
Printed by Jouve, 75001 PARIS (FR)

(19)
EP

3 
76

7 
52

8
A

1
*EP003767528A1*

(11) EP 3 767 528 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 
20.01.2021 Bulletin 2021/03

(21) Application number: 20186417.0

(22) Date of filing: 17.07.2020

(51) Int Cl.:
G06K 9/00 (2006.01)

(84) Designated Contracting States: 
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 
PL PT RO RS SE SI SK SM TR
Designated Extension States: 
BA ME
Designated Validation States: 
KH MA MD TN

(30) Priority: 19.07.2019 US 201916517225

(71) Applicant: UiPath, Inc.
New York, NY 10016 (US)

(72) Inventor: VOICU, Cosmin
New York, NY 10016 (US)

(74) Representative: Zoli, Filippo
BRUNACCI & PARTNERS S.r.l. 
Via Scaglia Est, 19-31
41126 Modena (IT)

(54) RETRAINING A COMPUTER VISION MODEL FOR ROBOTIC PROCESS AUTOMATION

(57) A Computer Vision (CV) model generated by a
Machine Learning (ML) system may be retrained for more
accurate computer image analysis in Robotic Process
Automation (RPA). A designer application may receive
a selection of a misidentified or non-identified graphical
component in an image form a user, determine repre-
sentative data of an area of the image that includes the
selection, and transmit the representative data and the

image to an image database. A reviewer may execute
the CV model, or cause the CV model to be executed,
to confirm that the error exists, and if so, send the image
and a correct label to an ML system for retraining. While
the CV model is being retrained, an alternative image
recognition model may be used to identify the misidenti-
fied or non-identified graphical component.



EP 3 767 528 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD

[0001] The present invention generally relates to Ro-
botic Process Automation (RPA), and more specifically,
to identifying misidentified or non-identified graphical
components and retraining a Computer Vision (CV) mod-
el for RPA generated by a Machine Learning (ML) system
for more accurate computer image analysis.

BACKGROUND

[0002] Currently, training data to automate ML-gener-
ated CV model algorithms for recognizing image features
for RPA are obtained by generating synthetic data and
collecting screenshots (i.e., digital images) of actual user
interfaces of various software applications, whether from
live applications or the Internet. Synthetic data is data
that is produced with the specific purpose of training ML
models. This differs from "real" or "organic" data, which
is data that already exists and just needs to be collected
and labeled. In this case, organic data includes screen-
shots that are collected through various mechanisms and
labeled.
[0003] Another source of training data is the screen-
shots of the application that the user wants to automate.
In this approach, if a graphical element of the interface
(e.g., a checkbox, a radio button, a text box, etc.) is not
being detected by the CV model, the user (e.g., a cus-
tomer) may select the element that was not identified,
create screenshots of the selection, and send the images
with the coordinates of the selection to the service pro-
vider. However, this approach requires the user to ex-
pend the effort to send the images as feedback and report
the error. In practice, most users do not do this.
[0004] Also, data captured through current techniques
can become suboptimal or irrelevant after implementa-
tion. For example, the actual user interface of the appli-
cation used by a customer at runtime may be different
from user interfaces that are used for training data during
design time. This renders the CV model unaware of, and
potentially unsuited for, the actual user interface, and the
CV model may require retraining in order to operate ef-
fectively as a result. Accordingly, an improved approach
to retraining CV models may be beneficial.

SUMMARY

[0005] Certain embodiments of the present invention
may provide solutions to the problems and needs in the
art that have not yet been fully identified, appreciated, or
solved by current CV model techniques. For example,
some embodiments of the present invention pertain to
identifying misidentified or non-identified graphical com-
ponents and retraining a CV model for RPA generated
by an ML system for more accurate computer image anal-
ysis.

[0006] In an embodiment, a computer program is em-
bodied on a non-transitory computer-readable medium.
The program is configured to cause at least one proces-
sor to receive identifications of graphical components
within an image from execution of a CV model and display
the image with the identified graphical components that
were identified by the CV model on a visual display. The
computer program is also configured to cause the at least
one processor to receive a selection of a misidentified or
non-identified graphical component in the image, deter-
mine representative data of an area of the image that
includes the selection, and transmit the representative
data and the image to an image database.
[0007] In another embodiment, a computing system in-
cludes memory storing machine-readable computer pro-
gram instructions and at least one processor configured
to execute the computer program instructions. The in-
structions are configured to cause the at least one proc-
essor to receive a selection of a misidentified or non-
identified graphical component in an image, determine
representative data of an area of the image that includes
the selection, and transmit the representative data and
the image to an image database for retraining of a CV
model. The instructions are also configured to cause the
at least one processor to receive identifications of graph-
ical components within the image from execution of a
retrained CV model and display the image with the iden-
tified graphical components that were identified by the
retrained CV model on a visual display.
[0008] In yet another embodiment, a computer-imple-
mented method includes receiving a selection, by a com-
puting system, of a misidentified or non-identified graph-
ical component in an image and determining, by the com-
puting system, representative data of an area of the im-
age that includes the selection. The computer-imple-
mented method also includes transmitting, by the com-
puting system, the representative data and the image to
an image database and embedding the image and alter-
native image processing logic in a workflow, by the com-
puting system, to identify the misidentified or non-identi-
fied graphical component while the CV model is being
retrained.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] In order that the advantages of certain embod-
iments of the invention will be readily understood, a more
particular description of the invention briefly described
above will be rendered by reference to specific embodi-
ments that are illustrated in the appended drawings.
While it should be understood that these drawings depict
only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompany-
ing drawings, in which:

FIG. 1 is an architectural diagram illustrating an RPA

1 2 



EP 3 767 528 A1

3

5

10

15

20

25

30

35

40

45

50

55

system, according to an embodiment of the present
invention.
FIG. 2 is an architectural diagram illustrating a de-
ployed RPA system, according to an embodiment of
the present invention.
FIG. 3 is an architectural diagram illustrating the re-
lationship between a designer, activities, and driv-
ers, according to an embodiment of the present in-
vention.
FIG. 4 is an architectural diagram illustrating an RPA
system, according to an embodiment of the present
invention.
FIG. 5A illustrates an RPA implementation employ-
ing CV for a Virtual Machine (VM) system at runtime,
according to an embodiment of the present inven-
tion.
FIG. 5B illustrates the RPA implementation of FIG.
5A where a graphical component was not identified
or misidentified at design time, according to an em-
bodiment of the present invention.
FIG. 6A is a screenshot illustrating a remote desktop
connection window for a VM before a user has at-
tempted to select a graphical component on the
screen.
FIG. 6B is a screenshot illustrating the remote desk-
top connection window for the VM after the user has
attempted to select the graphical component on the
screen.
FIG. 7A is a screenshot illustrating a selector tool
window and a remote desktop connection window
after CV/OCR have been run and the results have
been displayed to the user via the designer, accord-
ing to an embodiment of the present invention.
FIG. 7B is a screenshot illustrating the selector tool
window and the remote desktop connection window
after the user has selected a graphical component
as not being correctly identified or being misidenti-
fied, according to an embodiment of the present in-
vention.
FIG. 7C is a screenshot illustrating the remote desk-
top connection window after retraining the CV model,
according to an embodiment of the present inven-
tion.
FIG. 8 is a screenshot illustrating an anchor desig-
nation window and a remote desktop connection win-
dow after CV/OCR have been run and the results
have been displayed to the user via the designer,
according to an embodiment of the present inven-
tion.
FIGS. 9A-C illustrate an example of a multi-anchor
matching algorithm, according to an embodiment of
the present invention.
FIG. 10 is a screenshot illustrating an anchor desig-
nation window and a remote desktop connection win-
dow after CV/OCR have been run and the results
have been displayed to the user via the designer,
according to an embodiment of the present inven-
tion.

FIG. 11 is a flowchart illustrating a process for re-
training a CV model, according to an embodiment of
the present invention.
FIG. 12 is an architectural diagram illustrating a com-
puting system configured to retrain a CV model, ac-
cording to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE EMBODIMENTS

[0010] Some embodiments pertain to identifying misi-
dentified or non-identified graphical components and re-
training a CV model for RPA generated by an ML system
for more accurate computer image analysis. A screen-
shot image of a visual display may be captured that in-
cludes a Graphical User Interface (GUI) of an application
to be automated. In Virtual Machine (VM) embodiments,
such as Citrix®, VMWare®, VNC®, Windows® Remote
Desktop, etc., or in certain Flash, Silverlight, or PDF doc-
uments, only an image may be presented for a given
application. Images may include a window, a document,
a financial receipt, an invoice, and/or any other graphical
element without deviating from the scope of the invention.
While in some embodiments, an image may include un-
structured data, in certain embodiments, the data is struc-
tured.
[0011] A CV model, potentially in conjunction with a
text recognition model from OCR, may then be executed
on the screenshot image, and specific graphical compo-
nents identified in the image may be provided to a de-
signer that accepts the screenshot image and data iden-
tifying the components from CV/OCR as an input, and
then displays indications of identified graphical compo-
nents for a user on a visual display (e.g., a computer
monitor, a laptop screen, a smart phone, a virtual reality
or augmented reality display device, etc.). In the case
that there are one or more misidentified or non-identified
graphical components on the visual display (e.g., check-
boxes, text boxes, radio buttons, regular buttons, etc.),
the user may make selections encompassing these
graphical components on his or her screen. In some em-
bodiments, providing the user with a working alternative
(e.g., providing the user with the ability to use an image-
matching algorithm for a misidentified or non-identified
graphical component) may incentivize the user to make
the selection. It should be noted that in some embodi-
ments, graphical components may include visual display
elements identifiable by a CV model, as well as visual
display elements identifiable by OCR, and/or visual dis-
play elements that require identification by both (e.g., a
text field that includes at least some text). From the se-
lection(s), the designer may determine representative
data of the area(s) of the visual display that were selected
by the user.
[0012] In some embodiments, this representative in-
formation includes coordinates, line segments, or both,
that define a shape having an area. In certain embodi-
ments, the selection may be rectangular, circular, ellipti-
cal, square, hexagonal, freeform, and/or any other suit-

3 4 



EP 3 767 528 A1

4

5

10

15

20

25

30

35

40

45

50

55

able shape without deviating from the scope of the in-
vention. In some embodiments, the user may be able to
select between multiple types of shapes that may best
fit each graphical component of interest. For instance, a
rectangular shape may best fit a text box, whereas a cir-
cular shape may best fit a radio button. In certain em-
bodiments, the computing system may attempt to infer
and complete a free form shape that is not fully enclosed.
[0013] It should be noted that in some embodiments,
the shape may be a three-dimensional shape having a
volume (i.e., voxels instead of pixels) if suitable hardware
is used, with associated adjustments to the representa-
tive information. For instance, an augmented reality
headset may be used that detects the location of the us-
er’s finger, a pointer device with an embedded sensor
may provide three-dimensional position, etc. Such a sys-
tem may define a box or sphere instead of a rectangle
or circle, for instance.
[0014] The designer then transmits the screenshot im-
age and representative data to an image database, and
a reviewer then receives this information from the image
database. This transmission may occur automatically or
at the user’s command. That the transmission happens
automatically in some embodiments without additional
actions from the user is novel. Indeed, in some embod-
iments, the user may be identifying misidentified and/or
non-identified graphical components without any knowl-
edge that the retraining process has been initiated, or
that he or she has played a role therein. The reviewer,
via his or her computing system, reviews the screenshot
image and the area selected by the user using his or her
designer application, and confirms that the error exists.
For instance, the human reviewer may then review the
selection made by the user for false positives to ensure
that the non-identification(s) and/or misidentification(s)
actually occurred. For instance, the human reviewer may
verify that the user has not selected the maximize/mini-
mize icon for a window as not being identified. If so, the
reviewer submits the screenshot image and representa-
tive data to an ML system for retraining. In some embod-
iments, retraining is done in a batch with other issues
that have been identified. In some embodiments, other
images from design time in the image database are used
to augment the retraining. In certain embodiments, the
ML system is the same ML system that was used to train
the CV model, but updated based on the screenshot im-
age and the representative data (and possibly to address
other errors in some embodiments per the above). The
ML system then retrains the CV model, producing a re-
trained CV model that more accurately identifies the mis-
identified and/or non-identified graphical component(s).
The retrained CV model is then sent to a computing sys-
tem running the CV model (e.g., a separate server, the
user’s computing system, etc.), and the retrained CV
model is used to properly identify all non-textual graphical
components, including the misidentified and/or non-iden-
tified graphical component(s).
[0015] Retraining of the CV model may employ one or

more Deep Learning Neural Networks (DLNNs). For in-
stance, TensorFlow®, PyTorch®, etc. may be used.
However, this DLNN-based retraining may take days or
weeks to complete. Accordingly, in some embodiments,
an alternative image recognition technology may be em-
ployed by the user to recognize the misidentified or non-
identified component. For instance, an image matching
algorithm may be used on the area(s) of the screen se-
lected by the user to attempt to identify the graphical com-
ponent(s) therein. The designer may embed this logic in
the workflow to be used for future processing until the
retrained CV model is ready and deployed. While image
matching is typically less accurate than the multi-anchor
techniques discussed herein, it may provide a stopgap
that allows the misidentified or non-identified graphical
component to be identified with at least some level of
accuracy while the CV model is retrained. This further
incentivizes the user to make selections of misidentified
and/or nonidentified graphical components since it pro-
vides an immediate temporary solution.
[0016] In some embodiments, the user selects an op-
tion to use the less accurate algorithm when the graphical
component is not identified or misidentified. However, in
certain embodiments, the user may not be aware that
anything is occurring behind the scenes when they make
a selection, and the designer may automatically embed
the alternative image recognition model in the workflow
for the missed or misidentified component. Thus, making
the selection and clicking an "OK" button, for example,
may be the only interaction that the user knows they are
having with the system.
[0017] Reliably automating Virtual Desktop Infrastruc-
ture (VDI) environments, such as Citrix®, VMWare®,
VNC®, and Windows® Remote Desktop, has been dif-
ficult to accomplish using RPA. In a typical RPA imple-
mentation for native computing systems, selectors are
used, which work using the underlying properties of the
elements of the User Interface (UI) to identify application
elements (e.g., buttons, text fields, etc.). However, this
technique breaks down when trying to automate the
same software in a VDI environment. The reason for the
breakdown is that VDI environments stream an image of
the remote desktop in a similar manner to how video
streaming services do. There are simply no selectors to
be identified in the images (i.e. "frames") of the "video."
Attempts have been made to solve this challenge using
Optical Character Recognition (OCR) and image match-
ing. However, these techniques have proven to be insuf-
ficiently reliable and have caused maintenance issues
since even minor changes in the UI tend to break the
automations.
[0018] However, use of CV models, such as those em-
ployed by UiPath®, provides the ability to automate such
image-based environments using deep learning. Design-
ers (and later, robots) in some embodiments may enable
human-like recognition of user interfaces using a mix of
Artificial Intelligence (AI), CV, OCR, text fuzzy-matching,
and a novel anchoring system, which may be single an-

5 6 



EP 3 767 528 A1

5

5

10

15

20

25

30

35

40

45

50

55

chor or multi-anchor. This allows such designers/robots
to "see" the screen and visually identify its graphical com-
ponents instead of relying on their hidden properties,
identifiers, and other metadata. It should be noted that
this CV-based approach is not limited to VDI environ-
ments in some embodiments. Certain embodiments can
also recognize visual graphical components across a
wide range of cases where traditional UI automation tech-
niques struggle, including, but not limited to, SAP, Flash,
Silverlight, PDFs, images of various formats (e.g., JPG,
PNG, BMP, etc.), etc.
[0019] Unlike traditional image automation, some em-
bodiments do not rely on image matching for the primary
CV model. As a result, such embodiments may be highly
resilient to interface changes including, but not limited to,
color, font, size, resolution changes, etc. that would break
an image matching model for that interface. The CV mod-
el of some embodiments may be able to handle these
changes all at once and still find the intended graphical
components.
[0020] Some embodiments may be particularly bene-
ficial for VM architectures, such as a thin client architec-
ture. However, virtualization could be performed with cli-
ent computing systems of any suitable power and func-
tionality (e.g., standalone desktop and laptop computing
systems, smart phones, etc.). In a thin client architecture,
for instance, the client computing system is a lightweight
computer that establishes a remote connection with a
server or network of servers, whether locally located or
distributed (e.g., a cloud computing architecture). Typi-
cally, a client VM session is executed on one server.
[0021] The server performs most of the tasks of a con-
ventional personal computer (i.e., launching software ap-
plications and storing data) and sends screen images to
the client computing system. The client computing sys-
tem tracks keystrokes and mouse clicks (or touches on
a haptic interface) of where the user is interacting with
the image and sends this information to the server. The
server then provides this information to a corresponding
application executing on the server that the user is seek-
ing to interact with. The screen image is then updated
accordingly and sent to the user, which typically mimics
the application as if it were executing on the user’s com-
puting system. Typically, screen updates are sent to the
thin client in real time or near-real time.
[0022] Since images are used, some embodiments
may be well suited to use in VM systems, per the above.
The CV model seeks to identify graphical components
contained within the image. This may be augmented with
a text recognition module that seeks to identify text in the
image, which may be included within graphical compo-
nents (e.g., a text box, a text field, etc.).
[0023] FIG. 1 is an architectural diagram illustrating an
RPA system 100, according to an embodiment of the
present invention. RPA system 100 includes a designer
110 that allows a developer to design and implement
workflows. Designer 110 may provide a solution for ap-
plication integration, as well as automating third-party ap-

plications, administrative Information Technology (IT)
tasks, and business IT processes. Designer 110 may fa-
cilitate development of an automation project, which is a
graphical representation of a business process. Simply
put, designer 110 facilitates the development and deploy-
ment of workflows and robots.
[0024] The automation project enables automation of
rule-based processes by giving the developer control of
the execution order and the relationship between a cus-
tom set of steps developed in a workflow, defined herein
as "activities." One commercial example of an embodi-
ment of designer 110 is UiPath Studio™. Each activity
may include an action, such as clicking a button, reading
a file, writing to a log panel, etc. In some embodiments,
workflows may be nested or embedded.
[0025] Some types of workflows may include, but are
not limited to, sequences, flowcharts, Finite State Ma-
chines (FSMs), and/or global exception handlers. Se-
quences may be particularly suitable for linear process-
es, enabling flow from one activity to another without clut-
tering a workflow. Flowcharts may be particularly suitable
to more complex business logic, enabling integration of
decisions and connection of activities in a more diverse
manner through multiple branching logic operators.
FSMs may be particularly suitable for large workflows.
FSMs may use a finite number of states in their execution,
which are triggered by a condition (i.e., transition) or an
activity. Global exception handlers may be particularly
suitable for determining workflow behavior when encoun-
tering an execution error and for debugging processes.
[0026] Once a workflow is developed in designer 110,
execution of business processes is orchestrated by con-
ductor 120, which orchestrates one or more robots 130
that execute the workflows developed in designer 110.
One commercial example of an embodiment of conductor
120 is UiPath Orchestrator™. Conductor 120 facilitates
management of the creation, monitoring, and deploy-
ment of resources in an environment. Conductor 120 may
act as an integration point with third-party solutions and
applications.
[0027] Conductor 120 may manage a fleet of robots
130, connecting and executing robots 130 from a cen-
tralized point. Types of robots 130 that may be managed
include, but are not limited to, attended robots 132, un-
attended robots 134, development robots (similar to un-
attended robots 134, but used for development and test-
ing purposes), and nonproduction robots (similar to at-
tended robots 132, but used for development and testing
purposes). Attended robots 132 are triggered by user
events and operate alongside a human on the same com-
puting system. Attended robots 132 may be used with
conductor 120 for a centralized process deployment and
logging medium. Attended robots 132 may help the hu-
man user accomplish various tasks, and may be trig-
gered by user events. In some embodiments, processes
cannot be started from conductor 120 on this type of robot
and/or they cannot run under a locked screen. In certain
embodiments, attended robots 132 can only be started

7 8 



EP 3 767 528 A1

6

5

10

15

20

25

30

35

40

45

50

55

from a robot tray or from a command prompt. Attended
robots 132 should run under human supervision in some
embodiments.
[0028] Unattended robots 134 run unattended in virtual
environments and can automate many processes. Unat-
tended robots 134 may be responsible for remote exe-
cution, monitoring, scheduling, and providing support for
work queues. Debugging for all robot types may be run
in designer 110 in some embodiments. Both attended
and unattended robots may automate various systems
and applications including, but not limited to, mainframes,
web applications, VMs, enterprise applications (e.g.,
those produced by SAP®, SalesForce®, Oracle®, etc.),
and computing system applications (e.g., desktop and
laptop applications, mobile device applications, wearable
computer applications, etc.).
[0029] Conductor 120 may have various capabilities
including, but not limited to, provisioning, deployment,
configuration, queueing, monitoring, logging, and/or pro-
viding interconnectivity. Provisioning may include creat-
ing and maintenance of connections between robots 130
and conductor 120 (e.g., a web application). Deployment
may include assuring the correct delivery of package ver-
sions to assigned robots 130 for execution. Configuration
may include maintenance and delivery of robot environ-
ments and process configurations. Queueing may in-
clude providing management of queues and queue
items. Monitoring may include keeping track of robot
identification data and maintaining user permissions.
Logging may include storing and indexing logs to a da-
tabase (e.g., an SQL database) and/or another storage
mechanism (e.g., ElasticSearch®, which provides the
ability to store and quickly query large datasets). Con-
ductor 120 may provide interconnectivity by acting as the
centralized point of communication for third-party solu-
tions and/or applications.
[0030] Robots 130 are execution agents that run work-
flows built in designer 110. One commercial example of
some embodiments of robot(s) 130 is UiPath Robots™.
In some embodiments, robots 130 install the Microsoft
Windows® Service Control Manager (SCM)-managed
service by default. As a result, such robots 130 can open
interactive Windows® sessions under the local system
account, and have the rights of a Windows® service.
[0031] In some embodiments, robots 130 can be in-
stalled in a user mode. For such robots 130, this means
they have the same rights as the user under which a
given robot 130 has been installed. This feature may also
be available for High Density (HD) robots, which ensure
full utilization of each machine at its maximum potential.
In some embodiments, any type of robot 130 may be
configured in an HD environment.
[0032] Robots 130 in some embodiments are split into
several components, each being dedicated to a particular
automation task. The robot components in some embod-
iments include, but are not limited to, SCM-managed ro-
bot services, user mode robot services, executors,
agents, and command line. SCM-managed robot servic-

es manage and monitor Windows® sessions and act as
a proxy between conductor 120 and the execution hosts
(i.e., the computing systems on which robots 130 are
executed). These services are trusted with and manage
the credentials for robots 130. A console application is
launched by the SCM under the local system.
[0033] User mode robot services in some embodi-
ments manage and monitor Windows® sessions and act
as a proxy between conductor 120 and the execution
hosts. User mode robot services may be trusted with and
manage the credentials for robots 130. A Windows® ap-
plication may automatically be launched if the SCM-man-
aged robot service is not installed.
[0034] Executors may run given jobs under a Win-
dows® session (i.e., they may execute workflows. Exec-
utors may be aware of per-monitor dots per inch (DPI)
settings. Agents may be Windows® Presentation Foun-
dation (WPF) applications that display the available jobs
in the system tray window. Agents may be a client of the
service. Agents may request to start or stop jobs and
change settings. The command line is a client of the serv-
ice. The command line is a console application that can
request to start jobs and waits for their output.
[0035] Having components of robots 130 split as ex-
plained above helps developers, support users, and com-
puting systems more easily run, identify, and track what
each component is executing. Special behaviors may be
configured per component this way, such as setting up
different firewall rules for the executor and the service.
The executor may always be aware of DPI settings per
monitor in some embodiments. As a result, workflows
may be executed at any DPI, regardless of the configu-
ration of the computing system on which they were cre-
ated. Projects from designer 110 may also be independ-
ent of browser zoom level in some embodiments. For
applications that are DPI-unaware or intentionally
marked as unaware, DPI may be disabled in some em-
bodiments.
[0036] FIG. 2 is an architectural diagram illustrating a
deployed RPA system 200, according to an embodiment
of the present invention. In some embodiments, RPA sys-
tem 200 may be, or may be a part of, RPA system 100
of FIG. 1. It should be noted that the client side, the server
side, or both, may include any desired number of com-
puting systems without deviating from the scope of the
invention. On the client side, a robot application 210 in-
cludes executors 212, an agent 214, and a designer 216.
However, in some embodiments, designer 216 may not
be running on computing system 210. Executors 212 are
running processes. Several business projects may run
simultaneously, as shown in FIG. 2. Agent 214 (e.g., a
Windows® service) is the single point of contact for all
executors 212 in this embodiment. All messages in this
embodiment are logged into conductor 230, which proc-
esses them further via database server 240, indexer
server 250, or both. As discussed above with respect to
FIG. 1, executors 212 may be robot components.
[0037] In some embodiments, a robot represents an

9 10 



EP 3 767 528 A1

7

5

10

15

20

25

30

35

40

45

50

55

association between a machine name and a username.
The robot may manage multiple executors at the same
time. On computing systems that support multiple inter-
active sessions running simultaneously (e.g., Windows®
Server 2012), multiple robots may be running at the same
time, each in a separate Windows® session using a
unique username. This is referred to as HD robots above.
[0038] Agent 214 is also responsible for sending the
status of the robot (e.g., periodically sending a "heart-
beat" message indicating that the robot is still functioning)
and downloading the required version of the package to
be executed. The communication between agent 214
and conductor 230 is always initiated by agent 214 in
some embodiments. In the notification scenario, agent
214 may open a WebSocket channel that is later used
by conductor 230 to send commands to the robot (e.g.,
start, stop, etc.).
[0039] On the server side, a presentation layer (web
application 232, Open Data Protocol (OData) Represent-
ative State Transfer (REST) Application Programming
Interface (API) endpoints 234, and notification and mon-
itoring 236), a service layer (API implementation / busi-
ness logic 238), and a persistence layer (database server
240 and indexer server 250) are included. Conductor 230
includes web application 232, OData REST API end-
points 234, notification and monitoring 236, and API im-
plementation / business logic 238. In some embodi-
ments, most actions that a user performs in the interface
of conductor 220 (e.g., via browser 220) are performed
by calling various APIs. Such actions may include, but
are not limited to, starting jobs on robots, adding/remov-
ing data in queues, scheduling jobs to run unattended,
etc. without deviating from the scope of the invention.
Web application 232 is the visual layer of the server plat-
form. In this embodiment, web application 232 uses Hy-
pertext Markup Language (HTML) and JavaScript (JS).
However, any desired markup languages, script lan-
guages, or any other formats may be used without devi-
ating from the scope of the invention. The user interacts
with web pages from web application 232 via browser
220 in this embodiment in order to perform various ac-
tions to control conductor 230. For instance, the user may
create robot groups, assign packages to the robots, an-
alyze logs per robot and/or per process, start and stop
robots, etc.
[0040] In addition to web application 232, conductor
230 also includes service layer that exposes OData
REST API endpoints 234. However, other endpoints may
be included without deviating from the scope of the in-
vention. The REST API is consumed by both web appli-
cation 232 and agent 214. Agent 214 is the supervisor
of one or more robots on the client computer in this em-
bodiment.
[0041] The REST API in this embodiment covers con-
figuration, logging, monitoring, and queueing functional-
ity. The configuration endpoints may be used to define
and configure application users, permissions, robots, as-
sets, releases, and environments in some embodiments.

Logging REST endpoints may be used to log different
information, such as errors, explicit messages sent by
the robots, and other environment-specific information,
for instance. Deployment REST endpoints may be used
by the robots to query the package version that should
be executed if the start job command is used in conductor
230. Queueing REST endpoints may be responsible for
queues and queue item management, such as adding
data to a queue, obtaining a transaction from the queue,
setting the status of a transaction, etc.
[0042] Monitoring REST endpoints monitor web appli-
cation 232 and agent 214. Notification and monitoring
API 236 may be REST endpoints that are used for reg-
istering agent 214, delivering configuration settings to
agent 214, and for sending/receiving notifications from
the server and agent 214. Notification and monitoring
API 236 may also use WebSocket communication in
some embodiments.
[0043] The persistence layer includes a pair of servers
in this embodiment - database server 240 (e.g., a SQL
server) and indexer server 250. Database server 240 in
this embodiment stores the configurations of the robots,
robot groups, associated processes, users, roles, sched-
ules, etc. This information is managed through web ap-
plication 232 in some embodiments. Database server
240 may manages queues and queue items. In some
embodiments, database server 240 may store messages
logged by the robots (in addition to or in lieu of indexer
server 250).
[0044] Indexer server 250, which is optional in some
embodiments, stores and indexes the information logged
by the robots. In certain embodiments, indexer server
250 may be disabled through configuration settings. In
some embodiments, indexer server 250 uses Elastic-
Search®, which is an open source project full-text search
engine. Messages logged by robots (e.g., using activities
like log message or write line) may be sent through the
logging REST endpoint(s) to indexer server 250, where
they are indexed for future utilization.
[0045] FIG. 3 is an architectural diagram illustrating the
relationship 300 between a designer 310, activities 320,
330, and drivers 340, according to an embodiment of the
present invention. Per the above, a developer uses de-
signer 310 to develop workflows that are executed by
robots. Workflows may include user-defined activities
320 and UI automation activities 330. Some CV activities
may include, but are not limited to, click, type, get text,
hover, element exists, refresh scope, highlight, etc. Click
in some embodiments identifies an element using CV,
OCR, fuzzy text matching, and multi-anchor, for example,
and clicks it. Type may identify an element using the
above and types in the element. Get text may identify the
location of specific text and scan it using OCR. Hover
may identify an element and hover over it. Element exists
may check whether an element exists on the screen using
the techniques described above. In some embodiments,
there may be hundreds or even thousands of activities
that can be implemented in designer 310. However, any

11 12 



EP 3 767 528 A1

8

5

10

15

20

25

30

35

40

45

50

55

number and/or type of activities may be available without
deviating from the scope of the invention.
[0046] UI automation activities 330 are a subset of spe-
cial, lower level activities that are written in lower level
code (e.g., CV activities) and facilitate interactions with
the screen. UI automation activities facilitate these inter-
actions via drivers 340 that allow the robot to interact with
the desired software. For instance, drivers 340 may in-
clude OS drivers 342, browser drivers 344, VM drivers
346, enterprise application drivers 348, etc.
[0047] Drivers 340 may interact with the OS at a low
level looking for hooks, monitoring for keys, etc. They
may facilitate integration with Chrome®, IE®, Citrix®,
SAP®, etc. For instance, the "click" activity performs the
same role in these different applications via drivers 340.
[0048] FIG. 4 is an architectural diagram illustrating an
RPA system 400, according to an embodiment of the
present invention. In some embodiments, RPA system
400 may be or include RPA systems 100 and/or 200 of
FIGS. 1 and/or 2. RPA system 400 includes multiple client
computing systems 410 running robots. Computing sys-
tems 410 are able to communicate with a conductor com-
puting system 420 via a web application running thereon.
Conductor computing system 420, in turn, is able to com-
municate with a database server 430 and an optional
indexer server 440.
[0049] With respect to FIGS. 2 and 4, it should be noted
that while a web application is used in these embodi-
ments, any suitable client/server software may be used
without deviating from the scope of the invention. For
instance, the conductor may run a server-side application
that communicates with non-web-based client software
applications on the client computing systems.
[0050] FIG. 5A illustrates an RPA implementation 500
employing CV for a VM system at runtime, according to
an embodiment of the present invention. A VM server
510 produces a series of images 520 that are sent to a
client computing system 530. Images 520 may be dis-
played by an application running on computing system
530. Alternatively, images 520 may be displayed as the
screen of computing system 530 itself.
[0051] Images 520 from VM server 510 are sent to a
robot 532, which receives identifications of graphical
components from a CV model executed on CV server
540, as well as OCR data from an OCR server 550 (e.g.,
that provided by Google®, Microsoft®, Abbyy®, etc.). In
some embodiments, the CV model and OCR may be
executed on the same server. In certain embodiments
one or both of the CV model and OCR may be executed
on computing system 530. In some embodiments, robot
532 may reside on a different computing system, so long
as it has access to image 520 and data from CV server
540 and OCR server 550. Robot 532 processes the in-
formation received from the CV model and OCR, and
uses this information to recognize graphical components
in the image. The robot then performs the desired activ-
ities (e.g., filling in information, clicking buttons, interfac-
ing with third party software, etc.).

[0052] FIG. 5B illustrates RPA implementation 500
where a graphical component was misidentified or not
identified at design time, according to an embodiment of
the present invention. Rather than running a robot 532,
computing system 530 is running a designer 534 in this
embodiment. It should also be noted that while computing
system 530 is shown in FIG. 5B as being the same com-
puting system. In this case, the user has drawn a bound-
ing shape 522 encompassing a section of image 520
where the graphical component was misidentified or not
identified.
[0053] Designer 534 receives the representative data
of bounding shape 522 and sends this information, along
with image 520, to an image database 560. Image data-
base 560, in turn, provides the representative data and
image to a reviewer’s computing system 570. The human
reviewer using reviewer computing system 570 may be
a software engineer or some other individual who has
the ability to determine whether the graphical component
was actually not identified or misidentified. The human
reviewer then runs the image through the CV model via
CV server 540 and checks the result. If the image and
representative data submitted by designer 534 are in-
deed indicative of such an error, the reviewer, via review-
er computing system 570, labels the misidentified or un-
identified graphical component correctly and sends im-
age 520 to an ML system 580 (e.g., one or more servers,
distributed or cloud computing systems, supercomput-
ers, quantum computing systems, etc.) with the appro-
priate label for retraining. ML system 580 then starts the
deep learning retraining process for the CV model. Per
the above, in some embodiments, this retraining may be
done in a batch after other errors are received due to the
relatively long time that DLNN systems may take to re-
train the CV model.
[0054] During normal operation of CV in some embod-
iments, the following three types of information are stored
in image database 540 and may be used for retraining:
(1) design time images; (2) reported issues; and (3) im-
age matching areas. Design time images in some em-
bodiments are screenshots that are captured when the
user indicates to the application that he or she would like
to automate. Such screenshots may be the full UI with
no additional data in some embodiments. This may be
so that a reviewer may look at the screenshot and its
detection results and check whether everything was de-
tected properly. If so, the screenshot may be discarded.
However, if any error(s) are noticed, the reviewer may
label the error(s) accordingly and send the error(s) to ML
system 580 (e.g., an ML training server).
[0055] With respect to reported issues, in some em-
bodiments, when an element is not detected or misiden-
tified, the user may click the "report issue" button, make
a selection (e.g., via drawing a box) to indicate the area
where the error exists, and click a submit button, for ex-
ample. This screenshot image and the highlighted area
are then sent to a reviewer. The reviewer checks whether
there was indeed an error, labels the element(s) with the

13 14 



EP 3 767 528 A1

9

5

10

15

20

25

30

35

40

45

50

55

proper label(s), and sends the image and correct label(s)
to ML system 580 for retraining.
[0056] Image matching areas may follow the same
general flow as reported issues in some embodiments.
The full UI and the coordinates of the image matching
area may be sent to image database 540. A reviewer
then checks everything, and if there are error(s), sends
the data to ML system 560 for retraining.
[0057] Once the CV model has been retrained, ML sys-
tem 580 sends the retrained CV model to CV server 540.
The retrained CV model is then used to perform CV anal-
ysis on future versions of image 520.
[0058] Per the above, some embodiments are capable
of performing CV and OCR on SAP, Flash, Silverlight,
PDFs, images of various formats (e.g., JPG, PNG, BMP,
etc.), and the like. In the case of SAP, an SAP server
may take the place of VM server 510. In some embodi-
ments, multiple server types (e.g., VM servers, SAP serv-
ers, etc.) may communicate with client computing system
530 simultaneously. In certain embodiments, in addition
to or in lieu of the remote server(s) discussed above,
local instances of Flash, Silverlight, PDFs, images, etc.
may be displayed on client computing system 530, and
robot 532 may process their images as discussed above.
[0059] FIGS. 6A and 6B illustrate a remote desktop
connection window 600 for a VM before (FIG. 6A) and
after (FIG. 6B) a user has attempted to select a graphical
component on the screen. As can be seen, when the
user seeks to select the field next to "On Us Check", the
entire window is highlighted. This is because remote
desktop connection window 600 is merely an image.
[0060] FIG. 7A is a screenshot illustrating a selector
tool window 710 and a remote desktop connection win-
dow 700 after CV/OCR have been run and the results
have been displayed to the user via the designer, accord-
ing to an embodiment of the present invention. As can
be seen, text field 702 is now identified and selectable,
which was not the case with window 600. However, the
CV model may not always identify all of the graphical
components correctly and/or may miss one or more
graphical components. For instance, assume that the
"Cash Count" button was not identified by the CV model,
for example. In such a case, the user may use selector
tool window 700 that allows the user to make a selection
704. See FIG. 7B. In this embodiment, results pertinent
to the selection are shown in selector window 710. The
user may then select the area on the screen where the
misidentification or non-identification occurred, creating
a selected area 706. It should be noted that per the above,
any suitable shape may be defined and/or used without
deviating from the scope of the invention.
[0061] In some embodiments, the image and repre-
sentative data are stored in an automation file (workflow)
and will be used at runtime in order to locate that specific
screen element and operate it (clicking it, for example)
when a robot executes the workflow logic autonomously.
In certain embodiments, behind the scenes, the image
and representative data pertaining to the selection indi-

cated by the user are sent to an image database to be
reviewed by a reviewer, and possibly used for retraining.
Per the above, this may occur without the user’s knowl-
edge.
[0062] After retraining of the CV model occurs, the CV
model may be run again and used by the designer to
show the user the graphical components identified there-
in. Now, all of the graphical components in window 700
should be correctly identified, as indicated by the shading
in FIG. 7C. Cash count button 708 is now recognized.
Once the user is confident that the workflow is operating
correctly and all graphical components are properly iden-
tified, the workflow can be autonomously executed by a
robot.
[0063] In some embodiments, a multi-anchor matching
algorithm is employed for uniquely recognizing graphical
components in an image. The CV model may identify
specific graphical components on the screen. FIG. 8 is
a screenshot illustrating an anchor designation window
810 and a remote desktop connection window 800 after
CV/OCR have been run and the results have been dis-
played to the user via the designer, according to an em-
bodiment of the present invention. Here, the user identi-
fies Cash Count button 802 as a target. The user then
identifies a text field 804 to its left as an anchor. In this
case, the presence of text field 804 to the left of Cash
Count button 802 is sufficient to uniquely identify it.
[0064] However, this may not be sufficient to uniquely
identify the graphical component in all cases (e.g., there
are two text labels "Name" to the left of two different text
fields). In such a case, the user may be asked to add one
or more unique discriminator anchors to uniquely identify
the graphical component. Positional information, size in-
formation, orientation information, etc. pertaining to the
anchors and target may be used to define characteristics
of a geometric shape or a graphical structure (e.g., a
graphical "star" such as an out-star, but without directions
(vectors), multiple line segments connected in various
ways, etc.). This shape or structure may then be used to
uniquely determine the target graphical component.
[0065] By way of nonlimiting example, consider the
case mentioned above, where a certain text label is found
to the left of a name text field (e.g., "Name"). However,
assume that the image also includes a second name text
field with the same label text to its left. The presence of
this label alone does not distinguish between the two text
fields in and of itself.
[0066] However, it may be the case that the positional
relationship of another graphical element allows the
unique identification of one text field versus the other.
For instance, a button may be located in a certain place
on the screen. By analyzing characteristics (e.g., vertex
coordinates) of a triangle between one text field, the label
to its left, and the button versus the characteristics of a
triangle between the other text field, the label to its left,
and the button, it is possible to uniquely distinguish be-
tween the two. This unique identification allows a robot
executing the workflow to subsequently correctly identify

15 16 



EP 3 767 528 A1

10

5

10

15

20

25

30

35

40

45

50

55

both text fields and populate them with the appropriate
respective information.
[0067] FIGS. 9A-C illustrate such an example. A win-
dow 900 includes a form with duplicate labels and text
fields. Labels may be recognized using OCR and text
fields may be recognized using a CV model. In this case,
window 900 includes first name text fields 910, 920 and
first name labels 912, 922.
[0068] As seen in FIG. 9B, for example, a "First Name"
label to the left of a text field is not enough to uniquely
distinguish between first name text field 910 and first
name text field 920. For instance, when the user selects
first name label 912 as an anchor to identify first name
text field 910 as a target, the system recognizes that this
would also identify first name text field 920. The system
thus shades first name text field 920 and first name label
922 to let the user know that first name label 912 alone
as an anchor will not work. Recognizing that at another
anchor is thus required, the user selects shipping label
914 as a second anchor. The system recognizes that this
allows the unique identification of first name text field 910
in this form.
[0069] It should also be kept in mind that the relative
positions of each graphical component may change
somewhat from one image to another (consider the case
of a scanned receipt, for example). However, by defining
respective shape relationships (in this case, coordinates
in window 900 for target 910 and each anchor 912, 914,
as well as line segments between their edges, although
any desired location may be used without deviating from
the scope of the invention) and looking at the segment
lengths and angles, it can be determined which text field
is which. While line segments from target 910 to each
anchor 912, 914 are used here, any desired number of
anchors and any desired shape(s) may be used without
deviating from the scope of the invention. Indeed, any
geometric (e.g., triangle, rectangle, etc.) or non-geomet-
ric shapes (e.g., non-closed line segment-based struc-
tures such as that shown) may be used without deviating
from the scope of the invention.
[0070] In some embodiments, the angles and segment
lengths of the shapes defined by the multi-anchor match-
ing algorithm may be elastic within a tolerance to accom-
modate changes in scale, DPI, color variance, fonts, vid-
eo frame rates, shadowing, etc. in the UI. Elasticity may
be particularly beneficial for a video stream or images
from a VM in some embodiments. In certain embodi-
ments, however, the algorithm may be relatively or fully
inelastic, employing limited tolerances in the former case
and no tolerance in the latter case. This may assist in
finding close matches or exact matches, respectively.
[0071] Text fuzzy-matching logic may be used in some
embodiments to compensate for inaccuracies or errors
in OCR engines, such as Google® cloud OCR, Micro-
soft® OCR, Tesseract® OCR, etc. As an example, with
text fuzzy matching, detecting "NAM" or "NME" may be
logically associated or matched with "NAME".
[0072] In the examples given herein, geometric match-

ing with thresholding, such as for relative distance asso-
ciated with an anchor, may be utilized for RPA of a UI.
As an example, each element in an image of a UI may
be related with a confidence level. Possible matches of
an element below the threshold may be discarded for
matching. By way of nonlimiting example, detected ele-
ments below a CI of 60% may be discarded.
[0073] In some embodiments, at least part of the geo-
metric shapes defined by the multiple anchors and target
may snap horizontally and/or vertically with a smaller tol-
erance for geometric thresholding. Thresholding may
otherwise take place as described above, but with a tight-
er tolerance. This may be done in cases where the loca-
tion of graphical components relative to one another is
likely to be fixed.
[0074] In certain embodiments, a list of probabilities
may be returned from the CV model for each graphical
element. When an element is misidentified, other ele-
ments may be used as anchors to make the determina-
tion. For instance, consider the case that a radio button
was misidentified as a checkbox as the most probable
match. See screenshot 1000 and selector window 1010
of FIG. 10, for example. It tends to be the case that the
second or third most likely match is the actual match.
The addition of another anchor, such as a nearby radio
button, helps to identify which element a given compo-
nent is from the list of probabilities.
[0075] Consider another example where a CV model
identified an object in the middle of the road as most likely
being a bicycle. However, the object is actually a drone,
and bicycle is lower on the list of probabilities. Having
the rider as an "anchor" could allow the CV model to
correctly identify the object as a bicycle.
[0076] FIG. 11 is a flowchart illustrating a process 1100
for retraining a CV model, according to an embodiment
of the present invention. Process 1100 begins with exe-
cuting a CV model and OCR on an image that includes
graphical components to identify the graphical compo-
nents within the image at 1105. In some embodiments,
the image is from a virtual machine (VM). A designer
application then receives identifications of graphical
components and text from executing the CV model and
OCR at 1110. The designer displays the image at 1115
with the identified graphical components that were iden-
tified by the CV model on a visual display. The designer
then receives a selection of a misidentified or non-iden-
tified graphical component in the image at 1120. Based
on this selection, the robot determines representative da-
ta of an area of the image that includes the selection at
1125 and embeds the image to be used with alternative
image processing logic (e.g., image-matching logic) in
the workflow at 1130. The representative data and the
image are then transmitted to an image database at 1135.
[0077] In some embodiments, the representative infor-
mation comprises coordinates, line segments, or both,
that define a shape having an area. In certain embodi-
ments, a user of a computing system on which the de-
signer is running manually makes the selection of the

17 18 



EP 3 767 528 A1

11

5

10

15

20

25

30

35

40

45

50

55

misidentified or non-identified graphical component, and
the designer does not provide the user with an indication
that the representative data and the image are being sub-
mitted for retraining of the CV model. In some embodi-
ments, the CV model employs a multi-anchor matching
algorithm that uses shape characteristics defined by a
target graphical component and at least two anchor
graphical components in the image to determine a type
of the target graphical component. In certain embodi-
ments, a set of coordinates for the target graphical com-
ponent and each anchor graphical component are used
as endpoints of the shape and to define line segments
and angles in the geometric shape, and the angles and
lengths of the line segments of the geometric shape are
elastic within a tolerance to accommodate changes in
scale, DPI, color variance, fonts, video frame rates, shad-
owing, or any combination thereof.
[0078] After receipt by the image database, the image
is transmitted to a reviewer computing system at 1140.
A reviewer operating the reviewer computing system (or
the reviewer computing system itself automatically) ex-
ecutes the CV model on the image or causes the CV
model to be executed. If the reviewer does not believe
the error exists at 1145, the process ends, and the image
may be deleted from the image database in some em-
bodiments. If, however, the reviewer confirms the error
at 1145, the image and a correct label for the misidentified
or non-identified component are sent to an ML system
for retraining at 1150. After the ML system retrains the
CV model, the retrained CV model is received by a CV
server or a user computing system, for example, and the
retrained CV model is used in place of the old CV model.
[0079] FIG. 12 is an architectural diagram illustrating
a computing system 1200 configured to retrain a CV mod-
el, according to an embodiment of the present invention.
In some embodiments, computing system 1200 may be
one or more of the computing systems of FIGS. 1 to 5B.
Computing system 1200 includes a bus 1205 or other
communication mechanism for communicating informa-
tion, and processor(s) 1210 coupled to bus 1205 for
processing information. Processor(s) 1210 may be any
type of general or specific purpose processor, including
a Central Processing Unit (CPU), an Application Specific
Integrated Circuit (ASIC), a Field Programmable Gate
Array (FPGA), a Graphics Processing Unit (GPU), mul-
tiple instances thereof, and/or any combination thereof.
Processor(s) 1210 may also have multiple processing
cores, and at least some of the cores may be configured
to perform specific functions. Multi-parallel processing
may be used in some embodiments. In certain embodi-
ments, at least one of processor(s) 1210 may be a neu-
romorphic circuit that includes processing elements that
mimic biological neurons. In some embodiments, neuro-
morphic circuits may not require the typical components
of a Von Neumann computing architecture.
[0080] Computing system 1200 further includes a
memory 1215 for storing information and instructions to
be executed by processor(s) 1210. Memory 1215 can be

comprised of any combination of Random Access Mem-
ory (RAM), Read Only Memory (ROM), flash memory,
cache, static storage such as a magnetic or optical disk,
or any other types of non-transitory computer-readable
media or combinations thereof. Non-transitory computer-
readable media may be any available media that can be
accessed by processor(s) 1210 and may include volatile
media, non-volatile media, or both. The media may also
be removable, non-removable, or both.
[0081] Additionally, computing system 1200 includes
a communication device 1220, such as a transceiver, to
provide access to a communications network via a wire-
less and/or wired connection. In some embodiments,
communication device 1220 may be configured to use
Frequency Division Multiple Access (FDMA), Single Car-
rier FDMA (SC-FDMA), Time Division Multiple Access
(TDMA), Code Division Multiple Access (CDMA), Or-
thogonal Frequency Division Multiplexing (OFDM), Or-
thogonal Frequency Division Multiple Access (OFDMA),
Global System for Mobile (GSM) communications, Gen-
eral Packet Radio Service (GPRS), Universal Mobile Tel-
ecommunications System (UMTS), cdma2000, Wide-
band CDMA (W-CDMA), High-Speed Downlink Packet
Access (HSDPA), High-Speed Uplink Packet Access
(HSUPA), High-Speed Packet Access (HSPA), Long
Term Evolution (LTE), LTE Advanced (LTE-A), 802.11x,
Wi-Fi, Zigbee, Ultra-WideBand (UWB), 802.16x, 802.15,
Home Node-B (HnB), Bluetooth, Radio Frequency Iden-
tification (RFID), Infrared Data Association (IrDA), Near-
Field Communications (NFC), fifth generation (5G), New
Radio (NR), any combination thereof, and/or any other
currently existing or future-implemented communica-
tions standard and/or protocol without deviating from the
scope of the invention. In some embodiments, commu-
nication device 1220 may include one or more antennas
that are singular, arrayed, phased, switched, beamform-
ing, beamsteering, a combination thereof, and or any oth-
er antenna configuration without deviating from the scope
of the invention.
[0082] Processor(s) 1210 are further coupled via bus
1205 to a display 1225, such as a plasma display, a Liquid
Crystal Display (LCD), a Light Emitting Diode (LED) dis-
play, a Field Emission Display (FED), an Organic Light
Emitting Diode (OLED) display, a flexible OLED display,
a flexible substrate display, a projection display, a 4K
display, a high definition display, a Retina® display, an
In-Plane Switching (IPS) display, or any other suitable
display for displaying information to a user. Display 1225
may be configured as a touch (haptic) display, a three
dimensional (3D) touch display, a multi-input touch dis-
play, a multi-touch display, etc. using resistive, capaci-
tive, surface-acoustic wave (SAW) capacitive, infrared,
optical imaging, dispersive signal technology, acoustic
pulse recognition, frustrated total internal reflection, etc.
Any suitable display device and haptic I/O may be used
without deviating from the scope of the invention.
[0083] A keyboard 1230 and a cursor control device
1235, such as a computer mouse, a touchpad, etc., are

19 20 



EP 3 767 528 A1

12

5

10

15

20

25

30

35

40

45

50

55

further coupled to bus 1205 to enable a user to interface
with computing system. However, in certain embodi-
ments, a physical keyboard and mouse may not be
present, and the user may interact with the device solely
through display 1225 and/or a touchpad (not shown). Any
type and combination of input devices may be used as
a matter of design choice. In certain embodiments, no
physical input device and/or display is present. For in-
stance, the user may interact with computing system
1200 remotely via another computing system in commu-
nication therewith, or computing system 1200 may oper-
ate autonomously.
[0084] Memory 1215 stores software modules that pro-
vide functionality when executed by processor(s) 1210.
The modules include an operating system 1240 for com-
puting system 1200. The modules further include a CV
model retraining module 1245 that is configured to per-
form all or part of the processes described herein or de-
rivatives thereof. For example, computing system 1200
may be a client computing system, a conductor server,
a database server, an indexer server, a computing sys-
tem that performs OCR and/or CV, a reviewer computing
system, a computing system that performs all or part of
an ML process, etc. However, it should be noted that in
certain embodiments, such as where a GPU is used, the
CV model retraining module code may be stored in local
memory on that component. Computing system 1200
may include one or more additional functional modules
1250 that include additional functionality.
[0085] One skilled in the art will appreciate that a "sys-
tem" could be embodied as a server, an embedded com-
puting system, a personal computer, a console, a per-
sonal digital assistant (PDA), a cell phone, a tablet com-
puting device, a quantum computing system, or any other
suitable computing device, or combination of devices
without deviating from the scope of the invention. Pre-
senting the above-described functions as being per-
formed by a "system" is not intended to limit the scope
of the present invention in any way, but is intended to
provide one example of the many embodiments of the
present invention. Indeed, methods, systems, and appa-
ratuses disclosed herein may be implemented in local-
ized and distributed forms consistent with computing
technology, including cloud computing systems.
[0086] It should be noted that some of the system fea-
tures described in this specification have been presented
as modules, in order to more particularly emphasize their
implementation independence. For example, a module
may be implemented as a hardware circuit comprising
custom very large scale integration (VLSI) circuits or gate
arrays, off-the-shelf semiconductors such as logic chips,
transistors, or other discrete components. A module may
also be implemented in programmable hardware devices
such as field programmable gate arrays, programmable
array logic, programmable logic devices, graphics
processing units, or the like.
[0087] A module may also be at least partially imple-
mented in software for execution by various types of proc-

essors. An identified unit of executable code may, for
instance, include one or more physical or logical blocks
of computer instructions that may, for instance, be or-
ganized as an object, procedure, or function. Neverthe-
less, the executables of an identified module need not
be physically located together, but may include disparate
instructions stored in different locations that, when joined
logically together, comprise the module and achieve the
stated purpose for the module. Further, modules may be
stored on a computer-readable medium, which may be,
for instance, a hard disk drive, flash device, RAM, tape,
and/or any other such non-transitory computer-readable
medium used to store data without deviating from the
scope of the invention.
[0088] Indeed, a module of executable code could be
a single instruction, or many instructions, and may even
be distributed over several different code segments,
among different programs, and across several memory
devices. Similarly, operational data may be identified and
illustrated herein within modules, and may be embodied
in any suitable form and organized within any suitable
type of data structure. The operational data may be col-
lected as a single data set, or may be distributed over
different locations including over different storage devic-
es, and may exist, at least partially, merely as electronic
signals on a system or network.
[0089] The process steps performed in FIG. 11 may
be performed by a computer program, encoding instruc-
tions for the processor(s) to perform at least part of the
process described in FIG. 11, in accordance with em-
bodiments of the present invention. The computer pro-
gram may be embodied on a non-transitory computer-
readable medium. The computer-readable medium may
be, but is not limited to, a hard disk drive, a flash device,
RAM, a tape, and/or any other such medium or combi-
nation of media used to store data. The computer pro-
gram may include encoded instructions for controlling
processor(s) 1200 to implement all or part of the process
steps described in FIG. 11, which may also be stored on
the computer-readable medium.
[0090] The computer program can be implemented in
hardware, software, or a hybrid implementation. The
computer program can be composed of modules that are
in operative communication with one another, and which
are designed to pass information or instructions to dis-
play. The computer program can be configured to oper-
ate on a general purpose computer, an ASIC, or any other
suitable device.
[0091] It will be readily understood that the compo-
nents of various embodiments of the present invention,
as generally described and illustrated in the figures here-
in, may be arranged and designed in a wide variety of
different configurations. Thus, the detailed description of
the embodiments of the present invention, as represent-
ed in the attached figures, is not intended to limit the
scope of the invention as claimed, but is merely repre-
sentative of selected embodiments of the invention.
[0092] The features, structures, or characteristics of

21 22 



EP 3 767 528 A1

13

5

10

15

20

25

30

35

40

45

50

55

the invention described throughout this specification may
be combined in any suitable manner in one or more em-
bodiments. For example, reference throughout this spec-
ification to "certain embodiments," "some embodiments,"
or similar language means that a particular feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment of
the present invention. Thus, appearances of the phrases
"in certain embodiments," "in some embodiment," "in oth-
er embodiments," or similar language throughout this
specification do not necessarily all refer to the same
group of embodiments and the described features, struc-
tures, or characteristics may be combined in any suitable
manner in one or more embodiments.
[0093] It should be noted that reference throughout this
specification to features, advantages, or similar language
does not imply that all of the features and advantages
that may be realized with the present invention should
be or are in any single embodiment of the invention. Rath-
er, language referring to the features and advantages is
understood to mean that a specific feature, advantage,
or characteristic described in connection with an embod-
iment is included in at least one embodiment of the
present invention. Thus, discussion of the features and
advantages, and similar language, throughout this spec-
ification may, but do not necessarily, refer to the same
embodiment.
[0094] Furthermore, the described features, advantag-
es, and characteristics of the invention may be combined
in any suitable manner in one or more embodiments. One
skilled in the relevant art will recognize that the invention
can be practiced without one or more of the specific fea-
tures or advantages of a particular embodiment. In other
instances, additional features and advantages may be
recognized in certain embodiments that may not be
present in all embodiments of the invention.
[0095] One having ordinary skill in the art will readily
understand that the invention as discussed above may
be practiced with steps in a different order, and/or with
hardware elements in configurations which are different
than those which are disclosed. Therefore, although the
invention has been described based upon these pre-
ferred embodiments, it would be apparent to those of skill
in the art that certain modifications, variations, and alter-
native constructions would be apparent, while remaining
within the spirit and scope of the invention. In order to
determine the metes and bounds of the invention, there-
fore, reference should be made to the appended claims.

Claims

1. A non-transitory computer-readable medium storing
a computer program, the computer program config-
ured to cause at least one processor to:

receive identifications of graphical components
within an image from execution of a Computer

Vision (CV) model;
display the image with the identified graphical
components that were identified by the CV mod-
el on a visual display;
receive a selection of a misidentified or non-
identified graphical component in the image;
determine representative data of an area of the
image that includes the selection; and
transmit the representative data and the image
to an image database.

2. The non-transitory computer-readable medium of
claim 1, wherein the computer program is further
configured to cause the at least one processor to:
receive text information from the image provided by
an optical character recognition (OCR) application.

3. The non-transitory computer-readable medium of
claims 1 or 2, wherein the program is further config-
ured to cause the at least one processor to:
embed the image and alternative image processing
logic in a workflow to identify the misidentified or non-
identified graphical component while the CV model
is being retrained.

4. The non-transitory computer-readable medium of
claim 3, wherein the alternative image processing
logic comprises an image matching algorithm.

5. The non-transitory computer-readable medium of
any of claims 1-4, wherein the computer program is
further configured to cause the at least one proces-
sor to:

determine the representative data of the area of
the image that includes the selection; and
transmit the image and the selection without pro-
viding an indication to a user.

6. The non-transitory computer-readable medium of
any of claims 1-5, wherein the image database
stores screenshots as design time images, reported
issues, and image matching area selections.

7. The non-transitory computer-readable medium of
any of claims 1-6, wherein the image is from a virtual
machine (VM).

8. The non-transitory computer-readable medium of
any of claims 1-7, wherein the representative data
comprises coordinates, line segments, or both, that
define a shape having an area.

9. A system, comprising:

a database; and
a computing system comprising memory storing
machine-readable computer program instruc-

23 24 



EP 3 767 528 A1

14

5

10

15

20

25

30

35

40

45

50

55

tions and at least one processor configured to
execute the computer program instructions,
wherein
the instructions are configured to cause the at
least one processor to:

receive a selection of a misidentified or non-
identified graphical component in an image,
determine representative data of an area of
the image that includes the selection,
transmit the representative data and the im-
age to an image database for retraining of
a Computer Vision (CV) model,
receive identifications of graphical compo-
nents within the image from execution of a
retrained CV model, and
display the image with the identified graph-
ical components that were identified by the
retrained CV model on a visual display, and

the database is configured to store the repre-
sentative data and the image transmitted by the
at least one processor of the computing system.

10. The system of claim 9, wherein the instructions are
further configured to cause the at least one proces-
sor to:
embed the image and alternative image processing
logic in a workflow to identify the misidentified or non-
identified graphical component while the CV model
is being retrained.

11. A computer-implemented method, comprising:

receiving a selection, by a computing system,
of a misidentified or non-identified graphical
component in an image;
determining, by the computing system, repre-
sentative data of an area of the image that in-
cludes the selection;
transmitting, by the computing system, the rep-
resentative data and the image to an image da-
tabase; and
embedding the image and alternative image
processing logic in a workflow, by the computing
system, to identify the misidentified or non-iden-
tified graphical component while the CV model
is being retrained.

12. The computer-implemented method of claim 11, fur-
ther comprising:

receiving, by the computing system, identifica-
tions of graphical components within the image
from execution of a retrained CV model; and
displaying the image, by the computing system,
with the identified graphical components that
were identified by the retrained CV model on a

visual display.

13. The computer-implemented method of claims 11 or
12, wherein the computing system is configured to
determine the representative data of the area of the
image that includes the selection and transmit the
image and the selection without providing an indica-
tion to a user.

14. The computer-implemented method of any of claims
11-13, wherein the image database stores screen-
shots as design time images, reported issues, and
image matching area selections.

15. The computer-implemented method of any of claims
11-14, wherein the representative data comprises
coordinates, line segments, or both, that define a
shape having an area.

25 26 



EP 3 767 528 A1

15



EP 3 767 528 A1

16



EP 3 767 528 A1

17



EP 3 767 528 A1

18



EP 3 767 528 A1

19



EP 3 767 528 A1

20



EP 3 767 528 A1

21



EP 3 767 528 A1

22



EP 3 767 528 A1

23



EP 3 767 528 A1

24



EP 3 767 528 A1

25



EP 3 767 528 A1

26



EP 3 767 528 A1

27



EP 3 767 528 A1

28



EP 3 767 528 A1

29



EP 3 767 528 A1

30



EP 3 767 528 A1

31



EP 3 767 528 A1

32



EP 3 767 528 A1

33

5

10

15

20

25

30

35

40

45

50

55



EP 3 767 528 A1

34

5

10

15

20

25

30

35

40

45

50

55


	bibliography
	abstract
	description
	claims
	drawings
	search report

