
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0171094A1

Biderman et al.

US 20170171094A1

(43) Pub. Date: Jun. 15, 2017

(54)

(71)

(72)

(21)

(22)

(60)

(60)

PLAYLISTS FOR REAL-TIME OR NEAR
REAL-TIME STREAMING

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: David Biderman, San Jose, CA (US);
William May, JR., Sunnyvale, CA
(US); Alan Tseng, Cupertino, CA (US);
Roger Pantos, Scotts Valley, CA (US);
James David Batson, Saratoga, CA
(US)

Appl. No.: 15/390,201

Filed: Dec. 23, 2016

Related U.S. Application Data
Continuation of application No. 14/166.612, filed on
Jan. 28, 2014, now Pat. No. 9,558,282, which is a
continuation of application No. 13/593,040, filed on
Aug. 23, 2012, now Pat. No. 8,650,192, which is a
division of application No. 12/479,735, filed on Jun.
5, 2009, now abandoned.
Provisional application No. 61/167,524, filed on Apr.
7, 2009, provisional application No. 61/161,036, filed
on Mar. 17, 2009, provisional application No. 61/160,

Asses

- E

E888;

Siff

Newarks

693, filed on Mar. 16, 2009, provisional application
No. 61/142,110, filed on Dec. 31, 2008.

Publication Classification

Int. C.
H04L 12/80
H04L 29/08
U.S. C.
CPC H04L 47/34 (2013.01); H04L 67/02

(2013.01); H04L 67/06 (2013.01); H04L 65/60
(2013.01)

(51)
(2006.01)
(2006.01)

(52)

(57) ABSTRACT

Methods and apparatuses for real-time or near real-time
streaming of content using transfer protocols such as an
HTTP compliant protocol. In one embodiment, a method
includes dividing a stream of data, representing the contigu
ous time based content of a program (e.g. a live video
broadcast), into a plurality of distinct media files, and
generating a playlist file having a plurality of tags and
Universal Resource Indicators (URIs) indicating an order of
presentation of the plurality of distinct media files. The
plurality of media files and the playlist file can be made
available for transmission to a client device which can
retrieve the media files using the playlist file.

"Satisfity
Ågest

Assafia

"or "
888;

security
A&F

Patent Application Publication Jun. 15, 2017 Sheet 1 of 15 US 2017/0171094A1

Security
Ag8.

Networks

As88 fief

As883:

1. ro
Origi
888

--
... roseasonssonsists
O Seriy

&gai

Age:

Patent Application Publication Jun. 15, 2017. Sheet 2 of 15

receive iaia c. 8
provided

Sto's data to be provided on server

s s

orogo - - - www.www.

segment data
wax

8

Generate playist fiefs
&

waxwww.xxoooooooooramaxwww.rarwoowooxcoooo. S.

Store playiisi file(s) is server retory
ass

wxx-xxxx-x-xx-x-xxxx --

US 2017/0171094A1

200

230

240

250

... 3

Patent Application Publication Jun. 15, 2017. Sheet 3 of 15 US 2017/0171094A1

... 38
receive tiaia to 38 g fovici:

... SS

- 25

Si: 8 is resis: fies is sever 1883&ty r 23.

Generate playlist flets s: tags at . :
f8::iia file is stic83's

*88ws assissa data is be 33 {{wities Score payist iais is server neiyary

in response to request, transmit 388
... : $38cia iiies 33sii i8yiis; iii.2s ic

cié

Fig. 2B End D

Patent Application Publication Jun. 15, 2017. Sheet 4 of 15 US 2017/0171094A1

--aaraaaaaaaaa-aa-raxxarx-x-x-xA

St: -

receive data to be pavided

Stage at east terrigarasily cata is is
growiec (; $8:8:

wawa.

Receive gag:ast forgiayist Stre initiga: sets of exia fies is seiwa
{{}rres;33 sing to a skie:86 iaia f8::gry is stipis irats &ixodigs

23 a...wa. --------oo-ooooooo-o-a ...'

&aa Generate piayist fies with tags &n: jiayis
fia is saios raisri seiscist: it raise piayist. iia

is tie"; ... :

Siege giayist files in serves 8ay
i&isfit'ssis fiss it liesii is

8stors&c. &c.;8sts
rwa

272
V allock awaw

i: 88spoise $3 regas, 3ransirii piayi is fie
is tieri, ie piayi is: iiia specifying 88

awaiiaisie payists at he differer titate
escorings

--

Fig. 2C

Patent Application Publication Jun. 15, 2017 Sheet 5 of 15 US 2017/0171094A1

... :

330

is 3:
Sicre recia iais is is: exity

... 3
rvice sigs iiigi; ; ;&ia fie{S}

1re there more unplayed
-8sia flies in the piayis

Yes
Fig. 3A

Patent Application Publication Jun. 15, 2017 Sheet 6 of 15 US 2017/0171094A1

...- * 3.

fo - Request pisylist fie iron serves

375

... 38

Sicise giayi is is is} is clist aerary

385
from8, 8:33, 3:38

390
Yes

C&pg8 ::iiate
UU r

provicies aspist sieg exia fies. .
ciese site y 88" x 38-g: it'88
immo- OOOOOOOOOOOOO Yes

No bitrate change
--

- are media
* fies is is pays:

six-ski's

338

OOOOOOOOOOOOOOOOOOOOOOOOOOOOO < : tag i is: 8yis? :

Patent Application Publication Jun. 15, 2017 Sheet 7 of 15 US 2017/0171094A1

server stream Agents

O server stream gi: 3:

segmenter s

: six838

Applications
s

Eviory is:

NERFACES is - from - - x

Patent Application Publication Jun. 15, 2017 Sheet 8 of 15 US 2017/0171094A1

is 333i:3: 530

CONTRO. C&C

A&S
i.

S8: y :

INTERFACES) 516

Patent Application Publication Jun. 15, 2017 Sheet 9 of 15 US 2017/0171094A1

; :
38gi &g

...:*...-as- 3.
aratics: Sag

:8; 8 ag -:

Sequence as

... 3
Security Tag

ja:3ft is: Tag

Media File indicators

3:388:8: Playlist
sistics's

$fairs: y 8:

E: Tag

Patent Application Publication Jun. 15, 2017. Sheet 10 of 15 US 2017/0171094A1

Receive jiayist fie

*::::: 8:8 fies 38 ca: 1
piays fie

... 3

38:8; 88 gig.: sigi &is a:3: -:
::::::::iii. 8:8

a F3
c::::::: 1
irg:

, 750

f : ... X $38, its st

forward * sa

388 as {u: sign&is tases
3 ex:38s sistasy 8x 333
is fea:38; if r it, 8: 83

sists w8 F8& 33

3

Patent Application Publication Jun. 15, 2017. Sheet 11 of 15 US 2017/0171094A1

3.

s 3.
&
co

s
.

:

Patent Application Publication Jun. 15, 2017. Sheet 12 of 15 US 2017/0171094A1

EASRS & 88.S. iii. 8 sex.
Rigir ($8.88 8S SRA

8:Ei A. iii., iii S.AY.S. E.8. 8:
Sir AA seconds Rai. A sig-ER --
is RS 88ASE 8ASE (8 EAS REE Si.

$83.8 Åi38;&SE: $; $ $38. SiS is :
visiiahi RAY.S.

s:

A. Six'', 8 &Y.S. E.g. 8:8; 8 SS3888S
8:58. SY i.88 is 8AYS

Patent Application Publication Jun. 15, 2017. Sheet 13 of 15 US 2017/0171094A1

Refrieve AstoREEG, stoRE IN is
3888&&.8Y 88.888 (38.88, S8:::::::

i.S.

;: SE88: 8'88:::::: SY r
FRSAY.8, 388 A$$$$$$$ 3.

in 888 RARY 8:8; 88 Six: SRECSE
S$88: 83& 8;&S

8:8; 8:88: 888 & :::::: -
8&S $8; SS388: 8
&S iii. 8.3Y.S. iii:: S-88

& SS: iiii si...S.

88: 8888; SSC: 3 SECs
isia i...S.

US 2017/0171094A1

PLAYLISTS FOR REAL-TIME OR NEAR
REAL-TIME STREAMING

RELATED APPLICATIONS

0001. This application is a continuation of co-pending
U.S. application Ser. No. 14/166,612 filed Jan. 28, 2014,
which is a continuation of U.S. application Ser. No. 13/593,
040 filed on Aug. 23, 2012, now issued as U.S. Pat. No.
8,650,192, which is a divisional of U.S. patent application
Ser. No. 12/479,735, filed Jun. 5, 2009 which claims the
benefit of the filing dates of the following U.S. provisional
applications:
0002 (1) Application No. 61/142,110 filed on Dec. 31,
2008 (Docket No. P7437Z);
0003) (2) Application No. 61/160,693 filed on Mar. 16,
2009 (Docket No. P7437Z2);
0004 (3) Application No. 61/161,036 filed on Mar. 17,
2009 (Docket No. P7437Z3); and
0005 (4) Application No. 61/167,524 filed on Apr. 7,
2009 (Docket No. P7437Z4). All of these U.S. provisional
applications are incorporated herein by reference to the
extent that they are consistent with this disclosure.
0006. The present U.S. patent application is related to the
following U.S. patent applications, each of which is incor
porated herein by reference:
0007 (1) Application Ser. No. 12/479,690 (Docket No.
P7437 US 1), filed Jun. 5, 2009, entitled “REAL-TIME OR NEAR
REAL-TIME STREAMING:
0008 (2) Application Ser. No. 12/479,698 (Docket No.
P7437US2), filed Jun. 5, 2009, entitled “VARIANT STREAMS
FOR REAL-TIME OR NEAR REAL-TIME STREAMING:” and
0009 (3) Application Ser. No. 12/479,732 (Docket No.
P7437US3), filed Jun. 5, 2009, entitled “UPDATABLE REAL
TIME OR NEAR REAL-TIME STREAMING,

TECHNICAL FIELD

0010 Embodiments of the invention relate to data trans
mission techniques. More particularly, embodiments of the
invention relate to techniques that allow streaming of data
using non-streaming protocols such as, for example, Hyper
Text Transfer Protocol (HTTP).

BACKGROUND

0011 Streaming of content generally refers to multime
dia content that is constantly transmitted from a server
device and received by a client device. The content is usually
presented to an end-user while it is being delivered by the
streaming server. The name refers to the delivery method of
the medium rather than to the medium itself.
0012 Current streaming services generally require spe
cialized servers to distribute “live' content to end users. In
any large scale deployment, this can lead to great cost, and
requires specialized skills to set up and run. This results in
a less than desirable library of content available for stream
1ng.

SUMMARY OF THE DESCRIPTION

0013. In one embodiment, a server device stores at least
a portion of content to be streamed. The content is typically
a time based stream of images or audio (e.g. Sounds or
music) or both; an example of a time based stream is a movie
in which the order and presentation of images is based on
time, and hence it can be considered a time based stream.

Jun. 15, 2017

The server includes a segmenter agent to decompose the
content to be streamed into segments to be transmitted via
packets according to a network protocol and an indexer
agent to generate one or more playlist files that can facilitate
a client in presenting the segmented user data. A client
device is coupled with the server device (or another server
which stores the segments and playlists and transmits them
but does not generate them) via a network. The client device
has an assembler agent to receive the one or more playlist
files and facilitate retrieval of the segmented media files into
the content according to the one or more playlist files. The
client device can also have an output generator agent to
output the content via one or more output components of the
client device.
0014. In one embodiment, the server device acquires data
to be transmitted to the client device. The server device
divides the data to be transmitted into multiple media files
with a segmenter agent. The server device also stores the
multiple segments as individual media files in a memory.
The server device further generates one or more playlist files
having references to the multiple media files. In response to
requests for the data from the client device, the server device
(or another server device) transmits the one or more playlist
files and at least a subset of the multiple media files over a
network to the client device. The multiple media files can be
transmitted using a non-streaming transfer protocol in
response to requests from the client device; this protocol
may be, for example, HTTP.
10015. In one embodiment, the client device can receive
and store the one or more playlist files. The client then can
request the segmented media files identified in the playlist
file(s) and download the linked media flies. The client device
(or another client device) can then generate an audio and/or
Video output representing the stream of content.
0016. In one embodiment, an updated playlist can be
dynamically generated by a server and then retrieved by a
client. The updated playlist can include ancillary material
(e.g. advertisements in a sidebar user interface, related
content, alternative versions, etc.) shown in addition to the
program in the original playlist or can include additional
portions of the program (e.g. the second half of a program
which is beyond the first half identified in the original
playlist). In one implementation, a server can use a rolling
method, described herein, to update the playlist which is
then retrieved by the client as an updated playlist.
0017. In one embodiment, a playlist can specify a plu
rality of alternative streams representing the same content;
these alternative streams may be the same program trans
mitted at different visual resolutions (and hence transmitted
at different bit rates) or with other different attributes. A
server can generate multiple playlists, each for one of the
alternative streams and can generate a variant playlist which
refers to or otherwise specifies the alternative streams. The
server (or another server) can then transmit the variant
playlist to a client device, and the client device can decide,
based on current network conditions (e.g. the current
throughput rate on a network used to transfer the media
files), which playlist to select from the variant playlist, and
the client device can download the selected playlist (and
further download the media files specified by that selected
playlist).
0018. In one embodiment, a client device can switch
from a first playlist in the variant playlist to a second playlist
in that variant playlist while receiving and presenting con

US 2017/0171094A1

tent. For example, a client device can be receiving a pro
gram, using the first playlist, and a first bit rate and can
determine through measurements of the throughput rate of
the network that it can receive content of the same program
at a higher, second bit rate, that content being specified by
the second playlist. In this case, the client device can request
the second playlist, receive the second playlist and begin
retrieving the media files specified in the second playlist
while continuing to present the content specified by the first
playlist. The client device can store the media files and the
resulting decompressed content in buffers for both playlists,
and the client device can perform an automatic operation to
determine when and how to switch or transition between the
two versions of the content. For example, a client device can
use pattern matching of the audio content in the two versions
of the content to find a matching point in the two versions
and then cause a Switch after identifying a transition in the
new content from the second playlist.

BRIEF DESCRIPTION OF THE DRAWINGS

0019. The invention is illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings in which like reference numerals refer to similar
elements.
0020 FIG. 1 is a block diagram of one embodiment of a
server and clients that can send and receive real-time, or near
real-time, content.
0021 FIG. 2A is a flow diagram of one embodiment of a
technique for one or more server devices to support media
content using non-streaming protocols.
0022 FIG. 2B is a flow diagram of one embodiment of a
technique for one or more server devices to provide dynami
cally updated playlists to one or more client devices.
0023 FIG. 2C is a flow diagram of one embodiment of a
technique for one or more server devices to provide media
content to client devices using multiple bit rates.
0024 FIG. 3A is a flow diagram of one embodiment of a
technique for a client device to support streaming of content
using non-streaming protocols.
0025 FIG. 3B is a flow diagram of one embodiment of a
technique for a client device to support streaming of content
using multiple bit rates.
0026 FIG. 4 is a block diagram of one embodiment of a
server stream agent.
0027 FIG. 5 is a block diagram of one embodiment of a
client stream agent.
0028 FIG. 6 illustrates on embodiment, of a playlist file
with multiple tags.
0029 FIG. 7 is a flow diagram of one embodiment of a
playback technique for assembled streams as described
herein,
0030 FIG. 8 is a block diagram of one embodiment of an
electronic system.
0031 FIG. 9A is a flowchart showing an example of how
a client device can switch between alternative content in a
variant playlist.
0032 FIG.9B is a further flowchart showing how a client
device can Switch between content in two playlists.
0033 FIG.9C is a further flowchart showing an example
of how a client device can Switch between content using
audio pattern matching.
0034 FIG. 9D shows diagrammatically how the method
of FIG. 9C is implemented with audio pattern matching.

Jun. 15, 2017

DETAILED DESCRIPTION

0035. In the following description, numerous specific
details are set forth. However, embodiments of the invention
may be practiced without these specific details. In other
instances, well-known circuits, structures and techniques
have not been shown in detail in order not to obscure the
understanding of this description.
0036. The present description includes material protected
by copyrights, such as illustrations of graphical user inter
face images. The owners of the copyrights, including the
assignee of the present invention, hereby reserve their rights,
including copyright, in these materials. The copyright owner
has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office file or records, but other
wise reserves all copyrights whatsoever. Copyright Apple
Inc. 2009.
0037. In one embodiment, techniques and components
described herein can include mechanisms to deliver stream
ing experience using non-streaming protocols (e.g., HTTP)
and other technologies (e.g., Motion Picture Expert Group
(MPEG) streams). For example, near real-time streaming
experience can be provided using HTTP to broadcast a
“live' musical or sporting event, live news, a Web camera
feed, etc. In one embodiment, a protocol can segment
incoming media data into multiple media files and store
those segmented media files on a server. The protocol can
also build a playlist file that includes Uniform Resource
Identifiers (URIs) that direct the client to the segmented
media files stored on a server. When the segmented media
files are played back in accordance with the playlist file(s),
the client can provide the user with a near real-time broad
cast of a “live' event. Pre-recorded content can be provided
in a similar manner.
0038. In one embodiment, the server can dynamically
introduce Supplementary or alternative media content (e.g.,
advertisements, statistics related to a sporting event, addi
tional media content to the main presentation) into the
broadcast event. For example, during client playback of a
media event, the server can add additional URIs to the
playlist file, the URIs may identify a location from which a
client can download a Supplementary media file. The client
can be instructed to periodically retrieve from the server one
or more updated playlist file(s) in order to access any
Supplementary or additional (or both) media content the
server has introduced.
0039. In one embodiment, the server can operate in either
cumulative mode or in rolling mode. In cumulative mode,
the server can create a playlist file and append media file
identifiers to the end of the playlist file. The client then has
access to all parts of the stream from a single playlist file
(e.g., a user can start at the middle of a show) when
downloaded. In rolling mode, the server may limit the
availability of media files by removing media file identifiers
from the beginning of the playlist file on a rolling basis,
thereby providing a sliding window of media content acces
sible to a client device. The server can also add media file
identifiers to the playlist and, in rolling mode, the server can
limit the availability of media files to those that have been
most recently added to the playlist. The client then repeat
edly downloads updated copies of the playlist file to con
tinue viewing. The rolling basis for playlist downloading can
be useful when the content is potentially unbounded in time
(e.g. content from a continuously operated web cam). The

US 2017/0171094A1

client can continue to repeatedly request the playlist in the
rolling mode until it finds an end tag in the playlist.
0040. In one embodiment, the mechanism supports bit
rate Switching by providing variant streams of the same
presentation. For example, several versions of a presentation
to be served can be stored on the server. Each version can
have substantially the same content but be encoded at
different bit rates. This can allow the client device to switch
between bit rates depending on, for example, a detection of
the available bandwidth, without compromising continuity
of playback.
0041. In one embodiment, protection features may be
provided to protect content against unauthorized use. For
example, non-sequential media file numbering may be used
to prevent prediction. Encryption of media files may be
used. Partial media file lists may be used. Additional and/or
different protection features may also be provided.
0042 FIG. 1 is a block diagram of one embodiment of a
server and clients that can send and receive real-time, or near
real-time, content. The example of FIG. 1 provides a simple
server-client connection with two clients coupled with a
server via a network. Any number of clients may be Sup
ported utilizing the techniques and mechanisms described
herein. Further, multiple servers may provide content and/or
may operate together to provide content according to the
techniques and mechanisms described herein. For example,
one server may create the content, create the playlists and
create the multiple media (e.g. files) and other servers store
and transmit the created content.
0043 Network 110 may be any type of network whether
wired, wireless (e.g., IEEE 802.11, 802.16) or any combi
nation thereof. For example, Network 100 may be the
Internet or an intranet. As another example, network 110
may be a cellular network (e.g., 3G, CDMA). In one
embodiment, client devices 150 and 180 may be capable of
communicating over multiple network types (e.g. each
device can communicate over a WiFi wireless LAN and also
over a wireless cellular telephone network). For example,
client devices 150 and 180 may be smartphones or cellular
enabled personal digital assistants that can communicate
over cellular radiotelephone networks as well as data net
works. These devices may be able to utilize the streaming
mechanisms described herein over either type of network or
even Switch between networks as necessary.
0044 Server 120 may operate as a HTTP server in any
manner known in the art. That is server 120 includes a HTTP
server agent 145 that provides content using HTTP proto
cols. While the example of FIG. 1 is described in terms of
HTTP, other protocols can be utilized in a similar manner.
Segmenter 130 and indexer 135 are agents that reside on
server 120 (or multiple servers) to provide content in media
files with a playlist file as described herein. These media files
and playlist files may be provided over network 110 via
HTTP server agent 145 (or via other servers) using HTTP
protocols. Agents as discussed herein can be implemented as
hardware, software, firmware or a combination thereof.
0045 Segmenter 130 may function to divide the stream
of media data into multiple media files that may be trans
mitted via HTTP protocols. Indexer 135 may function to
create a playlist file corresponding to the segmented media
files so that client devices can reassemble the media files to
provide real-time, or near real-time, transmission of the
content provided by server 120. In response to one or more
requests from a client device, HTTP server agent 145 (or

Jun. 15, 2017

other servers) may transmit one or more playlist files as
generated by indexer 135 and media files of content as
generated by segmenter 130. Server 120 may further include
optional security agent 140 that provides one or more of the
security functions (e.g. encryption) discussed herein. Server
120 may also include additional components not illustrated
in FIG. 1.

0046 Client devices 150 and 180 may receive the playlist
files and media files from server 120 over network 110.
Client devices may be any type of electronic device that is
capable of receiving data transmitted over a network and
generate output utilizing the data received via the network,
for example, wireless mobile devices, PDAs, entertainment
devices, consumer electronic devices, etc. The output may
be any media type of combination of media types, including,
for example, audio, video or any combination thereof.
0047 Client device 150 can include assembler agent 160
and output generator agent 165. Similarly, client device 180
can include assembler agent 190 and output generator agent
195. Assembler agents 160 and 180 receive the playlist files
from server 120 and use the playlist files to access and
download media files from server 120. Output generator
agents 165 and 195 use the downloaded media files to
generate output from client devices 150 and 160, respec
tively. The output may be provided by one or more speakers,
one or more display screens, a combination of speakers and
display Screens or any other input or output device. The
client devices can also include memory (e.g. flash memory
or DRAM, etc.) to act as a buffer to store the media files (e.g.
compressed media files or decompressed media files) as they
are received; the buffer can provide many seconds worth of
presentable content beyond the time of content currently
being presented so that the buffered content can later be
displayed while new content is being downloaded. This
buffer can provide presentable content while the client
device is attempting to retrieve content through an intermit
tently slow network connection and hence the buffer can
hide network latency or connection problems.
0048 Client devices 150 and 180 may further Include
optional security agents 170 and 185, respectively that
provide one or more of the security functions discussed
herein. Client devices 150 and 180 may also include addi
tional components not illustrated in FIG. 1.
0049. In one embodiment, the techniques that are
described in this application may be used to transmit an
unbounded stream of multimedia data over a non-streaming
protocol (e.g., HTTP). Embodiments can also include
encryption of media data and/or provision of alternate
versions of a stream (e.g., to provide alternate bit rates).
Because media data can be transmitted soon after creation,
the data can be received in near real-time. Example data
formats for files as well as actions to be taken by a server
(sender) and a client (receiver) of the stream of multimedia
data are provided; however, other formats can also be
Supported.
0050. A media presentation that can be transmitted as a
simulated real-time stream (or near real-time stream) is
specified by a Universal Resource Indicator (URI) that
indicates a playlist file. In one embodiment, the playlist file
is an ordered list of additional URIs. Each URI in the playlist
file refers to a media file that is a segment of a stream, which
may be a single contiguous stream of media data for a
particular program.

US 2017/0171094A1

0051. In order to play the stream of media data, the client
device obtains the playlist file from the server. The client
also obtains and plays each media data file indicated by the
playlist file. In one embodiment, the client can dynamically
or repeatedly reload the playlist file to discover additional
and/or different media segments.
0052. The playlist files may be, for example, Extended
M3U Playlist files. In one embodiment, additional tags that
effectively extend the M3U format are used. M3U refers to
Moving Picture Experts Group Audio Layer 3 Uniform
Resource Locator (MP3 URL) and is a format used to store
multimedia playlists. A M3U file is a text file that contains
the locations of one or more media files for a media player
to play.
0053. The playlist file, in one embodiment, is an
Extended M3U-formatted text file that consists of individual
lines. The lines can be terminated by either a single LF
character or a CR character followed by a LF character. Each
line can be a URI, a blank line, or start with a comment
character (e.g. ii). URIs identify media files to be played.
Blank lines can be ignored. Lines that start with the com
ment character can be either comments or tags. Tags can
begin with iEXT, while comment lines can begin with it.
Comment lines are normally ignored by the server and
client. In one embodiment, playlist files are encoded in
UTF-8 format. UTF-8 (8-bit Unicode Transformation For
mat) is a variable-length character encoding format. In
alternate embodiments, other character encoding formats
can be used.
0054) In the examples that follow, an Extended M3U
format is utilized that includes two tags: EXTM3U and
EXTINF. An Extended M3U file may be distinguished from
a basic M3U file by a first line that includes “HEXTM3U”.
0055 EXTINF is a record marker that describes the
media file identified by the URI that follows the tag. In one
embodiment, each media file URI is preceded by an
EXTINF tag, for example:

0056 #EXTINF: <duration>, <title>
where “duration' specifies the duration of the media file and
"title' is the title of the target media file.
0057. In one embodiment, the following tags may be
used to manage the transfer and playback of media files:

0.058 EXT-X-TARGETDURATION
0059 EXT-X-MEDIA-SEQUENCE
0060 EXT-X-KEY
0061 EXT-X-PROGRAM-DATE-TIME
0062 EXT-X-ALLOW-CACHE
0063 EXT-X-STREAM-INF
0064 EXT-X-ENDLIST

These tags will each be described in greater detail below.
While specific formats and attributes are described with
respect to each new tag, alternative embodiments can also be
Supported with different attributes, names, formats, etc.
0065. The EXTX-TARGETDURATION tag can indi
cate the approximate duration of the next media file that will
be added to the presentation. It can be included in the
playback file and the format can be:

0.066 #EXT-X-TARGETDURATION:<seconds)
where “seconds' indicates the duration of the media file. In
one embodiment, the actual duration may differ slightly
from the target duration indicated by the tag. In one embodi
ment, every URI indicating a segment will be associated
with an approximate duration of the segment; for example,

Jun. 15, 2017

the URI for a segment may be prefixed with a tag indicating
the approximate duration of that segment.
0067. Each media file URI in a playlist file can have a
unique sequence number. The sequence number, if present,
of a URI is equal to the sequence number of the URI that
preceded it, plus one in one embodiment. The EXT-X-
MEDIA-SEQUENCE tag can indicate the sequence number
of the first URI that appears in a playlist file and the format
can be:

0068 HEXT-X-MEDIA-SEQUENCE:<numbers
0069 where “number is the sequence number of the
URI. If the playlist file does not include a #EXT-X-MEDIA
SEQUENCE tag, the sequence number of the first URI in the
playlist can be considered 1. In one embodiment, the
sequence numbering can be non-sequential; for example,
non-sequential sequence numbering such as 1, 5, 7, 17, etc.
can make it difficult to predict the next number in a sequence
and this can help to protect the content from pirating.
Another option to help protect the content is to reveal only
parts of a playlist at any given time.
(0070. Some media files may be encrypted. The EXT-X-
KEY tag provides information that can be used to decrypt
media files that follow it and the format can be:

(0071 #EXT-X-KEY:METHOD<methodd,
URI=“<URL>

(0072. The METHOD parameter specifies the encryption
method and the URI parameter, if present, specifics how to
obtain the key.
0073. An encryption method of NONE indicates no
encryption. Various encryption methods may be used, for
example AES-128, which indicates encryption using the
Advance Encryption Standard encryption with a 128-bit key
and PKCS7 padding see RFC3852. A new EXT-X-KEY
tag supersedes any prior EXT-X-KEY tags.
(0074. An EXT-X-KEY tag with a URI parameter identi
fies the key file. A key file may contain the cipher key that
is to be used to decrypt subsequent media files listed in the
playlist file. For example, the AES-128 encryption method
uses 16-octet keys. The format of the key file can be a
packed array of 16 octets in binary format.
(0075. Use of AES-128 normally requires that the same
16-octet initialization vector (IV) be supplied when encrypt
ing and decrypting. Varying the IV can be used to increase
the strength of the cipher. When using AES-128 encryption,
the sequence number of the media file can be used as the IV
when encrypting or decrypting media files.
0076. The EXT-X-PROGRAM-DATE-TIME tag can
associate the beginning of the next media file with an
absolute date and/or time and can include or indicate a time
Zone. In one embodiment, the date/time representation is
ISO/IEC 8601:2004. The tag format can be:

0.077 EXT-X-PROGRAM-DATE-TIME:<YYYY
MM-DDThh:mm:ss.Z>

(0078. The EXT-X-ALLOW-CACHE tag can be used to
indicate whether the client may cache the downloaded media
files for later playback. The tag format can be:

0079 EXT-X-ALLOW-CACHE:<YESINOd
0080. The EXT-X-ENDLIST tag indicates in one
embodiment that no more media files will be added to the
playlist file. The tag format can be:

0081) EXT-X-ENDLIST
In one embodiment, if a playlist contains the final segment
or media file then the playlist will have the EXT-X-END
LIST tag.

US 2017/0171094A1

I0082. The EXT-X-STREAM-INF tag can be used to
indicate that the next URI in the playlist file identifies
another playlist file. The tag format can be, in one embodi
ment:

0.083 EXT-X-STREAM.INF: attribute–value,
attribute–value *~URD

where the following attributes may be used. The attribute
BANDWIDTH=<nd is an approximate upper bound of the
stream bit rate expressed as a number of bits per second. The
attribute PROGRAM-ID=<i> is a number that uniquely
identifies a particular presentation within the scope of the
playlist file. A playlist file may include multiple EXT-X-
STREAM-INF URIs with the Same PROGRAM-ID to
describe variant streams of the same presentation. Variant
streams and variant playlists are described further in this
disclosure (e.g. see FIGS. 9A-9D).
0084. The foregoing tags and attributes can be used by
the server device to organize, transmit and process the media
files that represent the original media content. The client
devices use this information to reassemble and present the
media files in a manner to provide a real-time, or near
real-time, streaming experience (e.g. viewing of a live
broadcast Such as a music or sporting event) to a user of the
client device,
I0085. Each media file URI in a playlist file identifies a
media file that is a segment of the original presentation (i.e.,
original media content). In one embodiment, each media file
is formatted as a MPEG-2 transport stream, a MPEG-2
program stream, or a MPEG-2 audio elementary stream. The
format can be specified by specifying a CODEC, and the
playlist can specify a format by specifying a CODEC. In one
embodiment, all media files in a presentation have the same
format; however, multiple formats may be supported in
other embodiments. A transport stream file should, in one
embodiment, contain a single MPEG-2 program, and there
should be a Program Association Table and a Program Map
Table at the start of each file. A file that contains video
SHOULD have at least one key flame and enough informa
tion to completely initialize a video decoder. Clients
SHOULD be prepared to handle multiple tracks of a par
ticular type (e.g. audio or video) by choosing a reasonable
Subset. Clients should, in one embodiment, ignore private
streams inside Transport Streams that they do not recognize.
The encoding parameters for Samples within a stream inside
a media file and between corresponding streams across
multiple media files SHOULD remain consistent. However
clients SHOULD deal with encoding changes as they are
encountered, for example by Scaling video content to
accommodate a resolution change.
I0086 FIG. 2A is a flow diagram of on embodiment of a
technique for one or more server devices to support media
content using non-streaming protocols. The example of FIG.
2A is provided in terms of HTTP; however, other non
streaming protocols can be utilized in a similar manner. The
example of FIG. 2A is provided in terms of a single server
performing certain tasks. However, any number of servers
may be utilized. For example, the server that provides media
files to client devices may be a different device than a server
that segments the content into multiple media files.
I0087. The server device receives content to be provided
in operation 200. The content may represent live audio
and/or video (e.g., a sporting event, live news, a Web camera
feed). The content may also represent pro-recorded content
(e.g., a concert that has been recorded, a training seminar,

Jun. 15, 2017

etc.). The content may be received by the server according
to any format and protocol known in the art, whether
streamed or not. In one embodiment, the content is received
by the server in the form of a MPEG-2 stream; however,
other formats can also be supported.
I0088. The server may then store temporarily at least
portions of the content in operation 210. The content or at
least portions of the content may be stored temporarily, for
example, on a storage device (e.g., hard disk in a Storage
Area Network, etc.) or in memory. Alternatively, the content
may be received as via a storage medium (e.g., compact disc,
flash drive) from which the content may be transferred to a
storage device or memory. In one embodiment, the server
has an encoder that converts, if necessary, the content to one
or more streams (e.g., MPEG-2). This conversion can occur
without storing permanently the received content, and in
Some embodiments, the storage operation 210 may be omit
ted or it may be a longer term storage (e.g. an archival
storage) in other embodiments.
I0089. The content to be provided is segmented into
multiple media files in operation 220. In one embodiment,
the server converts a stream into separate and distinct media
files (i.e., segments) that can be distributed using a standard
web server. In one embodiment, the server segments the
media stream at points that support effective decode of the
individual media files (e.g., on pocket and key frame bound
aries such as PES packet boundaries and i-frame boundar
ies). The media files can be portions of the original stream
with approximately equal duration. The server also creates a
URI for each media file. These URIs allow client devices to
access the media files.
0090. Because the segments are served using HTTP
servers, which inherently deliver whole files, the server
should have a complete segmented media file available
before it can be served to the clients. Thus, the client may lag
(in time) the broadcast by at least one media file length. In
one embodiment, media file size is based on a balance
between lag time and having too many files.
0091. In one embodiment, two session types (live session
and event session) are supported. For a live session, only a
fixed size portion of the stream is preserved. In one embodi
ment, content media files that are out of date are removed
from the program playlist file, and can be removed from the
server. The second type of Session is an event session, where
the client can tune into any point of the broadcast (e.g., start
from the beginning, start from a mid-point). This type of
session can be used for rebroadcast, for example.
0092. The media files are stored in the server memory in
operation 230. The media files can be protected by a security
feature, Such as encryption, before storing the files in
operation 230. The media files are stored as files that are
ready to transmit using the network protocol (e.g., HTTP or
HTTPS) supported by the Web server application on the
server device (or supported by another device which does
the transmission).
0093. One or more playlist files are generated to indicate
the order in which the media files should be assembled to
recreate the original content in operation 240. The playlist
file(s) can utilize Extended M3U tags and the tags described
herein to provide information for a client device to access
and reassemble the media files to provide a streaming
experience on the client device. A URI for each media file
is included in the playlist file(s) in the order in which the
media files are to be played. The server can also create one

US 2017/0171094A1

or more URIs for the playlist file(s) to allow the client
devices to access the playlist file(s).
0094. The playlist file(s) can be stored on the server in
operation 250. While the creation and storing of media files
and playlist file(s) are presented in a particular order in FIG.
2A, a different order may also be used. For example, the
playlist file(s) may be created before the media files are
created or stored. As another example, the playlist file(s) and
media files may be created before either are stored.
0095. If media files are to be encrypted the playlist file(s)
can define a URI that allows authorized client devices to
obtain a key file containing an encryption key to decrypt the
media files. An encryption key can be transmitted using a
secure connection (e.g., HTTPS). As another example, the
playlist file(s) may be transmitted using HTTPS. As a further
example, media files may be arranged in an unpredictable
order so that the client cannot recreate the stream without the
playlist file(s).
0096. If the encryption method is AES-128, AES-128
CBC encryption, for example, may be applied to individual
media files. In one embodiment, the entire file is encrypted.
Cipher block chaining is normally not applied across media
files in one embodiment. The sequence of the media files is
use as the IV as described above. In one embodiment, the
server adds an EXT-X-KEY tag with the key URI to the end
of the playlist file. The server then encrypts all subsequent
media files with that key until a change in encryption
configuration is made.
0097. To switch to a new encryption key, the server can
make the new key available via a new URI that is distinct
from all previous key URIs used in the presentation. The
server also adds an EXT-X-KEY tag with the new key URI
to the end of a playlist file and encrypts all Subsequent media
files with the new key.
0098. To end encryption, the server can add an EXT-X-
KEY tag with the encryption method NONE at the end of the
playlist file. The tag (with "NONE” as the method) does not
include a URI parameter in one embodiment. All subsequent
media files are not encrypted until a change in encryption
configuration is made as described above. The server does
not remove an EXT-X-KEY tag from a playlist file if the
playlist file contains a URI to a media file encrypted with
that key. The server can transmit the playlist file(s) and the
media files over the network in response to client requests in
operation 270, as described in more detail with respect to
FIG 3A

0099. In one embodiment, a server transmits the playlist
file to a client device in response to receiving a request from
a client device for a playlist file. The client device may
access/request the playlist file using a URI that has been
provided to the client device. The URI indicates the location
of the playlist file on the server. In response, the server may
provide the playlist file to the client device. The client device
may the utilize tags and URIs (or other identifiers) in the
playlist file to access the multiple media files.
0100. In one embodiment, the server may limit the avail
ability of media files to those that have been most recently
added to the playlist file(s). To do this, each playlist file can
include only one EXT-X-MEDIA-SEQUENCE tag and the
value can be incremented by one for every media file URI
that is removed from the playlist file. Media file URIs can be
removed from the playlist file(s) in the order in which they
were added. In one embodiment, when the server removes a
media file URI from the playlist file(s) the media file remains

Jun. 15, 2017

available to clients for a period of time equal to the duration
of the media file plus the duration of the longest playlist file
in which the media file has appeared.
0101 The duration of a playlist file is the sum of the
durations of the media files within that playlist file. Other
durations can also be used. In one embodiment, the server
can maintain at least three main presentation media files in
the playlist at all times unless the EXT-X-ENDLIST tag is
present.
0102 FIG. 2B is a flow diagram of one embodiment of a
technique for one or more server devices to provide dynami
cally updated playlists to one or more client devices. The
playlists can be updated using either of the cumulative mode
or the rolling mode described herein. The example of FIG.
2B is provided in terms of HTTP; however, other non
streaming protocols (e.g. HTTPS, etc.) can be utilized in a
similar manner. The example of FIG. 2B is provided in terms
of a server performing certain tasks. However, any number
of servers may be utilized. For example, the server that
provides media files to client devices may be a different
device than the server that segments the content into mul
tiple media files.
0103) The server device receives content to be provided
in operation 205. The server may then temporarily store at
least portions of the content in operation 215. Operation 215
can be similar to operation 210 in FIG. 2A. The content to
be provided is segmented into multiple media files in
operation 225. The media files can be stored in the server
memory in operation 235. The media files can be protected
by a security feature. Such as encryption, before storing the
files in operation 235.
0104 One or more playlist flies are generated to indicate
the order in which the media files should be assembled to
recreate the original content in operation 245. The playlist
file(s) can be stored on the server in operation 255. While the
creation and storing of media files and playlist file(s) are
presented in a particular order in FIG. 2B, a different order
may also be used.
0105. The server (or another server) can transmit the
playlist file(s) and the media files over the network in
response to client requests in operation 275, as described in
more detail with respect to FIGS. 3A-3B.
0106 The playlist file(s) may be updated by a server for
various reasons. The server may receive additional data to be
provided to the client devices in operation 285. The addi
tional data can be received after the playlist file(s) are stored
in operation 255. The additional data may be, for example,
additional portions of a live presentation, or additional
information for an existing presentation. Additional data
may include advertisements or statistics (e.g. scores or data
relating to a sporting event). The additional data could be
overlaid (through translucency) on the presentation or be
presented in a sidebar user interface. The additional data can
be segmented in the same manner as the originally received
data. If the additional data constitutes advertisements, or
other content to be inserted into the program represented by
the playlist, the additional data can be stored (at least
temporarily) in operation 215, segmented in operation 225
and stored in operation 235; prior to storage of the seg
mented additional data, the segments of the additional data
can be encrypted. Then in operation 245 an updated playlist,
containing the program and the additional data, would be
generated. The playlist is updated based on the additional
data and stored again in operation 255. Changes to the

US 2017/0171094A1

playlist file(s) should be made atomically from the perspec
tive of the client device. The updated playlist replaces, in
one embodiment, the previous playlist. As discussed below
in greater detail, client devices can request the playlist
multiple times. These requests enable the client devices to
utilize the most recent playlist. In one embodiment, the
additional data may be metadata; in this case, the playlist
does not need to be updated, but the segments can be
updated to include metadata. For example, the metadata may
contain timestamps which can be matched with timestamps
in the segments, and the metadata can be added to segments
having matching timestamps.
0107 The updated playlist may also result in the removal
of media files. In one embodiment, a server should remove
URIs, for the media files, from the playlist in the order in
which they were added to the playlist. In one embodiment,
if the server removes an entire presentation, it makes the
playlist file(s) unavailable to client devices. In one embodi
ment, the server maintains the media files and the playlist
file(s) for the duration of the longest playlist file(s) contain
ing a media file to be removed to allow current client devices
to finish accessing the presentation. Accordingly, every
media file URI in the playlist file can be prefixed with an
EXT-X-STREAM-INF tag to indicate the approximate
cumulative duration of the media files indicated by the
playlist file. In alternate embodiments, the media files and
the playlist file(s) may be removed immediately.
0108 Subsequent requests for the playlist from client
devices result in the server providing the updated playlist in
operation 275. In one embodiment, playlists are updated on
a regular basis, for example, a period of time related to the
target duration. Periodic updates of the playlist file allow the
server to provide access to servers to a dynamically chang
ing presentation.
0109 FIG. 2C is a flow diagram of one embodiment of a
technique for one or more server devices to provide media
content to client devices using multiple bit rates, which is
one form of the use of alternative streams. The example of
FIG. 2C is provided in terms of HTTP; however, other
non-streaming protocols can be utilized in a similar manner.
The example of FIG. 2C is provided in terms of a server
performing certain tasks. However, any number of servers
may be utilized. For example, the server that provides media
files to client devices may be a different device than a server
that segments the content into multiple media files.
0110. In one embodiment, the server can offer multiple
playlist files or a single playlist file with multiple media file
lists in the single playlist file to provide different encodings
of the same presentation. If different encodings are provided,
playlist file(s) may include each variant stream providing
different bit rates to allow client devices to switch between
encodings dynamically (this is described further in connec
tion with FIGS. 9A-9D). Playlist files having variant streams
can include an EXT-X-STREAM-INF tag for each variant
stream. Each EXT-X-STREAM-INF tag for the same pre
sentation can have the same PROGRAM-ID attribute value.
The PROGRAM-ID value for each presentation is unique
within the variant streams.

0111. In one embodiment, the server meets the following
constraints when producing variant streams. Each variant
stream can consist of the same content including optional
content that is not part of the main presentation. The server
can make the same period of content available for all variant
streams within an accuracy of the Smallest target duration of

Jun. 15, 2017

the streams. The media files of the variant streams are, in one
embodiment, either MPEG-2 Transport Streams or MPEG-2
Program Streams with sample timestamps that match for
corresponding content in all variant streams. Also, all variant
streams should, in one embodiment, contain the same audio
encoding. This allows client devices to switch between
variant streams without losing content.
0112 Referring to FIG. 2C, the server device receives
content to be provided in operation 202. The server may then
at least temporarily store the content in operation 212. The
content to be provided is segmented into multiple media files
in operation 222. Each media file is encoded for a selected
bit rate (or a selected value of other encoding parameters)
and stored on the server in operation 232. For example, the
media files may be targeted for high-, medium- and low
bandwidth connections. The media files can be encrypted
prior to storage. The encoding of the media files targeted for
the various types of connections may be selected to provide
a streaming experience at the target bandwidth level.
0113. In one embodiment, a variant playlist is generated
in operation 242 with tags as described herein that indicate
various encoding levels. The tags may include, for example,
an EXT-X-STREAM-INF tag for each encoding level with
a URI to a corresponding media playlist file.
0114. This variant playlist can include URIs to media
playlist files for the various encoding levels. Thus, a client
device can select a target bit rate from the alternatives
provided in the variant playlist indicating the encoding
levels and retrieve the corresponding playlist file. In one
embodiment, a client device may change between bit rates
during playback (e.g. as described with respect to FIGS.
9A-9D). The variant playlist indicating the various encoding
levels is stored on the server in operation 252. In operation
242, each of the playlists referred to in the variant playlist
can also be generated and then stored in operation 252.
0.115. In response to a request from a client device, the
server may transmit the variant playlist that indicates the
various encoding levels in operation 272. The server may
receive a request for one of the media playlists specified in
the variant playlist corresponding to a selected bit rate in
operation 282. In response to the request, the server trans
mits the media playlist file corresponding to the request from
the client device in operation 292. The client device may
then use the media playlist to request media files from the
server. The server provides the media files to the client
device in response to requests in operation 297.
0116 FIG. 3A is a flow diagram of one embodiment of a
technique for a client device to Support streaming of content
using non-streaming protocols. The example of FIG. 3A is
provided in terms of HTTP; however, other non-streaming
protocols can be utilized in a similar manner. The methods
shown in FIGS. 3A-3B can be performed by one client
device or by several separate client devices. For example, in
the case of any one of these methods, a single client device
may perform all of the operations (e.g. request a playlist file,
request media files using URIs in the playlist file, assemble
the media files to generate and provide a presentation/
output) or several distinct client devices can perform some
but not all of the operations (e.g. a first client device can
request a playlist file and request media files using URIs in
the playlist file and can store those media files for use by a
second client device which can process the media files to
generate and provide a presentation/output).

US 2017/0171094A1

0117 The client device may request a playlist file from a
server in operation 300. In one embodiment, the request is
made according to an HTTP-compliant protocol. The
request utilizes a URI to an initial playlist file stored on the
server. In alternate embodiments, other non-streaming pro
tocols can be Supported. In response to the request, the
server will transmit the corresponding playlist file to the
client over a network. As discussed above, the network can
be wired or wireless and can be any combination of wired or
wireless networks. Further, the network may be a data
network (e.g., IEEE 802.11, IEEE 802.16) or a cellular
telephone network (e.g., 3G).
0118. The client device can receive the playlist file in
operation 310. The playlist file can be stored in a memory of
the client device in operation 320. The memory can be, for
example, a hard disk, a flash memory, a random-access
memory. In one embodiment, each time a playlist file is
loaded or reloaded from the playlist URI, the client checks
to determine that the playlist file begins with a #EXTM3U
tag and does not continue if the tag is absent. As discussed
above, the playlist file includes one or more tags as well as
one or more URIs to media files.

0119 The client device can include an assembler agent
that uses the playlist file to reassemble the original content
by requesting media files indicated by the URIs in the
playlist file in operation 330. In one embodiment, the
assembler agent is a plug-in module that is part of a standard
Web browser application. In another embodiment, the
assembler agent may be a stand-alone application that
interacts with a Web browser to receive and assemble the
media files using the playlist file(s). As a further example,
the assembler agent may be a special-purpose hardware or
firmware component that is embedded in the client device.
0120. The assembler causes media files from the playlist

file to be downloaded from the server indicated by the URIs.
If the playlist file contains the EXT-X-ENDLIST tag, any
media file indicated by the playlist file may be played first.
If the EXT-X-ENDLIST tag is not present, any media file
except for the last and second-to-last media files may be
played first. Once the first media file to play has been
chosen, Subsequent media files in the playlist file are loaded,
in one embodiment, in the order that they appear in the
playlist file (otherwise the content is presented out of order).
In one embodiment, the client device attempts to load media
files in advance of when they are required (and stores them
in a buffer) to provide uninterrupted playback and to com
pensate for temporary variations in network latency and
throughput.

0121 The downloaded media file(s) can be stored in a
memory on the client device in operation 340. The memory
in which the content can be stored may be any type of
memory on the client device, for example, random-access
memory, a hard disk, or a video buffer. The storage may be
temporary to allow playback or may be permanent. If the
playlist file contains the EXT-X-ALLOW-CACHE tag and
its value is NO, the client does not store the downloaded
media files after they have been played. If the playlist
contains the EXT-X-ALLOW-CACHE tag and its value is
YES, the client device may store the media files indefinitely
for later replay. The client device may use the value of the
EXT-X-PROGRAM-DATE-TIME tag to display the pro
gram origination time to the user. In one embodiment, the

Jun. 15, 2017

client can buffer multiple media files so that it is less
susceptible to network jitter, in order to provide a better user
experience.
I0122. In one embodiment, if the decryption method is
AES-128, then AES-128 CBC decryption is applied to the
individual media files. The entire file is decrypted. In one
embodiment, cipher block chaining is not applied across
media files. The sequence number of the media file can be
used as the initialization vector as described above.

I0123. From the memory, the content can be output from
the client device in operation 350. The output or presentation
may be, for example, audio output via built-in speakers or
headphones. The output may include video that is output via
a screen or projected from the client device. Any type of
output known in the art may be utilized. In operation 351,
the client device determines whether there are any more
media files in the stored, current playlist which have not
been played or otherwise presented. If such media files exist
(and if they have not been requested) then processing returns
to operation 330 in which one or more media files are
requested and the process repeats. If there are no Such media
files (i.e., all media files in the current playlist have been
played), then processing proceeds to operation 352, which
determines whether the playlist file includes an end tag.
0.124. If the playlist includes an and tag (e.g., EXT-X-
ENDLIST) in operation 352, playback ceases when the
media files indicated by the playlist file have been played. If
the end tag is not in the playlist, then the client device
requests a playlist again from the server and reverts back to
operation 300 to obtain a further or updated playlist for the
program.

0.125. As discussed in greater detail with respect to FIG.
2B, a server may update a playlist file to introduce Supple
mentary content (e.g., additional media file identifiers cor
responding to additional media content in a live broadcast)
or additional content (e.g. content further down the stream).
To access the Supplementary content or additional content, a
client can reload the updated playlist from the server. This
can provide a mechanism by which playlist files can be
dynamically updated, even during playback of the media
content associated with a playlist file. A client can request a
reload of the playlist file based on a number of triggers. The
lack of an end tag is one Such trigger.
I0126. In one embodiment, the client device periodically
reloads the playlist file(s) unless the playlist file contains the
EXT-X-ENDLIST tag. When the client device loads a
playlist file for the first time or reloads a playlist file and
finds that the playlist file has changed since the last time it
was loaded, the client can wait for a period of time before
attempting to reload the playlist file again. This period is
called the initial minimum reload delay. It is measured from
the time that the client began loading the playlist file.
0127. In one embodiment, the initial minimum reload
delay is the duration of the last media file in the playlist file
or three times the target duration, whichever is less. The
media file duration is specified by the EXTINF tag. If the
client reloads a playlist file and finds that it has not changed
then the client can wait for a period of time before retrying.
The minimum delay in one embodiment is three times the
target duration or a multiple of the initial minimum reload
delay, whichever is less. In one embodiment, this multiple is
0.5 for a first attempt, 1.5 for a second attempt and 3.0 for
Subsequent attempts; however, other multiples may be used.

US 2017/0171094A1

0128. Each time a playlist file is loaded or reloaded, the
client device examines the playlist file to determine the next
media file to load. The first file to load is the media file
selected to play first as described above. If the first media file
to be played has been loaded and the playlist file does not
contain the EXT-X-MEDIA-SEQUENCE tag then the client
can verify that the current playlist file contains the URI of
the last loaded media file at the offset where it was originally
found, halting playback if the file is not found. The next
media file to load can be the first media file URI following
the last-loaded URI in the playlist file.
0129. If the first file to be played has been loaded and the

playlist file contains the EXT-X-MEDIA-SEQUENCE tag,
then the next media file to load can be the one with the
lowest sequence number that is greater than the sequence
number of the last media file loaded. If the playlist file
contains an EXT-X-KEY tag that specifies a key file URI,
the client device obtains the key file and uses the key inside
the key file to decrypt the media files following the EXT
X-KEY tag until another EXT-X-KEY tag is encountered.
0130. In one embodiment, the client device utilizes the
same URI as previously used to download the playlist file.
Thus, if changes have been made to the playlist file, the
client device may use the updated playlist file to retrieve
media files and provide output based on the media files.
0131 Changes to the playlist file may include, for
example, deletion of a URI to a media file, addition of a URI
to a new media file, replacement of a URI to a replacement
media file. When changes are made to the playlist file, one
or more tags may be updated to reflect the change(s). For
example, the duration tag may be updated if changes to the
media files result in a change to the duration of the playback
of the media files indicated by the playlist file.
0132 FIG. 3B is a flow diagram of one embodiment of a
technique for a client device to support streaming of content
using multiple bit rates which is one form of alternative
streams. The example of FIG. 3B is provided in terms of
HTTP; however, other non-streaming protocols can be uti
lized in a similar manner.
0133. The client device can request a playlist file in
operation 370. As discussed above, the playlist file may be
retrieved utilizing a URI provided to the client device. In one
embodiment, the playlist file includes listings of variant
streams of media files to provide the same content at
different bit rates; in other words, a single playlist file
includes URIs for the media files of each of the variant
streams. The example shown in FIG. 3B uses this embodi
ment. In another embodiment, the variant streams may be
represented by multiple distinct playlist files separately
provided to the client that each provide the same content at
different bit rates, and a variant playlist can provide a URI
for each of the distinct playlist files. This allows the client
device to select the bit rate based on client conditions.
0134. The playlist file(s) can be retrieved by the client
device in operation 375. The playlist file(s) can be stored in
the client device memory in operation 380. The client device
may select the bit rate to be used in operation 385 based
upon current network connection speeds. Media files are
requested from the server utilizing URIs included in the
playlist file corresponding to the selected bit rate in opera
tion 390. The retrieved media files can be stored in the client
device memory. Output is provided by the client device
utilizing the media files in operation 394 and the client
device determines whether to change the bit rate.

Jun. 15, 2017

0.135. In one embodiment, a client device selects the
lowest available bit rate initially. While playing the media,
the client device can monitor available bandwidth (e.g.
current network connection bit rates) to determine whether
the available bandwidth can support use of a higher bit rate
for playback. If so, the client device can select a higher bit
rate and access the media files indicated by the higher bit
rate media playlist file. The reverse can also be supported. If
the playback consumes too much bandwidth, the client
device can select a lower bit rate and access the media files
indicated by the lower bit rate media playlist file.
0.136. If the client device changes the bit rate in operation
394, for example, in response to a change in available
bandwidth or in response to user input, the client device may
select a different bit rate in operation 385. In one embodi
ment, to select a different bit rate the client device may
utilize a different list of URIs included in the playlist file that
corresponds to the new selected bit rate. In one embodiment,
the client device may change bit rates during access of media
files within a playlist.
0.137 If the bit rate does not change in operation 394,
then the client device determines whether there are any more
unplayed media files in the current playlist which have not
been retrieved and presented. If such media files exist, then
processing returns to operation 390 and one or more media
files are retrieved using the URIs for those files in the
playlist. If there are no such media files (i.e. all media files
in the current playlist haven been played), then processing
proceeds to operation 396 in which it is determined whether
the playlist includes an end tag. If it does, the playback of the
program has ended and the process has completed; if it does
not, then processing reverts to operation 370, and the client
device requests to reload the playlist for the program, and
the process repeats through the method shown in FIG. 3B.
0.138 FIG. 4 is a block diagram of one embodiment of a
server stream agent. It will be understood that the elements
of server stream agent 400 can be distributed across several
server devices. For example, a first server device can include
the segmenter 430, the indexer 440 and security 450 but not
the file server 460 and a second server device can include the
file server 450 but not the segmenter 430, the indexer 440
and security 450. In this example, the first server device
would prepare the playlists and media files but would not
transmit them to client devices while one or more second
server devices would receive and optionally store the play
lists and media files and would transmit the playlists and
media files to the client devices. Server stream agent 400
includes control logic 410, which implements logical func
tional control to direct operation of server stream agent 400,
and hardware associated with directing operation of server
stream agent 400. Logic may be hardware logic circuits or
software routines or firmware. In one embodiment, server
stream agent 400 includes one or more applications 412,
which represent code sequence and/or programs that provide
instructions to control logic 410.
0.139. Server stream agent 400 includes memory 414,
which represents a memory device or access to a memory
resource for storing data or instructions. Memory 414 may
include memory local to server stream agent 400, as well as,
or alternatively, including memory of the host system on
which server stream agent 400 resides. Server stream agent
400 also includes one or more interfaces 416, which repre
sent access interlaces to/from (an input/output interface)

US 2017/0171094A1

server stream agent 400 with regard to entities (electronic or
human) external to server stream agent 400.
0140 Server stream agent 400 also can include server
stream engine 420, which represents one or more functions
that enable server stream agent 400 to provide the real-time,
or near real-time, streaming as described herein. The
example of FIG. 4 provides several components that may be
included in server stream engine 420; however, different or
additional components may also be included. Example com
ponents that may be involved in providing the streaming
environment include segmenter 430, indexer 440, security
450 and file server 460. Each of these components may
further include other components to provide other functions.
As used herein, a component refers to routine, a Subsystem,
etc., whether implemented in hardware, software, firmware
or some combination thereof.
0141 Segmenter 430 divides the content to be provided
into media files that can be transmitted as files using a Web
server protocol (e.g., HTTP). For example, segmenter 430
may divide the content into predetermined, fixed-size blocks
of data in a pre-determined file format.
0142 Indexer 440 may provide one or more playlist files
that provide an address or URI to the media files created by
segmenter 430. Indexer 440 may, for example, create one or
more files with a listing of an order for identifiers corre
sponding to each file created by segmenter 430. The iden
tifiers may be created or assigned by either segmenter 430 or
indexer 440. Indexer 440 can also include one or more tags
in the playlist files to support access and/or utilization of the
media files.
0143 Security 450 may provide security features (e.g.
encryption) such as those discussed above. Web server 460
may provide Web server functionality related to providing
files stored on a host system to a remote client device. Web
server 460 may support, for example, HTTP-compliant
protocols.
014.4 FIG. 5 is a block diagram of one embodiment of a
client stream agent. It will be understood that the elements
of a client stream agent can be distributed across several
client devices. For example, a first client device can include
an assembler 530 and security 550 and can provide a
decrypted stream of media files to a second client device that
includes an output generator 540 (but does not include an
assembler 530 and security 550). In another example, a
primary client device can retrieve playlists and provide them
to a secondary client device which retrieves media files
specified in the playlist and generates an output to present
these media files. Client stream agent 500 includes control
logic 510, which implements logical functional control to
direct operation of client stream agent 500, and hardware
associated with directing operation of client stream agent
500. Logic may be hardware logic circuits or software
routines or firmware. In one embodiment, client stream
agent 500 includes one or more applications 512, which
represent code sequence or programs that provide instruc
tions to control logic 510.
0145 Client stream agent 500 includes memory 514,
which represents a memory device or access to a memory
resource for storing data and/or instructions. Memory 514
may include memory local to client stream agent 500, as
well as, or alternatively, including memory of the host
system on which client stream agent 500 resides. Client
stream agent 500 also includes one or more interfaces 516,
which represent access interfaces to/from (an input/output

Jun. 15, 2017

interface) client stream agent 500 with regard to entities
(electronic or human) external to client stream agent 500.
0146 Client stream agent 500 also can include client
stream engine 520, which represents one or more functions
that enable client stream agent 500 to provide the real-time,
or near real-time, streaming as described herein. The
example of FIG. 5 provides several components that may be
included in client stream engine 520; however, different or
additional components may also be included. Example com
ponents that may be involved in providing the streaming
environment include assembler 530, output generator 540
and security 550. Each of these components may further
include other components to provide other functions. As
used herein, a component refers to routine, a Subsystem, etc.,
whether implemented in hardware, software, firmware or
Some combination thereof.
0147 Assembler 530 can utilize a playlist file received
from a server to access the media flies via Web server
protocol (e.g., HTTP) from the server. In one embodiment,
assembler 530 may cause to be downloaded media files as
indicated by URIs in the playlist file. Assembler 530 may
respond to tags included in the playlist file.
0148 Output generator 540 may provide the received
media files as audio or visual output (or both audio and
visual) on the host system. Output generator 540 may, for
example, cause audio to be output to one or more speakers
and video to be output to a display device. Security 550 may
provide security features such as those discussed above.
0149 FIG. 6 illustrates one embodiment of a playlist file
with multiple tags. The example playlist of FIG. 6 includes
a specific number and ordering of tags. This is provided for
description purposes only. Some playlist files may include
more, fewer or different combinations of tags and the tags
can be arranged in a different order than shown in FIG. 6.
0150. Begin tag 610 can indicate the beginning of a
playlist file. In one embodiment, begin tag 610 is a
#EXTM3U tag. Duration tag 620 can indicate the duration
of the playback list. That is, the duration of the playback of
the media files indicated by playback list 600. In one
embodiment, duration tag 620 is an EXTX-TARGETDU
RATION tag; however, other tags can also be used.
0151. Date/Time tag 625 can provide information related
to the date and time of the content provided by the media
files indicated by playback list 600. In one embodiment,
Date/Time tag 625 is an EXT-X-PROGRAM-DATE-TIME
tag; however, other tags can also be used. Sequence tag 630
can indicate the sequence of playlist file 600 in a sequence
of playlists. In one embodiment, sequence tag 630 is an
EXT-X-MEDIA-SEQUENCE tag; however, other tags can
also be used.
0152 Security tag 640 can provide information related to
security and/or encryption applied to media files indicated
by playlist file 600. For example, the security tag 640 can
specify a decryption key to decrypt files specified by the
media file indicators. In one embodiment, security tag 640 is
an EXT-X-KEY tag; however, other tags can also be used.
Variant list tag 645 can indicate whether variant streams are
provided by playlist 600 as well as information related to the
variant streams (e.g., how many, bit rate). In one embodi
ment, variant list tag 645 is an EXT-X-STREAM-INF tag.
(O153 Media file indicators 650 can provide information
related to media files to be played. In one embodiment,
media file indicators 650 include URIs to multiple media
files to be played. In one embodiment, the order of the URIs

US 2017/0171094A1

in playlist 600 corresponds to the order in which the media
files should be accessed and/or played. Subsequent playlist
indictors 660 can provide information related to one or more
playback files to be used after playback file 600. In one
embodiment, subsequent playlist indicators 660 can include
URIs to one or more playlist files to be used after the media
files of playlist 600 have been played.
0154 Memory tag 670 can indicate whether and/or how
long a client device may store media files after playback of
the media file content. In one embodiment, memory tag 670
is an EXT-X-ALLOW-CACHE tag. End tag 680 indicates
whether playlist file 600 is the last playlist file for a
presentation. In one embodiment, end tag 680 is an EXT
X-ENDLIST tag.
0155 The following section contains several example
playlist files according to one embodiment.

Simple Playlist file
EXTM3U
EXTX-TARGETDURATION:10
EXTINF:5220,
ttp://media...example.com/entire.ts
EXT-X-ENDLIST
iding Window Playlist, using HTTPS
EXTM3U
EXTX-TARGETDURATION:8

EXT-X-MEDIA-SEQUENCE:2680
EXTINF:8,
tps://priv.example.com/fileSequence2680.ts
EXTINF:8,
tps://priv.example.com/fileSequence2681.ts

CINF:8,
tps://priv.example.com/fileSequence2682.ts
aylist file with encrypted media files
EXTM3U
EXT-X-MEDIA-SEQUENCE:7794
EXTX-TARGETDURATION:15
EXT-X-KEY:METHOD=AES-128,URI=“
tps://priv.example.com/key.php?r=52

CINF:15,
p://media.example.com/fileSequence7794ts

CINF:15,
p://media.example.com/fileSequence7795.ts

CINF:15,
p://media.example.com/fileSequence7796.ts
C-X-KEY:METHOD=AES-128,URI=

ps://priv.example.com/key.php?r=53”
CINF:15,

://media.example.com/fileSequence7797.ts
ant Playlist file
TM3U
C-X-STREAM-INF:PROGRAM-ID=1, BANDWIDTH=1280000

f example.comflow.m3u8

C-X-STREAM-INF:PROGRAM-ID=1, BANDWIDTH=2560000
fexample.com/mid.m3u8

C-X-STREAM-INF:PROGRAM-ID=1, BANDWIDTH=7680000
p://example.com/hi.m3u8
T-X-STREAM-INF:PROGRAM

=1...BANDWIDTH=65000,CODECS=“mp4a.40.5
p://example.com/audio-only.m3u8

E

Vari

E. :

l

0156 FIG. 7 is a flow diagram of one embodiment of a
playback technique for assembled streams as described
herein. In one embodiment, playback of the received media
files can be controlled by the user to start, stop, rewind, etc.
The playlist file is received by the client device in operation
700. The media files indicated by the playlist file are
retrieved in operation 710. Output is generated based on the
received media files in operation 720. Receiving and gen
erating output based on media files can be accomplished as
described above.

Jun. 15, 2017

(O157. If control input is detected in operation 730, the
client device can determine if the input indicates a stop in
operation 740. If the input is a stop, the process concludes
and playback stops. If the input indicates a rewind or
forward request in operation 750, the client device can
generate output based on previously played media files still
stored in memory in operation 760. If these files are no
longer in a cache, then processing reverts to operation 710
to retrieve the media files and repeats the process. In an
alternate embodiment, playback can Support a pause feature
that halts playback without concluding playback as with a
stop input.
0158 Methods for transitioning from one stream to
another stream are further described with reference to FIGS.
9A-9D. One client device can perform each of these meth
ods or the operations of each of these methods can be
distributed across multiple client devices as described
herein; for example, in the distributed case, one client device
can retrieve the variant playlist and the two media playlists
and provide those to another client device which retrieves
media files specified by the two media playlists and switches
between the two streams provided by the retrieved media
files. It will also be understood that, in alternative embodi
ments, the order of the operations shown may be modified
or there can be more or fewer operations than shown in these
figures. The methods can use a variant playlist to select
different streams. A variant playlist can be retrieved and
processed in operation 901 to determine available streams
for a program (e.g. a sporting event). Operation 901 can be
done by a client device. A first stream can be selected from
the variant playlist in operation 903, and a client device can
then retrieve a media playlist for the first stream. The client
device can process the media playlist for the first stream in
operation 905 and also measure or otherwise determine a bit
rate of the network connection for the first stream in opera
tion 907. It will be appreciated that the sequence of opera
tions may be performed in an order which is different than
what is shown in FIG. 9A; for example, operation 907 may
be performed during operation 903, etc. In operation 911 the
client device selects an alternative media playlist from the
variant playlist based on the measured bit rate from opera
tion 907; this alternative media playlist may be at a second
bit rate that is higher than the existing bit rate of the first
stream. This typically means that alternative stream will
have a higher resolution than the first stream. The alternative
media playlist can be selected if it is a better match than the
current playlist for the first stream based on current condi
tions (e.g. the bit rate measured in operation 907). In
operation 913, the alternative media playlist for an alternate
stream is retrieved and processed. This typically means that
the client device can be receiving and processing both the
first stream and the alternative stream so both are available
for presentation; one is presented while the other is ready to
be presented. The client device then selects a transition point
to switch between the versions of the streams in operation
915 and stops presenting the first stream and begins pre
senting the alternative stream. Examples of how this Switch
is accomplished are provided in conjunction with FIGS.
9B-9D. In some embodiments, the client device can stop
receiving the first stream before making the Switch.
0159 FIG. 9B shows that the client device retrieves,
stores and presents content specified by the first media
playlist (e.g. the first stream) in operations 921 and 923, and
while the content specified by the first playlist is being

US 2017/0171094A1

presented the client device in operation 925 also retrieves
and stores content specified by the second media playlist
(e.g. the second stream). The retrieval and storage (e.g. in a
temporary buffer) of the content specified by the second
media playlist while presenting the content obtained from
the first media playlist creates an overlap 955 in time of the
program's content (shown in FIG. 9D) that allows the client
device to switch between the versions of the program
without a Substantial interruption of the program. In this
way, the switch between the versions of the program can be
achieved in many cases without the user noticing that a
Switch has occurred (although the user may notice a higher
resolution image after the Switch in some cases) or without
a Substantial interruption in the presentation of the program.
In operation 927, the client device determines a transition
point at which to switch from content specified by the first
media playlist to content specified by the second media
playlist; an example of a transition point (transition point
959) is shown in FIG. 9D. The content specified by the
second media playlist is then presented in operation 931
after the switch.

(0160. The method shown in FIGS.9C and 9D represents
one embodiment for determining the transition point; this
embodiment relies upon a pattern matching on audio
samples from the two streams 951 and 953 to determine the
transition point. It will be appreciated that alternative
embodiments can use pattern matching on video samples or
can use the timestamps in the two streams, etc. to determine
the transition point. The method can include, in operation
941, storing content (e.g. stream 951) specified by the first
media playlist in a buffer, the buffer can be used for the
presentation of the content and also for the pattern matching
operation. The stream 951 includes both audio samples
951A and video samples 951B. The video samples can use
a compression technique which relies on i-frames or key
frames which have all necessary content to display a single
video frame. The content in stream 951 can include time
stamps specifying a time (e.g. time elapsed since the begin
ning of the program), and these timestamps can mark the
beginning of each of the samples (e.g. the beginning of each
of the audio samples 951A and the beginning of each of the
video samples 951B). In some cases, a comparison of the
timestamps between the two streams may not be useful in
determining a transition point because they may not be
precise enough or because of the difference in the boundaries
of the samples in the two streams; however, a comparison of
the timestamps ranges can be used to verify there is an
overlap 955 in time between the two streams. In operation
943, the client device stores in a buffer content specified by
the second media playlist; this content is for the same
program as the content obtained from the first media playlist
and it can include timestamps also. In one embodiment,
timestamps, if not present in a stream, can be added to a
playlist for a stream; for example, in one embodiment an
ID3 tag which includes one or more timestamps can be
added to an entry in a playlist, such as a variant playlist or
a media playlist. The entry may, for example, be in a URI for
a first sample of an audio stream. FIG.9D shows an example
of content 953 obtained from the second media playlist, and
this includes audio samples 953A and video samples 953B.
In operation 945, the client device can perform a pattern
matching on the audio samples in the two streams 951 and
953 to select from the overlap 955 the transition point 959
which can be, in one embodiment, the next self contained

Jun. 15, 2017

video frame (e.g. i-frame 961) after the matched audio
segments (e.g. segments 957). Beginning with i-frame 961
(and its associated audio sample), presentation of the pro
gram uses the second stream obtained from the second
media playlist. The foregoing method can be used in one
embodiment for both a change from a slower to a faster bit
rate and for a change from a faster to a slower bit rate, but
in another embodiment the method can be used only for a
change from a slower to a faster bit rate and another method
(e.g. do not attempt to locate a transition point but attempt
to store and present content from the slower bit rate stream
as soon as possible) can be used for a change from a faster
to a slower bit.
0.161 FIG. 8 is a block diagram of one embodiment of an
electronic system. The electronic system illustrated in FIG.
8 is intended to represent a range of electronic systems
(either wired or wireless) including, for example, desktop
computer systems, laptop computer systems, cellular tele
phones, personal digital assistants (PDAs) including cellu
lar-enabled PDAs, set top boxes, entertainment systems or
other consumer electronic devices. Alternative electronic
systems may include more, fewer and/or different compo
nents. The electronic system of FIG. 8 may be used to
provide the client device and/or the server device.
(0162 Electronic system 800 includes bus 805 or other
communication device to communicate information, and
processor 810 coupled to bus 805 that may process infor
mation. While electronic system 800 is illustrated with a
single processor, electronic system 800 may include mul
tiple processors and/or co-processors. Electronic system 800
further may include random access memory (RAM) or other
dynamic storage device 820 (referred to as main memory),
coupled to bus 805 and may store information and instruc
tions that may be executed by processor 810. Main memory
820 may also be used to store temporary variables or other
intermediate information during execution of instructions by
processor 810.
0163 Electronic system 800 may also include read only
memory (ROM) and/or other static storage device 830
coupled to bus 805 that may store static information and
instructions for processor 810. Data storage device 840 may
be coupled to bus 805 to store information and instructions.
Data storage device 840 Such as flash memory or a magnetic
disk or optical disc and corresponding drive may be coupled
to electronic system 800.
0164. Electronic system 800 may also be coupled via bus
805 to display device 850, such as a cathode ray tube (CRT)
or liquid crystal display (LCD), to display information to a
user. Electronic system 800 can also include an alphanu
meric input device 860, including alphanumeric and other
keys, which may be coupled to bus 805 to communicate
information and command selections to processor 810.
Another type of user input device is cursor control 870, such
as a touchpad, a mouse, a trackball, or cursor direction keys
to communicate direction information and command selec
tions to processor 810 and to control cursor movement on
display 850.
0.165 Electronic system 800 further may include one or
more network interface(s) 880 to provide access to a net
work, such as a local area network. Network interface(s) 880
may include, for example, a wireless network interface
having antenna 885, which may represent one or more
antenna(e). Electronic system 800 can include multiple
wireless network interfaces such as a combination of WiFi,

US 2017/0171094A1

Bluetooth and cellular telephony interfaces. Network inter
face(s) 880 may also include, for example, a wired network
interface to communicate with remote devices via network
cable 887, which may be, for example, an Ethernet cable, a
coaxial cable, a fiber optic cable, a serial cable, or a parallel
cable,
0166 In one embodiment, network interface(s) 880 may
provide access to a local area network, for example, by
conforming to IEEE 802.11b and/or IEEE 802.11g stan
dards, and/or the wireless network interface may provide
access to a personal area network, for example, by conform
ing to Bluetooth standards. Other wireless network inter
faces and/or protocols can also be supported.
0167. In addition to, or instead of communication via
wireless LAN standards, network interface(s) 880 may pro
vide wireless communications using, for example, Time
Division, Multiple Access (TDMA) protocols, Global Sys
tem for Mobile Communications (GSM) protocols. Code
Division, Multiple Access (CDMA) protocols, and/or any
other type of wireless communications protocol.
0168 Reference in the specification to “one embodi
ment” or “an embodiment’ means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
invention. The appearances of the phrase “in one embodi

Jun. 15, 2017

ment' in various places in the specification are not neces
sarily all referring to the same embodiment.
0169. In the foregoing specification, the invention has
been described with reference to specific embodiments
thereof. It will, however, be evident that various modifica
tions and changes can be made thereto without departing
from the broader spirit and scope of the invention. The
specification and drawings are, accordingly, to be regarded
in an illustrative rather than a restrictive sense.
What is claimed is:
1. A computer readable storage medium for use with an

electronic device, the medium to store data in a digital,
random access format that is configured to provide a playlist
file having a plurality of tags and a plurality of URIs, each
of the URIs indicating a respective media file, wherein the
media files provide segments of a single contiguous presen
tation such that when played in order the media files provide
playback of the single contiguous presentation, the order of
the URIs in the playlist file indicating an order of retrieval
by the electronic device of the media files through a network
using a non-streaming hypertext transfer protocol and the
order of the URIs in the playlist indicating an order of
playback for the media flies, the tags in the playlist provid
ing information related to playback of the media files.

k k k k k

