma 
Mixed oligoastrocytoma 
Glioblastoma 
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TABLE 1 - continued 
Patient clinical and demographic data . 

Patient ID ( N = 35 ) Age ( years ) Handedness Lat . index Tumor location Tumor size ( mL ) Tumor pathology 
RS_017 
RS_018 
RS_019 
RS 020 
RS_021 
RS_022 
RS_023 
RS_024 
RS_027 
RS_029 
RS_030 
RS__031 
RS 032 
RS_033 
RS_034 
RS_035 
RS_039 
RS 040 
RS_041 
RS 042 
RS 043 
RS_044 
RS 045 
RS 047 

50-05 
35-40 
30-35 
50-55 
25-30 
5-70 
50-55 
-60 
45-50 
50-55 
70-75 
50 
45-50 
35-40 
5-50 
25-30 
25-30 
35-40 
40-45 
60-65 
30-35 
20-25 
25-30 
5.00 

R / 0 . 
R / 0.35 
R / 0.25 
R / 0.24 
R / 0.05 
NA / 0.02 
R / 0.38 
R / 0.25 
L / 0.48 
R / 0.11 
R / -0.14 
NA / 003 
R / 0.79 
R / 04 
NA / 0.22 
RO 
L / 0.18 
R / 0.29 
NA / 0.54 
R / 0.37 
R / 0.46 
R / 0.40 
L / 0.33 
NA / 0.10 

Left frontal lobe 
Left frontal lobe 
Right frontoparietal 
Left temporal lobe 
Left frontal lobe 
Right frontal lobe 
Left parietal / splenium 
Left frontal lobe 
Left temporal lobe 
Left frontal lobe 
Right basal ganglia / thalamus 
Left thalamus 
Right temporal lobe 
Left frontal lobe 
Left temporal lobe 
Left temporal lobe 
Right parietal lobe 
Right 
Left frontal lobe 
Left parietal lobe 
Right temporal lobe 
Left frontal lobe 
Bilateral frontal lobe ( left - right ) 
Left frontal lobe 

64.3 
13.5 

207 
10.9 
3.3 

2.2 
28.7 
4.7 

24.8 
14.5 
16 
5.8 
6.7 

180 
24.9 
10.1 
32.0 
31.5 
23.3 
0.7 
4.0 
0.4 

118 

Mixed oligoastrocytoma 
Oligodendroglioma 
Anaplastic oligodendroglioma 
Glioblastoma 
Mixed oligoastrocytoma 
Metastatic lung carcinoma 
Oligodendroglioma 
Anaplastic oligoastrocytoma 
Low - grade diffuse glioma 
Oligodendroglioma 
Glioblastoma 
Glioblastoma 
Glioblastoma 
Mixed oligoastrocytoma 
Oligoastrocytoma 
Mixed oligoastrocytoma 
Ependymoma 
Mixed oligoastrocytoma 
Glioblastoma 
Low - grade tumor 
Ganglioglioma 
Anaplastic astrocytoma 
Glioblastoma .2 

Clinical data for 35 patients with brain tumors ( age 44. # 2,899 ; 14.0 years : 12 female ) . 
indicates text missing or illegible when filed 

[ 0065 ] Patients were scanned with either a 3T Trio or 
Skyra scanner ( Siemens , Erlangen , Germany ) using a stan 
dard clinical presurgical tumor protocol . Anatomical imag 
ing included T1 - weighted ( Tlw ) magnetization prepared 
rapid acquisition gradient echo ( MP - RAGE ) , T2 - weighted 
( T2w ) fast spin echo , fluid - attenuated inversion recover 
( FLAIR ) , susceptibility - weighted imaging ( SWI ) , and pre / 
post - contrast Tlw fast spin echo in three projections . Addi 
tional sequences for presurgical mapping included Diffusion 
Tensor imaging ( DTI ) for track tracing , T - fMRI for motor 
and language localization , and RS - fMRI . 
[ 0066 ] Both the task and resting state fMRI were acquired 
using echo planar imaging ( EPI ) ( voxel size 3x3x3 mm ; 
TE = 27 ms ; TR = 2.2 S ; field of view = 256 mm ; flip 
angle = 90 ° ) . The language T - fMRI employed a block design 
in which patients covertly generated words in response to a 
visually presented first letter . Five task / rest blocks ( 10 
frames each ) were acquired over a total of 90-100 frames 
( 3:40 min total per T - fMRI run ) . For most subjects , two 
language task sessions were acquired , and the run with the 
lowest root - mean - square head motion measure was used in 
the present analysis . RS - fMRI was acquired in two 160 
frame runs ( total of 320 frames = 11 : 44 min ) . 
[ 0067 ] The fMRI data were preprocessed using previously 
described techniques using locally written software . Prepro 
cessing was identical for RS - fMRI and for T - fMRI and 
included compensation for slice dependent time shifts , 
elimination of systemic odd - even slice intensity differences 
due to interleaved acquisition , and rigid body correction for 
head movement within and across runs . Atlas transformation 
was achieved by composition of affine transforms connect 
ing the fMRI volumes with the T2 - weighted and MPRAGE 
structural images , resulting in a volumetric time series in ( 3 
mm cubic ) atlas space . Additional preprocessing included : 
spatial smoothing ( 6 mm full width half maximum Gaussian 
blur in each direction ) , voxelwise removal of linear trends 

over each run , and temporal low pass filtering retaining 
frequencies < 0.1 Hz . Spurious variance was reduced by 
regression of nuisance waveforms derived from head motion 
correction and extraction of the time series from regions of 
white matter and CSF . The whole brain ( “ global ” ) signal was 
included as a nuisance regressor . Frame censoring was 
performed to minimize the impact of head motion on the 
correlation results . Thus , frames ( volumes ) in which the root 
mean square ( evaluated over the whole brain ) change in 
voxel intensity relative to the previous frame exceeded 0.5 % 
( relative to the whole brain mean ) were excluded from the 
functional connectivity computations . All fMRI data 
acquired in each patient were pooled during preprocessing . 
Thus , the T - fMRI and RS - fMRI data were mutually co 
registered in each patient . Additionally , all T - fMRI and 
RS - fMRI data in all patients were resampled in a standard 
atlas space . No attempt was made to correct for the mass 
effect of tumors . To match acquisition durations of RS - fMRI 
and T - fMRI ( 11:44 vs. 3:40 min ) , 100 contiguous frames 
were selected from preprocessed RS - fMRI data for com 
parisons with T - fMRI . Additionally , the full quantity of 
RS - fMRI data was compared to T - fMRI . T - fMRI responses 
were evaluated using standard general linear model meth 
ods . Activation maps were generated from the T - fMRI as 
described previously , smoothed with a 10 mm Gaussian 
filter , and masked to exclude extra - cranial voxels . Neither 
response clustering nor thresholding was done . 
[ 0068 ] Normal human resting state fMRI data ( N = 2,795 ) 
were obtained from the Brain Genomics Superstruct Project 
( GSP ) ( Harvard University ) and ongoing studies at Wash 
ington University in St. Louis including the Alzheimer's 
Disease Research Center ( ADRC ) , the Dominantly Inherited 
Alzheimer's Network ( DIAN ) , and studies by the Division 
of Infectious Diseases HIV Program ( HIV ) ( Table 2 ) . Sta 
tistical analysis of network FC ( evaluated within and across 
the default mode network , the dorsal attention network , 
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vision network , and deep gray structures ) between the 
different data sets revealed no significant group effect attrib 
utable to study . Each subject had ~ 14 min of resting state 
fMRI data ( TR = 3,000 ms , 3 mm cubic ) which was pro 
cessed using standard methods . Resting state networks 
( RSNs ) were identified using a set of 169 region of interests 
( ROI ) divided into 11 RSNs . Multiple ( n = 268,000 ) example 
sets were generated from the data and then divided into a 
training ( N = 18,7600 ) and validation ( N = 80,400 ) sets . A 3D 
convolutional neural network ( 3DCNN ) was trained to clas sify brain regions as belonging to a priori assigned RSNs . 
The 3DCNN consisted of 49 layers and 3 dense blocks that 
performed 3 and 5 cubic convolutions . Batch normalization 
was used within the network to prevent overfitting and 
improve performance , and average pooling was used for 
dimensionality reduction . Training was terminated if the 
accuracy did not improve after 3 validations . The 3DCNN 
was implemented in Matlab R2019b using standard deep 
learning functions and architectures . Additional details 
about convolutional networks may be found in , for example , 
Huang G , Liu Z , Van Der Maaten L , et al . Densely connected 
convolutional networks . In : Proceedings30th IEEE Con 
ference on Computer Vision and Pattern Recognition , CVPR 
2017 .; 2017 , the disclosure of which is hereby incorporated 
herein by reference in its entirety . 
[ 0069 ] For each of 35 tumor patients the T - fMRI results 
were compared to the 3DCNN results obtained with 
matched data samples , i.e. , 100 contiguous frames of RS 
fMRI . Additionally , the 3DCNN analysis was run using all 
available data ( 320 RS - fMRI frames per subject ) . 3DCNN 
maps representing the probability of language representation 
were smoothed with stride - 1 mode filtering and length - 3 box 
filtering . 

and Wernicke . Pink arrows indicate task responses in the 
right anterior insula and dorsal anterior cingulate cortex 
( core task - control regions ) . Red arrows indicate task 
responses in antero - lateral prefrontal cortex and superior 
parietal lobule ( dorsal attention and fronto - pariental control 
networks ) . 
[ 0071 ] Language representation in the brain resides pri 
marily on two areas of the left cerebral cortex : Broca's area , 
located in inferior frontal cortex ( roughly , Brodmann areas 
44 and 45 ) and frontal operculum , is required for fluid 
performance of phonemic or semantic tasks . Wernicke's 
area extends over portions of temporal and parietal cortex 
and is essential for understanding written or spoken lan 
guage . The Broca - Wernicke model embodies core expres 
sive and receptive language functions but omits auxiliary 
functions such as reading . 
[ 0072 ] The ground truth was defined for language repre 
sentation using T - fMRI responses aggregated by Neuro 
synth . This representation was confined to the left hemi 
sphere to simplify comparison between the Neurosynth 
regions and those derived in our patients . To define T - fMRI 
based language ROIs , Neurosynth was using " language 
comprehension ” as a search term , which identified 107 
studies ( as of November 2018 ) contributing coordinates in 
Talairach atlas space , each coordinate associated with a 
Z - score corresponding to the null hypothesis of equally 
likely activation anywhere in the brain . The returned asso 
ciation map ( threshold at Z > 3.7 by Neurosynth ) was passed 
through smoothing and clustering operations ( see below ) , 
ultimately yielding Broca- and Wernicke - like ROIs in volu 
metric atlas space . 
[ 0073 ] The following steps were taken to obtain Broca 
and Wernicke - like ROIs starting with a " language compre 

TABLE 2 

Studies used to obtain normal training data . 

GSP ADRC DIAN HIV 

N 
Age ( std ) 
Scanner 

1,137 
21.4 ( 2.4 ) 

Trio 

1,289 
68.1 ( 7.9 ) 

Trio / 
Biograph 

4.0 

336 
40.9 ( 10.9 ) 

Trio / 
Verio 

3.3 

775 
44.3 ( 16.3 ) 

Trio / 
Prisma 

4.0 3.0 

90 

Voxel Size in cubic 
mm 

Flip angle in degrees 
Repetition time ( TR ) 
in ms 
Total number of fMRI 
frames 

85 

3,000 
90 

2,200 
80 

3,000 2,200 

248 328 140 328 

Refer to text for acronyms and citations . 

[ 0070 ] FIG . 3 depicts 3DCNN maps and T - fMRI 
responses focusing on language localization . All RS - fMRI 
and T - fMRI results are averages over 35 patients . Surface 
plots show probabilities thresholded at p > 0.02 . Top row 
shows lateral surface plots ; middle row shows medial sur 
faces ; bottom row shows sagittal , coronal , and axial views at 
coordinate x = 38 , y = 98 , z = 75 on the 711-2B atlas using 
radiologic conventions ( left body on right image ) . Columns 
show : ( A ) 3DCNN language ( LAN ) map computed using 
320 frames per patient ( all available RS - fMRI data ) . ( B ) 
3DCNN LAN map computed with only 100 frames per 
patient . ( C ) Word stem completion T - fMRI responses . ( D ) 
Neurosynth map derived with the search term , “ language 
comprehension . ” White arrows indicate the areas of Broca 

hension " map ( units = Z - score ) generated by Neurosynth in 2 
cubic mm MNI152 atlas space : 

[ 0074 ] 1. Gaussian smooth using a kernel of 1 mm full 
width at half maximum ( FWHM ) in each cardinal 
direction . 

[ 0075 ] 2. Transform Z - scores > 0 to probability maps 
using the hyperbolic tangent and threshold at Z - score 
> 3.7 . 

[ 0076 ] 3. Retain two largest clusters to generate initial 
estimates of Broca and Wernicke regions in the left 
hemisphere . 

[ 0077 ] 4. Gaussian smooth using a 3 mm FWHM iso 
tropic kernel in each cardinal direction . 
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[ 0078 ] 5. Resolve overlapping clusters into two disjoint 
ROIs by assigning multiply labeled voxels to the ROI 
with the nearest center of mass . 

[ 0079 ] fMRI preprocessing , denoising , and computation 
of RS - fMRI and T - fMRI responses were done using the 4dfp 
software library . MATLAB R2019b was used for statistical 
computations and visualization . Connectome Workbench , 
version 1.2.3 , was used to map volumetric data onto the 
PALS - B12 mid - thickness surfaces and rendered on the cor 
responding inflated surface . 
[ 0080 ] RS - fMRT and T - fMRI produce native measure 
ments with distinct statistical properties . Acceptable con 
ventions for image processing , denoising , and significance 
testing have evolved distinctly for these functional imaging 
methods . Additionally , highly non - linear deep learning 
architectures such as 3DCNNs have unknown statistical 
properties when applied to functional imaging data . To 
enable meaningful statistical comparisons in our data , 
probabilistic strategies were used to enhance the detection of 
the population - invariant language network and reduce the 
influence of experimental conventions , differential prepro 
cessing and the biological variability arising from the use of 
normal training data but pathophysiologic testing data . Spe 
cifically , common image processing pipelines were reused 
wherever possible in our analyses . All method - specific met 
rics were reduced to normalized probability maps . For 
purposes of group - level inferences , for each patient , all 
temporal imaging information was contracted into T - fMRI 
activations or RS - fMRI membership in RSNs . As described 
in the preprocessing methods , all T - fMRI and RS - fMRI data 
were co - registered to a standardized atlas . Consequently , 
spatially distributed measures of task activation or resting 
state network membership retained co - registration in atlas 
space . Arithmetic averages of patient data were used prior to 
computing comparative analyses at the group - level . Finally , 
method - dependent thresholds were used for detection of 
language networks by analysis of receiver operating char 
acteristics ( ROC ) . ROC computations made exclusive use of 
the perfcurve method from Matlab . Significance testing at 
alpha = 0.05 included computation of point - wise confidence 
intervals on true positive rates by vertical averaging over 
101 false positive rate intervals and resampling with 10,000 
bootstrap iterations . All other parameterizations of perfcurve 
were default values . 
[ 0081 ] FIGS . 3A - 3D ( collectively FIG . 3 ) show group 
level localizations of the language network . FIGS . 3A and 
3B are computed from 3DCNN analysis of RS - fMRI , using 
the full amount of available resting state data ( 3A ) , and one 
third of the available data ( 3B ) , comparable to the amount of 
data available in the T - fMRI . FIG . 3C is a group level 
language map computed from the T - fMRI response to word 
stem completion . FIG . 3D is derived from the Neurosynth 
platform using the search term “ language comprehension . ” 
Both T - fMRI and RS - fMRI clearly identify Broca and 
Wernicke regions . The 3DCNN method provides highly 
specific maps with large probability gradients at the margin 
of the language regions , as would be expected of a method 
trained on thousands of exemplars including millions of 
internal parameters . The T - fMRI experiment focused on 
expressive language and therefore emphasizes Broca's 
region . The 3DCNN map reflects the properties of sponta 
neous activity which characteristically is more symmetric 
than task responses . Robust delineation of both Broca's and 

Wernicke's area is not surprising as the 3DCNN was trained 
to recover the topography of T - fMRI responses in RS - fMRI 
data . 
[ 0082 ] FIGS . 4A - 4D ( collectively FIG . 4 ) depict ( A ) 
3DCNN map of the CON . ( B ) 3DCNN map of the FPN . ( C ) 
3DCNN map of the DAN . ( D ) T - fMRI responses ( repro 
duced from FIG . 3C ) . Pink arrows point to components of 
the cingulo - opercular network ( CON ) . Red arrows point to 
components of the dorsal attention network ( DAN ) and 
fronto - parietal control network ( FPC ) . See text for discus 
sion of these task - general functional systems . 
[ 0083 ] The crucial difference between the two methods is 
that the word stem completion task activates areas not 
specifically associated with language ( pink and red arrows in 
FIGS . 3-4 ) in addition to areas that are specifically associ 
ated with language ( pink arrows in FIGS . 3-4 ) . Task - general 
responses occur in the cingulo - opercular network , the dorsal 
attention system , and fronto - parietal control network . Addi 
tional discussion of these task - general systems is given 
below . 
[ 0084 ] FIGS . 5A and 5B ( collectively FIG . 5 ) depict ROC 
curves for mapping the language network . Curves are from 
3DCNN using 320 ( blue ) or 100 ( red ) resting - state fMRI 
frames . Additional curves are from 100 ( yellow ) T - fMRI 
frames . Ground truth labels are binary classes derived from 
thresholded Neurosynth data . All curves were constructed 
after averaging over 35 brain tumor patients . ( A ) Broca's 
area and ( B ) Wernicke's area are assessed separately . 
[ 0085 ] The topography of T - fMRI and RS - fMRI maps was 
assessed in relation to language ROIs defined on the basis of 
aggregated fMRI responses to language tasks ( FIG . 3D ) . 
ROC curves for Broca's area and Wernicke's area in FIG . 5 . 
[ 0086 ] In Broca's area , the 3DCNN AUC exceeded that 
for T - fMRI for both lengths of data , full length AUC = 0.9516 
[ 0.9469 , 0.9556 ] vs. 0.9100 [ 0.8992 0.9196 ] and for 100 
frame data AUC = 0.9545 [ 0.9502 , 0.9587 ] vs. 0.9100 
[ 0.8992 , 0.9196 ] . Notably , the AUC between the 3DCNN 
full length data and that for the shortened 100 frame data had 
overlapping 95 % confidence intervals . 
[ 0087 ] In Wernicke's area , the differences between the 
3DCNN AUC and that of the T - fMRI was much larger , full 
length AUC = 0.9490 [ 0.9450 , 0.9527 ] vs. 0.6679 [ 0.6549 , 
0.6811 ] and for 100 frame data AUC = 0.9495 [ 0.9449 , 
0.9537 ] vs. 0.6679 [ 0.6549 , 0.6811 ] . As in the Broca's case , 
the AUC between the 3DCNN full length data and that for 
the shortened 100 frame data had overlapping 95 % confi 
dence intervals . 
[ 0088 ] This section demonstrates two case examples of the 
ability of the 3DCNN method to provide data acquired in 
individual patients and a comparison between the 3DCNN 
method and the T - fMRI at the individual level . Individual 
cases took approximately 4 h of computation time on a Dell 
( Austin , Tex . ) Power Edge 18 core with Nvidia ( Santa Clara , 
Calif . ) v100 GPU . 
[ 0089 ] FIG . 6 depicts exemplar patient RS003 with glio 
blastoma multiforme in the left basal ganglia region . ( A ) 
Contrast - enhanced T1 and ( B ) fluid - attenuated inversion 
recovery demonstrating the tumor and surrounding edema . 
( C ) Probability map of language network from 3DCNN with 
significant overlap of the tumor and ( D ) probability map of 
language from the T - fMRI also showing overlap over the 
tumor . Deep learning results show probabilities > 0.02 . Task 
fMRI thresholds are varied in accordance with clinical 
practice . 
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[ 0090 ] Case 1. Images from a 44 year old right handed 
male ( RS003 ) with glioblastoma multiform in the left basal 
ganglia region are presented in FIG . 6. The top two rows 
display the anatomy with a post contrast T1 - weighted and 
FLAIR images . The bottom two rows display the language 
localization information from the 3DCNN and T - fMRI over 
lying the anatomical images . The T - fMRI is provided at 
several thresholds in accordance with clinical practice . 
Although the T - fMRI appears noisier ( bottom row ) than the 
3DCNN ( third row ) , the information provided by both 
methods is similar with significant overlap of the localized 
language area with the tumor location . 
[ 0091 ] FIG . 7 depicts exemplar patient RS004 with high 
grade glioma with anaplastic features in the subcortical left 
frontal lobe . ( A ) Contrast - enhanced T1 and ( B ) fluid - attenu 
ated inversion recovery demonstrating the tumor and sur 
rounding edema . ( C ) Probability map of language network 
from 3DCNN with mild overlap of the tumor and ( D ) 
probability map of language from the T - fMRI also showing 
mild overlap over the tumor . Deep learning results show 
probabilities > 0.02 . Task fMRI thresholds are varied in 
accordance with clinical practice . 
[ 0092 ] Case 2. Images from a 24 years old right handed 
male ( RS004 ) with anaplastic glioma in the subcortical left 
frontal lobe are presented in FIG . 5. As in Case 1 , 
two rows display the anatomy with a post contrast 
T1 - weighted and FLAIR images . The bottom two rows 
display the language localization information from the 
3DCNN and T - fMRI overlying the anatomical images . In 
this case , the sagittal views of the two methods are very 
similar , although the 3DCNN ( third row ) demonstrates more 
overlap of the language localization with the tumor as 
compared to the T - fMRI ( bottom row ) . 
[ 0093 ] The current work demonstrates that the represen 
tation of language in the brain can be identified using 
3DCNN analysis of RS - fMRI data ( FIG . 3 , white arrows ) . It 
should be noted that the 3DCNN was trained to identify 
language - associated parts of the brain using T - fMRI 
acquired at Washington University School of Medicine 
( same training set used previously ] . The Neurosynth - derived 
map was obtained from an independent meta - analysis of 
reported neuroimaging studies . Nevertheless , the 3DCNN 
and Neurosynth maps are strikingly similar . 
[ 0094 ] The differences between T - fMRI and 3DCNN 
maps are instructive . The word - stem completion task acti 
vated the dorsal anterior cingulate ( dACC ) ( a.k.a the rostral 
cingulate zone ) as well as the right anterior insula ( FIGS . 
3-4 , pink arrows ) . These regions are components of the 
salience network , also known as core task - control regions . 
The core task control system is recruited by a wide variety 
of goal - directed behaviors . Functions attributed to the dACC 
include task control , error monitoring , and conflict detec 
tion . Additional T - fMRI responses not specific to the LAN 
occurred in the left superior parietal lobule and the left 
middle frontal gyms . These regions are components of the 
dorsal attention network ( DAN ) and the fronto - parietal 
control network ( FPC ) ( FIGS . 3-4 , red arrows ) . The DAN 
responds to any task requiring directed spatial attention . The 
FPC supports goal - directed analysis of environmental 
stimuli . These functional systems are recruited by the word 
stem completion task as it requires directing attention to and 
analyzing stimuli presented on an electronic display . 
[ 0095 ] The present results raise the possibility of distin 
guishing between parts of the brain that are language spe 

cific vs. task - general . This distinction may be of value in 
selected neurosurgical cases . Although the DAN and dACC 
are not conventionally classified as “ eloquent ” , injury to 
these areas can lead to attentional deficits and to loss of 
motivated behaviors , respectively . 
[ 0096 ] An additional important observation evident in 
FIG . 3 is that the localization of the language network using 
the 3DCNN appears remarkably tolerant to limited quanti 
ties of RS - fRMI data . This characteristic could lead to 
reduced RS - fMRI acquisition times . 
[ 0097 ] FIG . 5 compares T - fMRI vs. 3DCNN as regards 
localization of Broca and Wernicke areas as defined a priori , 
according to a large collection of T - fMRI studies aggregated 
by Neurosynth . According to the AUC measure , 3DCNN 
had a small but significant advantage over T - fMRI in local 
izing Broca's area ( FIG . 5A ) . The difference was much 
larger in Wernicke's area ( FIG . 5B ) . This result is under 
standable as the word stem completion task is an expressive 
language task that preferentially activates Broca's area . 
Performing several different T - fMRI studies better charac 
terizes the language system . FIG . 5 also demonstrates 
3DCNN tolerance to a limited quantity of data : there is no 
significant difference in AUC corresponding to 100 vs. 320 
frames ( red and blue curves ) . 
[ 0098 ] The case examples demonstrate 3DCNN functional 
mapping in individual patients with brain tumors ( FIGS . 6 
and 7 ) . The higher specificity and sharper margins of the 
3DCNN method in comparison to T - fRMI is promising . A 
prospective comparison of the 3DCNN RS - fRMI method vs. 
T - fMRI remains to be done . 
[ 0099 ] Thus , it is demonstrated that 3DCNN analysis of 
RS - fMRI data is able to accurately and specifically localize 
the language network in patients with brain tumors . In 
addition to the inherent advantages of RS - fMRI , specifically , 
limited requirement for patient cooperation , the 3DCNN 
method provides robust results with limited quantities of 
data , which is an advantage in the clinical setting . This 
method may therefore lead to improved pre - surgical local 
ization in future applications . 
[ 0100 ] Further examples of application of the system 100 
to detection and mapping of resting state neural networks 
will be described below . 
[ 0101 ] Normal human resting state fMRI data ( N = 2010 ) 
were obtained from the Brain Genomics Superstruct Project 
( GSP ) and ongoing studies at Washington University in St. 
Louis , including healthy control data from the Alzheimer's 
Disease Research Center and HIV studies . All participants 
were deemed cognitively normal based on cognitive testing 
performed in each of the given studies . The appropriate 
Institutional Review Boards approved all studies , and all 
participants provided written informed consent . 
[ 0102 ] All neuroimaging was performed on a 3T Siemens 
scanner ( Siemens AG , Erlangen , Germany ) equipped with 
the standard 12 - channel head coil . A high - resolution , 3 - di 
mensional , sagittal , T1 - weighted , magnetization - prepared 
rapid gradient echo scan ( MPRAGE ) was acquired ( echo 
time [ TE ] = 16 milliseconds , repetition time [ TR ] = 2,400 mil 
liseconds , inversion time = 1,000 milliseconds , flip angle = 8 ° , 
256x256 acquisition matrix , 1 mm3 voxels ) . RS - fMRI scans 
were collected using a gradient spin - echo sequence ( voxel 
size = 3-4 mm3 , TR = 2200-3000 ms , FA = 80 ° -90 ° ) sensitive 
to BOLD contrast ( see Table 3 for details ) . Statistical 
analysis of network FC ( evaluated within the default mode 
network and dorsal attention network ) between the different 
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data sets revealed no significant group effect due to the 
different studies ( see Table 3 ) . Each subject had approxi 
mately 7-14 minutes of resting state fMRI data which was 
processed using standard methods developed at WUSM . 

TABLE 3 

Characteristics of MRI acquisition by study . 

GSP 
Trio 

ADRC 
Trio / Biograph 

HIV 
Trio / Prisma Scanner 

Voxel Size cubic mm 
Flip angle in degrees 
Repetition time ( TR ) 
ms 

Number frames 

3.0 
85 

3000 

4.0 
90 

2200 

4.0 
90 

2200 

250 328 328 

[ 0103 ] Structural data preprocessing was performed with 
FreeSurfer ( http://surfer.nmr.mgh.harvard.edu ) . Visual 
inspection of the automated segmentation results was per 
formed for quality assurance purposes and corrections were 
made when necessary . RS - fMRT Preprocessing methods 
were performed as previously described . Head motion was 
corrected using affine transformations , and additional in 
house methods were used to identify subjects with excessive 
movement for exclusion . Data also underwent whole brain 
signal regression , ventricular ( CSF ) and white matter signal 
regression , movement time - series regression , and low - pass 
temporal filtering to remove frequencies below 0.08 Hz . The 
structural MPRAGE and preprocessed RS - fMRI scans were 
cross - aligned using boundary - based registration . RS - fMRI 
scans were then transformed to common coordinates using 
a single non - linear interpolation . A 4 - mm full - width half 
maximum smoothing kernel was used in the surface space . 
[ 0104 ] 300 predefined seed regions of interest ( ROIs ) were 
used to assign voxels to one of 15 RSNs for generation of 
training data . The networks include dorsal somatomotor 
( SMD ) , ventral somatomotor ( SMI ) , cinguloopercular 
( CON ) , auditory ( AUD ) , default mode ( DMN ) , parietal 
memory ( PMN ) , visual ( VIS ) , frontoparietal ( FPN ) , salience 
( SAL ) , ventral attention ( VAN ) , dorsal attention ( DAN ) , 
medial temporal ( MET ) , reward ( REW ) , basal ganglia 
( BGN ) , and thalamus ( THA ) . Random subsampling of ROIS 
within a given predefined network was used to extract a 3D 
similarity map by computing the Pearson's product moment 
correlation between the mean of the subsampled BOLD 
signals and every other voxel in the brain . The 3D similarity 
map was then assigned to one of the 15 networks based on 
the highest correlation between the mean subsampled signal 
and the mean signal for each network , and the assigned 
network labes were used for classification when training the 
3DCNN . This process was applied in numerous iterations 
for each network and for each participant . 
[ 0105 ] FIG . 8 shows examples of 3D similarity maps of 
the DMN used for training . A total of 1,313,140 training 
instances were generated across all networks . Further , 
within each class 20 % of the training instances were aug 
mented by a combination of 3d random affine transforma 
tions ( rotations ( +5 degrees ) , translations ( 33 pixels ) ) , scal 
ing ( between 0.9-1.1 ) , sheering ( 13 degrees ) , and adding 
gaussian noise . Application of data augmentation has been 
shown in numerous studies to improve out of sample testing 
and prevent overfitting . Two hundred BOLD scans from our 
training data set were reserved for generating validation data 
for the 3DCNN , and validation samples were generated in 

the same manner as above . Approximately 200,000 valida 
tion samples were generated from the held out scans . 
[ 0106 ] After training , model outputs were compared using 
data from the midnight scan club ( MSC ) collected at 
WUSTL . The MSC contains data collected on 10 partici 
pants each scanned 10 subsequent days including 30 minutes 
of RS - fMRI . This data is openly available and has been well 
characterized in numerous studies . MSC data was used to 
evaluate model results when compared to Neurosynth task 
based maps , evaluate model performance when reducing the 
total number of BOLD time points , and evaluate model 
performance after noise was injected into the BOLD signal . 
Noise injection was performed by adding the scaled BOLD 
signal to a scaled pink noise signal . For example , to achieve 
10 % noise injection , the bold signal was rescaled to a [ -0.9 
0.9 ] interval , the noise signal was scaled to a ( -0.1 0.1 ] 
interval , and the signals were added together . A new noise 
signal was generated for each voxel . Similarity between 
results was measured using the multiscale structural simi 
larity index 
[ 0107 ] The Neurosynth platform was utilized to generate 
statistical maps of z - scores for x tests of significance on 
terms mapped to task activation coordinates . In short , the 
Neurosynth software platform provides automations for 
parsing texts of published T - fMRI studies to generate aggre 
gated task activation data into statistical maps of signifi 
cance . Neurosynth's term frequency - inverse document fre 
quency ( tf - idf ) scheme was used to map terms to task 
activations . Term frequency is the number of occurrences of 
a query term per document , evaluated over all documents . 
Inverse document frequency is log ( N / df ) for N documents 
and df defined to be the number of documents containing a 
query term . Neurosynth directly maps tf - idf scores to task 
activations using activation coordinates parsed from docu 
ments . Terms mapped to task activations were mapped to 
correlation coefficients using the hyperbolic tangent of 
Z - scores . The list of terms used in our analysis include 
“ attention ” ( corresponding to DAN ) , “ auditory ” , “ default 
mode ” , “ language ” ( corresponding to VAN ) , “ motor ” ( cor 
responding to SMD ) , “ reward ” , and “ visual ” . 
[ 0108 ] An artificial neural network receives 3D scan data 
as an input and analyzes the spatial relationship between 
voxels and how adjacent voxels are related . The artificial 
neural network may be a convolutional neural network , long 
short term memory network ( LSTM ) , feed forward nets , 
recurrent nets , or any other acceptable method of machine 
learning . The artificial neural network is trained to receives 
the 3D dataset and calculates the probability that a voxel 
belongs to a resting state network . In this example , a 
3DCNN is used which can accept a 3D dataset , wever , 
some machine learning methods ( e.g. MLP ) cannot accept 
3D inputs and require that scan data be reduced to 2D or 1D . 
[ 0109 ] A 3D convolutional neural network ( 3DCNN ) with 
73 layers was trained to classify each voxel of gray matter 
as belonging to a given RSN . The 3DCNN had a densely 
connected architecture , with residual layers nested within 
each of the 3 dense blocks . Within the network , 3 and 7 cubic 
convolutions were performed . The final output , as well as 
the output from each dense block was directly connected to 
the cross entropy layer after global average pooling and 20 % 
dropout , which has been shown to prevent overfitting 
through structural regularization , is more robust to spatial 
translations of the input , and requires less learnable param 
eters . Batch normalization , which helps to prevent overfit 
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ting and speed up training , was used prior to convolutional 
operations within the network . Leaky rectified linear units , 
which can cause the network to train faster and alleviate the 
“ dying ReLu ” problem of traditional Relu layers , were used 
after convolutions . Both max and average pooling were used 
between dense blocks for dimensionality reduction . Com 
bining max and average pooling has been shown in some 
studies to outperform a single technique . Each pooling layer 
was 2x2x2 with a stride of 2. Because the number of 
samples from each class ( network ) were not even , the 
3DCNN used a cross entropy loss function with weighted 
classification such that each class contributed equally to the 
loss function . Training was terminated if the accuracy did 
not improve after 3 validations . The 3DCNN was imple 
mented in Matlab R2019b . 
[ 0110 ] A majority of the cohort were Caucasian ( 69 % ) 
females ( 59 % ) , with an average age of 44.6 = 23.5 years and 
14.8-2.2 years of education . Detailed demographics are 
shown in Table 4 . 

or epilepsy may require more than 1000 images , however , 
studies for Alzheimer's may require as few as 250 images . 
[ 0117 ] However , stability varied per network as shown in 
FIG . 15 . 
[ 0118 ] FIG . 16 shows the structural similarity when com 
paring model results on processed MSC BOLD data to the 
same data injected with varying amounts of pink noise and 
reprocessed . Overall , the model maintained 0.9 structural 
similarity even after injecting 25 % -30 % noise in the original 
bold signal . 
[ 0119 ] FIG . 17 is a diagram of a deep learning workflow 
for an example 3DCNN that may be used in any of the 
example described herein . 
[ 0120 ) Two steps may be performed prior to the steps 
shown in FIG . 17. The first step is to retrieve a subject's MRI 
data set , such as from an image repository . The MRI data set 
includes , for the subject , both ( 1 ) RS - fMRI brain scan data 
( which may be referred to as the raw RS - fMRI scan data ) 
and ( 2 ) structural MR scan data . The second step is to 

TABLE4 

Total HIV ADRC GSP 

Number of participants 
Mean and STD of age 
% Female 
Mean and STD for 
education 
% Caucasian 

2010 
44.6 + 23.5 

59 % 
14.8 + 2.2 

206 
37.9 + 17.1 

52 % 
13.9 + 2.1 

665 
67.6 + 7.8 

60 % 
15.9 + 2.6 

1139 
21.3 + 2.7 

59 % 
14.3 + 1.9 

69 % 44 % 86 % 65 % 

a 

[ 0111 ] FIG . 9 shows the age distribution of the data used 
for training 
[ 0112 ] FIG . 10 shows training and validation results for 
the 3DCNN . The model achieved 99 % accuracy on training 
data and 97 % accuracy on out of sample validation data after 
8 epochs . 
[ 0113 ] FIG . 11 shows the RSN segmentation based on the 
maximum probability produced by the 3DCNN averaged 
across all 2010 participants . 
[ 0114 ] FIG . 12A shows the mean probability values aver 
aged over each RSN based on the maximum probability 
mask shown in FIG . 11. The highest average probabilities 
were observed in VIS , SMD , THA , and BGN . Similarly , 
FIG . 12B shows the average geometric mean by RSN . The 
greatest values were observed in VAN , CON , and REW , and 
again the smallest values observed in BGN and THA . FIG . 
12C shows the average values for the mean scaled by the 
standard deviation . The BGN , SMD , SMI , and THA showed 
the greatest probabilities . FIG . 12D shows the total area for 
each network , with VIS , DMN , and FPN covering the 
greatest area . 
[ 0115 ] FIG . 13 visualizes the metrics shown in FIG . 12 for 
the DMN . 
[ 0116 ] The model was further evaluated for stability of 
results based on number of BOLD time points and signal 
noise . FIG . 14 shows the result of reducing the total number 
of BOLD time points averaged over the MSC data . On 
average , the model maintained a 0.9 structural similarity 
when comparing 8000 time points to ~ 150 time points . 
While this shows that results are reliable with limited data , 
better results may be achieved than other methods by using 
larger sets of data . Different applications may require dif 
ferent quantities of RS - fMRI 3D image frames . For 
example , pre - surgical planning in patients with brain tumors 

perform preprocessing on the subject's MRI data set , For 
example , the fMRI data preprocessing may include , for 
example , compensation for slice dependent time shifts , 
elimination of systemic odd - even slice intensity differences 
due to interleaved acquisition , and rigid body correction for 
head movement within and across runs . Atlas transformation 
may be performed as part of the preprocessing and achieved 
by composition of affine transforms connecting the fMRI 
volumes with the T2 - weighted and MPRAGE structural 
images , resulting in a volumetric time series , for example , in 
( 3 mm cubic ) atlas space . Additional preprocessing may 
include : spatial smoothing ( e.g. , 6 mm full width half 
maximum Gaussian blur in each direction ) , voxel - wise 
removal of linear trends over each run , and temporal low 
pass filtering retaining frequencies < 0.1 Hz . Spurious vari 
ance may be reduced by regression of nuisance waveforms 
derived from head motion correction and extraction of the 
time series from regions of white matter and cerebral spinal 
fluid ( CSF ) . The whole brain ( “ global ” ) signal may be 
included as a nuisance regressor . Frame censoring may be 
performed to minimize the impact of head motion on the 
correlation results . Thus , frames ( volumes ) in which the root 
mean square ( evaluated over the whole brain ) change in 
voxel intensity relative to the previous frame exceeded some 
measure , for example , 0.5 % ( relative to the whole brain 
mean ) , may be excluded from the functional connectivity 
computations . 
[ 0121 ] The third step is to generate voxel - wise correlation 
map ( shown in FIG . 17 , on the left hand side ) . A voxel - wise 
correlation map identifies , for each volume element ( voxel ) 
of the brain , a measure of the degree of time correlation 
between the spontaneous brain activations at a particular 
voxel of the brain and the spontaneous brain activations at 
every grey matter voxel of the brain ( with standard masks 
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being used to isolate gray matter voxels ) . In more detail , the 
correlation map consists of a calculated measure of time 
correlation ( e.g. , a Pearson - product moment correlation 
coefficient ) reflecting the time correlation between the spon 
taneous brain activations that occurred over the course of 
RS - fMRI scan at one brain voxel compared to spontaneous 
brain activations that occurred over the course of the fMRI 
scan at a second brain voxel , and this calculation of a 
correlation coefficient will be done for every voxel pair . In 
other words , where n equals the number of applicable brain 
voxels to be mapped ( 46,138 in the FIG . 17 example ) , the 
voxel - wise time correlation map is a [ 48 , 64 , 48 ] matrix 
representing the calculated correlation coefficient of every 
voxel with the voxel that we mean to classify . In this 
voxel - wise correlation map , each voxel has one time corre 
lation coefficient . 
[ 0122 ] The fourth step is to input ( image3dinput ) the 
voxel - wise correlation map ( i.e. , the 46,138 raw correlation 
maps ) generated in step 3 and to process the voxel - wise 
correlation map with the trained three - dimensional convo 
lutional neural network ( 3DCNN ) machine - learning algo 
rithm to generate functional mapping output . The 3DCNN in 
this example consist of 73 layers with 3 dense blocks that 
performed 3 dimensional convolutions ( yellow blocks ) , 
batch normalization ( green blocks ) , transfer functions ( leaky 
Relu , red blocks ) , and pooling ( purple blocks ) . 
[ 0123 ] The fifth step is to generate an output comprising a 
set of 17 functional connectivity ( aka resting state network ) 
output maps . Specifically , the 3DCNN classifies each cor 
relation map into one of 17 resting state networks based on 
the maximum probability derived from the output of the 
model ( classoutput ) . The processing by the 3DCNN gener 
ates , from a subject's MRI data set that includes rs - fMRI 
data , “ functional connectivity ” maps for the patient's brain 
that show the specific locations of , in the example shown in 
FIG . 17 , seventeen separate groupings of functionally con 
nected brain volume elements ( voxels ) , which are also 
referred to as “ resting state networks , ” or RSNs . These 
seventeen voxel groupings ( RSNs ) are each functionally 
connected because , for each of the seventeen voxel group 
ings , spontaneous brain activations occurring at each voxel 
are time correlated with spontaneous brain activations 
occurring at the other voxels in the same grouping . By 
design , the seventeen output voxel groupings correspond to 
seventeen brain functions of a predefined brain function 
topolography or schema . ( 1 ) dorsal somatomotor ( SMD ) , ( 2 ) 
ventral somatomotor ( SMI ) , ( 3 ) cinguloopercular ( CON ) , 
( 4 ) auditory ( AUD ) , ( 5 ) default mode ( DMN ) , ( 6 ) parietal 
memory ( PMN ) , ( 7 ) visual ( VIS ) , ( 8 ) frontoparietal ( FPN ) , 
( 9 ) salience ( SAL ) , ( 10 ) ventral attention ( VAN ) , ( 11 ) dorsal 
attention ( DAN ) , ( 12 ) medial temporal ( MET ) , ( 13 ) reward 
( REW ) , ( 14 ) basal ganglia ( BGN ) , ( 15 ) thalamus ( THA ) , 
( 16 ) cerebellum ( CRB ) , and ( 17 ) noise / nuisance / other 
( OTH ) . In other embodiments , an alternative brain function 
topology that may be used in the 3DCNN includes seven 
( rather than seventeen ) major brain functions ( aka RSNs ) , as 
follows : ( 1 ) Dorsal Attention Network ( DAN ) ; ( 2 ) Ventral 
Attention Network ( VAN ) , which may be defined to also 
include the Cingulo - Opercular Network ( CO ) ; ( 3 ) Senso 
rimotor ( aka Somatomotor ) Network ( SMN ) , which may be 
defined to also included the auditory network ( AN ) ; ( 4 ) 
Visual Network ( VIS ) ; ( 5 ) Frontoparietal Control Network 
( FPC ) ; ( 6 ) Language Network ( LAN ) ; and ( 7 ) Default Mode 
Network ( DMN ) . 

[ 0124 ] The 3DCNN is a supervised machine learning 
algorithm that utilizes training data with known class labels 
to iteratively adjust the weights within the layers of the 
network in order to define a mapping between the training 
samples and the known class labels . After training , the 
3DCNN is used by the device to produce a probability for 
the classification of each voxel to a certain brain function of 
the predefined brain functions of the topology employed 
( e.g. , 17 separate brain functions or RSNs as in the FIG . 17 
example ) 
[ 0125 ] The computer - implemented methods and processes 
described herein may include additional , fewer , or alternate 
actions , including those discussed elsewhere herein . The 
present systems and methods may be implemented using one 
or more local or remote processors , transceivers , and / or 
sensors ( such as processors , transceivers , and / or sensors 
mounted on vehicles , stations , nodes , or mobile devices , or 
associated with smart infrastructures and / or remote servers ) , 
and / or through implementation of computer - executable 
instructions stored on non - transitory computer - readable 
media or medium . Unless described herein to the contrary , 
the various steps of the several processes may be performed 
in a different order , or simultaneously in some instances . 
[ 0126 ] Additionally , the computer systems discussed 
herein may include additional , fewer , or alternative elements 
and respective functionalities , including those discussed 
elsewhere herein , which themselves may include or be 
implemented according to computer - executable instructions 
stored on non - transitory computer - readable media or 
medium . 
[ 0127 ] The methods and systems may be implemented 
using computer programming or engineering techniques 
including computer software , firmware , hardware , or any 
combination or subset . 
[ 0128 ] Aprocessor or a processing element may be trained 
using supervised or unsupervised machine learning , and the 
machine learning program may employ a neural network , 
which may be a convolutional neural network , a deep 
learning neural network , a reinforced or reinforcement 
learning module or program , or a combined learning module 
or program that learns in two or more fields or areas of 
interest . Machine learning may involve identifying and 
recognizing patterns in existing data in order to facilitate 
making predictions for subsequent data . Models may be 
created based upon example inputs in order to make valid 
and reliable predictions for novel inputs . 
[ 0129 ] Additionally or alternatively , the machine learning 
programs may be trained by inputting sample data sets or 
certain data into the programs , such as images , object 
statistics and information , historical estimates , and / or actual 
repair costs . The machine learning programs may utilize 
deep learning algorithms that may be primarily focused on 
pattern recognition , and may be trained after processing 
multiple examples . The machine learning programs may 
include Bayesian Program Learning ( BPL ) , voice recogni 
tion and synthesis , image or object recognition , optical 
character recognition , and / or natural language processing 
either individually or in combination . The machine learning 
programs may also include natural language processing , 
semantic analysis , automatic reasoning , and / or machine 
learning 
[ 0130 ] Supervised and unsupervised machine learning 
techniques may be used . In supervised machine learning , a 
processing element may include example inputs and their 
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associated outputs , and may seek to discover a general rule 
that maps inputs to outputs , so that when subsequent novel 
inputs are provided the processing element may , 
the discovered rule , accurately predict the correct output . In 
unsupervised machine learning , the processing element may 
be required to find its own structure in unlabeled example 
inputs . In one embodiment , machine learning techniques 
may be used to extract data about patient's likelihood to 
develop peripheral neuropathy . 
[ 0131 ] Based upon these analyses , the processing element 
may learn how to identify characteristics and patterns that 
may then be applied to analyzing image data , model data , 
and / or other data . For example , the processing element may 
learn , to identify trends that precede developing peripheral 
neuropathy based upon comparisons of different ratings 
from a plurality of patients over time . The processing 
element may also learn how to identify trends that may not 
be readily apparent based upon collected scan data , such as 
trends that precede a patient developing peripheral neuropa 
thy . 
[ 0132 ] In the exemplary embodiment , a processing ele 
ment may be instructed to execute one or more of the 
processes and subprocesses described above by providing 
the processing element with computer - executable instruc 
tions to perform such steps / sub - steps , and store collected 
data ( e.g. , trust stores , authentication information , etc. ) in a 
memory or storage associated therewith . This stored infor 
mation may be used by the respective processing elements 
to make the determinations necessary to perform other 
relevant processing steps , as described above . 
[ 0133 ] The aspects described herein may be implemented 
as part of one or more computer components , such as a client 
device , system , and / or components thereof , for example . 
Furthermore , one or more of the aspects described herein 
may be implemented as part of a computer network archi 
tecture and / or a cognitive computing architecture that facili 
tates communications between various other devices and / or 
components . Thus , the aspects described herein address and 
solve issues of a technical nature that are necessarily rooted 
in computer technology . 
[ 0134 ] Furthermore , the embodiments described herein 
improve upon existing technologies , and improve the func 
tionality of computers , by more reliably protecting the 
integrity and efficiency of computer networks and the 
devices on those networks at the server - side , and by further 
enabling the easier and more efficient identification an 
mapping of resting state neural networks . The present 
embodiments therefore improve the speed , efficiency , and 
reliability in which such determinations and processor 
analyses may be performed . Due to these improvements , the 
aspects described herein address computer - related issues 
that significantly improve the efficiency of healthcare diag 
nostics in comparison with conventional techniques . 
[ 0135 ] Exemplary embodiments of systems and methods 
for categorization of patients for likelihood of developing 
peripheral neuropathy based on hypersensitivity to cold 
assessments are described above in detail . The systems and 
methods of this disclosure though , are not limited to only the 
specific embodiments described herein , but rather , the com 
ponents and / or steps of their implementation may be utilized 
independently and separately from other components and / or 
steps described herein . 
[ 0136 ] Although specific features of various embodiments 
may be shown in some drawings and not in others , this is for 

convenience only . In accordance with the principles of the 
systems and methods described herein , any feature of a 
drawing may be referenced or claimed in combination with 
any feature of any other drawing . 
[ 0137 ] Some embodiments involve the use of one or more 
electronic or computing devices . Such devices typically 
include a processor , processing device , or controller , such as 
general purpose central processing unit ( CPU ) , a graphics 

processing unit ( GPU ) , a microcontroller , a reduced instruc 
tion set computer ( RISC ) processor , an application specific 
integrated circuit ( ASIC ) , a programmable logic circuit 
( PLC ) , a programmable logic unit ( PLU ) , a field program 
mable gate array ( FPGA ) , a digital signal processing ( DSP ) 
device , and / or any other circuit or processing device capable 
of executing the functions described herein . The methods 
described herein may be encoded as executable instructions 
embodied in a computer readable medium , including , with 
out limitation , a storage device and / or a memory device . 
Such instructions , when executed by a processing device , 
cause the processing device to perform at least a portion of 
the methods described herein . The above examples are 
exemplary only , and thus are not intended to limit in any way 
the definition and / or meaning of the term processor and 
processing device . 
[ 0138 ] The computer - implemented methods discussed 
herein may include additional , less , or alternate actions , 
including those discussed elsewhere herein . The methods 
may be implemented via one or more local or remote 
processors , transceivers , servers , and / or sensors , and / or via 
computer - executable instructions stored on non - transitory 
computer - readable media or medium . 
[ 0139 ] This written description uses examples to disclose 
the invention , including the best mode , and also to enable 
any person skilled in the art to practice the invention , 
including making and using any devices or systems and 
performing any incorporated methods . The patentable scope 
of the invention is defined by the claims , and may include 
other examples that occur to those skilled in the art . Such 
other examples are intended to be within the scope of the 
claims if they have structural elements that do not differ 
from the literal language of the claims , or if they include 
equivalent structural elements with insubstantial differences 
from the literal language of the claims . 
[ 0140 ] As used herein , the terms " about , ” “ substantially , ” 
" essentially " and " approximately " when used in conjunction 
with ranges of dimensions , concentrations , temperatures or 
other physical or chemical properties or characteristics is 
meant to cover variations that may exist in the upper and / or 
lower limits of the ranges of the properties or characteristics , 
including , for example , variations resulting from rounding , 
measurement methodology or other statistical variation . 
[ 0141 ] When introducing elements of the present disclo 
sure or the embodiment ( s ) thereof , the articles “ a , " " an , ” 
“ the , " and " said ” are intended to mean that there are one or 
more of the elements . The terms " comprising , ” “ including , " 
" containing , ” and “ having ” are intended to be inclusive and 
mean that there may be additional elements other than the 
listed elements . The use of terms indicating a particular 
orientation ( e.g. , " top , " “ bottom , ” “ side , ” etc. ) is for conve 
nience of description and does not require any particular 
orientation of the item described . 
[ 0142 ] As various changes could be made in the above 
constructions and methods without departing from the scope 
of the disclosure , it is intended that all matter contained in 
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the above description and shown in the accompanying 
drawing [ s ] shall be interpreted as illustrative and not in a 
limiting sense . 
What is claimed is : 
1. A method for mapping brain function of a subject , the 

method comprising : 
receiving a dataset of resting state fMRI ( RS - fMRI ) three 

dimensional ( 3D ) image frames of the subject's brain , 
the dataset comprising less than about 200 3D image 
frames ; 

inputting the 3D image frames to an artificial neural 
network , wherein for each voxel of each 3D image 
frame and for each resting state network of a plurality 
of resting state networks , the artificial neural network 
calculates a probability that the voxel belongs to the 
resting state network , wherein the artificial neural net 
work is trained beforehand using a plurality of 3D 
image frames including previously defined resting state 
networks obtained from a plurality of calibration sub 
jects ; and 

generating one or more functional map of the plurality of 
resting state networks of the subject's brain using the 
probabilities calculated by the artificial neural network . 

2. The method of claim 1 , wherein the artificial neural 
network comprises a deep learning architecture . 

3. The method of claim 1 , wherein the artificial neural 
network comprises a convolutional neural network . 

4. The method of claim 3 , wherein the artificial neural 
network comprises a 3D convolutional neural network . 

5. The method of claim 1 , wherein the artificial neural 
network is configured to consider 3D spatial relationships 
and relationships between adjacent voxels . 

6. The method of claim 1 , wherein the dataset comprises 
less than about 150 3D image frames . 

7. The method of claim 1 , further comprising generating 
3D correlation maps correlating each voxel in each 3D 
image frame to other time correlated voxels in the 3D image 
frame . 

8. The method of claim 7 , wherein inputting the 3D image 
frames to the artificial neural network comprises inputting 
the generated 3D correlation maps to the artificial neural 
network . 

9. A method for mapping brain function of a subject , the 
method comprising : 

receiving a dataset of resting state fMRI ( RS - fMRD three 
dimensional ( 3D ) image frames of the subject's brain ; 

inputting the 3D image frames to a deep learning artificial 
neural network , wherein for each voxel of each 3D 
image frame and for each resting state network of a 
plurality of resting state networks , the deep learning 
artificial neural network calculates a probability that the 
voxel belongs to the resting state network , wherein the 
deep learning artificial neural network is trained before 
hand using a plurality of 3D image frames including 
previously defined resting state networks obtained from 
a plurality of calibration subjects ; and 

generating one or more functional map of the plurality of 
resting state networks of the subject's brain using the 
probabilities calculated by the artificial neural network . 

10. The method of claim 9 , wherein the deep learning 
artificial neural network comprises a convolutional neural 
network . 

11. The method of claim 10 , wherein the artificial neural 
network comprises a 3D convolutional neural network . 

12. The method of claim 9 , wherein the artificial neural 
network is programmed to consider 3D spatial relationships 
and relationships between adjacent voxels . 

13. The method of claim 9 , further comprising generating 
3D correlation maps correlating each voxel in each 3D 
image frame to other time correlated voxels in the 3D image 
frame . 

14. The method of claim 13 , wherein inputting the 3D 
image frames to the artificial neural network comprises 
inputting the generated 3D correlation maps to the artificial 
neural network . 

15. A method for mapping of brain function of a subject 
for a purpose for which a first number of resting state fMRI 
( RS - fMRI ) three dimensional ( 3D ) image frames of the 
subject's brain is typically acquired , the method comprising : 

receiving a dataset of RS - fMRI 3D image frames of the 
subject's brain , the dataset comprising less than half of 
the first number of 3D image frames ; 

inputting the 3D image frames to an artificial neural 
network , wherein for each voxel of each 3D image 
frame and for each resting state network of a plurality 
of resting state networks , the artificial neural network 
calculates a probability that the voxel belongs to the 
resting state network , wherein the artificial neural net 
work is trained beforehand using a plurality of 3D 
image frames including previously defined resting state 
networks obtained from a plurality of calibration sub 
jects ; and 

generating one or more functional map of the plurality of 
resting state networks of the subject's brain using the 
probabilities calculated by the artificial neural network . 

16. The method of claim 15 , wherein the artificial neural 
network comprises a deep learning architecture . 

17. The method of claim 15 , wherein the artificial neural 
network comprises a convolutional neural network . 

18. The method of claim 17 , wherein the artificial neural 
network comprises a 3D convolutional neural network . 

19. The method of claim 15 , wherein the purpose com 
prises pre - surgical planning in a patient with brain tumors 
and epilepsy , and the first number of RS - fMRI 3D image 
frames is more than 1000 . 

20. The method of claim 19 , wherein the dataset com 
prising less than half of the first number of 3D image frames 
comprises less than 200 3D image frames . 

21. A method for mapping functions of the brain com 
prising : 

receiving an MRI data set for a subject comprising fMRI 
data acquired with the subject lying in MRI scanning 
equipment in a state of rest ; 

generating , from the MRI data set , a voxel - wise correla 
tion map that identifies , for each of a plurality of 
volume element ( voxel ) of the brain , a measure of the 
degree of time correlation between spontaneous brain 
activations at one voxel of the brain as revealed in the 
resting - state fMRI data and spontaneous brain activa 
tions at each of the other voxels of the plurality of bran 
voxels as revealed in the resting - state fMRI data ; 

inputting the voxel - wise correlation map to a trained 
three - dimensional convolutional neural network based 
machine learning algorithm to generate at least one 
functional connectivity map identifying a location 
where a predefined brain function is performed within 
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the subject's brain by identifying the voxels involved in 
performing that predefined brain function ; and 

generating an output of the at least one functional con 
nectivity map . 
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