US 20200160377A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2020/0160377 A1

BODIN et al.

(54)

(71)
(72)

@

(22)

(60)

(1)

SYSTEM AND METHOD IMPLEMENTING
CAMPAIGN PRODUCTS AND SERVICES
WITHIN AN INTELLIGENT DIGITAL
EXPERIENCE DEVELOPMENT PLATFORM
Applicant: Kony Inc., Orlando, FL. (US)

Inventors: William K. BODIN, Austin, TX (US);
Mahendar YEDLA, Sangareddy (IN)

Appl. No.: 16/584,028
Filed: Sep. 26, 2019

Related U.S. Application Data

Provisional application No. 62/770,365, filed on Nov.

21, 2018.

Publication Classification

Int. CL.

G06Q 30/02 (2006.01)

11100

43) Pub. Date: May 21, 2020
(52) US. CL
CPC ... GO6Q 30/0245 (2013.01); GO6Q 30/0255

(2013.01); GO6Q 30/0203 (2013.01); GO6Q
30/0201 (2013.01)

(57) ABSTRACT

The present disclosure relates to digital experience devel-
opment platforms and, more particularly, one or more com-
ponents, systems and methods thereof of an intelligent
digital experience development platform (IDXDP) config-
ured to assist different users in the development, design and
deployment of digital applications. A computer-imple-
mented method comprises: receiving, by a computing device
of a cloud-based campaign system, a campaign for products
or services from a marketing system via a network; provid-
ing, by the computing device, the campaign to one or more
participants on the network; obtaining, by the computing
device, feedback from the one or more participants regard-
ing the campaign; analyzing, by an artificial intelligence tool
of'the computing device, the feedback to generate marketing
analytics information; and providing, by the computing
device, the marketing analytics information to the marketing
system via the network.

™~

Developers/Users

Centralized System

Marketing

Developers enable/disable

Initiate product/ professional services
marketing campaign/aotification

 notifications/canapaigns Holo
Present that campaign or

| notification to developers 4570
Provides response and

 feedback on carapaigo 11025

ot

11015

Store campaign results, run analytics,
provide those to Marketing

System/Persons 11030

Patent Application Publication = May 21, 2020 Sheet 1 of 32 US 2020/0160377 A1

Computing Systems

1000 — 1045

Computing Device 1014 L

0/8 \

Processor 102 Memory 1022A

1026 Tools

Program Control 1050

I/O Interface 1044
1024

RAM ROM

/0 Device
1028

Storage System 10228

v e N e Ner e Ny W N W N WG e W A G e v e v G G TR A TN R kR K e M e M G e G G R T Rk e A e B N B ke T R W e e R T e o e o e o e R ww ek e s

FIG. 1A

Patent Application Publication = May 21, 2020 Sheet 2 of 32 US 2020/0160377 A1

FIG. 1B

Patent Application Publication

May 21, 2020 Sheet 3 of 32 US 2020/0160377 Al

Integration Points

Interactive Advisor

1205

Autonomous Advisor
1210

Global Development
Trends
1215

Development Advisor
1220

Technical Eminence
1225

Cognitive Computing for Omni-Channel Platform

Plug-in Architecture
1230

Training/Support
Optimization
1235

Improves Sales
Efficiency
1240

Product Evolution
1245

FIG. 1C

US 2020/0160377 Al

May 21, 2020 Sheet 4 of 32

Patent Application Publication

0cie

Otle

-

)

ve 'Old

00}¢c

Sy SOnENIeN
SRR

080¢

090¢c N

0402

sefeuny onEeD

ST Ry

leom

+

j00] Jawdodna(g

oauiBug Jueag paouryupe-

~——0€0¢

j001 wawwdojersq

deiy v

B

k23

FevpE 0l

10C

000¢

8¢ Oid

Palgo pRRYIRAS Y Jueas BB L U

ovee

US 2020/0160377 Al

IR0 PRINEINS S0 PUR D JUBAS S9001d

N 0cee

er;

s

v % 10} ORI JUSAS [BUOIHPDE Ui puodsdy | T

= ocee

-]

=

wn

N T4 0 1] ¥ Ih0UR UOyRInIo punnippe 1senbey | 1 "
o geee
(o]
-
.W ¥ PBUR T D) POILOD DTYRNSIA OGBS 1Henbay

«®

> 02¢ee e

= X IUPAS SBIRY L I

(=]
ﬁ

S
w 0L12 {1174 A pasiea) X usas 0 3LOWNS T 44

=

D.I“_. ¥ BIBU DA I 33ID0S BioAs 5B .hwummmwm N 304

(=]

3 G082 (2 ‘LIN) seInpoly pue
= |00 uswdolenag Jobruepy ananp Wang j00 | Juawdopna(
=%
«

= ™~
=

~N

< 00ge
[~™

Patent Application Publication = May 21, 2020 Sheet 6 of 32 US 2020/0160377 A1

3000

5;

3010 3020 3030 3040 3050

FIG. 3A

Patent Application Publication = May 21, 2020 Sheet 7 of 32 US 2020/0160377 A1

3200

\ 2030

Event Processing and Pattern Recognition

3230 3240 Vigalioer
I/\) (/\\
Event
API System

Rt Comanand Procesy et e
~ g NJ
3260
3310 3300 /
3280
Reconvnendation
e . 3250
Faflom Recopition. o
Mithing Lesrning g
1014 N ’ .
Code Analysls
/[/
al /)
/ /4 / 4
3270

FIG. 3B

Patent Application Publication = May 21, 2020 Sheet 8 of 32 US 2020/0160377 A1

2030 3230

ViR g s dnd

FIG. 3C

Patent Application Publication = May 21, 2020 Sheet 9 of 32 US 2020/0160377 A1

3400

3500
3430 2030
3440
3510
/
3230
7
Help - §
o Bot
3550 | - Event Global
L v Kony Chat X Processor Actions
Module Module
> Hey There
Market- > Welcome to KonylQ
- Place * What are notes and KonylQ
3540 | Bot Comments? J-’ Ul
g Manager
b £
=
Third g Task Other
L~ P ’rt Manager Visualizer
3530 <] Bo?(rs) Module Modules
¥ 3
// I \
Autonomous
_t Bot
3520 7
'y 3410

ML=Machine Learning

FiG. 3D

3420

3450

Patent Application Publication = May 21, 2020 Sheet 10 of 32 US 2020/0160377 Al
3510
3560 3565 3570 3575 3580
/ / KonylQ Manager / / /
/
H(i)s?g:y Bot {dentity - Client - C%?ng?e
Manager Manager Manager Manager Manager
1) t t
v

Messaging Manager

\

Communication with
Chat Bots

—

Communication with
Chat Clients
3555

FIG. 3E

Patent Application Publication

3800

\ 2030
Al

Development Tools
and Modules

May 21, 2020 Sheet 11 of 32 US 2020/0160377 A1

Register as source of all events

r 3

Raise events from
Visualizer

language statements

<.
<

FIG. 3F

2060 2090
Event Queue Recommendation
Manager Engine
3810
3820 KiQ:Subscribe fo all Visualizer
{rodule) events
3830
Trigger events with structured 3840
objects 3850
/\v/
/
/
Recommendation
3860 Analyze events, prepare suggestions, convert suggestions into natural
DB for History
Context Specific
Help

Patent Application Publication

May 21, 2020 Sheet 12 of 32

4010
4005
, [
| Project Title /
Project Sections I ‘
V Mobile I I see that you are drawing an
B> Forms object in your project. Digital
> Desktop - images can be imported from
g supported App#t.
Library | sTART |
D> Widgets
D> Skins
> Objects
4010’
4005’
/ / 4/01 5
| Project Title /
Project Sections I
V Mobile I I see that you are drawing an
B> Forms object in your project. Digital
D> Deskiop - images can be imported from
g supported App#1. To import an
image into your project, first
e make sure your target image is
2 l START l saved in App#1 format. Then
D> Widgets perform these menu
b> Skins commands:
P> Objects Menu>Import>App#1>

US 2020/0160377 Al

FIG. 4A

FIG. 4B

Patent Application Publication

{DE and IDE
Modules

May 21, 2020 Sheet 13 of 32

Event Queue
Manager

US 2020/0160377 Al

Recommendation
Engine

4021

4022
4023

4024
4025

4026

4027

FIG. 4C

Patent Application Publication

May 21, 2020 Sheet 14 of 32

US 2020/0160377 Al
Project Title
Project Sections
V Mobile (h 4040
B> Forms | see that you are creating a "
B> Desklop calculator. Would you like to see
examples of calculators?
Library byes] [o]
D> Widgets & 4035
D> Skins
> Objects @ D E] Dﬂ\\4030
/ FIG. 4D
Project Title
Project Sections
N
V Mobile
> F / 4040
> Desmz;ms These calculators can be \ //
created in your workspace. Just
select the one you want!
Library
D> Widgets 4035
[> Skins 45
> Objects @DEID .:.
A g 4045 4046 FIG. 4E
Project Title
Project Sections
4 ™\
V Mobile
D> Forms
> Deskiop
Library ﬁ
> Widgets
> Skins S 4035
D> Objects L
4050
\. Y,

FIG. 4F

Patent Application Publication = May 21, 2020 Sheet 15 of 32 US 2020/0160377 Al

4080~

N

Receive spoken input describing a mobile app

4082~ \

Determine user intent

4084~

Automatically perform actions in the IDE based on determined
user intent and insights

Generate images of screens

4088~
4055 ——— User device Send images to user device
4065 —H Client
Y
Feedback?
4060 No
4090~
Build app, deliver to user device
4070 —+1 Conversational Bot Module
Yes
Architecture 2000 Feedback?
No
4092~

FIG. 4G

Publish app

FIG. 4H

Patent Application Publication = May 21, 2020 Sheet 16 of 32 US 2020/0160377 Al

50053 — User device 5005b —— User device

Client Client

5015 5015
5010

Architecture 2000

FIG. 5A

5020
/ 5025
/
Project Title /
Project Sections Code Line 1 ‘
¥ Mobile (A Code Line 2 ﬂ see that you are performgng ™
> Forms Code Line 3 devgloper actions in a pro.ject
I> Deskiop Code Line 4 that includes designer actions.

Code Line 5 Wogld you Izke to convert the
designer actions to developer
actions?

Library l START ’ %Yj] [No | /
> Widgets
D> Skins
> Objects
\ J

FIG. 5B

Patent Application Publication = May 21, 2020 Sheet 17 of 32 US 2020/0160377 Al

5030~

Determine first persona of first user working on app project

5032~ \
Determine second persona of second user working on app
project
5034~ \

Convert actions associated first persona to actions associated
with second persona

FIG. 5C

IDE users System DB Repository Platform

5041

5042

5043 .

5044

5045 .

5046

5047 .

5048
) 5049

FIG. 5D

Patent Application Publication = May 21, 2020 Sheet 18 of 32 US 2020/0160377 Al

6010~

Determine that plural users have a common question about
performing the same task in the IDE

6015~ ,
Determine whether a community-accepted answer exists to
the question
6020~ / 6025~
Provide a recommendation to Automatically update support
update the support documentation and/or post
documentation answers to forums

FIG. 6A

6040~

Determine that plural users want feature that is not available

Generate a recommendation to add the feature

FIG. 6B

Patent Application Publication

6046

Users

May 21, 2020 Sheet 19 of 32

6047 6048

/

/

Data sources Architecture
6051
6052
6053
6054
6055
6056

US 2020/0160377 Al

6049

Platform

6057

6058

FIG. 6C

Patent Application Publication

7100

May 21, 2020 Sheet 20 of 32 US 2020/0160377 A1
Interactive Tutorial Platform 7000
Analvsi Machine
Cor?legx);ignt Learning
7010 Component
7015
Natural
Language .)
Component Ratmgiz ;/\étdget
7030
v
Display
FIG. 7A
7020
AGd/EdIT Lommertary
Build New Component
7120 —— Narration
Ratings

7110 —

This is a button
Component. This
component is build by

Widget
Componert

FIG. 7B

US 2020/0160377 Al

May 21, 2020 Sheet 21 of 32

Patent Application Publication

9L "Old

0ecs

SEAUED

ISZYENSIA U0 J9SN 03 |t syuasausd pue walshAs
diay 4950 aAlloeI3u) do31s-AQ-dals B S93ea1)

geel

auodwiod woly AJezudwiwiod
pappe 1asn pue djul L1dW BY] Speay

02eL

T55101d USR5 Ul U110) 1U31J13 61 pappe pue”
30|d1BYJRUW WO PIPROJUMOP S IuBuoduio)

0ies

wauodwon

wiojeld
{e1I0IN] SA}DRIBIYY

dE|AIDIRN 10
Asesqry wody Jusuodwod e ppe 01 5159nbai 4asn

A

00eL

j001 wawdodaag

Patent Application Publication = May 21, 2020 Sheet 22 of 32 US 2020/0160377 Al

8000

Centralized ~
Administrative
Portal

Policy > 8010
Library

(00
o
o
(@3]

FIG. 8A

US 2020/0160377 Al

May 21, 2020 Sheet 23 of 32

Patent Application Publication

g8 "OId

0€l8

)

A

219 SBLIRIGIH PUR SBAURD
Jupjiom ‘ s304suaa4ds | ‘s30j} pling d4eys
49430 Yoes yum 1oeidlul siadojanap ylog

Geis

}0eIu0d e se
A3Q ppe Ued T A3 1841 0S T s3d0janaq Ylim ol
7 42dojana(@ aY1 SaJeys pue uoissiuiad syueln

3

0cL8

»

G118

fersod "unupy 3yl yum
7 Jadojaasq 4935138y

wiy ppe 01 153nbal
‘Anunwiwod Jadojansp dde Auoy jeqo|8 wody
10 [9n3} 3s14d13uUD 18 7 1odo{anap SO Yoieas

A

L0 SARASILILIPY

0118

je1dod "uiipe yum 1 1adojoaaq 433518y

 Jadojansg 1 sadojenag

0018

Patent Application Publication = May 21, 2020 Sheet 24 of 32 US 2020/0160377 Al

9000

Centralized
User Interface
(Chatbox)

9020

Alert
8010

FIG. 9A

US 2020/0160377 Al

May 21, 2020 Sheet 25 of 32

Patent Application Publication

86 "Ol4

0E16

[

TR

n
>

SIOMSUE pUe SUOIINIOS YHM
puodsads SiNYD/sBles

r

(AR

(STUQISAS ssouIsng
[BUIOIXD 10 [eUdIu])
010 SN /SRS

2319 siadeuepy diysuone|dy

J2Wo1sn) pue suieal sojeg Auoy

01 s3sanbad Jasn Syl spiemio

1196 10 SiNYD/S9les Ag pasodoid mco_S_oWw
yum siadojsnsp o1 spuodsal Ajsnowouoiny

GLi6 $9UN3}ea} pue sInpoid
Ang 01 sjesodoud pue
SB2IAIDS [BUOISSRY0Ld 1SBNnbaYy

oLL6 peoal J0 Jadeuey se
10018YD ypum Jodoonag 1915189y

(logietd)
sassouIsng 01 oS}

pUH 102UU0]) 03 WoISAS

saspyadoroaag

i
&

00l6

US 2020/0160377 Al

May 21, 2020 Sheet 26 of 32

Patent Application Publication

voiL "Old

2
L

2001

0T001

3980}
GIM/TEHO]/ BIIDY

s8N S 0} Sppuey
Jopuaa aubrun 3y SaPIAOI]

ORAUOD UOHRITURUIWIOD pauyep Suisn
[e1od UIpE BIA SIOPUSA YIIM J0BIOMUT 138}

.

1001 JOPULdA Yoed Sm‘
o[puey anbiun gim spuodsay

01001 [erod utwpy
01 ui-3nid o3 35anboy

walsAS uonensdoy

TOpuaA Aued pryj,

0010t

US 2020/0160377 Al

May 21, 2020 Sheet 27 of 32

ViL "Old

001t SUOSIOJ/IASAS
SunoyeA 01 asou apraoxd
‘sopAfeue unt ‘synsar uSredumes 2015

SCOLI uSredued uo Joeqpesy
pue asuodsar sepiaoid

0Z0TL siodojpasp 03 uoneaymou
10 udredured jeu JuLsly

¢1011

uonesynou/udredwes Supayew
$201A108 JRUOISSoJ0Id fonpoid oreniuy

-

o101 SuStedumossuopesynou
afgesip/aqeus sxadoppas(

Sunoyrey WRISAS PRZI[ENIUA)) siasny/stadonag

Patent Application Publication

O00L LY

Patent Application Publication = May 21, 2020 Sheet 28 of 32 US 2020/0160377 Al

Know Properties

12005 Add New Language

4 12040
ldentify Text
Properties 4

12010 Set Target Language

v 12045
Generate New Keys

12015

Y
Scan Source Code FIG. 12A
12020

h 4

Generate New Keys
and Change Code
12025

A4

Add Stings to
a Map
12030

Y

Convert strings to
Target Language
12035

Patent Application Publication = May 21, 2020 Sheet 29 of 32 US 2020/0160377 Al

FIG. 12B

12105a

12100

/

12100c

12100b
Visusiizer

12100a

Patent Application Publication = May 21, 2020 Sheet 30 of 32 US 2020/0160377 Al

12200a

12200b

FIG. 12C

Patent Application Publication = May 21, 2020 Sheet 31 of 32 US 2020/0160377 Al

12205a
/

Hello, John. Our records
show that you are already
enrolled in online banking

122050
Z
\ Translation of ;
+ 12205a “Hello, !
WRIFZ98 . FRATHIE R | John. Our records |
= 4 A «—1. show thatyou are !
RIHIR . already enrolled in !

; online banking”
¥

~~~~~~~~~~~~~~~~~~~~~~~~

FiG. 12D



Patent Application Publication = May 21, 2020 Sheet 32 of 32  US 2020/0160377 Al

12210a

12210b

Fgrraanbrer M

GEER R ATIOURT

FIG. 12E



US 2020/0160377 Al

SYSTEM AND METHOD IMPLEMENTING
CAMPAIGN PRODUCTS AND SERVICES
WITHIN AN INTELLIGENT DIGITAL
EXPERIENCE DEVELOPMENT PLATFORM

FIELD OF THE INVENTION

[0001] The present disclosure relates to digital experience
development platforms and, more particularly, one or more
components, systems and methods thereof of an intelligent
digital experience development platform (IDXDP) config-
ured to assist different users in the development, design and
deployment of digital applications.

BACKGROUND

[0002] Digital experience, or application, development is
the process by which application software is developed for
handheld devices, such as personal digital assistants, enter-
prise digital assistants, mobile phones (e.g., smart phones),
tablet computers, embedded devices, virtual personal assis-
tants (VPAs), smart televisions, in-vehicle infotainment sys-
tems, appliances, etc. Digital applications (e.g., “apps”) can
be pre-installed on devices during manufacturing, down-
loaded by customers from various digital software distribu-
tion platforms, or delivered as web applications using
server-side or client-side processing to provide an applica-
tion-like experience within a web browser.

[0003] In order to develop such apps, a developer,
designer, etc. requires several tools, e.g., toolsets. These
tools can include, e.g., integrated development environment
(IDE) tools, provided by different studios. These tools can be
used to develop applications for different applications and
operating systems. These tools can be used by the developer,
for example, to create or design different assets such as
skins, widgets, platform specific icons, buttons, etc. To
complicate matters, though, there is no standard way of
creating these different assets, leaving the developer with the
need to constantly recreate such assets without knowledge of
how other developers or designers have created the same
asset. Also, these tools only provide limited assistance to the
developer or designer, requiring the customer to request
manual support from the service provider. This tends to be
a tedious and expensive process.

SUMMARY

[0004] In a first aspect of the invention, there is a com-
puter-implemented method for performing the steps/func-
tionality described herein. In another aspect of the invention,
there is a computer program product including a computer
readable storage medium having program instructions
embodied therewith. The program instructions are execut-
able by a computing device to cause the computing device
to perform the steps/functionality described herein. In
another aspect of the invention, there is system including a
processor, a computer readable memory, and a computer
readable storage medium. The system includes program
instructions to perform the steps/functionality described
herein. The program instructions are stored on the computer
readable storage medium for execution by the processor via
the computer readable memory.

[0005] In aspects of the invention, a computer-imple-
mented method comprises: receiving, by a computing device
of a cloud-based campaign system, a campaign for products
or services from a marketing system via a network; provid-

May 21, 2020

ing, by the computing device, the campaign to one or more
participants on the network; obtaining, by the computing
device, feedback from the one or more participants regard-
ing the campaign; analyzing, by an artificial intelligence tool
of'the computing device, the feedback to generate marketing
analytics information; and providing, by the computing
device, the marketing analytics information to the marketing
system via the network.

[0006] In aspects of the invention, a computer program
product comprises a computer readable storage medium
having program instructions embodied therewith, the pro-
gram instructions executable by a computing device to cause
the computing device to: determine that one or more par-
ticipants in a marketing network have opted to receive
campaigns for products or services; receive a campaign for
products or services from a marketing system in the mar-
keting network; provide the campaign to the one or more
participants on the marketing network based on the deter-
mining that the one or more participants in the marketing
network opted to receive campaigns for products or services;
obtain feedback from the one or more participants regarding
the campaign; analyze, by an artificial intelligence tool of
the computing device, the feedback to generate marketing
analytics information; and provide the marketing analytics
information to the marketing system.

[0007] In aspects of the invention, a campaign system
comprises: a processor, a computer readable memory and a
computer readable storage medium associated with a com-
puting device; program instructions to determine that one or
more participants in a marketing network have opted to
receive notifications for products or services and/or cam-
paigns for products or services; program instructions to
receive a notification for products or services and/or a
campaign for products or services from a marketing system
in the marketing network; program instructions to provide
the notification and/or the campaign to the one or more
participants on the marketing network based on the deter-
mining that the one or more participants in the marketing
network opted to receive the notifications and/or the cam-
paigns; program instructions to obtain feedback from the
one or more participants regarding the notification and/or the
campaign; program instructions to analyze, by an artificial
intelligence tool of the computing device, the feedback to
generate marketing analytics information; and program
instructions to provide the marketing analytics information
to the marketing system, wherein the program instructions
are stored on the computer readable storage medium for
execution by the processor via the computer readable
memory.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The present invention is described in the detailed
description which follows, in reference to the noted plurality
of drawings by way of non-limiting examples of exemplary
embodiments of the present invention.

[0009] FIG. 1A depicts a computing infrastructure in
accordance with aspects of the present disclosure.

[0010] FIG. 1B depicts a cloud computing environment in
accordance with aspects of the present disclosure.

[0011] FIG. 1C shows an overview of a functional block
diagram of the IDXDP in accordance with aspects of the
present disclosure.

[0012] FIG. 2A depicts a computing architecture in accor-
dance with aspects of the present disclosure.



US 2020/0160377 Al

[0013] FIG. 2B depicts a swim lane diagram for imple-
menting the steps associated with the intelligent application
in accordance with aspects of the present disclosure.
[0014] FIG. 3A illustrates several screen shots showing
capabilities provided by an event queue processer in accor-
dance with aspects of the present disclosure.

[0015] FIG. 3B depicts an implementation in a computing
device in accordance with aspects of the present disclosure.
[0016] FIG. 3C depicts an application programming inter-
face (API) of a development tool (e.g., Kony Visualizer® by
Kony, Inc.) in accordance with aspects of the present dis-
closure.

[0017] FIG. 3D depicts a computing environment between
the development tool and a server system in accordance with
aspects of the present disclosure.

[0018] FIG. 3E depicts components of a server system in
accordance with aspects of the present disclosure.

[0019] FIG. 3F depicts a swim lane diagram for imple-
menting processes in accordance with aspects of the present
disclosure.

[0020] FIGS. 4A and 4B illustrate screen shots of recom-
mendations for users in accordance with aspects of the
present disclosure.

[0021] FIG. 4C shows a swim lane diagram illustrating
exemplary processes in accordance with aspects of the
present disclosure.

[0022] FIGS. 4D, 4E, and 4F illustrate providing autono-
mous recommendations to automatically complete actions in
accordance with aspects of the present disclosure.

[0023] FIG. 4G shows an illustrative environment in
accordance with aspects of the present disclosure.

[0024] FIG. 4H shows a flowchart of exemplary processes
for conversational bot app developing in accordance with
aspects of the present disclosure.

[0025] FIG. 5A shows an exemplary computing environ-
ment in accordance with aspects of the present disclosure.
[0026] FIG. 5B shows an exemplary user interface illus-
trating a function in accordance with aspects of the present
disclosure.

[0027] FIG. 5C shows a flowchart of steps of exemplary
processes in accordance with aspects of the present disclo-
sure.

[0028] FIG. 5D shows a swim lane diagram of exemplary
processes in accordance with aspects of the present disclo-
sure.

[0029] FIG. 6A shows a flowchart of exemplary processes
in accordance with aspects of the present disclosure.
[0030] FIG. 6B shows a flowchart of exemplary processes
in accordance with aspects of the present disclosure.
[0031] FIG. 6C shows a swim lane diagram of exemplary
processes in accordance with aspects of the present disclo-
sure.

[0032] FIG. 7A shows a system level or architectural
overview of an interactive tutorial platform in accordance
with aspects of the present disclosure.

[0033] FIG. 7B shows an exemplary display with an
interactive tutorial using the interactive tutorial platform in
accordance with aspects of the present disclosure.

[0034] FIG. 7C depicts a swim lane diagram for imple-
menting steps associated with the interactive tutorial plat-
form in accordance with aspects of the present disclosure.
[0035] FIG. 8A shows an administrative portal for provid-
ing rules in a real-time collaboration environment in accor-
dance with aspects of the present disclosure.

May 21, 2020

[0036] FIG. 8B depicts a swim lane diagram for imple-
menting steps associated with the administrative portal to
provide rules for real-time collaboration in accordance with
aspects of the present disclosure.

[0037] FIG. 9A shows an interface for communicating to
business systems (e.g., chatbot) in accordance with aspects
of the present disclosure.

[0038] FIG. 9B depicts a swim lane diagram for imple-
menting steps associated with the communication with the
business systems in accordance with aspects of the present
disclosure.

[0039] FIG. 10A depicts a swim lane diagram for imple-
menting steps associated with a registration system in accor-
dance with aspects of the present disclosure.

[0040] FIG. 11A depicts a swim lane diagram for imple-
menting steps associated with a marketing system in accor-
dance with aspects of the present disclosure.

[0041] FIG. 12A depicts a flow diagram for implementing
steps associated with the system and method of translation
application in accordance with aspects of the present dis-
closure.

[0042] FIG. 12B shows an architecture of system and
method of the translation application in accordance with
aspects of the present disclosure.

[0043] FIG. 12C shows screenshots before and after trans-
lation conversion support as implemented by the system and
method of translation application.

[0044] FIG. 12D shows screenshots of translation of
strings on forms (from English to Mandarin) as implemented
by the system and method of translation application.
[0045] FIG. 12E shows screenshots of translation of fill-
able fields and static text on forms (from English to Man-
darin) as implemented by the system and method of trans-
lation application.

DETAILED DESCRIPTION

[0046] The present disclosure relates to digital experience
(also referred to as a digital application) development plat-
forms and, more particularly, to an intelligent digital expe-
rience development platform (IDXDP) configured to assist
different users in the development, design and deployment
of digital applications. The term “digital application devel-
opment platform” or the use of the term “mobile” should not
be considered a limiting feature as the scope of the invention
is extended to more than cellular telephones, tablets, etc. In
embodiments, the platform is extended to produce runtimes
for virtual personal assistants (VPA’s) (e.g. Alexa® of
Amazon Technologies, Inc.), in-vehicle infotainment sys-
tems, appliances, etc., beyond mobile. The “digital experi-
ence” refers more broadly to areas of enablement, which
may not be packaged as a traditional “app” or binary. It
broadens the focus to include areas like smart television
“apps”, appliance-based apps which may be apps or widgets,
VPA type services (Alexa® by Amazon Technologies, Inc.,
Google Home™, Homepod® by Apple Inc.), etc. So gen-
erally, IDXDP is a broader aperture for how consumers,
enterprise employees, etc. will “experience” technology in
the future.

[0047] In embodiments, the IDXDP includes a number of
discrete, intelligent platforms and/or functionality that con-
stitute a disruptive shift in the capabilities of an application
development platform. More specifically, the IDXDP incor-
porates artificial intelligence (Al) capabilities, e.g., natural
language processing (NLP), machine learning processing,



US 2020/0160377 Al

and rules engines, with the integration of other functionality
to provide a highly granular event queue within an applica-
tion platform to assist in the development, design and
deployment, etc., of digital applications. Advantageously,
the Al capabilities will assist different types of users (per-
sonas), e.g., digital application developers, digital applica-
tion designers and enterprise administrators, etc., to improve
and assist in the efficient development, design and deploy-
ment lifecycle of a digital application.

[0048] For example, in embodiments, the IDXDP mines
individual actions and aggregates actions on a global user
basis to determine how best to suggest methods to achieve
an improved outcome. The outcome can range from the
development of a digital application, to the design (e.g., look
and feel) of the digital application, to the deployment of the
digital application within an enterprise, etc. In embodiments,
the IDXDP can also interface directly with any third party
services, e.g., Salesforce®, to assist in the upsell or other
potential actions to improve the performance and/or func-
tionality of the digital application.

[0049] In addition, the IDXDP can be integrated with
different application platform such as development plat-
forms or development tools or components thereof, e.g.,
Kony Visualizer® by Kony, Inc.' to identify deficiencies
within the development tool, to create its own descriptive
epics (i.e., large bodies of work that can be broken down into
a number of smaller tasks (called stories) using, e.g., project
management tools, debugging tools, issue tracking tools,
etc. (such as Jira® by Atlassian Pty [.td), which can then be
fed directly to a development or design team to enhance
and/or improve the development life cycle, e.g., program-
ming, functionality, testing, etc., of the digital application.
More specifically, the IDXDP described herein can be an
advanced feature that essentially lives within an application
platform, e.g., Kony Visualizer® by Kony, Inc.

[0050] It should be understood that the term object, wid-
get, form, template, etc. are used generically herein and, in
appropriate instances, each can be interchangeable in imple-
menting the functionality herein. For example, learning of a
widget can be equally applicable of learning an object,
template or other asset, for the Al to make recommendations
for best practices, dead-ending purposes, creating tutorials,
upselling, standardizing code, or other {functionality
described herein with respect to the different modules,
components, tools, etc. In addition, the term asset and/or
object may be understood to be the most generic terminol-
ogy for any creation by the user in the development tool,
e.g., skin, widget, template, button, etc.; although each of
these terms as noted above may be used interchangeably.

System Environment

[0051] The IDXDP may be embodied as a system, method
or computer program product. The IDXDP may take the
form of a hardware embodiment, a software embodiment or
a combination of software and hardware. Furthermore, the
IDXDP may take the form of a computer program product
embodied in any tangible storage medium having computer-
usable program code embodied in computer readable storage
medium or device. The IDXDP operates by processing user
actions, without dependence on a user input widget, or can
expose one or more user input methods in which a user can
invoke intelligent capabilities. User input methods can be
text oriented, speech oriented, or by any other input method
as is known to those of skill in the art.

May 21, 2020

[0052] The computer readable storage medium is not a
transitory signal per se, and is any tangible medium that
contains and stores the program for use by or in connection
with an instruction execution system, apparatus, or device.
For example, the computer readable storage medium can
comprise electronic, magnetic, optical, electromagnetic,
infrared, and/or semiconductor systems and/or devices.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium include: a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber,
a portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
combination thereof. Accordingly, the computer readable
storage medium may be any tangible medium that can
contain or store a program for use by or in connection with
an instruction execution system, apparatus, or device of the
present invention.

[0053] The computer readable storage medium can be
used in the illustrative environment 1000 shown in FIG. 1A
for assisting and/or managing the development, design,
deployment and/or other enhancements or functionality of
any number of digital applications. In embodiments, the
computing environment 1000 includes a server 1012 or
other computing system, which can be any platform used for
the development, design or deployment of digital applica-
tions. For example, server 1012 can be representative of a
development tool, e.g., Kony Visualizer® by Kony, Inc.
integrated within the Kony MobileFabric® tool by Kony,
Inc. or other development tools or platforms for the devel-
opment, design and deployment of digital applications. The
server 1012 can also be representative of a digital backend
as a service (MBaaS), maintained by a service provider, e.g.,
Kony® by Kony, Inc. As should be understood by those of
ordinary skill in the art, the MBaaS is a model for providing
web and digital application developers with a way to link
their applications to backend cloud storage and Application
Program Interfaces (APIs) exposed by backend applications,
while providing features such as user management and
integration.

[0054] In embodiments, the server 1012 can be a single,
open standards-based digital infrastructure platform. The
single, open standards-based digital infrastructure platform
can unify multiple infrastructures/platforms together,
including mobile application development platform
(MADP), mobile backend as a service (MBaaS), API man-
agement, and platform as-a-service (PaaS) infrastructures.
To this end, for example, the server 1012 can be represen-
tative of Kony MobileFabric® by Kony, Inc. which is a
converged mobile/digital infrastructure that empowers
enterprises to significantly reduce time to market, while
providing an interactive guide of best practices using intel-
ligent subsystems, e.g., bots, etc. In this example, the server
1012 can further integrate Enterprise Mobility Management/
Mobile Application Management (EMM/MAM) server
functions (e.g., management instances), as well as incorpo-
rate any number of enterprise stores, e.g., an app store.

[0055] The server 1012 and/or processes performed by the
server 1012 can be integrated into the networking environ-
ment (e.g., cloud environment) such as shown in FIG. 1B or
any enterprise management system, development tool or
other system also represented in FIG. 1B. The server 1012
can also access and mine the worldwide web or other



US 2020/0160377 Al

external computing systems 1045 for best practices in the
development, design, deployment, etc., of digital applica-
tions using the intelligent systems described herein.

[0056] Still referring to FIG. 1A, the server 1012 includes
a computing device 1014, which can be resident on a
network infrastructure or computing device. The computing
device 1014 includes a processor 1020 (e.g., a central
processing unit (CPU)), a memory 1022A, an Input/Output
(I/O) interface 1024, and a bus 1026. The bus 1026 provides
a communications link between each of the components in
the computing device 1014. In addition, the computing
device 1014 includes a random access memory (RAM), a
read-only memory (ROM), and an operating system (O/S).
The computing device 1014 is in communication with the
external 1/O device/resource 1028 and a storage system
1022B. The I/O device 1028 can comprise any device that
enables an individual to interact with the computing device
1014 (e.g., user interface) or any device that enables the
computing device 1014 to communicate with one or more
other computing devices (e.g., devices 1045, etc.) using any
type of communications link.

[0057] The processor 1020 executes computer program
code (e.g., program control 1044), which can be stored in the
memory 1022A and/or storage system 1022B. In embodi-
ments, the program control 1044 of the computing device
1014 of the server 1012 controls the tool(s) (e.g., modules)
1050 described herein which can be program modules, etc.,
comprising program code adapted to perform one or more of
the processes described herein. The program code can
include computer program instructions stored in a computer
readable storage medium. The computer program instruc-
tions may also be loaded onto the computing device 1014,
other programmable data processing apparatus, or other
devices to cause a series of operational steps to be performed
on the computer.

[0058] The tools 1050 can be implemented as one or more
program code in the program control 1044 stored in memory
1022A as separate or combined modules. Additionally or
alternatively, the tools 1050 may be implemented as separate
dedicated special use processors or a single or several
processors to provide the functionality described herein.
While executing the computer program code, the processor
1020 can read and/or write data to/from memory 1022A,
storage system 1022B, and/or I/O interface 1024. In this
manner, the program code executes the processes of the
invention. By way of non-limiting illustrative example, the
tool(s) (e.g., modules) 1050 are representative of the fol-
lowing functionality of systems and methods associated with
a development tool, e.g., Kony Visualizer® by Kony, Inc.

[0059] Intelligent Mobile Application Development Plat-
form
[0060] The IDXDP can represent complex widgets, object

services or other components created within an integrated
development environment (IDE). The IDE is a software
application that provides comprehensive facilities to com-
puter programmers for software development. An IDE nor-
mally includes of a source code editor, build automation
tools, and a debugger. In more specific embodiments, the
IDXDP facilitates a system and method for representing
objects by implementing a granular event process, and
representing user actions, object component settings, field
values and other metadata. That is, the IDXDP lays a
foundational event queue, which can be used with the
additional functionality described herein.

May 21, 2020

[0061] In embodiments, the event oriented representation
and syntax provided in the IDXDP captures a full fidelity
and accurate depiction of a widget, service or other software
component (known generally as an “asset”). Its structure can
be used as a content feed for Al, machine learning and
analytics based engines (or other cognitive platforms) to
determine how developers and other users are constructing
components and ultimately developing and/or designing
digital applications. The Al and machine learning are able to
acquire insight into programming techniques to determine
how to improve design and development practices and
techniques.

[0062] In embodiments, the system and method imple-
ments a highly IDXDP capable of representing complex
widgets, object services or other components created within
an IDE. This event queue serves as a rolling record of the
events, which go into creating a component of a digital
application. By monitoring this event queue (or stream), the
IDXDP is able to determine the intent of the developer,
which can be later used to provide recommendations of best
practices for building components, tutorials or other func-
tionality described herein. Several related actions can be
invoked as a result of this monitoring process.

[0063] The IDXDP also lays the foundation for further
functionality described herein which allows Al (e.g., cog-
nitive computing) to suggest better ways to achieve an
outcome (e.g., building assets, service definition, etc.). The
IDXDP does this by relating current actions to outcomes,
which already exist, either in the developer’s local work-
space, a software marketplace or other repository.

[0064] Event Processing System and Method

[0065] The event processing system and method is a
system and method for processing an event queue comprised
of IDE user actions and constructing an object or service
from the data within that queue. For example, the event
processing system and method uses the event queue as
described herein to drive recommendations to developers,
designers, and other personas using the IDXDP described
herein. In embodiments, when implementing the event pro-
cessing system and method, natural language narrations can
be dynamically formed and rendered to the user to create a
depth of understanding related to the component or object
composition and capabilities or other assets. In addition, a
machine learning component continuously optimizes design
assets and offers the latest embodiment to the user.

[0066] Autonomous Advisor

[0067] The autonomous advisor is a system and method
for analyzing an event queue to derive repetitive actions and
refactor those actions into specific application components.
These application components can include but are not lim-
ited to forms, master templates (masters) or macros, wid-
gets, services, or other assets, etc. By way of example, the
autonomous advisor creates a cognitive development envi-
ronment capable of learning from a single user or multiple
users, and creates suggested actions based on a global
community of users. The autonomous advisor is also capable
of determining the class of user (e.g., designer, developer,
citizen developer, business stakeholder, etc.) and adapting
the guidance and suggestions to the particular competency
level of the class of user.

[0068] Systems and Methods of Converting Actions Based
on Determined Personas (Users)

[0069] The systems and methods of converting actions
based on determined personas (users) captures and aggre-



US 2020/0160377 Al

gates multi-role user actions (e.g., designers, developers,
etc.) performed within a platform into a data repository. The
systems and methods of converting actions based on deter-
mined personas (users) will also perform analytics capable
of determining future enhancements needed to that platform.
These enhancements will be used to more efficiently assist
a user (e.g., designers, developers, etc.) in the development,
design and/or deployment of an application. Systems and
methods within the IDXDP eliminate the need for a user of
the intelligent digital experiences development platform to
specify their persona of architect, designer, developer, inte-
grator, or other persona. The intelligent digital experiences
development platform accomplishes this by examining the
user’s actions via the users Individual Developer Stream
(IDS) and comparing that with the list of actions from a
Team Developer Stream (TDS) coming from users with
well-known or algorithmically derived personas. This
enables the intelligent digital experiences development plat-
form to infer persona in cases where the user has not
self-identified. This also allows the intelligent digital expe-
riences development platform to support Dynamic Persona
Shifting (DPS).

[0070] DPS applies to users that work across multiple
personas when working on tasks, but within a specific task,
they are almost always acting within a single persona. DPS
enables the intelligent digital experiences development plat-
form to identify a user’s current persona based on the
individual developer stream and personalize the experience
for that user for their current task.

[0071] Additionally, an End User Usage Stream (EUS) is
client side (application) functionality, which optionally col-
lects the event activity stream for end-users of applications
or other digital experiences. The EUS helps the application
developer by tracking high usage features, slow functions/
services, areas of positive or negative feedback, and alerts
users of the intelligent digital experiences development
platform of the user experience associated with their current
code or the impact of their changes in a particular compo-
nent or module. The Autonomous Advisor (AA) acts on a
single user, but also across the entire team or global com-
munity to identify duplicate/repetitive tasks. The AA or
Autonomous Advisor Module (AAM) reduces rework
through repetition elimination by scanning across IDS, TDS
and clinical decision support (CDS) repositories, identifying
similar components, code snippets, services and other assets.
The AAM, for example, can act on a single user, but also
across the entire team to identify duplicate/repetitive tasks
across the team or full community. The AAM consumes
IDS, TDS and CDS, analyzing and routing data to the
Autonomous Advisor and other end points.

[0072] System and Method of Generating Actionable
Intelligence Based on Platform and Community Originated
Data

[0073] The system and method of generating actionable
intelligence based on platform and community originated
data is a system and method for aggregating platform and
community originated tasks into events and further evalu-
ating these events into actionable sales intelligence. For
example, the system and method creates an Al capability,
which determines if the usage (either by a single person or
by an enterprise group) suggests that a further sales action
should be taken, e.g., an upsell for instance.

May 21, 2020

[0074] Interactive Tutorial Platform and Related Processes
[0075] The interactive tutorial platform is a system and
method for the dynamic conversion of a software compo-
nent, comprised of data and meta-data, into a real-time
playback of component creation. This system provides the
capability to use components within a component library or
marketplace, to educate a designer, developer or other
associated skills role in the functionality, the runtime char-
acteristics and the end to end integration of a software
component.

[0076] In embodiments, the interactive tutorial platform
and related processes allows for components to tell a story
about themselves. In conventional systems and methods, a
story was often told via self-help videos, which shows a user
manually walking through the relevant steps of the devel-
opment and/or design process. The self-help video is a
non-interactive video, which simply shows a user going
through creation steps. In contrast, the interactive tutorial
platform and related processes shows each step of its cre-
ation and behaves similar to another developer or designer
taking the user through the creation of the component. For
example, the methods and intelligence of developing or
designing a digital application or component thereof, for
example from Kony Marketplace™ by Kony, Inc., can now
be imported into the workspace of development tool, e.g.,
Kony Visualizer by Kony, Inc., and subsequently “played”,
resulting in the component (or service) informing the user
how it was actually created. This includes optional narration
tags, which can specifically be rendered as balloon text or
spoken words, thereby essentially performing a dynamic
technology transfer to the user. In embodiments, a system
allowing for ratings to be associated with interactive ren-
derings is also contemplated herein.

[0077] System and Method of Real-Time Collaboration
[0078] The system and method of real-time collaboration
is a system and method for real-time collaboration between
developers (or other personas) within the enterprise, and also
connecting with a community of developers. By implement-
ing the system and method of real-time collaboration, sys-
tem administrators can define collaboration rules across the
enterprise of users or at the developer level, for example.
[0079] System and Method for Connecting End Users to
Business systems

[0080] The system and method for connecting end users to
business systems is a system and method, which enhances
service and generates business leads. In embodiments, the
system will allow the users with certain roles (e.g., manag-
ers, lead developers, etc.) to request help for professional
services, buy products, proposals, etc., through a chat inter-
face. In embodiments, the system and method for connecting
end users to business systems routes these requests to
customer relation management systems and/or through the
business systems, which logs the requests. The system will
also autonomously respond back to the users when the
previously sent requests are updated by the interested par-
ties. Though a chat interface is referred to previously, this
intelligent system also facilitates communication through
other service calls or services integrations to third party
software components and applications.

[0081] Registration System

[0082] The registration system is a system and method,
which allows vendors to register themselves using an admin-
istrative portal/website. In embodiments, the system and
method allows third party vendors to plug in through the
administrative portal, which will assign each vendor a



US 2020/0160377 Al

unique handle. This unique handle is used by the end users
to communicate with external vendors through the systems
described herein. In embodiments, the system and methods
can define the communication contract for the external
vendors.

[0083] System and Method to Campaign Products and
Services
[0084] The system and method to campaign (e.g., identify

and sell) products and services have the ability to run
marketing campaigns for product/professional services with
a targeted audience. The system and method provides the
user with an option for the user to turn on/off campaigns,
record and submit the results of the campaign to a central
repository, and run analytics on the response received from
the campaigns.

Cloud Computing Platform

[0085] FIG. 1B shows an exemplary cloud computing
environment 1100 which can be used to implement the
IDXDP. The cloud computing is a computing model that
enables convenient, on-demand network access to a shared
pool of configurable computing resources, e.g., networks,
servers, processing, storage, applications, and services, that
can be provisioned and released rapidly, dynamically, and
with minimal management efforts and/or interaction with a
service provider. In embodiments, one or more aspects,
functions and/or processes described herein may be per-
formed and/or provided via cloud computing environment
1100.

[0086] As shown, cloud computing environment 1100
comprises one or more cloud computing nodes 1110 with
which local computing devices are used by the developer,
design, administrator of an enterprise, etc. It is understood
that the types of computing devices 1115A, 1115B shown in
FIG. 1B are intended to be illustrative only and that the
cloud computing nodes 1110 and the cloud computing
environment 1100 can communicate with any type of com-
puterized device over any type of network and/or network
addressable connection (e.g., using a web browser). These
local computing devices can include, e.g., desktop computer
1115A, laptop computer 1115B, and/or other computer sys-
tem. In embodiments, the cloud computing nodes 1110 may
communicate with one another. In addition, the cloud com-
puting nodes 1110 may be grouped (not shown) physically
or virtually, in one or more networks, such as Private,
Community, Public, or Hybrid clouds or a combination
thereof. This allows cloud computing environment 1100 to
offer infrastructure, platforms and/or software as services for
which a cloud consumer does not need to maintain resources
on a local computing device.

[0087] The cloud computing nodes 1110 can include a
variety of hardware and/or software computing resources,
such as servers, databases, storage, networks, applications,
and platforms as shown, for example, in FIG. 1A. The cloud
resources 1110 may be on a single network or a distributed
network across multiple cloud computing systems and/or
individual network enabled computing devices. The cloud
computing nodes 1100 may be configured such that cloud
resources provide computing resources to client devices
through a variety of service models, such as Software as a
Service (SaaS), Platforms as a service (PaaS), Infrastructure
as a Service (laaS), and/or any other cloud service models.
The cloud computing nodes 1110 may be configured, in
some cases, to provide multiple service models to a client

May 21, 2020

device. For example, the cloud computing nodes 1110 can
provide both SaaS and IaaS to a client device.

Functional Block Diagram for Implementing
Features of the Intelligent Mobile Application
Development Platform

[0088] FIG. 1C shows an overview of a functional block
diagram of the IDXDP (also referred to as Kony IQ™ by
Kony, Inc.) in accordance with aspects of the present dis-
closure. The IDXDP includes several modules as described
below, which are provided in a cognitive computing envi-
ronment for omni-channel platforms. The IDXDP imple-
ments the different Al and natural language learning com-
ponents described herein to provide the different
functionality as described throughout the disclosure, e.g.,
recommendations of best practices, tutorials, upselling
actions, etc. As should be understood by those of skill in the
art, omni-channel is a multichannel approach to sales that
seeks to provide the customer with a seamless experience.
Cognitive computing involves self-learning systems that use
data mining, pattern recognition and NLP. The goal of
cognitive computing is to create automated information
technology (IT) systems that are capable of solving prob-
lems without requiring human assistance or intervention.
[0089] In embodiments, the functional blocks described
herein can be implemented in the computing environment
1000 of FIG. 1A and/or the exemplary cloud computing
environment 1100 of FIG. 1B. It should be understood that
each block (and/or flowchart and/or swim lane illustration)
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts or carry
out combinations of special purpose hardware and computer
instructions. Moreover, the block diagram(s), flowcharts and
swim lane illustrations described herein illustrate the archi-
tecture, functionality, and operation of possible implemen-
tations of systems, methods, and computer program products
according to various embodiments of the present disclosure.
In this regard, each block in the flowchart or step in the swim
lane illustrations or block diagrams may represent a module,
segment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s).

[0090] Interactive Advisor Module

[0091] The interactive advisor module 1205 is configured
to answer questions of any particular user, whether it be the
developer, designer, administrator, etc. So, by implementing
the interactive advisor module 1205, the user has the ability
ask questions, e.g., “do you have any login templates?”, “can
you clean up my project?”, “can you deduplicate or can you
eliminate unused skills or unused actions?”, etc., and these
questions will, in turn, invoke search capabilities which will
return pertinent answers within an interactive chat window.
In this way, the interactive advisor module 1205 allows for
multi-persona from across a number of technical back-
grounds or even non-technical backgrounds to use the
platform. This provides the ability to interact with and
optimize the advice and how it is given to any one of those
personas. The functionality also includes an opted in/opted
out capability.

[0092] The interactive advisor module 1205 determines
the actions of the user, e.g., whether or not a user is creating
a form (or other asset) in a workspace or is collaborating
with others to create such a form, and determines that such
actions are similar or the same as another user who already



US 2020/0160377 Al

successfully created the form (or other asset) using its
machine learning perspective. The IDXDP can then make
suggestions to complete the tasks, giving examples of things
that can speed up the development. These provided
examples might be further along than the current user, which
can then be implemented immediately by the user from a
backend conductivity point right away.

[0093] Autonomous Advisor Module

[0094] The autonomous advisor module 1210 allows the
IDXDP to go from an interactive advisor to an autonomous
advisor, which functions in the background to provide
guidance to the user. For example, the autonomous advisor
module 1210 continuously looks for things, e.g., completion
of a certain activity, where the user is creating a certain asset
form in a digital application that represents a product list, a
scrollable product list, etc. The autonomous advisor module
1210 can then manage the static assets using labels, image
holders, etc. In embodiments, the autonomous advisor mod-
ule 1210 can be implemented to perform other functions
including providing recommendations of best practices,
generating and providing tutorials, etc., in addition to the
other capabilities described herein.

[0095] Another example of implementation of the autono-
mous advisor module 1210 is a designer using color palettes.
In this example, a designer may be using particular colors to
represent particular buttons, particular backgrounds, and
forms, etc. The autonomous advisor module 1210 is able to
make recommendations so that the designer stays within a
particular approved color palette in order to comply with
specific guidelines or best practices, in general. This allows
the outcome from the designer to look and feel consistent.
[0096] Global Developer Trends Module

[0097] The global developer trends module 1215 is con-
figured to obtain global trends within any particular industry.
For example, in implementation, the global developer trends
module 1215 is not simply obtaining intelligence from one
person, but on a global basis. This global knowledge may be
obtained through other applications within the platform or
from external systems including the scraping of the internet
or other third party applications, i.e., global developer pool.
These global trends, in essence, are provided from a devel-
oper population across the globe and then applied locally.
These trends can then be used to improve the outcome
locally in the design, development and/or deployment of the
application. These trends can include, e.g., how to use
specific code or a highly customized code in a particular
application.

[0098] With this noted, the global developer trends mod-
ule 1215 is configured to gather information from a global
population of developers/designer in real time using
machine learning to distill their particular actions into con-
sequences. Also, the global developer trends module 1215
can relate what is found, e.g., what they are doing and how
they did it, to then implement such new techniques, etc. into
the productivity of the current user.

[0099] Development Advisor Module

[0100] The development operations (DevOps) advisor
module 1220 is configured to provide the ability to not just
look at the tools that are available, e.g., tools that are
currently in the developer kit, but a global set of tools for the
development, design and deployment of the application. In
other words, the DevOps advisor module 1220 can include
embedded text editing, program editing features, built pan-
els, and various configurability to assist the user in their

May 21, 2020

particular tasks. More specifically, the DevOps advisor
module 1220 provides the ability to look at what developers
are using as peripheral utilities and peripheral features
around the application platform, e.g., Kony Visualizer® by
Kony, Inc., so that when asked a question, or autonomously,
the DevOps Advisor 1220 can recommend different tools to
improve efficiency of the particular user, e.g., developer,
designer, etc. The recommendation can be from sampling a
broad array of development environments and in real-time
keeping up with these environments.

[0101] Technical Eminence Module

[0102] The technical eminence module 1225 is an over-
head task most of the time, e.g., packaging an asset for
marketplace, which can be made part of the marketplace.
For example, the technical eminence module 1225 is con-
figured to provide an enterprise or team to share assets back
and forth. These assets can be shared between private and
public marketplaces, to publicly or privately accessible
repositories (e.g., Stack Overflow® by Stack Exchange,
Inc., GitHub® by GitHub, Inc. or others), as well as amongst
teams or people with a team setting, as examples. In embodi-
ments, the technical eminence module 1225 provides con-
figurations and administrative capabilities that allow a team
lead, for example, of a particular group of technical
resources to use different resources within the constraints of
a large-scale enterprise.

[0103] To enforce particular authentication routines, e.g.,
a particular look and feel of a widget that is being used/
shared, the IDXDP, e.g., the technical eminence module
1225, can be the orchestrator between the asset just created
on the public marketplace or private marketplace, stack
overflow, or other kind of publication site. This is very
beneficial to the enterprise, in general, so that the user can
implement reusable assets that are essentially approvable
and usable, with the approval or preauthorization from the
enterprise administrator.

[0104] Plug-in Architecture Module

[0105] The plug-in architecture module 1230 is configured
to incorporate multiple “cognitive brains” into the flow of
processing. In essence, the plug-in architecture module 1230
allows plug in capability of different bots, e.g., a meta-bot,
chat bots, and other tools provided herein (e.g., each of the
different discrete components, systems and methods
described herein such as any of the engines described herein,
e.g., recommendation engine, autonomous advisers, manag-
ers (event manager), modules of FIG. 1C, etc.) and provides
the orchestration of such plug-ins. In this way, the plug-in
architecture module 1230 allows the IDXDP to be enhance-
able and extendable over time.

[0106] In embodiments, the plug-in architecture module
1230 allows multiple brains (e.g., bots having certain Al)
that can be configured in such a way that the handoff
between those can be orchestrated and orderable, etc. In this
way, it is now possible to chain intelligence, e.g., bots, from
boutique level or industry-specific or enterprise specific
development tools to the IDXDP to take advantage of their
intelligence. This will allow cross team intelligence, which
a particular brain may offer in order to benefit from the
utility for a particular need.

[0107] The different developer or utility specific bots, e.g.,
Al, may then be hosted locally on the development platform,
e.g., Kony Visualizer® by Kony, Inc. For example, there can
be many different Al including a specific type of DevOps
brain that is written around the use of a particular tool that



US 2020/0160377 Al

has just emerged. Or, there may be a particular security brain
that is making the developer aware of particular security
paradigms when they build their digital application.

[0108]

[0109] The training/support optimization module 1235 is
configured to create and view an interactive type of tutorial
for training a user in the construction or use of different
assets, e.g., widgets, micro applications, mobile and digital
applications, etc. These different assets can be constructed
internally as objects and name values and pairs, etc., or
externally. For example, the training/support optimization
module 1235 provides the ability to assemble an object
(asset) in real-time using the IDE so that the object can
actually be constructed by the user.

[0110] More specifically, in embodiments, the training/
support optimization module 1235 creates a new way of
creating an interpreter for the application platform that will
allow the developer, designer or other user to see how
something is being constructed, in real time. This instruction
set is provided within the context of the IDE. Also, in the
context of the training/support optimization module 1235,
an editor function allows the user to edit and create different
content, i.e., building of a particular asset such as a skin,
widget, button, attributes or objects, or other assets, etc.,
with natural pauses in the playback of that particular asset on
the IDE.

[0111] The training/support optimization module 1235
also supports the injection of speech or graphics or pop-up
bubble text as examples. The training/support optimization
module 1235 also provides the ability to inject metadata
around a particular asset so that it is now possible to convey
messages to a person that is looking at the real-time ren-
dering of that asset within the IDE.

[0112] The support optimization portion of the training/
support optimization module 1235 is also configured to
assist the developer in a path of best practices, versus just an
infinite amount of re-creating of an asset over again. In
addition, the support optimization portion comes in terms of
data mining and machine learning where developers or other
users (e.g., designers) are dead-ending in their development
processes or giving up on a certain approach. In these
scenarios, the support optimization portion of the training/
support optimization module 1235 can capture and catalog
the approach and provide alternative suggestions, i.e., pro-
vide appropriate autonomous advice to continue their proj-
ect. Accordingly, the support optimization provides a type of
trouble ticket avoidance approach. The functionality within
the training/support optimization module also provides users
with the ability to record and annotate personally developed
assets.

[0113]

[0114] The improve sales efficiency module 1240 is con-
figured to identify an uptake in use of the application
platform within a certain class of individual or a certain
enterprise, etc. In these cases, an intelligence quotient (IQ)
engine (e.g., Kony IQ™ by Kony, Inc.) of the improve sales
efficiency module 1240 has the ability to feedback these kind
of metrics into a salesforce service or a salesforce database
which, in turn, is provided to a member of a sales support
team informing them of potential upsell opportunities.
Accordingly, the improve sales efficiency module 1240 can
identify and alert the user to particular upselling outside of
the enterprise. In addition, the improve sales efficiency

Training/Support Optimization Module

Improve Sales Efficiency Module

May 21, 2020

module 1240 can identify specific upgrades to service levels
directly within the application platform, e.g., Kony Visual-
izer® by Kony, Inc.

[0115] Product Evolution Module

[0116] The product evolution module 1245 is configured
to keep track of feature requests, and how to make enhance-
ments to the application platform. Often times, enhance-
ments to an application platform are based on customer
feedback, written customer feedback, emails, etc. This feed-
back is now to be automated, broken down into epics and
different DevOps actionable entities, to create an engineer-
ing effort around such suggestions. These functions also
include the ability for the intelligent digital experience
platform to suggest to users that they enhance a given widget
or module as it would then include extended functions found
in feature requests or epic repositories, making their efforts
more universally or broadly applicable.

[0117] For example, the product evolution module 1245 is
configured to determine when a developer or other users
(e.g., designers) are dead-ending in their development pro-
cesses or giving up on a certain approach and dynamically
creating a story (e.g., using Jira® software). In this way,
there is no guessing as to the needs of the customer and,
instead, the product evolution module 1245 can identify in
real-time a particular problem in order to then evolve the
product to address that particular issue. In addition, a
weighting can be provided to the problem based on the
amount of times such problem has been encountered, and
placed in a prioritized queue of a project engineering based
on such weighting. This will allow the project engineering
the ability to prioritize the engineering of certain problems.
[0118] In addition, the product evolution module 1245 is
used to provide updates to certain requirements or issues or
other types of updates. For example, when a new patch has
been issued for a piece of software product, a story can be
automatically generated, e.g., “Please update a component in
your application platform” and sent to the appropriate per-
sonas (e.g., developer, designer, etc.). As another example,
the product evolution module 1245 is configured to notice
when a same component keeps causing problems such that
such problem can be handed to the analytics engine (e.g., Al)
for automatically putting together a fix. In this scenario, the
fix is automatically targeted to those users for those stories,
letting them know that there is a fix. In embodiments, Jira®
software can open a story to fix such a problem.

[0119] In another scenario, the product evolution module
1245 can detect that a customer (e.g., user) has created a
solution to a problem. So, if the same error or problem is
seen numerous times, the product evolution module 1245
can automatically alert other users to the solution. Alterna-
tively or in addition, the product evolution module 1245 can
automatically open a support ticket on behalf of customers,
with the backend service provider, e.g., Kony® by Kony,
Inc., providing a fix to the problem, taking it to the internal
story so that the product evolution module 1245 knows that
this fix goes to particular clients that had the particular
problem.

[0120] In embodiments, the product evolution module
1245 (as with any of the components or modules described
herein) can be a social listener, essentially data-mining a
particular operating system (OS) that may have a deprecat-
ing a function (or to find other problems and solutions in the
Ethernet that were encountered by a particular type of
client). In this case, the product evolution module 1245



US 2020/0160377 Al

might trigger a different way of performing a task by the
user, e.g., developer, or it may necessitate a platform change
by a third party service provider, e.g., Kony® by Kony, Inc.,
making sure that the developer can rebuild using an alter-
native process or when a product feature may need updating
within the application platform.

Intelligent Mobile Application Development
Platform and Related Processes

[0121] FIG. 2A illustrates a computing architecture 2000
for the IDXDP and related processes implemented in the
illustrative environment 1000 of FIG. 1A. In embodiments,
the IDXDP and related processes are utilized within an
Interactive Development Environment (IDE) as a user
develops a digital application. That is, the IDXDP lives
within a context stream of IDE interactions, i.e., actions by
the user within the IDE to develop the digital application. In
this way, the intelligent digital application development
platform can determine what interactions are occurring
between the user and the IDE in order to assist a user in
completing the developer’s objectives in an efficient manner,
i.e., by implementing the different modules, components,
sub-systems and related functionality described herein.
[0122] For example, in embodiments, the IDXDP and
related processes are able to determine what is being built or
structured by the user, e.g., object components, field values,
and other metadata, and use this information to provide
recommendations or other assistance. After determining the
user actions, the IDXDP and related processes is able to
derive an intent of the user from the user actions. By
considering the intent of the user, the IDXDP and related
processes are able to provide recommendations and/or
actions to the user that matches the intent of the user,
amongst other functionality as described herein. These rec-
ommendations can be, e.g., best practices, building tutorials,
event processing, implementing the functionality of an
autonomous advisor, building and/or recommending differ-
ent templates, etc.

[0123] Various techniques, e.g., Al, NLP and machine
learning, amongst others, are implemented by the IDXDP
and related processes to provide the features described
herein. This may include, e.g., match the extrapolated user
actions with user intents and then provide the related rec-
ommendations or other functionality as requested by the
user or anticipated by the systems and methods described
herein. For example, by gathering the actions and intents of
the user and matching them together, the IDXDP and related
processes are able to make key recommendations on the
likelihood that a similar object or component already exists
and, using the existing object, etc, make suggestions to the
user. This allows a user to create a digital application in an
accurate and efficient manner by providing outcomes
directly within the IDE during the development of the digital
application to the user based on the user’s intent.

[0124] In further embodiments, the intelligent digital
application development platform can represent objects,
components or actions by implementing a granular event
process. In embodiments, this granular event process repre-
sents user actions, object component settings, field values
and other metadata, which tell a story of what a user is
implementing and trying to achieve within the IDE. More
specifically, the granularity provided by the granular event
process comprises an event-oriented representation, i.e., the
representation of user actions performed within the IDE, and

May 21, 2020

the accompanying syntax associated with the user actions. In
this way, a full fidelity and accurate depiction of a widget,
service or other software component is captured directly
from the actions of the user.

[0125] Also, the IDXDP serves as a content feed for Al,
machine learning and analytics based engines to determine
how developers and other users are constructing compo-
nents, and ultimately digital applications. More specifically,
the Al and machine learning algorithms of these various
engines are able to determine insight into user actions, such
as programming techniques, to determine improvements in
design, development practices and techniques, amongst
other areas. The IDXDP also provides an evolution of a
particular object from the collection of events and any
physical user interactions, e.g., dragging and dropping car-
ried out by a user, that are applied to the object. This results
in a logical object of its own, e.g., like an authentication user
name field, which evolves from the collected information.
[0126] In embodiments, the computing architecture 2000
can determine an intent of a user by capturing user actions,
e.g., colorization of an object, and/or other events, e.g.,
physical interactions with the IDE, at a relatively high level
during the development of a digital application. The capture
of these events allows for key recommendations or other
functionality described herein, e.g., advising of certain
actions, tutorials, upselling, determining development issues
(e.g., dead ending, etc.), standardizing code, etc. to be
provided to and received by the user in response to these
events within the IDE itself, allowing the user to see the
recommendations and implement them immediately.
[0127] Referring still to FIG. 2A, the computing architec-
ture 2000 includes a bot user interface 2010, which corre-
lates with the interactive advisor 1205 of FIG. 1C. The bot
user interface 2010 can be a visual interface that lives within
the context of the IDE and provides recommendations,
answers, actions, or other information desirable to the user.
For example, if a user is utilizing a particular IDE on a
laptop, and the IDE is being viewed as a full-screen on the
laptop, the bot user interface 2010 is configured to be
movable outside of the IDE. Alternatively, the bot user
interface 2010 can be independent of the IDE. For example,
if the IDE is being utilized as a full screen on one monitor
and the user is also using an auxiliary monitor, the bot user
interface 2010 can be presented on the auxiliary monitor
outside of the context of the IDE. In this way, the bot user
interface 2010 is configurable to the computing real estate
available to the user.

[0128] The bot user interface 2010 interacts with a bot
AI/NLP 2020. In embodiments, the bot AI/NLP 2020 com-
prises Al and NLP engines configured to determine insight
into programming techniques of users for the improvement
of design and development practices and techniques. The Al
and NLP can be used in any of the modules or components
described herein in order to provide the related functionality
as described in the respective sections of this disclosure. In
embodiments, the Al and NLP processing engines of the bot
AI/NLP 2020 are seeded by specific utterances and intents
of the user. For example, a user can utter “show me
authentication forms in marketplace,” which results in a
pop-up window displaying a web browser, with the web
browser directed to a market place, e.g., Kony Market-
place™ by Kony, Inc. In further embodiments, the web
browser shows a specific filter of authentication routines
within the marketplace. The results will be fetched via



US 2020/0160377 Al

integration API’s and shown in a visualizer tool (e.g., Kony
Visualizer® by Kony Inc.) or other development tool. In
embodiments, direction to a market place should not occur
until the point of download.

[0129] A development tool (e.g., Kony Visualizer® by
Kony, Inc.) 2030 within the IDE provides a means and
apparatus to create assets such as forms, labels on forms,
browser widgets and other widgets within forms, amongst
other examples, for the development of digital applications.
In embodiments, the development tool 2030 can be any
development tool within or outside of the IDE, as a non-
limiting example. Accordingly, hereinafter the development
tool 2030 should be understood to be used in terms of any
generic development tool, with a preference for the Kony
Visualizer® tool being implemented in the environments
described herein.

[0130] The development tool 2030 can be used by a
citizen developer (e.g., a salesperson), a developer with a
highly specialized background (e.g., a program manager of
an enterprise), a designer or other user. Accordingly, the
IDXDP and related processes can accommodate and accu-
mulate information on a variety of backgrounds and abili-
ties. As the user is performing different actions, i.e., events,
in the development tool 2030, these actions are tracked and
evidence of these actions is collected by the development
tool 2030 and its related components, in addition to, in
embodiments, the Al for analysis and implementing of the
desired functionalities of the different modules (e.g., mod-
ules of FIG. 1C or other components or systems described
herein). Specifically, as the user performs actions within the
IDE, assets, e.g., design elements such as a login form, are
playing back onto the IDE and rendering themselves out.
This is referred to as a granular event process.

[0131] In embodiments, any action taken by the user
within the IDE can result in creation of a fully described
widget action (or other asset) having format syntax and
context. It is this syntax and context that is collected and
analyzed by the IDXDP and related processes. As a non-
limiting example, as a user drags and drops a widget (or
other asset) into a form within the development tool 2030,
the state of this action is collected so that a determination
can be made of how a specific object is being built. In this
way, the IDE is extended by development tool 2030 in such
a way that the IDXDP and related processes is able to tap
into the event stream within the IDE, learn from this event
stream and provide recommendations based on this event
stream. Therefore, the IDXDP utilizes assets as a means for
learning about the assets.

[0132] In particular embodiments, the IDXDP collects and
processes user actions as events, which further represent the
construction of a logical object. In embodiments, the con-
struction of objects comprises various actions and/or various
levels. As a non-limiting example, the object can be created
by a user dragging and dropping a particular widget into an
IDE through the development tool 2030, or a user clicking
onto a text box to add text within the object. In embodi-
ments, the user may further refine that particular text object
or text box in many ways. For example, the user may change
a foreground color or a background color or a font used for
any text within that box or change the style of the text, e.g.,
boldness, italicization etc. By collecting and processing
these and other user actions, over time, the IDXDP can
determine what a user’s intent is and how the user is building
that particular object. This information can also be used as

May 21, 2020

seed information of the Al, provided to and by the different
bots, Al or other modules or tools to provide the function-
ality described herein.

[0133] Depending on the textual content of the object,
some degree of assertions can be made about what that
particular object will do and what it will be used for. As a
non-limiting example, if the object is a text box, and the text
box is pre-initialized with a term, e.g., a username, then the
IDXDP knows that the form is affiliated with authentication.
In this way, the IDXDP considers all actions done by the
user. Acquiring the context via an event system and general
scan of the visualizer state is an objective of the 1Q event
system. The context could come not necessarily from the
widgets but also from what is named a particular form or
module as within the visualizer. Therefore, assumptions can
be made and further recommendations can be made based on
these assumptions. A further example would be that of
anticipating the resizing of an object such that it matches the
symmetry of pre-existing objects. In this example, when a
user begins to resize an object, the object then snaps to a
virtual grid line. This grid line would be either horizontally
or vertically oriented as determined by the Al subsystem.

[0134] Still referring to FIG. 2A, the development tool
2030 can include multiple sub-systems, each of which
cooperate in a coordinated fashion to perform specific tasks
in collecting and processing the user’s actions. The sub-
systems include the enhanced event engine 2040, the event
queue processor 2050 and the queue manager 2060. These
various sub-systems can also be stand-alone systems or
integrated systems or combinations thereof within the
IDXDP, any of which combination will communicate with
one another through events. Specifically, one sub-system
raises an event to which the other sub-systems subscribe,
i.e., triggered when the event is fired, and react according to
the needs of the development tool 2030. In embodiments,
the development tool 2030 is a subscriber to all the events
raised by various sub-systems, modules, processes and tools
described herein.

[0135] In embodiments, the enhanced event engine 2040
collects evidence of the user’s actions, while the event queue
processor 2050 receives the collected evidence from the
enhanced event engine 2040. In embodiments, as the user
performs various actions in the development tool 2030, e.g.,
adding a text box, the enhanced event engine 2040 collects
evidence of these actions and places this information within
a queue of the event queue processor 2050. Specifically, all
events, i.e., user actions in the development tool 2030, are
queued asynchronously into the queue of the event queue
processor 2050. In embodiments, the enhanced event engine
2040 includes logic to perform the actions described herein.
For example, the enhanced event engine 2040 may include
natural logic, e.g., NLP, to determine that a user has entered
text within the development tool 2030 and to collect this
action.

[0136] The event queue manager, i.e., queue manager
2060, pops out each event from the queue of the event queue
processor 2050, and processes those events into structured
objects. As should be understood by those of skill in the art,
an event can be any creation of an asset, e.g., object,
template, widget, etc. In embodiments, the queue manager
2060 collects the information, i.e., evidence of user actions,
in a style such as JavaScript object notation (JSON) format.



US 2020/0160377 Al

These structured objects can then be used to comparison,
matching and recommendations, in addition to the actually
seed for learning by the Al.

[0137] The queue manager 2060 will take the collected
evidence out of the queue and provide it to the event
analytics engine 2070 for further processing. In this way,
each user action performed within the bot user interface
2010 and/or the development tool 2030 essentially results in
the enhanced event engine 2040 interpreting the user action,
storing collected information regarding the user action in a
queue of the event queue processor 2050, removing and
processing the collected information by the queue manager
2060, evaluating the processed information through the
event analytics engine 2070 and the event AI/NLP engine
2080, and then providing a recommendation or other func-
tionality provided herein, which can be implemented in the
modules of FIG. 1C or the other components described
below.

[0138] The information collected from the evidence
includes, e.g.:
[0139] 1) user actions to create, rename, delete forms,

skins, widgets or other assets, etc.;

[0140] 2) corresponding actions/events raised by various
sub-systems described herein;

[0141] 3) captured information like the name of the form,
skin, specific user activity, channel that the user is building
the application for;

[0142] 4) additional contextual information about the
application, e.g., app name and domain, for example; and

[0143] 5) JavaScript source code changes.

[0144] With this information, a widget, an object, or other
asset, e.g., a slider, a control, a label, a flex form or a browser
widget, amongst other examples, has a complete represen-
tation that is not ambiguous. More particularly, the IDXDP
provides a clear representation in a non-ambiguous form in
a specific style, e.g., JSON. In this way, a software syntac-
tical definition of a logical object such as a component or
widget, is provided, which can then be used to provide the
different features described herein such as providing recom-
mendations of best practices, tutorials, standardizing code,
etc., or other functionality described herein. In embodi-
ments, a widget, object services or other asset can be
described as name values or value pairs, for example, in
JSON.

[0145] Further, the information collected can have meta-
data associated therewith, which can be used for additional
purposes such as date information, identification informa-
tion, etc. In embodiments, the metadata can be editable, can
be logical or can be immutable, amongst other examples. In
embodiments, the ancillary metadata can be used as an
executable component to recreate a particular object by
analyzing the metadata. For example, by knowing the user
intent as determined by the Al and/or bots described herein,
the IDXDP can understand the goal of the user and use this
information to implement the functionality of the different
modules, components and subsystems described herein. For
example, by analyzing the metadata, an object can be
constructed and/or reconstructed in line with the user’s
intent, thereby allowing the IDE to act as a visual renderer,
a teacher at the same time, by playing back the construction/
reconstruction of the object and, if needed, providing an
appropriate recommendation.

[0146] The metadata can also be used to create a profile of
the component or collection of services and components,

May 21, 2020

etc. that makes the object easier to interpret through Al
techniques and other machine learning techniques. For
example, the metadata surrounding the object may be
embedded with a message conveying information about the
object. Accordingly, the systems and processes described
herein allow for a method for interpreting the component
data and associated metadata to allow processing within an
Al and machine learning layer.

[0147] As another example, the metadata around a par-
ticular object may be encoded with a message for another
user, with the message being conveyed to the other user as
a real-time rendering of the object occurs within the IDE. As
another example, the metadata may be provided by an
individual(s) that created the object. In the scenario that
multiple individuals contributed to creating the object, the
IDXDP provides the ability to rate those component editorial
metadata collections in the case where one might be clearly
a five-star, while another one might be a four star and two
of them might be three stars, etc. In further embodiments,
the various ratings can be filtered, depending on the user’s
needs. Accordingly, the processes described herein can
provide a format and an extensibility syntax, which will
allow the functional component or object to be extended by
related or supportive metadata.

[0148] In embodiments, the processed information is
stored in a database, e.g., non structured query language
(NoSQL) database, and provided to the event analytics
engine 2070 for analysis and further use in accordance with
the many aspects of the present disclosure. In embodiments,
the database can be the storage system 1022B shown in FIG.
1A.

[0149] The event analytics engine 2070 is responsible for
analyzing the above information to determine whether there
are other steps to perform, if any, and the outcomes, which
match the actions of the user. In embodiments, the event
analytics engine 2070 is organic to the types of events that
are being generated through the IDE. Particularly, the event
analytics engine 2070 makes sense of the events that are
flowing through the IDE by analyzing the processed infor-
mation. For example, the event analytics engine 2070 can
analyze the information to determine whether the user is not
providing standard code, not practicing best practices, dead-
ending, etc., in order to thus provide certain recommenda-
tions.

[0150] In conjunction with the event analytics engine
2070, the event AI/NLP engine 2080 determines what types
of actions were undertaken by the user in order to determine
an appropriate recommendation, e.g., action to be taken by
the user or an answer that a user desires, amongst other
examples. These recommendations can be coding recom-
mendations, design recommendations, etc., as described
herein. In embodiments, the event AI/NLP engine 2080
comprises Al, machine learning and NLP engines configured
to determine the intent of the user. The event analytics
engine 2070 and the event AI/NLP engine 2080 can be
referred to as the brains of the computing architecture 2000,
in addition to the overall brain of the IDXDP. If desired,
further “brains” can also be chained to the event analytics
engine 2070 and/or the event AI/NLP engine 2080. For
example, an additional brain (Al) can be chained in which
the additional brain only serves to notify when a particular
build is available. As another example, a security module
(AD) can be chained that informs the user of particular
security paradigms as they build their application, or cou-



US 2020/0160377 Al

pling in paid licenses for other system tool kits (STKs) or
software development kits (SDKs) that keep the end appli-
cation secure.

[0151] In embodiments, the AI/NLP engine 2080 can be
used as a content feed of events for Al, machine learning and
analytics based engines for determining how developers and
other users are constructing components, and ultimately
digital applications. Specifically, the Al and machine learn-
ing algorithms are able to determine insight into program-
ming techniques to determine how to improve design and
development practices and techniques. This can then be used
to learn best practices or most efficient means of performing
a certain action, and to subsequently provide recommenda-
tions to the user based on their intent.

[0152] By way of a more specific example, the event
analytics engine 2070 and event AI/NLP engine 2080 can
determine whether a certain action taken by the user is a
preferred action (e.g., most efficient way of performing an
action) and, if not, provide recommendations of different
actions to be taken which may be more preferred, e.g.,
placement or look of a widget, etc., as taken by another user
tasks with a similar issue. As a non-limiting example, if a
slider widget is selected by the user, the event analytics
engine 2070 and the event AI/NLP engine 2080 know that
this widget is a slider because of the syntax of the object. As
another example, if a user clicks on a slider widget, the event
analytics engine 2070 together with the event AI/NLP
engine 2080 can determine that a slider widget was clicked.
These different user actions can then be analyzed by the
event analytics engine 2070 and event AI/NLP engine 2080
to determine whether such actions match with approved
and/or standard actions, and whether any recommendations
are required to provide insight (tutorials) and/or assistance
(recommendations) to the user.

[0153] In embodiments, the Al engine of the event
AI/NLP engine 2080 can match user actions with intents,
while the NLP engine matches phrases and utterances with
the intents of the user. For example, the Al engine recognizes
that the user is implementing a textbox pre-initialized with
a “username,” while the NLP engine recognizes the utter-
ances of the user asking for authentication routines. The
event AI/NLP engine 2080 will make a determination that
the user is attempting to create a security related objected
based on the recognitions of the Al engine and the NLP
engine. In this way, the event AI/NLP engine 2080 provides
a step-by-step analysis of what a user, such as a developer,
is doing within the IDE by considering and understanding all
of the actions performed by the user.

[0154] In still further embodiments, the recommendation
may be from other sources (e.g., users) obtained from or
learned by the event A/NLP engine 2080. More specifically,
the event analytics engine 2070 and event AI/NLP engine
2080 are configured to receive and analyze “big data,” i.e.,
data from any and/or all users of the IDE, including users
within and outside of an enterprise. In this way, the IDXDP
can provide recommendations not only based on the actions
of a single user, but also recommendations based on the
actions of many users or a community of users. For example,
the recommendations may have been performed by other
community members and may have been determined to be
best practices in the industry. Accordingly, the event ana-
Iytics engine 2070 and the event AI/NLP engine 2080 can
obtain and analyze a global or local community of data.

May 21, 2020

[0155] In further embodiments, the computing architec-
ture 2000 can include a dispatcher, i.e., a bot director, which
can manage the journey of the analytics all the way from the
bot user interface 2010, through a chainable infrastructure,
or a chainable architecture comprising a particular chain of
brains, resulting in a certain output, i.e., recommendation. In
embodiments, any of the brains of the IDXDP and related
processes can be relatively simple, can be relatively com-
plex, and can be reordered in their processing order so that
certain brains may tend to return a value closer to a top of
the stack of values that a user may be interpreting or
receiving in the bot user interface 2010.

[0156] As shown in FIG. 2A, a recommendation engine
2090 filters all the way through to the queue architecture,
i.e., the event queue processor 2050 and the queue manager
2060, and all the way back to the bot user interface 2010, to
provide a recommendation, answer or other information to
the user. The recommendation aides the user in their digital
application development by providing the functionality
described herein. As a non-limiting example, if the event
analytics engine 2070 and/or the event AI/NLP engine 2080
find redundancies in the digital application development, the
recommendation engine 2090 can provide a recommenda-
tion for a pre-existing instance of an object and/or outcome
which matches the intent of the user, and directly to a point
where the object should be inserted. In this way, the user is
able to directly implement the recommendation within the
IDE.

[0157] As another example, if a user is at a third step of a
process, the recommendation engine 2090 can provide rec-
ommendations which match the remaining steps the user
intended to pursue and/or the outcome the user intended and,
in embodiments, inject the remaining steps directed into the
development tool. For example, the recommendation engine
2090 can make recommendations, such as the remaining
steps in a process of constructing an object, which were
compared and matched from other forms based on a his-
torical perspective of previous user actions or as found
within a community of users (e.g., as searched through blogs
or other development tools, databases storing digital appli-
cation information, etc., for example). Specifically, the steps
and/outcome may already be in the user’s workspace or a
shared team workspace within an enterprise, a marketplace
full of items, or a couple of instances across the Internet that
exist, amongst other examples. In addition, the recommen-
dation engine 2090 may provide the user with recommen-
dations they were not aware of.

[0158] The event analytics engine 2070 and/or the event
AI/NLP engine 2080 also provide information concerning
the user to the recommendation engine 2090, for determin-
ing the appropriate recommendation. As a non-limiting
example, the recommendation can be highly technical if the
user is a developer. For example, if the event analytics
engine 2070 and/or the event AI/NLP engine 2080 deter-
mines that the objects in the development tool 2030 are in a
horizontal and a vertical orientation, a determination is made
that the user is trying to create a calculator. Since the user is
a developer, the recommendation engine 2090 can recom-
mend a technical object like a padding manager, which
provides equal spacing and padding management to the
widgets already laid out in the development tool 2030. The
padding manager recommendation would be understood by
the user, since the user has an extensive background in
application development. Other recommendations include



US 2020/0160377 Al

refactoring code, or defect tracking, for example. In this
way, the recommendations provided by the recommendation
engine 2090 can be wide, broad and deep, or can be specific
and narrow, specifically tailored to the user and the user’s
needs.

[0159] A recommendation notification adapter 2100 is
configured to gauge how a particular recommendation
should be serviced, i.e., provided to the user so that the user
is given the best opportunity to understand the recommen-
dation (whether to provide a script or a speech response
detailing the instructions within the script). Specifically, the
recommendation notification adapter 2100 can coordinate
with the event AI/NLP engine 2080 to determine in what
order a particular recommendation is displayed or how the
recommendation is weighted.

[0160] In embodiments, a confidence level for the recom-
mendation is calculated and used to determine if the rec-
ommendation should be presented to a user. The confidence
level can be calculated by considering various parameters
along with weighting the parameters. Examples of param-
eters include hierarchy of flexes, orientation of widgets,
method names, skins with images, and data of the widgets,
amongst other examples. Further, different widgets can have
different thresholds, which are also taken into consideration.
As a non-limiting example, basic widgets within container
widgets need siblings to attain a threshold. All of these
parameters can be considered in determining the confidence
level.

[0161] For an identified pattern to be shown as a recom-
mendation by the recommendation engine 2090, the recom-
mendation can stream through a number of various filters,
namely hierarchical, visual, textual and domain related. The
confidence of a particular recommendation can be calculated
by the following formula shown in equation (1) using the
recommendation notification adapter 2100:

Total Confidence=1-(a*H+b*Vp+c*Tp) (€8]

where Hp=hierarchical difference between target and
source, V=visual difference between target and source,
T =textual difference between target and source, and a, b, ¢
are the weightings given for each difference. In embodi-
ments, a measurement of total confidence is the measure-
ment that is attained once all the differences are eliminated
from a hypothetical exact match. For example, when the
hierarchical differences, the visual differences and the tex-
tual differences are all equal to zero, the total confidence will
be 1, 1i.e., 100%. When the total confidence level of a specific
pattern overcomes a predetermined confidence threshold,
that pattern can be considered as a recommendation and
ranked on its confidence level.

[0162] The difference in each filter is calculated only when
certain criteria are met with precedent calculations, i.e., in
calculating the visual difference V, there should a certain
hierarchical difference H,,. Specifically, the hierarchical
difference H, should be less than a provided threshold H,
because having a relatively large hierarchical difference can
render calculating the visual difference moot. Therefore, the
difference considerations should be performed as shown in
equation (2).

Hierarchical(Hp<Hp)—Visual(V<Vy)—Textual 2)

where H =hierarchical threshold and V ,=visual threshold.

May 21, 2020

[0163] Calculating the hierarchical difference is shown in
equation (3).

len(Matchedpgiiem) 3)
- max((len(Sourcepanen), len(Targe

Hp
Lpatrern)

Specifically, equation (3) provides the percent of a pattern
that is matched, and will be carried forwards to calculate the
visual difference if H,<H.

[0164] Calculating the visual difference is shown in equa-
tion (4).
N )
S
VD i=0

TN -D

where X,=visual difference of each widget and N=number of
widgets in the identified pattern. When calculating the visual
difference for each widget, if two widgets are of a same type,
then a difference is taken between their properties. If a
property is the same for both widgets, then there is no visual
difference between the widgets. However, if there is a
difference in their properties, then the predetermined
weighting is added to the visual difference of that widget and
continued for the rest of the properties. In this way, a visual
difference is calculated for each widget present in the
identified pattern and the visual difference V, for the com-
plete pattern is calculated.

[0165] In calculating the textual difference T, each wid-
get tree can be represented as a list of all the words present
in text, placeholder, etc., properties. In embodiments, this
list can be referred to as a sentence. In calculating the
similarity between two words, it is assumed that each word
is represented by a vector of some fixed length. This fixed
length may result in a problem of finding a metric of
difference between two clusters of points in an n-dimen-
sional space, where each cluster is a sentence and each point
is the vector representation of the word in the sentence.
Therefore, multiple approaches can be undertaken. In the
first approach, the closest point difference is calculated. For
this approach, each point in the first cluster is iterated over,
while the closest point in a second cluster is found. In
embodiments, a Euclidean distance between these two
points is taken to find the textual difference T,,. The point
from the second cluster is removed and the process is
repeated if need be. Under this first approach, some edge
cases may need to be given more thought, like when the
clusters have a different number of points and some of the
points are outside a boundary of the cluster.

[0166] For the second approach in calculating T, a mean
point of each cluster is calculated, and the difference
between the mean points of each cluster equals the textual
difference T,,. The difference between the mean points of
each cluster can be a Euclidean distance or a cosine simi-
larity, amongst other examples. In the case of marketplace
recommendations, another parameter called domain is con-
sidered. In embodiments, domain filtering is taken prior to
hierarchical or visual filtering.

[0167] Referring to equation (1), after calculating the
respective differences, i.e., hierarchical, visual and textual,
all of the differences are accumulated by multiplying each
difference with their respective weightings. This value is
then subtracted from “1” to get a total confidence of the



US 2020/0160377 Al

identified pattern. In the situation where a pattern does not
meet a confidence threshold, that pattern is not provided as
a recommendation and is taken out from the recommenda-
tions queue of the recommendation engine 2090. In this
scenario, the recommendation engine 2090 can generate a
new recommendation, which will then go through the con-
fidence level process just described. The new recommenda-
tion can be based on the actions of the user, which were used
for the original recommendation, or other actions, such as
subsequent user actions after the recommendation did not
pass the threshold. The recommendation can also be an
extrapolation of the user’s current action, or a request that
the user take a further action, different than the current action
being taken.

[0168] The recommendation bot extension 2110 and the
recommendation action extension 2120 are configured to
operate with the bot user interface 2010, providing the user
with a tailored experience. In embodiments, the recommen-
dation bot extension 2110 is configured to provide the user
with recommendations in verbal, textual or audio formats.
The recommendations of the recommendation bot extension
2110 are offered to the user through a digital user interface,
either through the bot user interface 2010 or spoken word
using a speech technology, for example.

[0169] In embodiments, the recommendation action
extension 2110 is configured to complete an action on-
screen. More specifically, the recommendation action exten-
sion 2110 not only provides textual output back to the bot
user interface 2010, but is also configured to be able to either
populate a form of a widget or some other real tangible
action. In this way, rather than simply conveying something
back in written form to the user, the recommendation action
extension 2110 takes a recommendation from the recom-
mendation engine 2090 and can actually fulfill it. In this
way, the recommendation action extension 2110 can provide
a particular recommended action on-screen and within the
project a user is currently developing, or can fulfill the action
while the user is developing their digital application.
[0170] In embodiments, for a natural language compo-
nent, such as if a user asks a question through the bot user
interface 2010, the question goes to the AI/NLP layer and
comes back through the recommendation engine 2090 by
being routed through either the recommendation bot exten-
sion 2110 or the recommendation action extension 2120. For
example, an utterance by the user of “can you show me
authentication forms in marketplace?”” would return a result
to a marketplace with a specific search filter for authentica-
tion routines. As a further example, a user could type into the
bot user interface 2010 “show me some of the forms that
exist in my workspace.” The bot A/NLP 2020 then takes a
look and searches through a user’s own workspace to find a
basic similarity between what the user is currently doing and
what it has done in the past. Alternatively, the bot AI/NLP
2020 can search marketplaces on the Internet, intranet or
other extranet (e.g., the cloud computing nodes 1110 shown
in FIG. 1B), looking at forms and widgets and fully formed
applications that are similar to what a user is producing and
suggest incorporation of prewritten forms into the user’s
own digital application.

[0171] Inembodiments, the user can opt out of the IDXDP
at any point. By opting out, the IDXDP and related processes
will not track and collect information concerning the user’s
actions within the development tool 2030. Further, the user
will not receive any recommendations. If a user does opt out,

May 21, 2020

the IDXDP can encourage a user to opt in by providing
detailed information on how others are benefiting from the
IDXDP. For example, the IDXDP provides a story to the
user of how other user within the enterprise are benefiting
from the features of the IDXDP.

[0172] FIG. 2B illustrates a swim diagram 2300 with the
following actors: the development tool (including modules
M1 and M2) 2030, enhanced event engine development tool
2040, event queue processor 2050, and queue manager 2060
from FIG. 2A. As the user performs actions in the develop-
ment tool 2030, the actions are collected and the information
provided by the actions are then utilized to determine an
intent and provide a recommendation to the user based on
the intent. For example, at step 2305, the first module M1 of
the development tool 2030 registers an event X, i.e., user
action, with an event name. At step 2310, the second module
M2 of the development tool 2030 subscribes to the event X,
i.e., is triggered when the event X is fired, that is raised by
the first module M1, i.e., fired. At step 2315, the first module
M1 will then raise the event X to a visualizer event queue
manager, i.e., the queue manager 2060. At step 2320, the
visualizer event queue manager requests additional context
for the first module M1 and the event X. At step 2325, the
development tool 2030 will respond with the additional
information about the event X that is requested from the first
module M1. At step 2335, the development tool 2030 will
process the event information and create a structured object.
At step 2340, the second module M2 will trigger the event
X with the structured object.

Event Processing System and Method

[0173] The event processing system and method is a
system and method capable of utilization within an IDE as
a user develops a digital application. In embodiments, the
event processing allows for datamining in order to determine
if a similar object or component or other asset as defined
herein already exists, which can then be used to provide
recommendations, etc. Specifically, the systems and pro-
cesses described herein allow for processing an event queue
of the event queue processor 2050 shown in FIG. 2A.
[0174] In embodiments, the event queue is comprised of
IDE user actions with the ability to construct an object or
service from that data within that event queue. In this way,
the event queue can drive recommendations to developers,
designers, and all other users using the IDXDP as described
herein. In embodiments, the recommendations can take the
form of textual content, spoken content or even actions, e.g.,
running an authentication script.

[0175] In further embodiments, natural language narra-
tions are dynamically formed and rendered to the user to
create a depth of understanding related to the composition
and capabilities of a component or object or other asset type
described herein. In still further embodiments, the machine
learning component continuously optimizes designs of
assets and offers the latest embodiment to the user. In this
way, the IDXDP can provide current recommendations
applicable for the user now with respect to developing a
digital application.

[0176] The systems and processes described herein con-
tinuously monitor the complexity of a code used in the
construction of an object or other asset type to determine if
the code is becoming too complex, i.e., having code snippets
which are unnecessary to create a particular outcome. In
embodiments, if a determination is made that the code is too



US 2020/0160377 Al

complex, the Al of the IDXDP can suggest how to optimize
the code in order to reduce complexity, i.e., providing a code
snippet that allows the user to achieve the desired outcome.

[0177] The systems and processes also continuously
monitor the code for best practices or coding standards. In
embodiments, for example, if the user does not follow a best
practice, the system is configured to use a chat interface or
an audio interface, amongst other examples, to inform the
user that they are not following the best practice. The best
practice can be determined from industry practices or an
enterprise team of developers, amongst other examples. In
further embodiments, the system, using code optimization
intelligence built therein, i.e., machine learning logic, can
provide suggestions to the user for correcting the code in
order to maintain best practices. In further embodiments, the
systems and processes can develop a common coding style
based on monitoring the practices of team members or other
community of users. The systems and processes can use this
and other information to suggest ways for the team to
standardize their coding in order to make the code more
maintainable. For example, the system can establish a best
practice based on feedback from the team or other user
community.

[0178] Additionally, the systems and methods can store
common coding styles across all developers (or other users)
to suggest best practices on an enterprise level, as well as
within a sub-group within the enterprise. In addition, the
systems and processes described herein can suggest a com-
ponent in a marketplace that may be a good fit, i.e., allows
the user to achieve their desired outcome, for a component
the user is developing. In embodiments, the suggestion can
be based on analyzing the object or visual component names
being used by the developer or other user, and by inspecting
the behaviors of the user who created the component,
amongst other examples.

[0179] FIG. 3A illustrates several screen shots 3000 show-
ing the capabilities provided by the event queue of the event
queue processor 2050 in accordance with aspects of the
present disclosure. During the development of a digital
application within an IDE, for example, a user can utilize a
direct bot interaction interface 3010 capability of the bot
user interface 2010 of the interactive advisor module 1205
as shown in FIG. 2A. In embodiments, the user can type
questions, comments or requests into the user interface and
expect a reply, e.g., a pop-up window taking a user to a
marketplace, as shown in FIG. 3A. As a non-limiting
example, the user may type into the direct bot interaction
interface 3010 “make this form a master.” The interactive
advisor module 1205 of FIG. 1C is configured to respond to
this request, through the direct bot interaction interface
3010, by responding that the request is done. For example,
the direct bot interaction interface 3010 may respond with a
uniform resource locator (URL) where the master is located,
e.g., a marketplace. This form can also imported into the
user’s library or distributed within the enterprise, amongst
other examples.

[0180] Alternatively, a user may forego directly typing
into the direct bot interaction interface 3010 and may utilize
the autonomous guidance interface 3020 capability of the
bot user interface 2010. The autonomous guidance interface
3020 capability of the bot user interface 2010 may be
implemented with the autonomous advisor module 1210
shown in FIG. 1C.

May 21, 2020

[0181] In using the autonomous guidance interface 3020
capability of the bot user interface 2010, a user may be
constructing an object in the IDE through the development
tool 2030, while the autonomous advisor module 1210
functions in the background. The autonomous guidance
interface 3020 has the capability of providing recommen-
dations to the user based on the actions undertaken by the
user during the development of the digital application. As a
non-limiting example, the autonomous guidance interface
3020 may provide a pop-up communication box in the IDE,
informing the user that what they are constructing a com-
ponent similar to another component previously constructed.
[0182] The autonomous guidance interface 3020 can
query the user, e.g., ask if the user desires to explore this
previously constructed component, and provides the ability
for the user to answer as “yes” or “no” as shown in FIG. 3A.
In this way, the autonomous guidance interface 3020 can
save a user a substantial amount of time, by providing an
object or recommendation desired by the user, in addition to
providing these options without an explicit request that
needs to be generated by the user through the bot user
interface 2010. Further, the autonomous guidance interface
3020 allows a user to explore the suggested component
without having the component automatically implemented
within the IDE.

[0183] Still referring to FIG. 3A, the social and technical
eminence interface 3030 can invoke the technical eminence
module 1225 of FIG. 1C. More specifically, the social and
technical eminence interface 3030, for example, allows an
enterprise, a team, or other user, to share assets. For
example, the technical eminence interface 3030 allows users
to interact in a marketplace, e.g., the Kony Marketplace™,
amongst other examples. Alternatively, users may interact
with one another through a community, e.g., a developer
community, or user groups. In addition, users may share
assets at specific locations, such as a web-based hosting
service, e.g., GitHub, or websites which offer developer tips,
e.g., Stack Overflow.

[0184] The extended analytics interface 3040 helps elimi-
nate issues and create opportunities for an enterprise during
the digital application development. For example, the
extended analytics interface 3040 provides support optimi-
zation by helping to eliminate trouble tickets using the
product evolution module 1245 of FIG. 1C. Specifically, a
user can be provided with an answer to a problem they have
encountered, or may encounter based on their actions. For
example, a user may encounter a problem concerning the
colorization of a widget. The product evolution module 1245
of FIG. 1C would recognize the problem and provide a
solution for coloring the widget through the extended ana-
Iytics interface 3040. In embodiments, the solution may be
obtained from a database within the enterprise, or a com-
munity of users, amongst other examples. In this way, the
user is provided with a solution before the need to create a
trouble ticket and can continue developing their digital
application.

[0185] The extended analytics interface 3040 also pro-
vides a benefit of third party integration capabilities, e.g.,
salesforce integration, by listening/searching entire enter-
prises and determining the breadth with which an enterprise
is utilizing the IDXDP. For example, the extended analytics
interface 3040 may recognize that certain groups within the
enterprise are utilizing the IDXDP, while another group may
have yet to implement the IDXDP. This information can be



US 2020/0160377 Al

used to make a specific recommendation up to Kony® of
Kony, Inc. or other service provider for other opportunities,
e.g., an upsell opportunity as described with respect to FIG.
11A.

[0186] The extended analytics interface 3040 also assists
in the evolution of the IDXDP, and any of its associated
components. Specifically, the IDXDP may require a modi-
fication at some point in order to meet the changing needs of
programmers, designers, and other users. For example, the
extended analytics interface 3040 has the capability to run a
user journey and send the results of the journey to an
engineering team for evaluation and correction of any issues
or update of components based on the user actions. In this
way, the IDXDP is not a static platform, but an ever-
changing platform to meet the needs of current users. The
Additional Plugins aspect of the extended analytics interface
3040 allows for various plugins, i.e., brains, to be imple-
mented into the IDXDP for further enhancements.

[0187] The omni-channel application extensions interface
3050 provides the capability of Al to be applied directly to
industry specific vertical applications. As a non-limiting
example, the Al elements can be applied to retail banking.
Further aspects of the omni-channel application extensions
3050 include Field Service, Generic Widgets and Market-
place Hosted, i.e., marketplace hosting.

[0188] FIG. 3B shows an illustrative architecture of the
event processing and pattern recognition module 3200. In
embodiments, the event processing and pattern recognition
module 3200 implements equations (1)-(4) in order to
determine specific recommendations and/or actions. For
example, the event processing and pattern recognition mod-
ule 3200 can determine where specific widgets or other
assets are placed within forms. As another example, the
event processing and pattern recognition module 3200 can
make use of the recommendation module 3250 to realize,
e.g., existing assets are similar to what the user is currently
developing within the IDE by analyzing the user’s own
workspace.

[0189] More specifically, as shown in FIG. 3B, the event
processing and pattern recognition module 3200 comprises
a development tool 2030, e.g., Kony Visualizer® by Kony,
Inc, and recommendation module 3250. In embodiments,
the development tool 2030 is comprised of an API 3230 and
event system 3240. The recommendation module 3250
comprises a recommendation component 3270, a command
processor 3280 and an NLP/machine learning component
3290.

[0190] Inoperation, an event stream 3260 comprising user
actions performed within the development tool 2030 is sent
from the event system 3240 to the recommendation com-
ponent 3270 of the recommendation module 3250. The
recommendation component 3270 takes the information
within the event stream 3260 and determines whether a
recommendation should be provided to a user. Specifically,
the recommendation component 3270 communicates with a
command processor 3280 and the NLP/machine learning
component 3290 in order to determine and provide the
recommendation.

[0191] In embodiments, the recommendation component
3270 determines a recommendation by utilizing the pattern
recognition and code analysis provided in equations (1)-(4),
in conjunction with the NLP and machine learning features
of the NLP/machine learning 3290 component. In order to
accomplish these tasks, the recommendation component

May 21, 2020

3270 comprises the recommendation engine 2090, while the
NLP/machine learning component 3290 comprises the event
AI/NLP engine 2080. For example, the machine learning
feature from the event AI/NLP engine 2080 may take the
information from the event stream 3260 to learn recognition
of an object. By way of example, the machine learning can
learn that the object is a widget and make recommendations
related to widgets. In this way, the best recommendation is
determined based on what has already been learned. In
further embodiments, recommendations based on learned
features are given a heavier weight, i.e., a further weight
added to the calculations for Total confidence in equation
(1.

[0192] The command processor 3280 takes system infor-
mation and determines whether the recommendation should
be made. For example, the command processor 3280 is
configured to discriminate between whether an action needs
to take place or whether a textual content recommendation
should surface through a bot, i.e., the recommendation bot
extension 2110. Further, the command processor 3280 is
configured to execute equations (1)-(4) to calculate the total
confidence of the recommendation, and also to determine if
the calculated total confidence surpasses a threshold set for
approving recommendations. In this way, the command
processor 3280 takes the recommendation to a system level
and makes the recommendation, which is then forwarded to
the event system 3240 for implementation.

[0193] The event system 3240 comprises the recommen-
dation notification adapter 2100, which is configured to
gauge how a particular recommendation should be serviced,
e.g., which format the recommendation should be presented
to the user. In embodiments, the event system 3240 com-
prises the recommendation action extension 2110, which
provides not only textual output back to the bot user inter-
face 2010, but is also configured to populate a form of a
widget or other tangible action. In even further embodi-
ments, the event system 3240 comprises the recommenda-
tion action extension 2120, which is configured to provide
specific actions within the development tool 2030 without a
user needing to interact with the bot user interface 2010. In
this way, the recommendation can be an actual action or
textual content or other suitable content.

[0194] Still referring to FIG. 3B, the API 3230 commu-
nicates between the development tool 2030 and the NLP/
machine learning component 3290 to provide requests 3310
to and receive suggestions 3300 from the NLP/machine
learning component 3290. In embodiments, the API 3230,
through the interactive advisor module 1205, is configured
to answer questions of the particular user, whether it be the
developer, designer, administrator, etc. using the Al. The
requests can be generated by the user during the develop-
ment of their digital application through the user interface
2010, as a non-limiting example. The suggestions can be
provided to the user through the API 3230 as textual content
or spoken content, amongst other examples.

[0195] The recommendation module 3250 will continu-
ously monitor the complexity of a code used in the con-
struction of an object or other assert type to determine if the
code is becoming too complex, i.e., having code snippets
which are unnecessary to create a particular outcome,
through the recommendation component 3270. In embodi-
ments, if a determination is made that the code is too
complex, the Al of the IDXDP, and particularly the Al of the
event A/NLP engine 2080, can suggest how to optimize the



US 2020/0160377 Al

code in order to reduce complexity. Complexity is deter-
mined by comparing the code to a library of machine
learning outcomes stored in a database, e.g., storage system
1022B of FIG. 1A. For example, a snippet of code from a
machine learning outcome can be compared to the code
being developed by the developer.

[0196] When the code becomes too complex, the Al of the
recommendation module 3250 and/or recommendation
component 3270, e.g., the NLP/machine learning compo-
nent 3290 through the event AI/NLP engine 2080, provides
suggestions for optimizing the code in order to reduce
complexity. For example, a suggestion from the recommen-
dation module 3250 and/or recommendation component
3270 may run a script through the recommendation action
extension 2120, which essentially thins the code directly as
an action. Further, the recommendation module 3250 and/or
recommendation component 3270 can suggest to run this
script automatically so that the code complexity can be
reduced in an efficient manner. As another example, a
suggestion through the recommendation bot extension 2110
and shown through the bot user interface 2010 to the user
may be examples of a plurality of routines that provide the
same outcome the user desires, but do so at a much greater
degree of efficiency, in terms of the code running, or a much
higher degree of maintainability.

[0197] The recommendation module 3250 and/or recom-
mendation component 3270 also continuously monitors the
code for best practices or coding standards. In embodiments,
if a user does not follow a best practice, the recommendation
module 3250 and/or recommendation component 3270 uses
a chat interface or audio interface, e.g., through the bot user
interface 2010 through the API 3230, to inform the user they
are not following a best practice. In further embodiments,
the recommendation module 3250 suggests how to correct
the problem to maintain best practices using code optimi-
zation intelligence built into the recommendation compo-
nent 3270.

[0198] The best practices can be found in manuals or
learned practices, amongst other examples, stored in data-
bases, e.g., storage system 1022B of FIG. 1A. For example,
a best practice in JavaScript realm suggests that a user
terminate particular executable lines with a semicolon. In
this way, the best practices could be things as simple as
initializing variables from a front end, eliminating the use of
global variables, providing the right degree of syntactical
correctness, e.g., semicolons, at the end of lines. Alterna-
tively, the best practices may be more complex, depending
on the technical capability of the user. A chat window can be
provided through the bot user interface 2010 to inform the
user they are not following a best practice. For example, the
chat window may suggest how to correct the code to be
consistent with best practices. Specifically, a bot associated
with the chat window, i.e., the through the bot user interface
2010, can provide a chat box indicating best practices. In
embodiments, a user can click “yes” or “no” in response to
a prompt to either accept changes to be made or to deny the
changes.

[0199] In further embodiments, the recommendation mod-
ule 3250 and/or recommendation component 3270 can
develop or recommend a common coding style based on
monitoring the practices of team members (or other com-
munities) and suggest ways for the team to standardize their
coding to make the code more maintainable. For example, a
majority of the team may use tabs to indent their code, while

May 21, 2020

only a few members use spaces. Since the majority of team
members use tabs, the recommendation module 3250 and/or
recommendation component 3270 would suggest that every-
one use tabs in order to accomplish a common coding style
across all users.

[0200] The recommendation module 3250 and/or recom-
mendation component 3270 can also establish a best practice
based on feedback from the team or a global community on
a proposed best practice. For example, when there is a team
of enterprise developers that are coding a certain project, it
is desirable for the code to look the same from all user
contributions for future users. In this way, the IDXDP has
the ability to analyze the code associated with an entire
enterprise in order to derive the best practices or common
practices that that enterprise uses.

[0201] In further embodiments, the recommendation mod-
ule 3250 and/or recommendation component 3270 can store
common coding styles across all developers to suggest best
practices on an enterprise level, as well as other levels, such
as all users within a group of the enterprise. In embodiments,
the recommendations/suggestions from the recommendation
module 3250 can match the technical level of the specific
user, e.g., a padding manager recommendation for a devel-
oper. In addition, the recommendation module 3250 and/or
recommendation component 3270 can suggest a component
in the marketplace as a substitute for a component being
written by a developer, based on analyzing the object or
visual component names being used by the developer and
inspecting the behaviors the user is creating for the user
created component. These assets can be assets that live on
the World Wide Web, amongst other examples.

[0202] FIG. 3C illustrates a chat client, i.e., the API 3230,
within the development tool 2030. In embodiments, the API
3230, through interfaces such as the bot user interface 2010,
allows developers and other users to communicate with one
another and bots of the IDXDP. Specifically, the API 3230
allows for direct communication with bots, e.g., Kony® of
Kony, Inc. bots, e.g., the bot A/NLP 2020, recommendation
bot extension 2110, and third-party bots, through the bot
user interface 2010. These bots can provide suggestions
based on events of the development tool 2030, which are
triggered for each user action within the development tool
2030. In embodiments, the bots can broadcast messages to
all registered chat clients using the API 3230, which is
configured for direct communication amongst an entire
community of users.

[0203] In embodiments, the API 3230 displays all config-
ured third-party bots. In further embodiments, a developer
can select a target bot and open new conversation window.
Since the API 3230 can be embedded into the development
tool 2030 and can establish a communication medium with
the development tool 2030, the API 3230 code should
preferably be written in JavaScript.

[0204] In addition, the API 3230 is configured as a con-
versation-based chat window that can be embedded in the
development tool 2030, which can interact with various
interfaces of the IDXDP, e.g., the bot user interface 2010.
The API 3230 will communicate with the NLP/machine
learning component 3290 to provide requests 3310 for
material concerning notes and comments. The AP1 3230 will
then receive suggestions 3300 from the NL.P/machine learn-
ing component 3290, which are relayed to the user.

[0205] As further shown in FIG. 3C, the suggestions may
be in the form of a playback video which provides an



US 2020/0160377 Al

explanation for comments and forms. In this way, assets can
be played back onto the IDE through the development tool
2030. In embodiments, the API 3230 can be opened as a
separate window (popup) when a user taps on a chat icon
within the development tool 2030. In further embodiments,
tapping on the icon can toggle the visibility of a user
interface (UI) of a specific interface for the API 3230, or
other user interfaces, e.g., the bot user interface 2010.
[0206] FIG. 3D illustrates a computing environment 3400
implementing the API 3230 and development tool 2030 with
the server 3500. The computing environment can also be
representative of the computing environment shown in FIG.
1A. In embodiments, the API 3230 provides a mechanism to
search and add a new bot and also list all added third party
bots. Further, a default conversation window within the bot
user interface 2010 can interact with Kony® by Kony, Inc.
bots only, and a developer can select a target bot and can
open a new conversation window for each bot through the
bot user interface 2010.

[0207] The API 3230 can analyze the message response
received from the server 3500 and render the user interface,
e.g., the bot user interface 2010, appropriately. The API
3230 is also responsible for sending/receiving the com-
mands to/from the development tool 2030 and supports
attaching raw files, displays images, links, and text and
inbuilt playback of audio and video. Specifically, the API
3230 can support rendering of buttons and choice boxes,
which enables user interaction with the queries/suggestions.
Further, the API 3230 can restore the chat history of a logged
in user from previous development tool 2030 sessions, and
also allows anonymous user chat history.

[0208] The development tool 2030 comprises the user
interface (UI) manager 3410, which acts as a gateway from
the development tool 2030 to the API 3230 and the various
interfaces in communication with the API 3230, e.g., the bot
user interface 2010. All the communication between the
development tool 2030 and the API 3230 can occur via this
UI manager 3410. For example, in embodiments, the Ul
manager 3410 creates/receives commands to/from the
development tool 2030 and the API 3230. Specifically, Ul
manager 3410 module has intelligence to analyze the events
flowing from the development tool 2030 and suggest actions
to the user to be performed in the context of at least the
recommendation module 3250 and/or recommendation
component 3270 as described herein. In embodiments, the
UI manager 3410 can comprise the event analytics engine
2070, which comprises intelligence to analyze the events
flowing from the development tool 2030.

[0209] As further shown, the Ul manager 3410 commu-
nicates with a tasks manager module 3420. In embodiments,
the tasks manager module 3420 is a place, which stores all
the tasks to be implemented in the development tool 2030,
which shall be called by the API 3230. The following tasks
can be implemented by the tasks manager module 3420:

[0210] 1) import Project (Local/Cloud);
[0211] 2) export Project (Local/Cloud);
[0212] 3) create a component with or without contract,

such as selected widget info that should be passed to the chat
window or multi widget selection with form;

[0213] 4) export the component to the market place, such
as asking the details about the library name;

[0214] 5) generic publishing to the market place, even
when the user does not specify the component name;

May 21, 2020

[0215] 6) import from Market place, such as obtaining a
mechanism to do a pattern match against place components;
[0216] 7) run programs, such as running maps to current
development tool 2030 behavior or running programs on
specific channels as requested by the user;

[0217] 8) create skins, such as using a getting started
model,;

[0218] 9) unused skins identification and deletion of them;
and

[0219] 10) unused actions identification and deletion of
them.

[0220] The UI manager 3410 also communicates with the

event processor module 3430, which comprises the event
queue processor 2050, queue manager 2060, and event
analytics engine 2070. In embodiments, the event analytics
engine 2070 can be incorporated with the recommendation
module 3250 and/or recommendation component 3270 to
provide analysis of the assets, actions, etc. of the user and
provide appropriate recommendations to the user.

[0221] Inembodiments, the Ul manager 3410 is registered
to the event processor module 3430, which further analyzes
the events received from it. In embodiments, a global actions
module 3440, which, together with the global developer
trends module 1215, is configured to obtain global trends
within any particular industry as described with respect to
FIG. 7A. The development tool 2030 also includes the other
modules 3450, which assist the development tool 2030 in
functioning as should be understood by those of skill in the
art such that no further explanation is required. In embodi-
ments, all user actions in the development tool 2030 are
captured by the event processor module 3430.

[0222] As with all servers and Al described herein, the
server 3500 uses Node.js, which is a server-side JavaScript.
The bots can be implemented using Node.js with wit.ai as
the Al engine, as an illustrative example. As should be
recognized by those of skill in the art, wit.ai is an open and
extensible natural language platform that learns human
language from all interactions, and leverages the community
such that anything that is learned is shared across develop-
ers. Third party bots can be developed by developers in any
of their preferred technology areas, with the third party bots
being consumed seamlessly with the Node.js of the server
3500. In embodiments, the server 3500 is hosted on a
remote/local system or on a cloud, i.e., cloud computing
environment 1100 comprising one or more cloud computing
nodes 1110.

[0223] In embodiments, the API 3230 is automatically
opened when the development tool 2030 is launched for the
first time, with the API 3230 preserved for future develop-
ment tool startups. Specifically, upon starting the develop-
ment tool 2030, the API 3230 sends a handshake request to
the server 3500. This handshake request shall contain infor-
mation such as:

[0224] 1) user details token (if user is logged-in in a
previous visualizer session);

[0225] 2) internet protocol (IP) address;

[0226] 3) development tool instance ID; and

[0227] 4) default conversation window ID.

[0228] The server 3500 responds back with a unique token

to identify the user’s default conversation window. In
embodiments, the API 3230 will send same details as the
initial connection for this new conversation window to
server 3500 and receives a unique token for this conversa-
tion window. The API 3230 can preserve all of the tokens



US 2020/0160377 Al

from the conversation windows and send a token with every
message to the server 3500. In embodiments where any
action requires a user login, the API 3230 requests user login
before executing the action in order to have the ability to
complete the action.

[0229] The server 3500 comprises an autonomous bot
3520, third-party bot(s) 3530, market place bot 3540 and
help bot 3550 (amongst other bots described herein), which
all communicate with the bot user interface 2010. The
autonomous bot 3520 provides commands to the develop-
ment tool 2030, such as build code, import/export compo-
nent, etc. The third-party bot(s) 3530 includes at least two
types of third-party chat bots. For example, the third party
bots include chat bots built for the IDXDP, where these bots
are directly added to 1Q manager 3510 using an admin
console. The developers can communicate with these bots
once they add a bot to their API 3230 through an interface
such as the bot user interface 2010, which can understand
the requests to the bots from the intelligence, e.g., Al and
NLP, within the bot AI/NLP 2020. A second bot includes
chat bots already built for other providers. If required, a
developer can write a connector, which makes these chat
bots work with the IDXDP as should be understood by those
of ordinary skill in the art.

[0230] The market place bot 3540 is a chat bot that helps
with the market place component search and make appro-
priate suggestions. The help bot 3550 is a chat bot that
provides help information consolidated from Kony® docu-
mentation, forums and the local or global community. The
help bot 3550 can respond with detailed help with images,
video, text, links and sample code as detailed with respect to
real-time collaboration and tutorials as described herein.

[0231] In embodiments, an application developer or other
user can communicate directly with the Development tool
2030 or with the server 3500 through various interfaces, e.g.,
the bot user interface 2010. For example, a developer may
choose to issue a command to the development tool 2030
directly from the API 3230 by typing the command within
the bot user interface 2010. Specifically, the user may type
“Convert the selected Flex to master” into the API 3230
through the bot user interface 2010, which can be recognized
by the intelligence of the bot AI/NLP 2020. In this scenario,
the raw text entered into the Visualizer API 3230 follows a
“Direct Communication with bots” approach to interact with
the autonomous bot 3520. The autonomous bot 3520 can
then respond with an action message through the bot user
interface 2010 to the API 3230. Specifically, this action is
analyzed by API 3230, which sends the commands to
development tool 2030. The Ul manager 3410 inside devel-
opment tool 2030 receives the command and executes the
command in the development tool 2030 using the tasks
manager module 3420.

[0232] Alternatively, a developer may communicate
directly with the server 3500, and specifically with the
informative bots within the server 3500 through the bot user
interface 2010. These cots can be any of the bots as
described herein. In embodiments, an application developer
can type a raw message into the conversation window e.g.,
bot user interface 2010 in communication with the API
3230. The Visualizer API 3230 converts this raw message
using the intelligence provided by the bot AI/NLP 2020 into
a predefined template request and sends this request to the
server 3500.

May 21, 2020

[0233] The request is received by the 1Q manager 3510,
which sends the request to the appropriate chat bot, i.e.,
autonomous bot 3520, third-party bot(s) 3530, market place
bot 3540 or help bot 3550. In embodiments, the chat bot can
apply NLP, if required. The chat bot responds with intents or
commands in a predefined response format/template. The
intents or commands are passed back to the user’s chat
window by the IQ manager 3510. The API 3230 analyzes the
response template and displays it in the appropriate format,
e.g., spoken, visual, or textual, to the developer. The API
3230 can also broadcast messages to all registered users. In
embodiments, the 1Q manager 3510 can identify all avail-
able users and send the same message to all the users.
[0234] The requests and messages provided to and by the
API 3230 can be in a number of formats. For example, a
body of a hypertext transfer protocol (HT'TP) request can be
sent in JSON format, requiring the properties of messaging
type, recipient and message. In embodiments, the messag-
ing_type property provides the purpose of the message being
sent, the recipient property identifies the intended recipient
of the message, and the message property defines the mes-
sage to be sent. Examples of the messaging_type property
can be a message in response to a received message, or a
message that is being sent proactively and not in response to
a received message. Examples of the recipient property
include a page-scoped user identification (PSID) of the
message recipient. Optionally, the recipient property can be
a user name from any third party cloud, e.g., the cloud
computing environment 1100 comprising one or more cloud
computing nodes 1110 as shown in FIG. 1B. Examples of the
message property include a message text or an attachment
object. Properties can also include a message state displayed
to the user, with the properties of typing_on and typing_off.
[0235] The typing_on property indicates a display of the
typing bubble, while typing_off property indicates a removal
of the typing bubble. In further embodiments, there can be
an optional push notification having various types. The push
notification type can be regular, which is represented by
sound. Alternatively, the push notification type can be a
silent_push, which is represented by an on-screen notifica-
tion only, or a no_push, which is represented by no notifi-
cation. The regular push notification type is the default.
[0236] In embodiments, an attachment object is a compo-
nent used to send messages with media or structured mes-
sages, where the text or attachment is set. The following can
be included in the attachment object: rich media messages
including images, audios, videos, or files; and templates
including generic templates, button templates, receipt tem-
plates, or list templates, etc. Attachment types include audio,
video or image file. To send an attachment from a file, a
POST request can be submitted to a Send API with the
message details as form data, with the following fields:

[0237] recipient: A JSON object identifying the message
recipient;

[0238] text: an optional text message to send with the
asset;

[0239] message: A JSON object describing the message.

Includes the asset type, and a payload. The payload is empty;
and

[0240] filedata: The location of the asset on your file
system and multi-purpose internet mail extensions (MIME)
type.

[0241] For attaching a template, the body of the request
can follow a standard format for all template types, with a



US 2020/0160377 Al

message.attachment.payload component containing the type
and content details that are specific to each template type.
The available templates include generic templates, list tem-
plates button templates, receipt templates, media template,
code templates, amongst other examples.

[0242] Generic Templates:

[0243] The generic template allows a user to send a
structured message that includes an image, text and buttons.
For example, a generic template with multiple templates
described in the elements array will send a horizontally
scrollable carousel of items, each composed of an image,
text and buttons. For the message.attachment.payload com-
ponent of the generic template, the template_type property
value may be generic. The image_aspect_ratio property is
optional and represents an aspect ratio used to render images
that can be specified by element.image_url. The elements
property represents an array of element objects that describe
instances of the generic template to be sent. In embodiments,
specifying multiple elements will send a horizontally scrol-
lable carousel of templates. In embodiments, the generic
template supports a maximum of 10 elements per message,
although other elements are also contemplated herein.
[0244] The message.attachment.payload.elements compo-
nent of the generic template can include a title property with
an 80-character limit (as a non-limiting example) that is to
be displayed in the template. A subtitle property is optional
and can also have an 80-character limit (as a non-limiting
example) that is to be displayed in the template can be
included. Other optional elements for the message.attach-
ment.payload.elements component of the generic template
include the URL of the image to display in the template, and
a default action executed when the template is tapped. The
default action can be provided by the following command:

{

“type”: “web_url”,
“unl”: “<URL_TO_OPEN_IN_WEBVIEW>",

}

Another optional property is a buttons property, which
represents an array of buttons to append to the template. A
maximum of 3 buttons per element is supported, as an
example.

[0245] List Template:

[0246] The list template allows a user to send a structured
message with a set of items rendered vertically. For the
message.attachment component, the value property can be a
template with the payload property representing the payload
of the template. For the message.attachment.payload com-
ponent, the value property can be list. An optional property
is the top_element_style property, which sets the format of
the first list items. The messenger web client can render
compact, where compact renders a plain list item and large
renders the first list item as a cover item. Also, the buttons
property is optional, and represents the button to display at
the bottom of the list. Maximum of 1 button is supported, as
a non-limiting example.

[0247] The elements property of the message.attachment.
payload component represents an array of objects that
describe items in the list, with a minimum of two elements
required (as a non-limiting example) and maximum of four
elements supported (as a non-limiting example). For the
message.attachment.payload.elements component, the title
property represents the string to display as the title of the list

May 21, 2020

item, with an 80-character limit (as a non-limiting example).
In embodiments, the title may be truncated if the title spans
too many lines, and must also have one or both of image_url
or subtitle set. The subtitle property is optional and repre-
sents a string to display as the subtitle of the list item and an
80-character limit as a non-limiting example. In embodi-
ments, the subtitle may be truncated if the subtitle spans too
many lines. The subtitle and should also have one or both of
image_url or subtitleset. The image_url property is also
optional and represents the URL of the image to display in
the list item. Further, the default action property is optional,
with a URL button that specifies the default action to execute
when the list item is tapped.

[0248] Button Template:

[0249] The button template includes the message.attach-
ment component that has a value property, which could be
a template. Further, the payload property represents a pay-
load of the template. For the message.attachment.payload
component, the value property must be button. The text
property of the message.attachment.payload component can
be UTF-8-encoded text of up to 640 characters as a non-
limiting example, with the text appearing above the buttons.
For the buttons property of the message.attachment.payload
property, a set of 1-3 buttons that appear as call-to-actions.
[0250] Receipt Template:

[0251] The receipt template allows a user to send an order
confirmation as a structured message. The message.attach-
ment component includes a value property, which must be
template, while the payload property represents a payload of
the template. The message.attachment.payload component
includes the template_type property where the value must be
receipt. The recipient_name property represents the recipi-
ent’s name. The merchant_name property is optional, and, if
present, is shown as logo text. The order_number must be
unique, while the currency of the message.attachment.pay-
load property represents the currency of the payment.
[0252] The payment_method represents the payment
method. Providing information for the customer to decipher
which payment method and account they can use includes,
for example, a custom string, such as, “creditcard name
1234”. The timestamp property is optional and is in the order
in seconds. The elements property of the message.attach-
ment.payload component represents an array of a maximum
of 100 element objects (as a non-limiting example) that
describe items in the order. Sort order of the elements is not
guaranteed. The address property is optional and represents
the shipping address of the order. The summary property
represents the payment summary. The adjustments property
is optional and represents an array of payment objects that
describe payment adjustments, such as discounts.

[0253] For the message.attachment.payload.address com-
ponent of the receipt template, the street_1 property repre-
sents the street address, line 1. The street_2 property is
optional and represents the street address, line 2. The city
property represents the city name of the address, while the
postal_code property represents the postal code of the
address, the state property represents the state abbreviation
for U.S. addresses, or the region/province for non-U.S.
addresses, and the country property represents the two-letter
country abbreviation of the address.

[0254] For the message.attachment.payload summary
component of the receipt template, the property values of the
summary object should be valid, well-formatted decimal
numbers, using ‘.’ (dot) as the decimal separator. It is noted



US 2020/0160377 Al

that most currencies only accept up to 2 decimal places. The
subtotal property is optional and represents the sub-total of
the order. Also optional is the shipping_cost property, which
represents the shipping cost of the order, and the total_tax
property, which represents the tax of the order. The total_
cost property represents the total cost of the order, including
sub-total, shipping, and tax. For the message.attachment.
payload.adjustments component of, the name property is
optional and represents a name of the adjustment. The
amount property is also optional and represents the amount
of the adjustment.

[0255] For the message.attachment.payload.clements
component, the title property represents the name to display
for the item. The subtitle property and the quantity property
are both optional, with the subtitle property representing the
subtitle for the item, usually a brief item description, and the
quantity property representing the item purchased. The price
property represents the price of the item. For free items, a ‘0’
is allowed. The currency property and the image_url prop-
erty are both optional, with the currency property represent-
ing the currency of the item price and the image_url property
representing the URL of an image to be displayed with the
item.

[0256]

[0257] The media template allows a user to send a struc-
tured message that includes an image or video, and an
optional button. The message.attachment component of the
media template includes a type property where the value is
template. The payload property is the payload of the tem-
plate. The message.attachment.payload component of the
media template includes a template_type property, where the
value must be media. The elements property of message.
attachment.payload component represents an array contain-
ing 1 element object that describes the media in the message.
The message.attachment.payload.elements component of
the media template includes a media_type property, which
represents the type of media being sent—image or video is
supported. Further, the URL property represents a URL of
the image, and the buttons property represents an array of
button objects to be appended to the template. A maximum
of 1 button is supported.

[0258]

[0259] The code template includes the message.attach-
ment component, which includes a type property where the
value must be template, and a payload property which is a
payload of the template. The message.attachment.payload
component of the code template has a template_type prop-
erty where the value must be code and the code is a
JavaScript code to be displayed.

[0260] Buttons are defined by objects in a buttons array,
with message templates supporting buttons that invoke
different types of actions. Examples of buttons include a
postback button, a URL button a call button, a share button,
a buy button, log in button, a log out button, and a game play
button. When the postback button is tapped, a messenger
platform can send an event to a user’s postback webhook.
This is useful when a user wants to invoke an action in their
selected bot. This button can be used with the button
template and the generic template. Properties of the post-
back button include a type, which represents the type of
button. Another property is a title, which represents a button
title with a 20-character limit as a non-limiting example. A
further property of the postback button is a payload, which

Media Template:

Code Template:

May 21, 2020

represents data that will be sent back to the user’s webhook.
The payload has a 1000-character limit.

[0261] The URLbutton opens a webpage in the messenger
webview. This button can be used with the button and
generic templates. The properties of the URL button include
a type, which represents a type of button and must be
web_url. The title represents the button title and has a
20-character limit. The URL property represents the URL
that is opened in a digital browser when the button is tapped
and must use hypertext transfer protocol secure (HTTPS) if
the messenger_extensions is true. The webview_height_
ratio is optional and represents a height of the webview.
Valid values are compact, tall and full, with defaults to full.
[0262] The messenger_extensions property is optional and
needs to be true if using Messenger Extensions. The fall-
back_url property represents the URL to use on clients that
do not support Messenger Extensions. If this is not defined,
the URL will be used as the fallback. It may be specified if
messenger_extensions is true. The webview_share_button is
optional, and is set to hide to disable the share button in the
Webview (for sensitive info). This does not affect any shares
initiated by the developer using Extensions.

[0263] Quick Replies allow for obtaining message recipi-
ent input by sending buttons in a message. When a quick
reply is tapped, the value of the button is sent in the
conversation, and the messenger platform sends a messages
event to the user’s webhook. The properties of the quick
replies include a content_type, which must be text: sends a
text button, or location: sends a button to collect the recipi-
ent’s location. Another property is title, which represents the
text to display on the quick reply button with a 20-character
limit as a non-limiting example. This is required if a
content_type is ‘text’. The property of payload represents
custom data with 1000-character limit (as a non-limiting
example) that will be sent back via a messaging_postback-
swebhook event. The payload is required if content_type is
‘text’. The image_url property is optional and represents the
URL of an image to display on the quick reply button for text
quick replies. In embodiments, the image should be a
minimum of 24 pxx24 px. Larger images will be automati-
cally cropped and resized.

[0264] FIG. 3E represents the IQ manager 3510, which
communicates with chat clients, i.e., the API 3230, and the
chat bots, e.g., the autonomous bot 3520, third-party bot(s)
3530, market place bot 3540 and help bot 3550. The IQ
manager 3510 comprises a Messaging manager 3555, a Chat
History manager 3560, a bot manager 3565, an Identity
manager 3570, a client manager 3575 and admin console
manager 3580. In embodiments, the Ul manager 3410 acts
as a gateway to the 1Q manager 3510.

[0265] In embodiments, the IQ manager 3510 authenti-
cates the user by using an identity service module of the
Identity manager 3570. In embodiments, this can be the
same authentication as is currently used in the Kony
Cloud™ of Kony, Inc. user authentication or other cloud
computing environment, e.g., cloud computing environment
1100. In embodiments, the Identity manager 3570 analyzes
the user details, IP address, and conversation window details
and produces a unique token to identify the chat client, i.e.,
the user. The 1Q manager 3510 provides a unique identifi-
cation (ID) to each registered bot, e.g., autonomous bot
3520, third-party bot(s) 3530, market place bot 3540 and
help bot 3550, with each request and response containing
both chat client token and the bot ID. In embodiments, the



US 2020/0160377 Al

information of the registered bots’ is saved as meta info
(typically JSON), which is used by the IQ Manger 3510 to
generate the same ID. Further, all the registered bots can
communicate with the IQ manager 3510.

[0266] By default, all messages are routed to Kony® chat
bots; although communications can be provided to any of
the chat bots as desired by the administrator. For example,
if a developer selects a third-party chat bot conversation
window, the messages can be routed to the corresponding
third-party chat bot only. The chat history of all users for all
conversation windows can be monitored and recorded by the
Chat History manager 3560. The bot manager 3565 is
responsible for preserving the existing bot information and
providing the same to the IQ manager 3510 for the com-
munications. The client manager 3575 primarily deals with
storing the client information, which includes both active
and inactive user sessions. This information can be stored in
the storage system 1022B as shown in FIG. 1A, for example.
[0267] The admin console manager 3580 can be a web
page or other interface from which admin settings can be
configured in the server 3500. The admin console manager
3580 can be responsible for, amongst other functions:
[0268] 1) registering a new bot (Kony' or third party) with
the 1Q manager 3510;

[0269] 2) unregistering an existing bot;

[0270] 3) disabling a bot, where the bot can be public or
enterprise. It can also be private bot during development
phase;

[0271] 4) listing out existing client sessions. (both active
and inactive sessions); and

[0272] 5) viewing and clearing chat history.

[0273] FIG. 3F illustrates a swim diagram 3800 for imple-
menting processes in accordance with aspects of the present
disclosure. In embodiments, the sub-systems or actors can
include the development tool 2030 and related modules
(modules of Kony Visualizer® by Kony, Inc), the queue
manager 2060 and the recommendation engine 2090. As the
user performs actions in the development tool 2030, the
actions are collected and the information provided by the
actions are then utilized to determine an intent of the user
and provide a recommendation based on the intent. For
example, the event queue manager, i.e., queue manager 2060
is responsible for providing meaningful event information
coupled with context from the development tool 2030 in a
structured object notation. The IQ recommendation engine,
i.e., the recommendation engine 2090, shall process the
events and provides suggestions to developers or other
users. The recommendation engine 2090 registers itself as a
subscriber to all the events raised by various sub-systems of
the development tool 2030. In the process, it collects the
information in JSON format. The information collected
includes:

[0274] 1) user actions to create, rename, delete forms,
skins, widgets etc.;

[0275] 2) corresponding actions/events raised by various
sub systems with in the development tool 2030;

[0276] 3) captures information like the name of the form,
skin, specific user activity, channel that user is building the
application for;

[0277] 4) additional contextual information about the
application, e.g., app name, domain, etc.;

[0278] 5) the information so captured is stored in a
NoSQL database; and

[0279] 6) JavaScript Code changes by users.

May 21, 2020

[0280] As shown in FIG. 3F, the development tool 2030
registers as a source of all events, i.e., user actions, at step
3810. At step 3820, the queue manager 2060 subscribes to
the recommendation engine. At step 3830, the development
tool 2030 raises, i.e., fires, the events. This causes a trig-
gering of events with structured objects at step 3840, i.e.,
components being constructed in response to user actions.
With this information, the recommendation engine 2090
analyzes the events, prepares suggestions and converts those
suggestions into natural language statements at step 3850. In
embodiments, the suggestions 3850 can comprise a recom-
mendation context specific help, amongst other examples.

Autonomous Advisor

[0281] As described herein, the IDXDP may include an
autonomous advisor functionality that is implemented, for
example, using the autonomous advisor module 1210
described with respect to FIG. 1C. In accordance with
aspects of the present disclosure, the autonomous advisor
functionality automatically determines an intent of a user
who is working in the IDE, and automatically makes rec-
ommendations to the user for actions to take in the IDE,
where the recommendations are based on comparing the
user’s intent to insights determined from big data using
analytics and machine learning.

[0282] For example, as described with respect to FIG. 2A,
modules of the system (e.g., the event analytics engine 2070
and the event AI/NLP engine 2080) may be configured to
determine an intent of a user working in the IDE 2030 based
on applying cognitive analysis and Al techniques to the
events that the user performs in the IDE 2030. Moreover,
portions of the system (e.g., the event AI/NLP engine 2080)
may be configured to determine insights about the ways that
other users are performing tasks in the IDE 2030 by con-
tinuously obtaining and analyzing big data using cognitive
analysis and Al techniques. The determined insights may
include, for example, patterns, correlations, trends, and
preferences associated with ways that others are using the
IDE 2030. In embodiments, the recommendation component
3270 (e.g., the recommendation engine 2090) uses the
insights to automatically generate recommendations that the
system provides via the bot user interface 2010 to the user
working in the IDE 2030. In this manner, implementations
of the invention may make intelligent recommendations to a
user by: (i) determining the user’s intent in the IDE; (ii)
comparing the user’s intent to determined ways that other
users are performing the same or similar tasks in the IDE;
and (iii) recommending to the user that the user accomplish
their intent by using one of the determined ways that other
users are performing the same or similar tasks in the IDE.
[0283] In embodiments, the big data used in determining
the insights includes internal data (e.g., platform data)
gathered from other users working with instances of the IDE
that are connected to the IDXDP. For example, the big data
may include data obtained from respective IDEs of plural
other users (potentially worldwide) who are all using the
platform (e.g., the Kony® platform of Kony, Inc., including
Kony Visualizer®). For example, the system may be con-
figured to continuously monitor and track every action (e.g.,
every keystroke, mouse input, etc.) taken by every user in
their respective IDE, and to provide this data to the IDXDP
for analysis as part of the big data. Such actions may include,
for example and without limitation: menu items in the IDE
that the user selects; text typed by the user in a field in the



US 2020/0160377 Al

IDE; and names applied by a user to objects, widgets, forms,
etc., in a project in the IDE. The internal data may also
include apps that are created using the IDE and that are
published to a marketplace (e.g., the Kony Marketplace™
by Kony, Inc.).

[0284] The big data may also include data that is not
generated by an IDE associated with the IDXDP. For
example, the big data may include external data (e.g.,
community data) such as: social media sources (user social
media posts, comments, follows, likes, dislikes, etc.); social
influence forums (e.g., user comments at online blogs, user
comments in online forums, user reviews posted online,
etc.); activity-generated data (e.g., computer and digital
device log files including web site tracking information,
application logs, sensor data such as check-ins and other
location tracking, data generated by the processors found
within vehicles, video games, cable boxes, household appli-
ances, etc.); Software as a Service (SaaS) and cloud appli-
cations; and transactions (e.g., business, retail, etc.). Such
external data may be obtained using data mining, web
scraping, etc., of publicly available (e.g., Internet) data
and/or enterprise data from other third party applications.
[0285] In accordance with aspects of the present disclo-
sure, the system uses cognitive analysis techniques (e.g.,
NLP, sentiment analysis, etc.) and Al techniques (e.g.,
machine learning, neural networks, etc.) to analyze the big
data to determine insights about how users are performing
tasks in the IDE. For example, the system may analyze the
internal data of thousands of worldwide users of the IDE and
learn from this analysis that when a user performs a specific
set of events in the IDE (e.g., a series of mouse clicks,
typing, drag and drops, etc., in the IDE), the user is creating
a particular object (e.g., an authentication object for a digital
app). As another example, the system may analyze external
data including blog posts, comments, and ratings of pub-
lished digital apps and may learn from this analysis that the
current best practice for permitting a user to select between
two options in a digital app is to use a visual toggle switch
(that requires a single input) instead of a drop down menu
(that requires at least three inputs). These two examples are
merely for illustration, and implementations of the invention
may be used to determine any number of and any type
insights (e.g., patterns, correlations, trends, preferences,
etc.) about using the IDE.

[0286] The system is not limited to analyzing the internal
data separately from the external data, and instead both
internal data and external data may be included in a set of big
data that is analyzed to determine insights, which may
include patterns, correlations, trends, and preferences asso-
ciated with using the IDE. Moreover, the big data is not
static, but instead is ever growing due to the system con-
tinuously obtaining new data (e.g., both internal and exter-
nal) as it becomes available. In this manner, since the big
data changes over time, any determined insights (e.g., pat-
terns, correlations, trends, preferences, etc.) may also
change over time as a result of the change in the big data. As
a result, something that is determined as a best practice
today (e.g., using a visual toggle switch instead of a drop
down menu) may be superseded by a different best practice
determined from the big data in the future.

[0287] In embodiments, the analysis of the big data may
be performed by the event AI/NLP engine 2080 as described
with respect to FIG. 2A. Big data, by definition, involves
data sets that are so large or complex that traditional data

May 21, 2020

processing application software is incapable of obtaining
and analyzing the data. As such, it follows that the event
AI/NLP engine 2080 is necessarily rooted in computer
technology since the processes involved are impossible to
perform without computer technology (i.e., the processes
involved in obtaining and analyzing big data cannot be
performed in the human mind). In embodiments, the event
AI/NLP engine 2080 may include a plurality of computer
devices (e.g., servers) arranged in a distributed network
(e.g., a cloud environment).

[0288] In embodiments, autonomous recommendations as
described herein are presented to the user of the IDE via the
bot user interface 2010 of FIG. 2A. The system may present
the recommendation in a visual form (e.g., a chat box with
text, images, etc.) and/or or audible form (e.g., using text to
speech and an audio speaker). Embodiments in accordance
with aspects described herein may be implemented in the
cloud computing environment 1100 of FIG. 1B, with the
architecture 2000 of FIG. 2A comprising one or more cloud
computing nodes 1110 as described with respect to FIG. 1B,
plural user computer devices communicating with the archi-
tecture 2000 (e.g., accessing the IDE 2030) comprising
plural other cloud computing nodes 1110, and plural com-
puter devices from which the external data (e.g., community
data) is obtained comprising still other cloud computing
nodes 1110.

[0289] As described herein, autonomous recommendation
(or a recommendation made autonomously) refers to a
recommendation the system presents to the user without
having been solicited by the user. This stands in contrast to
intelligent advisor systems in which the user first asks for
help or assistance, and the systems only provide a recom-
mendation in response to such a user request for help or
assistance. All of the recommendations described in this
section are autonomous recommendations unless explicitly
stated otherwise.

[0290] This section describes a number of examples of
autonomous recommendations that may be provided with
implementations of the present disclosure, including: cus-
tomized recommendations based on determined user per-
sona; repetitive action recommendations; shortcut recom-
mendations; automatic completion recommendations; style
advisor recommendations; style evaluator recommenda-
tions; padding manager recommendations; image advisor
recommendations; design time testing recommendations;
app testing recommendations; defect tracking recommenda-
tions; workflow assistant recommendations; standards
adherence recommendations; best practices recommenda-
tions; DevOps advisor recommendations; refactoring rec-
ommendations; performance recommendations; code
cleanup and linting recommendations; upsell advisor rec-
ommendations; automated client success recommendations;
automated Mobile Test Automation (MTA) recommenda-
tions; and feature request (FTR) advisor recommendations.
These examples are not intended to be limiting, and imple-
mentations of the invention may be used to make other types
of autonomous recommendations to users of the IDE based
on insights determined from big data.

[0291] Customized Recommendations Based on Deter-
mined User Persona

[0292] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality determines a
persona of a user and customizes the recommendations
described herein based on the determined persona of user.



US 2020/0160377 Al

Different users may act under different personas (e.g., roles)
within an enterprise when working in the IDE, and the
system may customize the vocabulary, complexity, and/or
frequency of a recommendation based on the different
personas. For example, a first user may be a designer who
has a relatively low understanding of coding, and a second
user may be a developer who has a relatively high level of
understanding of coding. In this example, when generating
a recommendation for the first user, the system would avoid
using references to coding vocabulary and coding concepts
since the first user is likely to not understand such a
recommendation. On the other hand, when generating a
recommendation for the second user in this example, the
system would include coding vocabulary and coding con-
cepts in the recommendation.

[0293] In embodiments, the system determines the user’s
persona either from an indication by the user of by analyzing
a user’s actions in the IDE. In one method, a user may
indicate their persona in a user profile associated with the
IDE. In this implementation, when the user logs in to the
IDE with their credentials, the system accesses the user
profile associated with these credentials and determines the
persona of this user from the data in the user profile. The
IDE may be configured such that a user can select from a set
of predefined personas when editing their profile in the IDE.
The system may use the persona determined in this manner
when customizing recommendations in the manner
described herein.

[0294] Another method of determining a persona of a user
is for the system to prompt the user while the user is working
in the IDE. For example, when a user logs in to the IDE with
their credentials, the system may prompt the user (e.g.,
visually and/or audibly) to provide user input to indicate
their current persona. In this manner, the system provides the
user with the ability to indicate a different persona each time
they log in to the IDE, which can be helpful for users who
perform different roles at different times within the enter-
prise. The system may use the persona determined in this
manner when customizing recommendations in the manner
described herein.

[0295] Another way of determining a user persona is for
the system to analyze the actions the user performs in the
IDE and to designate a persona for the user based on this
analysis. For example, the system may store data that defines
different actions in the IDE as being associated with different
ones of the available personas. In embodiments, a module of
the system (e.g., the event analytics engine 2070) analyzes
the actions (e.g., events) performed by the user in the IDE
2030, compares these actions to the data that defines differ-
ent actions in the IDE as being associated with different ones
of the available personas, and determines a persona for the
user based on this comparison. This described method of
analysis is merely illustrative, and other methods of auto-
matically determining a user’s persona may be employed. In
this manner, the system may automatically determine a
persona for a user based on actions performed by the user in
the IDE. The system may use the persona determined in this
manner when customizing recommendations in the manner
described herein.

[0296] FIGS. 4A and 4B illustrate the system providing
different recommendations for different users based on the
different determined personas of the users. For example,
FIG. 4A shows a workspace 4010 (e.g., a Ul in the IDE 2030
of FIG. 2A) of a first user that the system determines has the

May 21, 2020

persona of a developer. On the other hand, FIG. 4B shows
an illustrative workspace 4010' (e.g., a Ul in the IDE 2030)
of'a second user that the system determines has the persona
of a designer. In these workspaces, each of the users is
manually drawing an object 4005 and 4005'.

[0297] Using methods described herein with respect to the
autonomous advisor functionality, the system automatically
determines the intent of each user, i.e., drawing an object.
Using methods described herein with respect to the autono-
mous advisor functionality, the system automatically deter-
mines a recommendation for each user based on the deter-
mined intent, and provides the recommendation 4015 and
4015' to the users via a chat window (e.g., as part of the bot
user interface 2010 of FIG. 2A). The core of the recom-
mendation is the same for each user, e.g., that images can be
imported from another application instead of the user manu-
ally drawing images in the workspace. However, the content
of each recommendation is customized based on the differ-
ent persona of each respective user.

[0298] For example, as shown in FIG. 4A, the recommen-
dation 4015 to the first user is customized to the persona of
a developer by making the recommendation 4015 concise
(e.g., based on a presumption that a developer knows how to
import images without instruction). As shown in FIG. 4B,
the recommendation 4015' to the second user is customized
to the persona of a designer by making the recommendation
4015' more elaborate (e.g., based on a presumption that a
designer would benefit from step by step guidance for
importing images). In this manner, the recommendations for
the two different users are customized to use different
complexity based on the different personas.

[0299] Recommendations may also be customized based
on other factors, such as the frequency with which a par-
ticular recommendation is made. Using the example of
FIGS. 4A and 4B, the system may further customize the
recommendation 4015 for the first user (i.e., the developer)
by showing this recommendation only once even if the
system determines the same intent from this same user in the
future (e.g., based on a presumption that a developer does
not want to be told multiple times). Similarly, the system
may further customize the recommendation 4015' for the
second user (i.e., the designer) by showing this recommen-
dation every time the system determines this same intent by
the user (e.g., based on a presumption that a designer would
benefit from this repeated information). In this manner, the
recommendations for the two different users are customized
to use different frequencies based on the different personas.
[0300] Other types of customization based on personas
may be used. For example, the system may use different
vocabularies for different personas. Specifically, the system
may employ jargon and/or code syntax in recommendations
to developers, while avoiding including jargon and/or code
syntax in recommendations to designers.

[0301] In an illustrative example, the system may deter-
mine a user to have a persona selected from the group
consisting of: designer, developer, business owner, sales,
marketing, and platform. These exemplary personas are not
intended to be limiting, however, and any number and any
types of personas may be defined by in implementations of
the invention for use in customizing recommendations to
users.

[0302] Inembodiments, rules that define how to customize
different types of recommendations for each of the different
types of personas may be stored and used by the system



US 2020/0160377 Al

when determining how to customize a recommendation for
a particular user. The rules described in the example of
FIGS. 4A and 4B (e.g., a presumption that a developer
knows how to import images without instruction, and a
presumption that a designer would benefit from step by step
guidance for importing images) are merely illustrative, and
any types and any number of rules may be defined for use
by the system in customizing the recommendations.

[0303] Autonomous Recommendations Based on Repeti-
tive Actions
[0304] In accordance with aspects of the present disclo-

sure, the autonomous advisor functionality provides autono-
mous recommendations to a user based on determining the
user is performing repetitive actions that can be performed
in a more efficient manner In embodiments and as previously
described herein, the system continuously monitors the
actions made by the user in the IDE (e.g., the event data). In
embodiments, the system analyzes the event data to deter-
mine repetitive actions being performed by a user in the
IDE, and automatically (or with user permission after
prompt) refactors those repetitive actions into specific appli-
cation components. The specific application components can
include but are not limited to forms, master templates (e.g.,
masters), macros, widgets, services, etc.

[0305] As described herein, and with reference to the
elements and architecture shown in FIG. 2A, the event
queue manager 2060 manages communications between
different modules of the IDE 2030 via events, and provides
event information coupled with IDE context information in
a structured object notation. As additionally described
herein, the system continuously monitors every event (e.g.,
action) that a user performs in the IDE and analyzes the
stream of events (e.g., using the event analytics engine 2070)
to determine an intent of the user.

[0306] According to aspects of the present disclosure, the
event analytics engine 2070 is configured to analyze the
event data from the event queue manager 2060 to determine
when a user is performing a repetitive action in the IDE.
When the event queue manager 2060 determines a user is
performing a repetitive action in the IDE, and when the
determined insights reveal there is a less repetitive approach
that satisfies the user’s determined intent, then the recom-
mendation engine 2090 makes a recommendation to the user
via the bot user interface 2010 to use the less repetitive
approach that satisfies the user’s determined intent.

[0307] For example, the system may determine (e.g., from
analyzing the user’s event data from the event queue man-
ager) that the user’s intent is creating a scrollable form that
implements product level detail, e.g., for an online shopping
functionality of a digital app. In particular, the system may
determine from the event data that the user has manually
created source code for each of ten horizontal rows on each
of three pages, where each row has the same type of widgets
(e.g., an image widget, a ratings widget, and a product
description widget). The system may determine from the
insights that a less repetitive approach to satisfy this intent
is to use a SegmentedUI widget that is available in the IDE
and that includes multiple segments (rows or records), in
which each segment (row or record) can have multiple child
widgets, and which is adapted for menus and grouped lists.
Based on these determinations, the system makes a recom-
mendation to the user to use the SegmentedUI instead of
manually creating the repetitive components of the scrol-
lable form.

May 21, 2020

[0308] FIG. 4C shows a swim lane diagram illustrating a
method in accordance with aspects of the present disclosure
that are directed to autonomous recommendations based on
repetitive actions. The steps of FIG. 4C may be carried out
in the architecture of FIG. 2A and are described with
reference to elements shown in FIG. 2A.

[0309] At step 4021, the IDE 2030 registers with the event
queue manager 2060 as a source of all events in the event
stream. At step 4022, the recommendation engine 2090
registers itself as a subscriber to all the events raised by the
IDE 2030 (e.g., raised by the various modules and/or sub-
systems of the IDE). At step 4023, the event queue manager
2060 raises event “x” from the IDE 2030. At step 4024 and
in response to step 4023, the event queue manager 2060
triggers event “x” to the recommendation engine 2090
including structured objects such as form, widget, service,
code snippet, etc. At step 4025, the event queue manager
2060 again raises event “x” from the IDE 2030. At step 4026
and in response to step 4025, the event queue manager 2060
triggers event “x” to the recommendation engine 2090
including structured objects such as form, widget, service,
code snippet, etc. At step 4027, the recommendation engine
2090 analyzes the repetitive sequential events (e.g., event
“x”), and makes a recommendation to the user for a different
approach that does not involve as many repetitive events. As
described herein, the different approach may be determined
based on the determined intent of the user and the insights
determined from the big data. As described herein, the
recommendation may be presented to the user in the IDE
2030 via the bot user interface 2010.

[0310]

[0311] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality provides autono-
mous recommendations for shortcuts to a user. In embodi-
ments and as previously described herein, the system
continuously monitors the actions made by the user in the
IDE (e.g., the event data). Based on this monitoring, the
system is configured to determine when a user repeats an
action with a number of events when a shortcut (e.g., to
perform the same action with less events) is available to be
used. Based on this determining, the system automatically
presents a recommendation to the user to use the shortcut.

[0312] Sometimes there are a plurality of different ways to
perform the same function in the IDE. For example, a first
approach for performing a certain task may involve the user
performing a series of keystrokes and mouse input actions
for navigating through the Ul of the IDE. A second approach
for performing the same task may involve the user initiating
a macro programmed into the Ul of the IDE, where the
second approach is a shortcut because it involves less user
input to perform the same task. In accordance with aspects
of the present disclosure, the system monitors and analyzes
the event data (e.g., from the event queue manager 2060) to
determine when the user is repeatedly performing the first
approach. In response to determining that the user is repeat-
edly performing the first approach, the system (e.g., the
recommendation engine 2090) automatically generates a
recommendation to the user to suggest using the second
approach. As described herein, the recommendation may be
presented to the user in the IDE 2030 via the bot user
interface 2010.

Autonomous Recommendations for Shortcuts



US 2020/0160377 Al

[0313] Autonomous Recommendations to Automatically
Complete
[0314] In accordance with aspects of the present disclo-

sure, the autonomous advisor functionality provides autono-
mous recommendations to automatically complete actions
for a user based on the determined intent of the user and the
determined insights. In embodiments, the system recom-
mends completing a user’s action with a similar action that
has been performed by another user.

[0315] As described herein, the system continuously
monitors every event (e.g., action) that a user performs in the
IDE and analyzes the stream of events (e.g., using the event
analytics engine 2070) to determine an intent of the user. The
intent may be, for example, to create a portion of a digital
app such as a splash screen, an authentication field, etc. The
intent may be determined before the user has performed all
the actions to achieve the intent, in which case the system
may determine (from the insights) how other users have
achieved this same intent, and suggest one or more of these
existing solutions to the current user.

[0316] FIGS. 4D, 4E, and 4F illustrate this functionality.
As shown in FIG. 4D, the user is creating a calculator 4030
in their workspace 4035 in the IDE, the calculator 4030
being only partially complete. Using the techniques
described herein (e.g., analyzing the event data from the IDE
using cognitive analysis and Al), the system may determine
that the user’s intent is to create a calculator. As shown in
FIG. 4D, based on determining the user intent, the system
may present a recommendation 4040 to the user to see
examples of calculators. The recommendation 4040 may
have fields for the user to provide input to accept or decline
the recommendation.

[0317] Inresponse to the user providing input to accept the
recommendation 4040, then as shown in FIG. 4E the system
may modify the recommendation 4040' to include images
(e.g., thumbnails) 4045, 4046 of completed calculators that
have been made by other users. The system may find the
completed calculators in the big data (e.g., in the internal
data of other users of the IDE), and may use the insights to
determine which one or more completed calculators best
matches this user’s intent.

[0318] For example, the system may determine that plural
apps published in a marketplace each include a calculator,
and the system may obtain and analyze data about these
plural apps in order to determine which one or more of the
calculators to present to the user in the recommendation
4040'. As an illustrative example, such data might include:
ratings data (e.g., number of stars out of five) of each of the
apps from the marketplace; review data (e.g., user comments
in text form) of each of the apps from the marketplace;
similarity of appearance of each of the calculators (e.g., in
the respective plural apps) to the calculator started and
partially completed by the user (e.g., by comparing dimen-
sions, spatial relations, colors, fonts, functions, etc., of
objects, widgets, forms, etc., included each of in the calcu-
lators); social media posts that tag, like, dislike, thumbs-up,
thumbs-down, or plus-one an image and/or a textual descrip-
tion of the calculator included one of the plural apps; and
articles, blogs, forum discussions that include an image
and/or a textual description of the calculator included one of
the plural apps. Based on analyzing this data (or similar
data) in the manner described herein (e.g., using cognitive
analysis and/or Al techniques), the system may determine a
relative score for each calculator in the respective plural

May 21, 2020

apps, and may present a predefined number of the highest
scoring calculators to the user in the recommendation 4040'.
[0319] As shown in FIG. 4F, based on the user selecting
the image 4045 in the recommendation 4040', the system
automatically replaces the user’s partially complete calcu-
lator 4030 with a calculator 4050 that corresponds to the
selected image 4045. In embodiments, the system is con-
figured to automatically execute commands in the IDE to
generate the objects included in the calculator 4050, such
that the calculator 4050 is functional in the IDE in the same
manner as if the user had constructed the calculator 4050
themselves in the IDE. In this manner, aspects of the present
disclosure provide autonomous recommendations to auto-
matically complete actions for a user based on the deter-
mined intent of the user.

[0320] Autonomous Recommendations to Revise

[0321] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality provides autono-
mous recommendations to a user based on determining that
a more appropriate component may be used in a project. As
described herein, the big data that is analyzed to determine
insights is dynamic as opposed to static. Since the big data
may change over time, it follows that the determined
insights may also change over time as a result of the changes
to the big data. As a result, something that is determined as
a best practice today may be superseded by a different best
practice determined from the big data in the future.

[0322] In embodiments, the system is configured to con-
tinuously obtain new data in the set of big data, to continu-
ously analyze the big data to determine new insights, and to
determine whether any of the new insights apply to the user
intent that was the basis of a previous recommendation. In
embodiments, the system makes a new (e.g., revised)
autonomous recommendation to a user in response to deter-
mining that a new insight applies to a user intent that was the
basis of a previous recommendation.

[0323] To illustrate this functionality, consider the afore-
mentioned example in which the user is manually creating
source code for an app containing ten horizontal rows on
each of three pages, where each row has the same type of
widgets (e.g., an image widget, a ratings widget, and a
product description widget). In this example, the system
determined the user’s intent is creating a scrollable form that
implements product level detail. In this example, the system
autonomously recommended using a SegmentedUI instead
of manually creating the repetitive components of the scrol-
lable form, e.g., based on a combination of the determined
intent and the insights determined from the big data that
existed at the time the recommendation was made. Continu-
ing this example, consider the situation where the user
accepts the recommendation by implementing a Segment-
edUI in the app, and then completes and publishes the app.
Sometime later, i.e., weeks or months after the app has been
published, the system may determine a new insight that a
different widget is the new best practice for achieving the
user’s intent. Based on this determined new insight, the
system may make a new recommendation to the user to
revise the app using the different widget.

[0324] The new recommendation may be presented to the
user in a number of ways. For example, in one embodiment
the system automatically presents the new recommendation
to the user the next time the user logs in to the IDE after the
determination of the new recommendation. In another
embodiment, the system presents the new recommendation



US 2020/0160377 Al

to the user by pushing an alert to the user via a communi-
cation channel outside the IDE, such as sending an email or
a text message to the user. In this manner, implementations
of the invention are configured to autonomously make
revised recommendations to a user even after the user’s app
is completed, such that the user may choose to modify their
app based on the new recommendation.

[0325] Other Autonomous Recommendations

[0326] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “style advisor” recommendation in the IDE based
on best practices learned from other apps. In embodiments,
the system is configured to compare style aspects of a user’s
app in the IDE to best practices of these same style aspects
learned from other apps (e.g., determined from analyzing the
big data as described herein). The style aspects may include,
for example, the size, placement, and intended use of
elements within the app. For example, the system may
determine from analyzing the event stream that an element
displayed in the user app is intended to be reachable by a
thumb of an end user using the app on their digital device.
In this example, the system may compare the location of the
element in this app to the location of similar elements in
other apps, and determine based on this comparison that the
element in this app should be moved to another location in
order to more easily accessible by the thumb of the end user.
The recommendation engine 2090 may generate this rec-
ommendation and the bot user interface 2010 may present
the recommendation to the user. If the user provides user
input to accept the recommendation, then the system may
provide input to the IDE to change the user’s app in
accordance with the recommendation.

[0327] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “style evaluator” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to use pattern recognition to
determine that a form included in a user app is similar to
forms included in plural apps published in the marketplace.
The system may obtain and analyze data about these plural
apps in order to determine a respective efficiency score for
each of the plural apps. The efficiency score may be deter-
mined based on cognitive analysis of data associated with
each of the plural apps. As an illustrative example, such data
might include: ratings data (e.g., number of stars out of five)
of each of the apps from the marketplace; review data (e.g.,
user comments in text form) of each of the apps from the
marketplace; social media posts that tag, like, dislike,
thumbs-up, thumbs-down, or plus-one an image and/or a
textual description of the form included one of the plural
apps; articles, blogs, forum discussions that include an
image and/or a textual description of the form included one
of the plural apps; and metadata that defines a level of
efficiency.

[0328] Based on analyzing this data (or similar data) in the
manner described herein (e.g., using cognitive analysis
and/or Al techniques), the system may determine an effi-
ciency score for each form in the respective plural apps. In
accordance with aspects of the present disclosure, the system
determines an efficiency score of the form in the user’s app
by comparing aspects of the form in the user’s app to the
same or similar aspects in the forms of the plural apps, and
by assigning score weightings based on the efficiency scores
of the forms of the plural apps. For example, if an aspect of

May 21, 2020

a form of the user’s app is the same as an aspect of a form
of'one of the plural apps that has a high efficiency score, then
this determination will increase the efficiency score of the
user app. On the other hand, if an aspect of a form of the
user’s app is the same as an aspect of a form of one of the
plural apps that has a low efficiency score, then this deter-
mination will decrease the efficiency score of the user app.
In embodiments, the efficiency score of the user app, e.g.,
determined in this manner, may be visually displayed in the
IDE (e.g., in the bot user interface 2010) as a needle or other
gauge that indicates determined efficiency score.

[0329] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “padding manager” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to compare padding aspects
of a user’s app in the IDE to best practices of these same
padding aspects learned from other apps (e.g., determined
from analyzing the big data as described herein). The
padding aspects may include, for example, the amount of
space between objects displayed on a screen of a digital
device running the app, the alignment of edges of objects
displayed on a screen of a digital device running the app. In
embodiments, the system is configured to determine a rec-
ommended change in one or more padding aspects of the
user’s app based on the comparing the padding aspects of a
user’s app project the best practices learned from other apps.
The recommendation engine 2090 may generate a recom-
mendation including the recommended change, and the bot
user interface 2010 may present the recommendation to the
user. If the user provides user input to accept the recom-
mendation, then the system may provide input to the IDE to
change the user’s app in accordance with the recommended
change.

[0330] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide an “image advisor” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to determine a category of
an image in user’s app in the IDE, and to compare the user’s
image to best practices of the determined category of images
learned from other apps (e.g., determined from analyzing the
big data as described herein). In embodiments, the system is
configured to determine a recommended change to the user’s
image based on the comparing the user’s image to images
included in other apps that are in the same category as the
user’s image, wherein the images included in other apps are
selected for comparison based on insights determined from
the big data. The recommendation engine 2090 may gener-
ate a recommendation including the recommended change,
and the bot user interface 2010 may present the recommen-
dation to the user. If the user provides user input to accept
the recommendation, then the system may provide input to
the IDE to change the user’s app in accordance with the
recommended change.

[0331] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “design time tester” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to test the flow and execu-
tion of a user’s app in the IDE, and to compare the flow and
execution of the user’s app to flow and execution of other
apps. The flow and execution may include a quantitative
measure of how an app flows from one field to another field,



US 2020/0160377 Al

or between forms in the app. In embodiments, the system is
configured to determine a recommended change to the user’s
app based on comparing the flow and execution of the user’s
app to the flow and execution of other apps, wherein the
other apps are selected for comparison based on insights
determined from the big data. The recommendation engine
2090 may generate a recommendation including the recom-
mended change, and the bot user interface 2010 may present
the recommendation to the user. If the user provides user
input to accept the recommendation, then the system may
provide input to the IDE to change the user’s app in
accordance with the recommended change.

[0332] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “defect tracking” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to run the user’s app in the
background of the IDE and determine the likelihood that
there is a defect with a field included in the app by
comparing the execution of the user’s app to the execution
of other apps. For example, a mismatched definition from
the back end to the front end can cause a defect, and the
system may be configured to detect this defect by comparing
the runtime parameters of the user’s app to the runtime
parameters of other apps, wherein the other apps are selected
for comparison based on insights determined from the big
data. The recommendation engine 2090 may generate a
recommendation including a recommended change to the
user’s app to fix a defect detected in this manner, and the bot
user interface 2010 may present the recommendation to the
user. If the user provides user input to accept the recom-
mendation, then the system may provide input to the IDE to
change the user’s app in accordance with the recommended
change.

[0333] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “workflow assistant” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to determine a referential
integrity of a user’s app in the IDE, and to compare the
referential integrity of the user’s app to the referential
integrity of other apps. As used herein, referential integrity
refers to a flow and efficiency of moving from one screen to
another within an app. The referential integrity may be
measured using qualitative means, quantitative means, or
both. In embodiments, the system is configured to determine
a recommended change to the user’s app based on compar-
ing the referential integrity of the user’s app to the referential
integrity of other apps, wherein the other apps are selected
for comparison based on insights determined from the big
data. The recommendation engine 2090 may generate a
recommendation including the recommended change, and
the bot user interface 2010 may present the recommendation
to the user. If the user provides user input to accept the
recommendation, then the system may provide input to the
IDE to change the user’s app in accordance with the rec-
ommended change.

[0334] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “standards adherence” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to analyze a user’s app in the
IDE for adherence to a standard by comparing the source
code of the user’s app to data that defines a standard. The

May 21, 2020

standard may be predefined by stored data. Additionally or
alternatively, the standard may be determined based on
insights determined from big data as descried herein. For
example, the system may use big data analytics as described
herein to determine that a particular existing app is highly
regarded as adhering to a particular standard. As another
example, the system may analyze the code of plural pub-
lished apps to determine insights (e.g., patterns, correlations,
trends, and preferences) related to standards. The system
may then compare the code of the user’s app to the code of
the particular existing app to determine where the user’s app
does not comply with the standard. The recommendation
engine 2090 may generate a recommendation including a
recommended change to the user’s app to bring the user’s
app into compliance with the standard, and the bot user
interface 2010 may present the recommendation to the user.
If the user provides user input to accept the recommenda-
tion, then the system may provide input to the IDE to change
the user’s app in accordance with the recommended change.

[0335] In accordance with aspects of the present disclo-
sure, the autonomous advisor functionality is configured to
provide a “DevOps Advisor” recommendation in the IDE
based on insights determined from the big data. In embodi-
ments, the DevOps Advisor recommendation includes a
recommendation of one or more tools for the user to utilize
in creating their app in the IDE. Numerous software tools
may be used in conjunction with the IDE when creating an
app in the IDE. Such tools can be categorized as either
supported or non-supported. Supported tools are those tools
that are supported by the IDE, whereas non-supported tools
are those that are not supported by the IDE but nevertheless
can be used to perform functions that are utilized in creating
an app in the IDE. Examples of functions provided by such
tools include: editors, debuggers, formatting beautifiers,
dependency managers, update monitors, etc.

[0336] In embodiments, the system identifies supported
tools and non-supported tools and their respective functions
by analyzing the big data as described herein (e.g., using
cognitive analysis and/or Al). For example, the system may
use cognitive analysis to analyze data from websites, blogs,
forums, published articles, comments, etc., to determine the
functions for which different tools are being used by other
users when creating apps. As another example, the system
may analyze operating system data on a computer of another
user to identify a tool that was used by the other user
concurrently with the other user working in the IDE, and the
system may analyze the app created by the other user in the
IDE to determine a function for which the tool was used in
creating the app. The operating system data may include, for
example: process execution trees; thread trees; CPU usage;
and memory usage.

[0337] Inembodiments, the system also determines one or
more intents of a user creating an app in the IDE, e.g., in the
manner already described herein. According to aspects of the
present disclosure, the system compares the user intent to the
functions of the identified tools and, based on this compari-
son, makes a recommendation to the user to use a particular
tool to achieve the user intent. The recommendation engine
2090 may generate a recommendation including the recom-
mended tool and function, and the bot user interface 2010
may present the recommendation to the user. The recom-
mendation may include information on how to obtain the
recommended tool, e.g., by indicating menu commands to
access the recommended tool in the IDE; by suggesting



US 2020/0160377 Al

upgrading a subscription to the platform to obtain access to
a subscription tier that includes the recommended tool; or by
providing a link (e.g., a hyperlink) to a website where the
recommended tool is available.

[0338] Inaccordance with additional aspects of the present
disclosure, the autonomous advisor functionality is config-
ured to provide a “refactoring” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to determine a complexity of
the source code of a user’s app in the IDE by comparing the
source code to standards and/or best practices learned from
other apps. The standards may be predefined by stored data.
The best practices may be determined based on insights
determined from big data as descried herein. For example,
the system may use big data analytics as described herein to
determine that a particular existing app is highly regarded
having an optimal level of complexity. As another example,
the system may analyze the code of plural published apps to
determine insights (e.g., pat patterns, correlations, trends,
and preferences) related to complexity. The system may then
compare the code of the user’s app to the predefined
standards and/or the code of the existing apps to determine
where the code of the user’s app is too complex. The
recommendation engine 2090 may generate a recommenda-
tion including a recommended change refactor the code of
the user’s app to achieve the same functionality with less
complexity. The bot user interface 2010 may present the
recommendation to the user. If the user provides user input
to accept the recommendation, then the system may provide
input to the IDE to change the user’s app in accordance with
the recommended change. Examples of refactoring that may
be recommended include replacing manually created source
code with pre-defined widgets and/or predefined function
calls.

[0339] Inaccordance with additional aspects of the present
disclosure, the autonomous advisor functionality is config-
ured to provide a “performance” recommendation in the IDE
based on best practices learned from other apps. In embodi-
ments, the system is configured to determine the perfor-
mance of a user’s app in the IDE, and to compare the
performance of the user’s app to performance of other apps.
As used herein, performance refers to how the app is
initializing and executing, and may include quantitative
measures of how the app transitions from one screen to
another, the latency of operations, etc. In embodiments, the
system is configured to determine a recommended change to
the user’s app based on comparing the performance of the
user’s app to the performance of other apps, wherein the
other apps are selected for comparison based on insights
determined from the big data. The recommendation engine
2090 may generate a recommendation including the recom-
mended change, and the bot user interface 2010 may present
the recommendation to the user. If the user provides user
input to accept the recommendation, then the system may
provide input to the IDE to change the user’s app in
accordance with the recommended change.

[0340] Inaccordance with additional aspects of the present
disclosure, the autonomous advisor functionality is config-
ured to provide a “code cleanup” recommendation in the
IDE based on best practices learned from other apps. In
embodiments, the system is configured to continuously
monitor a state of the code of a user’s app in the IDE, and
to autonomously recommend code cleanup processes based
on the monitoring. Code cleanup as used herein refers to

May 21, 2020

fixing code that generates warnings and fixing stylistic errors
(e.g., beautify the layout and/or formatting). Code cleanup
may include linting. In embodiments, the system is config-
ured to recommend a code cleanup of an app in the IDE
based on comparing the code of the user’s app to the code
of other apps, wherein the other apps are selected for
comparison based on insights determined from the big data.
The recommendation engine 2090 may generate a recom-
mendation including the recommended action (e.g., code
cleanup), and the bot user interface 2010 may present the
recommendation to the user. If the user provides user input
to accept the recommendation, then the system may provide
input to the IDE to automatically begin the code cleanup
process.

[0341] Inaccordance with additional aspects of the present
disclosure, the autonomous advisor functionality is config-
ured to provide a “feature request advisor” recommendation
in the IDE based on analyzing the usage of users in the IDE.
In embodiments, the system is configured to identify and
analyze dead-ended processes and unfinished projects in the
IDE, and to identify and recommend features to add to the
IDE based on this analysis. In embodiments, the system
analyzes data logs in the IDE, i.e., those data logs associated
with dead-ended processes and unfinished projects of many
users using the IDE. In embodiments, the system also
analyzes big data such as user comments about their dead-
ended processes and unfinished projects, client feature
requests, etc. Based on this analysis, the system identifies
functionalities that users want in the IDE but that are not
currently available in the IDE. In embodiments, the system
is configured to provide a recommendation to platform
curators to add the identified functionalities.

[0342] Inaccordance with additional aspects of the present
disclosure, the autonomous advisor functionality is config-
ured to provide a “newsletter” recommendation to a user of
the IDE based on the user’s determined persona and insights
determined from big data as described herein. In embodi-
ments, the system categorizes determined best practices
according to the set of personas (e.g., designer, developer,
business owner, sales, marketing, platform, etc.). Any
desired rules may be used to implement such categorization.
In embodiments, the system periodically (e.g., monthly)
pushes a newsletter to the users associated with each per-
sona, the newsletter for each respective persona identifying
newly determined best practices associated with that respec-
tive persona.

[0343] Conversational Bot App Developing

[0344] The architecture 2000 may include a conversa-
tional bot app designing functionality that is configured to
create an app in the IDE based on user voice commands In
embodiments, the conversational bot app designing func-
tionality is configured to: receive voice commands from a
user (e.g., via a user device); determine an intent of the user
based on analyzing the voice commands; perform actions in
creating an app in a background instance of the IDE based
on a combination of the determined user intent and deter-
mined insights (e.g., from big data); present the results of the
actions to the user device for review by the user; receive
feedback from the user (via the user device) regarding the
presented results; determine an intent of the user based on
analyzing the feedback; perform additional actions in revis-
ing the app in the background instance of the IDE based on
a combination of the determined user intent and determined
insights; and present the results of the actions to the user



US 2020/0160377 Al

device for review by the user. The process may iterate in this
manner any number of times until the user is satisfied with
the app that is created by the system based on the user input
at the user device. In this manner, implementations of the
invention provide a system and method for user to create
apps via voice command using their user device (e.g.,
smartphone) without requiring the user to provide input via
a graphical user interface (GUI) of the IDE.

[0345] FIG. 4G shows an illustrative environment in
accordance with aspects of the present disclosure. The
environment includes the architecture 2000 of FIG. 2A in
communication with a user device 4055 via a network 4060.
The network 4060 may comprise any combination of com-
munications networks including one or more of a LAN,
WAN, and the Internet. For example, the network 4060 may
comprise the cloud computing environment 1100 of FIG.
1B, and the architecture 2000 and user device 4055 may be
cloud computing nodes 1110 as described with respect to
FIG. 1B.

[0346] The user device 4055 may be a general purpose
computer device such as a smartphone, tablet computer,
laptop computer, desktop computer, etc. In embodiments,
the user device 4055 has a client 4065 installed thereon, the
client 4065 being a program module that is configured to
access the services provided by the architecture 2000. In
embodiments, the IDE is not run on the user device 4055,
and instead is run as Software as a Service (SaaS) in the
architecture 2000.

[0347] In embodiments, the architecture 2000 includes a
conversational bot module 4070 that is configured as an
interface between the client 4065 of the user device 4055
and the other elements of the architecture 2000. In embodi-
ments, the conversational bot module 4070 comprises one or
more program modules in the program control 1044 of the
computing device 1014 as described with respect to FIG.
1A. In embodiments, the bot module 4017 can be represen-
tative of the bot user interface 2010 under control of the bot
manager 3565. In alternative or additional embodiments, the
conversational bot module can be representative of any of
the registered bots including, e.g., autonomous bot 3520,
third-party bot(s) 3530, market place bot 3540 and/or help
bot 3550.

[0348] FIG. 4H shows a flowchart of an exemplary
method for conversational bot app developing in accordance
with aspects of the present disclosure. The steps of the
method of FIG. 4H may be carried out in the environment
of FIG. 4G and are described with reference to the elements
depicted in FIG. 4G. At step 4080, the user device 4055
receives spoken input from the user, e.g., via a microphone
connected to or integrated with the user device 4055. The
spoken input may comprise, for example, a verbal descrip-
tion of aspects of an app that the user wishes to create in the
platform associated with the architecture 2000. For example,
the user can verbally describe aspects, components, and
functionality of the app, such as “start with a blue splash
screen with the enterprise logo and app name, then transition
to a login screen with a login object for a user to enter their
credentials, then transition to a home screen with a menu
containing” The client 4065 transmits the spoken input to the
conversational bot module 4070 via the network 4060. For
example, the client 4065 may transmit audio data of the
spoken input. Alternatively, the client 4065 may convert the
audio data of the spoken input to text data using speech to

May 21, 2020

text techniques, and then transmit the text data to the
conversational bot module 4070.

[0349] At step 4082, the system determines an intent of the
user based on the spoken input. In one embodiment, the
conversational bot module 4070 converts the spoken input to
a format that is usable by the other elements of the archi-
tecture 2000 to determine an intent of the user. For example,
the conversational bot module 4070 may use NLP to convert
the spoken input to data that represents events that are
useable by the event analytics engine 2070 and the event
AI/NLP engine 2080 (included in the architecture 2000) to
determine an intent of the user in the manner described
herein. In another embodiment, the conversational bot mod-
ule 4070 is configured to perform cognitive analysis and/or
Al processes to determine a user intent in a manner similar
to that described with respect to the event analytics engine
2070 and the event AI/NLP engine 2080, but without pass-
ing the spoken input data to the event analytics engine 2070
and the event AI/NLP engine 2080.

[0350] At step 4084, the system automatically performs
actions in the IDE based on the determined user intent and
insights. In embodiments, the user intent that is determined
as a result of the spoken input is provided to the recom-
mendation engine 2090 (included in the architecture 2000),
which determines actions to take in the IDE (running in the
architecture 2000) to achieve the user intent. In embodi-
ments, and as described herein, the actions determined by
the recommendation engine 2090 are based on insights
determined from big data. In this manner, the system deter-
mines the user’s intent from the spoke input, and determines
actions to take in the IDE to achieve the intent, wherein the
actions are determined based on insights (e.g., patterns,
correlations, trends, and preferences) derived from analyz-
ing the ways that others are using the IDE.

[0351] Still referring to step 4084, in accordance with
aspects of the present disclosure, the recommendation
engine 2090 causes the determined actions to be performed
in the IDE, e.g., via the control loop to the visualizer
enhanced event engine 2040 and IDE 2030 as depicted in the
architecture 2000 shown in FIG. 2A. For example, the
recommendation engine 2090 may cause the IDE to create
screens, objects, widgets, etc., in an app project in the IDE,
wherein the screens, objects, widgets, etc., are determined
based on the user’s intent determined from the spoken input
and the insights determined from big data.

[0352] According to aspects of the present disclosure, the
conversational bot module 4070 is configured to provide
data to the client 4065 to present the user with a visual
representation of actions that were performed in the IDE
based on the user’s spoken input. For example, as depicted
at steps 4086 and 4088, the conversational bot module 4070
may generate and send to the user device screen shots of
what the app looks like when running. As another example,
as depicted at step 4090, the conversational bot module 4070
may build the app and send a beta version of the app to the
user device 4055 so that the user can install and run the beta
version of the app on the user device 4055 for testing the app
on the user device 4055.

[0353] In embodiments, the conversational bot module
4070 is configured to receive feedback from the user via the
user device 4055 and to modify or revise the app in the IDE
(running in the architecture 2000) based on the feedback.
For example, after either of steps 4088 and 4090, the process
may return to step 4080 where the user may provide addi-



US 2020/0160377 Al

tional spoken input to the user device 4055 after reviewing
aspects of the app on the user device 4055. The client 4065
may transmit this additional spoken input to the conversa-
tional bot module 4070, which may determine user intent
from the additional spoken input in the manner described
herein. Based on the user intent determined from the addi-
tional spoken input, the system may determine and perform
additional actions in the IDE, i.e., to revise the app in the
IDE based on the additional spoken input. In this manner,
the system provides an iterative process by which the system
receives user spoken input, determines intent of the spoken
input, performs actions in creating the app in the IDE based
on the determined intent, and presents the results of the
actions to the user for review. This iterative process can
continue until the user is satisfied with the app, at which
point the system can automatically publish the app to the
marketplace on behalf of the user, e.g., as indicated at step
4092.

Systems and Methods of Converting Actions Based
on Determined Personas (Users)

[0354] As described in the previous section, in one
embodiment, the system is configured to determine a per-
sona of a user that is working in the UI of the IDE. In
accordance with aspects of the present disclosure, the system
monitors all actions performed by each user in the IDE and
stores and aggregates the actions of all users according to
category of persona. For example, when the system deter-
mines that a user has the persona of designer, the system
saves a record of all this user’s actions in a record of
designer actions. The system does the same for all other
users that are determined as designers, so that the record of
designer actions is a stored record of all actions performed
by all designers in the IDE (e.g., an aggregate record of all
the designer actions). In embodiments, the system does the
same for each category of persona, such that there is a record
of developer actions of all actions performed by all devel-
oper personas in the IDE (e.g., an aggregate record of all the
developer actions), a record of sales actions of all actions
performed by all sales personas in the IDE (e.g., an aggre-
gate record of all the sales actions), etc.

[0355] It is often the case with an app project that different
users having different personas work on the same app project
at different times. It is often the case that the different users
having different personas perform different actions in the
IDE when they are working on the app project. For example,
a designer may start the app project using designer actions
such as action editor actions, which are no-code actions that
define how an asset moves on a screen in the app. The
designer actions are used in the IDE for demonstrating how
assets will behave in the app; however, the designer actions
are not usable in the end-product app (e.g., the designer
actions are not executable in a deployed app). For this
reason, the designer may then hand the app project off to a
developer who performs developer actions such as writing
code to achieve desired aspects (e.g., functions) that are
defined by the designer actions. For example, the developer
uses the designer actions as a guide for the work that the
developer performs with developer actions, i.e., coding. For
example, the developer may observe the app functions
defined by the designer actions and the write code to
implement these functions in the app.

[0356] In accordance with aspects of the present disclo-
sure, the system determines when the app project is passed

May 21, 2020

from a first user having a first persona to a second user
having a second persona, and based on this determination
the system automatically converts actions that are specific to
the first persona to actions that are specific to the second
persona. For example, the system may determine that the
app project has been passed from a designer to the devel-
oper. Based on this determination, the system may automati-
cally convert the designer actions in the app project to
developer actions. For example, the system may convert
designer actions to developer actions (e.g., code such as
JavaScript code) that achieve the functions defined by the
designer actions. In this manner, the system automatically
converts the actions for the subsequent user.

[0357] The conversion of actions from those of a first
persona to those of a second persona may be performed
using predefined rules and stored associations between the
two different types of actions. For example, Kony Visual-
izer® by Kony, Inc. has a menu function that operates to
convert designer actions to developer actions. Similar func-
tions can be programmed for converting actions between
any two personas, such as from designer to sales, from
developer to sales, from developer to designer, etc. Aspects
of the present invention perform the conversion automati-
cally in response to determining that a designer user has
passed the project to a developer user. In this manner, the
system advantageously converts the actions for the subse-
quent user without requiring the user to navigate menu
functions to do so.

[0358] FIG. 5A shows an exemplary computing environ-
ment in accordance with aspects of the present disclosure.
The environment includes the architecture 2000 of FIG. 2A
in communication with user devices 5005a and 50055 via a
network 5010. The network 5010 may comprise any com-
bination of communications networks including one or more
of'a LAN, WAN, and the Internet. For example, the network
5010 may comprise the cloud computing environment 1100
of FIG. 1B, and the architecture 2000 and user devices
5005a-b may be cloud computing nodes 1110 as described
with respect to FIG. 1B.

[0359] The user device 5005a-b may be a general purpose
computer device such as a smartphone, tablet computer,
laptop computer, desktop computer, etc. In embodiments,
each of the user devices 5005a-b has a client 5015 installed
thereon, the client 5015 being a program module that is
configured to access the services provided by the architec-
ture 2000. In embodiments, the client 5015 permits the user
devices 5005a-b to log into the IDE that is run as Software
as a Service (SaaS) in the architecture 2000.

[0360] In this example, the user device 5005¢a is used by
a first user who is a designer that works on an app project via
the UI of the IDE (e.g., IDE 2030 of the architecture 2000
as described with respect to FIG. 2A). In embodiments, and
as described in the previous section titled AUTONOMOUS
ADVISOR, the system (e.g., the architecture 2000) deter-
mines the first user’s persona either from an indication by
the user of by analyzing the user’s actions in the IDE.

[0361] Continuing the example of FIG. 5A, the user
device 50055 is used by a second user who is a developer
that works on the same app project as the first user, but at a
time different than that of the first user. For example, the first
user may perform designer actions in the app project and
then save and close the project in the IDE. After this, the



US 2020/0160377 Al

second user may open the same app project in the IDE and
begin performing their respective developer actions in the
app project.

[0362] In accordance with aspects of the present disclo-
sure, based on determining that the first user has a first
persona and that the second user has a second persona
different than the first persona, the system automatically
converts actions associated with the first persona to actions
associated with the second persona. In embodiments, the
system presents the second user with a recommendation via
the bot user interface 2010 of FIG. 2A and provides the
second user with an option to accept the recommendation.
[0363] Forexample, as shown in FIG. 5B, the system may
cause the UI 5020 of the IDE displayed at the second user
device 50055 to present the recommendation 5025 in the
form of a chat window. The chat window may include user
input fields (e.g., ‘Yes’ and ‘No’ buttons in this example) that
permit the second user to accept or decline the recommen-
dation. In this manner, the system automatically determines
that a user with a different persona is working with an app
project and, based on this determination, automatically
makes a recommendation to the user to convert the actions
of a previous user to actions that are associated with the
persona of the second user.

[0364] FIG. 5C shows a flow chart of steps of an exem-
plary method in accordance with aspects of the present
disclosure. At step 5030, the system determines a first
persona of a first user working on an app project in the IDE.
In embodiments, and as described in the previous section
titled AUTONOMOUS ADVISOR, the system (e.g., the
architecture 2000) determines the first user’s persona either
from an indication by the user of by analyzing the user’s
actions in the IDE.

[0365] At step 5032, the system determines a second
persona of a second user working on the same app project in
the IDE (i.e., the same app project as at step 5030). In
embodiments, and as described in the previous section titled
AUTONOMOUS ADVISOR, the system (e.g., the architec-
ture 2000) determines the second user’s persona either from
an indication by the user of by analyzing the user’s actions
in the IDE.

[0366] At step 5034, the system automatically converts
actions associated first persona to actions associated with
second persona. For example, as described herein, the sys-
tem may automatically convert designer actions (e.g., action
editor actions) performed by the first user to developer
actions (e.g., coding such as JavaScript coding) for user by
the second user.

[0367] Step 5034 may include presenting the recommen-
dation to the second user via the bot user interface. For
example, as shown in FIG. 5B, the system may present a
recommendation 5025 to the second user in a chat window
of the Ul 5020. The recommendation may include an
explanation of the proposed conversion. The recommenda-
tion may include user input fields (e.g., ‘Yes’ and ‘No’
buttons in this example) that permit the second user to accept
or decline the recommendation. In response to the second
user providing user input to accept the recommendation
(e.g., selecting the “Yes’ button in this example), the system
automatically converts the actions associated with the first
persona to actions associated with the second persona, after
which the second user may continue working on the app
project in the Ul of the IDE. As an example of a conversion,
the system may automatically generate code in the IDE that

May 21, 2020

corresponds to an object that was defined using action editor
actions. In this manner, the system may convert the first
action (e.g., the object defined using action editor actions) to
a second action (e.g., code in the IDE that defines a
functional instance of the object defined using action editor
actions).

[0368] FIG. 5D shows a swim lane diagram of an exem-
plary method in accordance with aspects of the present
disclosure. In accordance with aspects of the present dis-
closure, and as described in this section, there is a system
and method to capture and aggregate multi-role user actions
(designers, developers or other types) performed within a
platform into a data repository and performing analytics
capable of determining future enhancements needed to that
platform.

[0369] As described herein, a same IDE is commonly used
by different personas such as UI designers, Developers,
Sales and Marketing Teams, Support teams, Product man-
agers, etc. For example, designers mostly perform actions
related to the IDE canvas, developers mostly perform
actions related to source code modules, and sales personas,
marketing personas, and product manager personas com-
monly use functional preview actions in the IDE. In accor-
dance with aspects of the present disclosure, the system may
monitor a user’s actions in the IDE and determine a persona
of'the user based on typical patterns of that persona, e.g., by
analyzing the user’s actions in the IDE as described herein.
In embodiments, the system automatically adjusts the Ul
based on the characteristics the user is demonstrating.
[0370] With continued reference to FIG. 5D, the recom-
mendation engine registers itself as a subscriber to all the
events raised by various sub-systems of the IDE. Based on
this, the recommendation engine receives various user
actions information in a structured format, e.g., in the
manner described with respect to FIG. 4C. In embodiments,
the system monitors all user actions and preserves a record
of the actions in a database (DB) repository. In embodi-
ments, the system analyzes all the actions performed by
users of different personas and adjust the Ul of the IDE
depending on the user’s persona. In embodiments, based on
the analyzing the actions performed by users of different
personas, the system determines and sends recommenda-
tions for platform enhancements ideas to platform curators.
[0371] Inthe example shown in FIG. 5D, at step 5041, the
system (e.g., the architecture 2000) receives an action per-
formed in the UI of the IDE by a first user having a
determined first persona (e.g., a designer). At step 5042, the
system stores data defining the action and the persona (of
step 5041) in the DB repository.

[0372] At step 5043, the system receives an action per-
formed in the UI of the IDE by a second user having a
determined second persona (e.g., a developer). At step 5044,
the system stores data defining the action and the persona (of
step 5043) in the DB repository.

[0373] At step 5045, the system receives an action per-
formed in the Ul of the IDE by a third user having a
determined third persona (e.g., sales). At step 5046, the
system stores data defining the action and the persona (of
step 5045) in the DB repository.

[0374] In embodiments, the system performs this pair of
steps (e.g., 5041/5042) repeatedly and continuously for
plural users interacting with the IDE. For example, plural
users around the globe may be simultaneously using the IDE
for different projects, and the system performs this pair of



US 2020/0160377 Al

steps for each action of each user. Moreover, in embodi-
ments, the system aggregates actions of users of the same
persona. For example, the system stores actions performed
by all designers in a designer record, actions performed by
all designers in a developer record, and actions performed by
all sales users in a sales record.

[0375] At step 5047, the system reads information from
the DB repository. In embodiments, the system reads the
data for all actions of one or more of the defined personas.
For example, the system may read the data defining all the
actions performed by all users determined to be a developer.
[0376] At step 5048, the system presents an appropriate Ul
in the IDE of a particular user, based on the determined
persona of the user and based on the data read at step 5047.
In this manner, the Ul may be customized based on the
persona of the user using the Ul. The customization may
include, for example, converting actions of first persona to
actions of a second persona.

[0377] At step 5049, the system performs analytics on the
data obtained at step 5047, and determines and sends rec-
ommendations for changes to the platform. For example, the
system may be configured to analyze the data from step 5047
and determine features (e.g., functionality) to add to the IDE
based on this analysis. The recommendations may be trans-
mitted to users who are responsible for platform issues.

System and Method of Generating Actionable
Intelligence Based on Platform and Community
Originated Data

[0378] As described herein, aspects of the present disclo-
sure involve analyzing the actions of individual platform
users and community data, and performing automated func-
tions based on insights determined from the analyzing. For
example, the system may collect and analyze big data
including both internal data (e.g., platform data gathered
from other users working with instances of the IDE that are
connected to the IDXDP) and external data (e.g., community
data obtained using data mining, web scraping, etc., of
publicly available (e.g., Internet) data and/or enterprise data
from other third party applications). In accordance with
aspects of the present disclosure, the system uses cognitive
analysis techniques (e.g., NLP, sentiment analysis, etc.) and
Al techniques (e.g., machine learning, neural networks, etc.)
to analyze the big data to determine insights about how users
are using the IDE and what people are saying about the IDE,
the platform, apps made using the IDE, etc. In accordance
with embodiments described in this section, the system
performs automated functions based on such insights, the
functions including: updating support documentation asso-
ciated with the platform; identifying product features; and
identifying sales leads.

[0379] Updating Support Documentation

[0380] In accordance with aspects of the present disclo-
sure, the system monitors and analyzes community data and
provides recommendations to update support documentation
based on the community data. This function may be per-
formed, for example, using the training/support optimization
module 1235 described with respect to FIG. 1C. For
example, in embodiments, the system monitors community
data including but not limited to social media sources (user
social media posts, comments, follows, likes, dislikes, etc.)
and social influence forums (e.g., user comments at online
blogs, user comments in online forums, user reviews posted
online, etc.). In aspects, the system collects and analyzes

May 21, 2020

such community data to determine insights such as questions
that are asked in the community data and, when available,
answers that are provided to the questions.

[0381] For example, the system may determine, by ana-
lyzing data from one or more forums, that plural users have
a common question about performing the same task in the
IDE (e.g., IDE 2030 as described with respect to FIG. 2A).
The forums may include forums that are internal to the
platform and/or third party forums that are external to the
platform (e.g., Stack Overflow, AllAnswered, etc.). One or
more components of the system, such as the event AI/NLP
engine 2080, may obtain the data from the forum(s) using
methods described herein (e.g., data mining, web scraping,
etc.) and may analyze the data using methods described
herein (e.g., cognitive analysis, machine learning, etc.). The
determination of a common question may be based on NLP
of user posts in the forum(s) to identify questions that have
a same topic, number of views of such posts in the forum(s)
by other users, etc. Based on determining that plural users
have a common question about performing the same task in
the IDE, the system may generate and present a recommen-
dation to a user of the platform to provide an answer to the
question. For example, the recommendation engine 2090
may generate the recommendation and cause the bot user
interface 2010 to present the recommendation to a user
having the persona of a platform curator. In response to
receiving the recommendation, the user may at least one of:
(1) post an answer to the question in one or more forums, and
(i1) update the support documentation associated with the
platform with an answer to the question.

[0382] Continuing the example of determining that plural
users have a common question about performing the same
task in the IDE, the system may be further configured to
analyze the community data from the forum(s) to determine
whether a community-accepted answer exists. For example,
there may be many different threads in one or more forums
that all deal with the same question (e.g., how to create
particular object in an app), and there may be an answer to
the question posted in one of the threads. Although the
answer exists, it is only in a single thread and thus might not
be seen by many users of the forum(s) unless they happen
upon that single thread in that particular forum. Accordingly,
aspects of the present disclosure mine the community data
not only for common questions, but also for answers to
common questions. The mining for answers may be per-
formed in a similar manner as the mining for questions (e.g.,
using data mining, web scraping, etc., to collect data and
using cognitive analysis to analyze the collected data). When
the system determines that an answer to a question exists,
the system may include both the question and the answer in
the recommendation presented by the bot user interface
2010. In this manner, the user having the persona of a
platform curator may choose how to utilize the determined
answer in updating the support documentation for the plat-
form.

[0383] In further aspects, the system is configured to
automatically update at least one of the community data and
the support documentation based on an answer determined
as described herein. For example, alternatively to presenting
the question and the answer in the recommendation pre-
sented by the bot user interface 2010, the system may
instead automatically update the support documentation for
the platform to include the question and answer. In this
example, the platform may include an electronic version of



US 2020/0160377 Al

a user manual, and the recommendation engine 2090 may
automatically change data in the user manual to include the
question and answer determined from the community data.
In another example, the system may automatically post the
answer in a community forum. For example, the system may
have a bot account registered with a forum, and the recom-
mendation engine 2090 may send data to the bot account that
causes the bot account to post a reply to the question,
wherein the reply includes the answer. This may be repeated
for every thread in which the common question is identified.
[0384] FIG. 6A shows a flowchart of an exemplary
method for updating support documentation in accordance
with aspects of the present disclosure. At step 6010, the
system determines that plural users have a common question
about performing the same task in the IDE. In embodiments,
as described herein, this is performed by mining and ana-
lyzing community data, e.g., from one or more forums, to
identify a common question.

[0385] At step 6015, the system determines whether a
community-accepted answer exists to the question identified
at step 6010. In embodiments, as described herein, this is
performed by mining and analyzing community data, e.g.,
from one or more forums, to determine an answer to the
identified common question.

[0386] In one embodiment, at step 6020, the system pro-
vides a recommendation to update the support documenta-
tion. In embodiments, as described herein, the recommen-
dation may be provided to a user having the persona of a
platform curator. The recommendation may be provided via
the bot user interface and/or a push notification (e.g., email)
The recommendation may include the determined question
and the determined answer (if an answer was determined).
The user having the persona of a platform curator may then
utilize this information to update support documentation
associated with the platform. For example, the user having
the persona of a platform curator may update a user manual
or frequently asked question (FAQ) that is available to users
of the platform. As another example, the user having the
persona of a platform curator may post messages to forums
in response to the identified questions.

[0387] In another embodiment, at step 6025, the system
automatically updates support documentation and/or posts
an answer to the community. For example, as described
herein, the system may automatically change data in a user
manual to include the question and answer determined from
the community data. In another example, the system may
automatically post the answer in a community forum.
[0388] Identifying Product Features

[0389] In accordance with aspects of the present disclo-
sure, the system monitors and analyzes community data and
provides recommendations to identify product features
based on the community data. This function may be per-
formed at least in part by the product evolution module 1245
described with respect to FIG. 1C.

[0390] In embodiments, the system monitors community
data including but not limited to social media sources (user
social media posts, comments, follows, likes, dislikes, etc.)
and social influence forums (e.g., user comments at online
blogs, user comments in online forums, user reviews posted
online, etc.). In aspects, the system collects and analyzes
such community data to determine insights such as user-
suggested features (e.g., functionalities) for the platform.
[0391] For example, the system may determine, by ana-
lyzing data from one or more forums, that plural users want

May 21, 2020

auser-suggested feature that is not available in the IDE (e.g.,
IDE 2030 as described with respect to FIG. 2A). The forums
may include forums that are internal to the platform and/or
third party forums that are external to the platform (e.g.,
Stack Overflow, AllAnswered, etc.). One or more compo-
nents of the system, such as the event AI/NLP engine 2080,
may obtain the data from the forum(s) using methods
described herein (e.g., data mining, web scraping, etc.) and
may analyze the data using methods described herein (e.g.,
cognitive analysis, machine learning, etc.). The determina-
tion of a user-suggested feature may be based on NLP of
user posts in the forum(s), number of views of such posts in
the forum(s) by other users, etc. For example, the system
may identify posts that say something to the effect of “I wish
the IDE did function xyz” or “product abc really needs to do
xyz.” The system may also analyze how many views,
replies, tags, likes, dislikes, thumbs-up, thumbs-down, or
plus-ones are associated with such posts. Based on such data
and analysis, the system may determine with a quantitatively
determined measure of confidence that plural users want a
user-suggested feature that is not available in the IDE.

[0392] Based on determining that plural users want a
user-suggested feature that is not available in the IDE, the
system may generate and present a recommendation to a
user of the platform. For example, the recommendation
engine 2090 may generate the recommendation and cause
the bot user interface 2010 to present the recommendation to
a user having the persona of a platform curator. In response
to receiving the recommendation, the user may work with
the platform development team in determining whether and
how to add the user-suggested feature.

[0393] FIG. 6B shows a flowchart of an exemplary
method for identifying product features in accordance with
aspects of the present disclosure. At step 6040, the system
determines that plural users want a user-suggested feature
that is not available in the IDE. In embodiments, as
described herein, this is performed by mining and analyzing
community data, e.g., from one or more forums, to deter-
mine the user-suggested feature. At step 6045, the system
generates a recommendation to add the user suggested
feature to the IDE. In embodiments, as described herein, the
system presents the recommendation to a user having the
persona of a platform curator. In response to receiving the
recommendation, the user may work with the platform
development team in determining whether and how to add
the user-suggested feature.

[0394]

[0395] In accordance with aspects of the present disclo-
sure, the system monitors and analyzes platform data and/or
community data and provides recommendations to identify
sales leads based on the community data. This function may
be performed at least in part by the improve sales efficiency
module 1240 described with respect to FIG. 1C.

[0396] It is common for a service provider, such as an
owner of a platform including an IDE, to permit access to the
IDE on a subscription basis, with SaaS and PaaS being
examples. It is also common in the subscription model for a
service provider to offer different subscription levels (e.g.,
tiers) that have different functionalities. For example, a
platinum level subscription might have full functionality in
which a user may utilize every feature in the IDE, whereas
a gold level subscription might have a reduced functionality
in which the user cannot utilize every feature in the IDE.

Identifying Sales Leads



US 2020/0160377 Al

[0397] In accordance with aspects of the present disclo-
sure, the system identifies sales leads by: identifying a
feature of interest that is not included in a user’s current
subscription level; determining that the feature of interest is
included in a different subscription level; and/or providing a
recommendation to upgrade to the different subscription
level. The feature of interest may be determined in a number
of ways including but not limited to: based on platform data
of an individual user; based on platform data of an enter-
prise; and/or based on community data. The recommenda-
tion may be provided directly to a subscribing user or
subscribing enterprise (e.g., to an entity that has a subscrip-
tion to the platform), or may be provided to a user associated
with the platform such as a user having a sales persona in the
enterprise that owns the platform.

[0398] In one embodiment of identifying sales leads, the
system identifies a feature of interest that is not included in
a user’s current subscription level by: determining an intent
of a user creating an app in the IDE; determining a feature
that achieves this intent; and determining that the feature is
not included in the user’s current subscription level but is
included in a different subscription level. The determining
the intent of the user is performed in a manner similar to that
described in the AUTONOMOUS ADVISOR section, e.g.,
by using cognitive analysis and/or machine learning to
analyze at least one of: the user’s events in the IDE; the
user’s searches for components (e.g., assets) in the platform
marketplace; the user’s downloads of components (e.g.,
assets) from the platform marketplace; the user’s searches
for information in platform resource materials; the user’s
comments to forums (e.g., “I wish the IDE did function xyz”
or “product abc really needs to do xyz”); and data logs
associated with the user’s dead-ended processes and unfin-
ished projects in the IDE.

[0399] The determining the feature that achieves the intent
is also performed in the manner described in the AUTONO-
MOUS ADVISOR section, e.g., by analyzing platform data
and/or community data using cognitive analysis and/or
machine learning to determine what feature(s) other users
are utilizing to achieve the same intent. The determining that
the feature is not included in the user’s current subscription
level but is included in a different subscription level is
performed by accessing and analyzing data that defines the
respective subscription levels, which is readily available
from the platform.

[0400] According to aspects of the present disclosure, the
system compares the determined user intent to the deter-
mined features that are available in other subscription levels
and, based on this comparison, makes a recommendation to
the subscribing user to upgrade their subscription level. The
recommendation engine 2090 may generate a recommenda-
tion including the recommended feature and subscription
level, and the bot user interface 2010 may present the
recommendation to the subscribing user. The recommenda-
tion may include information on how to obtain the feature,
e.g., by suggesting upgrading the subscription to obtain
access to the subscription level that includes the feature.
[0401] Additionally or alternatively to providing a recom-
mendation to the subscribing user, the recommendation
engine 2090 may generate a recommendation that is pro-
vided to a user associated with the enterprise that owns or
operates the platform, e.g., a user having a sales persona
with the platform. The recommendation may include data
such as: account information of the subscribing user with the

May 21, 2020

platform (e.g., account number, enterprise name, User name,
current subscription level, etc.); the determined intent; the
determined feature; and the subscription level that includes
the determined feature. In this manner, the user having the
sales persona with the platform may personally contact the
subscribing user to suggest upgrading the subscribing user’s
subscription level.

[0402] FIG. 6C shows a swim lane diagram of an exem-
plary method for identifying sales leads in accordance with
aspects of the present disclosure. The method may be
performed in the environment of FIG. 1C, with users 6046
representing user computer devices operated by subscribing
users, data sources 6047 representing computer based
sources of platform data and community data (e.g., platform
event queue, platform marketplace, platform support
forums, third party forums, etc.), architecture 6048 repre-
senting the architecture 2000 of FIG. 2A, and platform 6049
representing other computer devices of an enterprise that
owns or operates the architecture 2000.

[0403] At step 6051, one of the users 6046 performs one
of: downloads a component from the platform marketplace;
searches for a component in the platform marketplace; adds
a comment to a post in a forum (e.g., an internal platform
forum or an external third party forum); posts a question in
a forum; posts an answer to a question in a forum. Step 6051
may be performed plural times by plural different ones of the
users. At step 6052, the architecture 6048 tracks and stores
the entire user activity from step 6051 in a DB repository.
Step 6052 is performed substantially continuously in
response to the many user actions at step 6051.

[0404] At step 6053, one of the users 6046 uses a down-
loaded component (e.g., asset) in an app. At step 6054, the
architecture 6048 tracks the usage of the downloaded com-
ponent (e.g., asset) from step 6053. Steps 6053 and 6054
may be repeated plural times for different actions of different
ones of the users 6046.

[0405] At step 6055, one of the users 6046 adds a com-
ment in a forum. At step 6056, the architecture 6048
analyzes the comment from step 6055 to determine whether
there is a product suggestion in the comment. Steps 6055
and 6056 may be repeated plural times for different actions
of different ones of the users 6046.

[0406] At step 6057, the architecture 6048 provides a
product recommendation to the platform 6049. In embodi-
ments, as described herein, the architecture 6048 analyzes
the data from at least one of steps 6052, 6054, and 6056 to
identify a product recommendation (e.g., a user-suggested
feature). In embodiments, as described herein, the architec-
ture 6048 provides a recommendation to a user associated
with the enterprise that owns or operates the platform, e.g.,
a user having the persona of a platform curator. In response
to receiving the recommendation, the user may work with
the platform development team in determining whether to
add the user-suggested feature.

[0407] At step 6058, the architecture 6048 tracks and
analyzes usage of components (e.g., assets) by one or more
users 6046 and suggests a subscription upgrade based on the
analyzing. In embodiments, as described herein, the system
identifies a feature of interest that is not included in a user’s
current subscription level, and identifies another subscrip-
tion level that includes the feature. Based on this, the system
either provides a recommendation directly to the subscribing
user, or provides a recommendation to a user associated with



US 2020/0160377 Al

the enterprise that owns or operates the platform, e.g., a user
having a sales persona with the platform.

Interactive Tutorial Platform and Related Processes

[0408] The interactive tutorial platform and related pro-
cesses comprise a system and method for the dynamic
conversion of a software component (e.g., asset) comprised
of data and meta-data into a real-time playback of compo-
nent creation. This interactive tutorial platform provides the
capability to use components within a component library or
marketplace, and to educate a designer, developer or other
associated skills role in the functionality, the runtime char-
acteristics and the end to end integration of a software
component. In addition, the interactive tutorial platform
implements DevOps, which is a combination of cultural
philosophies, practices, and tools that can increase an orga-
nization’s ability to deliver applications and services at high
velocity. Basically, the DevOps will evolve and improve
products at a faster pace than using traditional software
development and infrastructure management processes.

[0409] In embodiments, application developers create dif-
ferent types of reusable code/UI, which are called “compo-
nents”. These components are part of different assets such as
skins, widgets, platform specific icons, buttons, or other
assets, etc. These components include two personas: 1)
component producer and 2) component consumer. The com-
ponent producer defines the component in a meta file;
whereas, the component consumer can download the com-
ponent to his/her application via an application development
tool, for example. The consumer typically goes through the
meta info to understand the usage of this component. This is
a tedious and time consuming process, which is not very
effective.

[0410] In contrast, though, the interactive tutorial platform
described herein assists the consumer to consume the com-
ponent by using an interactive technique. More specifically,
the interactive tutorial platform and related processes allow
for components to tell a story about themselves; that is, the
interactive tutorial platform described herein is capable of
learning about the different components, putting them into
their constituent components and providing an interactive
tutorial to the user for building the components in a devel-
opment application environment. The interactive tutorials
can be used directly in the workspace, as the user (con-
sumer) is building the component. In this way, the consumer
is not only learning how to build the component, but is also
actually capable of building the component in the applica-
tion development platform in real-time.

[0411] With this noted, FIG. 7A shows a schematic or
architectural view of the interactive tutorial platform and
related processes. In embodiments, the interactive tutorial
platform and related processes can be implemented using the
infrastructure shown in FIG. 1A, e.g., computing environ-
ment 1000. The interactive tutorial platform 7000 can also
be imported from any marketplace, e.g., Kony Market-
place™ by Kony, Inc. into the workspace of the develop-
ment application, e.g., Kony Visualizer®, and subsequently
“played”. The interactive tutorial platform can also be a
plug-in (e.g., plug-in architecture module 1230 shown in
FIG. 1C) to any development tools or other computing
infrastructure and/or any of the subsystems described herein.
In this way, a training and support environment, e.g., an
interactive tutorial, can be provided directly to the user

May 21, 2020

(developer) in an application development environment
while the user is building the component.

[0412] In FIG. 7A, the interactive tutorial platform 7000
includes an analysis component 7010 and machine learning
component 7015. In embodiments, the machine learning
component 7015 can be a subcomponent of the analysis
component 7010 or a standalone component. In further
embodiments, the analysis component 7010 can include Al
as described herein for analysis of assets and associated
metadata. In further embodiments, the analysis component
7010 and machine learning component 7015 can be sub-
components of the training/support optimization module
1235 shown in FIG. 1A, configured to create and view an
interactive type of tutorial for training a user in the con-
struction or use of different assets. In addition, the analysis
component 7010 and machine learning component 7015 can
be implemented through the help bot 3550 shown in FIG.
3D.

[0413] By way of illustrative example, the analysis com-
ponent 7010 can analyze component meta files and con-
struction format of a current asset (hereinafter referred to as
a component) being built by the user, as well as components
which are imported from other development tools, market-
places, etc. By making such analysis, the analysis compo-
nent 7010 can determine the exact method of construction of
the component. In addition, by using this obtained informa-
tion, the analysis component 7010 can transform the com-
ponent into an interactive tutorial for other users for pro-
viding knowledge, education and training about the
component. This can be done by using, for example, the
machine learning component 7015 or, alternatively, in a
standalone mode, as further explained herein.

[0414] As should be understood by those of ordinary skill
in the art, a meta file is a generic term for a file format that
can store multiple types of data. This commonly includes
graphics file formats. These graphics files can contain raster,
vector, and type data, amongst other information. In the
examples provided herein, the meta file can also include
information about the component, as written or explained by
the creator or a third party source. The analysis component
7010 can also analyze DevOps of the components, making
comparisons to best practices, for example.

[0415] In specific embodiments, the analysis component
7010 can create an interpretation layer, which is capable of
processing the internal file formats of a component and
replay the construction of that component within an IDE. By
way of illustrative example, the interpretation layer can
determine and pipe each of the steps derived from the design
of different components or assets such as skins, widgets,
platform specific icons, buttons, etc., to visualize its appear-
ance in the development application workspace.

[0416] In embodiments, metadata that is analyzed can
include timing data, comments, special symbolic indicators
such as boxes and arrows effectively creating a dynamic
technology transfer. The analyzed data can then be used,
e.g., to build a video, in the development tool (e.g., Kony
Visualizer® by Kony, Inc) by representing the component
syntactically in JavaScript Object Notation or JSON, which
is an open-standard file format that uses human-readable text
to transmit data objects consisting of attribute—value pairs
and array data types (or any other serializable value). As
should be understood, JSON is a language-independent data
format. This technology transfer results in the development,
e.g., rendering of the interactive tutorial, with the user



US 2020/0160377 Al

observing the interactive tutorial of the asset (component).
The user can also import or inspect any component for
inclusion into a blank or pre-populated application project,
and become educated in the functionality of the component.
[0417] The interactive tutorial platform 7000 further
includes a machine learning component 7015. The machine
learning component 7015 is capable of gathering global
trends for particular assets or components in order to include
such information in the interactive tutorial. In embodiments,
the global trends can be gathered by the global developer
trends module 1215 as shown in FIG. 1C. The machine
learning component 7015 can also gather the different assets
or components from remote sources, e.g., blogs, other devel-
opment tools, marketplaces, etc., by any known data mining
technique, e.g., crawlers, spiders, etc. This information can
then be provided to the analysis component 7010 or directly
to the interactive display 7020. If provided to the analysis
component 7010, the analysis component 7010 will then
analyze the different assets or components, e.g., component
meta file and construction format, for use in the interactive
tutorial, which may be displayed on the interactive display
7020.

[0418] The machine learning component 7015 extends to
insight generated by Al, which can inject commentary of the
component gathered from an extensive collection of users
who have previously commented on the component, as well
as the intergradation by the Al of the machine learning
component 7015. Moreover, the machine learning compo-
nent 7015 and/or analysis component 7010 can provide
comparison and contrasting interpretations based on the
analysis of a plethora of components. These commentary
including the comparisons, etc. can be wrapped an object so
that a component can be “explained” in a particular point of
view or by a particular user. The analysis component 7010
and/or machine learning component 7015, using the Al
described herein, can automatically generate the commen-
tary, which can be wrapped around the object with insightful
meta-data so that a component can be “explained” in a
particular point of view.

[0419] In embodiments, the commentary can be provided
by a natural language component 7030. The natural lan-
guage component 7030 can create original commentary or
commentary based on previous user comments on that
component or by the analysis of the meta file, etc. As should
be understood by those of ordinary skill in a meta file is a
generic term for a file format that can store multiple types of
data. This commonly includes graphics file formats. These
graphics files can contain raster, vector, and type data,
amongst other information. A common use for these files is
to provide support for an operating system’s computer
graphics. In the examples provided herein, the meta file can
also include information about the component, as written or
explained by the creator.

[0420] In embodiments, the natural language component
7030 can update commentary based on actions by specific
users or developer, e.g., modifications to the components,
user comments, etc. In further embodiments, the systems
and methods described herein will allow a user or specific
users (e.g., depending on the particular settings) to provide
updated commentary. Any of these updated commentaries
can be shared in subsequently viewed tutorials of the com-
ponent. In addition, the tutorials (or commentary) can be
updated as the component or asset is changed or updated by
another user, using the components described herein. The

May 21, 2020

commentary and tutorials can be saved in the storage system
1022B shown in FIG. 1A. Alternatively or in addition, the
commentary and tutorials can be saved locally in any
marketplace or development tool, or remotely in the cloud or
other server.

[0421] Still referring to FIG. 7A, the machine learning
component 7015 and/or the analysis component 7010 can
include Al to determine or identify any difficulties the user
may be encountering in the application development pro-
cess. For example, the analysis component 7010 and/or
machine learning component 7015 can determine, e.g., if
certain assets designed and/or written by the user will not
work, if there is a “bug”, if the user has encountered a “dead
end” (e.g., the user cannot continue due to some difficulty),
etc. In these and other examples, the machine learning
component 7015 and/or the analysis component 7010 can
find a new opportunity for the user, and provide such new
opportunity to the user in an interactive format (or tutorial as
described herein). This new opportunity can be global trends
e.g., a different or easier way of doing things, or other
information found by searching the Internet, blogs, social
media, other development tools or digital applications, mar-
ketplaces, etc.

[0422] The interactive tutorial platform 7000 can further
expose a ratings widget 7025 in a community or market-
place, which allows for the reflection of satisfaction levels
associated with user submitted commentary. For example,
the ratings widget 7025 can rate each of the commentaries
by gathering information from the users, or noting any
negative or positive feedback from the different commen-
taries or tutorials. The ratings widget 7025 can also rate the
tutorials by how many times it was used, whether any
changes were made to the tutorial or any changes made to
the commentary, as examples.

[0423] FIG. 7B shows an exemplary display with an
interactive tutorial using the interactive tutorial platform in
accordance with aspects of the present disclosure. As shown
in FIG. 7B, the commentary 7115 can be provided in a
bubble format, a playback format or a narration which will
inform the user how the component (or service) was actually
created. Accordingly, the commentary 7115 can be optional
narration tags which can specifically be rendered as balloon
text or spoken words and essentially performs a dynamic
technology transfer to the user. Basically, the commentary,
which was generated by the systems and methods described
herein can show each step of the component’s creation and
can behaves similar to another developer or designer taking
the user through the creation of the component.

[0424] More specifically, FIG. 7B shows an exemplary
display 7100 comprised of the component 7100 being built
by a developer or other user (or imported from another
source). In embodiments, the component 7110 is a button;
although, it should be understood by those of skill in the art
that the component 7110 can be any component being built
by a user or which a user wants additional information. As
further shown, the display 7100 includes a commentary box
7115. In embodiments, the commentary box 7115 can be
optional narration tags which can specifically be rendered as
balloon text or spoken words and essentially performs a
dynamic technology transfer to the user, e.g., tutorial as to
how to build the particular component.

[0425] As noted already herein, the commentary box 7115
will be auto-generated by the interactive tutorial platform,
which will provide a step by step tutorial and/or comments



US 2020/0160377 Al

related to the particular component 7110. For example, in
the case example shown in FIG. 7B, the commentary box
7115 can be provided by a chat bot as described herein, and
can provide a comment on how to place the arrow box in a
certain location, how to enlarge or decrease its size, how to
modify the shape, or other instructions. In addition, the
commentary box 7115 can provide a step by step analysis of
other information of the component 7110 and, as the com-
ponent changes in the build process, the commentary box
7115 can automatically be updated to show the steps of the
change. In addition, the component 7110 can be either a
static representation of the component or part of a video with
accompanying narration or commentary showing the entire
process of building the component 7110.

[0426] As further shown in FIG. 7B, the display 7100
includes a menu 7120. In embodiments, the menu 7120
provides the user with the ability to perform many different
functions, as implemented by the interactive tutorial plat-
form. For example, the user can add or edit the comment
box, build a new component (in which case the interactive
tutorial platform will analyze the meta file, etc., and provide
a new tutorial), provide or edit narration, provide a rating to
the current comments, etc.

[0427] FIG. 7C depicts a swim lane diagram for the
interactive tutorial platform in accordance with aspects of
the present disclosure. The swim lane diagram 7200 includes
three actors: the application development tool (e.g., Kony
Visualizer® by Kony, Inc), the interactive tutorial platform
and a marketplace or other source for a component. At step
7210, a user (e.g., using the application development tool)
requests to add a component from library or marketplace or
other third party source. For example, the library or mar-
ketplace can be any third party source, e.g., blog, develop-
ment tool, service provider, etc. At step 7220, the component
is downloaded from marketplace or other source and added
to the current form in the current project. At step 7225, the
interactive tutorial platform reads the meta info (e.g., com-
ponent meta and construction format) and any user added
commentary associated with the downloaded component. At
step 7230, the interactive tutorial platform creates a step-
by-step interactive user help system (e.g., tutorial) and
presents it to user to the user (e.g., on the development tool).
As already noted herein, the interactive tutorial platform can
generate the step-by-step interactive user help system using
Natural Language Generation (NLG) based on previous user
comments on that component or, intuitively, the component
meta and construction format. In this way, the interactive
tutorial platform can create an interactive help system to
guide the user about the component.

System and Method of Real-Time Collaboration

[0428] The system and method for real time collaboration
is provided between developers within the enterprise and a
community of developers. For example, multiple developers
and designers can work on a single project, with the devel-
opers working on subsections of the single project at dif-
ferent locations. These developers can now interact with
each other and with the designer by sharing the project
context etc.

[0429] In embodiments, the system and method for real
time collaboration allows system administrators to define
collaboration rules across the enterprise users or at the
developer level. For example, the system and method for
real time collaboration allows:

May 21, 2020

[0430] 1) the developers to connect with the other devel-
opers in the enterprise to collaborate, discuss issues etc.;
[0431] 2) the developers to connect with the external
world (outside of the enterprise) if they have the permission
from the administrator; and/or

[0432] 3) users to take screenshots, capture build logs
from the IDE and to share them with others.

[0433] In embodiments, the administrators of the system
can define rules and the level of collaboration that is allowed
through the administrative portal 8000 as shown in FIG. 8A.
The administrative portal 8000 and its constituent compo-
nents (e.g., library, etc.) can be implemented in the illustra-
tive environment 1000 of FIG. 1A. In additional or alterna-
tive embodiments, the administrative portal 8000 (e.g.,
system and method for real time collaboration) can be a
standalone system with a plug-in architecture (e.g., plug-in
architecture module 1230 shown in FIG. 1C) to any of the
components or systems described herein. For example, the
system and method for real time collaboration can be a
plug-in to a marketplace or any enterprise system providing
any of the functionality described herein. In additional
embodiments, the administrative portal 8000 can be a sub-
system of the admin console manager 3580 shown in FIG.
3E.

[0434] Through the administrative portal 8000, the admin-
istrator or other authorized user can create, configure and/or
update security policies (rules) for providing permissions to
share information amongst different users as shown repre-
sentatively at 8010, e.g., collaborating users. In embodi-
ments, the users, e.g., developers can register with the
administrative portal 8000, such that the administrative can
append certain rules or policies to each of the users. In this
way, the administrative portal 8000 can act as a centralized
portal for the administrator to set policies, for the users
(developers) to request collaboration with other users that
have registered with the system, and to provide information
to the requesting user about the requested user.

[0435] In embodiments, the administrator can set policies
from a policy library 8015 which, e.g., implements the
processes described herein. The policy library 8015 can be
a storage system as shown, e.g., in FIG. 1A or a standalone
database or other storage system. In embodiments, the
policy library 8015 may be implemented as separate dedi-
cated processors, or a single or several processors to provide
the function of this tool. The policies from the policy library
8015 can be provided to each of the registered users 8010 of
a development tool. For example, the policies from the
policy library 8015 can be packaged with other communi-
cations, a component, assets, or a tutorial, etc., by appending
the policy directly thereto and sending it to the user. The
policy can be an eXtensible markup language (XML) file or
other type of file that contains the policy, itself. In embodi-
ments, the policies, in turn, can be cached in the develop-
ment tools of the users for later use.

[0436] It should be understood that that any number of
policies can be provided by the administrator, depending on
many factors. That is, the policies can be targeted on a much
more granular level than just the user or project being
worked upon by the different users. For example, a different
policy can be configured taking into account the application
1D, device platform (e.g., such as iOS™, Android®, Black-
berry®, Windows Mobile™, etc.), specific device ID, spe-
cific user 1D, device characteristics and/or the user’s group
information. Also, certain levels of security or enforcement



US 2020/0160377 Al

policies can be matched to a user based on the user, e.g.,
level of security, types of applications, types of digital
devices, etc. These policies can include, amongst other
examples:

[0437] 1) block collaboration between users on certain
device hardware elements;

[0438] 2) block collaboration between users that have a
virtual private network (VPN) connection;

[0439] 3) allow collaboration between users that are on
certain VPN connection;

[0440] 4) require collaboration between users only over a
secure connection such as using a secure sockets layer
(SSL);

[0441] 5) limit collaboration to certain IP addresses,
domains and/or ports the user is allowed to connect to
(firewall for applications);

[0442] 6) allow offline collaboration between users;
[0443] 7) require collaboration between users that are
using encryption;

[0444] 8) disable or enable document sharing including,
e.g., build logs, US screenshots, working canvas and/or
libraries, etc.; and/or

[0445] 9) allow collaboration between users only during a
specific date or time span (e.g., business hours) or at specific
locations.

[0446] The enterprise administrator can update or create
these policies, independent and regardless of any specific
application or user. These updated policies can not only
change the rules, but how and when they are applied based
on the many different factors. For example, the rules can be
changed based on company or enterprise policies, e.g., a
lead developer of the enterprise can collaborate with any
other developer, regardless of location, time, or platform.
This can be achieved by noting the user ID and password, at
startup or authentication. In embodiments, a developer can
independently develop a digital application, without knowl-
edge of the policies.

[0447] FIG. 8B depicts a swim lane diagram for imple-
menting steps associated with the administrative portal to
provide rules for real-time collaboration in accordance with
aspects of the present disclosure. The swim lane diagram
8100 includes several actors: developer 1, developer 2 and
the system of collaboration, e.g., administrative portal 8000.
It should be understood by those of skill in the art that more
than two developers can be part of this flow, with two
developers being used for illustrative purposes only.
[0448] At step 8110, the developer 1 registers with the
administrative portal. At step 8115, the developer 2 registers
with the administrative portal. Through the administrative
portal, the administrator can assign specific rules to each of
the developers. It should be understood that other developers
or users, e.g., designers, collaborators, etc. can also register
with the administrative portal. At step 8120, developer 1 will
request a search for developer 2 at the enterprise level or
from a global app developer community using, e.g., the
administrative portal. In embodiments, the administrative
portal will search for developer 2, determine its specific
rules associated with developer 2 and, if access can be
granted for collaboration, the administrative portal will
share developer 2 information so that developer 1 can add
developer 2 as a contact. At step 8130, depending on the
specific rules with each of the developers, developer 1 and
developer 2 can begin interaction with one another. This

May 21, 2020

interaction can be any type of allowed collaboration such as
sharing build logs, Ul screenshots, working canvas and
libraries, etc.

System and Method for Connecting End Users to
Business Systems

[0449] The system and method for connecting end users to
business systems is a system and method that enhances
service and generates business leads. In embodiments, the
system will allow the users with certain roles (e.g., manag-
ers, lead developers, etc.) to request help for professional
services, buy products, proposals, etc., through a chat inter-
face. In embodiments, the system and method for connecting
end users to business systems routes these requests to
customer relation management systems and/or through the
business systems and logs the requests. The system will also
autonomously respond back to the users when the previously
sent requests are updated by the interested parties. By way
of more specific example, by implementing the systems and
methods described herein, users from any enterprise can
connect with a sales team about new products and upgrades.
The user can also request help from professional services.
[0450] Referring to FIG. 9A, a user interface 9000, e.g.,
chatbot, allows a user to connect with sales and professional
teams on a remote computing systems. In embodiments, the
user interface 9000 can be representative of the computing
environment 1000 of FIG. 1A and be implemented with any
of the subsystems described herein. For example, the user
interface 9000 can be implemented and/or plugged into the
improve sales efficiency module 1240 of FIG. 1C. Here, an
1Q engine has the ability to feed metrics into a salesforce
service or a salesforce database which, in turn, is provided
to a member of a sales support team informing them of
potential upsell opportunities.

[0451] By implementing the user interface 9000, for
example, a user can send their proposal and/or requests to a
sales and professional team. The user can use the user
interface 9000 to request help for professional services, buy
products, proposals through the chat interface. In embodi-
ments, the user can be one of many different roles. For
example, the user can be a manager, a lead developer, etc.
The requests will be routed to a customer relation manage-
ment systems 9020 and/or through the business systems
9030, depending on the communication and the requested
type of information. In embodiments, the customer relation
management systems 9020 is a technology for managing a
company’s relationships and interactions with customers
and potential customers to improve business relationships.
When the user interface 9000 receives the response from
sales/marketing and professional teams (or customer rela-
tion management systems 9020 and/or through the business
systems 9030), it notifies the user with same response. This
can be done by an alert system 9010. The alert can be an
email, text message, an audible alert, etc.

[0452] In embodiments, the user interface 9000 can
include a plug-in architecture (e.g., plug-in architecture
module 1230 shown in FIG. 1C), plugging into any of the
sub-systems described herein. In combination with Al or
machine learning (as described herein), the user interface
9000 can monitor the sub-systems described herein and, by
determining certain actions of the user, it can autonomously
request information from the customer relation management
systems 9020 and/or through the business systems 9030. For
example, by determining that the user has taken a certain



US 2020/0160377 Al

action, the user interface 9000 can determine that new
systems may be needed to more efficiently provide such
action and request information from the customer relation
management systems 9020 and/or through the business
systems 9030 of such systems. The information can then be
provided automatically to the user, through the user interface
9000.

[0453] The requests can be logged in the user interface
9000 and/or customer relation management systems 9020
and/or through the business systems 9030. By logging the
requests, the systems and methods described herein (e.g.,
chatbot) can continue a query into the customer relation
management systems 9020 and/or through the business
systems 9030, and autonomously respond back to the users
when the previously sent requests are updated or found. For
example, using the Al residing on the user interface 9000,
the systems and methods described herein can parse the
questions/requests of the user and when an answer is found
to such a request, the management systems 9020 and/or
through the business systems 9030 can autonomously send
back a response. In embodiments, the response can be a
machine generated response or a human response. In any
event, the logged information will be maintained in a queue
until it is answered, at which time it can be removed or
flagged as complete.

[0454] FIG. 9B depicts a swim lane diagram for imple-
menting steps associated with the communication with the
business systems in accordance with aspects of the present
disclosure. The swim lane diagram includes at least three
actors: developer/user, the system which connects the end
user to a business application and the business application,
itself, e.g., customer relationship management (CRM). At
step 9110, the user registers with the systems described
herein, e.g., chatbot. In embodiments, the user can be a
manager or lead, for example, amongst other users. At step
9115, the user requests professional services and/or propos-
als for products, features or some services from the chatbot.
At step 9120, the chatbot will forward the request to the sales
team, customer relationship manager, or other internal or
external business solution system, etc. At step 9125, the
customer relationship manager, or other internal or external
business solution system will respond with solutions and/or
answers. At step 9130, the chatbot will autonomously for-
ward/respond to the user with the solutions proposed by the
management systems and/or through the business systems.

Registration System

[0455] The registration system allows vendors to register
themselves with the any combination of the systems/sub-
systems described herein using an administrative portal/
website (e.g., administrative portal 8000). In embodiments,
the registration system can be a plug-in architecture (e.g.,
plug-in architecture module 1230 shown in FIG. 1C) to any
of the subsystems or other computing infrastructures
described herein. The registration system can also be rep-
resented by the computing infrastructure shown in FIG. 1A.
[0456] In embodiments, the registration system is capable
of digitalizing the third party vendors communication with
a third party service provider system e.g., Kony® of Kony,
Inc. Once the registration is successful, these vendors are
allowed to interact with other vendors using their unique ID.
For example, as shown in the swim lane diagram of FIG.
10A, at step 10010, the system will allow third party vendors
to plug in through the administrative portal. At step 10015,

May 21, 2020

the registration system will assign each vendor a unique
handle. At step 10020, the registration system will provide
the unique handle to a third party service provided, e.g.,
vendor. This handle is used by the end users of the system
to communicate with the external vendors through the
registration system, as shown at step 10025. In embodi-
ments, the registration system can also define a communi-
cation contract for the external vendors.

System and Method to Campaign Products and
Services (Marketing System)

[0457] The system and method to campaign (e.g., identify
and sell) products and services has the ability to run mar-
keting campaigns for product/professional services with a
targeted audience. In embodiments, the system and method
described herein can be implemented by the computing
environment 1000 of FIG. 1A, which campaigns can be
displayed on any of the interfaces described herein. In
addition, the campaign can be implemented through a plug-
in (e.g., plug-in architecture module 1230 shown in FIG. 1C)
to work with any of the sub-systems described herein. In
embodiments, the system and method to campaign products
can be implemented through the improve sales efficiency
module 1240 described with respect to FIG. 1C.

[0458] The products and services can be provided in a
campaign via a development tool such as Kony Visualizer®
by Kony, Inc. or through a marketplace or other third party
service provider. Information can be collected from the users
and fed back from Kony Visualizer® or other third party
service provider. In embodiments, as with any of the systems
and related functionality described throughout the disclo-
sure, the user can opt-out of the information gathering mode
and/or campaign. In the case that the user does not opt-out,
any information obtained from the user can be preserved in
a database, e.g., storage system 1022B shown in FIG. 1B or
other central repository, for example.

[0459] In embodiments, the system and method described
herein can run and initiate marketing campaigns with
selected users by taking feedback from users and by pro-
viding the user with a unique set of questionnaires. The
system and method can also provide notifications to the
users, which have provisions for the user to turn on/off such
notifications.

[0460] In implementing the system and method described
herein, Al (and/or machine learning) can run analytics from
the response data received from various users and provide
suggestions/details to the different platforms described
herein. For example, the system will have the ability to run
product/professional services marketing campaign with the
targeted audience based on the data received from various
users. The system and method also has access to all its users
via identity services, e.g., Fabric Identity Services’ of Kony,
Inc. In embodiments, the identity services are a centralized
system capable of creating and transferring tokens between
different systems, inserting the appropriate tokens at the
appropriate locations for the different systems.

[0461] FIG. 11A depicts a swim lane diagram for imple-
menting steps associated with a marketing system in accor-
dance with aspects of the present disclosure. The swim lane
diagram 11100 of FIG. 11 A includes three actors: users (e.g.,
developers), a centralized management system (e.g., Kony
IQ™ by Kony, Inc.) and a marketing system. In one
example, the centralized management can be representative



US 2020/0160377 Al

of the computing environment 1000 shown in FIG. 1A
implemented as the improve sales efficiency module 1240
shown in FIG. 1C.

[0462] At step 11010, a developer or other user can enable
or disable the notifications and/or campaign. At step 11015,
the marketing system can initiate the notifications and/or
campaign for products and/or professional services. At step
11020, the centralized management system (e.g., Kony IQ™
by Kony, Inc.) can provide the notifications and/or campaign
for products and/or professional services to the user. At step
11025, the user can provide feedback to the centralized
management system (e.g., Kony IQ™ by Kony, Inc.) about
the notifications and/or campaign for products and/or pro-
fessional services. At step 11030, the centralized manage-
ment system (e.g., Kony IQ™ by Kony, Inc.) can store the
results and run analytics, providing them to the marketing
system. In embodiments, the analytics can be run using the
Al as described herein. The analytics can be, e.g., effective-
ness of the campaign, whether it is targeting the correct users
with the most pertinent products and/or services, etc.
[0463] It is understood in advance that although this
disclosure includes a detailed description on cloud comput-
ing, implementation of the teachings recited herein are not
limited to a cloud computing environment. Rather, embodi-
ments of the present invention are capable of being imple-
mented in conjunction with any other type of computing
environment now known or later developed. Cloud comput-
ing is a model of service delivery for enabling convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g. networks, network bandwidth,
servers, processing, memory, storage, applications, virtual
machines, and services) that can be rapidly provisioned and
released with minimal management effort or interaction with
a provider of the service. This cloud model may include at
least five characteristics, at least three service models, and at
least four deployment models.

System and Method of Application Translation

[0464] The system and method of application translation
can be implemented in prepackaged applications, e.g., digi-
tal banking and other commerce related applications pro-
vided to customers. The system and method of application
translation allows customers to customize the applications to
meet their requirements, while still providing for transla-
tions. For example, the system and method of application
translation can be implemented in a prepackaged application
that will now support internationalization (i18n) of many
different languages using, e.g., translation APIs. In embodi-
ments, by implementing the system and method herein,
prepackaged applications will support 118n on all strings in
the application, which, in turn, will reduce issues at runtime.
[0465] Adding a new language support to applications is
very challenging. For example, problem areas in interna-
tionalization may include client side issues, server side
issues and other miscellaneous issues. In computing, inter-
nationalization and localization are means of adapting com-
puter software to different languages, regional differences
and technical requirements of a target locale. International-
ization is the process of designing a software application so
that it can be adapted to various languages and regions
without engineering changes. Localization is the process of
adapting internationalized software for a specific region or
language by translating text and adding locale-specific com-
ponents. Localization (which is potentially performed mul-

May 21, 2020

tiple times, for different locales) uses the infrastructure or
flexibility provided by internationalization (which is ideally
performed only once, or as an integral part of ongoing
development)

[0466] By way of illustration, client side i18n issues may
include: static text set to widget and no 118n key; static text
set to widget after setting 118n key; static text set to widget
property directly; static text set to widget property indirectly
(via another variable); text set to widget and no i18n key
onc, but text is set in code; images with English text or
which represents locale or regions in it; splash screen; date
and time formats; currency symbol format; currency sepa-
rator in numbers; keyboard and soft input panels; charts/
custom calendars/custom widgets with user interfaces;
browser content; map content; native/pickers/choosers; net-
work call returned text in English; static English text con-
catenated with dynamic text; and il18n text concatenated
with dynamic English text. Server side i18n issues may
include: text saved in master tables in a DB; text in child
tables in the DB; text constructed with raw text in network
call response; indirect text such as URLs in master/child
tables; and images in child tables with language or region
specific. Miscellaneous 118n issues may include: semi inter-
nationalized and localized applications; not all strings are
externalized; language mappings in source code; conditional
code based on language or region; currency mapping based
on language; date time formats based on language and
region; custom charts with English text; browser content
with English URLs; custom widgets (calendar) with static
English text; and network calls are returning English text
always.

[0467] The systems and methods of the application trans-
lation solve the above problems. For example, by imple-
menting the system and method provided herein, the fol-
lowing can be provided during application conversion:
[0468] 1. Extracting all strings from all forms, widgets,
applications, etc., and localizing the extracted strings with
i18n keys;

[0469] 2. Localizing master and child tables in a database
having English text, e.g., in localized format;

[0470] 3. Localizing strings on application developer writ-
ten code which perform string operations on strings;
[0471] 4. Localizing custom widgets (e.g., calendar wid-
get) at multiple places, advertisement image URLs, form
headers, etc.

[0472] 5. Allowing translate APIs to translate all strings
from a set;

[0473] 6. Deploying on public cloud without login failure;
[0474] 7. Changing formatting in application code and
databases;

[0475] 8. Supporting charts, maps, etc. in different lan-
guages; and

[0476] 9. Returning network calls in English text and/or

other languages; and

[0477] 10. Rending translated content in a browser.
[0478] In embodiments, the system and method described
herein can be implemented by the computing environment
1000 of FIG. 1A, with translations being displayed on any
of the interfaces described herein. In addition, the system
and method of translation can be implemented through a
plug-in (e.g., plug-in architecture module 1230 shown in
FIG. 1C) to work with any of the sub-systems described
herein. In embodiments, the system and method can be



US 2020/0160377 Al

implemented through the Cognitive Computing for Omni-
Channel Platform described with respect to FIG. 1C.
[0479] FIG. 12A depicts a flow diagram for implementing
steps associated with the system and method of translation
application. The features described herein can be imple-
mented from the centralized management which is repre-
sentative of the computing environment 1000 shown in FIG.
1A. More specifically, FIG. 12A shows the translation
process which is implemented by the centralized manage-
ment system (e.g., Kony IQ™ by Kony, Inc.).

[0480] At step 12005, all properties of widgets which
show text on a user interface are obtained, e.g., known. In
embodiments, the centralized management system can know
the properties of the widgets because it will integrate with
the reference architecture of all forms, widgets and appli-
cations (which include the widgets and the forms). More
specifically, the reference architecture (which is shown in
FIG. 12B) allows for a very robust representation of wid-
gets, forms and applications so that the centralized manage-
ment system can become integrated such that it implicitly
knows the format of the widgets, forms and application. In
further embodiments, the centralized management system
will be able to understand the formatting and syntax of any
application and, further, is capable of accepting modifica-
tions and handling applications outside the context of the
platform associated with the centralized management sys-
tem.

[0481] At step 12010, the centralized management system
identifies all the text properties of the widgets (or applica-
tions or forms) which do not have an i18n key, from all
forms, templates, masters, and widgets in the current appli-
cation. At step 12015, the centralized management system
generates new 118n keys and sets these keys to text prop-
erties while removing the direct text properties. For
example, in this step, the centralized management system
can upgrade the application in real time by dynamically
creating additional JSON notation with respect to that par-
ticular field. In this implementation, the new 118n keys can
be synthesized, with new format and syntax representing
text properties that support the i18n key for that particular
field or widget etc., which is then written into the project
side. The initial text properties can then be removed as they
have been updated and enhanced.

[0482] At step 12020, the centralized management system
scans through all the source code files using JavaScript AST.
In embodiments, the JavaScript abstract syntax tree (AST)
helps collect all the widget properties that are a part of the
scope of the application in order to set the widget properties
both directly and indirectly. For example, the JavaScript
AST essentially rifles through all code and gathers up all the
strings that are needed to reset in terms of translation
capabilities. To identify which screen string sets are needed
in order to perform the translation capabilities, it should be
understood that the screen string will have a unique identi-
fier for a text field and if that text field has something
pre-initialized in it, then the text field is reviewed and it is
assumed necessary to create a different embodiment by
translating that particular field.

[0483] At step 12025, the centralized management system
will generate the new i18n keys and change the code with an
API call, e.g., kony.il8n.getlocalizedString( ) API calls, with
the new generated 118n keys. For example, in embodiments,
the centralized management system calls using a particular
get localized strings function and maps this to a translate

May 21, 2020

program. More specifically, the centralized management
system would use the i18n keys to pass a source language to
set a target language for translation, and then collects the
translation when it returns from that particular service call.
In embodiments, by using a reverse translation technique, it
is also possible to translate the target translation back into
the original source language for comparison purposes. This
can be done by flagging any translations that it’s believed to
be out of specification or out of compliance.

[0484] At step 12030, all of the collected strings are added
to an 118n map along with their 118n keys. In embodiments,
the 118n map can be a currently existing map or a map,
which includes the JSON notations. For example, the cen-
tralized management system has taken care of essentially
rewriting all the JSON notation that represents the i18n key
structure, and all the fields, and fields by language, etc. As
noted below, once this structure is saved the particular
project does not need to be translated again.

[0485] At step 12035, a translation API (e.g., Google™
translation API) will convert all the identified strings into the
target language, e.g., English to Mandarin, etc. At step
12040, the centralized management system adds the new
language and the newly translated strings to the application
118n map. At step 12045, the centralized management sys-
tem sets the target language to the new language.

[0486] In embodiments, the target language can be driven
in many different ways. For example, the target language can
be driven by a top level interface of the centralized man-
agement system, which implements a chatbox interface.
Also, once a particular project (e.g., widget, form or appli-
cation) is translated, it can be saved in a repository, e.g.,
database, such as the storage system 1022B. In this way, the
text field of any widget, form or application will not have to
be translated again, with the system and method described,
through the mapping function, having the ability to traverse
the translation throughout the marketplace for similar forms,
widgets and applications.

[0487] FIG. 12B shows an architecture of the system and
method of the translation application in accordance with
aspects of the present disclosure. More specifically, FIG.
12B shows the implementation of the processing steps of
FIG. 12A within an architectural structure. In embodiments,
the processing steps are implemented by different compo-
nents/services within the architecture.

[0488] The architecture includes a development tool
12100 and the centralized management system (Kony 1Q™
by Kony, Inc.) 12105. In embodiments, the development
tool 12100 can be e.g., Kony Visualizer® by Kony, Inc. The
centralized management system (Kony IQ™ by Kony, Inc.)
12105 includes several components/services, including: a
translation engine 12105q, a canvas user interface reader
121055, a JavaScript code reader 12105¢, a Viz i18n reader
121054, a text translator 12105¢ and a widget properties
metadata 12105/ In implementation of the architecture, each
of the components/services 12105a-121054 communicate
with the translation engine 121054 and are configured to
implement the steps shown in FIG. 12A. The development
tool 12100 includes the following components/service: can-
vas user interface forms, templates, etc., 12100a, JavaScript
code files 1210056 and an 118n map 12100c¢. In embodiments,
the components 12105a-12105¢ communicate with the
respective components 121005-121004 of the development
tool 12100 when implementing steps 12005-12030, 12040
and 12045.



US 2020/0160377 Al

[0489] In embodiments, the translation engine 121054 can
live within a network cloud or within the centralized man-
agement system (Kony IQ™ by Kony, Inc.) 12105. In any
scenario, the translation engine 121054 is used to implement
the respective components/services 121055-12105f. The
user interface reader 121055 passes information between the
canvas user interface forms, templates, etc., 12100q and the
translation engine 12105a, while implementing the steps
12010 and 12015 of FIG. 12A. By way of example, the
canvas user interface reader 121055 can interface with the
canvas user interface forms, templates forms and templates
module/service 12100a. The canvas user interface reader
121055 can be a piece of executable code, which interacts
with elements that are specified at the IDE level. For
example, the canvas user interface forms and templates
1210556 are services described and created at the visualizer
IDE level. The canvas user interface reader 121055 is a
service layer underneath the covers that interoperates with
those features of the integrated development environment. It
can, for example, match the world of drag-and-drop user
interface with things that would manually either hover over
click or be input via keyboard etc., with the world of the
canvas user interface (UI) reader that actually performs the
biological transformations.

[0490] Still referring to FIG. 12B, the JavaScript code
reader 12105¢ can embed the JavaScript AST, e.g., abstract
syntax tree interpreter. In this way, the JavaScript code
reader 12105¢ is capable of reading the JavaScript code for
the purposes of translation as discussed with respect to steps
12020 and 12025 of FIG. 12A. For example, the AST
provides a complete manifest of what is needed to change
for translation, so that it can be mapped and provided as a
collection of service calls to the translate service, e.g.,
translate engine 12105a.

[0491] The viz 118n reader 121054 places the generated
keys to the map 12100¢ of the development tool 12100. In
embodiments, the viz 118n reader 121054 implements/
passes along the information provided in steps 12030, 12040
and 12045 of FIG. 12A. The text translator 12105 is an API
wrapper that essentially is the go-between between the Kony
Visualizer® by Kony, Inc (development tool) and the trans-
lation API, e.g., implements the step 12035 of FIG. 12A.

[0492] The widget properties metadata component
12105¢, on the other hand, is sensitive to the internal
structure of metadata that comprises the format and syntax
of the forms, widgets and applications. That is, the widget
properties metadata component 12105¢ knows the proper-
ties of the widgets, forms and applications as described with
respect to step 12005 of FIG. 12A. In embodiments, the
widget properties metadata component 12105¢ can collect
all widget details and create a meta with all the properties of
widgets that need to be translated. By way of illustrative
example, Table 1 below shows the widgets and their prop-
erties that render text on the user interface.

TABLE 1
Widget Property
Form/Form2 title
Button text
Link text
Label text
Phone text

May 21, 2020

TABLE 1-continued

Segment/Segment0 1. pushToRefresh
2. pullToRefresh
3. releaseToPushRefresh
4. releaseToPullRefresh
5. data without sections
6. data with sections
Switch 1. leftSideText
2. rightSideText
ScrollBox 1. pushToRefresh
2. pullToRefresh
3. releaseToPushRefresh
4. releaseToPullRefresh
TextArea/TextArea2 1. text
2. placeholder
TextField/TextField2 1. text
2. placeholder
Camera text
Tab tabName
RichText text
Video text
Radio group data
Checkbox data
Combo box data
Type Details
Templates Widgets inside templates of
different types
Components Widgets inside components
Forms Widgets inside form
App menu App menu data

Segment data in components Segment inside Component
will have data for each channel

Actions “Set widget property” action

[0493] FIG. 12C shows screenshots before and after trans-
lation conversion support as implemented by the system and
method of translation application. In this example, the
conversion is from English to Mandarin; although these
screenshots are equally applicable to other translations. In
embodiments, the screenshot 12200a shows English strings
in an i18n map; whereas, screenshot 122005 shows Man-
darin strings in an i18n map.

[0494] FIG. 12D shows screenshots of translation of
strings on forms (from English to Mandarin) as implemented
by the system and method of translation application. In this
example, the conversion is from English to Mandarin;
although these screenshots are equally applicable to other
translations. In embodiments, the screenshot 12205a shows
a form in English; whereas, screenshot 122055 shows the
form translated into Mandarin. Accordingly, it is shown that
the system and method described herein, e.g., translation
application, can provide translations of a user’s interface in
response to a question, for example, or any text embedded
in the application of the form or the widget itself so the
entirety of a widget can be translated.

[0495] Referring still to FIG. 12D, the system and method
described herein, e.g., translation application, can handle
static questions and answers as well as providing the ability
to translate web services into different languages. The trans-
lation application also has the ability to translate a portion of
the form or any static answer and, at run time of the
application, bring in the translation and merge it with other
content coming back from the service call, i.e., a person’s
name. For example, using the information shown in FIG.
12D, the person’s name, e.g., John, can be merged with the
remaining portion of the answer. This is beneficial since the
name can be deemed static text which will likely be input
into the target language, e.g., their own native language, so



US 2020/0160377 Al

there should be no need to translate this portion of the text.
Instead, it would only be necessary to translate the hard-
coded response, e.g., all other text.

[0496] FIG. 12E shows screenshots of a translation of
fillable fields and static text on forms (from English to
Mandarin) as implemented by the system and method of
translation application. In this example, the conversion is
from English to Mandarin; although these screenshots are
equally applicable to other translations. In embodiments, the
screenshot 12210a shows the form in English (both static
and fillable fields); whereas, screenshot 122106 shows the
form translated into Mandarin. In this and other examples
described herein, the fillable fields can be static text hard-
coded on the form or can be obtained from a back end
service essentially living in a service call or within a
database front ended by a service call that needs to be
traversed and translated prior to being populated into the
form. This latter feature can be performed through the
marketplace, for example, using mapping features to find the
location of the particular text requiring a translation.
[0497] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

What is claimed is:

1. A computer-implemented method comprising:

receiving, by a computing device of a cloud-based cam-

paign system, a campaign for products or services from
a marketing system via a network;

providing, by the computing device, the campaign to one

or more participants on the network;
obtaining, by the computing device, feedback from the
one or more participants regarding the campaign;

analyzing, by an artificial intelligence tool of the com-
puting device, the feedback to generate marketing
analytics information; and

providing, by the computing device, the marketing ana-

Iytics information to the marketing system via the
network.

2. The computer-implemented method of claim 1,
wherein the marketing analytics information comprises one
or more selected from the group consisting of: effectiveness
of the campaign; whether the campaign is targeting the
correct participants with the most pertinent products; and
whether the campaign is targeting the correct participants
with the most pertinent services.

3. The computer-implemented method of claim 1, further
comprising determining, by the computing device, the one
or more participants have opted in to a marketing environ-
ment, wherein the providing the campaign to the participant
is based on the determining that the one or more participants
have opted in to the marketing environment.

4. The computer-implemented method of claim 1, further
comprising providing, by the computing device, the one or
more participants with questionnaires, wherein the feedback
from the participant is a response to the questionnaires.

May 21, 2020

5. The computer-implemented method of claim 1, further
comprising determining, by the computing device, that the
one or more participants have opted in to receiving notifi-
cations from the marketing system.

6. The computer-implemented method of claim 5, further
comprising receiving by the computing device, a notification
to the one or more participants from the marketing system.

7. The computer-implemented method of claim 6, further
comprising providing, by the computing device, the notifi-
cation to the one or more participants based on the deter-
mining that the one or more participants have opted in to
receiving notification from the marketing system.

8. The computer-implemented method of claim 7, further
comprising obtaining, by the computing device, feedback
from the one or more participants regarding the notification.

9. The computer-implemented method of claim 8,
wherein the analyzing the feedback from the one or more
participants further comprises analyzing the feedback from
the one or more participants regarding the notification to
generate the marketing analytics information.

10. The computer-implemented method of claim 1,
wherein the campaign system comprises plug-in architec-
ture.

11. A computer program product comprising a computer
readable storage medium having program instructions
embodied therewith, the program instructions executable by
a computing device to cause the computing device to:

determine that one or more participants in a marketing

network have opted to receive campaigns for products
or services;

receive a campaign for products or services from a

marketing system in the marketing network;
provide the campaign to the one or more participants on
the marketing network based on the determining that
the one or more participants in the marketing network
opted to receive campaigns for products or services;

obtain feedback from the one or more participants regard-
ing the campaign;

analyze, by an artificial intelligence tool of the computing

device, the feedback to generate marketing analytics
information; and

provide the marketing analytics information to the mar-

keting system.

12. The computer program product of claim 11, wherein
the marketing analytics information comprises one or more
selected from the group consisting of: effectiveness of the
campaign; whether the campaign is targeting the correct
participants with the most pertinent products; and whether
the campaign is targeting the correct participants with the
most pertinent services.

13. The computer program product of claim 11, wherein
the program instructions further cause the computing device
to provide the one or more participants with unique ques-
tionnaires, wherein the feedback from the one or more
participants are responses to the respective unique question-
naires.

14. The computer program product of claim 11, wherein
the program instructions further cause the computing device
to determine that the one or more participants have opted in
to receiving notifications from the marketing system.

15. The computer program product of claim 14, wherein
the program instructions further cause the computing device
to receive a notification to the one or more participants from
the marketing system.



US 2020/0160377 Al

16. The computer program product of claim 15, wherein
the program instructions further cause the computing device
to provide the notification to the one or more participants
based on the determining that the one or more participants
have opted in to receiving notifications from the marketing
system.

17. The computer program product of claim 16, wherein
the program instructions further cause the computing device
to obtain feedback from the one or more participants regard-
ing the notification, wherein the analyzing the feedback
from the one or more participants further comprises analyz-
ing the feedback from the one or more participants regarding
the notification to generate the marketing analytics informa-
tion.

18. A campaign system comprising:

a processor, a computer readable memory and a computer
readable storage medium associated with a computing
device;

program instructions to determine that one or more par-
ticipants in a marketing network have opted to receive
notifications for products or services and/or campaigns
for products or services;

program instructions to receive a notification for products
or services and/or a campaign for products or services
from a marketing system in the marketing network;

program instructions to provide the notification and/or the
campaign to the one or more participants on the mar-

May 21, 2020

keting network based on the determining that the one or
more participants in the marketing network opted to
receive the notifications and/or the campaigns;

program instructions to obtain feedback from the one or
more participants regarding the notification and/or the
campaign;
program instructions to analyze, by an artificial intelli-
gence tool of the computing device, the feedback to
generate marketing analytics information; and

program instructions to provide the marketing analytics
information to the marketing system,

wherein the program instructions are stored on the com-

puter readable storage medium for execution by the
processor via the computer readable memory.

19. The system of claim 18, wherein the marketing
analytics information comprises one or more selected from
the group consisting of: effectiveness of the campaign;
whether the campaign is targeting the correct participants
with the most pertinent products; and whether the campaign
is targeting the correct participants with the most pertinent
services.

20. The system of claim 18, further comprising program
instruction to provide the one or more participants with
unique questionnaires, wherein the feedback from the one or
more participants are responses to the respective unique
questionnaires.



