
US 20190165993A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0165993 A1

Vyvyan (43) Pub . Date : May 30 , 2019

2) (54) COLLABORATIVE TRIGGERS IN
DISTRIBUTED AND DYNAMIC COMPUTING
SYSTEMS

U . S . CI .
CPC H04L 41 / 0631 (2013 . 01) ; H04L 41 / 069

(2013 . 01) ; H04L 41 / 5003 (2013 . 01) ; H04L
41 / 0622 (2013 . 01) ; H04L 41 / 0613 (2013 . 01)

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US) (57) ABSTRACT

(72) Inventor : David Vyvyan , Southampton (GB)
(21) Appl . No . : 15 / 846 , 179
(22) Filed : Dec . 18 , 2017

Related U . S . Application Data
(63) Continuation of application No . 15 / 827 , 812 , filed on

Nov . 30 , 2017 .

Using collaborative triggers within a distributed computing
system can include , in response to detecting a first event of
a selected type within a first node of the computing system ,
generating a first collaborative trigger having a query iden
tifier correlated with the selected type of the event and
distributing the first collaborative trigger through other
nodes of the computing system so that the first collaborative
trigger reaches an actor of the computing system . The
computer - implemented method can include suppressing ,
within each node that distributes the first collaborative
trigger , each other collaborative trigger having a same query
identifier as the first collaborative trigger until a response to
the first collaborative trigger is received from the actor .

Publication Classification
(51) Int . CI .

H04L 12 / 24 (2006 . 01)

500

Detect event within data source
505

Add entry specifying query ID to
collaborative trigger database

540
Determine type of event

510 Propagate collaborative trigger to
nodes
545

Type
of event an cnumcrated

type of event ?
515

Yes
Determine query identifier (ID)

corresponding to enumerated type
of event
520

Query
ID in collaborative ID III Cola

trigger table ?
525

Yes
Suppress collaborative trigger

generation / distribution
530

Generate collaborative trigger
with query ID correlated to event

type
535

Patent Application Publication May 30 , 2019 Sheet 1 of 6 US 2019 / 0165993 A1

. ???????????????????? . ? . . ? . . ???
. , , , , , , , , , , , , , , , , ,

.
.

.
.

.
.
. .
.

.
.

.
.

.
.

. .
. .

.
.

.

.
.

.
.

.
.
.

.
.
.

. .
.

. ? ?
.

?
. .

.
?

.
? ? ?

.
.

.
. ? ???????????????????? ? ? : : : ? ? ? ? ? ? ? ' ? ?

. .
1 ?

.
. .

.
.

?

. . ? . . .
? ? ? ?

. . .

. ? ?
? .

.

. . . . ? ? ? ? ?
.

. . . .

? ? ? . . ? ? ?
. . .

. .

. . ? ??
. . . .

. . . .

.
.
. .

. . .
? ? ?

. .

. . . .
. .

.

. . .
? ? ?

. .

.
. . ??

. . .

: , ' ' ' , , , ,
. .

? ? . ?
. !

. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? . . , , , , , ,
.
. , , . .

.
.

.
.

, .
.

.
.

.
. . .

.
.

. ? ? ? ? ????????????? ???? 5

??? ???????
?? + ? ?? - .

. . , , , . . . !
? ??????????????????? ? ????????? ? .

. . .
.

. : . : , , , , , , , , " , ? ? ? '
,

. '
,

. :
,

. :
,

. :
,

. .
?

. .
?

. .

?
. .

? .
. .

? ? , ,
. . : :
,

,
, , , , ,

. . . .
? ?
: _ : . . .

, , , ? ? ? ? ? ? . . =
.

=
? , , , , , , , , ,

,
_ : , , , ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

, ,
. ?? . ?
. ?

. ????
.

, , , , , , , , , ,
.

. ? ????
.

. . . .
.

.
:

.
:

.
:

.
: : : : : : : .

?? ' .
.

.
? .

: :

. . | ?
' : ? ?? : ????

. .
|

:
? . ????????

: : : : : : : : : ? ??? " . ? ????????????? . . .
: :

. , ?? 11 . . ? ?? : . " . . . "

, . . "

?? 11 : : ? . . ? ? ?? " ? . .

. . "
. .

?????????? .
??? ??

. .
??????

. . . . ?? "
: * *

.
. .

??? " . . . ? . . ?

: ?????
.

. :

.

.

?? ?? ??
. TT ? ?? . 3 . ?? . . . III :

: : : - . ? ?? - . = . . . : : : : : : : : : ???? ??? . . ! " . ? ?? . . ? . . * * . . ? ?? . . 1
! ???????????? :

: :

: : :
: : : :

. ? ' ? ? ? ? . ? ? ? : : : ? ? . : : ?? ?????? :
: :

: :

. ! .

. . ? ? ? ? ? ? ? ? ? ? . . , , , , , , , , , : :

. . .
.

.
.

.
.

. . .
.

.
?

.
?

.
?

.
?

.
?

.
?

.
?

.
?

.
?

.
?

:

. ? . . , , , , , , , , , , . . .
:

: ??? : : : :

. ' . . . "
? ? ? : " |

.

1

. ? ??? ????
. . ? ? ? ? ?

.
.
. ?? ? ? . ??

: ?????? .
:

. ?? . ??? ??????? ???????? :

. ?????????? . .
:

? ?? . : : : ?????????????????? .
:

: . ??? : . ???????????? ??? :

??? ?? ' ? : ' ?? . :

: . ??????] ?? . ? ? ????? ???????????????????????????? :

15
: : : : : : : ? ? . ???? . .

: ?? ?
???

' ' : : , . .
?? . . ? ??? . . ??

FIG . 1

S
' -

:
:
: ? ??????? :

:

.
. . ?????????????????? ??? # ?????

?????? ??? ??? ??? #

??? ?? ter ??????????? ??? ????????????????????? ??? . .
??? ?? ?? ?? ?? ?? ?? ?? ?? ?? ????

:

???? ??
? ? ??? / ?

:

.

.

???? : ??? ????? ???? ??? ter ??? ??????????????????
: ??? :

?? ?? ?????? ????????????? . .

??

. . ? ?????????????????????????????????????? .

. = " . : : : : : : : : : : : : : : : :

.
. "

. . . . ?? . ? ????
.

??? ? ???????
' ' ' ' ' ' ' '

?

. ???

FIG 2

Patent Application Publication May 30 , 2019 Sheet 2 of 6 US 2019 / 0165993 A1

300
?????? ???

Computer System / Server
312

????????????????????????????????? linh ki?n :

Memory
328

RAM
330 Storage

System
334 Cache

332
Program / Utility
340

Processing Unit
316

Event
Type
Table
346

Program
Modules

342
NURUNAN

318

Collaborative Trigger Table
344

1 / 0
Interface (s)

322

Network
Adapter

320

Display
324

External Devices
314

FIG . 3

Patent Application Publication May 30 , 2019 Sheet 3 of 6 US 2019 / 0165993 A1

400

OLET . 450

406 412

. XY .

424

426
422 418

420

FIG . 4

Patent Application Publication May 30 , 2019 Sheet 4 of 6 US 2019 / 0165993 A1

500

Detect event within data source
505

Add entry specifying query ID to
collaborative trigger database

540
Determine type of event

510 Propagate collaborative trigger to
nodes
545

Type
of event an enumerated

type of event ? NO
515

Yes
Determine query identifier (ID)
corresponding to enumerated type

of event
520

No
Query

ID in collaborative
trigger table ?

525
Yes

Suppress collaborative trigger
generation / distribution

530

?? viviviviviv ivivivivivivive

Generate collaborative trigger
with query ID correlated to event

type
535

FIG . 5

Patent Application Publication May 30 , 2019 Sheet 5 of 6 US 2019 / 0165993 A1

600 700

Receive collaborative trigger
605

Receive collaborative trigger
705

Determines query ID of
collaborative trigger

610

Determine whether to act on
collaborative trigger

710

Compare query ID with
collaborative trigger table

615

Issue response to collaborative
trigger
715

No imena Match ?
620 FIG . 7

Yes

Suppress collaborative trigger
625

800
Create entry in collaborative trigger

table
630 Receive response to collaborative

trigger
805 Lii Forward collaborative trigger

635
!

Determine query ID for the
response

810
L FIG . 6

Remove entry specifying query ID
from collaborative trigger table

FIG . 8

Patent Application Publication May 30 , 2019 Sheet 6 of 6 US 2019 / 0165993 A1

900

Receive collaborative trigger
905

Determine whether to act on
collaborative trigger

910

Issue query for updated tables
and / or table definitions

915

Receive table definition data from
nodes
920

Expose updated tables and / or
table definitions

925

FIG . 9

US 2019 / 0165993 A1 May 30 , 2019

COLLABORATIVE TRIGGERS IN
DISTRIBUTED AND DYNAMIC COMPUTING

SYSTEMS

RESERVATION OF RIGHTS IN COPYRIGHTED
MATERIAL

[0001] A portion of the disclosure of this patent document
contains material which is subject to copyright protection .
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure , as it appears in the Patent and Trademark Office
patent file or records , but otherwise reserves all copyright
rights whatsoever .

BACKGROUND
[0002] This disclosure relates to distributed and dynamic
computing systems . A distributed and dynamic computing
system (DDCS) refers to a computing environment having a
large number of geographically dispersed and inter - con
nected computing nodes or “ nodes ” . The nodes are able to
establish connections with one or more other nodes in a
highly dynamic manner without a predetermined topology .
In this regard , a DDCS is also characterized as being ad - hoc .
Examples of topologies that may be used within a DDCS
include hierarchical , cyclic , linear , and broad . Further , a
given DDCS may be subdivided into portions , where each
different portion is implemented using one of the example
topologies such that the DDCS , when taken as a whole ,
includes multiple , different topologies .
10003] . Within a DDCS , some devices disconnect from the
computing system and are able to reconnect through the
same network . In other cases , devices disconnect from the
computing system and are able to rejoin through a different
network . In still other cases , device network connections
may be relatively stable . Many of the devices within these
modern computing systems include data and , as such , may
be queried or asked to perform some computation (s) on data .

and suppressing , within each of the nodes that distributes the
first collaborative trigger , each other collaborative trigger
having a same query identifier as the first collaborative
trigger until a response to the first collaborative trigger is
received from the actor . The actor is configured to initiate
operations including generating the response to the first
collaborative trigger .
[0006] One or more embodiments are directed to a com
puter program product . The computer program product
includes a computer readable storage medium having pro
gram instructions embodied therewith . The program instruc
tions are executable by one or more processors to cause the
one or more processors to initiate operations including , in
response to detecting a first event of a selected type within
a first node of a distributed computing system , generating a
first collaborative trigger having a query identifier correlated
with the selected type of the event and distributing the first
collaborative trigger through other nodes of the distributed
computing system so that the first collaborative trigger
reaches an actor of the computing system . The program
instructions are also executable by the one or more proces
sors to cause the one or more processors to initiate opera
tions including suppressing , within each node that distrib
utes the first collaborative trigger , each other collaborative
trigger having a same query identifier as the first collabora
tive trigger until a response to the first collaborative trigger
is received from the actor .
[0007] This Summary section is provided merely to intro
duce certain concepts and not to identify any key or essential
features of the claimed subject matter . Other features of the
inventive arrangements will be apparent from the accompa
nying drawings and from the following detailed description .

SUMMARY

10004] One or more embodiments are directed to a com
puter - implemented method . The computer - implemented
method can include , in response to detecting a first event of
a selected type within a first node of a distributed computing
system , generating a first collaborative trigger having a
query identifier correlated with the selected type of the event
and distributing the first collaborative trigger through other
nodes of the computing system so that the first collaborative
trigger reaches an actor within the distributed computing
system . The computer - implemented method can include
suppressing , within each node that distributes the first col
laborative trigger , each other collaborative trigger having a
same query identifier as the first collaborative trigger until a
response to the first collaborative trigger is received from the
actor .
[00051 One or more embodiments are directed to a dis
tributed computing system . The computing system can
include a plurality of nodes and an actor . The plurality of
nodes are configured to initiate operations including , in
response to detecting an event of a selected type , generating
a first collaborative trigger having a query identifier corre
lated with the selected type of the event , distributing the first
collaborative trigger through other ones of the plurality of
nodes so that the first collaborative trigger reaches the actor ,

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] The inventive arrangements are illustrated by way
of example in the accompanying drawings . The drawings ,
however , should not be construed to be limiting of the
inventive arrangements to only the particular implementa
tions shown . Various aspects and advantages will become
apparent upon review of the following detailed description
and upon reference to the drawings .
[0009] . FIG . 1 depicts a cloud computing environment
according to an embodiment of the present invention .
10010] FIG . 2 depicts abstraction model layers according
to an embodiment of the present invention .
[0011] FIG . 3 depicts an example of a computing node .
[0012] FIG . 4 depicts an example of a distributed and
dynamic computing system (DDCS) .
10013] FIG . 5 depicts an example method for implement
ing collaborative triggers within a DDCS .
[0014] FIG . 6 depicts another example method for imple
menting collaborative triggers within a DDCS .
[0015) FIG . 7 depicts an example method for processing a
collaborative trigger as performed by an actor within a
DDCS .
[0016] FIG . 8 depicts another example method for imple
menting collaborative triggers within a DDCS .
[0017] FIG . 9 depicts an example method for table dis
covery within a DDCS .

DETAILED DESCRIPTION
[0018] While the disclosure concludes with claims defin
ing novel features , it is believed that the various features

US 2019 / 0165993 A1 May 30 , 2019

described within this disclosure will be better understood
from a consideration of the description in conjunction with
the drawings . The process (es) , machine (s) , manufacture (s)
and any variations thereof described herein are provided for
purposes of illustration . Specific structural and functional
details described within this disclosure are not to be inter
preted as limiting , but merely as a basis for the claims and
as a representative basis for teaching one skilled in the art to
variously employ the features described in virtually any
appropriately detailed structure . Further , the terms and
phrases used within this disclosure are not intended to be
limiting , but rather to provide an understandable description
of the features described .
[0019] One or more embodiments are directed to using
collaborative triggers within a distributed and dynamic
computing system (DDCS) . In general , a collaborative trig
ger refers to a mechanism for distributing notifications
among nodes of the DDCS . A collaborative trigger may
serve as a notification of an occurrence of certain types of
events within a data source within the DDCS and that
require distributed responses . Once a given collaborative
trigger is distributed within the DDCS , the nodes of the
DDCS that distributed the collaborative trigger are pre
vented from repeating other collaborative triggers of the
same type until a response to the original collaborative
trigger is received by the respective nodes . Thus , in addition
to providing a notification mechanism , a collaborative trig
ger effectively suppresses further notifications until such
time that an actor is able to act on the original collaborative
trigger . The actor is capable of acting on the original
collaborative trigger by initiating a distributed response .
Once the actor acts on the original collaborative trigger , the
suppression enacted by the various nodes is cleared .
10020] An example of a DDCS is a distributed database . A
distributed database is configured for efficient query - re
sponse type operation . These types of systems lack a scal
able means for providing notifications within the network .
For example , one mechanism for providing notifications is
to distribute an event in a query . Distributed events are
pushed out among the nodes of the DDCS . This often results
in the nodes of the DDCS being overwhelmed . Within a
DDCS with hundreds of nodes , for example , the number of
notification queries that may be generated may overwhelm
the bandwidth and processing capabilities of nodes within
the DDCS .
10021] Triggers are another example of a notification
mechanism . Triggers are used within a data source , e . g . , a
particular Relational Database Management System (RD
BMS) , to indicate the occurrence of an event . The triggers
operate on a local level purely within a particular RDBMS
and , as such , are not scalable throughout a larger computing
environment such as a DDCS .
[0022] . An alternative mechanism to transmitting events is
to implement a polling mechanism where nodes poll other
nodes to determine whether new and / or different informa
tion is available . Polling , for example , would involve que
rying nodes periodically to determine whether new and / or
updated data is available . Polling , however , consumes sig
nificant system resources regardless of whether anything
new and / or different within the system is reported .
[0023] Collaborative triggers provide for an efficient noti
fication mechanism for collective events that do not over
whelm the DDCS or otherwise flood the DDCS with noti
fications . For example , collaborative triggers may be applied

to partitioned data across a network that can subsequently be
gathered efficiently with a distributed aggregation query . In
one or more embodiments , nodes within a DDCS are
capable of notifying actor (s) on behalf of the network of the
occurrence of particular event types that require a distributed
response . The term “ actor ” , as used within this specification ,
refers to a designated node of a DDCS and / or a computing
system coupled to a DDCS executing a particular client
application .
[0024] Other nodes of the DDCS are prevented from
repeating the same type of notification (e . g . , collaborative
event) until one of the actor nodes has enacted a distributed
response to the notification . The distributed response effec
tively clears collaborative trigger suppression mechanisms
implemented within the nodes of the DDCS that suppress
further collaborative triggers of the same or similar type .
The suppression that is enacted facilitates efficient global
notification throughout the DDCS without flooding the
DDCS with notifications from each different node .
[0025] One or more other embodiments are directed to
performing table discovery in a DDCS . In accordance with
the inventive arrangements , nodes within a DDCS are
capable of detecting updates to data sources . For example , a
data source may generate an event in response to a data
structure contained therein having been modified . The node
corresponding to the updated data source is capable of
detecting the generated event and , in response , distributing
a collaborative trigger . The collaborative trigger is distrib
uted from the selected node to other nodes in the DDCS and
on to an actor that is configured to respond to the collab
orative trigger . Since a collaborative trigger is utilized , other
nodes within the DDCS are prevented from propagating
collaborative triggers of the same type as the collaborative
trigger originally issued until such time that the actor acts on
the original collaborative trigger .
[0026] In particular embodiments , the response to the
collaborative trigger is a query . The query may be an
aggregation query . For example , an actor is capable of
issuing an aggregation query to retrieve table definition
information from other nodes of the DDCS . Since the
collaborative trigger indicates an update to a data source ,
further collaborative triggers also relating to an update , a
same type of update , or a similar type of update to the data
source and / or to other data sources (e . g . , as may be gener
ated by other nodes of the DDCS) are suppressed . The actor
is able to respond to the original collaborative trigger when
appropriate . The issued aggregation query is distributed
throughout the DDCS to obtain table definition information
from nodes of the DDCS thereby retrieving updated table
definition information for the data source for which the
original collaborative trigger was generated and also for any
data sources for which collaborative triggers may have been
suppressed .
[0027] Once the updated table definition information is
received by an actor , the actor node is capable of exposing
the updated table definition information to other nodes
and / or applications that access the DDCS . Further , each
node of the DDCS , in response to receiving the response
(e . g . , the query) from an actor , is capable of discontinuing
the suppression of collaborative triggers of the same type as
the original collaborative trigger for which the response was
received .
[0028] Further aspects of the embodiments described
within this disclosure are described in greater detail with

US 2019 / 0165993 A1 May 30 , 2019

reference to the figures below . For purposes of simplicity
and clarity of illustration , elements shown in the figures have
not necessarily been drawn to scale . For example , the
dimensions of some of the elements may be exaggerated
relative to other elements for clarity . Further , where consid
ered appropriate , reference numbers are repeated among the
figures to indicate corresponding , analogous , or like fea
tures .
0029] It is understood in advance that although this
disclosure includes a detailed description on cloud comput
ing , implementation of the teachings recited herein are not
limited to a cloud computing environment . Rather , embodi
ments of the present invention are capable of being imple
mented in conjunction with any other type of computing
environment now known or later developed .
[0030] Cloud computing is a model of service delivery for
enabling convenient , on - demand network access to a shared
pool of configurable computing resources (e . g . networks ,
network bandwidth , servers , processing , memory , storage ,
applications , virtual machines , and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service . This cloud
model may include at least five characteristics , at least three
service models , and at least four deployment models .
[0031] Characteristics are as follows :
[0032] On - demand self - service : a cloud consumer can
unilaterally provision computing capabilities , such as server
time and network storage , as needed automatically without
requiring human interaction with the service ' s provider .
[0033] Broad network access : capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e . g . , mobile phones , laptops , and PDAs) .
[0034] Resource pooling : the provider ' s computing
resources are pooled to serve multiple consumers using a
multi - tenant model , with different physical and virtual
resources dynamically assigned and reassigned according to
demand . There is a sense of location independence in that
the consumer generally has no control or knowledge over
the exact location of the provided resources but may be able
to specify location at a higher level of abstraction (e . g . ,
country , state , or datacenter) .
[0035] Rapid elasticity : capabilities can be rapidly and
elastically provisioned , in some cases automatically , to
quickly scale out and rapidly released to quickly scale in . To
the consumer , the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time .
[0036] Measured service : cloud systems automatically
control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the
type of service (e . g . , storage , processing , bandwidth , and
active user accounts) . Resource usage can be monitored ,
controlled , and reported providing transparency for both the
provider and consumer of the utilized service .
[0037] Service Models are as follows :
[0038] Software as a Service (SaaS) : the capability pro
vided to the consumer is to use the provider ' s applications
running on a cloud infrastructure . The applications are
accessible from various client devices through a thin client
interface such as a web browser (e . g . , web - based e - mail) .
The consumer does not manage or control the underlying
cloud infrastructure including network , servers , operating

systems , storage , or even individual application capabilities ,
with the possible exception of limited user - specific applica
tion configuration settings .
[0039] Platform as a Service (PaaS) : the capability pro
vided to the consumer is to deploy onto the cloud infra
structure consumer - created or acquired applications created
using programming languages and tools supported by the
provider . The consumer does not manage or control the
underlying cloud infrastructure including networks , servers ,
operating systems , or storage , but has control over the
deployed applications and possibly application hosting envi
ronment configurations .
10040] Infrastructure as a Service (IaaS) : the capability
provided to the consumer is to provision processing , storage ,
networks , and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
software , which can include operating systems and applica
tions . The consumer does not manage or control the under
lying cloud infrastructure but has control over operating
systems , storage , deployed applications , and possibly lim
ited control of select networking components (e . g . , host
firewalls) .
[0041] Deployment Models are as follows :
0042 Private cloud : the cloud infrastructure is operated
solely for an organization . It may be managed by the
organization or a third party and may exist on - premises or
off - premises .
[0043] Community cloud : the cloud infrastructure is
shared by several organizations and supports a specific
community that has shared concerns (e . g . , mission , security
requirements , policy , and compliance considerations) . It
may be managed by the organizations or a third party and
may exist on - premises or off - premises .
(0044) Public cloud : the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services .
10045) Hybrid cloud : the cloud infrastructure is a compo
sition of two or more clouds (private , community , or public)
that remain unique entities but are bound together by stan
dardized or proprietary technology that enables data and
application portability (e . g . , cloud bursting for load balanc
ing between clouds) .
[0046 A cloud computing environment is service oriented
with a focus on statelessness , low coupling , modularity , and
semantic interoperability . At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes .
[0047] Referring now to FIG . 1 , illustrative cloud com
puting environment 50 is depicted . As shown , cloud com
puting environment 50 includes one or more cloud comput
ing nodes 10 with which local computing devices used by
cloud consumers , such as , for example , personal digital
assistant (PDA) or cellular telephone 54A , desktop com
puter 54B , laptop computer 54C , and / or automobile com
puter system 54N may communicate . Nodes 10 may com
municate with one another . They may be grouped (not
shown) physically or virtually , in one or more networks ,
such as Private , Community , Public , or Hybrid clouds as
described hereinabove , or a combination thereof . This
allows cloud computing environment 50 to offer infrastruc
ture , platforms and / or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device . It is understood that the types of com
puting devices 54A - N shown in FIG . 1 are intended to be

US 2019 / 0165993 A1 May 30 , 2019

illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and / or
network addressable connection (e . g . , using a web browser) .
[0048] Referring now to FIG . 2 , a set of functional
abstraction layers provided by cloud computing environ
ment 50 (FIG . 1) is shown . It should be understood in
advance that the components , layers , and functions shown in
FIG . 2 are intended to be illustrative only and embodiments
of the invention are not limited thereto . As depicted , the
following layers and corresponding functions are provided :
(0049) Hardware and software layer 60 includes hardware
and software components . Examples of hardware compo
nents include : mainframes 61 ; RISC (Reduced Instruction
Set Computer) architecture based servers 62 ; servers 63 ;
blade servers 64 ; storage devices 65 ; and networks and
networking components 66 . In some embodiments , software
components include network application server software 67
and database software 68 .
[0050] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided : virtual servers 71 ; virtual storage 72 ;
virtual networks 73 , including virtual private networks ;
virtual applications and operating systems 74 ; and virtual
clients 75 .
[0051] In one example , management layer 80 may provide
the functions described below . Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment . Metering and pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment , and billing or invoicing for
consumption of these resources . In one example , these
resources may include application software licenses . Secu
rity provides identity verification for cloud consumers and
tasks , as well as protection for data and other resources . User
portal 83 provides access to the cloud computing environ
ment for consumers and system administrators . Service level
management 84 provides cloud computing resource alloca
tion and management such that required service levels are
met . Service Level Agreement (SLA) planning and fulfill
ment 85 provide pre - arrangement for , and procurement of ,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA . Workloads layer 90
provides examples of functionality for which the cloud
computing environment may be utilized . Examples of work
loads and functions which may be provided from this layer
include : mapping and navigation 91 ; software development
and lifecycle management 92 ; virtual classroom education
delivery 93 ; data analytics processing 94 ; transaction pro
cessing 95 ; and node management 96 . Node management 96
may be operable across a plurality of nodes within a DDCS
to perform query translation , query propagation , aggregation
including distributed aggregation , collaborative trigger han
dling , and other operations as described herein in greater
detail below .
[0052] FIG . 3 illustrates an example of a computing node
300 . In one or more embodiments , computing node 300 is a
cloud computing node . Computing node 300 is only one
example of a suitable cloud computing node and is not
intended to suggest any limitation as to the scope of use or
functionality of embodiments of the invention described

herein . Regardless , computing node 300 is capable of being
implemented and / or performing any of the functionality set
forth hereinabove .
[0053] Computing node 300 includes a computer system /
server 312 , which is operational with numerous other gen
eral purpose or special purpose computing system environ
ments or configurations . Examples of well - known
computing systems , environments , and / or configurations
that may be suitable for use with computer system / server
312include , but are not limited , personal computer
systems , server computer systems , thin clients , thick clients ,
hand - held or laptop devices , multiprocessor systems , micro
processor - based systems , set top boxes , programmable con
sumer electronics , network PCs , minicomputer systems ,
mainframe computer systems , and distributed cloud com
puting environments that include any of the above systems
or devices , and the like .
[0054) Computer system / server 312 may be described in
the general context of computer system - executable instruc
tions , such as program modules , being executed by a com
puter system . Generally , program modules may include
routines , programs , objects , components , logic , data struc
tures , and so on that perform particular tasks or implement
particular abstract data types . Computer system / server 312
may be practiced in distributed cloud computing environ
ments where tasks are performed by remote processing
devices that are linked through a communications network .
In a distributed cloud computing environment , program
modules may be located in both local and remote computer
system storage media including memory storage devices .
[0055] As shown in FIG . 3 , computer system / server 312 in
computing node 300 is shown in the form of a general
purpose computing device . The components of computer
system / server 312 may include , but are not limited to , one or
more processors or processing units 316 , a system memory
(or “ memory) 328 , and a bus 318 that couples various
system components including memory 328 to processing
unit 316 .
[0056] Bus 318 represents one or more of any of several
types of bus structures , including a memory bus or memory
controller , a peripheral bus , an accelerated graphics port , and
a processor or local bus using any of a variety of bus
architectures . By way of example , and not limitation , such
architectures include Industry Standard Architecture (ISA)
bus , Micro Channel Architecture (MCA) bus , Enhanced ISA
(EISA) bus , Video Electronics Standards Association
(VESA) local bus , and Peripheral Component Interconnect
(PCI) bus .
[0057) Computer system / server 312 typically includes a
variety of computer system readable media . Such media
may be any available media that is accessible by computer
system / server 312 , and may include both volatile and non
volatile media and / or removable and non - removable media .
[0058] Memory 328 can include computer system read
able media in the form of volatile memory , such as random
access memory (RAM) 330 and / or cache memory 332 .
Computer system / server 312 may further include other
removable / non - removable , volatile / non - volatile computer
system storage media . By way of example , storage system
334 can be provided for reading from and writing to a
non - removable , non - volatile magnetic media (not shown
and typically called a " hard drive ”) . Although not shown , a
magnetic disk drive for reading from and writing to a
removable , non - volatile magnetic disk (e . g . , a “ floppy

US 2019 / 0165993 A1 May 30 , 2019

disk ”) , and an optical disk drive for reading from or writing
to a removable , non - volatile optical disk such as a CD -
ROM , DVD - ROM or other optical media can be provided .
In such instances , each can be connected to bus 318 by one
or more data media interfaces . As will be further depicted
and described below , memory 328 may include at least one
program product having a set (e . g . , at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention .
[0059] Program / utility 340 , having a set (at least one) of
program modules 342 , may be stored in memory 328 by way
of example , and not limitation , as well as an operating
system , one or more application programs , other program
modules , and program data . Each of the operating system ,
one or more application programs , other program modules ,
and program data or some combination thereof , may include
an implementation of a networking environment . Program
modules 342 generally carry out the functions and / or meth
odologies of embodiments of the invention as described
herein . For example , one or more of the program modules
may include node management 96 or portions thereof (not
shown) . Further examples of program modules may include
a collaborative trigger table 344 and / or an event type table
346 . Program / utility 340 is executable by processing unit
(e . g . , processor) 316 . Program / utility 340 and any data items
used , generated , and / or operated upon by computing node
300 are functional data structures that impart functionality
when employed by computing node 300 .
10060] In the example of FIG . 3 , collaborative trigger table
344 is capable of storing a list of query identifiers (IDs) . In
general , query IDs of collaborative triggers are correlated
with event types as will be described herein in greater detail
below . Computing node 300 is capable of creating an entry
in collaborative trigger table 344 for each collaborative
trigger distributed by computing node 300 . The created entry
specifies the query ID of the collaborative trigger . The entry
remains within collaborative trigger table 344 until comput
ing node 300 receives a response from an actor correspond
ing to created entry (e . g . , query ID) . In response to receiving
a response for a collaborative trigger with a particular query
ID , computing node 300 removes the entry with the query
ID from collaborative trigger table 344 .
[0061] In the example of FIG . 3 , event type table 346
stores a list of particular , or enumerated , types of events that
occur within data sources and / or any type of entity of a
DDCS , e . g . , an endpoint entity or node , that has registered
a change . Event type table 346 is capable of storing an
associated query ID for each type of event . In particular
embodiments , computing node 300 , in response to detecting
a particular type of event , is able to determine whether to
generate a collaborative trigger for the detected event based
upon whether the type of the event that is detected is listed
in event type table 346 . In response to determining that the
event type is an enumerated type of event based upon event
type table 346 , computing node 300 further is capable of
determining the query ID associated with the type of
detected event . If a collaborative event is distributed for the
detected event , computing node 300 determines the query
ID for the collaborative event from event type table 346 .
[0062] Computer system / server 312 may also communi
cate with one or more external devices 314 such as a
keyboard , a pointing device , a display 324 , etc . ; one or more
devices that enable a user to interact with computer system /
server 312 ; and / or any devices (e . g . , network card , modem ,

etc .) that enable computer system / server 312 to communi
cate with one or more other computing devices . Such
communication can occur via input / output (I / O) interfaces
322 . Still yet , computer system / server 312 can communicate
with one or more networks such as a local area network
(LAN) , a general wide area network (WAN) , and / or a public
network (e . g . , the Internet) via network adapter 320 . As
depicted , network adapter 320 communicates with the other
components of computer system / server 312 via bus 318 . It
should be understood that although not shown , other hard
ware and / or software components could be used in conjunc
tion with computer system / server 312 . Examples , include ,
but are not limited to : microcode , device drivers , redundant
processing units , external disk drive arrays , RAID systems ,
tape drives , and data archival storage systems , etc .
[0063] . While computing node 300 is used to illustrate an
example of a cloud computing node , it should be appreciated
that a computer system using an architecture the same as or
similar to that shown in FIG . 3 may be used in a non - cloud
computing implementation to perform the various opera
tions described herein . In this regard , the example embodi
ments described herein are not intended to be limited to a
cloud computing environment .
[0064] FIGS . 1 - 3 are provided for purposes of illustration
and not limitation . In some examples , nodes of a DDCS are
coupled together via servers (e . g . , cloud servers) . In other
examples , data sources of a DDCS are implemented external
to the cloud . Similarly , nodes of the DDCS (e . g . , federated
database nodes) may be implemented close to the cloud , but
not actually within or part of the cloud . In other cases , nodes
of a DDCS may reside on premises of a user / customer .
[0065) FIG . 4 illustrates an example of a DDCS 400 . In the
example of FIG . 4 , computing system 400 includes a plu
rality of nodes 402 , 404 , 406 , 408 , 410 , 412 , 414 , 416 , 418 ,
420 , 422 , 424 , and 426 . In the example of FIG . 4 , a limited
number of nodes are illustrated . It should be appreciated that
a DDCS may include fewer nodes than shown or more nodes
than shown . Further , the DDCS may be implemented using
one or more or any combination of topologies . Example
topologies include hierarchical , cyclic , linear , and broad .
[0066] In the example of FIG . 4 , nodes 402 - 426 are
capable of establishing connections with one another in a
dynamic manner . Selected ones of nodes 402 - 426 are
capable of disconnecting from certain ones of nodes 402
426 and reconnecting to such nodes or other nodes on the
same network . Other ones of nodes 402 - 426 are capable of
disconnecting from certain ones of nodes 402 - 426 and
reconnecting to such nodes or other nodes through a differ
ent network . Still other ones of nodes 402 - 426 are capable
of maintaining relatively stable connections . Further , nodes
402 - 426 may be geographically distributed over large dis
tances .
[0067] Each of nodes 402 - 426 may be implemented as a
data processing system executing suitable operational soft
ware . For example , each of nodes 402 - 426 may be imple
mented using an architecture the same as , or similar to , the
architecture described in connection with FIG . 3 . Each of
nodes 402 - 426 may execute node management 96 software
or a variant of node management 96 software that is tailored
to the particular functions of the node (e . g . , as a node or as
an actor) . Other examples of nodes may include service
nodes and endpoint nodes . As pictured , nodes 402 - 426 are
interconnected .

US 2019 / 0165993 A1 May 30 , 2019

[0068] In one or more embodiments , DDCS 400 is imple -
mented as a federated database . A federated database facili -
tates a " store - locally - query - anywhere ” paradigm that
includes a set of interconnected nodes as illustrated in the
example of FIG . 4 . DDCS 400 may be implemented as an
ad - hoc network of federated nodes . A federated database
allows a single query to access the databases (e . g . , all data
sources) through the interconnected RDBMS engines . For
purposes of illustration , node 402 may be an actor . A query
received by or generated by an actor may be distributed
throughout the federated database with results being pro
vided back to the actor . The actor provides the results back
to the original requesting node .
[0069] Other nodes within the federated database are
coupled to , or include , one or more internal data sources . An
example of an internal data source is an in - memory data
cache or an internal and / or embedded database . Other
examples of internal data sources include , but are not limited
to , log files , network connection and / or data source meta
data , and sensor data . Each node may also be coupled to
zero , one , or more external data sources . Examples of
external data sources include one or more different
RDBMSs or other data sources such as flat files of data
records .
[0070] In particular embodiments , each node of a feder
ated database may be implemented as a federated Relational
Database Management System (RDBMS) engine . Each of
the nodes is able to query across the internal data sources
and external data sources as if the data sources were one
logical database . For purposes of illustration , nodes 404 - 426
may be implemented as such nodes .
[0071] In the example of FIG . 4 , the internal and external
data sources coupled to the various nodes are not shown . In
this example , node 408 is the originator of a collaborative
trigger that propagates throughout DDCS 400 . For example ,
node 408 is capable of detecting an event that occurs within
an internal and / or an external data source managed by node
408 . Node 408 is capable of determining the type of event
that is detected . For one or more specific types of events ,
node 408 is capable of distributing a collaborative trigger
440 .
[0072] In the example of FIG . 4 , node 408 originates
collaborative trigger 440 . Node 408 generates and forwards
collaborative trigger 440 to one or more other nodes within
DDCS 400 . In one or more embodiments , each collaborative
trigger includes or specifies a query identifier (ID) . The
query ID of each collaborative trigger is correlated with the
particular type of event detected in a data source that served
as the cause for generating the collaborative trigger .
[0073] In conventional distributed databases , query IDs
are used to track individual queries . In this regard , each
query is assigned a unique query ID for purposes of tracking
that particular query . In the example of FIG . 4 , collaborative
triggers are assigned query IDs that are correlated with the
type of event that was detected and that initiated the col
laborative trigger . Thus , a first collaborative trigger gener
ated by a first node in response to a first event may have a
same query ID as a second collaborative trigger generated
by the first node or a different node in response to a second
event so long as the first event and the second event are of
a same type .
[0074] For purposes of illustration and not limitation ,
collaborative trigger 440 has a query ID of “ 4 ” . The query
ID of 4 indicates the particular type of event detected from

a data source managed by node 408 . In the example of FIG .
4 , node 408 sends collaborative trigger 440 to nodes 404 ,
410 , 424 , and 416 . Collaborative trigger 440 continues to
propagate through nodes 404 - 426 of DDCS 400 . Node 408 ,
as the originator of collaborative trigger 440 , creates an
entry within the collaborative trigger table contained therein .
The entry specifies the query ID of 4 . Similarly , any node
that receives and / or forwards collaborative trigger 440 cre
ates an entry within the collaborative trigger table contained
therein . The entry specifies the query ID of 4 . Within this
disclosure , the term “ distribute ” , as applied to a collabora
tive trigger , means generating (e . g . , originating) a collab
orative trigger , receiving a collaborative trigger from
another node , or sending or forwarding a collaborative
trigger to another node .
[0075] In one or more embodiments , any time that a node
detects an event of a type that would trigger the distribution
of a collaborative trigger , that node is capable of comparing
the query ID corresponding to the collaborative trigger with
entries stored in the collaborative trigger table contained
therein . In response to determining that a query ID of a
collaborative trigger , whether a collaborative trigger that is
to be generated and / or a collaborative trigger received from
another node , matches a query ID specified by an entry
stored in the collaborative trigger table , the node suppresses
the collaborative trigger .
[0076] For example , subsequent to collaborative trigger
440 having a query ID of 4 propagating through DDCS 400 ,
each node would have an entry specifying a query ID of 4
stored in the collaborative trigger table contained therein . As
such , each node would suppress any further collaborative
trigger (s) with a query ID of 4 so long as the entry specifying
the query ID of 4 remains in the collaborative trigger table
contained within that node .
[0077] If a node determines that the query ID of a collab
orative trigger does not match any query IDs specified by
entries stored within the collaborative trigger table , the node
distributes the collaborative trigger to one or more other
nodes . For example , in response to node 404 receiving
collaborative trigger 440 , node 404 determines whether the
collaborative trigger table contained therein includes an
entry specifying the trigger ID of 4 . If so , node 404 sup
presses collaborative trigger 440 . For example , node 404
would not forward collaborative trigger 440 to any other
node . If , for example , node 404 determines that the collab
orative trigger table contained therein does not have an entry
specifying the query ID of 4 , node 404 does distribute
collaborative trigger 440 to one or more other nodes . In the
example of FIG . 4 , node 404 is capable of distributing
collaborative trigger 440 to actor 402 and to node 406 .
[0078] Subsequent to node 404 distributing collaborative
trigger 440 , node 404 creates an entry in the collaborative
trigger table contained therein . The entry specifies the query
ID of 4 . Accordingly , once collaborative trigger 440 propa
gates through DDCS 400 , a node such as node 404 will not
originate or forward any other collaborative trigger having a
query ID of 4 until the entry specifying the query ID of 4 is
removed from the collaborative trigger table contained
therein . Node 404 , for example , is capable of originating
and / or forwarding a collaborative trigger having a query ID
of 1 presuming that the collaborative trigger table of node
404 does not contain an entry specifying a query ID of 1 .
Once the collaborative trigger is distributed and an entry
specifying a query ID of 1 is created within the collaborative

US 2019 / 0165993 A1 May 30 , 2019

trigger table of each endpoint that distributes the collabora -
tive trigger , the nodes all suppress any further collaborative
triggers that have a query ID of 1 also .
[0079] Nodes are capable of continuing to propagate col
laborative trigger 440 as described . At some point , actor 402
receives collaborative trigger 440 . Actor 402 is capable of
generating a response 450 to collaborative trigger 440 . The
timing of response 450 to collaborative trigger 440 may be
immediate or at some time subsequent to the receipt of
collaborative trigger 440 by actor 402 depending upon , for
example , the workload and / or capacity of actor 402 or a
watchdog timeout . In the case of an actor application , the
response may come as a result of a user action . In the case
of a user action , without the occurrence of the user action ,
the actor may not provide a response . In any case , if / when
actor 402 issues response 450 in response to collaborative
trigger 440 , response 450 is distributed throughout the nodes
of DDCS 400 .
[0080] In one or more embodiments , if or when new nodes
connect to a network , or when networks merge , all event
types are automatically propagated within the combining
networks . This behavior accommodates the case of frag
mented networks that reconnect to each other . As networks
form , all event types will be continually triggered and
suppressed . Actors can control how long to wait between the
“ data - gathering response queries ” to regulate resource con
sumption workload .
[0081] As each node receives response 450 , that node
removes or deletes the entry created within the collaborative
trigger table corresponding to collaborative trigger 440 .
More particularly , continuing with the example where col
laborative trigger 440 has a query ID of 4 , as each node
receives and / or forwards response 450 within DDCS 400 ,
that endpoint searches for the entry stored within the col
laborative trigger table contained therein specifying a query
ID of 4 and deletes and / or removes the entry . Once the entry
specifying the query ID of 4 is deleted from a collaborative
trigger table of a node , that node no longer suppresses
collaborative trigger (s) having a query ID of 4 (e . g . , the
query ID of the record or entry that is deleted from the
collaborative trigger table) .
[0082] As noted , DDCS 400 may include a changing
number of nodes and / or data sources as devices drop off and
dynamically reconnect to nodes . As such , DDCS 400 may
include fewer or more nodes than are illustrated in the
example of FIG . 4 . Further , the topography of DDCS 400
may vary from that illustrated in FIG . 4 . DDCS 400 may
have a hierarchical , cyclic , linear , or broad topology and / or
any combination of the aforementioned topologies . Accord
ingly , FIG . 4 is provided for purposes of illustration and not
limitation .
[0083] Though not discussed specifically , it should be
appreciated that other ones of the nodes illustrated in FIG .
4 are capable of performing the same or similar operations
described in connection with any of the nodes described
herein . For example , each of the nodes is capable of gen
erating collaborative triggers , receiving collaborative trig
gers , forwarding collaborative triggers , maintaining a col
laborative trigger table , and selectively suppressing
collaborative triggers based upon a matching of query ID (s)
to query ID (s) specified by entries stored in the collaborative
trigger table maintained in each respective node .
[0084] FIGS . 5 - 9 illustrate various methods for processing
collaborative triggers within a DDCS . FIGS . 5 - 9 are gener -

ally described from the perspective of a particular node
within a DDCS or a particular actor as described within this
disclosure . The operations described in FIGS . 5 - 9 , for
example , may be performed concurrently or in alternating
fashion to process detected events , collaborative triggers ,
and / or responses to collaborative triggers . It should be
appreciated that as certain functionality described may be
implemented within each node of a DDCS , the various
communications , e . g . , collaborative triggers and / or
responses , are propagated throughout the DDCS through
interaction of the nodes among themselves and / or with
actor (s) .
[0085] FIG . 5 depicts an example method 500 of imple
menting collaborative triggers within a DDCS . More par
ticularly , method 500 illustrates example operations per
formed by a node in originating a collaborative trigger .
Though not shown in the example of FIG . 5 , the node is
capable of performing other operations and / or functions
while performing the operations illustrated in the example of
FIG . 5 .
[0086] In block 505 , a node detects an event within a data
source of the node . In one or more embodiments , the node
is capable of detecting a trigger generated within a data
source of the node . The data source may be an internal data
source or an external data source . In one or more other
embodiments , the node is capable of monitoring files (e . g . ,
data structures) to determine whether a file has changed . For
example , the node is capable of monitoring time stamps on
files and detecting when a file is updated by virtue of a
changed or modified time stamp .
100871 In one or more other embodiments , the node may
have a local cache of information from the data source and
is capable of comparing the current state with the cached
copy to detect an event . For example , the node has a local
cache of the table definitions that were previously found on
the data source and is capable of comparing the current table
definitions with those in the cache to detect the creation ,
deletion , or modification of a table or view .
[0088] In block 510 , the node determines the type of the
event . Examples of different types of events include , but are
not limited to , creation of a new table , deletion of a table ,
modification of a table , creation of a new view , deletion of
a view , and modification of a view . Further examples of
event types include , but are not limited to , creation of an
index , deletion of an index , creation of a new row in a table ,
deletion of a row in a table , modification of a row in a table ,
updated statistics , and reorganizing data pages on disk .
[0089] In block 515 , the node determines whether the type
of the event detected in block 505 is an enumerated type of
event . For example , the node is capable of determining
whether the detected event matches one that is specified
within the event type table stored therein . In one or more
embodiments , the enumerated event types that may be
specified by the event type table include table - level and / or
view - level events . Examples of event types specified by the
event type table include table and / or view creation events ,
table and / or view deletion events , and / or table and / or view
modification events . In particular embodiments , table - level
and / or view - level events corresponding to modifications
indicate a structural change to a table or a view such as the
addition or deletion of a column of the table or view . If the
type of event determined in block 510 matches an event type
in the event type list , the node determines that the detected

US 2019 / 0165993 A1 May 30 , 2019

event is an enumerated type of event for which a collabora
tive trigger may be generated .
[0090] Other examples of enumerated types of events that
may be listed in the event type table include a sensor reading
change (e . g . , temperature) or a cloud infrastructure moni
toring agent event (e . g . , CPU or memory usage alerts) . Such
events illustrate application events since an application can
subsequently gather aggregate information about the
changes . For example , the application , executing in a com
puting system and / or node , is capable of reporting the
changes through a user interface or act upon the changes in
other ways . In one example , the application is capable of
increasing a pool of cloud resources .
[0091] Other examples of events that may not be included
in the event type table that are not suitable or are less suitable
for use with collaborative triggers may include a computer
virus alert (e . g . , if the node should be isolated as soon as
possible) . Another example is an update to a minimally
distributed table such as one node or a handful of nodes with
data that is independent from all data elsewhere in the
network . A status throughput at a given node is an example
of data that is minimally distributed or independent of data
elsewhere in the network . These types of events would only
occur in a small cluster of nodes and bear no relation to the
more globally distributed data . As such , for event types that
are not enumerated , a standard distributed query with an
embedded stored procedure could just be issued to inform an
application .
10092] . In any case , if the event type is an enumerated
event type , method 500 continues to block 520 . If the event
type is not an enumerated type of event , method 500 loops
back to block 505 .
[0093] In block 520 , the node determines the query ID that
corresponds to the enumerated type of event . For example ,
the node determines the query ID from the event type table ,
which specifies a mapping or correlation between the event
types and query IDs . In particular embodiments , the event
type table specifies a one - to - one mapping of query IDs to
types of events . In other embodiments , more than one type
of event may be mapped to a same query ID . For example ,
two or more different types of events may be mapped to a
same query ID if the actor response to the collaborative
trigger resulting from each different type of event would be
the same .
[0094] In block 525 , the node determines whether the
query ID determined in block 520 is listed within the
collaborative trigger table stored within the node . If the
query ID is specified by an entry stored in the collaborative
trigger table , method 500 continues to block 530 . If the
query ID is not listed in the collaborative trigger table ,
method 500 continues to 535 .
[0095] In block 530 , the node suppresses collaborative
trigger distribution . In response to determining that the
query ID is already specified within the collaborative trigger
table , the node does not generate a collaborative trigger for
the event detected in block 505 . In effect , the node skips the
generation of a collaborative trigger for the event and does
not forward any collaborative trigger for the event detected
in block 505 . After block 530 , method 500 loops back to
block 505 to continue processing .
[0096] In block 535 , the node generates a collaborative
trigger with the query ID determined in block 520 . In block
540 , the node adds an entry specifying the query ID deter
mined in block 520 to the collaborative trigger database

stored therein . In block 545 , the node propagates (e . g . ,
forwards) the collaborative trigger generated in block 535 to
one or more other nodes within the DDCS .
[0097] FIG . 5 illustrates an example of how a node is
capable of suppressing collaborative triggers by refraining
from the creation of collaborative triggers that would have
a particular query ID while that node is awaiting a response
to a prior collaborative trigger of the same query ID . Each
node is capable of utilizing the collaborative trigger table
stored to track whether a response to a collaborative trigger
with a particular query ID is still outstanding . In general ,
each node is configured to suppress collaborative triggers of
a particular query ID until such time that a response from the
actor corresponding to that particular query ID is received
by the node . This capability prevents redundant notifications
from being generated within the DDCS .
[0098] FIG . 6 depicts another example method 600 of
implementing collaborative triggers within a DDCS . More
particularly , method 600 illustrates example operations per
formed by a node in processing a collaborative trigger
received from another node . As collaborative triggers propa
gate through the DDCS , the possibility exists that any given
node may receive a collaborative trigger with a particular
query ID and subsequently receive the same collaborative
trigger (with the same query ID) from a different node or
subsequently receive a different collaborative trigger having
a same query ID as a previously received collaborative
trigger . Method 600 illustrates an example of how to prevent
continued forwarding of redundant collaborative triggers
through the DDCS .
[0099] In block 605 , the node receives a collaborative
trigger from another node . The collaborative trigger that is
received may have been generated by the forwarding node
or generated by a node other than the forwarding node .
[0100] In block 610 , the node determines the query ID of
the collaborative trigger received in block 605 . In block 615 ,
the node compares the query ID determined in block 610
with the query IDs specified by the entries stored in the
collaborative trigger table stored therein . In block 620 , the
node determines whether the query ID of the received
collaborative trigger matches any of the query IDs specified
within the collaborative trigger table .
[0101] In response to determining that the query ID
matches an entry within the collaborative trigger table ,
method 600 proceeds to block 625 . In block 625 , the node
suppresses the collaborative trigger received in block 605 . In
particular , the node takes no further action in response to the
collaborative trigger and does not forward the collaborative
trigger to any other node within the DDCS . After block 625 ,
method 600 may loop back to block 605 to continue pro
cessing
[0102] In response to determining that the query ID does
not match any entry within the collaborative trigger table ,
method 600 proceeds to block 630 . In block 630 , the node
creates an entry in the collaborative trigger table stored
therein . The newly created entry specifies the query ID
determined in block 610 . In block 635 , the node forwards the
collaborative trigger to one or more other endpoints and / or
to an actor .
10103] Method 600 illustrates an example of how the
nodes within the DDCS are able to suppress and / or forward
collaborative triggers based upon whether the query ID of
the collaborative trigger matches entries within the collab
orative trigger table stored within each respective node . As

US 2019 / 0165993 A1 May 30 , 2019

discussed , an entry for a query ID stored within the collab -
orative trigger table of a node means that a response from the
actor for the query ID is still outstanding . This mechanism
allows each node to suppress collaborative triggers of the
same type , as indicated by the query ID , and prevent the
DDCS from being flooded with duplicates of a collaborative
trigger and / or different collaborative triggers of the same
type .
[0104] FIG . 7 depicts an example method 700 of process
ing a collaborative trigger as performed by an actor within
a DDCS . In block 705 , the actor receives a collaborative
trigger . The collaborative trigger , as described in connection
with FIGS . 5 - 6 , propagates through the DDCS among the
nodes until reaching an actor of the DDCS .
[0105] In block 710 , the actor determines whether to act
on the collaborative trigger received in block 705 . In one or
more embodiments , the actor is capable of acting on the
collaborative trigger immediately upon receipt . In one or
more other embodiments , the actor is capable of acting on
the collaborative trigger based upon the workload of the
actor . For example , the actor may perform one or more other
processing tasks prior to responding to the collaborative
trigger . As such , the actor is able to control the workload and
perform operations or respond to requests considered to be
of greater urgency than the received collaborative trigger . In
particular embodiments , the actor may determine an urgency
of the collaborative trigger based upon the query ID . For
example , the actor is capable of responding to the collab
orative trigger more immediately or delaying the response to
the collaborative trigger based upon the query ID of the
received collaborative trigger . An actor , for example , is
capable of acting on the collaborative trigger at any time . As
such , the DDCS may remain in a suppressed state , at least
with respect to the query ID , for an extended period of time .
f0106] In one or more embodiments , the decision whether
to act on a collaborative trigger is application - driven . For
example , an application may be notified of a collaborative
trigger at a later point in time , such as when a user takes an
action . The action may be activating a control (e . g . , clicking
a button to query updated information . If the user action
does not occur , the response is not issued . In this example ,
the response to the collaborative trigger follows more of an
asynchronous notify / query model . Though not shown in the
example of FIG . 9 , the actor is capable of performing other
operations until a determination is made to act on the
collaborative trigger .
[0107] In response to determining that actor is ready to act
on the received collaborative trigger , in block 715 , the actor
issues a response to the collaborative trigger . The actor , for
example , generates a response and forwards the response to
one or more nodes . The nodes are capable of propagating or
forwarding the response to other nodes . The response may
be considered a distributed response and that the response
propagates throughout the DDCS among the nodes .
[0108] FIG . 8 depicts another example method 800 of
implementing collaborative triggers within a DDCS . More
particularly , method 800 illustrates the operations performed
by a node in processing a response to a collaborative trigger .
In block 805 , the node receives a response to a collaborative
trigger . The response may be received directly from an actor
or may be received from another node .

[0109] In block 810 , the node determines the query ID for
the response . The response , for example , may specify or
include the query ID of the collaborative trigger for which
the response is generated .
[0110] In block 815 , the node removes the entry specify
ing the query ID determined in block 810 from the collab
orative trigger table stored therein . For example , the node
searches the collaborative trigger table for an entry speci
fying a query ID matching the query ID determined in block
810 . In response to locating the matching entry , the node
removes or deletes the entry from the collaborative trigger
table . Once the entry is removed from the collaborative
trigger table , the node no longer suppresses collaborative
triggers that have the same query ID as determined in block
805 .
[0111] FIG . 9 depicts an example method 900 for table
discovery within a DDCS . Method 900 may be performed
by an actor node . Method 900 illustrates an example where
the actor is capable of discovering a table and providing a
name to the data structure without having any specific
information about the provenance of the data structure .
[0112] In the example of FIG . 9 , collaborative triggers are
used as a mechanism for performing table discovery . In one
or more embodiments , the event that is detected from a data
source by a node as described in connection with FIG . 5 may
be one that indicates a new data structure , a deleted data
structure , or a modified data structure within a data source .
For instance , the event may be a " table configuration
update ” event . The data structure may be a table or a view ,
for example .
[0113] Examples of changes to a data structure that may
trigger an event include , but are not limited to , the creation
of a new table as indicated by a new table event , deletion of
a table as indicated by a table deletion event , a table
modification event (e . g . , the addition of a new column to an
existing table and / or the removal of a column from an
existing table) , column position changes , and / or data type or
size alterations or any other table definition change . Similar
events relating to views may be detected . Accordingly , in
one or more embodiments , the detected event is an update to
a configured view of the data source . A view refers to a
searchable object in a database that is defined by a query . A
view can be queried like a table , but does not store data . A
view is capable of combining data from two or more tables .
A configured view refers to a view that is persisted and made
available by a data store .
[0114] Other examples of events that may cause a collab
orative trigger can include peer - node connection establish
ment or disconnection .
[0115] In block 905 , the actor receives a collaborative
trigger from a node of the DDCS . In block 910 , the actor
determines whether to act on the collaborative trigger . For
example , the actor may act on the collaborative trigger
immediately or subsequent to performing one or more other
operations . Block 910 may operate substantially as
described in connection with block 710 of FIG . 7 . In
response to deciding to act on the received collaborative
trigger , method 900 continues to block 915 . Though not
shown in the example of FIG . 9 , the actor is capable of
performing other operations until a determination is made to
act on the collaborative trigger .
[0116] In block 915 , the actor issues a response to the
collaborative trigger . In the example of FIG . 9 , the actor is
capable of issuing a query as the response . The query

US 2019 / 0165993 A1 May 30 , 2019

requests updated table definition information from data
sources within the DDCS . The query issued by the actor is
distributed throughout the DDCS as described in connection
with FIGS . 7 and 8 .
[0117] In one or more embodiments , the query is an
aggregation query . The actor is capable of issuing the
request in a canonical format that is executable by the
different nodes of the DDCS . For example , the query issued
by the actor may be specified in structured query language
(SQL) . Each of the nodes that receives the query is capable
of translating the query into a format that is executable by
the data sources of that node . Any results received from the
data sources by a node may be provided back to the actor .
[0118] Each of the nodes that receives the response (e . g . ,
the query) either from the actor or a node of the DDCS , is
capable of responding to the query with table definition
information . For example , each node is capable of translat
ing the query as received in the canonical format from the
actor into a format that is executable by the local data
sources managed by the node . In particular embodiments ,
the translated query requests table definitions for tables of
the local data sources . The node receives the results of the
query executed by the local data source (s) and provides the
results back to the actor .
[0119] In one or more embodiments , the table definition
information specifies each table , e . g . , a name of each table ,
within a data source and / or each data source (e . g . , internal
and / or external) of the node , the name (s) of columns of the
tables , the data types of cells within the columns of the
table (s) , and other structural information of the tables of the
data source (s) .
[0120] In particular embodiments , the nodes are capable
of merging the table definitions received from child nodes
prior to propagating results up to a parent node . A node that
sends (or forwards) a query to another node is referred to as
a parent node . The node that receives the query is referred
to as the child node . For example , the aggregation query
issued by the actor , when executed by the nodes , causes each
node in the return path to merge table definitions received
from each child node to avoid duplicating table names that
match between the different nodes .
0121] In block 920 , the actor receives the table definition
information (e . g . , updated table definition information) from
the nodes . The actor is capable of caching , or storing , the
received table definition information therein .
[0122] In block 925 , the actor is capable of exposing the
received table definition information . For example , the actor
is capable of exposing the tables , by way of the table
definitions , as if each table was a logical table . A logical
table is an abstract table (e . g . , data structure) that points to
one or more external data sources , each being accessed and
transformed via a data - source wrapper module . For purposes
of illustration , a data source is deemed external if the data
source is not already managed and accessible through rela
tional tables by the RDBMS that defines the data source . The
actor is capable of exposing the results to a computing node
that is external to the DDCS . The external node is capable
of submitting queries to the actor .
0123] In one or more embodiments , in block 925 , the

actor registers each newly discovered table as specified by
the responses received in block 920 . The actor node is
capable of registering each newly discovered table as a view
or an equivalent to a view that is exposed to computing
nodes , whether nodes of the DDCS , nodes external to the

DDCS that are capable of submitting queries to the actor (s) ,
and / or to applications within such computing nodes and / or
in nodes of the DDCS . In an aspect , a view refers to an
abstract table (e . g . , a data structure) that provides transfor
mations of one or more locally managed tables (or abstract
tables) . The stored and exposed table definition data includes
aggregated table definition data across the various data
sources (e . g . , hundreds of data sources) of the DDCS .
Exposing the table definition data indicates that the data
exists across these different data sources and is available as
a logical view of the broader data set .
[0124] The actor , in response to receiving a query from a
source outside of , or external to , the DDCS , is capable of
looking up table definitions from within the memory con
tained therein . In this manner , the actor is capable of
providing physical access to tables of the data sources of the
DDCS without the need for configuration . The actor , for
example , is capable of translating a query received from the
external node to a format that is executable by the nodes of
the DDCS . As discussed , the translated query may be in a
canonical format . Further , the translated query that is sub
mitted to the nodes is translated by the actor for execution
by the nodes based upon the updated table definition data
obtained through the automated table discovery process
described herein .
(0125] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .
[0126] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
(0127) Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,

US 2019 / 0165993 A1 May 30 , 2019

gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0128] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or
either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C + + or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user ' s computer ,
partly on the user ' s computer , as a stand - alone software
package , partly on the user ' s computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user ' s computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec
tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present invention .
[0129] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0130] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0131] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of

operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0132] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .
[0133] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting . Notwithstanding , several definitions that
apply throughout this document now will be presented .
[0134] The term “ approximately ” means nearly correct or
exact , close in value or amount but not precise . For example ,
the term “ approximately ” may mean that the recited char
acteristic , parameter , or value is within a predetermined
amount of the exact characteristic , parameter , or value .
10135] . As defined herein , the terms at least one , " " one or
more , " and " and / or , ” are open - ended expressions that are
both conjunctive and disjunctive in operation unless explic
itly stated otherwise . For example , each of the expressions
" at least one of A , B and C , " " at least one of A , B , or C , ”
" one or more of A , B , and C , " " one or more of A , B , or C , "
and “ A , B , and / or C ” means A alone , B alone , C alone , A and
B together , A and C together , B and C together , or A , B and
C together .
[0136] As defined herein , the term “ automatically ” means
without user intervention .
[0137] As defined herein , the terms “ includes , ” “ includ
ing , " " comprises , " and / or “ comprising , ” specify the pres
ence of stated features , integers , steps , operations , elements ,
and / or components , but do not preclude the presence or
addition of one or more other features , integers , steps ,
operations , elements , components , and / or groups thereof .
[0138] As defined herein , the term “ if ” means " when ” or
" upon ” or “ in response to ” or “ responsive to , ” depending
upon the context . Thus , the phrase “ if it is determined ” or “ if
la stated condition or event is detected ” may be construed
to mean " upon determining ” or “ in response to determining ”
or " upon detecting [the stated condition or event? ” or “ in
response to detecting the stated condition or event] " or
“ responsive to detecting [the stated condition or event) ”
depending on the context .
[0139] As defined herein , the terms “ one embodiment , "
" an embodiment , " " one or more embodiments , " " particular
embodiments , ” or similar language mean that a particular

US 2019 / 0165993 A1 May 30 , 2019

feature , structure , or characteristic described in connection
with the embodiment is included in at least one embodiment
described within this disclosure . Thus , appearances of the
phrases “ in one embodiment , " " in an embodiment , ” “ in one
or more embodiments , ” “ in particular embodiments , ” and
similar language throughout this disclosure may , but do not
necessarily , all refer to the same embodiment . The terms
" embodiment ” and “ arrangement ” are used interchangeably
within this disclosure .
[0140] As defined herein , the term " output ” means storing
in physical memory elements , e . g . , devices , writing to
display or other peripheral output device , sending or trans
mitting to another system , exporting , or the like .
[0141] As defined herein , the term “ processor ” means at
least one hardware circuit configured to carry out instruc
tions . The instructions may be contained in program code .
The hardware circuit may be an integrated circuit . Examples
of a processor include , but are not limited to , a central
processing unit (CPU) , an array processor , a vector proces
sor , a digital signal processor (DSP) , a field - programmable
gate array (FPGA) , a programmable logic array (PLA) , an
application specific integrated circuit (ASIC) , program
mable logic circuitry , and a controller .
10142] As defined herein , the term “ real time ” means a
level of processing responsiveness that a user or system
senses as sufficiently immediate for a particular process or
determination to be made , or that enables the processor to
keep up with some external process .
[0143] As defined herein , the term “ responsive to ” means
responding or reacting readily to an action or event . Thus , if
a second action is performed “ responsive to ” a first action ,
there is a causal relationship between an occurrence of the
first action and an occurrence of the second action . The term
" responsive to ” indicates the causal relationship .
10144] The term “ substantially ” means that the recited
characteristic , parameter , or value need not be achieved
exactly , but that deviations or variations , including for
example , tolerances , measurement error , measurement accu
racy limitations , and other factors known to those of skill in
the art , may occur in amounts that do not preclude the effect
the characteristic was intended to provide .
[0145] The terms first , second , etc . may be used herein to
describe various elements . These elements should not be
limited by these terms , as these terms are only used to
distinguish one element from another unless stated other
wise or the context clearly indicates otherwise .
10146) . The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .
What is claimed is :
1 . A computer - implemented method , comprising :
in response to detecting a first event of a selected type

within a first node of a distributed computing system ,
generating a first collaborative trigger having a query
identifier correlated with the selected type of the event ;

distributing the first collaborative trigger through other
nodes of the computing system so that the first collab
orative trigger reaches an actor of the distributed com
puting system ; and

suppressing , within each node that distributes the first
collaborative trigger , each other collaborative trigger
having a same query identifier as the first collaborative
trigger until a response to the first collaborative trigger
is received from the actor .

2 . The computer - implemented method of claim 1 ,
wherein the suppressing comprises :

in response to detecting a second event of the selected
type , preventing generation of a second collaborative
trigger corresponding to the second event .

3 . The computer - implemented method of claim 1 , further
comprising , for each of the nodes that distributes the first
collaborative trigger :

in response to receiving the response from the actor to the
first collaborative trigger , discontinuing the suppress
ing of each other collaborative trigger having the same
query identifier as the first collaborative trigger .

4 . The computer - implemented method of claim 1 ,
wherein the suppressing comprises :

within each of the nodes that distributes the first collab
orative trigger , adding an entry to a collaborative
trigger table , wherein the entry specifies the query
identifier of the first collaborative trigger .

5 . The computer - implemented method of claim 4 ,
wherein the suppressing comprises , for each of the nodes
that distributes the first collaborative trigger :

in response to receiving a second collaborative trigger ,
comparing a query identifier of the second collabora
tive trigger with each query identifier stored in the
collaborative trigger table ; and

in response to matching the query identifier of the second
collaborative trigger with one of the query identifiers
stored in the collaborative trigger table , preventing the
second collaborative trigger from propagating to
another node of the distributed computing system .

6 . The computer - implemented method of claim 4 ,
wherein the suppressing comprises , for each of the nodes
that distributes the first collaborative trigger :

in response to detecting a second event , determining a
query identifier correlated with a type of the second
event ;

comparing the query identifier correlated with the second
event with each query identifier stored in the collab
orative trigger table ; and

in response to matching the query identifier correlated
with the second event with one of the query identifiers
stored in the collaborative trigger table , preventing
generation of a second collaborative trigger corre
sponding to the second event .

7 . The computer - implemented method of claim 4 , further
comprising , for each of the nodes that distributes the first
collaborative trigger :

removing the entry specifying the query identifier of the
first collaborative trigger from the collaborative trigger
table in response to receiving the response to the first
collaborative trigger .

8 . A distributed computing system , comprising :
a plurality of nodes ; and
an actor ;

US 2019 / 0165993 A1 May 30 , 2019
13

wherein the plurality of nodes are configured to initiate
operations including :
in response to detecting an event of a selected type ,

generating a first collaborative trigger having a query
identifier correlated with the selected type of the
event ;

distributing the first collaborative trigger through other
ones of the plurality of nodes so that the first col
laborative trigger reaches the actor ; and

suppressing , within each of the nodes that distributes
the first collaborative trigger , each other collabora
tive trigger having a same query identifier as the first
collaborative trigger until a response to the first
collaborative trigger is received from the actor ;

wherein the actor is configured to initiate operations
including :
generating the response to the first collaborative trigger .

9 . The distributed computing system of claim 8 , wherein
the suppressing comprises :

in response to detecting a second event of the selected
type , preventing generation of a second collaborative
trigger corresponding to the second event .

10 . The distributed computing system of claim 8 , further
comprising , for each of the nodes that distributes the first
collaborative trigger :

in response to receiving the response from the actor to the
first collaborative trigger , discontinuing the suppress
ing of each other collaborative trigger having the same
query identifier as the first collaborative trigger .

11 . The distributed computing system of claim 8 , wherein
the suppressing comprises :

within each of the nodes that distributes the first collab
orative trigger , adding an entry to a collaborative
trigger table , wherein the entry specifies the query
identifier of the first collaborative trigger .

12 . The distributed computing system of claim 11 ,
wherein the suppressing comprises , for each of the nodes
that distributes the first collaborative trigger :

in response to receiving a second collaborative trigger ,
comparing a query identifier of the second collabora
tive trigger with each query identifier stored in the
collaborative trigger table ; and

in response to matching the query identifier of the second
collaborative trigger with one of the query identifiers
stored in the collaborative trigger table , preventing the
second collaborative trigger from propagating to
another node of the distributed computing system .

13 . The distributed computing system of claim 11 ,
wherein the suppressing comprises , for each of the nodes
that distributes the first collaborative trigger :

in response to detecting a second event , determining a
query identifier correlated with a type of the second
event ;

comparing the query identifier correlated with the second
event with each query identifier stored in the collab
orative trigger table ; and

in response to matching the query identifier correlated
with the second event with one of the query identifiers
stored in the collaborative trigger table , preventing
generation of a second collaborative trigger corre
sponding to the second event .

14 . The distributed computing system of claim 11 , further
comprising , for each of the nodes that distributes the first
collaborative trigger :

removing the entry specifying the query identifier of the
first collaborative trigger from the collaborative trigger
table in response to receiving the response to the first
collaborative trigger .

15 . A computer program product comprising a computer
readable storage medium having program instructions
embodied therewith , the program instructions executable by
one or more processors to cause the one or more processors
to initiate operations comprising :

in response to detecting a first event of a selected type
within a first node of a distributed computing system ,
generating a first collaborative trigger having a query
identifier correlated with the selected type of the event ;

distributing the first collaborative trigger through other
nodes of the computing system so that the first collab
orative trigger reaches an actor of the distributed com
puting system ; and

suppressing , within each node that distributes the first
collaborative trigger , each other collaborative trigger
having a same query identifier as the first collaborative
trigger until a response to the first collaborative trigger
is received from the actor .

16 . The computer program product of claim 15 , wherein
the suppressing comprises :

in response to detecting a second event of the selected
type , preventing generation of a second collaborative
trigger corresponding to the second event .

17 . The computer program product of claim 15 , wherein
the program instructions are executable by the one or more
processors to cause the one or more processors to initiate
operations comprising , for each of the nodes that distributes
the first collaborative trigger :

in response to receiving the response from the actor node
to the first collaborative trigger , discontinuing the sup
pressing of each other collaborative trigger having the
same query identifier as the first collaborative trigger .

18 . The computer program product of claim 15 , wherein
the suppressing comprises :

within each of the nodes that distributes the first collab
orative trigger , adding an entry to a collaborative
trigger table , wherein the entry specifies the query
identifier of the first collaborative trigger .

19 . The computer program product of claim 18 , wherein
the suppressing comprises , for each of the nodes that dis
tributes the first collaborative trigger :

in response to receiving a second collaborative trigger ,
comparing a query identifier of the second collabora
tive trigger with each query identifier stored in the
collaborative trigger table ; and

in response to matching the query identifier of the second
collaborative trigger with one of the query identifiers
stored in the collaborative trigger table , preventing the
second collaborative trigger from propagating to
another node of the distributed computing system .

20 . The computer program product of claim 18 , wherein
the suppressing comprises , for each of the nodes that dis
tributes the first collaborative trigger :

in response to detecting a second event , determining a
query identifier correlated with a type of the second
event ;

comparing the query identifier correlated with the second
event with each query identifier stored in the collab
orative trigger table ; and

US 2019 / 0165993 A1 May 30 , 2019
14

in response to matching the query identifier correlated
with the second event with one of the query identifiers
stored in the collaborative trigger table , preventing
generation of a second collaborative trigger corre
sponding to the second event .

1 . A computer - implemented method , comprising :
in response to detecting a first event of a selected type
within a first node of a distributed computing system ,
generating a first collaborative trigger having a query
identifier correlated with the selected type of the event ;

distributing the first collaborative trigger through other
nodes of the computing system so that the first collab
orative trigger reaches an actor of the distributed com
puting system ; and

suppressing , within each node that distributes the first
collaborative trigger , each other collaborative trigger
having a same query identifier as the first collaborative
trigger until a response to the first collaborative trigger
is received from the actor .

2 . The computer - implemented method of claim 1 ,
wherein the suppressing comprises :

in response to detecting a second event of the selected
type , preventing generation of a second collaborative
trigger corresponding to the second event .

3 . The computer - implemented method of claim 1 , further
comprising , for each of the nodes that distributes the first
collaborative trigger :

in response to receiving the response from the actor to the
first collaborative trigger , discontinuing the suppress
ing of each other collaborative trigger having the same
query identifier as the first collaborative trigger .

4 . The computer - implemented method of claim 1 ,
wherein the suppressing comprises :

within each of the nodes that distributes the first collab
orative trigger , adding an entry to a collaborative
trigger table , wherein the entry specifies the query
identifier of the first collaborative trigger .

5 . The computer - implemented method of claim 4 ,
wherein the suppressing comprises , for each of the nodes
that distributes the first collaborative trigger :

in response to receiving a second collaborative trigger ,
comparing a query identifier of the second collabora
tive trigger with each query identifier stored in the
collaborative trigger table ; and

in response to matching the query identifier of the second
collaborative trigger with one of the query identifiers
stored in the collaborative trigger table , preventing the
second collaborative trigger from propagating to
another node of the distributed computing system .

6 . The computer - implemented method of claim 4 ,
wherein the suppressing comprises , for each of the nodes
that distributes the first collaborative trigger :

in response to detecting a second event , determining a
query identifier correlated with a type of the second
event ;

comparing the query identifier correlated with the second
event with each query identifier stored in the collab
orative trigger table ; and

in response to matching the query identifier correlated
with the second event with one of the query identifiers
stored in the collaborative trigger table , preventing
generation of a second collaborative trigger corre
sponding to the second event .

7 . The computer - implemented method of claim 4 , further
comprising , for each of the nodes that distributes the first
collaborative trigger :
removing the entry specifying the query identifier of the

first collaborative trigger from the collaborative trigger
table in response to receiving the response to the first
collaborative trigger .

8 - 20 . (canceled)

