
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0304810 A1

Khanal et al.

US 201403.04810A1

(43) Pub. Date: Oct. 9, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(60)

SYSTEMIS AND METHODS FOR
PROTECTING CLUSTER SYSTEMS FROM
TCP SYNATTACK

Applicant: Citrix Systems, Inc., Fort Lauderdale,
FL (US)

Inventors: Krishna Khanal, Bangalore (IN);
Saravana Annamalaisami, Bangalore
(IN); Mahesh Mylarappa, Bangalore
(IN)

Assignee: Citrix Systems, Inc., Fort Lauderdale,
FL (US)

Appl. No.: 14/245,533

Filed: Apr. 4, 2014

Related U.S. Application Data
Provisional application No. 61/809,319, filed on Apr.
6, 2013.

Appliance 200

Publication Classification

(51) Int. Cl.
H04L 29/06 (2006.01)

(52) U.S. Cl.
CPC H04L 63/1466 (2013.01)
USPC .. 726/22

(57) ABSTRACT

The present solution is directed to systems and methods for
synchronizing a random seed value among a plurality of
multi-core nodes in a cluster of nodes for generating a cookie
signature. The cookie signature may be used for protection
from SYN flood attacks. A cluster of nodes comprises one
master node and one or more other nodes. Each node com
prises one master core and one or more other cores. A random
number is generated at the master core of the master node.
The random number is synchronized across every other core.
The random number is used to generated a secret key value
that is attached in the encoded initial sequence number of a
SYN-ACK packet. If the responding ACK packet does not
contain the secret key value, then the ACK packet is dropped.

Shared Memory 704

Random Seed 706

Core 1 Core 2 Core 3
505A 505B 505C

Packet Packet Packet
Engine A Engine B Engine C
548A 548B 548C

Core 4 Core N
505D 505N

Packet Packet
Engine D Engine N
548D 548N

FOW Distributor 550

NC 552

Patent Application Publication Oct. 9, 2014 Sheet 1 of 23 US 2014/0304810 A1

200

i:
Appliance

Client O2b

O O
O O
O O

Client 102n FIG. A Server 106

Patent Application Publication Oct. 9, 2014 Sheet 2 of 23 US 2014/0304810 A1

Client 102a

. s: &

Client 102b

O
O
O

(l

Client O2 FIG. B

Patent Application Publication Oct. 9, 2014 Sheet 3 of 23 US 2014/0304810 A1

Appliance Appliance
Client O2) WAN WAN

Optimization Optimization
O device) device)

Client O2 FIG. 1C

Patent Application Publication Oct. 9, 2014 Sheet 4 of 23 US 2014/0304810 A1

Application

Application
Delivery
System 190

Policy Engine
195

Client Agent 120
performance
monitoring agent
197

Client 102
performance Server 106
monitoring
Service 198

Server 106A

FIG. 1D

Patent Application Publication Oct. 9, 2014 Sheet 5 of 23 US 2014/0304810 A1

100

\ 128
G D

122 Client 120

Memory Storage

150

123
Display

I/O device(s) Installation NetWOrk
CTRL Device Interface

126 127 N-124a-n 116 118

Pointing Keyboard

Fig. IE

Patent Application Publication Oct. 9, 2014 Sheet 6 of 23 US 2014/0304810 A1

101

140
Main

Processor

I/O I/O Memory
Port Port POrt

1

Fig. IF

Patent Application Publication Oct. 9, 2014 Sheet 7 of 23 US 2014/0304810 A1

101

101

CPU

101'

GPU

Fig. IH

Patent Application Publication Oct. 9, 2014 Sheet 8 of 23 US 2014/0304810 A1

Shell Services Health Monitoring
214 Programs 216

Multi-protocol
Compression

Manager 238
232

High-Speed Layer 2-7
Integrated Packet Engine 240
Timer 242 buffer 243

NetWOrk
Stack 267

Encryption Processor Processor || Memory
Processor 26 262 264

FIG. 2A

Patent Application Publication

VServer A276a

WServer A275

Client Agent
1203

Client 102a

SSL VPN28O

Client Agent Intranet P282
12Ob

Switching 284

Client 102b
DNS286

ACCeleration 288

Client Agent
12On App FW 290

monitoring agent
197 Client 102n

Appliance 200

FIG.2B

Oct. 9, 2014 Sheet 9 of 23 US 2014/0304810 A1

Service 270a

Server 106a

Service 2700

Server 106b

Service 27On

Server 106m

Patent Application Publication Oct. 9, 2014 Sheet 10 of 23 US 2014/0304810 A1

Client 102

user mode 303

1st Program
App 1 App 2 322

App N

monitoring
agent/script 197

310
Collection Agent senior API data

Structure 325 Acceleration
Program 302

interceptor
350

Client Agent 120

NetWork Streaming Client
Stack 306

Patent Application Publication Oct. 9, 2014 Sheet 11 of 23 US 2014/0304810 A1

device 100
virtualized cnvironment 400

VIRTUALIZATION LAYER

Virtual Machine 406a Virtual Machine 406b Virtual Machine 406c

Control
Operating Guest
System Operating Guest
405 System Operating

System
410a

Tools 41 Ob
Stack 404

HYPERVISORLAYER

Hypervisor 401

HARDWARE LAYER

Physical Disk(s) 428 Physical CPU(S) 421

Fig. 4A

Patent Application Publication Oct. 9, 2014 Sheet 12 of 23 US 2014/0304810 A1

Computing Device 100a Computing Device 100b
Virtual Virtual Virtual
Machine Machinc Machine
406a 406b 406d

Control OS Guest Control Guest
405a Operating OS 405b Operating

Management System Mgmt System
component 410a component 41 Ob

404a 404a

Resources
432a, 442a Hypervisor

401 b

Computing Device 100c
Virtual Machine

406f
Virtual Machine 450e

Control OS
405c

Management
component

404a

Patent Application Publication Oct. 9, 2014 Sheet 13 of 23 US 2014/0304810 A1

virtualized application delivery Controller 450

VServer A 275a VServer A 275a

VServer A 275n VServer A 275n

SSL VPN 280 SSL VPN 280

Intranet P 282 Intranet P 282

Switching 284 Switching 284

DNS 286 DNS 286

ACCeleration 288 ACCeleration 288

App FW 290 App FW 290

Virtualized environment 400

computing device 100

Fig. 4C

Patent Application Publication Oct. 9, 2014 Sheet 14 of 23 US 2014/0304810 A1

Functional
510C; Parallelism 500

A1 510A .
“Sio TCP :

NW ; R 515
I/O ----------

- - - - - - - - - - - Data

ps ess set sees is so 542D; Parallclism 540

542A
i. VIPs as as as as as as as as as 542E 41

VIP3 i 553 : vip, '': '" ; NIC1 Nic
; : VIP2 ; ; ;---------"; ; ; ----------

Flow-Based Data
Parallelism - 520

1.

essessssss- - - - - - - - - - - sessess is as ls ss ss sess s s sesses as

536B 536C ----------- : 536F 24? - - - - 536A "Sigis; 536E 536G, 536N;

Patent Application Publication Oct. 9, 2014 Sheet 15 of 23 US 2014/0304810 A1

/ 545

548A 548B 548N

Packet Packet Packet
Engine A Engine B O. O. O. Engine N

Memory Bus 556

Core 1 Core 2 I Core 3 Core 4 Core 5 Core 6 Core 7 COre N

505A SO5B 505C SOSD 505E 505F 505G 505N

Flow Distributor 550

NC 552

Fig. 5B

Patent Application Publication Oct. 9, 2014 Sheet 16 of 23 US 2014/0304810 A1

575

control COre)
506A

Global Cache 580

FIG.5C

Patent Application Publication Oct. 9, 2014 Sheet 17 of 23 US 2014/0304810 A1

an Interface Slaves
D: 610a-n

Client DataPlane Server DataPlane
602 604

AOoliance 200a

Interface
- - - - -1 - Master 608

Appliance Cluster
Back Plane 600

606

FIG, 6

Patent Application Publication

Appliance 200

Oct. 9, 2014 Sheet 18 of 23

Shared Memory 704

Random Seed 706 N
Y N

Packet
Engine A
548A

Packet
Engine B
548B

Previous
Cookie

Signature
712B

Previous
Cookie

Signature
712A

Packet
Engine C
548C

Packet
Engine D
548D

Previous
Cookie

Signature
712D

Previous
Cookie

Signature
712C

US 2014/0304810 A1

Packet
Engine N
548N

Previous
Cookie

Signature
712N

FOW Distributor 550

NC 552

FIG. 74

Patent Application Publication Oct. 9, 2014 Sheet 19 of 23 US 2014/0304810 A1

Generate global random seed
730

Store global random seed to local
Cache 732

ore current cookie signatures
as previous COOkie signatures

M

Generate new cookie signatures
from local random Seed 736

Long timer Short timer
expires 738 oires 740 eX

r random Seed
changed?

742

.) Primary Packet Engine

-) Other Packet Engine(s)

FIG. 7B

Patent Application Publication Oct. 9, 2014 Sheet 20 of 23 US 2014/0304810 A1

Receive request from client
With COOkie 720

Compare request Cookie
signature with current and Generate new cookie signatures
previous COOkie signatures from local random Seed 736

722

Ore Current COOKIe Signatures
as previous COOkie Signatures

M

Does Cookie NO
Signature
match?

Store global random seed to local
Cache 732

ACCept request
724

No Has global Yes
random Seed
changed?

742

Deny request 726

FIG. 7C

Patent Application Publication Oct. 9, 2014 Sheet 21 of 23 US 2014/0304810 A1

e 200A

2OOB 2OON

FIG, 8A

Patent Application Publication Oct. 9, 2014 Sheet 22 of 23 US 2014/0304810 A1

CCO's generates global random seed830

CCO's nodes Writes Seed to shared
memory and other COres read 835

CCO's pushes seed to Other nodes 840

Receiving Core of node steers to master
COre 845

Master COre writes to shared memory
And Other COres read Seed 850

FIG, 8B

Patent Application Publication Oct. 9, 2014 Sheet 23 of 23 US 2014/0304810 A1

Steered pkt Process the packet
bypassing DFD Step 874 Step872

Step886

Reply SYN-ACK Valid syn- Step890
cookie?

Allocate DFDSession

Steer the packet

FIG. 8C

US 2014/0304810 A1

SYSTEMS AND METHODS FOR
PROTECTING CLUSTER SYSTEMIS FROM

TCP SYN ATTACK

RELATED APPLICATION

0001. The present application claims the benefit of and
priority to U.S. Provisional Patent Application No. 61/809,
319 entitled “Systems and Methods for Protecting Cluster
Systems from TCP SYN Attack” and filed on May 9, 2013,
which is hereby incorporated by reference in its entirety for
all purposes.

FIELD OF THE DISCLOSURE

0002 The present application generally relates to data
communication networks. In particular, the present applica
tion relates to systems and methods for protecting clustered
networking devices from Transport Control Protocol (TCP)
SYN attacks.

BACKGROUND

0003. A cluster of network devices may have each network
device configured to establish transport layer connections
with clients and servers. Each network device in the cluster
may be a multi-core device with each configured to establish
transport layer connections. A transport control protocol
(TCP) connection may be established responsive to a hand
shake in which SYN and SYNACK are exchanged between
the end points. A device, such as multi-core device or a node
in a cluster, may be subject to a SYN flood attack. A SYN
flood is a form of denial-of-service attack in which an attacker
sends a Succession of SYN requests to a target device to try to
consume enough server resources to make the device unre
sponsive to legitimate traffic.

BRIEF SUMMARY

0004. In some aspects, the present solution is directed
towards protecting from SYN flood attacks in a cluster of
networking devices via the generation, synchronization and
use of a SYN-cookie for the cluster. For a node having mul
tiple cores, the node follows a master-slave concept to man
age the task of maintaining the SYN-cookie same across the
cores. Cores use shared memory to store the cookie. A packet
engine on a core, such as a first packet engine, is designated a
master packet engine. The master packet engine generates the
cookie seed and writes to the shared memory at a predeter
mined frequency, Such as every 120 secs. The other packet
engines on the other cores read the seed at a predetermined
frequency, such as 1 sec. from shared memory. Since the same
seed is used by all the packet engines, SYN-cookie generated
from the same side is valid across the cores.
0005. In further details of this process, upon bootup, the
multi-core device initializes shared memory parameters. At
this point, the master packet engine chooses the first seed and
initializes the seed on the shared memory. All the cores ini
tialize the seed writing time (e.g., master packet engine every
120 sec.) and reading time (e.g., other packet engines every 1
sec.) and reads the initial seed stored by the master packet
engine. All cores now have the same initial seed. The master
packet engine will update the seed in shared memory at the
predetermined frequency and each of the other cores and their
packet engines read the updated seed at a second predeter
mined frequency.

Oct. 9, 2014

0006. A core or packet engine while processing final ACK
of a TCP handshake, tires to match the clients ACK with the
current cookie Value. If there is a match, the packet engine
establishes the connection and creates resources, such as
record, for the connection. If there is not a match, the packet
engine tries to match the client’s final ACK with the previous
cookie (i.e. previous seed). If there is a match with previous
cookie, the packet engine establishes the connection and cre
ates resources for the connection. If there is still not a match,
the packet engine determines if current seed is not same as
seed in shared memory. If so, the packet engine reads the seed
from shared memory and updates the current and previous
seed. The packet engine will try to match the cookie with the
updated current and previous seed values and if not a match,
the packet engine drops the connection.
0007. The present solution addresses the use of SYN
cookies for clusters by providing SYN-cookie seed genera
tion and synchronization across the nodes incluster and gen
erating SYN-ACK from the flow receiver of the cluster. For
SYN-cookies seed generation and synchronization, the clus
ter may follow a similar master-slave mechanism of a multi
core device to generate and synchronize the SYN-cookies
across the nodes in the cluster. A first packet engine on a
master node may have the responsibility of generating and
synchronizing the cookie seed. The master node pushes seed
updates by broadcasting node to node messages to all the
other nodes to update the seed on all the nodes. The master
node may perform a push at a predetermined frequency. Such
as every 120 second, when the owner or master packet engine
on the master generated the new seed. For updating the cores
within the master node, the packet engine may write the new
seed to the shared memory at the predetermined frequency.
The packet engines on the other cores within node can only
read the seed from shared memory. When master node sends
node to node messages to the other nodes in the cluster, the
message can land onto any core or packet engine in target
node. The receiving packet engine may steer the message to
the master packet engine for seed updates. The master packet
engine updates the seed in shared memory, such as at the
predetermined frequency or next predetermined frequency
and the other cores read the seed from the shared memory. So
as a result of one packet engine on a master node updating the
seed, the other cores within the master node as well as the
other nodes in the cluster and each of their respective cores are
updated with the new seed.
0008 Before enabling the cluster instance (or before cre
ating a one node cluster), the present Solution uses master and
slave mechanism between cores within that node to generate
and synchronize the seed across the packet engines of that
node. As soon as cluster instance is enabled on first node (e.g.,
on creating one node cluster), the node by default becomes
the cluster configuration owner (CCO) or master node and
initializes the node to node and inter-core communication
channels. Once the master packet engine or core generates
next seed on the master node, the master node broadcasts this
new seed to the other nodes in the cluster.

0009. When a new node joins the cluster, master node
receives the nodejoin event and broadcasts the current seed to
the nodes. Until new node receives the seed from the master
node, the new node remains in a SYN-cookie synchronization
in progress state, in which the new node will be able to accept
control connections but not the data connections. When new
node receives the seed, the new node generates the current
cookie and previous current cookie becomes the previous

US 2014/0304810 A1

cookie. So the new node will have the same current cookie as
the master node but the previous cookie will be different from
the previous cookie of the master node. As a result, that new
node will not be able to validate the connections initiated
using previous cookie. When new node receives the seed the
second time onwards, the new node's current and previous
cookie will be the same as the current and previous cookie of
the master node.

0010. In some aspects, the present solution is directed to
methods for synchronizing a random seed value among a
plurality of multi-core nodes in a cluster of nodes for gener
ating a cookie signature. A cookie signature can be any form
of a digital signature. The methods generally include gener
ating, by a master core on a master node of a cluster of nodes
comprising a plurality of cores, a random seed to be synchro
nized across each core of each node in the cluster of nodes.
The methods generally include storing, by the master core on
the master node, the random seed to memory on the master
node accessible by each core in the master node. The methods
generally include receiving, by each master core on each
other node in the cluster, the random seed sent by the master
core of the master node. The methods generally include Stor
ing, by each master core on each other node in the cluster, the
random seed to memory on each node accessible by each core
in the each other node. The methods generally include gen
erating, by each core of each node in the cluster of nodes, a
cookie signature based on the random seed responsive to a
predetermined timer.
0011. In some applications of these methods, the methods
may include receiving, by a receiving core on each other node
in the cluster, the random seed sent by the master core of the
master node, and steering, by each receiving core, the random
seed to a master core in each other node in the cluster. The
methods may include storing, at each core of each node in the
cluster of nodes, a current cookie signature as a previous
cookie signature, and the generated cookie signature as the
current cookie signature. The methods may include generat
ing, by the master core on the master node of the cluster of
nodes, the random seed, responsive to a second predeter
mined timer set to expire longer than the predetermined timer.
0012. In some applications of these methods, the methods
may include generating, by each core of each node in the
cluster of nodes, an array of cookie signatures. The methods
may include generating, by each core of each node in the
cluster of nodes, an array of cookie signatures, by using the
random seed as an initial seed of a pseudo-random number
function to generate a first cookie signature, and generating
each Successive cookie signature by using a preceding cookie
signature as a seed for the pseudo-random number function.
The methods may include generating a cookie by concatenat
ing one or more cookie signatures in the array of cookie
signatures. The methods may include using the generated
cookie signature as part of a SYN cookie or a HTTP DoS
cookie.

0013. In some applications of these methods, the methods
may include receiving from a client, a SYN request at a first
core of a node in the cluster. The methods may further include
responding to the client with a SYN-ACK message compris
ing a cookie with the cookie signature. The methods may
further include receiving from the client, an ACK message at
a second core of the node in the cluster, the ACK message
comprising a client cookie signature. The methods may fur

Oct. 9, 2014

ther include accepting the ACK message in response to
matching the client cookie signature with the cookie signa
ture.

0014. In some applications of these methods, the methods
may include storing, at each core of each node in the cluster of
nodes, a current cookie signature as a previous cookie signa
ture, and the generated cookie signature as the current cookie
signature. The methods may further include comparing the
client cookie signature with the current cookie signature and
the previous cookie signature. The methods may further
include determining whether a new random seed is stored in
a memory accessible by the second core. The methods may
further include storing, at the second core, the current cookie
signature as the previous cookie signature. The methods may
further include generating a new current cookie signature
based on the new random seed in the memory accessible by
the second core. The methods may further include allocating
resources in response to matching the client cookie signature
with the new current cookie signature.
0015. In some aspects, the present solution is directed to
systems for synchronizing a random seed value among a
plurality of multi-core nodes in a cluster of nodes for gener
ating a cookie signature. The systems may include a cluster of
nodes, each node comprising a plurality of cores. The systems
may include a master core on a master node of the cluster of
nodes, configured to generate a random seed to be synchro
nized across each core of each node in the cluster of nodes,
and store the random seed to memory on the master node
accessible by each core in the master node. The systems may
include each other node in the cluster, configured to receive,
by each master core of each node, the random seed sent by the
master core of the master node and store the random seed to
memory on each node accessible by each core in the each
other node. The systems may include a packet engine on each
core of each node in the cluster of nodes, configured to gen
erate a cookie signature based on the random seed responsive
to a predetermined timer.
0016. In some applications of these systems, each other
node in the cluster further comprises a receiving core config
ured to receive the random seed sent by the master core of the
master node and steer the random seed to each node's master
core. In some applications of these systems, each node in the
cluster of nodes is further configured to store, at each core of
each node in the cluster of nodes, a current cookie signature as
a previous cookie signature, and the generated cookie signa
ture as the current cookie signature. In some applications of
these systems the master core of the master node is further
configured to generate the random seed to be synchronized
across each core of each node in the cluster of nodes, respon
sive to a second predetermined timer set to expire longer than
the predetermined timer. In some applications of these sys
tems the packet engine is further configured to generate an
array of cookie signatures.
0017. In some applications of these systems, the packet
engine is further configured to generate, an array of cookie
signatures, by using the random seed as an initial seed of a
pseudo-random number function to generate a first cookie
signature, and generate each Successive cookie signature by
using a preceding cookie signature as a seed for the pseudo
random number function. In some applications of these sys
tems the packet engine is further configured to generate a
cookie by concatenating one or more cookie signatures in the
array. In some applications of these systems the packet engine

US 2014/0304810 A1

is further configured to use the generated cookie signature as
part of a SYN cookie or a HTTP DoS cookie.
0018. In some applications of these systems, the packet
engine is further configured to receive from a client, a SYN
request at a first core of a node in the cluster. The packet
engine is further configured to respond to the client with a
SYN-ACK message comprising a cookie with the cookie
signature. The packet engine is further configured to receive
from the client, an ACK message at a second core of the node
in the cluster, the ACK message comprising a client cookie
signature. The packet engine is further configured to accept
the ACK message in response to matching the client cookie
signature with the cookie signature.
0019. In some applications of these systems, the packet
engine is further configured to store a current cookie signa
ture as a previous cookie signature, and the generated cookie
signature as the current cookie signature, and compare the
client cookie signature with the current cookie signature and
the previous cookie signature. The packet engine is further
configured to determine whether a new random seed is stored
in a memory accessible by a second core, and store, at the
second core, the current cookie signature as the previous
cookie signature. The packet engine is further configured to
generate a new current cookie signature based on the new
random seed in the memory accessible by the second core,
and allocate resources in response to matching the client
cookie signature with the new current cookie signature.
0020. The details of various embodiments of the invention
are set forth in the accompanying drawings and the descrip
tion below.

BRIEF DESCRIPTION OF THE FIGURES

0021. The foregoing and other objects, aspects, features,
and advantages of the invention will become more apparent
and better understood by referring to the following descrip
tion taken in conjunction with the accompanying drawings, in
which:
0022 FIG. 1A is a block diagram of an embodiment of a
network environment for a client to access a server via an
appliance;
0023 FIG. 1B is a block diagram of an embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;
0024 FIG. 1C is a block diagram of another embodiment
of an environment for delivering a computing environment
from a server to a client via an appliance;
0025 FIG. 1D is a block diagram of another embodiment
of an environment for delivering a computing environment
from a server to a client via an appliance;
0026 FIGS. 1E-1Hare block diagrams of embodiments of
a computing device;
0027 FIG. 2A is a block diagram of an embodiment of an
appliance for processing communications between a client
and a server,
0028 FIG. 2B is a block diagram of another embodiment
of an appliance for optimizing, accelerating, load-balancing
and routing communications between a client and a server,
0029 FIG. 3 is a block diagram of an embodiment of a
client for communicating with a server via the appliance;
0030 FIG. 4A is a block diagram of an embodiment of a
virtualization environment;
0031 FIG. 4B is a block diagram of another embodiment
of a virtualization environment;

Oct. 9, 2014

0032 FIG. 4C is a block diagram of an embodiment of a
virtualized appliance;
0033 FIG. 5A are block diagrams of embodiments of
approaches to implementing parallelism in a multi-core sys
tem;
0034 FIG. 5B is a block diagram of an embodiment of a
system utilizing a multi-core system;
0035 FIG.5C is a block diagram of another embodiment
of an aspect of a multi-core system;
0036 FIG. 6 is a block diagram of an embodiment of a
cluster system;
0037 FIG. 7A is a block diagram of an embodiment of a
multi-core system for generating cookie signatures;
0038 FIG. 7B is a flow chart of an embodiment of a
method of generating and maintaining consistent cookie sig
natures in a multi-core system;
0039 FIG. 7C is a flow chart of an embodiment of a
method of using cookie signatures for security in a multi-core
system;
0040 FIG. 8A is a block diagram of an embodiment of a
cluster system for generating cookie signatures;
0041 FIG. 8B is a flow chart of an embodiment of a
method of generating and synchronizing seeds for cookie
generation in a cluster system; and
0042 FIG. 8C is a flow chart of an embodiment of a
method of using cookie signatures for cluster system.
0043. The features and advantages of the present invention
will become more apparent from the detailed description set
forth below when taken in conjunction with the drawings, in
which like reference characters identify corresponding ele
ments throughout. In the drawings, like reference numbers
generally indicate identical, functionally similar, and/or
structurally similar elements.

DETAILED DESCRIPTION OF THE INVENTION

0044) For purposes of reading the description of the vari
ous embodiments below, the following descriptions of the
sections of the specification and their respective contents may
be helpful:

0045 Section. A describes a network environment and
computing environment which may be useful for prac
ticing embodiments described herein; Section B
describes embodiments of systems and methods for
delivering a computing environment to a remote user;

0046) Section C describes embodiments of systems and
methods for accelerating communications between a
client and a server,

0047. Section D describes embodiments of systems and
methods for virtualizing an application delivery control
ler;

0.048 Section E describes embodiments of systems and
methods for providing a multi-core architecture and
environment;

0049 Section F describes embodiments of systems and
methods for providing a clustered appliance architecture
environment;

0050 Section G describes embodiments of systems and
methods for generating cookie signatures for security
protection in a multi-core system; and

0051. Section H describes embodiments of systems and
methods for TCP SYN attack protection in clustered
systems.

US 2014/0304810 A1

0052 A. Network and Computing Environment
0053 Prior to discussing the specifics of embodiments of
the systems and methods of an appliance and/or client, it may
be helpful to discuss the network and computing environ
ments in which such embodiments may be deployed. Refer
ring now to FIG. 1A, an embodiment of a network environ
ment is depicted. In brief overview, the network environment
comprises one or more clients 102a-102n (also generally
referred to as local machine(s) 102, or client(s) 102) in com
munication with one or more servers 106a-106n (also gener
ally referred to as server(s) 106, or remote machine(s) 106)
via one or more networks 104, 104 (generally referred to as
network 104). In some embodiments, a client 102 communi
cates with a server 106 via an appliance 200.
0054 Although FIG. 1A shows a network 104 and a net
work 104" between the clients 102 and the servers 106, the
clients 102 and the servers 106 may be on the same network
104. The networks 104 and 104" can be the same type of
network or different types of networks. The network 104
and/or the network 104' can be a local-area network (LAN),
Such as a company Intranet, a metropolitan area network
(MAN), or a wide area network (WAN), such as the Internet
or the World Wide Web. In one embodiment, network 104
may be a private network and network 104 may be a public
network. In some embodiments, network 104 may be a pri
vate network and network 104 a public network. In another
embodiment, networks 104 and 104" may both be private
networks. In some embodiments, clients 102 may be located
at a branch office of a corporate enterprise communicating via
a WAN connection over the network 104 to the servers 106
located at a corporate data center.
0055. The network 104 and/or 104' be any type and/or
form of network and may include any of the following: a point
to point network, a broadcast network, a wide area network, a
local area network, a telecommunications network, a data
communication network, a computer network, an ATM
(Asynchronous Transfer Mode) network, a SONET (Syn
chronous Optical Network) network, a SDH (Synchronous
Digital Hierarchy) network, a wireless network and a wireline
network. In some embodiments, the network 104 may com
prise a wireless link, such as an infrared channel or satellite
band. The topology of the network 104 and/or 104" may be a
bus, star, or ring network topology. The network 104 and/or
104 and network topology may be of any such network or
network topology as known to those ordinarily skilled in the
art capable of Supporting the operations described herein.
0056. As shown in FIG. 1A, the appliance 200, which also
may be referred to as an interface unit 200 or gateway 200, is
shown between the networks 104 and 104". In some embodi
ments, the appliance 200 may be located on network 104. For
example, a branch office of a corporate enterprise may deploy
an appliance 200 at the branch office. In other embodiments,
the appliance 200 may be located on network 104". For
example, an appliance 200 may be located at a corporate data
center. In yet another embodiment, a plurality of appliances
200 may be deployed on network 104. In some embodiments,
a plurality of appliances 200 may be deployed on network
104. In one embodiment, a first appliance 200 communicates
with a second appliance 200'. In other embodiments, the
appliance 200 could be a part of any client 102 or server 106
on the same or different network 104,104" as the client 102.
One or more appliances 200 may be located at any point in the
network or network communications path between a client
102 and a server 106.

Oct. 9, 2014

0057. In some embodiments, the appliance 200 comprises
any of the network devices manufactured by Citrix Systems,
Inc. of Ft. Lauderdale Fla., referred to as Citrix NetScaler
devices. In other embodiments, the appliance 200 includes
any of the product embodiments referred to as WebAccelera
tor and Big IP manufactured by F5 Networks, Inc. of Seattle,
Wash. In another embodiment, the appliance 205 includes
any of the DX acceleration device platforms and/or the SSL
VPN series of devices, such as SA 700, SA 2000, SA 4000,
and SA 6000 devices manufactured by Juniper Networks, Inc.
of Sunnyvale, Calif. In yet another embodiment, the appli
ance 200 includes any application acceleration and/or secu
rity related appliances and/or software manufactured by
Cisco Systems, Inc. of San Jose, Calif., such as the Cisco ACE
Application Control Engine Module service software and
network modules, and Cisco AVS Series Application Velocity
System.
0058. In one embodiment, the system may include mul

tiple, logically-grouped servers 106. In these embodiments,
the logical group of servers may be referred to as a server farm
38. In some of these embodiments, the serves 106 may be
geographically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. In one
embodiment, the server farm executes one or more applica
tions on behalf of one or more clients 102.

0059. The servers 106 within each farm 38 can be hetero
geneous. One or more of the servers 106 can operate accord
ing to one type of operating system platform (e.g., WIN
DOWS NT, manufactured by Microsoft Corp. of Redmond,
Wash.), while one or more of the other servers 106 can operate
on according to another type of operating system platform
(e.g., Unix or Linux). The servers 106 of each farm 38 do not
need to be physically proximate to another server 106 in the
same farm 38. Thus, the group of servers 106 logically
grouped as a farm 38 may be interconnected using a wide
area network (WAN) connection or medium-area network
(MAN) connection. For example, a farm 38 may include
servers 106 physically located in different continents or dif
ferent regions of a continent, country, state, city, campus, or
room. Data transmission speeds between servers 106 in the
farm 38 can be increased if the servers 106 are connected
using a local-area network (LAN) connection or some form of
direct connection.

0060 Servers 106 may be referred to as a file server, appli
cation server, web server, proxy server, or gateway server. In
some embodiments, a server 106 may have the capacity to
function as either an application server or as a master appli
cation server. In one embodiment, a server 106 may include
an Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102
has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102n.

0061. In some embodiments, a client 102 communicates
with a server 106. In one embodiment, the client 102 com
municates directly with one of the servers 106 in a farm 38. In
another embodiment, the client 102 executes a program
neighborhood application to communicate with a server 106
in a farm 38. In still another embodiment, the server 106
provides the functionality of a master node. In some embodi
ments, the client 102 communicates with the server 106 in the
farm 38 through a network 104. Over the network 104, the

US 2014/0304810 A1

client 102 can, for example, request execution of various
applications hosted by the servers 106a-106n in the farm 38
and receive output of the results of the application execution
for display. In some embodiments, only the master node
provides the functionality required to identify and provide
address information associated with a server 106" hosting a
requested application.
0062. In one embodiment, the server 106 provides func

tionality of a web server. In another embodiment, the server
106a receives requests from the client 102, forwards the
requests to a second server 106b and responds to the request
by the client 102 with a response to the request from the server
106b. In still another embodiment, the server 106 acquires an
enumeration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
Such as display data, generated by an execution of the iden
tified application on the server 106.
0063 Referring now to FIG. 1B, an embodiment of a
network environment deploying multiple appliances 200 is
depicted. A first appliance 200 may be deployed on a first
network 104 and a second appliance 200' on a second network
104. For example a corporate enterprise may deploy a first
appliance 200 at a branch office and a second appliance 200'
at a data center. In another embodiment, the first appliance
200 and second appliance 200" are deployed on the same
network 104 or network 104. For example, a first appliance
200 may be deployed for a first server farm 38, and a second
appliance 200 may be deployed for a second server farm 38'.
In another example, a first appliance 200 may be deployed at
a first branch office while the second appliance 200' is
deployed at a second branch office'. In some embodiments,
the first appliance 200 and second appliance 200' work in
cooperation or in conjunction with each other to accelerate
network traffic or the delivery of application and data between
a client and a server

0064 Referring now to FIG. 1C, another embodiment of a
network environment deploying the appliance 200 with one
or more other types of appliances, such as between one or
more WAN optimization appliance 205, 205" is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104' and a second WAN optimi
zation appliance 205" may be deployed between the appliance
200 and one or more servers 106. By way of example, a
corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN optimi
Zation appliance 205" at a data center. In some embodiments,
the appliance 205 may be located on network 104". In other
embodiments, the appliance 205" may be located on network
104. In some embodiments, the appliance 205 may be located
on network 104" or network 104". In one embodiment, the
appliance 205 and 205" are on the same network. In another
embodiment, the appliance 205 and 205" are on different
networks. In another example, a first WAN optimization
appliance 205 may be deployed for a first server farm 38 and
a second WAN optimization appliance 205" for a second
server farm 38

0065. In one embodiment, the appliance 205 is a device for
accelerating, optimizing or otherwise improving the perfor

Oct. 9, 2014

mance, operation, or quality of service of any type and form
of network traffic, such as traffic to and/or from a WAN
connection. In some embodiments, the appliance 205 is a
performance enhancing proxy. In other embodiments, the
appliance 205 is any type and form of WAN optimization or
acceleration device, sometimes also referred to as a WAN
optimization controller. In one embodiment, the appliance
205 is any of the product embodiments referred to as WAN
Scaler manufactured by Citrix Systems, Inc. of Ft. Lauder
dale, Fla. In other embodiments, the appliance 205 includes
any of the product embodiments referred to as BIG-IP link
controller and WANjet manufactured by F5 Networks, Inc. of
Seattle, Wash. In another embodiment, the appliance 205
includes any of the WX and WXC WAN acceleration device
platforms manufactured by Juniper Networks, Inc. of Sunny
vale, Calif. In some embodiments, the appliance 205 includes
any of the steelhead line of WAN optimization appliances
manufactured by Riverbed Technology of San Francisco,
Calif. In other embodiments, the appliance 205 includes any
of the WAN related devices manufactured by Expand Net
works Inc. of Roseland, N.J. In one embodiment, the appli
ance 205 includes any of the WAN related appliances manu
factured by Packeteer Inc. of Cupertino, Calif., such as the
PacketShaper, iShared, and Skyx product embodiments pro
vided by Packeteer. In yet another embodiment, the appliance
205 includes any WAN related appliances and/or software
manufactured by Cisco Systems, Inc. of San Jose, Calif., such
as the Cisco Wide Area Network Application Services soft
ware and network modules, and Wide Area Network engine
appliances.

0066. In one embodiment, the appliance 205 provides
application and data acceleration services for branch-office or
remote offices. In one embodiment, the appliance 205
includes optimization of Wide Area File Services (WAFS). In
another embodiment, the appliance 205 accelerates the deliv
ery of files, such as via the Common Internet File System
(CIFS) protocol. In other embodiments, the appliance 205
provides caching in memory and/or storage to accelerate
delivery of applications and data. In one embodiment, the
appliance 205 provides compression of network traffic at any
level of the network stack or at any protocol or network layer.
In another embodiment, the appliance 205 provides transport
layer protocol optimizations, flow control, performance
enhancements or modifications and/or management to accel
erate delivery of applications and data over a WAN connec
tion. For example, in one embodiment, the appliance 205
provides Transport Control Protocol (TCP) optimizations. In
other embodiments, the appliance 205 provides optimiza
tions, flow control, performance enhancements or modifica
tions and/or management for any session or application layer
protocol.

0067. In another embodiment, the appliance 205 encoded
any type and form of data or information into custom or
standard TCP and/or IP header fields or option fields of net
workpacket to announce presence, functionality or capability
to another appliance 205'. In another embodiment, an appli
ance 205" may communicate with another appliance 205
using data encoded in both TCP and/or IP header fields or
options. For example, the appliance may use TCP option(s) or
IP header fields or options to communicate one or more
parameters to be used by the appliances 205, 205" in perform
ing functionality, Such as WAN acceleration, or for working
in conjunction with each other.

US 2014/0304810 A1

0068. In some embodiments, the appliance 200 preserves
any of the information encoded in TCP and/or IP header
and/or option fields communicated between appliances 205
and 205'. For example, the appliance 200 may terminate a
transport layer connection traversing the appliance 200. Such
as a transport layer connection from between a client and a
server traversing appliances 205 and 205'. In one embodi
ment, the appliance 200 identifies and preserves any encoded
information in a transport layer packet transmitted by a first
appliance 205 via a first transport layer connection and com
municates a transport layer packet with the encoded informa
tion to a second appliance 205 via a second transport layer
connection.

0069. Referring now to FIG. 1D, a network environment
for delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104' and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing environ
ment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

0070. In some embodiments, the appliance 200 acceler
ates delivery of a computing environment 15, or any portion
thereof, to a client 102. In one embodiment, the appliance 200
accelerates the delivery of the computing environment 15 by
the application delivery system 190. For example, the
embodiments described herein may be used to accelerate
delivery of a streaming application and data file processable
by the application from a central corporate data center to a
remote user location, such as a branch office of the company.
In another embodiment, the appliance 200 accelerates trans
port layer traffic between a client 102 and a server 106. The
appliance 200 may provide acceleration techniques for accel
erating any transport layer payload from a server 106 to a
client 102. Such as: 1) transport layer connection pooling, 2)
transport layer connection multiplexing, 3) transport control
protocol buffering, 4) compression and 5) caching. In some
embodiments, the appliance 200 provides load balancing of
servers 106 in responding to requests from clients 102. In
other embodiments, the appliance 200 acts as a proxy or
access server to provide access to the one or more servers 106.
In another embodiment, the appliance 200 provides a secure
virtual private network connection from a first network 104 of
the client 102 to the second network 104" of the server 106,
such as an SSL VPN connection. It yet other embodiments,
the appliance 200 provides application firewall security, con
trol and management of the connection and communications
between a client 102 and a server 106.

0071. In some embodiments, the application delivery
management system 190 provides application delivery tech
niques to deliver a computing environment to a desktop of a
user, remote or otherwise, based on a plurality of execution
methods and based on any authentication and authorization
policies applied via a policy engine 195. With these tech
niques, a remote user may obtain a computing environment
and access to server stored applications and data files from

Oct. 9, 2014

any network connected device 100. In one embodiment, the
application delivery system 190 may reside or execute on a
server 106. In another embodiment, the application delivery
system 190 may reside or execute on a plurality of servers
106a-106m. In some embodiments, the application delivery
system 190 may execute in a server farm 38. In one embodi
ment, the server 106 executing the application delivery sys
tem 190 may also store or provide the application and data
file. In another embodiment, a first set of one or more servers
106 may execute the application delivery system 190, and a
different server 106.n may store or provide the application and
data file. In some embodiments, each of the application deliv
ery system 190, the application, and data file may reside or be
located on different servers. In yet another embodiment, any
portion of the application delivery system 190 may reside,
execute or be stored on or distributed to the appliance 200, or
a plurality of appliances.
0072 The client 102 may include a computing environ
ment 15 for executing an application that uses or processes a
data file. The client 102 via networks 104,104 and appliance
200 may request an application and data file from the server
106. In one embodiment, the appliance 200 may forward a
request from the client 102 to the server 106. For example, the
client 102 may not have the application and data file stored or
accessible locally. In response to the request, the application
delivery system 190 and/or server 106 may deliver the appli
cation and data file to the client 102. For example, in one
embodiment, the server 106 may transmit the application as
an application stream to operate in computing environment
15 on client 102.
0073. In some embodiments, the application delivery sys
tem 190 comprises any portion of the Citrix Access SuiteTM
by Citrix Systems, Inc., such as the MetaFrame or Citrix
Presentation ServerTM and/or any of the Microsoft(R) Win
dows Terminal Services manufactured by the Microsoft Cor
poration. In one embodiment, the application delivery system
190 may deliver one or more applications to clients 102 or
users via a remote-display protocol or otherwise via remote
based or server-based computing. In another embodiment,
the application delivery system 190 may deliver one or more
applications to clients or users via steaming of the applica
tion.
0074. In one embodiment, the application delivery system
190 includes a policy engine 195 for controlling and manag
ing the access to, selection of application execution methods
and the delivery of applications. In some embodiments, the
policy engine 195 determines the one or more applications a
user or client 102 may access. In another embodiment, the
policy engine 195 determines how the application should be
delivered to the user or client 102, e.g., the method of execu
tion. In some embodiments, the application delivery system
190 provides a plurality of delivery techniques from which to
select a method of application execution, such as a server
based computing, streaming or delivering the application
locally to the client 120 for local execution.
0075. In one embodiment, a client 102 requests execution
ofan application program and the application delivery system
190 comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi
ment, the server 106 receives a request for an enumeration of
available applications from the client 102. In one embodi
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of

US 2014/0304810 A1

application programs available to the client 102. The appli
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system 190
selects one of a predetermined number of methods for execut
ing the enumerated application, for example, responsive to a
policy of a policy engine. The application delivery system
190 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 190 may select a
method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the appli
cation. In yet another embodiment, the application delivery
system 190 may select a method of execution of the applica
tion to stream the application via the network 104 to the client
102.

0076. A client 102 may execute, operate or otherwise pro
vide an application, which can be any type and/or form of
Software, program, or executable instructions such as any
type and/or form of web browser, web-based client, client
server application, a thin-client computing client, an ActiveX
control, or a Java applet, or any other type and/or form of
executable instructions capable of executing on client 102. In
Some embodiments, the application may be a server-based or
a remote-based application executed on behalf of the client
102 on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol, such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi
ments, the application comprises any type of software related
to VoIP communications, such as a soft IP telephone. In
further embodiments, the application comprises any applica
tion related to real-time data communications, such as appli
cations for streaming video and/or audio.
0077. In some embodiments, the server 106 or a server
farm 38 may be running one or more applications, such as an
application providing a thin-client computing or remote dis
play presentation application. In one embodiment, the server
106 or server farm 38 executes as an application, any portion
of the Citrix Access SuiteTM by Citrix Systems, Inc., such as
the MetaFrame or Citrix Presentation Server TM, and/or any of
the Microsoft(R) Windows Terminal Services manufactured
by the Microsoft Corporation. In one embodiment, the appli
cation is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Fla. In other embodiments, the application
includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Wash. Also, the server
106 may run an application, which for example, may be an
application server providing email services such as Microsoft
Exchange manufactured by the Microsoft Corporation of
Redmond, Wash., a web or Internet server, or a desktop shar
ing server, or a collaboration server. In some embodiments,
any of the applications may comprise any type of hosted
service or products, such as GoToMeetingTM provided by
Citrix Online Division, Inc. of Santa Barbara, Calif.,
WebExTM provided by WebEx, Inc. of Santa Clara, Calif., or
Microsoft Office Live Meeting provided by Microsoft Cor
poration of Redmond, Wash.

Oct. 9, 2014

(0078 Still referring to FIG. 1D, an embodiment of the
network environment may include a monitoring server 106A.
The monitoring server 106A may include any type and form
performance monitoring service 198. The performance moni
toring service 198 may include monitoring, measurement
and/or management Software and/or hardware, including data
collection, aggregation, analysis, management and reporting.
In one embodiment, the performance monitoring service 198
includes one or more monitoring agents 197. The monitoring
agent 197 includes any software, hardware or combination
thereof for performing monitoring, measurement and data
collection activities on a device, such as a client 102, server
106 or an appliance 200, 205. In some embodiments, the
monitoring agent 197 includes any type and form of Script,
Such as Visual Basic script, or JavaScript. In one embodiment,
the monitoring agent 197 executes transparently to any appli
cation and/or user of the device. In some embodiments, the
monitoring agent 197 is installed and operated unobtrusively
to the application or client. In yet another embodiment, the
monitoring agent 197 is installed and operated without any
instrumentation for the application or device.
0079. In some embodiments, the monitoring agent 197
monitors, measures and collects data on a predetermined
frequency. In other embodiments, the monitoring agent 197
monitors, measures and collects databased upon detection of
any type and form of event. For example, the monitoring
agent 197 may collect data upon detection of a request for a
web page or receipt of an HTTP response. In another
example, the monitoring agent 197 may collect data upon
detection of any user input events, such as a mouse click. The
monitoring agent 197 may report or provide any monitored,
measured or collected data to the monitoring service 198. In
one embodiment, the monitoring agent 197 transmits infor
mation to the monitoring service 198 according to a schedule
or a predetermined frequency. In another embodiment, the
monitoring agent 197 transmits information to the monitoring
service 198 upon detection of an event.
0080. In some embodiments, the monitoring service 198
and/or monitoring agent 197 performs monitoring and per
formance measurement of any network resource or network
infrastructure element, such as a client, server, server farm,
appliance 200, appliance 205, or network connection. In one
embodiment, the monitoring service 198 and/or monitoring
agent 197 performs monitoring and performance measure
ment of any transport layer connection, such as a TCP or UDP
connection. In another embodiment, the monitoring service
198 and/or monitoring agent 197 monitors and measures
network latency. In yet one embodiment, the monitoring Ser
vice 198 and/or monitoring agent 197 monitors and measures
bandwidth utilization.

I0081. In other embodiments, the monitoring service 198
and/or monitoring agent 197 monitors and measures end-user
response times. In some embodiments, the monitoring Ser
Vice 198 performs monitoring and performance measurement
of an application. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 performs monitor
ing and performance measurement of any session or connec
tion to the application. In one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and mea
sures performance of a browser. In another embodiment, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures performance of HTTP based transactions.
In some embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of

US 2014/0304810 A1

a Voice over IP (VoIP) application or session. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a remote
display protocol application, such as an ICA client or RDP
client. In yet another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor
mance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or moni
toring agent 197 monitors and measures performance of a
hosted application or a Software-As-A-Service (SaaS) deliv
ery model.
0082 In some embodiments, the monitoring service 198
and/or monitoring agent 197 performs monitoring and per
formance measurement of one or more transactions, requests
or responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.
0083. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 performs monitoring and perfor
mance measurement of a delivery of application and/or data
from a server to a client via one or more appliances, such as
appliance 200 and/or appliance 205. In some embodiments,
the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of delivery of a virtual
ized application. In other embodiments, the monitoring Ser
vice 198 and/or monitoring agent 197 monitors and measures
performance of delivery of a streaming application. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
delivery of a desktop application to a client and/or the execu
tion of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a client/
server application.
0084. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 is designed and constructed to pro
vide application performance management for the applica
tion delivery system 190. For example, the monitoring
service 198 and/or monitoring agent 197 may monitor, mea
Sure and manage the performance of the delivery of applica
tions via the Citrix Presentation Server. In this example, the
monitoring service 198 and/or monitoring agent 197 moni
tors individual ICA sessions. The monitoring service 198
and/or monitoring agent 197 may measure the total and per
session system resource usage, as well as application and
networking performance. The monitoring service 198 and/or
monitoring agent 197 may identify the active servers for a
given user and/or user session. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 moni
tors back-end connections between the application delivery
system 190 and an application and/or database server. The
monitoring service 198 and/or monitoring agent 197 may
measure network latency, delay and Volume per user-session
or ICA session.

0085. In some embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors memory
usage for the application delivery system 190, such as total
memory usage, per user session and/or per process. In other

Oct. 9, 2014

embodiments, the monitoring service 198 and/or monitoring
agent 197 measures and monitors CPU usage the application
delivery system 190, such as total CPU usage, per user ses
sion and/or per process. In another embodiments, the moni
toring service 198 and/or monitoring agent 197 measures and
monitors the time required to log-in to an application, a
server, or the application delivery system, such as Citrix Pre
sentation Server. In one embodiment, the monitoring service
198 and/or monitoring agent 197 measures and monitors the
duration a user is logged into an application, a server, or the
application delivery system 190. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 mea
Sures and monitors active and inactive session counts for an
application, server or application delivery system session. In
yet another embodiment, the monitoring service 198 and/or
monitoring agent 197 measures and monitors user session
latency.

I0086. In yet further embodiments, the monitoring service
198 and/or monitoring agent 197 measures and monitors
measures and monitors any type and form of server metrics.
In one embodiment, the monitoring service 198 and/or moni
toring agent 197 measures and monitors metrics related to
system memory, CPU usage, and disk storage. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to page
faults, such as page faults per second. In other embodiments,
the monitoring service 198 and/or monitoring agent 197 mea
Sures and monitors round-trip time metrics. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to applica
tion crashes, errors and/or hangs.
I0087. In some embodiments, the monitoring service 198
and monitoring agent 198 includes any of the product
embodiments referred to as EdgeSight manufactured by Cit
rix Systems, Inc. of Ft. Lauderdale, Fla. In another embodi
ment, the performance monitoring service 198 and/or moni
toring agent 198 includes any portion of the product
embodiments referred to as the TrueView product suite manu
factured by the Symphoniq Corporation of Palo Alto, Calif. In
one embodiment, the performance monitoring service 198
and/or monitoring agent 198 includes any portion of the prod
uct embodiments referred to as the TeaLeaf CX product suite
manufactured by the Tea leaf Technology Inc. of San Fran
cisco, Calif. In other embodiments, the performance moni
toring service 198 and/or monitoring agent 198 includes any
portion of the business service management products, such as
the BMC Performance Manager and Patrol products, manu
factured by BMC Software, Inc. of Houston, Tex.
I0088. The client 102, server 106, and appliance 200 may
be deployed as and/or executed on any type and form of
computing device. Such as a computer, network device or
appliance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing device
100 useful for practicing an embodiment of the client 102.
server 106 or appliance 200. As shown in FIGS. 1E and 1F,
each computing device 100 includes a central processing unit
101, and a main memory unit 122. As shown in FIG. 1E, a
computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a
mouse. Each computing device 100 may also include addi
tional optional elements, such as one or more input/output
devices 130a-130b (generally referred to using reference

US 2014/0304810 A1

numeral 130), and a cache memory 140 in communication
with the central processing unit 101.
0089. The central processing unit 101 is any logic circuitry
that responds to and processes instructions fetched from the
main memory unit 122. In many embodiments, the central
processing unit is provided by a microprocessor unit, such as:
those manufactured by Intel Corporation of Mountain View,
Calif.; those manufactured by Motorola Corporation of
Schaumburg, Ill., those manufactured by Transmeta Corpo
ration of Santa Clara, Calif.; the RS/6000 processor, those
manufactured by International Business Machines of White
Plains, N.Y.; or those manufactured by Advanced Micro
Devices of Sunnyvale, Calif. The computing device 100 may
be based on any of these processors, or any other processor
capable of operating as described herein.
0090 Main memory unit 122 may be one or more memory
chips capable of storing data and allowing any storage loca
tion to be directly accessed by the microprocessor 101, such
as Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO DRAM),
Burst Extended Data Output DRAM (BEDO DRAM),
Enhanced DRAM (EDRAM), synchronous DRAM
(SDRAM), JEDEC SRAM, PC100 SDRAM, Double Data
Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ES
DRAM), SyncLink DRAM (SLDRAM), Direct Rambus
DRAM (DRDRAM), or Ferroelectric RAM (FRAM). The
main memory 122 may be based on any of the above
described memory chips, or any other available memory
chips capable of operating as described herein. In the embodi
ment shown in FIG. 1E, the processor 101 communicates
with main memory 122 via a system bus 150 (described in
more detail below). FIG. 1F depicts an embodiment of a
computing device 100 in which the processor communicates
directly with main memory 122 via a memory port 103. For
example, in FIG. 1F the main memory 122 may be
DRDRAM.

0091 FIG. 1F depicts an embodiment in which the main
processor 101 communicates directly with cache memory
140 via a secondary bus, sometimes referred to as a backside
bus. In other embodiments, the main processor 101 commu
nicates with cache memory 140 using the system bus 150.
Cache memory 140 typically has a faster response time than
main memory 122 and is typically provided by SRAM,
BSRAM, or EDRAM. In the embodiment shown in FIG.1F,
the processor 101 communicates with various I/O devices
130 via a local system bus 150. Various busses may be used to
connect the central processing unit 101 to any of the I/O
devices 130, including a VESAVL bus, an ISA bus, an EISA
bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, or a NuBus. For embodiments
in which the I/O device is a video display 124, the processor
101 may use an Advanced Graphics Port (AGP) to commu
nicate with the display 124. FIG. 1F depicts an embodiment
of a computer 100 in which the main processor 101 commu
nicates directly with I/O device 130b via HyperTransport,
Rapid I/O, or InfiniBand. FIG.1F also depicts an embodiment
in which local busses and direct communication are mixed:
the processor 101 communicates with I/O device 130 busing
a local interconnect bus while communicating with I/O
device 130a directly.

Oct. 9, 2014

0092. The computing device 100 may support any suitable
installation device 116, such as a floppy disk drive for receiv
ing floppy disks such as 3.5-inch, 5.25-inch disks or ZIP
disks, a CD-ROM drive, a CD-R/RW drive, a DVD-ROM
drive, tape drives of various formats, USB device, hard-drive
or any other device Suitable for installing software and pro
grams such as any client agent 120, or portion thereof. The
computing device 100 may further comprise a storage device
128, such as one or more hard disk drives or redundant arrays
of independent disks, for storing an operating system and
other related Software, and for storing application Software
programs such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIXR, a bootable
CD for GNU/Linux that is available as a GNU/Linux distri
bution from knoppix.net.
0093. Furthermore, the computing device 100 may
include a network interface 118 to interface to a Local Area
Network (LAN), Wide Area Network (WAN) or the Internet
through a variety of connections including, but not limited to,
standard telephone lines, LAN or WAN links (e.g., 802.11,
T1, T3, 56 kb, X.25), broadband connections (e.g., ISDN,
Frame Relay, ATM), wireless connections, or some combi
nation of any or all of the above. The network interface 118
may comprise a built-in network adapter, network interface
card, PCMCIA network card, card bus network adapter, wire
less network adapter, USB network adapter, modem or any
other device Suitable for interfacing the computing device
100 to any type of network capable of communication and
performing the operations described herein. A wide variety of
I/O devices 130a-130n may be present in the computing
device 100. Input devices include keyboards, mice, track
pads, trackballs, microphones, and drawing tablets. Output
devices include video displays, speakers, inkjet printers, laser
printers, and dye-sublimation printers. The I/O devices 130
may be controlled by an I/O controller 123 as shown in FIG.
1E. The I/O controller may control one or more I/O devices
Such as a keyboard 126 and a pointing device 127, e.g., a
mouse or optical pen. Furthermore, an I/O device may also
provide storage 128 and/or an installation medium 116 for the
computing device 100. In still other embodiments, the com
puting device 100 may provide USB connections to receive
handheld USB storage devices such as the USB Flash Drive
line of devices manufactured by Twintech Industry, Inc. of
Los Alamitos, Calif.
0094. In some embodiments, the computing device 100
may comprise or be connected to multiple display devices
124a-124m, which each may be of the same or different type
and/or form. As such, any of the I/O devices 130a-130n
and/or the I/O controller 123 may comprise any type and/or
form of suitable hardware, software, or combination of hard
ware and software to support, enable or provide for the con
nection and use of multiple display devices 124a-124n by the
computing device 100. For example, the computing device
100 may include any type and/or form of video adapter, video
card, driver, and/or library to interface, communicate, con
nect or otherwise use the display devices 124a-124n. In one
embodiment, a video adapter may comprise multiple connec
tors to interface to multiple display devices 124a-124n. In
other embodiments, the computing device 100 may include
multiple video adapters, with each video adapterconnected to
one or more of the display devices 124a-124n. In some

US 2014/0304810 A1

embodiments, any portion of the operating system of the
computing device 100 may be configured for using multiple
displays 124a-124n. In other embodiments, one or more of
the display devices 124a-124n may be provided by one or
more other computing devices, such as computing devices
100a and 100b connected to the computing device 100, for
example, via a network. These embodiments may include any
type of Software designed and constructed to use another
computer's display device as a second display device 124a
for the computing device 100. One ordinarily skilled in the art
will recognize and appreciate the various ways and embodi
ments that a computing device 100 may be configured to have
multiple display devices 124a-124n.
0095. In further embodiments, an I/O device 130 may be a
bridge 170 between the system bus 150 and an external com
munication bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalkbus, a Giga
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPIbus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.
0096. A computing device 100 of the sort depicted in
FIGS. 1E and 1F typically operate under the control of oper
ating systems, which control scheduling of tasks and access to
system resources. The computing device 100 can be running
any operating system such as any of the versions of the
Microsoft(R) Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OSR) for Macintosh computers, any embedded
operating system, any real-time operating system, any open
Source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi
cal operating systems include: WINDOWS 3.x, WINDOWS
95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP,
all of which are manufactured by Microsoft Corporation of
Redmond, Wash.; MacOS, manufactured by Apple Computer
of Cupertino, Calif.; OS/2, manufactured by International
Business Machines of Armonk, N.Y.; and Linux, a freely
available operating system distributed by Caldera Corp. of
Salt Lake City, Utah, or any type and/or form of a Unix
operating System, among others.
0097. In other embodiments, the computing device 100
may have different processors, operating systems, and input
devices consistent with the device. For example, in one
embodiment the computer 100 is a Treo 180, 270, 1060, 600
or 650 smart phone manufactured by Palm, Inc. In this
embodiment, the Treo smart phone is operated under the
control of the PalmOS operating system and includes a stylus
input device as well as a five-way navigator device. More
over, the computing device 100 can be any workstation, desk
top computer, laptop or notebook computer, server, handheld
computer, mobile telephone, any other computer, or other
form of computing or telecommunications device that is
capable of communication and that has sufficient processor
power and memory capacity to perform the operations
described herein.

0098. As shown in FIG. 1G, the computing device 100
may comprise multiple processors and may provide function
ality for simultaneous execution of instructions or for simul
taneous execution of one instruction on more than one piece

Oct. 9, 2014

of data. In some embodiments, the computing device 100 may
comprise a parallel processor with one or more cores. In one
of these embodiments, the computing device 100 is a shared
memory parallel device, with multiple processors and/or mul
tiple processor cores, accessing all available memory as a
single global address space. In another of these embodiments,
the computing device 100 is a distributed memory parallel
device with multiple processors each accessing local memory
only. In still another of these embodiments, the computing
device 100 has both some memory which is shared and some
memory which can only be accessed by particular processors
or subsets of processors. In still even another of these embodi
ments, the computing device 100. Such as a multi-core micro
processor, combines two or more independent processors into
a single package, often a single integrated circuit (IC). In yet
another of these embodiments, the computing device 100
includes a chip having a CELL BROADBAND ENGINE
architecture and including a Power processor element and a
plurality of synergistic processing elements, the Power pro
cessor element and the plurality of synergistic processing
elements linked together by an internal high speed bus, which
may be referred to as an element interconnect bus.
0099. In some embodiments, the processors provide func
tionality for execution of a single instruction simultaneously
on multiple pieces of data (SIMD). In other embodiments, the
processors provide functionality for execution of multiple
instructions simultaneously on multiple pieces of data
(MIMD). In still other embodiments, the processor may use
any combination of SIMD and MIMD cores in a single
device.

0100. In some embodiments, the computing device 100
may comprise a graphics processing unit. In one of these
embodiments, depicted in FIG. 1H, the computing device 100
includes at least one central processing unit 101 and at least
one graphics processing unit. In another of these embodi
ments, the computing device 100 includes at least one parallel
processing unit and at least one graphics processing unit. In
still another of these embodiments, the computing device 100
includes a plurality of processing units of any type, one of the
plurality of processing units comprising a graphics process
ing unit.
0101. In some embodiments, a first computing device
100a executes an application on behalf of a user of a client
computing device 100b. In other embodiments, a computing
device 100a executes a virtual machine, which provides an
execution session within which applications execute on
behalf of a user or a client computing devices 100b. In one of
these embodiments, the execution session is a hosted desktop
session. In another of these embodiments, the computing
device 100 executes a terminal services session. The terminal
services session may provide a hosted desktop environment.
In still another of these embodiments, the execution session
provides access to a computing environment, which may
comprise one or more of an application, a plurality of appli
cations, a desktop application, and a desktop session in which
one or more applications may execute.
0102 B. Appliance Architecture
0103 FIG. 2A illustrates an example embodiment of the
appliance 200. The architecture of the appliance 200 in FIG.
2A is provided by way of illustration only and is not intended
to be limiting. As shown in FIG. 2, appliance 200 comprises
a hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.

US 2014/0304810 A1

0104 Hardware layer 206 provides the hardware elements
upon which programs and services within kernel space 204
and user space 202 are executed. Hardware layer 206 also
provides the structures and elements which allow programs
and services within kernel space 204 and user space 202 to
communicate data both internally and externally with respect
to appliance 200. As shown in FIG. 2, the hardware layer 206
includes a processing unit 262 for executing Software pro
grams and services, a memory 264 for storing software and
data, network ports 266 for transmitting and receiving data
over a network, and an encryption processor 260 for perform
ing functions related to Secure Sockets Layer processing of
data transmitted and received over the network. In some
embodiments, the central processing unit 262 may perform
the functions of the encryption processor 260 in a single
processor. Additionally, the hardware layer 206 may com
prise multiple processors for each of the processing unit 262
and the encryption processor 260. The processor 262 may
include any of the processors 101 described above in connec
tion with FIGS. 1E and 1F. For example, in one embodiment,
the appliance 200 comprises a first processor 262 and a sec
ond processor 262. In other embodiments, the processor 262
or 262 comprises a multi-core processor.
0105. Although the hardware layer 206 of appliance 200 is
generally illustrated with an encryption processor 260, pro
cessor 260 may be a processor for performing functions
related to any encryption protocol. Such as the Secure Socket
Layer (SSL) or Transport Layer Security (TLS) protocol. In
some embodiments, the processor 260 may be a general pur
pose processor (GPP), and in further embodiments, may have
executable instructions for performing processing of any
security related protocol.
0106 Although the hardware layer 206 of appliance 200 is
illustrated with certain elements in FIG. 2, the hardware por
tions or components of appliance 200 may comprise any type
and form of elements, hardware or software, of a computing
device, such as the computing device 100 illustrated and
discussed herein in conjunction with FIGS. 1E and 1F. In
Some embodiments, the appliance 200 may comprise a server,
gateway, router, Switch, bridge or other type of computing or
network device, and have any hardware and/or software ele
ments associated therewith.
0107 The operating system of appliance 200 allocates,
manages, or otherwise segregates the available system
memory into kernel space 204 and userspace 204. In example
software architecture 200, the operating system may be any
type and/or form of Unix operating system although the
invention is not so limited. As such, the appliance 200 can be
running any operating system such as any of the versions of
the Microsoft(R) Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OSR) for Macintosh computers, any embedded
operating system, any network operating system, any real
time operating system, any open Source operating system, any
proprietary operating system, any operating systems for
mobile computing devices or network devices, or any other
operating system capable of running on the appliance 200 and
performing the operations described herein.
0108. The kernel space 204 is reserved for running the
kernel 230, including any device drivers, kernel extensions or
other kernel related software. As knownto those skilled in the
art, the kernel 230 is the core of the operating system, and
provides access, control, and management of resources and
hardware-related elements of the application 104. In accor

Oct. 9, 2014

dance with an embodiment of the appliance 200, the kernel
space 204 also includes a number of network services or
processes working in conjunction with a cache manager 232,
Sometimes also referred to as the integrated cache, the ben
efits of which are described in detail further herein. Addition
ally, the embodiment of the kernel 230 will depend on the
embodiment of the operating system installed, configured, or
otherwise used by the device 200.
0109. In one embodiment, the device 200 comprises one
network stack 267, such as a TCP/IP based stack, for com
municating with the client 102 and/or the server 106. In one
embodiment, the network stack 267 is used to communicate
with a first network, such as network 108, and a second
network 110. In some embodiments, the device 200 termi
nates a first transport layer connection, Such as a TCP con
nection of a client 102, and establishes a second transport
layer connection to a server 106 for use by the client 102, e.g.,
the second transport layer connection is terminated at the
appliance 200 and the server 106. The first and second trans
port layer connections may be established via a single net
work stack 267. In other embodiments, the device 200 may
comprise multiple network stacks, for example 267 and 267',
and the first transport layer connection may be established or
terminated at one network stack 267, and the second transport
layer connection on the second network stack 267. For
example, one network Stack may be for receiving and trans
mitting network packet on a first network, and another net
work Stack for receiving and transmitting network packets on
a second network. In one embodiment, the network stack 267
comprises a buffer 243 for queuing one or more network
packets for transmission by the appliance 200.
0110. As shown in FIG. 2, the kernel space 204 includes
the cache manager 232, a high-speed layer 2-7 integrated
packet engine 240, an encryption engine 234, a policy engine
236 and multi-protocol compression logic 238. Running
these components or processes 232,240,234, 236 and 238 in
kernel space 204 or kernel mode instead of the user space 202
improves the performance of each of these components, alone
and in combination. Kernel operation means that these com
ponents or processes 232, 240, 234, 236 and 238 run in the
core address space of the operating system of the device 200.
For example, running the encryption engine 234 in kernel
mode improves encryption performance by moving encryp
tion and decryption operations to the kernel, thereby reducing
the number of transitions between the memory space or a
kernel thread in kernel mode and the memory space or a
thread in user mode. For example, data obtained in kernel
mode may not need to be passed or copied to a process or
thread running in user mode, Such as from a kernel level data
structure to a user level data structure. In another aspect, the
number of context switches between kernel mode and user
mode are also reduced. Additionally, synchronization of and
communications between any of the components or processes
232,240,235,236 and 238 can be performed more efficiently
in the kernel space 204.
0111. In some embodiments, any portion of the compo
nents 232, 240,234, 236 and 238 may run or operate in the
kernel space 204, while other portions of these components
232, 240, 234, 236 and 238 may run or operate in user space
202. In one embodiment, the appliance 200 uses a kernel
level data structure providing access to any portion of one or
more network packets, for example, a network packet com
prising a request from a client 102 or a response from a server
106. In some embodiments, the kernel-level data structure

US 2014/0304810 A1

may be obtained by the packet engine 240 via a transport layer
driver interface or filter to the network stack 267. The kernel
level data structure may comprise any interface and/or data
accessible via the kernel space 204 related to the network
stack 267, network traffic or packets received or transmitted
by the network stack 267. In other embodiments, the kernel
level data structure may be used by any of the components or
processes 232, 240, 234, 236 and 238 to perform the desired
operation of the component or process. In one embodiment, a
component 232, 240, 234, 236 and 238 is running in kernel
mode 204 when using the kernel-level data structure, while in
another embodiment, the component 232, 240,234, 236 and
238 is running in user mode when using the kernel-level data
structure. In some embodiments, the kernel-level data struc
ture may be copied or passed to a second kernel-level data
structure, or any desired user-level data structure.
0112 The cache manager 232 may comprise software,
hardware or any combination of software and hardware to
provide cache access, control and management of any type
and form of content, such as objects or dynamically generated
objects served by the originating servers 106. The data,
objects or content processed and stored by the cache manager
232 may comprise data in any format, Such as a markup
language, or communicated via any protocol. In some
embodiments, the cache manager 232 duplicates original data
stored elsewhere or data previously computed, generated or
transmitted, in which the original data may require longer
access time to fetch, compute or otherwise obtain relative to
reading a cache memory element. Once the data is stored in
the cache memory element, future use can be made by access
ing the cached copy rather than refetching or recomputing the
original data, thereby reducing the access time. In some
embodiments, the cache memory element may comprise a
data object in memory 264 of device 200. In other embodi
ments, the cache memory element may comprise memory
having a faster access time than memory 264. In another
embodiment, the cache memory element may comprise any
type and form of storage element of the device 200, such as a
portion of a hard disk. In some embodiments, the processing
unit 262 may provide cache memory for use by the cache
manager 232. In yet further embodiments, the cache manager
232 may use any portion and combination of memory, Stor
age, or the processing unit for caching data, objects, and other
COntent.

0113. Furthermore, the cache manager 232 includes any
logic, functions, rules, or operations to perform any embodi
ments of the techniques of the appliance 200 described
herein. For example, the cache manager 232 includes logic or
functionality to invalidate objects based on the expiration of
an invalidation time period or upon receipt of an invalidation
command from a client 102 or server 106. In some embodi
ments, the cache manager 232 may operate as a program,
service, process or task executing in the kernel space 204, and
in other embodiments, in the user space 202. In one embodi
ment, a first portion of the cache manager 232 executes in the
user space 202 while a second portion executes in the kernel
space 204. In some embodiments, the cache manager 232 can
comprise any type of general purpose processor (GPP), or any
other type of integrated circuit, such as a Field Programmable
Gate Array (FPGA), Programmable Logic Device (PLD), or
Application Specific Integrated Circuit (ASIC).
0114. The policy engine 236 may include, for example, an
intelligent statistical engine or other programmable applica
tion(s). In one embodiment, the policy engine 236 provides a

Oct. 9, 2014

configuration mechanism to allow a user to identify, specify,
define or configure a caching policy. Policy engine 236, in
Some embodiments, also has access to memory to Support
data structures such as lookup tables or hash tables to enable
user-selected caching policy decisions. In other embodi
ments, the policy engine 236 may comprise any logic, rules,
functions or operations to determine and provide access, con
trol and management of objects, data or content being cached
by the appliance 200 in addition to access, control and man
agement of security, network traffic, network access, com
pression or any other function or operation performed by the
appliance 200. Further examples of specific caching policies
are further described herein.
0115 The encryption engine 234 comprises any logic,
business rules, functions or operations for handling the pro
cessing of any security related protocol. Such as SSL or TLS,
or any function related thereto. For example, the encryption
engine 234 encrypts and decrypts network packets, or any
portion thereof, communicated via the appliance 200. The
encryption engine 234 may also setup or establish SSL or
TLS connections on behalf of the client 102a-102n, server
106a-106n, or appliance 200. As such, the encryption engine
234 provides offloading and acceleration of SSL processing.
In one embodiment, the encryption engine 234 uses a tunnel
ing protocol to provide a virtual private network between a
client 102a-102n and a server 106a-106m. In some embodi
ments, the encryption engine 234 is in communication with
the Encryption processor 260. In other embodiments, the
encryption engine 234 comprises executable instructions run
ning on the Encryption processor 260.
0116. The multi-protocol compression engine 238 com
prises any logic, business rules, function or operations for
compressing one or more protocols of a network packet, Such
as any of the protocols used by the network stack 267 of the
device 200. In one embodiment, multi-protocol compression
engine 238 compresses bi-directionally between clients
102a-102n and servers 106a-106n any TCP/IP based proto
col, including Messaging Application Programming Inter
face (MAPI) (email), File Transfer Protocol (FTP), Hyper
Text Transfer Protocol (HTTP), Common Internet File
System (CIFS) protocol (file transfer), Independent Comput
ing Architecture (ICA) protocol, Remote Desktop Protocol
(RDP), Wireless Application Protocol (WAP), Mobile IP pro
tocol, and Voice Over IP (VoIP) protocol. In other embodi
ments, multi-protocol compression engine 238 provides
compression of Hypertext Markup Language (HTML) based
protocols and in Some embodiments, provides compression
of any markup languages, such as the Extensible Markup
Language (XML). In one embodiment, the multi-protocol
compression engine 238 provides compression of any high
performance protocol. Such as any protocol designed for
appliance 200 to appliance 200 communications. In another
embodiment, the multi-protocol compression engine 238
compresses any payload of or any communication using a
modified transport control protocol, such as Transaction TCP
(T/TCP), TCP with selection acknowledgements (TCP
SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a
TCP spoofing protocol.
0117. As such, the multi-protocol compression engine 238
accelerates performance for users accessing applications via
desktop clients, e.g., Microsoft Outlook and non-Web thin
clients, such as any client launched by popular enterprise
applications like Oracle, SAP and Siebel, and even mobile

US 2014/0304810 A1

clients, such as the Pocket PC. In some embodiments, the
multi-protocol compression engine 238 by executing in the
kernel mode 204 and integrating with packet processing
engine 240 accessing the network stack 267 is able to com
press any of the protocols carried by the TCP/IP protocol,
Such as any application layer protocol.
0118 High speed layer 2-7 integrated packet engine 240,
also generally referred to as a packet processing engine or
packet engine, is responsible for managing the kernel-level
processing of packets received and transmitted by appliance
200 via network ports 266. The high speed layer 2-7 inte
grated packet engine 240 may comprise a buffer for queuing
one or more network packets during processing. Such as for
receipt of a network packet or transmission of a network
packet. Additionally, the high speed layer 2-7 integrated
packet engine 240 is in communication with one or more
network stacks 267 to send and receive network packets via
networkports 266. The high speed layer 2-7 integrated packet
engine 240 works in conjunction with encryption engine 234,
cache manager 232, policy engine 236 and multi-protocol
compression logic 238. In particular, encryption engine 234 is
configured to perform SSL processing of packets, policy
engine 236 is configured to perform functions related to traf
fic management such as request-level content Switching and
request-level cache redirection, and multi-protocol compres
sion logic 238 is configured to perform functions related to
compression and decompression of data.
0119 The high speed layer 2-7 integrated packet engine
240 includes a packet processing timer 242. In one embodi
ment, the packet processing timer 242 provides one or more
time intervals to trigger the processing of incoming, i.e.,
received, or outgoing, i.e., transmitted, network packets. In
Some embodiments, the high speed layer 2-7 integrated
packet engine 240 processes network packets responsive to
the timer 242. The packet processing timer 242 provides any
type and form of signal to the packet engine 240 to notify,
trigger, or communicate a time related event, interval or
occurrence. In many embodiments, the packet processing
timer 242 operates in the order of milliseconds, such as for
example 100 ms, 50 ms or 25 ms. For example, in some
embodiments, the packet processing timer 242 provides time
intervals or otherwise causes a network packet to be pro
cessed by the high speed layer 2-7 integrated packet engine
240 at a 10 ms time interval, while in other embodiments, at
a 5 ms time interval, and still yet in further embodiments, as
short as a 3, 2, or 1 ms time interval. The high speed layer 2-7
integrated packet engine 240 may be interfaced, integrated or
in communication with the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres
sion engine 238 during operation. As such, any of the logic,
functions, or operations of the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres
sion logic 238 may be performed responsive to the packet
processing timer 242 and/or the packet engine 240. There
fore, any of the logic, functions, or operations of the encryp
tion engine 234, cache manager 232, policy engine 236 and
multi-protocol compression logic 238 may be performed at
the granularity of time intervals provided via the packet pro
cessing timer 242, for example, at a time interval of less than
or equal to 10 ms. For example, in one embodiment, the cache
manager 232 may perform invalidation of any cached objects
responsive to the high speed layer 2-7 integrated packet
engine 240 and/or the packet processing timer 242. In another
embodiment, the expiry or invalidation time of a cached

Oct. 9, 2014

object can be set to the same order of granularity as the time
interval of the packet processing timer 242, such as at every
10 ms.

I0120 In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG.2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, a command
line interface (CLI) 212, shell services 214, health monitoring
program 216, and daemon services 218. GUI 210 and CLI
212 provide a means by which a system administrator or other
user can interact with and control the operation of appliance
200, such as via the operating system of the appliance 200.
The GUI 210 or CLI 212 can comprise code running in user
space 202 or kernel space 204. The GUI 210 may be any type
and form of graphical user interface and may be presented via
text, graphical or otherwise, by any type of program or appli
cation, such as a browser. The CLI 212 may be any type and
form of command line or text-based interface. Such as a
command line provided by the operating system. For
example, the CLI 212 may comprise a shell, which is a tool to
enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh,
tcsh, or ksh type shell. The shell services 214 comprises the
programs, services, tasks, processes or executable instruc
tions to support interaction with the appliance 200 or operat
ing system by a user via the GUI 210 and/or CLI 212.
I0121 Health monitoring program 216 is used to monitor,
check, report and ensure that network systems are functioning
properly and that users are receiving requested content over a
network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance 200.
In other embodiments, the health monitoring program 216
interfaces by any suitable means and/or mechanisms with one
or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression
logic 238, packet engine 240, daemon services 218, and shell
services 214. As such, the health monitoring program 216
may call any application programming interface (API) to
determine a state, status, or health of any portion of the
appliance 200. For example, the health monitoring program
216 may ping or send a status inquiry on a periodic basis to
check if a program, process, service or task is active and
currently running. In another example, the health monitoring
program 216 may check any status, error or history logs
provided by any program, process, service or task to deter
mine any condition, status or error with any portion of the
appliance 200.
0.122 Daemon services 218 are programs that run continu
ously or in the background and handle periodic service
requests received by appliance 200. In some embodiments, a
daemon service may forward the requests to other programs
or processes, such as another daemon service 218 as appro
priate. As known to those skilled in the art, a daemon service
218 may run unattended to perform continuous or periodic
system wide functions, such as network control, or to perform
any desired task. In some embodiments, one or more daemon

US 2014/0304810 A1

services 218 run in the user space 202, while in other embodi
ments, one or more daemon services 218 run in the kernel
Space.

0123 Referring now to FIG. 2B, another embodiment of
the appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, function
ality or operations: SSL VPN connectivity 280, switching/
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290 for commu
nications between one or more clients 102 and one or more
servers 106. Each of the servers 106 may provide one or more
network related services 270a-270m (referred to as services
270). For example, a server 106 may provide an http service
270. The appliance 200 comprises one or more virtual servers
or virtual internet protocol servers, referred to as a vServer,
VIP server, or just VIP 275a-275n (also referred herein as
vServer 275). The vServer 275 receives, intercepts or other
wise processes communications between a client 102 and a
server 106 in accordance with the configuration and opera
tions of the appliance 200.
0.124. The VServer 275 may comprise software, hardware
or any combination of software and hardware. The vServer
275 may comprise any type and form of program, service,
task, process or executable instructions operating in user
mode 202, kernel mode 204 or any combination thereof in the
appliance 200. The vServer 275 includes any logic, functions,
rules, or operations to performany embodiments of the tech
niques described herein, such as SSL VPN 280, switching/
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290. In some
embodiments, the VServer 275 establishes a connection to a
service 270 of a server 106. The service 275 may comprise
any program, application, process, task or set of executable
instructions capable of connecting to and communicating to
the appliance 200, client 102 or vServer 275. For example, the
service 275 may comprise a web server, http server, ftp, email
or database server. In some embodiments, the service 270 is a
daemon process or network driver for listening, receiving
and/or sending communications for an application, such as
email, database or an enterprise application. In some embodi
ments, the service 270 may communicate on a specific IP
address, or IP address and port.
0.125. In some embodiments, the vServer 275 applies one
or more policies of the policy engine 236 to network commu
nications between the client 102 and server 106. In one
embodiment, the policies are associated with a vServer 275.
In another embodiment, the policies are based on a user, or a
group of users. In yet another embodiment, a policy is global
and applies to one or more VServers 275a-275n, and any user
or group of users communicating via the appliance 200. In
Some embodiments, the policies of the policy engine have
conditions upon which the policy is applied based on any
content of the communication, Such as internet protocol
address, port, protocol type, header or fields in a packet, or the
context of the communication, Such as user, group of the user,
vServer 275, transport layer connection, and/or identification
or attributes of the client 102 or server 106.

0126. In other embodiments, the appliance 200 communi
cates or interfaces with the policy engine 236 to determine
authentication and/or authorization of a remote user or a
remote client 102 to access the computing environment 15,
application, and/or data file from a server 106. In another
embodiment, the appliance 200 communicates or interfaces
with the policy engine 236 to determine authentication and/or

Oct. 9, 2014

authorization of a remote user or a remote client 102 to have
the application delivery system 190 deliver one or more of the
computing environment 15, application, and/or data file. In
yet another embodiment, the appliance 200 establishes a VPN
or SSL VPN connection based on the policy engine's 236
authentication and/or authorization of a remote user or a
remote client 102. In one embodiment, the appliance 200
controls the flow of network traffic and communication ses
sions based on policies of the policy engine 236. For example,
the appliance 200 may control the access to a computing
environment 15, application or data file based on the policy
engine 236.
0127. In some embodiments, the vServer 275 establishes a
transport layer connection, such as a TCP or UDP connection
with a client 102 via the client agent 120. In one embodiment,
the VServer 275 listens for and receives communications from
the client 102. In other embodiments, the vServer 275 estab
lishes a transport layer connection, such as a TCP or UDP
connection with a client server 106. In one embodiment, the
vServer 275 establishes the transport layer connection to an
internet protocol address and port of a server 270 running on
the server 106. In another embodiment, the vServer 275 asso
ciates a first transport layer connection to a client 102 with a
second transport layer connection to the server 106. In some
embodiments, a VServer 275 establishes a pool of transport
layer connections to a server 106 and multiplexes client
requests via the pooled transport layer connections.
I0128. In some embodiments, the appliance 200 provides a
SSL VPN connection 280 between a client 102 and a server
106. For example, a client 102 on a first network 102 requests
to establish a connection to a server 106 on a second network
104". In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106 is
on a private network 104". Such as a corporate network. In one
embodiment, the client agent 120 intercepts communications
of the client 102 on the first network 104, encrypts the com
munications, and transmits the communications via a first
transport layer connection to the appliance 200. The appli
ance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the
server 106 on the second network 104. The appliance 200
receives the intercepted communication from the clientagent
102, decrypts the communications, and transmits the commu
nication to the server 106 on the second network 104 via the
second transport layer connection. The second transport layer
connection may be a pooled transport layer connection. As
Such, the appliance 200 provides an end-to-end secure trans
port layer connection for the client 102 between the two
networks 104, 104".
I0129. In one embodiment, the appliance 200 hosts an
intranet internet protocol or IntranetIP 282 address of the
client 102 on the virtual private network 104. The client 102
has a local network identifier, such as an internet protocol (IP)
address and/or host name on the first network 104. When
connected to the second network 104 via the appliance 200,
the appliance 200 establishes, assigns or otherwise provides
an IntranetIP address 282, which is a network identifier, such
as IP address and/or host name, for the client 102 on the
second network 104". The appliance 200 listens for and
receives on the second or private network 104" for any com
munications directed towards the client 102 using the clients
established IntranetIP282. In one embodiment, the appliance
200 acts as or on behalf of the client 102 on the second private

US 2014/0304810 A1

network 104. For example, in another embodiment, a vServer
275 listens for and responds to communications to the
IntranetIP 282 of the client 102. In some embodiments, if a
computing device 100 on the second network 104 transmits a
request, the appliance 200 processes the request as if it were
the client 102. For example, the appliance 200 may respond to
a ping to the client’s IntranetIP 282. In another example, the
appliance may establish a connection, such as a TCP or UDP
connection, with computing device 100 on the second net
work 104 requesting a connection with the client’s IntranetIP
282.

0130. In some embodiments, the appliance 200 provides
one or more of the following acceleration techniques 288 to
communications between the client 102 and server 106: 1)
compression; 2) decompression; 3) Transmission Control
Protocol pooling; 4) Transmission Control Protocol multi
plexing; 5) Transmission Control Protocol buffering; and 6)
caching. In one embodiment, the appliance 200 relieves serv
ers 106 of much of the processing load caused by repeatedly
opening and closing transport layers connections to clients
102 by opening one or more transport layer connections with
each server 106 and maintaining these connections to allow
repeated data accesses by clients via the Internet. This tech
nique is referred to herein as “connection pooling'.
0131. In some embodiments, in order to seamlessly splice
communications from a client 102 to a server 106 via a pooled
transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number
and acknowledgment numbers at the transport layer protocol
level. This is referred to as “connection multiplexing. In
Some embodiments, no application layer protocol interaction
is required. For example, in the case of an in-bound packet
(that is, a packet received from a client 102), the source
network address of the packet is changed to that of an output
port of appliance 200, and the destination network address is
changed to that of the intended server. In the case of an
outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106
to that of an output port of appliance 200 and the destination
address is changed from that of appliance 200 to that of the
requesting client 102. The sequence numbers and acknowl
edgment numbers of the packet are also translated to
sequence numbers and acknowledgement numbers expected
by the client 102 on the appliance's 200 transport layer con
nection to the client 102. In some embodiments, the packet
checksum of the transport layer protocol is recalculated to
account for these translations.

0.132. In another embodiment, the appliance 200 provides
Switching or load-balancing functionality 284 for communi
cations between the client 102 and server 106. In some
embodiments, the appliance 200 distributes traffic and directs
client requests to a server 106 based on layer 4 or application
layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination
server 106, the appliance 200 determines the server 106 to
distribute the network packet by application information and
data carried as payload of the transport layer packet. In one
embodiment, the health monitoring programs 216 of the
appliance 200 monitor the health of servers to determine the
server 106 for which to distribute a client’s request. In some
embodiments, if the appliance 200 detects a server 106 is not
available or has a load over a predetermined threshold, the
appliance 200 can direct or distribute client requests to
another server 106.

Oct. 9, 2014

I0133. In some embodiments, the appliance 200 acts as a
Domain Name Service (DNS) resolver or otherwise provides
resolution of a DNS request from clients 102. In some
embodiments, the appliance intercepts a DNS request trans
mitted by the client 102. In one embodiment, the appliance
200 responds to a client’s DNS request with an IP address of
or hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client’s DNS request with an IP address of
or hosted by a second appliance 200'. In some embodiments,
the appliance 200 responds to a client’s DNS request with an
IP address of a server 106 determined by the appliance 200.
I0134. In yet another embodiment, the appliance 200 pro
vides application firewall functionality 290 for communica
tions between the client 102 and server 106. In one embodi
ment, the policy engine 236 provides rules for detecting and
blocking illegitimate requests. In some embodiments, the
application firewall 290 protects against denial of service
(DoS) attacks. In other embodiments, the appliance inspects
the content of intercepted requests to identify and block appli
cation-based attacks. In some embodiments, the rules/policy
engine 236 comprises one or more application firewall or
security control policies for providing protections against
various classes and types of web or Internet based vulnerabili
ties, such as one or more of the following: 1) buffer overflow,
2) CGI-BIN parameter manipulation, 3) form/hidden field
manipulation, 4) forceful browsing, 5) cookie or session poi
soning, 6) broken access control list (ACLS) or weak pass
words, 7) cross-site Scripting (XSS), 8) command injection,
9) SQL injection, 10) error triggering sensitive information
leak, 11) insecure use of cryptography, 12) server miscon
figuration, 13) back doors and debug options, 14) website
defacement, 15) platform or operating systems Vulnerabili
ties, and 16) Zero-day exploits. In an embodiment, the appli
cation firewall 290 provides HTML form field protection in
the form of inspecting or analyzing the network communica
tion for one or more of the following: 1) required fields are
returned, 2) no added field allowed, 3) read-only and hidden
field enforcement, 4) drop-down list and radio button field
conformance, and 5) form-field max-length enforcement. In
some embodiments, the application firewall 290 ensures
cookies are not modified. In other embodiments, the applica
tion firewall 290 protects against forceful browsing by
enforcing legal URLs.
I0135) In still yet other embodiments, the application fire
wall 290 protects any confidential information contained in
the network communication. The application firewall 290
may inspector analyze any network communication in accor
dance with the rules or polices of the engine 236 to identify
any confidential information in any field of the network
packet. In some embodiments, the application firewall 290
identifies in the network communication one or more occur
rences of a credit card number, password, Social security
number, name, patient code, contact information, and age.
The encoded portion of the network communication may
comprise these occurrences or the confidential information.
Based on these occurrences, in one embodiment, the applica
tion firewall 290 may take a policy action on the network
communication, such as prevent transmission of the network
communication. In another embodiment, the application fire
wall 290 may rewrite, remove or otherwise mask such iden
tified occurrence or confidential information.

US 2014/0304810 A1

0136. Still referring to FIG. 2B, the appliance 200 may
include a performance monitoring agent 197 as discussed
above in conjunction with FIG. 1D. In one embodiment, the
appliance 200 receives the monitoring agent 197 from the
monitoring service 198 or monitoring server 106 as depicted
in FIG. 1D. In some embodiments, the appliance 200 stores
the monitoring agent 197 in storage. Such as disk, for delivery
to any client or server in communication with the appliance
200. For example, in one embodiment, the appliance 200
transmits the monitoring agent 197 to a client upon receiving
a request to establish a transport layer connection. In other
embodiments, the appliance 200 transmits the monitoring
agent 197 upon establishing the transport layer connection
with the client 102. In another embodiment, the appliance 200
transmits the monitoring agent 197 to the client upon inter
cepting or detecting a request for a web page. In yet another
embodiment, the appliance 200 transmits the monitoring
agent 197 to a client or a server in response to a request from
the monitoring server 198. In one embodiment, the appliance
200 transmits the monitoring agent 197 to a second appliance
200' or appliance 205.
0.137 In other embodiments, the appliance 200 executes
the monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitor
ing agent 197 measures and monitors the performance of any
transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and moni
tors the performance of any user sessions traversing the appli
ance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private
network connections and/or sessions traversing the appliance
200, such an SSL VPN session. In still further embodiments,
the monitoring agent 197 measures and monitors the memory,
CPU and disk usage and performance of the appliance 200. In
yet another embodiment, the monitoring agent 197 measures
and monitors the performance of any acceleration technique
288 performed by the appliance 200, such as SSL offloading,
connection pooling and multiplexing, caching, and compres
Sion. In some embodiments, the monitoring agent 197 mea
Sures and monitors the performance of any load balancing
and/or content switching 284 performed by the appliance
200. In other embodiments, the monitoring agent 197 mea
Sures and monitors the performance of application firewall
290 protection and processing performed by the appliance
2OO.

0138 C. Client Agent
0139 Referring now to FIG. 3, an embodiment of the
client agent 120 is depicted. The client 102 includes a client
agent 120 for establishing and exchanging communications
with the appliance 200 and/or server 106 via a network 104. In
brief overview, the client 102 operates on computing device
100 having an operating system with a kernel mode 302 and
a user mode 303, and a network stack 310 with one or more
layers 310a-310b. The client 102 may have installed and/or
execute one or more applications. In some embodiments, one
or more applications may communicate via the network Stack
310 to a network 104. One of the applications, such as a web
browser, may also include a first program 322. For example,
the first program 322 may be used in Some embodiments to
install and/or execute the client agent 120, or any portion

Oct. 9, 2014

thereof. The client agent 120 includes an interception mecha
nism, or interceptor 350, for intercepting network communi
cations from the network stack 310 from the one or more
applications.
0140. The network stack 310 of the client 102 may com
prise any type and form of software, or hardware, or any
combinations thereof, for providing connectivity to and com
munications with a network. In one embodiment, the network
stack 310 comprises a software implementation for a network
protocol suite. The network stack 310 may comprise one or
more network layers. Such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of pro
tocols for any of the following layers of the OSI model: 1)
physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally
referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LAN) protocols, such as those
protocols covered by the IEEE 802.3. In some embodiments,
the network stack 310 comprises any type and form of a
wireless protocol, such as IEEE 802.11 and/or mobile inter
net protocol.
0.141. In view of a TCP/IP based network, any TCP/IP
based protocol may be used, including Messaging Applica
tion Programming Interface (MAPI) (email), File Transfer
Protocol (FTP), HyperText Transfer Protocol (HTTP), Com
mon Internet File System (CIFS) protocol (file transfer),
Independent Computing Architecture (ICA) protocol,
Remote Desktop Protocol (RDP), Wireless Application Pro
tocol (WAP), Mobile IP protocol, and Voice Over IP (VoIP)
protocol. In another embodiment, the network stack 310 com
prises any type and form of transport control protocol. Such as
a modified transport control protocol, for example a Transac
tion TCP (T/TCP), TCP with selection acknowledgements
(TCP-SACK), TCP with large windows (TCP-LW), a con
gestion prediction protocol Such as the TCP-Vegas protocol,
and a TCP spoofing protocol. In other embodiments, any type
and form of user datagram protocol (UDP), such as UDP over
IP may be used by the network stack 310, such as for voice
communications or real-time data communications.

0.142 Furthermore, the network stack 310 may include
one or more network drivers Supporting the one or more
layers, such as a TCP driver or a network layer driver. The
network drivers may be included as part of the operating
system of the computing device 100 or as part of any network
interface cards or other network access components of the
computing device 100. In some embodiments, any of the
network drivers of the network stack 310 may be customized,
modified or adapted to provide a custom or modified portion
of the network stack 310 in support of any of the techniques
described herein. In other embodiments, the acceleration pro
gram 302 is designed and constructed to operate with or work
in conjunction with the network stack 310 installed or other
wise provided by the operating system of the client 102.
0143. The network stack 310 comprises any type and form
of interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network com
munications of the client 102. In one embodiment, an inter

US 2014/0304810 A1

face to the network Stack 310 comprises an application pro
gramming interface (API). The interface may also comprise
any function call, hooking or filtering mechanism, event or
call back mechanism, or any type of interfacing technique.
The network stack 310 via the interface may receive or pro
vide any type and form of data structure. Such as an object,
related to functionality or operation of the network stack 310.
For example, the data structure may comprise information
and data related to a network packet or one or more network
packets. In some embodiments, the data structure comprises
a portion of the network packet processed at a protocol layer
of the network stack 310, such as a network packet of the
transport layer. In some embodiments, the data structure 325
comprises a kernel-level data structure, while in other
embodiments, the data structure 325 comprises a user-mode
data structure. A kernel-level data structure may comprise a
data structure obtained or related to a portion of the network
stack 310 operating in kernel-mode 302, or a network driver
or other software running in kernel-mode 302, or any data
structure obtained or received by a service, process, task,
thread or other executable instructions running or operating in
kernel-mode of the operating system.
0144. Additionally, some portions of the network stack
310 may execute or operate in kernel-mode 302, for example,
the data link or network layer, while other portions execute or
operate in user-mode 303, such as an application layer of the
network stack 310. For example, a first portion 310a of the
network Stack may provide user-mode access to the network
stack 310 to an application while a second portion 310a of the
network stack 310 provides access to a network. In some
embodiments, a first portion 310a of the network stack may
comprise one or more upper layers of the network stack 310,
Such as any of layers 5-7. In other embodiments, a second
portion 310b of the network stack 310 comprises one or more
lower layers, such as any of layers 1-4. Each of the first
portion 310a and second portion 310b of the network stack
310 may comprise any portion of the network stack 310, at
any one or more network layers, in user-mode 203, kernel
mode, 202, or combinations thereof, or at any portion of a
network layer or interface point to a network layer or any
portion of or interface point to the user-mode 203 and kernel
mode 203.

0145 The interceptor 350 may comprise software, hard
ware, or any combination of Software and hardware. In one
embodiment, the interceptor 350 intercept a network commu
nication at any point in the network stack 310, and redirects or
transmits the network communication to a destination
desired, managed or controlled by the interceptor 350 or
client agent 120. For example, the interceptor 350 may inter
cept a network communication of a network stack 310 of a
first network and transmit the network communication to the
appliance 200 for transmission on a second network 104. In
some embodiments, the interceptor 350 comprises any type
interceptor 350 comprises a driver, such as a network driver
constructed and designed to interface and work with the net
work stack 310. In some embodiments, the client agent 120
and/or interceptor 350 operates at one or more layers of the
network stack 310, such as at the transport layer. In one
embodiment, the interceptor 350 comprises a filter driver,
hooking mechanism, or any form and type of Suitable net
work driver interface that interfaces to the transport layer of
the network Stack, Such as via the transport driver interface
(TDI). In some embodiments, the interceptor 350 interfaces
to a first protocol layer, such as the transport layer and another

Oct. 9, 2014

protocol layer, such as any layer above the transport protocol
layer, for example, an application protocol layer. In one
embodiment, the interceptor 350 may comprise a driver com
plying with the Network Driver Interface Specification
(NDIS), or a NDIS driver. In another embodiment, the inter
ceptor 350 may comprise a mini-filter or a mini-port driver. In
one embodiment, the interceptor 350, or portion thereof,
operates in kernel-mode 202. In another embodiment, the
interceptor 350, or portion thereof, operates in user-mode
203. In some embodiments, a portion of the interceptor 350
operates in kernel-mode 202 while another portion of the
interceptor 350 operates in user-mode 203. In other embodi
ments, the client agent 120 operates in user-mode 203 but
interfaces via the interceptor 350 to a kernel-mode driver,
process, service, task or portion of the operating system, Such
as to obtain a kernel-level data structure 225. In further
embodiments, the interceptor 350 is a user-mode application
or program, Such as application.
0146 In one embodiment, the interceptor 350 intercepts
any transport layer connection requests. In these embodi
ments, the interceptor 350 execute transport layer application
programming interface (API) calls to set the destination infor
mation, Such as destination IP address and/orport to a desired
location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to a IP
address and port controlled or managed by the interceptor 350
or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to a local
IP address and port of the client 102 on which the client agent
120 is listening. For example, the client agent 120 may com
prise a proxy service listening on a local IP address and port
for redirected transport layer communications. In some
embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance
2OO.

0.147. In some embodiments, the interceptor 350 inter
cepts a Domain Name Service (DNS) request. In one embodi
ment, the client agent 120 and/or interceptor 350 resolves the
DNS request. In another embodiment, the interceptor trans
mits the intercepted DNS request to the appliance 200 for
DNS resolution. In one embodiment, the appliance 200
resolves the DNS request and communicates the DNS
response to the client agent 120. In some embodiments, the
appliance 200 resolves the DNS request via another appliance
200' or a DNS Server 106.

0.148. In yet another embodiment, the client agent 120 may
comprise two agents 120 and 120". In one embodiment, a first
agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodi
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120".
0149. The client agent 120 and/or interceptor 350 may
operate at or interface with a protocol layer in a manner
transparent to any other protocol layer of the network Stack
310. For example, in one embodiment, the interceptor 350
operates or interfaces with the transport layer of the network
stack 310 transparently to any protocol layer below the trans
port layer, such as the network layer, and any protocol layer

US 2014/0304810 A1

above the transport layer, Such as the session, presentation or
application layer protocols. This allows the other protocol
layers of the network stack 310 to operate as desired and
without modification for using the interceptor 350. As such,
the client agent 120 and/or interceptor 350 can interface with
the transport layer to secure, optimize, accelerate, route or
load-balance any communications provided via any protocol
carried by the transport layer, such as any application layer
protocol over TCP/IP.
0150. Furthermore, the client agent 120 and/or interceptor
may operate at or interface with the network stack 310 in a
manner transparent to any application, a user of the client 102.
and any other computing device, such as a server, in commu
nications with the client 102. The client agent 120 and/or
interceptor 350 may be installed and/or executed on the client
102 in a manner without modification of an application. In
Some embodiments, the user of the client 102 or a computing
device in communications with the client 102 are not aware of
the existence, execution or operation of the client agent 120
and/or interceptor 350. As such, in some embodiments, the
client agent 120 and/or interceptor 350 is installed, executed,
and/or operated transparently to an application, user of the
client 102, another computing device. Such as a server, or any
of the protocol layers above and/or below the protocol layer
interfaced to by the interceptor 350.
0151. The client agent 120 includes an acceleration pro
gram 302, a streaming client 306, a collection agent 304,
and/or monitoring agent 197. In one embodiment, the client
agent 120 comprises an Independent Computing Architecture
(ICA) client, or any portion thereof, developed by Citrix
Systems, Inc. of Fort Lauderdale, Fla., and is also referred to
as an ICA client. In some embodiments, the client 120 com
prises an application streaming client 306 for streaming an
application from a server 106 to a client 102. In some embodi
ments, the client agent 120 comprises an acceleration pro
gram 302 for accelerating communications between client
102 and server 106. In another embodiment, the client agent
120 includes a collection agent 304 for performing end-point
detection/scanning and collecting end-point information for
the appliance 200 and/or server 106.
0152. In some embodiments, the acceleration program
302 comprises a client-side acceleration program for per
forming one or more acceleration techniques to accelerate,
enhance or otherwise improve a client's communications
with and/or access to a server 106, Such as accessing an
application provided by a server 106. The logic, functions,
and/or operations of the executable instructions of the accel
eration program 302 may perform one or more of the follow
ing acceleration techniques: 1) multi-protocol compression,
2) transport control protocol pooling, 3) transport control
protocol multiplexing, 4) transport control protocol buffer
ing, and 5) caching via a cache manager. Additionally, the
acceleration program 302 may perform encryption and/or
decryption of any communications received and/or transmit
ted by the client 102. In some embodiments, the acceleration
program 302 performs one or more of the acceleration tech
niques in an integrated manner or fashion. Additionally, the
acceleration program 302 can perform compression on any of
the protocols, or multiple-protocols, carried as a payload of a
network packet of the transport layer protocol.
0153. The streaming client 306 comprises an application,
program, process, service, task or executable instructions for
receiving and executing a streamed application from a server
106. A server 106 may stream one or more application data

Oct. 9, 2014

files to the streaming client 306 for playing, executing or
otherwise causing to be executed the application on the client
102. In some embodiments, the server 106 transmits a set of
compressed or packaged application data files to the stream
ing client 306. In some embodiments, the plurality of appli
cation files are compressed and stored on a file server within
an archive file such as a CAB, ZIP SIT, TAR, JAR or other
archive. In one embodiment, the server 106 decompresses,
unpackages or unarchives the application files and transmits
the files to the client 102. In another embodiment, the client
102 decompresses, unpackages or unarchives the application
files. The streaming client 306 dynamically installs the appli
cation, orportion thereof, and executes the application. In one
embodiment, the streaming client 306 may be an executable
program. In some embodiments, the streaming client 306
may be able to launch another executable program.
0154 The collection agent 304 comprises an application,
program, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits
the collection agent 304 to the client 102 or client agent 120.
The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In
other embodiments, the collection agent 304 transmits col
lected information on the client 102 to the appliance 200. In
one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide
access, authentication and authorization control of the cli
ent's connection to a network 104.

0.155. In one embodiment, the collection agent 304 com
prises an end-point detection and scanning mechanism,
which identifies and determines one or more attributes or
characteristics of the client. For example, the collection agent
304 may identify and determine any one or more of the
following client-side attributes: 1) the operating systemanfor
a version of an operating system, 2) a service pack of the
operating system, 3) a running service, 4) a running process,
and 5) a file. The collection agent 304 may also identify and
determine the presence or versions of any one or more of the
following on the client: 1) antivirus Software, 2) personal
firewall software, 3) anti-spam Software, and 4) internet Secu
rity software. The policy engine 236 may have one or more
policies based on any one or more of the attributes or charac
teristics of the client or client-side attributes.

0156. In some embodiments, the client agent 120 includes
a monitoring agent 197 as discussed in conjunction with
FIGS. 1D and 2B. The monitoring agent 197 may be any type
and form of script, Such as Visual Basic or JavaScript. In one
embodiment, the monitoring agent 197 monitors and mea
sures performance of any portion of the client agent 120. For
example, in Some embodiments, the monitoring agent 197
monitors and measures performance of the acceleration pro
gram 302. In another embodiment, the monitoring agent 197
monitors and measures performance of the streaming client
306. In other embodiments, the monitoring agent 197 moni
tors and measures performance of the collection agent 304. In
still another embodiment, the monitoring agent 197 monitors
and measures performance of the interceptor 350. In some
embodiments, the monitoring agent 197 monitors and mea
sures any resource of the client 102, such as memory, CPU
and disk.
0157. The monitoring agent 197 may monitor and mea
Sure performance of any application of the client. In one
embodiment, the monitoring agent 197 monitors and mea

US 2014/0304810 A1

sures performance of a browser on the client 102. In some
embodiments, the monitoring agent 197 monitors and mea
Sures performance of any application delivered via the client
agent 120. In other embodiments, the monitoring agent 197
measures and monitors end user response times for an appli
cation, such as web-based or HTTP response times. The
monitoring agent 197 may monitor and measure performance
of an ICA or RDP client. In another embodiment, the moni
toring agent 197 measures and monitors metrics for a user
session or application session. In some embodiments, moni
toring agent 197 measures and monitors an ICA or RDP
session. In one embodiment, the monitoring agent 197 mea
sures and monitors the performance of the appliance 200 in
accelerating delivery of an application and/or data to the
client 102.

0158. In some embodiments and still referring to FIG.3, a
first program 322 may be used to install and/or execute the
client agent 120, or portion thereof, such as the interceptor
350, automatically, silently, transparently, or otherwise. In
one embodiment, the first program 322 comprises a plugin
component, Such an ActiveX control or Java control or script
that is loaded into and executed by an application. For
example, the first program comprises an ActiveX control
loaded and run by a web browser application, such as in the
memory space or context of the application. In another
embodiment, the first program 322 comprises a set of execut
able instructions loaded into and run by the application, Such
as a browser. In one embodiment, the first program 322 com
prises a designed and constructed program to install the client
agent 120. In some embodiments, the first program 322
obtains, downloads, or receives the client agent 120 via the
network from another computing device. In another embodi
ment, the first program 322 is an installer program or a plug
and play manager for installing programs, such as network
drivers, on the operating system of the client 102.
0159. D. Systems and Methods for Providing Virtualized
Application Delivery Controller
0160 Referring now to FIG. 4A, a block diagram depicts
one embodiment of a virtualization environment 400. In brief
overview, a computing device 100 includes a hypervisor
layer, a virtualization layer, and a hardware layer. The hyper
visor layer includes a hypervisor 401 (also referred to as a
virtualization manager) that allocates and manages access to
a number of physical resources in the hardware layer (e.g., the
processor(s) 421, and disk(s) 428) by at least one virtual
machine executing in the virtualization layer. The virtualiza
tion layer includes at least one operating system 410 and a
plurality of virtual resources allocated to the at least one
operating system 410. Virtual resources may include, without
limitation, a plurality of virtual processors 432a, 432b, 432c
(generally 432), and virtual disks 442a, 442b,442c (generally
442), as well as virtual resources Such as virtual memory and
virtual network interfaces. The plurality of virtual resources
and the operating system 410 may be referred to as a virtual
machine 406. A virtual machine 406 may include a control
operating system 405 in communication with the hypervisor
401 and used to execute applications for managing and con
figuring other virtual machines on the computing device 100.
0161 In greater detail, a hypervisor 401 may provide vir
tual resources to an operating system in any manner which
simulates the operating system having access to a physical
device. A hypervisor 401 may provide virtual resources to any
number of guest operating systems 410a, 410.b (generally
410). In some embodiments, a computing device 100

Oct. 9, 2014

executes one or more types of hypervisors. In these embodi
ments, hypervisors may be used to emulate virtual hardware,
partition physical hardware, virtualize physical hardware,
and execute virtual machines that provide access to comput
ing environments. Hypervisors may include those manufac
tured by VMWare, Inc., of Palo Alto, Calif.; the XEN hyper
visor, an open source product whose development is overseen
by the open source Xen.org community: HyperV, Virtu
alServer or virtual PC hypervisors provided by Microsoft, or
others. In some embodiments, a computing device 100
executing a hypervisor that creates a virtual machine platform
on which guest operating systems may execute is referred to
as a host server. In one of these embodiments, for example,
the computing device 100 is a XEN SERVER provided by
Citrix Systems, Inc., of Fort Lauderdale, Fla.
0162. In some embodiments, a hypervisor 401 executes
within an operating system executing on a computing device.
In one of these embodiments, a computing device executing
an operating system and a hypervisor 401 may be said to have
a host operating system (the operating system executing on
the computing device), and a guest operating system (an
operating system executing within a computing resource par
tition provided by the hypervisor 401). In other embodiments,
a hypervisor 401 interacts directly with hardware on a com
puting device, instead of executing on a host operating sys
tem. In one of these embodiments, the hypervisor 401 may be
said to be executing on “bare metal.” referring to the hardware
comprising the computing device.
0163. In some embodiments, a hypervisor 401 may create
a virtual machine 406a-c (generally 406) in which an operat
ing system 410 executes. In one of these embodiments, for
example, the hypervisor 401 loads a virtual machine image to
create a virtual machine 406. In another of these embodi
ments, the hypervisor 401 executes an operating system 410
within the virtual machine 406. In still another of these
embodiments, the virtual machine 406 executes an operating
system 410.
0164. In some embodiments, the hypervisor 401 controls
processor Scheduling and memory partitioning for a virtual
machine 406 executing on the computing device 100. In one
of these embodiments, the hypervisor 401 controls the execu
tion of at least one virtual machine 406. In another of these
embodiments, the hypervisor 401 presents at least one virtual
machine 406 with an abstraction of at least one hardware
resource provided by the computing device 100. In other
embodiments, the hypervisor 401 controls whether and how
physical processor capabilities are presented to the virtual
machine 406.

0.165. A control operating system 405 may execute at least
one application for managing and configuring the guest oper
ating systems. In one embodiment, the control operating sys
tem. 405 may execute an administrative application, Such as
an application including a user interface providing adminis
trators with access to functionality for managing the execu
tion of a virtual machine, including functionality for execut
ing a virtual machine, terminating an execution of a virtual
machine, or identifying a type of physical resource for allo
cation to the virtual machine. In another embodiment, the
hypervisor 401 executes the control operating system 405
within a virtual machine 406 created by the hypervisor 401. In
still another embodiment, the control operating system 405
executes in a virtual machine 406 that is authorized to directly
access physical resources on the computing device 100. In
Some embodiments, a control operating system 405a on a

US 2014/0304810 A1

computing device 100a may exchange data with a control
operating system 405b on a computing device 100b, via com
munications between a hypervisor 401a and a hypervisor
401b. In this way, one or more computing devices 100 may
exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources. In one of these
embodiments, this functionality allows a hypervisor to man
age a pool of resources distributed across a plurality of physi
cal computing devices. In another of these embodiments,
multiple hypervisors manage one or more of the guest oper
ating systems executed on one of the computing devices 100.
0166 In one embodiment, the control operating system
405 executes in a virtual machine 406 that is authorized to
interact with at least one guest operating system 410. In
another embodiment, a guest operating system 410 commu
nicates with the control operating system 405 via the hyper
visor 401 in order to request access to a disk or a network. In
still another embodiment, the guest operating system 410 and
the control operating system 405 may communicate via a
communication channel established by the hypervisor 401,
Such as, for example, via a plurality of shared memory pages
made available by the hypervisor 401.
0167. In some embodiments, the control operating system
405 includes a network back-end driver for communicating
directly with networking hardware provided by the comput
ing device 100. In one of these embodiments, the network
back-end driverprocesses at least one virtual machine request
from at least one guest operating system 110. In other
embodiments, the control operating system 405 includes a
block back-end driver for communicating with a storage ele
ment on the computing device 100. In one of these embodi
ments, the block back-end driver reads and writes data from
the storage element based upon at least one request received
from a guest operating system 410.
0.168. In one embodiment, the control operating system
405 includes a tools stack 404. In another embodiment, a tools
stack 404 provides functionality for interacting with the
hypervisor 401, communicating with other control operating
systems 405 (for example, on a second computing device
100b), or managing virtual machines 406b, 406c on the com
puting device 100. In another embodiment, the tools stack
404 includes customized applications for providing improved
management functionality to an administrator of a virtual
machine farm. In some embodiments, at least one of the tools
stack 404 and the control operating system 405 include a
management API that provides an interface for remotely con
figuring and controlling virtual machines 406 running on a
computing device 100. In other embodiments, the control
operating system 405 communicates with the hypervisor 401
through the tools stack 404.
0169. In one embodiment, the hypervisor 401 executes a
guest operating system 410 within a virtual machine 406
created by the hypervisor 401. In another embodiment, the
guest operating system 410 provides a user of the computing
device 100 with access to resources within a computing envi
ronment. In still another embodiment, a resource includes a
program, an application, a document, a file, a plurality of
applications, a plurality of files, an executable program file, a
desktop environment, a computing environment, or other
resource made available to a user of the computing device
100. In yet another embodiment, the resource may be deliv
ered to the computing device 100 via a plurality of access
methods including, but not limited to, conventional installa

20
Oct. 9, 2014

tion directly on the computing device 100, delivery to the
computing device 100 via a method for application stream
ing, delivery to the computing device 100 of output data
generated by an execution of the resource on a second com
puting device 100' and communicated to the computing
device 100 via a presentation layer protocol, delivery to the
computing device 100 of output data generated by an execu
tion of the resource via a virtual machine executing on a
second computing device 100', or execution from a remov
able storage device connected to the computing device 100,
Such as a USB device, or via a virtual machine executing on
the computing device 100 and generating output data. In
Some embodiments, the computing device 100 transmits out
put data generated by the execution of the resource to another
computing device 100'.
0170 In one embodiment, the guest operating system 410,
in conjunction with the virtual machine on which it executes,
forms a fully-virtualized virtual machine which is not aware
that it is a virtual machine; such a machine may be referred to
as a “Domain U HVM (Hardware Virtual Machine) virtual
machine'. In another embodiment, a fully-virtualized
machine includes Software emulating a Basic Input/Output
System (BIOS) in order to execute an operating system within
the fully-virtualized machine. In still another embodiment, a
fully-virtualized machine may include a driver that provides
functionality by communicating with the hypervisor 401. In
such an embodiment, the driver may be aware that it executes
within a virtualized environment. In another embodiment, the
guest operating system 410, in conjunction with the virtual
machine on which it executes, forms a paravirtualized virtual
machine, which is aware that it is a virtual machine; such a
machine may be referred to as a “Domain UPV virtual
machine'. In another embodiment, a paravirtualized machine
includes additional drivers that a fully-virtualized machine
does not include. In still another embodiment, the paravirtu
alized machine includes the network back-end driver and the
block back-end driver included in a control operating system
405, as described above.
0171 Referring now to FIG. 4B, a block diagram depicts
one embodiment of a plurality of networked computing
devices in a system in which at least one physical host
executes a virtual machine. In brief overview, the system
includes a management component 404 and a hypervisor 401.
The system includes a plurality of computing devices 100, a
plurality of virtual machines 406, a plurality of hypervisors
401, a plurality of management components referred to vari
ously as tools stacks 404 or management components 404.
and a physical resource 421, 428. The plurality of physical
machines 100 may each be provided as computing devices
100, described above in connection with FIGS. 1 E-1H and
4A.

0172. In greater detail, a physical disk 428 is provided by
a computing device 100 and stores at least a portion of a
virtual disk 442. In some embodiments, a virtual disk 442 is
associated with a plurality of physical disks 428. In one of
these embodiments, one or more computing devices 100 may
exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources, allowing a hyper
visor to manage a pool of resources distributed across a plu
rality of physical computing devices. In some embodiments,
a computing device 100 on which a virtual machine 406
executes is referred to as a physical host 100 or as a host
machine 100.

US 2014/0304810 A1

0173 The hypervisor executes on a processor on the com
puting device 100. The hypervisor allocates, to a virtual disk,
an amount of access to the physical disk. In one embodiment,
the hypervisor 401 allocates an amount of space on the physi
cal disk. In another embodiment, the hypervisor 401 allocates
a plurality of pages on the physical disk. In some embodi
ments, the hypervisor provisions the virtual disk 442 as part of
a process of initializing and executing a virtual machine 450.
0174. In one embodiment, the management component
404a is referred to as a pool management component 404a. In
another embodiment, a management operating system 405a,
which may be referred to as a control operating system 405a,
includes the management component. In some embodiments,
the management component is referred to as a tools stack. In
one of these embodiments, the management component is the
tools stack 404 described above in connection with FIG. 4A.
In other embodiments, the management component 404 pro
vides a user interface for receiving, from a user Such as an
administrator, an identification of a virtual machine 406 to
provision and/or execute. In still other embodiments, the
management component 404 provides a user interface for
receiving, from a user Such as an administrator, the request for
migration of a virtual machine 406b from one physical
machine 100 to another. In further embodiments, the man
agement component 404a identifies a computing device 100b
on which to execute a requested virtual machine 406d and
instructs the hypervisor 401b on the identified computing
device 100b to execute the identified virtual machine; such a
management component may be referred to as a pool man
agement component.
0175 Referring now to FIG. 4C, embodiments of a virtual
application delivery controller or virtual appliance 450 are
depicted. In brief overview, any of the functionality and/or
embodiments of the appliance 200 (e.g., an application deliv
ery controller) described above in connection with FIGS. 2A
and 2B may be deployed in any embodiment of the virtualized
environment described above in connection with FIGS. 4A
and 4B. Instead of the functionality of the application delivery
controller being deployed in the form of an appliance 200,
Such functionality may be deployed in a virtualized environ
ment 400 on any computing device 100, such as a client 102.
server 106 or appliance 200.
0176 Referring now to FIG. 4C, a diagram of an embodi
ment of a virtual appliance 450 operating on a hypervisor 401
of a server 106 is depicted. As with the appliance 200 of FIGS.
2A and 2B, the virtual appliance 450 may provide function
ality for availability, performance, offload and security. For
availability, the virtual appliance may perform load balancing
between layers 4 and 7 of the network and may also perform
intelligent service health monitoring. For performance
increases via network traffic acceleration, the virtual appli
ance may perform caching and compression. To offload pro
cessing of any servers, the virtual appliance may perform
connection multiplexing and pooling and/or SSL processing.
For security, the virtual appliance may perform any of the
application firewall functionality and SSL VPN function of
appliance 200.
0177. Any of the modules of the appliance 200 as
described in connection with FIG. 2A may be packaged,
combined, designed or constructed in a form of the virtual
ized appliance delivery controller 450 deployable as one or
more software modules or components executable in a virtu
alized environment 300 or non-virtualized environment on
any server, such as an off the shelf server. For example, the

Oct. 9, 2014

virtual appliance may be provided in the form of an installa
tion package to install on a computing device. With reference
to FIG. 2A, any of the cache manager 232, policy engine 236,
compression 238, encryption engine 234, packet engine 240,
GUI 210, CLI 212, shell services 214 and health monitoring
programs 216 may be designed and constructed as a Software
component or module to run on any operating system of a
computing device and/or of a virtualized environment 300.
Instead of using the encryption processor 260, processor 262,
memory 264 and network stack 267 of the appliance 200, the
virtualized appliance 400 may use any of these resources as
provided by the virtualized environment 400 or as otherwise
available on the server 106.
(0178 Still referring to FIG. 4C, and in brief overview, any
one or more vServers 275A-275N may be in operation or
executed in a virtualized environment 400 of any type of
computing device 100, such as any server 106. Any of the
modules or functionality of the appliance 200 described in
connection with FIG. 2B may be designed and constructed to
operate in either a virtualized or non-virtualized environment
of a server. Any of the vServer 275, SSL VPN 280, Intranet
UP282, Switching 284, DNS 286, acceleration 288, App FW
280 and monitoring agent may be packaged, combined,
designed or constructed in a form of application delivery
controller 450 deployable as one or more software modules or
components executable on a device and/or virtualized envi
ronment 400.

0179. In some embodiments, a server may execute mul
tiple virtual machines 406a-406n in the virtualization envi
ronment with each virtual machine running the same or dif
ferent embodiments of the virtual application delivery
controller 450. In some embodiments, the server may execute
one or more virtual appliances 450 on one or more virtual
machines on a core of a multi-core processing system. In
Some embodiments, the server may execute one or more
virtual appliances 450 on one or more virtual machines on
each processor of a multiple processor device.
0180 E. Systems and Methods for Providing a Multi-Core
Architecture

0181. In accordance with Moore's Law, the number of
transistors that may be placed on an integrated circuit may
double approximately every two years. However, CPU speed
increases may reach plateaus, for example CPU speed has
been around 3.5-4 GHz range since 2005. In some cases, CPU
manufacturers may not rely on CPU speed increases to gain
additional performance. Some CPU manufacturers may add
additional cores to their processors to provide additional per
formance. Products, such as those of software and network
ing vendors, that rely on CPUs for performance gains may
improve their performance by leveraging these multi-core
CPUs. The software designed and constructed for a single
CPU may be redesigned and/or rewritten to take advantage of
a multi-threaded, parallel architecture or otherwise a multi
core architecture.

0182. A multi-core architecture of the appliance 200,
referred to as nCore or multi-core technology, allows the
appliance in Some embodiments to break the single core
performance barrier and to leverage the power of multi-core
CPUs. In the previous architecture described in connection
with FIG. 2A, a single network or packet engine is run. The
multiple cores of the nGore technology and architecture allow
multiple packet engines to run concurrently and/or in parallel.
With a packet engine running on each core, the appliance
architecture leverages the processing capacity of additional

US 2014/0304810 A1

cores. In some embodiments, this provides up to a 7x increase
in performance and Scalability.
0183 Illustrated in FIG. 5A are some embodiments of
work, task, load or network traffic distribution across one or
more processor cores according to a type of parallelism or
parallel computing scheme. Such as functional parallelism,
data parallelism or flow-based data parallelism. In brief over
view, FIG. 5A illustrates embodiments of a multi-core system
Such as an appliance 200' with n-cores, a total of cores num
bers 1 through N. In one embodiment, work, load or network
traffic can be distributed among a first core 505A, a second
core 505B, a third core 505C, a fourth core 505D, a fifth core
505E, a sixth core 505F, a seventh core 505G, and so on such
that distribution is across all or two or more of the n cores
505N (hereinafter referred to collectively as cores 505.) There
may be multiple VIPs 275 each running on a respective core
of the plurality of cores. There may be multiple packet
engines 240 each running on a respective core of the plurality
of cores. Any of the approaches used may lead to different,
varying or similar workload or performance level 515 across
any of the cores. For a functional parallelism approach, each
core may run a different function of the functionalities pro
vided by the packet engine, a VIP 275 or appliance 200. In a
data parallelism approach, data may be paralleled or distrib
uted across the cores based on the Network Interface Card
(NIC) or VIP 275 receiving the data. In another data parallel
ism approach, processing may be distributed across the cores
by distributing data flows to each core.
0184. In further detail to FIG.5A, in some embodiments,
load, work or network traffic can be distributed among cores
505 according to functional parallelism 500. Functional par
allelism may be based on each core performing one or more
respective functions. In some embodiments, a first core may
perform a first function while a second core performs a sec
ond function. In functional parallelism approach, the func
tions to be performed by the multi-core system are divided
and distributed to each core according to functionality. In
Some embodiments, functional parallelism may be referred to
as task parallelism and may beachieved when each processor
or core executes a different process or function on the same or
different data. The core or processor may execute the same or
different code. In some cases, different execution threads or
code may communicate with one another as they work. Com
munication may take place to pass data from one thread to the
next as part of a workflow.
0185. In some embodiments, distributing work across the
cores 505 according to functional parallelism 500, can com
prise distributing network traffic according to a particular
function such as network input/output management (NWI/O)
510A, secure sockets layer (SSL) encryption and decryption
510B and transmission control protocol (TCP) functions
510C. This may lead to a work, performance or computing
load 515 based on a volume or level of functionality being
used. In some embodiments, distributing work across the
cores 505 according to data parallelism 540, can comprise
distributing an amount of work515 based on distributing data
associated with a particular hardware or software component.
In some embodiments, distributing work across the cores 505
according to flow-based data parallelism 520, can comprise
distributing data based on a context or flow such that the
amount of work 515A-N on each core may be similar, sub
stantially equal or relatively evenly distributed.
0186. In the case of the functional parallelism approach,
each core may be configured to run one or more functional

22
Oct. 9, 2014

ities of the plurality of functionalities provided by the packet
engine or VIP of the appliance. For example, core 1 may
perform network I/O processing for the appliance 200' while
core 2 performs TCP connection management for the appli
ance. Likewise, core 3 may perform SSL offloading while
core 4 may perform layer 7 or application layer processing
and traffic management. Each of the cores may perform the
same function or different functions. Each of the cores may
perform more than one function. Any of the cores may run any
of the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by func
tion in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG. 5A, division by function
may lead to different cores running at different levels of
performance or load 515.
0187. In the case of the functional parallelism approach,
each core may be configured to run one or more functional
ities of the plurality of functionalities provided by the packet
engine of the appliance. For example, core 1 may perform
network I/O processing for the appliance 200' while core 2
performs TCP connection management for the appliance.
Likewise, core 3 may perform SSL offloading while core 4
may perform layer 7 or application layer processing and
traffic management. Each of the cores may perform the same
function or different functions. Each of the cores may per
form more than one function. Any of the cores may run any of
the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by func
tion in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG.5A division by function may
lead to different cores running at different levels of load or
performance.
0188 The functionality or tasks may be distributed in any
arrangement and scheme. For example, FIG. 5B illustrates a
first core, Core 1 505A, processing applications and pro
cesses associated with network I/O functionality 510A. Net
work traffic associated with network I/O, in some embodi
ments, can be associated with a particular port number. Thus,
outgoing and incoming packets having a port destination
associated with NW I/O 510A will be directed towards Core
1 505A which is dedicated to handling all network traffic
associated with the NW I/O port. Similarly, Core 2505B is
dedicated to handling functionality associated with SSL pro
cessing and Core 4505D may be dedicated handling all TCP
level processing and functionality.
(0189 While FIG. 5A illustrates functions such as network
I/O, SSL and TCP, other functions can be assigned to cores.
These other functions can include any one or more of the
functions or operations described herein. For example, any of
the functions described in conjunction with FIGS. 2A and 2B
may be distributed across the cores on a functionality basis. In
some cases, a first VIP 275A may run on a first core while a
second VIP 275B with a different configuration may run on a
second core. In some embodiments, each core 505 can handle
a particular functionality such that each core 505 can handle
the processing associated with that particular function. For
example, Core 2505B may handle SSL offloading while Core
4505D may handle application layer processing and traffic
management.
0190. In other embodiments, work, load or network traffic
may be distributed among cores 505 according to any type
and form of data parallelism 540. In some embodiments, data

US 2014/0304810 A1

parallelism may be achieved in a multi-core system by each
core performing the same task or functionally on different
pieces of distributed data. In some embodiments, a single
execution thread or code controls operations on all pieces of
data. In other embodiments, different threads or instructions
control the operation, but may execute the same code. In some
embodiments, data parallelism is achieved from the perspec
tive of a packet engine, VServers (VIPs) 275A-C, network
interface cards (NIC) 542D-E and/or any other networking
hardware or software included on or associated with an appli
ance 200. For example, each core may run the same packet
engine or VIP code or configuration but operate on different
sets of distributed data. Each networking hardware or soft
ware construct can receive different, varying or Substantially
the same amount of data, and as a result may have varying,
different or relatively the same amount of load 515.
0191 In the case of a data parallelism approach, the work
may be divided up and distributed based on VIPs, NICs and/or
data flows of the VIPs or NICs. In one of these approaches, the
work of the multi-core system may be divided or distributed
among the VIPs by having each VIP work on a distributed set
of data. For example, each core may be configured to run one
or more VIPs. Network traffic may be distributed to the core
for each VIP handling that traffic. In another of these
approaches, the work of the appliance may be divided or
distributed among the cores based on which NIC receives the
network traffic. For example, network traffic of a first NIC
may be distributed to a first core while network traffic of a
second NIC may be distributed to a second core. In some
cases, a core may process data from multiple NICs.
(0192 While FIG. 5A illustrates a single vServer associ
ated with a single core 505, as is the case for VIP1 275A, VIP2
275B and VIP3275C. In some embodiments, a single vServer
can be associated with one or more cores 505. In contrast, one
or more vServers can be associated with a single core 505.
Associating a vServer with a core 505 may include that core
505 to process all functions associated with that particular
vServer. In some embodiments, each core executes a VIP
having the same code and configuration. In other embodi
ments, each core executes a VIP having the same code but
different configuration. In some embodiments, each core
executes a VIP having different code and the same or different
configuration.
0193 Like VServers, NICs can also be associated with
particular cores 505. In many embodiments, NICs can be
connected to one or more cores 505 such that when a NIC
receives or transmits data packets, a particular core 505
handles the processing involved with receiving and transmit
ting the data packets. In one embodiment, a single NIC can be
associated with a single core 505, as is the case with NIC1
542D and NIC2 542E. In other embodiments, one or more
NICs can be associated with a single core 505. In other
embodiments, a single NIC can be associated with one or
more cores 505. In these embodiments, load could be distrib
uted amongst the one or more cores 505 such that each core
505 processes a substantially similar amount of load. A core
505 associated with a NIC may process all functions and/or
data associated with that particular NIC.
0194 While distributing work across cores based on data
of VIPs or NICs may have a level of independency, in some
embodiments, this may lead to unbalanced use of cores as
illustrated by the varying loads 515 of FIG. 5A.
0195 In some embodiments, load, work or network traffic
can be distributed among cores 505 based on any type and

Oct. 9, 2014

form of data flow. In another of these approaches, the work
may be divided or distributed among cores based on data
flows. For example, network traffic between a client and a
server traversing the appliance may be distributed to and
processed by one core of the plurality of cores. In some cases,
the core initially establishing the session or connection may
be the core for which network traffic for that session or
connection is distributed. In some embodiments, the data flow
is based on any unit or portion of network traffic, Such as a
transaction, a request/response communication or traffic
originating from an application on a client. In this manner and
in Some embodiments, data flows between clients and servers
traversing the appliance 200' may be distributed in a more
balanced manner than the other approaches.
0196. In flow-based data parallelism 520, distribution of
data is related to any type of flow of data, Such as request/
response pairings, transactions, sessions, connections or
application communications. For example, network traffic
between a client and a server traversing the appliance may be
distributed to and processed by one core of the plurality of
cores. In some cases, the core initially establishing the session
or connection may be the core for which network traffic for
that session or connection is distributed. The distribution of
data flow may be such that each core 505 carries a substan
tially equal or relatively evenly distributed amount of load,
data or network traffic.

0.197 In some embodiments, the data flow is based on any
unit or portion of network traffic, such as a transaction, a
request/response communication or traffic originating from
an application on a client. In this manner and in some embodi
ments, data flows between clients and servers traversing the
appliance 200' may be distributed in a more balanced manner
than the other approached. In one embodiment, data flow can
be distributed based on a transaction or a series of transac
tions. This transaction, in some embodiments, can be between
a client and a server and can be characterized by an IP address
or other packet identifier. For example, Core 1505A can be
dedicated to transactions between a particular client and a
particular server, therefore the load 515A on Core 1505A
may be comprised of the network traffic associated with the
transactions between the particular client and server. Allocat
ing the network traffic to Core 1505A can be accomplished
by routing all data packets originating from either the particu
lar client or server to Core 1505A.

0198 While work or load can be distributed to the cores
based in part on transactions, in other embodiments load or
work can be allocated on a per packet basis. In these embodi
ments, the appliance 200 can intercept data packets and allo
cate them to a core 505 having the least amount of load. For
example, the appliance 200 could allocate a first incoming
data packet to Core 1505A because the load 515A on Core 1
is less than the load 515B-N on the rest of the cores 505B-N.
Once the first data packet is allocated to Core 1505A, the
amount of load 515A on Core 1505A is increased propor
tional to the amount of processing resources needed to pro
cess the first data packet. When the appliance 200 intercepts
a second data packet, the appliance 200 will allocate the load
to Core 450SD because Core 4505D has the second least
amount of load. Allocating data packets to the core with the
least amount of load can, in some embodiments, ensure that
the load 515A-N distributed to each core 505 remains Sub
stantially equal.
0199. In other embodiments, load can be allocated on aper
unit basis where a section of network traffic is allocated to a

US 2014/0304810 A1

particular core 505. The above-mentioned example illustrates
load balancing on a per?packet basis. In other embodiments,
load can be allocated based on a number of packets such that
every 10, 100 or 1000 packets are allocated to the core 505
having the least amount of load. The number of packets
allocated to a core 505 can be a number determined by an
application, user or administrator and can be any number
greater than Zero. In still other embodiments, load can be
allocated based on a time metric Such that packets are distrib
uted to a particular core 505 for a predetermined amount of
time. In these embodiments, packets can be distributed to a
particular core 505 for five milliseconds or for any period of
time determined by a user, program, system, administrator or
otherwise. After the predetermined time period elapses, data
packets are transmitted to a different core 505 for the prede
termined period of time.
0200 Flow-based data parallelism methods for distribut
ing work, load or network traffic among the one or more cores
505 can comprise any combination of the above-mentioned
embodiments. These methods can be carried out by any part
of the appliance 200, by an application or set of executable
instructions executing on one of the cores 505, such as the
packet engine, or by any application, program or agent
executing on a computing device in communication with the
appliance 200.
0201 The functional and data parallelism computing
schemes illustrated in FIG. 5A can be combined in any man
ner to generate a hybrid parallelism or distributed processing
scheme that encompasses function parallelism 500, data par
allelism 540, flow-based data parallelism 520 or any portions
thereof. In some cases, the multi-core system may use any
type and form of load balancing schemes to distribute load
among the one or more cores 505. The load balancing scheme
may be used in any combination with any of the functional
and data parallelism schemes or combinations thereof.
0202 Illustrated in FIG. 5B is an embodiment of a multi
core system 545, which may be any type and form of one or
more systems, appliances, devices or components. This sys
tem 545, in some embodiments, can be included within an
appliance 200 having one or more processing cores 505A-N.
The system 545 can further include one or more packet
engines (PE) or packet processing engines (PPE) 548A-N
communicating with a memory bus 556. The memory bus
may be used to communicate with the one or more processing
cores 505A-N. Also included within the system 545 can be
one or more network interface cards (NIC) 552 and a flow
distributor 550 which can further communicate with the one
or more processing cores 505A-N. The flow distributor 550
can comprise a Receive Side Scaler (RSS) or Receive Side
Scaling (RSS) module 560.
0203. Further referring to FIG. 5B, and in more detail, in
one embodiment the packet engine(s) 548A-N can comprise
any portion of the appliance 200 described herein, such as any
portion of the appliance described in FIGS. 2A and 2B. The
packet engine(s) 548A-N can, in some embodiments, com
prise any of the following elements: the packet engine 240, a
network Stack 267; a cache manager 232; a policy engine 236;
a compression engine 238; an encryption engine 234, a GUI
210; a CLI 212; shell services 214; monitoring programs 216:
and any other software or hardware element able to receive
data packets from one of either the memory bus 556 or the one
of more cores 505A-N. In some embodiments, the packet
engine(s) 548A-N can comprise one or more VServers 275A
N, or any portion thereof. In other embodiments, the packet

24
Oct. 9, 2014

engine(s) 548A-N can provide any combination of the fol
lowing functionalities: SSL VPN 280; Intranet UP 282:
switching 284; DNS 286; packet acceleration 288: App FW
280; monitoring Such as the monitoring provided by a moni
toring agent 197; functionalities associated with functioning
as a TCP Stack; load balancing; SSL offloading and process
ing; content Switching; policy evaluation; caching; compres
sion; encoding; decompression; decoding; application fire
wall functionalities: XML processing and acceleration; and
SSL VPN connectivity.
0204 The packet engine(s) 548A-N can, in some embodi
ments, be associated with a particular server, user, client or
network. When a packet engine 548 becomes associated with
a particular entity, that packet engine 548 can process data
packets associated with that entity. For example, should a
packet engine 548 be associated with a first user, that packet
engine 548 will process and operate on packets generated by
the first user, or packets having a destination address associ
ated with the first user. Similarly, the packet engine 548 may
choose not to be associated with a particular entity Such that
the packet engine 548 can process and otherwise operate on
any data packets not generated by that entity or destined for
that entity.
0205. In some instances, the packet engine(s) 548A-N can
be configured to carry out the any of the functional and/or data
parallelism schemes illustrated in FIG.5A. In these instances,
the packet engine(s) 548A-N can distribute functions or data
among the processing cores 505A-N so that the distribution is
according to the parallelism or distribution scheme. In some
embodiments, a single packet engine(s) 548A-N carries out a
load balancing scheme, while in other embodiments one or
more packet engine(s) 548A-N carry out a load balancing
scheme. Each core 505A-N, in one embodiment, can be asso
ciated with a particular packet engine 548 such that load
balancing can be carried out by the packet engine. Load
balancing may in this embodiment, require that each packet
engine 548A-Nassociated with a core 505 communicate with
the other packet engines associated with cores so that the
packet engines 548A-N can collectively determine where to
distribute load. One embodiment of this process can include
an arbiter that receives votes from each packet engine for
load. The arbiter can distribute load to each packet engine
548A-N based in part on the age of the engine's vote and in
Some cases a priority value associated with the current
amount of load on an engine's associated core 505.
0206. Any of the packet engines running on the cores may
run in user mode, kernel or any combination thereof. In some
embodiments, the packet engine operates as an application or
program running is user or application space. In these
embodiments, the packet engine may use any type and form
of interface to access any functionality provided by the ker
nel. In some embodiments, the packet engine operates in
kernel mode or as part of the kernel. In some embodiments, a
first portion of the packet engine operates in user mode while
a second portion of the packet engine operates in kernel mode.
In some embodiments, a first packet engine on a first core
executes in kernel mode while a second packet engine on a
second core executes in user mode. In some embodiments, the
packet engine or any portions thereof operates on or in con
junction with the NIC or any drivers thereof.
0207. In some embodiments the memory bus 556 can be
any type and form of memory or computerbus. While a single
memory bus 556 is depicted in FIG. 5B, the system 545 can
comprise any number of memory buses 556. In one embodi

US 2014/0304810 A1

ment, each packet engine 548 can be associated with one or
more individual memory buses 556.
0208. The NIC 552 can in some embodiments be any of
the network interface cards or mechanisms described herein.
The NIC 552 can have any number of ports. The NIC can be
designed and constructed to connect to any type and form of
network 104. While a single NIC552 is illustrated, the system
545 can comprise any number of NICs 552. In some embodi
ments, each core 505A-N can be associated with one or more
single NICs 552. Thus, each core 505 can be associated with
a single NIC552 dedicated to a particular core 505. The cores
505A-N can comprise any of the processors described herein.
Further, the cores 505A-N can be configured according to any
of the core 505 configurations described herein. Still further,
the cores 505A-N can have any of the core 505 functionalities
described herein. While FIG. 5B illustrates Seven cores
505A-G, any number of cores 505 can be included within the
system 545. In particular, the system 545 can comprise “N”
cores, where “N” is a whole number greater than Zero.
0209. A core may have or use memory that is allocated or
assigned for use to that core. The memory may be considered
private or local memory of that core and only accessible by
that core. A core may have or use memory that is shared or
assigned to multiple cores. The memory may be considered
public or shared memory that is accessible by more than one
core. A core may use any combination of private and public
memory. With separate address spaces for each core, some
level of coordination is eliminated from the case of using the
same address space. With a separate address space, a core can
perform work on information and data in the core's own
address space without worrying about conflicts with other
cores. Each packet engine may have a separate memory pool
for TCP and/or SSL connections.
0210. Further referring to FIG.5B, any of the functionality
and/or embodiments of the cores 505 described above in
connection with FIG. 5A can be deployed in any embodiment
of the virtualized environment described above in connection
with FIGS. 4A and 4B. Instead of the functionality of the
cores 505 being deployed in the form of a physical processor
505, such functionality may be deployed in a virtualized
environment 400 on any computing device 100, such as a
client 102, server 106 or appliance 200. In other embodi
ments, instead of the functionality of the cores 505 being
deployed in the form of an appliance or a single device, the
functionality may be deployed across multiple devices in any
arrangement. For example, one device may comprise two or
more cores and another device may comprise two or more
cores. For example, a multi-core system may include a cluster
of computing devices, a server farm or network of computing
devices. In some embodiments, instead of the functionality of
the cores 505 being deployed in the form of cores, the func
tionality may be deployed on a plurality of processors, such as
a plurality of single core processors.
0211. In one embodiment, the cores 505 may be any type
and form of processor. In some embodiments, a core can
function Substantially similar to any processor or central pro
cessing unit described herein. In some embodiment, the cores
505 may comprise any portion of any processor described
herein. While FIG. 5A illustrates seven cores, there can exist
any 'N' number of cores within an appliance 200, where “N”
is any whole number greater than one. In some embodiments,
the cores 505 can be installed within a common appliance
200, while in other embodiments the cores 505 can be
installed within one or more appliance(s) 200 communica

Oct. 9, 2014

tively connected to one another. The cores 505 can in some
embodiments comprise graphics processing Software, while
in other embodiments the cores 505 provide general process
ing capabilities. The cores 505 can be installed physically
near each other and/or can be communicatively connected to
each other. The cores may be connected by any type and form
of bus or Subsystem physically and/or communicatively
coupled to the cores for transferring data between to, from
and/or between the cores.

0212. While each core 505 can comprise software for
communicating with other cores, in some embodiments a
core manager (not shown) can facilitate communication
between each core 505. In some embodiments, the kernel may
provide core management. The cores may interface or com
municate with each other using a variety of interface mecha
nisms. In some embodiments, core to core messaging may be
used to communicate between cores, such as a first core
sending a message or data to a second core via a bus or
Subsystem connecting the cores. In some embodiments, cores
may communicate via any type and form of shared memory
interface. In one embodiment, there may be one or more
memory locations shared among all the cores. In some
embodiments, each core may have separate memory loca
tions shared with each other core. For example, a first core
may have a first shared memory with a second core and a
second share memory with a third core. In some embodi
ments, cores may communicate via any type of programming
or API, such as function calls via the kernel. In some embodi
ments, the operating system may recognize and support mul
tiple core devices and provide interfaces and API for inter
core communications.

0213. The flow distributor 550 can be any application,
program, library, Script, task, service, process or any type and
form of executable instructions executing on any type and
form of hardware. In some embodiments, the flow distributor
550 may any design and construction of circuitry to perform
any of the operations and functions described herein. In some
embodiments, the flow distributor distribute, forwards,
routes, controls and/ors manage the distribution of data pack
ets among the cores 505 and/or packet engine or VIPs running
on the cores. The flow distributor 550, in some embodiments,
can be referred to as an interface master. In one embodiment,
the flow distributor 550 comprises a set of executable instruc
tions executing on a core or processor of the appliance 200. In
another embodiment, the flow distributor 550 comprises a set
of executable instructions executing on a computing machine
in communication with the appliance 200. In some embodi
ments, the flow distributor 550 comprises a set of executable
instructions executing on a NIC, Such as firmware. In still
other embodiments, the flow distributor 550 comprises any
combination of software and hardware to distribute data
packets among cores or processors. In one embodiment, the
flow distributor 550 executes on at least one of the cores
505A-N, while in other embodiments a separate flow dis
tributor 550 assigned to each core 505A-N executes on an
associated core 505A-N. The flow distributor may use any
type and form of statistical or probabilistic algorithms or
decision making to balance the flows across the cores. The
hardware of the appliance, such as a NIC, or the kernel may be
designed and constructed to Support sequential operations
across the NICs and/or cores.

0214. In embodiments where the system 545 comprises
one or more flow distributors 550, each flow distributor 550
can be associated with a processor 505 or a packet engine 548.

US 2014/0304810 A1

The flow distributors 550 can comprise an interface mecha
nism that allows each flow distributor 550 to communicate
with the other flow distributors 550 executing within the
system 545. In one instance, the one or more flow distributors
550 can determine how to balance load by communicating
with each other. This process can operate Substantially simi
larly to the process described above for submitting votes to an
arbiter which then determines which flow distributor 550
should receive the load. In other embodiments, a first flow
distributor 550' can identify the load on an associated core and
determine whether to forward a first data packet to the asso
ciated core based on any of the following criteria: the load on
the associated core is above a predetermined threshold; the
load on the associated core is below a predetermined thresh
old; the load on the associated core is less than the load on the
other cores; or any other metric that can be used to determine
where to forward data packets based in part on the amount of
load on a processor.
0215. The flow distributor 550 can distribute network traf

fic among the cores 505 according to a distribution, comput
ing or load balancing scheme such as those described herein.
In one embodiment, the flow distributor can distribute net
work traffic according to any one of a functional parallelism
distribution scheme 550, a data parallelism load distribution
scheme 540, a flow-based data parallelism distribution
scheme 520, or any combination of these distribution scheme
or any load balancing scheme for distributing load among
multiple processors. The flow distributor 550 can therefore
act as a load distributor by taking in data packets and distrib
uting them across the processors according to an operative
load balancing or distribution scheme. In one embodiment,
the flow distributor 550 can comprise one or more operations,
functions or logic to determine how to distribute packers,
work or load accordingly. In still other embodiments, the flow
distributor 550 can comprise one or more sub operations,
functions or logic that can identify a source address and a
destination address associated with a data packet, and distrib
ute packets accordingly.
0216. In some embodiments, the flow distributor 550 can
comprise a receive-side scaling (RSS) network driver, mod
ule 560 or any type and form of executable instructions which
distribute data packets among the one or more cores 505. The
RSS module 560 can comprise any combination of hardware
and software. In some embodiments, the RSS module 560
works in conjunction with the flow distributor 550 to distrib
ute data packets across the cores 505A-N or among multiple
processors in a multi-processor network. The RSS module
560 can execute within the NIC 552 in some embodiments,
and in other embodiments can execute on any one of the cores
505.

0217. In some embodiments, the RSS module 560 uses the
MICROSOFT receive-side-scaling (RSS) scheme. In one
embodiment, RSS is a Microsoft Scalable Networking initia
tive technology that enables receive processing to be balanced
across multiple processors in the system while maintaining
in-order delivery of the data. The RSS may use any type and
form of hashing scheme to determine a core or processor for
processing a network packet.
0218. The RSS module 560 can apply any type and form
hash function such as the Toeplitz hash function. The hash
function may be applied to the hash type or any the sequence
of values. The hash function may be a secure hash of any
security level or is otherwise cryptographically secure. The
hash function may use a hash key. The size of the key is

26
Oct. 9, 2014

dependent upon the hash function. For the Toeplitz hash, the
size may be 40 bytes for IPv6 and 16 bytes for IPv4.
0219. The hash function may be designed and constructed
based on any one or more criteria or design goals. In some
embodiments, a hash function may be used that provides an
even distribution of hash result for different hash inputs and
different hash types, including TCP/IPv4, TCP/IPv6, IPv4,
and IPv6 headers. In some embodiments, a hash function may
be used that provides a hash result that is evenly distributed
when a small number ofbuckets are present (for example, two
or four). In some embodiments, hash function may be used
that provides a hash result that is randomly distributed when
a large number of buckets were present (for example, 64
buckets). In some embodiments, the hash function is deter
mined based on a level of computational or resource usage. In
Some embodiments, the hash function is determined based on
ease or difficulty of implementing the hash in hardware. In
Some embodiments, the hash function is determined based on
the ease or difficulty of a malicious remote host to send
packets that would all hash to the same bucket.
0220. The RSS may generate hashes from any type and
form of input, such as a sequence of values. This sequence of
values can include any portion of the network packet, Such as
any header, field or payload of network packet, or portions
thereof. In some embodiments, the input to the hash may be
referred to as a hash type and include any tuples of informa
tion associated with a network packet or data flow, such as any
of the following: a four tuple comprising at least two IP
addresses and two ports; a four tuple comprising any four sets
of values; a six tuple; a two tuple; and/or any other sequence
of numbers or values. The following are example of hash
types that may be used by RSS:

0221) 4-tuple of source TCP Port, source IP version 4
(IPv4) address, destination TCP Port, and destination
IPv4 address.

0222 4-tuple of source TCP Port, source IP version 6
(IPv6) address, destination TCP Port, and destination
IPv6 address.

0223 2-tuple of source IPv4 address, and destination
IPv4 address.

0224 2-tuple of source IPv6 address, and destination
IPv6 address.

0225 2-tuple of source IPv6 address, and destination
IPv6 address, including support for parsing IPv6 exten
sion headers.

0226. The hash result or any portion thereof may used to
identify a core or entity, such as a packet engine or VIP, for
distributing a network packet. In some embodiments, one or
more hash bits or mask are applied to the hash result. The hash
bit or mask may be any number of bits or bytes. A NIC may
support any number of bits, such as seven bits. The network
stack may set the actual number of bits to be used during
initialization. The number will be between 1 and 7, inclusive.
0227. The hash result may be used to identify the core or
entity via any type and form of table, such as a bucket table or
indirection table. In some embodiments, the number of hash
result bits are used to index into the table. The range of the
hash mask may effectively define the size of the indirection
table. Any portion of the hash result or the hast result itself
may be used to index the indirection table. The values in the
table may identify any of the cores or processor, Such as by a
core or processor identifier. In some embodiments, all of the
cores of the multi-core system are identified in the table. In
other embodiments, a port of the cores of the multi-core

US 2014/0304810 A1

system are identified in the table. The indirection table may
comprise any number of buckets for example 2 to 128 buckets
that may be indexed by a hash mask. Each bucket may com
prise a range of index values that identify a core or processor.
In some embodiments, the flow controller and/or RSS module
may rebalance the network rebalance the network load by
changing the indirection table.
0228. In some embodiments, the multi-core system 575
does not include a RSS driver or RSS module 560. In some of
these embodiments, a software steering module (not shown)
or a software embodiment of the RSS module within the
system can operate in conjunction with or as part of the flow
distributor 550 to steer packets to cores 505 within the multi
core system 575.
0229. The flow distributor 550, in some embodiments,
executes within any module or program on the appliance 200,
on any one of the cores 505 and on any one of the devices or
components included within the multi-core system 575. In
some embodiments, the flow distributor 550' can execute on
the first core 505A, while in other embodiments the flow
distributor 550" can execute on the NIC 552. In Still other
embodiments, an instance of the flow distributor 550' can
execute on each core 505 included in the multi-core system
575. In this embodiment, each instance of the flow distributor
550' can communicate with other instances of the flow dis
tributor 550' to forward packets back and forth across the
cores 505. There exist situations where a response to a request
packet may not be processed by the same core, i.e. the first
core processes the request while the second core processes
the response. In these situations, the instances of the flow
distributor 550' can intercept the packet and forward it to the
desired or correct core 505, i.e. a flow distributor instance 550'
can forward the response to the first core. Multiple instances
of the flow distributor 550' can execute on any number of
cores 505 and any combination of cores 505.
0230. The flow distributor may operate responsive to any
one or more rules or policies. The rules may identify a core or
packet processing engine to receive a network packet, data or
data flow. The rules may identify any type and form of tuple
information related to a network packet, such as a 4-tuple of
Source and destination IP address and Source and destination
ports. Based on a received packet matching the tuple specified
by the rule, the flow distributor may forward the packet to a
core or packet engine. In some embodiments, the packet is
forwarded to a core via shared memory and/or core to core
messaging.
0231. Although FIG. 5B illustrates the flow distributor
550 as executing within the multi-core system 575, in some
embodiments the flow distributor 550 can execute on a com
puting device or appliance remotely located from the multi
core system 575. In such an embodiment, the flow distributor
550 can communicate with the multi-core system 575 to take
in data packets and distribute the packets across the one or
more cores 505. The flow distributor 550 can, in one embodi
ment, receive data packets destined for the appliance 200,
apply a distribution scheme to the received data packets and
distribute the data packets to the one or more cores 505 of the
multi-core system 575. In one embodiment, the flow distribu
tor 550 can be included in a router or other appliance such that
the router can target particular cores 505 by altering metadata
associated with each packet so that each packet is targeted
towards a sub-node of the multi-core system 575. In such an
embodiment, CISCO's Vn-tag mechanism can be used to alter
or tag each packet with the appropriate metadata.

27
Oct. 9, 2014

0232 Illustrated in FIG. 5C is an embodiment of a multi
core system 575 comprising one or more processing cores
505A-N. In brief overview, one of the cores 505 can be
designated as a control core 505A and can be used as a control
plane 570 for the other cores 505. The other cores may be
secondary cores which operate in a data plane while the
control core provides the control plane. The cores 505A-N
may share a global cache 580. While the control core provides
a control plane, the other cores in the multi-core system form
or provide a data plane. These cores perform data processing
functionality on network traffic while the control provides
initialization, configuration and control of the multi-core sys
tem

0233. Further referring to FIG. 5C, and in more detail, the
cores 505A-N as well as the control core 505A can be any
processor described herein. Furthermore, the cores 505A-N
and the control core 505A can be any processor able to func
tion within the system 575 described in FIG.5C. Still further,
the cores 505A-N and the control core 505A can be any core
or group of cores described herein. The control core may be a
different type of core or processor than the other cores. In
Some embodiments, the control may operate a different
packet engine or have a packet engine configured differently
than the packet engines of the other cores.
0234 Any portion of the memory of each of the cores may
be allocated to or used for a global cache that is shared by the
cores. In brief overview, a predetermined percentage or pre
determined amount of each of the memory of each core may
be used for the global cache. For example, 50% of each
memory of each code may be dedicated or allocated to the
shared global cache. That is, in the illustrated embodiment, 2
GB of each core excluding the control plane core or core 1
may be used to form a 28 GB shared global cache. The
configuration of the control plane Such as via the configura
tion services may determine the amount of memory used for
the shared global cache. In some embodiments, each core
may provide a different amount of memory for use by the
global cache. In other embodiments, any one core may not
provide any memory or use the global cache. In some embodi
ments, any of the cores may also have a local cache in memory
not allocated to the global shared memory. Each of the cores
may store any portion of network traffic to the global shared
cache. Each of the cores may check the cache for any content
to use in a request or response. Any of the cores may obtain
content from the global shared cache to use in a data flow,
request or response.
0235. The global cache 580 can be any type and form of
memory or storage element, such as any memory or storage
element described herein. In some embodiments, the cores
505 may have access to a predetermined amount of memory
(i.e. 32 GB or any other memory amount commensurate with
the system 575). The global cache 580 can be allocated from
that predetermined amount of memory while the rest of the
available memory can be allocated among the cores 505. In
other embodiments, each core 505 can have a predetermined
amount of memory. The global cache 580 can comprise an
amount of the memory allocated to each core 505. This
memory amount can be measured in bytes, or can be mea
Sured as a percentage of the memory allocated to each core
505. Thus, the global cache 580 can comprise 1 GB of
memory from the memory associated with each core 505, or
can comprise 20 percent or one-half of the memory associ
ated with each core 505. In some embodiments, only a portion
of the cores 505 provide memory to the global cache 580,

US 2014/0304810 A1

while in other embodiments the global cache 580 can com
prise memory not allocated to the cores 505.
0236 Each core 505 can use the global cache 580 to store
network traffic or cache data. In some embodiments, the
packet engines of the core use the global cache to cache and
use data stored by the plurality of packet engines. For
example, the cache manager of FIG. 2A and cache function
ality of FIG. 2B may use the global cache to share data for
acceleration. For example, each of the packet engines may
store responses, such as HTML data, to the global cache. Any
of the cache managers operating on a core may access the
global cache to server caches responses to client requests.
0237. In some embodiments, the cores 505 can use the
global cache 580 to store a port allocation table which can be
used to determine data flow based in part on ports. In other
embodiments, the cores 505 can use the global cache 580 to
store an address lookup table or any other table or list that can
be used by the flow distributor to determine where to direct
incoming and outgoing data packets. The cores 505 can, in
some embodiments read from and write to cache S80, while in
other embodiments the cores 505 can only read from or write
to cache 580. The cores may use the global cache to perform
core to core communications.
0238. The global cache 580 may be sectioned into indi
vidual memory sections where each section can be dedicated
to a particular core 505. In one embodiment, the control core
505A can receive a greater amount of available cache, while
the other cores 505 can receiving varying amounts or access
to the global cache 580.
0239. In some embodiments, the system 575 can comprise
a control core 505A. While FIG.SC illustrates core 1505A as
the control core, the control core can be any core within the
appliance 200 or multi-core system. Further, while only a
single control core is depicted, the system 575 can comprise
one or more control cores each having a level of control over
the system. In some embodiments, one or more control cores
can each control a particular aspect of the system 575. For
example, one core can control deciding which distribution
scheme to use, while another core can determine the size of
the global cache 580.
0240. The control plane of the multi-core system may be
the designation and configuration of a core as the dedicated
management core or as a master core. This control plane core
may provide control, management and coordination of opera
tion and functionality the plurality of cores in the multi-core
system. This control plane core may provide control, man
agement and coordination of allocation and use of memory of
the system among the plurality of cores in the multi-core
system, including initialization and configuration of the
same. In some embodiments, the control plane includes the
flow distributor for controlling the assignment of data flows to
cores and the distribution of network packets to cores based
on data flows. In some embodiments, the control plane core
runs a packet engine and in other embodiments, the control
plane core is dedicated to management and control of the
other cores of the system.
0241 The control core 505A can exercisea level of control
over the other cores 505 such as determining how much
memory should be allocated to each core 505 or determining
which core 505 should be assigned to handle a particular
function or hardware/software entity. The control core 505A,
in Some embodiments, can exercise control over those cores
505 within the control plan 570. Thus, there can exist proces
sors outside of the control plane 570 which are not controlled

28
Oct. 9, 2014

by the control core 505A. Determining the boundaries of the
control plane 570 can include maintaining, by the control core
505A or agent executing within the system 575, a list of those
cores 505 controlled by the control core 505A. The control
core 505A can control any of the following: initialization of a
core; determining when a core is unavailable; re-distributing
load to other cores 505 when one core fails; determining
which distribution scheme to implement; determining which
core should receive network traffic; determining how much
cache should be allocated to each core; determining whether
to assign a particular function or element to a particular core;
determining whether to permit cores to communicate with
one another; determining the size of the global cache 580; and
any other determination of a function, configuration or opera
tion of the cores within the system 575.
0242 F. Systems and Methods for Providing a Distributed
Cluster Architecture
0243 As discussed in the previous section, to overcome
limitations on transistor spacing and CPU speed increases,
many CPU manufacturers have incorporated multi-core
CPUs to improve performance beyond that capable of even a
single, higher speed CPU. Similar or further performance
gains may be made by operating a plurality of appliances,
either single or multi-core, together as a distributed or clus
tered appliance. Individual computing devices or appliances
may be referred to as nodes of the cluster. A centralized
management system may perform load balancing, distribu
tion, configuration, or other tasks to allow the nodes to oper
ate in conjunction as a single computing system. Externally or
to other devices, including servers and clients, in many
embodiments, the cluster may be viewed as a single virtual
appliance or computing device, albeit one with performance
exceeding that of a typical individual appliance.
0244 Referring now to FIG. 6, illustrated is an embodi
ment of a computing device cluster or appliance cluster 600.
A plurality of appliances 200a-200m or other computing
devices, sometimes referred to as nodes. Such as desktop
computers, servers, rackmount servers, blade servers, or any
other type and form of computing device may be joined into
a single appliance cluster 600. Although referred to as an
appliance cluster, in many embodiments, the cluster may
operate as an application server, network storage server,
backup service, or any other type of computing device with
out limitation. In many embodiments, the appliance cluster
600 may be used to perform many of the functions of appli
ances 200, WAN optimization devices, network acceleration
devices, or other devices discussed above.
0245. In some embodiments, the appliance cluster 600
may comprise a homogenous set of computing devices. Such
as identical appliances, blade servers within one or more
chassis, desktop or rackmount computing devices, or other
devices. In other embodiments, the appliance cluster 600 may
comprise a heterogeneous or mixed set of devices, including
different models of appliances, mixed appliances and servers,
or any other set of computing devices. This may allow for an
appliance cluster 600 to be expanded or upgraded over time
with new models or devices, for example.
0246. In some embodiments, each computing device or
appliance 200 of an appliance cluster 600 may comprise a
multi-core appliance, as discussed above. In many Such
embodiments, the core management and flow distribution
methods discussed above may be utilized by each individual
appliance, in addition to the node management and distribu
tion methods discussed herein. This may be thought of as a

US 2014/0304810 A1

two-tier distributed System, with one appliance comprising
and distributing data to multiple nodes, and each node com
prising and distributing data for processing to multiple cores.
Accordingly, in Such embodiments, the node distribution sys
tem need not manage flow distribution to individual cores, as
that may be taken care of by a master or control core as
discussed above.

0247. In many embodiments, an appliance cluster 600
may be physically grouped. Such as a plurality of blade serv
ers in a chassis or plurality of rackmount devices in a single
rack, but in other embodiments, the appliance cluster 600 may
be distributed in a plurality of chassis, plurality of racks,
plurality of rooms in a data center, plurality of data centers, or
any other physical arrangement. Accordingly, the appliance
cluster 600 may be considered a virtual appliance, grouped
via common configuration, management, and purpose, rather
than a physical group.
0248. In some embodiments, an appliance cluster 600 may
be connected to one or more networks 104,104". For example,
referring briefly back to FIG. 1A, in some embodiments, an
appliance 200 may be deployed between a network 104
joined to one or more clients 102, and a network 104 joined
to one or more servers 106. An appliance cluster 600 may be
similarly deployed to operate as a single appliance. In many
embodiments, this may not require any network topology
changes external to appliance cluster 600, allowing for ease of
installation and Scalability from a single appliance scenario.
In other embodiments, an appliance cluster 600 may be simi
larly deployed as shown in FIGS. 1 B-1D or discussed above.
In still other embodiments, an appliance cluster may com
prise a plurality of virtual machines or processes executed by
one or more servers. For example, in one such embodiment, a
server farm may execute a plurality of virtual machines, each
virtual machine configured as an appliance 200, and a plural
ity of the virtual machines acting in concert as an appliance
cluster 600. In yet still other embodiments, an appliance
cluster 600 may comprise a mix of appliances 200 or virtual
machines configured as appliances 200. In some embodi
ments, appliance cluster 600 may be geographically distrib
uted, with the plurality of appliances 200 not co-located. For
example, referring back to FIG. 6, in one such embodiment, a
first appliance 200a may be located at a first site, such as a
data center and a second appliance 200b may be located at a
second site. Such as a central office or corporate headquarters.
In a further embodiment, such geographically remote appli
ances may be joined by a dedicated network, such as a T1 or
T3 point-to-point connection; a VPN, or any other type and
form of network. Accordingly, although there may be addi
tional communications latency compared to co-located appli
ances 200a-200b, there may be advantages in reliability in
case of site power failures or communications outages, Scal
ability, or other benefits. In some embodiments, latency
issues may be reduced through geographic or network-based
distribution of data flows. For example, although configured
as an appliance cluster 600, communications from clients and
servers at the corporate headquarters may be directed to the
appliance 200b deployed at the site, load balancing may be
weighted by location, or similar steps can be taken to mitigate
any latency.
0249 Still referring to FIG. 6, an appliance cluster 600
may be connected to a network via a client data plane 602. In
Some embodiments, client data plane 602 may comprise a
communication network, Such as a network 104, carrying
data between clients and appliance cluster 600. In some

29
Oct. 9, 2014

embodiments, client data plane 602 may comprise a Switch,
hub, router, or other network devices bridging an external
network 104 and the plurality of appliances 200a-200n of the
appliance cluster 600. For example, in one such embodiment,
a router may be connected to an external network 104, and
connected to a network interface of each appliance 200a
200n. In some embodiments, this router or switch may be
referred to as an interface manager, and may further be con
figured to distribute traffic evenly across the nodes in the
application cluster 600. Thus, in many embodiments, the
interface master may comprise a flow distributor external to
appliance cluster 600. In other embodiments, the interface
master may comprise one of appliances 200a-200n. For
example, a first appliance 200a may serve as the interface
master, receiving incoming traffic for the appliance cluster
600 and distributing the traffic across each of appliances
200b-200m. In some embodiments, return traffic may simi
larly flow from each of appliances 200b-200n via the first
appliance 200a serving as the interface master. In other
embodiments, return traffic from each of appliances 200b
200m may be transmitted directly to a network 104, 104", or
via an external router, Switch, or other device. In some
embodiments, appliances 200 of the appliance cluster not
serving as an interface master may be referred to as interface
slaves.

0250. The interface master may perform load balancing or
traffic flow distribution in any of a variety of ways. For
example, in some embodiments, the interface master may
comprise a router performing equal-cost multi-path (ECMP)
routing with next hops configured with appliances or nodes of
the cluster. The interface master may use an open-shortest
path first (OSPF) In some embodiments, the interface master
may use a stateless hash-based mechanism for traffic distri
bution, such as hashes based on IP address or other packet
information tuples, as discussed above. Hash keys and/or salt
may be selected for even distribution across the nodes. In
other embodiments, the interface master may perform flow
distribution via link aggregation (LAG) protocols, or any
other type and form of flow distribution, load balancing, and
routing.
0251. In some embodiments, the appliance cluster 600
may be connected to a network via a server data plane 604.
Similar to client data plane 602, server data plane 604 may
comprise a communication network, Such as a network 104".
carrying data between servers and appliance cluster 600. In
Some embodiments, server data plane 604 may comprise a
Switch, hub, router, or other network devices bridging an
external network 104' and the plurality of appliances 200a
200n of the appliance cluster 600. For example, in one such
embodiment, a router may be connected to an external net
work 104", and connected to a network interface of each
appliance 200a-200n. In many embodiments, each appliance
200a-200m may comprise multiple network interfaces, with a
first network interface connected to client data plane 602 and
a second network interface connected to server data plane
604. This may provide additional security and prevent direct
interface of client and server networks by having appliance
cluster 600 server as an intermediary device. In other embodi
ments, client data plane 602 and server data plane 604 may be
merged or combined. For example, appliance cluster 600 may
be deployed as a non-intermediary node on a network with
clients 102 and servers 106. As discussed above, in many
embodiments, an interface master may be deployed on the
server data plane 604, for routing and distributing communi

US 2014/0304810 A1

cations from the servers and network 104 to each appliance of
the appliance cluster. In many embodiments, an interface
master for client data plane 602 and an interface master for
server data plane 604 may be similarly configured, perform
ing ECMP or LAG protocols as discussed above.
0252. In some embodiments, each appliance 200a-200n in
appliance cluster 600 may be connected via an internal com
munication network or back plane 606. Back plane 606 may
comprise a communication network for inter-node or inter
appliance control and configuration messages, and for inter
node forwarding of traffic. For example, in one embodiment
in which a first appliance 200a communicates with a client via
network 104, and a second appliance 200b communicates
with a server via network 104", communications between the
client and server may flow from client to first appliance, from
first appliance to second appliance via back plane 606, and
from second appliance to server, and vice versa. In other
embodiments, back plane 606 may carry configuration mes
sages, such as interface pause or reset commands; policy
updates such as filtering or compression policies; status mes
sages such as buffer status, throughput, or error messages; or
any other type and form of inter-node communication. In
some embodiments, RSS keys or hash keys may be shared by
all nodes in the cluster, and may be communicated via back
plane 606. For example, a first node or master node may select
an RSS key, such as at startup or boot, and may distribute this
key for use by other nodes. In some embodiments, back plane
606 may comprise a network between network interfaces of
each appliance 200, and may comprise a router, Switch, or
other network device (not illustrated). Thus, in some embodi
ments and as discussed above, a router for client data plane
602 may be deployed between appliance cluster 600 and
network 104, a router for server data plane 604 may be
deployed between appliance cluster 600 and network 104".
and a router for back plane 606 may be deployed as part of
appliance cluster 600. Each router may connect to a different
network interface of each appliance 200. In other embodi
ments, one or more planes 602-606 may be combined, or a
router or switch may be split into multiple LANs or VLANs to
connect to different interfaces of appliances 200a-200n and
serve multiple routing functions simultaneously, to reduce
complexity or eliminate extra devices from the system.
0253) In some embodiments, a control plane (not illus

trated) may communicate configuration and control traffic
from an administrator or user to the appliance cluster 600. In
Some embodiments, the control plane may be a fourth physi
cal network, while in other embodiments, the control plane
may comprise a VPN, tunnel, or communication via one of
planes 602-606. Thus, the control plane may, in some
embodiments, be considered a virtual communication plane.
In other embodiments, an administrator may provide configu
ration and control through a separate interface, such as a serial
communication interface such as RS-232; a USB communi
cation interface; or any other type and form of communica
tion. In some embodiments, an appliance 200 may comprise
an interface for administration, such as a front panel with
buttons and a display; a web server for configuration via
network 104, 104 or back plane 606; or any other type and
form of interface.

0254. In some embodiments, as discussed above, appli
ance cluster 600 may include internal flow distribution. For
example, this may be done to allow nodes to join/leave trans
parently to external devices. To prevent an external flow dis
tributor from needing to be repeatedly reconfigured on Such

30
Oct. 9, 2014

changes, a node or appliance may act as an interface master or
distributor for steering network packets to the correct node
within the cluster 600. For example, in some embodiments,
when a node leaves the cluster (such as on failure, reset, or
similar cases), an external ECMP router may identify the
change in nodes, and may rehash all flows to redistribute
traffic. This may result in dropping and resetting all connec
tions. The same drop and reset may occur when the node
rejoins. In some embodiments, for reliability, two appliances
or nodes within appliance cluster 600 may receive commu
nications from external routers via connection mirroring.
0255. In many embodiments, flow distribution among
nodes of appliance cluster 600 may use any of the methods
discussed above for flow distribution among cores of an appli
ance. For example, in one embodiment, a master appliance,
master node, or interface master, may compute a RSS hash,
Such as a Toeplitz hash on incoming traffic and consult a
preference list or distribution table for the hash. In many
embodiments, the flow distributor may provide the hash to the
recipient appliance when forwarding the traffic. This may
eliminate the need for the node to recompute the hash for flow
distribution to a core. In many such embodiments, the RSS
key used for calculating hashes for distribution among the
appliances may comprise the same key as that used for cal
culating hashes for distribution among the cores, which may
be referred to as a global RSS key, allowing for reuse of the
calculated hash. In some embodiments, the hash may be
computed with input tuples of transport layer headers includ
ing port numbers, internet layer headers including IP
addresses; or any other packet header information. In some
embodiments, packet body information may be utilized for
the hash. For example, in one embodiment in which traffic of
one protocol is encapsulated within traffic of another proto
col, such as lossy UDP traffic encapsulated via a lossless TCP
header, the flow distributor may calculate the hash based on
the headers of the encapsulated protocol (e.g. UDP headers)
rather than the encapsulating protocol (e.g. TCP headers).
Similarly, in some embodiments in which packets are encap
sulated and encrypted or compressed, the flow distributor
may calculate the hash based on the headers of the payload
packet after decryption or decompression. In still other
embodiments, nodes may have internal IP addresses, such as
for configuration or administration purposes. Traffic to these
IP addresses need not be hashed and distributed, but rather
may be forwarded to the node owning the destination address.
For example, an appliance may have a web server or other
server running for configuration or administration purposes at
an IP address of 1.2.3.4, and, in some embodiments, may
register this address with the flow distributor as its internal IP
address. In other embodiments, the flow distributor may
assign internal IP addresses to each node within the appliance
cluster 600. Traffic arriving from external clients or servers,
Such as a workStation used by an administrator, directed to the
internal IP address of the appliance (1.2.3.4) may be for
warded directly, without requiring hashing.
0256 G. Systems and Methods for Generating Cookie
Signatures for Security Protection in a Multi-Core System
0257 Before discussing the specifics of cookie signatures,

it may be helpful to first describe a few types of malicious
attacks for which cookies are used for protection. Synchro
nization (SYN) attacks, sometimes called SYN floods, and
HTTP Denial of Service (HTTP DoS) attacks are two similar
methods that malicious attackers can use to slow down or

US 2014/0304810 A1

disable a remote server by tying up memory and resources to
prevent innocent users from accessing said resources.
0258. In the standard 3-way handshaking protocol of TCP
and similar transport layer protocols, a client requests a con
nection by sending a SYN message to a server or appliance.
Classically, the server or appliance allocates memory and/or
resources to a client-side Socket, and responds with an
acknowledgement message (SYN-ACK). The client then
responds with an acknowledgement (ACK) and the connec
tion is established.

0259. In the SYN flood or SYN attack, a malicious client
or clients send a plurality of SYN requests. As is usual, the
appliance or server allocates memory and resources for each
request and responds with SYN-ACK messages. The mali
cious client never responds to these SYN-ACK messages
with acknowledgement messages, and the connections are
not established. Rather, the server or appliance remains in a
listening state waiting for the acknowledgement messages
from the client or clients, and the memory and resources stay
allocated to these connections, until the server or appliance
times out, which may be several minutes.
0260 One solution proposed for SYN floods was to sim
ply not allocate the resources on the server or appliance until
the client responds to the SYN-ACK message. However, the
server or appliance must still remember which clients have
received which SYN-ACK messages so that when a corre
sponding ACK arrives, the server or appliance may respond
properly. Accordingly, a small amount of data regarding the
connection is stored in a SYN queue. As more SYN requests
come in, the SYN queue can become overloaded. Some sys
tems will ignore further SYN requests, including those from
legitimate users; other systems remove the oldest SYN
requests in the SYN queue, which again, may be from legiti
mate users. A further solution is to increase the size of the
SYN queue. However, this may be undesirable.
0261. The use of SYN cookies is a solution that avoids the
use of the SYN queue in cases of overflow. Information that
would be placed in the SYN queue as an entry for any par
ticular SYN request is instead encoded into the initial
sequence number transmitted in the SYN-ACK packet to the
client. If an ACK packet is later received from the client
acknowledging the initial sequence number, the server or
appliance may decode from the sequence number the original
information. This also prevents an extension of the TCP flood
attack, in which a malicious attacker sends acknowledgement
packets with spoofed IP addresses to forge a connection to
another host. Because these seem to be legitimate connec
tions to the server, memory and resources are allocated to a
connection that doesn't actually exist. By including a secret
key value in the encoded initial sequence number, the server
can ignore acknowledgement packets that don't include the
encoded secret key, making it prohibitively difficult for a
malicious attackerto guess sequence numbers sent to other IP
addresses.
0262. In many implementations of SYN cookies, the ini

tial sequence number (ISN) for a SYN-ACK packet is deter
mined by using a hash function, such as MD5, on an input of
the source IP and port and destination IP and port indicated by
the original SYN request, along with one or more random
numbers provided by a random or pseudo-random number
generator. This value may be concatenated with a number
representing the maximum segment size (MSS) Value of the
connection, and a timer value that is slowly increased. The
timer value is used to ensure that ISNs increase over time, as

Oct. 9, 2014

is required by the TCP protocol. In one implementation of
SYN cookies described in IETF RFC 4987, the result may be
further concatenated with a second hash of the source IP and
port, destination IP and port, timer value, and a second ran
dom number. When an ACK packet arrives, the server or
appliance may create one or more ISNs for the source IP and
port and destination IP and port indicated in the ACK using
the current or one or more previous timer values and random
number values to determine if the acknowledgement number
included in the ACK packet corresponds to an ISN that could
have been created in the last few minutes. If so, then the server
may create a transmission control block (TCB) for the con
nection, using the MSS value indicated in the ISN. If the
acknowledgement number of the ACK packet does not cor
respond to any ISN, then the ACK packet may be dropped. In
many implementations, there aren't enough bits in the
encoded ISN to fully indicate the maximum segment size for
the connection. In these implementations, an index of 8 com
mon MSS values is created, and the closest index value to the
MSS indicated in the SYN request is chosen and encoded in
the ISN as a 3-bit value. In a further implementation of SYN
cookies, additional TCP options, such as window Scaling or
others may be included in the timestamp option field. Because
a timestamp is echoed by a receiver, if timestamp options are
enabled on a client, it will respond to the SYN-ACK packet
with an ACK including the encoded additional TCP options in
the timestamp echo field, and the server may create a TCB
with corresponding TCP options.
0263. Thus, in responding to SYN flood attacks, the server
or appliance uses random numbers for entropy in calculating
the hash function for the initial sequence number of SYN
ACK packets. In a multi-core system, this may present com
plications. In one implementation in which each core or
packet engine of a multi-core system maintains its own ran
dom number generator or seed from which random numbers
are generated, one packet engine may create a SYN-ACK
packet with an ISN from a first random number, but another
packet engine may receive the corresponding ACK packet. If
the second packet engine does not have the same random
number in a cache, the ISNs created by the second packet
engine won't correspond to the ISN in the ACK packet, and
the second packet engine will drop the packet, even though
its from a legitimate client.
0264. Although discussed above in reference to TCP SYN
flood attacks, similar attacks and corresponding Solutions and
implementation difficulties exist with other transport layer
protocols.
0265. A similar attack to the SYN flood is the HTTP
Denial of Service (DoS) attack. In this attack, a malicious
attacker or attackers establish legitimate connections with the
appliance or server and send HTTP GET requests for files. In
some implementations, the HTTP GET requests are incom
plete requests, which tie up the server or appliance connection
waiting for the remainder of the request until a timeout value
expires. In other implementations, the GET requests are com
plete requests for very large files, which are immediately
discarded on receipt by the attacker, who then issues another
GET request. In these implementations, the attacker will fre
quently spoof or change his IP address, preventing Successful
packet filtering solutions. The same behavior can occur non
maliciously when a breaking news event leads a large number
ofusers to request the same data simultaneously, overloading
the capabilities of the server. Worse, a mix of malicious and
non-malicious requests exacerbates the problem.

US 2014/0304810 A1

0266 Some proposed solutions for the HTTP DoS attack
include distributed caching and precaching and other meth
ods of increasing the ability of the system to serve content to
clients. However, a malicious attacker, particularly one that is
discarding responses, may be able to overload a system faster
than resources may be added to it.
0267 Another solution takes advantage of the fact that
malicious attackers will drop responses. In implementations
of this solution, when the server or appliance receives an
HTTP GET request, it may respond with an HTTP reply that
includes a cookie. In one embodiment, the reply may be the
response requested by the GET request, while in other
embodiment, the reply may be a short response comprising
the cookie and a refresh command, such as ajavaScript refresh
or an http metatag with a refresh command. This later
embodiment may be used, for example, when a large number
of requests arrive simultaneously, so that the server or appli
ance may determine if the are legitimate requests or malicious
attacks. A legitimate requestor will reply to the refresh com
mand with a second GET request, this time including the
cookie, while a malicious attacker will drop the reply without
processing it, and generate future GET requests without the
cookie. Thus, the presence of the cookie may be used to
identify a legitimate client.
0268. In cases where a server or appliance is not currently
overloaded with requests, the server or appliance may, in
Some embodiments, still include the cookie in the response.
Future requests from the same client will include the cookie,
up until the time the cookie expires, the client cache is
cleared, or a new cookie is set. During a later HTTP DoS
attack, the server or appliance may service requests from this
client with a higher priority, knowing that the client was, at
least at one prior time, a legitimate client rather than a mali
cious attacker.

0269. In many embodiments, the cookie used in these
implementations is generated from a hash function with a
random seed that is changed frequently. This decreases the
likelihood of a malicious attacker being able to receive a first
cookie in response to a request, and then generate a plurality
of requests by reusing the cookie or guessing future cookies.
In one Such embodiment, the server or appliance maintains an
array of cookie signatures. This array may be any size,
depending on the amount of entropy and frequency of cookie
variance desired. In one implementation, the cookie array
may include 64, 128, 192, 256, or more cookie signatures,
each of 8, 16, 24, 32, 40, or more bits in length. In some
implementations, the cookie may be generated by concat
enating one or more cookie signatures from the array. In
another implementation, the cookie may be generated by
applying a hash function to one or more cookie signatures
from the array. In many implementations, a pointer within the
array is advanced, or the values of the array are rotated. Such
that each Successive cookie uses one or more new values from
the array. Additionally, in some implementations, the cookie
signature array may be replaced periodically with a new array.
To prevent accidentally treating legitimate requests with
cookies from just before the array was replaced as malicious,
the previous cookie signature array may be temporarily stored
for a period of time. Accordingly, requests containing cookies
may be compared to both the current cookie signature array
and the previous cookie signature array to determine if the
request is legitimate.
0270. Thus, in responding to HTTP DoS attacks, similar to
SYN flood attacks, the server or appliance uses random num

32
Oct. 9, 2014

bers for entropy in creating the cookie signature array. As
discussed above, in a multi-core system, this may present
complications. In many embodiments, the cookie signatures
of the array are generated by a random number generator or
pseudo-random number generator using a seed. In one imple
mentation in which each core or packet engine of a multi-core
system maintains its own random number generator or seed
from which random numbers are generated, one packet
engine may create a cookie signature array from a first seed
and send a response to a client containing a first cookie, but
another packet engine may receive the next request from the
client. If the second packet engine does not have the same
random number in a cache, the cookie signature array created
by the second packet engine won't correspond to the cookie in
the request, and the second packet engine will drop the
packet, even though its from a legitimate client. As discussed
above, the cookies may be used in transport layer headers,
Such as in SYN cookies; in application layer headers. Such as
in HTTP cookies; or in one or more headers of one or more
layers of the OSI model.
(0271 Shown in FIG. 7A is a system 790 for generating
cookie signatures in a multi-core system. Briefly, appliance
200 may comprise one or more cores 505A-505N, flow dis
tributors 550, and NICs 552, discussed above. Each core
505A-505N may comprise a packet engine 548A-548N, dis
cussed above, a timer 700A-700N (referred to generally as
timer(s) 700), and a cache 702A-702N (referred to generally
as cache?s) 702 or local cache?s) 702). The appliance may
also comprise a shared memory 704, which may be part of a
main memory 122, cache 140, storage 128, or any other
memory element similar to those discussed herein. In some
embodiments, the shared memory 704 may comprise a ran
dom seed 706, which may also be referred to as a global
random seed 706. Each cache of the one or more caches 702
may comprise a random seed 708, which may also be referred
to as a local random seed 708. Each cache may further com
prise a current cookie signature 710A-710N (referred to gen
erally as current cookie signature(s) 710) and a previous
cookie signature 712A-712N (referred to generally as previ
ous cookie signature(s) 712). Appliance 200 may also com
prise one or more random number generators or pseudo
random number generators (not shown), which may use an
internal or external Source of entropy. In some embodiments,
a random number generator may comprise a function, Sub
routine, or service executed by a packet engine 548.
0272 Still referring to FIG.7A and in more detail, in some
embodiments, each core 505 may be configured with a timer
700. Timer 700 may comprise a service, daemon, process,
function, Subroutine, application, or any type and form of
executable instructions for setting and operating a timer, and
sending a notification on expiration of the timer. Timer 700
may comprise hardware, Software, or any combination of
hardware and software. In some embodiments, timer 700 may
count upwards or downwards from a first predetermined
value to a second predetermined value, and may count Sec
onds, milliseconds, microseconds, or any interval selected by
an administrator. In some embodiments, timer 700 may be
used to initiate a reset of a global or local random seed, as
described below in connection with FIG. 7B. In many
embodiments, timer 700 may comprise a plurality of timers
with different durations, frequencies, or periods, Such that
timing of different events is possible.
0273. In some embodiments, appliance 200 may comprise
a shared memory 704. A shared memory 704 may comprise a

US 2014/0304810 A1

storage device or element, such as main memory 122 or cache
140, a global cache 580 discussed above, or any other type
and form of memory element capable of storing a random
seed 706 and accessible by a plurality of cores 505. In some
embodiments, shared memory 704 may comprise a mutex or
semaphor. In some embodiments, shared memory 704 may
comprise functionality forlocking a shared memory location,
Such that a first packet engine or core may write to the location
while other packet engines or cores are prevented from read
ing from the location. In other embodiments, the shared
memory 704 may comprise a native integer such that the first
packet engine or core may update the integer with a lockless
read-modify-write transaction.
0274. In some embodiments, a random seed 706 or global
random seed 706 may comprise a random or pseudo random
number generated by a random or pseudo-random number
generator. In one embodiment, the global random seed may
be an integer of 8, 16, 24, 32 bits or more. In many embodi
ments, the global random seed 706 may be generated by a
primary packet engine and placed in the shared memory 704.
At intervals dictated by the expiration of a timer executing on
the primary packet engine, the primary packet engine may
generate a new global random seed 706 and replace the global
random seed stored in the shared memory 704.
0275. In many embodiments, each core 505 may comprise
a cache 702. A cache 702 may comprise a buffer, cache, or
memory element, or any other type and form of memory
structure or portion thereof, accessible by a packet engine
executing on a core 505. As shown, a cache 702 may comprise
a local random seed 708, a current cookie signature 710, and
a previous cookie signature 712.
0276. In some embodiments, a local random seed 708 may
comprise a copy of a global random seed 706, copied to a
local cache of each core. In one Such embodiment, when a
global random seed 706 has been changed, such as in
response to the expiration of a timer on a primary packet
engine, each packet engine may copy the global random seed
706 into a cache 702 as a local random seed 708.

0277. In many embodiments, random seed 708 may be
used to construct a current cookie signature 710. A cookie
signature can be any form of a digital signature. In one
embodiment, a current cookie signature 710 may comprise
one or more hash seeds, such as for a SYN cookie hash as
discussed above. In another embodiment, a current cookie
signature 710 may comprise one or more cookie signatures
for creation of an HTTP DoS cookie, as discussed above. In
many embodiments, the current cookie signature 710 may
comprise an array of cookie signatures, used for both SYN
and HTTP DoS cookies. The cookie signatures may be cre
ated by using a pseudo-random function, such as the BSD or
Linux random () or rand() functions, the rand() function of
Microsoft Windows, or any other function that creates one or
more random numbers. In many embodiments, the pseudo
random function may be initialized with the global random
seed 706 or local random seed 708 for generating the first
random number, and each Successive random number of the
array may be generated using the previous random number as
a seed. Because pseudo-random number generators are deter
ministic, each packet engine will generate the same array of
cookie signatures provided each starts from the same random
seed. Thus, using a global random seed removes the need to
communicate a large amount of lengthy cookie signatures
generated by a primary packet engine to one or more other
packet engines.

Oct. 9, 2014

0278. As discussed above, to allow for legitimate requests
that arrive after creation of a new set of cookie signatures to
not be discarded, each cache may comprise a previous cookie
signature 712. Before generating current cookie signatures
710, each packet engine may copy the array to the previous
cookie signature 712, which may then be compared against
incoming requests. Thus, if the global random seed 706 is
updated every minute and a new set of cookie signatures are
created, a request including a cookie signature will have a
potential lifetime of two minutes before becoming invalid.
Similarly, if the global random seed 706 is updated every two
minutes, a request including a cookie signature will have a
potential lifetime of four minutes before expiring.
0279 Shown in FIG. 7B is a flow chart of an embodiment
of a method of generating and maintaining consistent cookie
signatures in a multi-core system. Briefly, a primary packet
engine may generate a global random seed at step 730. At step
732, the primary packet engine may store the global random
seed to a local cache. At step 734, the primary packet engine
may store current cookie signatures as previous cookie sig
natures. At Step 736, the primary packet engine may generate
new cookie signatures from the locally cached random seed.
Responsive to the expiration of a timer at step 738, the pri
mary packet engine may repeat steps 730-738. Simulta
neously, when the global random seed has changed, one or
more other packet engines may store the global random seed
to a local cacheat step 732. At step 734, the one or more other
packet engines may store current cookie signatures as previ
ous cookie signatures. At step 736, the one or more other
packet engines may generate new cookie signatures from the
locally cached random seed. Responsive to the expiration of
a timer at step 740, the one or more other packet engines may
determine if the global random seed has changed at Step 742.
If not, the one or more other packet engines may repeat steps
740–742. If so, the one or more other packet engines may
repeatsteps 732-742. Although one of the packet engines may
be referred to as a primary packet engine, any of the packet
engines may be designated as a primary packet engine in
using any of the techniques and methods described herein.
(0280 Still referring to FIG.7B and in more detail, at step
730, a primary packet engine may generate a global random
seed. In some embodiments, generating a global random seed
may comprise executing a function call to generate a random
seed, or may comprise requesting a random number from a
random or pseudo-random number generator. In a further
embodiment, generating a global random seed may comprise
accessing a source of entropy, such as a clock timer, a network
packet string, a temperature sensor, a Voltage sensor, or any
other type and form of random value that may be used as a
seed for a random number generator. In some embodiments,
generating the global random seed may comprise replacing
an existing global random seed stored in a shared memory.
0281 At step 732, in some embodiments, the primary
packet engine may store the global random seed to a local
cache. In many embodiments, the primary packet engine may
have already stored the global random seed to a local cache as
part of generating the global random seed. Accordingly, in
these embodiments, the primary packet engine may skip this
step.
0282. At step 734, in some embodiments, the primary
packet engine may store the current cookie signatures as a set
of previous cookie signatures. In one embodiment, storing the
current cookie signatures as a set of previous cookie signa
tures may comprise copying or moving the current cookie

US 2014/0304810 A1

signature array to a different position in memory. In another
embodiment, storing the current cookie signatures as a set of
previous cookie signatures may comprise replacing a previ
ous cookie signature array.
0283 At step 736, the primary packet engine may generate
a set of new cookie signatures from the locally-cached ran
dom seed. In one embodiment, generating a set of new cookie
signatures may comprise executing a pseudo-random number
function using the locally-cached random seed as an initial
seed to generate the first cookie signature, and generating
each Successive cookie signature using the previous cookie
signature as a seed for the pseudo-random number function.
In many embodiments, generating a set of new cookie signa
tures may comprise generating an array of 64, 128, 192, 256.
or more cookie signatures, each of 8, 16, 24, 32, 40, or more
bits in length. In one embodiment, the number of cookie
signatures in the array and length of each cookie signature
may be determined by a policy set by a user or administrator.
0284. At step 738, responsive to the expiration of a timer,
the primary packet engine may repeat steps 730-738. The
long timer period expiring at Step 738 may comprise any
value longer than the value of the short timer period expiring
at step 740, discussed below. In one embodiment, the long
timer period may be 10 seconds, 30 seconds, 1 minute, 2
minutes, 5 minutes, any value between these times, or any
value longer or shorter, provided that the period is longer than
the value of the short timer discussed below.
0285) Still referring to FIG. 7B, one or more other packet
engines may, responsive to the global random seed having
been changed by the primary packet engine, Store the global
random seed to respective local caches at step 732. In one
embodiment, storing the global random seed to a local cache
may comprise copying the global random seed to a local
cache. In an embodiment in which the primary packet engine
locks the shared memory for reading as part of generating a
global random seed at step 730, step 732 may comprise the
one or more other packet engines waiting in a spinlock con
dition for the global random seed to become unlocked such
that they may copy the global random seed to local caches.
0286 The one or more other packet engines may, in some
embodiments, store current cookie signatures as previous
cookie signatures at step 734 and generate new cookie signa
tures from a locally-cached random seed at step 736 as dis
cussed above in connection with the primary packet engine.
As discussed above, because each packet engine generates
cookie signatures starting with an initial value of the global
random seed, the current cookie signature array on each
packet engine will be identical after completion of step 736.
0287. In response to expiration of a timer at step 740, each
packet engine of the one or more packet engines may deter
mine if the global random seed has changed at step 742. Due
to natural skew of local timers across a plurality of packet
engines as well as processing delays due to other tasks, in
many embodiments where there are multiple packet engines
other than the primary packet engine, each of the one or more
other packet engines may not necessarily execute steps 740
and 742 simultaneously. By selecting a small value for the
short timer, each packet engine will detect a change in the
global random seed within a short time of each other. For
example, if the short timer is set to a period of one second,
then at worst one packet engine may detect the change less
than a second after another packet engine. By retaining the set
of previous cookie signatures for the duration of the long
timer, Substantially longer than the short timer, then any lag

34
Oct. 9, 2014

between the timers of different packet engines becomes
inconsequential. As discussed above, the short timer may be
set to any period less than the value of the longer timer, Such
as one second, two seconds, or any other value. The minimum
difference between the period of the short timer and the long
timer may be determined based on the time to execute steps
732-736. If the difference is less than this time, the global
random seed may change faster than the cookie signatures
may be updated. However, this is unlikely to occur in modern,
high speed systems unless extreme values are selected, on the
order of nanoseconds.

0288 At step 742, each of the one or more packet engines
may determine, independently, if the global random seed has
changed. In one embodiment, determining if the global ran
dom seed has changed may comprise a packet engine com
paring the global random seed to a locally cached random
seed. If there is no difference and the global random seed has
not changed, then the packet engine may repeat steps 740
742. If the global random seed has changed, the packet engine
may repeat steps 732-742.
0289 Shown in FIG.7C is a flow chart of an embodiment
of a method of using cookie signatures for security in a
multi-core system. Briefly, at step 720, a packet engine may
receive a request from a client with a cookie. At step 722, the
packet engine may compare cookie signatures of the request
with current and previous cookie signatures. If the request
cookie signatures match the current or previous cookie sig
natures, then at step 724 the packet engine may accept and
process the request. If the cookie signature does not match,
then the packet engine may determine if the global random
seed has changed, as described above in step 742 of FIG. 7B.
If not, then the packet engine may deny the request at step
726. However, if the global random seed has changed, then
the packet engine may execute steps 732-736 as described
above in FIG. 7B and repeat steps 722-726.
0290 Still referring to FIG.7C and in more detail, in some
embodiments, a packet engine may receive a request from a
client at step 720. In some embodiments, the request may not
contain a cookie, and the packet engine may process the
request according to other policies. For example, if the
request is a SYN request and does not include a cookie, then
the packet engine may respond with a SYN-ACK including a
cookie, as described above. Similarly, if the request is an
HTTP GET request and does not include a cookie, then the
packet engine may respond with the requested file and include
a cookie, or a substitute file with a cookie such as the refresh
command described above, responsive to a policy detecting
an attempted HTTP DoS attack, as described above. In other
embodiments, the request may include a cookie. In some
embodiments, cookies are explicit, Such as a cookie Value in
a header of an HTTP GET request. In other embodiments,
Such as in implementations using SYN cookies, cookies are
not explicit but are encoded into an acknowledgement field of
an ACK packet. In these embodiments, the request may be
treated as if it has a cookie for the purpose of the method
shown in FIG. 7C.

0291. At step 722, in some embodiments, the packet
engine may compare the cookie in the request with one or
more current and/or previous cookie signatures. For example,
in an embodiment in which the cookie comprises one or more
concatenated cookie signatures of predetermined lengths, the
packet engine may parse the cookie into the one or more
cookie signatures, and then attempt to locate the one or more
cookie signatures in the current cookie signature array. If the

US 2014/0304810 A1

packet engine cannot locate the cookie signatures, then in
Some embodiments, the packet engine may attempt to locate
the one or more cookie signatures in the previous cookie
signature array.
0292. In embodiments in which the cookie comprises one
or more hash results, the packet engine may execute a reverse
hash function to determine the cookie signatures. In another
embodiment where a reverse hash function is not available,
the packet engine may create one or more cookies using a
hash function and information available in the packet request.
For example, in one implementation of SYN cookies dis
cussed above, the initial sequence number is selected based
on a hash of one or more of the source IP and port and
destination IP and port of the SYN request, a slowly increas
ing counter value, and one or more cookie signatures, and
concatenated with a 3-bit encoded MSS value. Accordingly,
in one embodiment, the packet engine may create one or more
cookies using the 3-bit MSS value and a hash of the source IP
and port and destination IP and port of the ACK, the current
and previous few counter values based on the time to live of
the SYN-ACK, and one or more cookie signatures from the
current cookie signatures array or previous cookie signatures
array. For example, if the counter value increases once per
minute and the SYN-ACK has a five minute time-to-live, the
packet engine may use the current and previous four counter
values in the hash. Each test cookie may then be compared to
the sequence number in the received request to determine if
the sequence number represents a legitimate cookie. In one
embodiment, the sequence number is tested after each test
cookie is created, while in another embodiment, the sequence
number is tested after a set of test cookies are created.

0293. If the received request contains a legitimate cookie,
then at Step 724, the request is accepted. Accepting the request
may comprise the packet engine further processing the
request; establishing a connection; allocating memory and/or
resources; initializing a transmission control block or packet
control buffer; forwarding the request to a server, service, or
virtual server; or otherwise handling the request. In one
embodiment, in which a server is currently experiencing a
flood of HTTP GET requests due to a DoS attack or a surge
due to a breaking news event, the packet engine may buffer
the received request and assign it a higher priority than other
requests because of the legitimate cookie in the received
request.
0294. If the received request does not contain a cookie
signature that corresponds to a cookie signature in the current
cookie signature array or previous cookie signature array,
then at Step 742, the packet engine may determine if the global
random seed has changed, using any of the methods described
above in connection with FIG. 7B. If the global random seed
has changed, then in Some embodiments, the packet engine
may execute steps 732-736, also described above in connec
tion with FIG. 7B and repeat steps 722 for the newly gener
ated current cookie signatures.
0295). If the global random seed has not changed, then at
step 726, in Some embodiments, the packet engine may deny
the request. In other embodiments, the packet engine may
take other actions, depending on a policy in place. For
example, in an embodiment in which the packet engine is not
currently experiencing a flood of HTTP GET requests, the
packet engine may forward the request or process the request
normally. In another embodiment, in which the packet engine
is experiencing a flood of requests, the packet engine may
buffer the received request and assign it a lower priority than

Oct. 9, 2014

other requests with legitimate cookies. In yet another embodi
ment, the packet engine may reply to the received request
with a small response comprising a refresh command and a
legitimate cookie, as described above. Thus, the cookies may
be used to ensure priority processing for legitimate clients
while not treating new legitimate clients who have not yet
received cookies as malicious attackers.

0296. H. Systems and Methods for Cookie Signatures and
SYN Attack Prevention in Clustered Systems.
0297. The systems and methods of the present solution
illustrated in FIGS. 8A-8B are directed towards protecting
from SYN flood attacks in a cluster of networking devices via
the generation, synchronization and use of a SYN-cookie for
the cluster. As described above for a node having multiple
cores, the node follows a master-slave concept to manage the
task of maintaining the SYN-cookie same across the cores.
Cores use shared memory to store the cookie. A packet engine
on a core. Such as a first packet engine, is designated a master
packet engine. The masterpacket engine generates the cookie
seed and writes to the shared memory at a predetermined
frequency. Such as every 120 secs. The other packet engines
on the other cores read the seed at a predetermined frequency,
Such as 1 sec. from shared memory. Since the same seed is
used by all the packet engines, SYN-cookie generated from
the same side is valid across the cores.

0298. The present solution addresses the use of SYN
cookies for clusters by providing SYN-cookie seed genera
tion and synchronization across the nodes incluster and gen
erating SYN-ACK from the flow receiver of the cluster. For
SYN-cookies seed generation and synchronization, the clus
ter may follow a similar master-slave mechanism of a multi
core device to generate and synchronize the SYN-cookies
across the nodes in the cluster. A first packet engine on a
master node may have the responsibility of generating and
synchronizing the cookie seed. The master node pushes seed
updates by broadcasting node to node messages to all the
other nodes to update the seed on all the nodes. The master
node may perform a push at a predetermined frequency. Such
as every 120 second, when the owner or master packet engine
on the master generated the new seed. For updating the cores
within the master node, the packet engine may write the new
seed to the shared memory at the predetermined frequency.
The packet engines on the other cores within node can only
read the seed from shared memory. When master node sends
node to node messages to the other nodes in the cluster, the
message can land onto any core or packet engine in target
node. The receiving packet engine may steer the message to
the master packet engine for seed updates. The master packet
engine updates the seed in shared memory, such as at the
predetermined frequency or next predetermined frequency
and the other cores read the seed from the shared memory. So
as a result of one packet engine on a master node updating the
seed, the other cores within the master node as well as the
other nodes in the cluster and each of their respective cores are
updated with the new seed.
0299 Referring now to FIG. 8A, an embodiment of a
system for providing a cluster based cookie generation and
synchronization is depicted. A cluster 600 may have a plural
ity of nodes (e.g., nodes 1-3) of appliances 200A-200N (gen
erally referred to as 200). Each appliance 200 may comprise
multiple cores 505A-505N (generally referred to as 505).
Each core may operate or execute a packet processing engine
548A-548N (generally referred to as PE 548). Any core of
packet processing engine may operate or execute one or more

US 2014/0304810 A1

virtual servers 275. One core or packet processing engine on
a node may communicate with another core or packet pro
cessing engine via intercore communication 704. Such as
shared memory or core to core messaging. Any of the nodes
may implement any embodiments of the cookie generation
and synchronization of cookies described in FIGS. 7A-7C.
For example, each node may implement the system 790A
790N (generally referred to as 790) described in FIG. 7B for
cookie generation and synchronization between cores. The
system 790 may use shared memory 740 for reading and
writing a random seed 706 for cookie generation and Syn
chronization.

0300. One node of the cluster, such as node 1 may be the
master node or otherwise be the cluster configuration owner
810. Each of the nodes may use node to node messaging
(NNM) 835 to communication with each of the other nodes,
such as to share a random seed 706. One core in the node may
receive the random seed from another node and use the sys
tem 790 to propagate or write the random seed 706 to shared
memory 704 for other cores to obtain and use in accordance
with the systems and methods of FIGS. 7A-7C.
0301 Each of the nodes in the cluster may be designed,
constructed and configured to use the master and slave
mechanism between cores within that node to generate and
synchronize the seed across the packet engines of that node,
Such as via any embodiments of the systems and methods
described in connection with FIGS. 7A-7C. In some embodi
ments, each node may practice these embodiments before
enabling the cluster instance or before creating a one node
cluster.
0302) Any node may be any type and form of multi-core
device 100. The device may be any type and form of multi
core device deployed as an intermediary device or appliance
200. The device may include any embodiments of the multi
core appliance depicted and/or described in connection with
FIGS. 5A-5C. Each core or packet engine may establish
transport layer connections over a network to one or more
destinations, such as clients, and communicate over Such
connections with clients.

0303. Each core may communicate with another core via
inter-core communications 720. Inter-core communications
may include core to core messaging. Inter-core communica
tions may include reading and/or writing to a shared memory.
Any component on one core, such as a packet engine, may
communicate with another component on another core via an
inter-core communication. A packet engine on one core may
communicate updates or changes to a random seed 706 to
another packet engine on another code via inter-core commu
nications.
0304. In some embodiments, each appliance or node in the
cluster may be a single processor appliance. In some embodi
ments, each appliance or node in the cluster may be a multi
core device. In the clustered system, each node may commu
nicate with another node via a data plane. Such as back plane
606 described in connection with FIG. 6. Each node may
communicate with other nodes via a data plane or black plane
using an interface slave 610. Each node may send node to
node messages (NNM 735) via the data plane or back plane.
One of the appliances in the cluster 600 may be designated or
identified as a master node or appliance. The master node or
appliance may execute an interface master 608 for coordinat
ing and managing the cluster.
0305 The cluster and/or nodes in the cluster may be
designed, constructed and/or configured to follow a master

36
Oct. 9, 2014

slave mechanism to generate and synchronize the SYN-cook
ies across the nodes in the cluster. A packet engine on a core
may be designated as the CCO or otherwise own the cluster
configuration and may be responsible for generating and Syn
chronizing the cookie seed. The master node may follow a
push model or push message and broadcast NNM message all
other nodes to update the seed on all the nodes. The master
node may perform this push every predetermined frequency,
Such as every 120 sec., for example when a first packet engine
or core on the master node or CCO node generates the new
seed. On each node, one packet engine or core can only write
to shared memory, such as the seed 706 to the shared memory
and rest of the packet engines or core can only read. Such as
the seed 706 from the share message. When CCO node sends
NNM message to other nodes, message can land onto any
packet engine in target node. The receiving packet engine
steers the message to the masterpacket engine or core. Such as
PEO.

0306. In some embodiments, the cluster or a node in the
cluster is designed, constructed and/or configured to handle
different cluster views from the establishment of the cluster to
new nodes joining or existing nodes leaving. In some embodi
ments, as soon as a cluster instance is enabled on one node
(e.g., on creating one node cluster), the node by default
becomes the cluster configuration owner (CCO) or master
node 815. The master node may be responsible for establish
ing, maintaining and propagating any of the configuration and
changes thereto of the cluster. In some embodiments, the
master node initializes the node to node NNM and inter-core
communication channels. Once the master packet engine or
core generates next seed 706 on the master node, the master
node broadcasts this new seed to the other nodes in the cluster.
When a new node joins the cluster, the master node may be
designed, constructed and/or configured to receive the node
join event and broadcast the current seed to the nodes. Until a
new node receives the seed from the master node, the new
node may be designed, constructed and/or configured
remains in a SYN-cookie synchronization in progress state, in
which the new node will be able to accept control connections
but not the data connections. When the new node receives the
seed, the new node generates the current cookie and previous
current cookie becomes the previous cookie. In some
embodiments, the new node will have the same current cookie
as the master node but the previous cookie will be different
from the previous cookie of the master node. As a result in
some embodiments, that new node will not be able to validate
the connections initiated using previous cookie. When the
new node receives the seed the second time onwards, the new
node's current and previous cookie will be the same as the
current and previous cookie of the master node.
0307. In some embodiments, when a node in a cluster
boots up, the node generates the first seed and initializes that
seed in all the cores. Similarly, in Some embodiments, when
each nodes comes up after joining the cluster, the nodes
generates the first seed and initializes that seedinall the cores.
In some embodiments, when a node leaves the cluster, the
node falls back to the multi-core logic and embodiments of
FIGS. 7A-7C. In some embodiments, the node still continue
to use the current and previous cookies received from the
CCO node, until next trigger, Such as the 2 min. trigger on the
master core that generates new cookie.
0308. In some embodiments, if the master or CCO node
changes, one of the other nodes in the cluster declares itself
CCO and will have the responsibility of generating and syn

US 2014/0304810 A1

chronizing the seed. The next node to take over as CCO may
be established by configuration. The next node to take over as
CCO may be established based on an order of joining the
cluster. A master core on the new CCO node owns the respon
sibility of generating seed. All the nodes note the last seed
receipt time from the previous CCO. When the new node
becomes CCO, the master core of new CCO node sets new
seed generation time as (last seed receipt time plus predeter
mined time period, such as 2 min.)
0309 The nodes in the cluster may be designed, con
structed and/or configured to use any type and form of NNM
835. In some embodiments, the NNM may comprise a mes
sage containing the current seed generated by the master core
or packet engine on the master or CCO node. In some embodi
ments, the NNM may comprise a message containing the
current seed stored in shared memory by the master core or
packet engine on the master or CCO node. The random seed
may comprise a predetermined number of bits, such as 32.
The NNM message may comprise the random seem and/or
previous cookie and/or current cookie. The NNM may com
prise any timing information regarding synchronization or
generation of the seed and/or cookies from the seed, such as
a change in the frequency of NNM pushes of a new side.
0310. In some embodiment, any node in the cluster may be
designed, constructed and/or make the decision to reply
SYN-ACK or steer packet to flow receiver. Since the SYN
cookie is synchronized across the nodes in cluster, any node
can reply the SYN-ACK back to SYN for a TCP handshake.
The decision is made based on DFD establishment. A DFD
session will be created only on the node which receives the
final ACK packet. This DFD session will be present in only
one node. A DFD session is used to determine the Flow
Processor for the flow to which a packet belongs. The DFD
session can be a 64-byte object (that contains the following
pieces of information:
0311 Source IPv4 address and destination IPv4 address of
the flow
0312 Source port and destination port of the flow
0313 Node ID of the target node (Flow Processor)
0314 Current (OVS) View ID of the cluster
0315 Referring now to FIG. 8B, an embodiment of a
method of cookie generation and synchronization for a clus
ter is depicted. In brief overview, at step 830, the CCO node of
the cluster generates the random seed. At step 835, the core of
the CCO writes the seed to shared memory and other cores of
the CCO node read the seed from shared memory. At step 840,
the CCO sends NNM messages comprising the seed to the
other nodes in the core. At step 845, a core of a node receiving
the NNM determines the master core of that node and steers
the NNM message or seed to that master core. At step 850, the
master core on each node writes the seed received from the
CCO to shared memory and each of the other cores on that
node read the seed from shared memory.
0316. At step 830, a master node or CCO node generates
the global random seed for the cluster. The CCO may estab
lish or generate the random seed in accordance with a prede
termined frequency. The CCO may establish or generate the
random seed responsive to a timer. The CCO may generate
the random seed in accordance with any of the embodiments
of step 730 described in FIG. 7B.
0317. At step 835, the master core of the master node may
write the generated random seed to the shared memory. The
master core of the master node may write the random seed to
shared memory upon generation of the random seed. The

37
Oct. 9, 2014

master core of the master node may write the random seed to
shared memory responsive to a predetermined frequency or a
long timer. The other cores of the master node may read the
random seed from shared memory, Such as responsive to a
short timer or on a predetermined frequency. The other cores
read the random seed from shared memory and use the ran
dom seed for generation of cookies as described in connec
tion with FIGS. 7A-7C. For example, each core may generate
an array of cookie signatures by using the random seed as an
initial seed of a pseudo-random number function to generate
a first cookie signature, and generating each Successive
cookie signature by using a preceding cookie signature as a
seed for the pseudo-random number function.
0318. At step 840, the CCO node or master node commu
nicates the random seed to the other nodes of the cluster. The
CCO node may transmit a node to node message to each of the
other nodes in the cluster. The CCO node may transmit a
NNM comprising the random seed to each of the other nodes.
The CCO node may transmit the NNM to any core of the other
node. The CCO node may transmit the NNM via the back
plane of the node.
0319. At step 845, a core of the node receiving the NNM
from the CCO node may be different from or not the master
core on that node with write privileges to the shared memory
for sharing the random seed with other cores. If the core is not
the master core, the core forwards, steers or otherwise pro
vides the NNM or the random seed therefrom to the master
core. The receiving core may steer the packet via intercore
communications or messages to the master core. If the core is
the master core, the core identifies the random seed from the
NNM message and uses this random seed for synchronization
with the other cores on the same node.

0320 At step 850, the master cores writes the random
seed, received via the CCO node, to the shared memory on
that device. The master core may write the random seed to
shared memory upon receipt. The master core may write the
random seed to shared memory responsive to a long timer or
in accordance with a predetermined frequency. The other
cores read the random seed from shared memory responsive
to a short timer. The master cores and the other cores may use
the random seed for generation of cookies as described in
connection with FIGS. 7A-7C. For example, each core may
generate an array of cookie signatures by using the random
seed as an initial seed of a pseudo-random number function to
generate a first cookie signature, and generating each Succes
sive cookie signature by using a preceding cookie signature as
a seed for the pseudo-random number function.
0321 Referring now to FIG. 8C, another embodiment of a
method of providing attack protection using the cookie gen
eration and synchronization for a cluster is depicted. At step
870, a packet received by a core of a node in a cluster of nodes.
At step 872, the receiving core determined if the packet is a
steered packet. If not, perform a DFD session backup at step
876 and if it is, process the packet at step 874 to bypass the
DFD lookup logic. At step 876, if the session exists then at
step 880 the core determines if the packet is a SYN packet and
if so then replies with SYN-ACK packet at step 886. If the
session does not exist, the core determines at step 888
whether the packet is a PURE SYN packet, such as a valid
and/or initial SYN packet and if yes then at step 886, replies
with a SYN-ACK packet. If it is not a pure SYN packet then
at step 888, the core determined with there packet is a SYN/
ACK packet and if not whether or not at step 890, the packet
has a valid SYN-cookie. If there is a valid SYN cookie then at

US 2014/0304810 A1

step 892, the core establishes and allocates the DFD session.
If it is a SYN-ACK packet at Step 888 or the SYN-cookie as
step 890 is not valid or the packet is not a SYN packet at step
880 then the packet is steered at step 894, such as to the node
and/or core (e.g., flow processor) for the DFD session.
0322. It should be understood that the systems described
above may provide multiple ones of any or each of those
components and these components may be provided on either
a standalone machine or, in some embodiments, on multiple
machines in a distributed system. The systems and methods
described above may be implemented as a method, apparatus
or article of manufacture using programming and/or engi
neering techniques to produce Software, firmware, hardware,
or any combination thereof. In addition, the systems and
methods described above may be provided as one or more
computer-readable programs embodied on or in one or more
articles of manufacture. The term “article of manufacture' as
used herein is intended to encompass code or logic accessible
from and embedded in one or more computer-readable
devices, firmware, programmable logic, memory devices
(e.g., EEPROMs, ROMs, PROMs, RAMs, SRAMs, etc.),
hardware (e.g., integrated circuit chip, Field Programmable
Gate Array (FPGA), Application Specific Integrated Circuit
(ASIC), etc.), electronic devices, a computer readable non
volatile storage unit (e.g., CD-ROM, floppy disk, hard disk
drive, etc.). The article of manufacture may be accessible
from a file server providing access to the computer-readable
programs via a network transmission line, wireless transmis
Sion media, signals propagating through space, radio waves,
infrared signals, etc. The article of manufacture may be a flash
memory card or a magnetic tape. The article of manufacture
includes hardware logic as well as Software or programmable
code embedded in a computer readable medium that is
executed by a processor. In general, the computer-readable
programs may be implemented in any programming lan
guage, such as LISP, PERL, C, C++, C#, PROLOG, or in any
byte code language Such as JAVA. The Software programs
may be stored on or in one or more articles of manufacture as
object code.
0323 While various embodiments of the methods and sys
tems have been described, these embodiments are exemplary
and in no way limit the scope of the described methods or
systems. Those having skill in the relevant art can effect
changes to form and details of the described methods and
systems without departing from the broadest scope of the
described methods and systems. Thus, the scope of the meth
ods and systems described herein should not be limited by any
of the exemplary embodiments and should be defined in
accordance with the accompanying claims and their equiva
lents.
What is claimed is:
1. A method for synchronizing a random seed value among

a plurality of multi-core nodes in a cluster of nodes for gen
erating a cookie signature, the method comprising:

(a) generating, by a master core on a master node of a
cluster of nodes comprising a plurality of cores, a ran
dom seed to be synchronized across each core of each
node in the cluster of nodes;

(b) storing, by the master core on the master node, the
random seed to memory on the master node accessible
by each core in the master node:

(c) receiving, by each master core on each other node in the
cluster, the random seed sent by the master core of the
master node:

Oct. 9, 2014

(d) storing, by each master core on each other node in the
cluster, the random seed to memory on each node acces
sible by each core in each node; and

(e) generating, by each core of each node in the cluster of
nodes, a cookie signature based on the random seed
responsive to a predetermined timer.

2. The method of claim 1, wherein (c) further comprises:
receiving, by a receiving core on each other node in the

cluster, the random seed sent by the master core of the
master node; and

steering, by each receiving core, the random seed to a
master core in each other node in the cluster.

3. The method of claim 1, further comprising
storing, at each core of each node in the cluster of nodes, a

current cookie signature as a previous cookie signature,
and the generated cookie signature as the current cookie
signature.

4. The method of claim 1, wherein (a) further comprises
generating, by the master core on the master node of the

cluster ofnodes, the random seed, responsive to a second
predetermined timer set to expire longer than the prede
termined timer.

5. The method of claim 1, wherein (e) further comprises
generating, by each core of each node in the cluster of

nodes, an array of cookie signatures.
6. The method of claim 1, wherein (e) further comprises
generating, by each core of each node in the cluster of

nodes, an array of cookie signatures, by using the ran
dom seed as an initial seed of a pseudo-random number
function to generate a first cookie signature, and gener
ating each Successive cookie signature by using a pre
ceding cookie signature as a seed for the pseudo-random
number function.

7. The method of claim 6, further comprising
generating a cookie by concatenating one or more cookie

signatures in the array of cookie signatures.
8. The method of claim 1, further comprising
using the generated cookie signature as part of a SYN

cookie or a HTTP DOS cookie.
9. The method of claim 1, further comprising:
receiving from a client, a SYN request at a first core of a

node in the cluster,
responding to the client with a SYN-ACK message com

prising a cookie with the cookie signature;
receiving from the client, an ACK message at a second core

of the node in the cluster, the ACK message comprising
a client cookie signature; and

accepting the ACK message in response to matching the
client cookie signature with the cookie signature.

10. The method of claim 9, further comprising
storing, at each core of each node in the cluster of nodes, a

current cookie signature as a previous cookie signature,
and the generated cookie signature as the current cookie
signature;

comparing the client cookie signature with the current
cookie signature and the previous cookie signature;

determining whether a new random seed is stored in a
memory accessible by the second core;

storing, at the second core, the current cookie signature as
the previous cookie signature;

generating a new current cookie signature based on the new
random seed in the memory accessible by the second
core; and

US 2014/0304810 A1
39

allocating resources in response to matching the client
cookie signature with the new current cookie signature.

11. A system for synchronizing a random seed value
among a plurality of multi-core nodes in a cluster of nodes for
generating a cookie signature, the System comprising:

a cluster of nodes, each node comprising a plurality of
cores;

a master core on a master node of the cluster of nodes,
configured to:
generate a random seed to be synchronized across each

core of each node in the cluster of nodes; and
store the random seed to memory on the master node

accessible by each core in the master node:
each other node in the cluster, configured to:

receive, by each master core of each node, the random
seed sent by the master core of the master node; and

store the random seed to memory on each node acces
sible by each core in the each node; and

a packet engine on each core of each node in the cluster of
nodes, configured to
generate a cookie signature based on the random seed

responsive to a predetermined timer.
12. The system of claim 11, wherein each other node in the

cluster further comprises a receiving core configured to:
receive the random seed sent by the master core of the

master node; and
steer the random seed to each node's master core.
13. The system of claim 11, wherein each node in the

cluster of nodes is further configured to
store, at each core of each node in the cluster of nodes, a

current cookie signature as a previous cookie signature,
and the generated cookie signature as the current cookie
signature.

14. The system of claim 11, wherein the master core of the
master node is further configured to

generate the random seed to be synchronized across each
core of each node in the cluster of nodes, responsive to a
second predetermined timer set to expire longer than the
predetermined timer.

15. The system of claim 11, wherein the packet engine is
further configured to generate an array of cookie signatures.

16. The system of claim 15, wherein the packet engine is
further configured to

Oct. 9, 2014

generate, an array of cookie signatures, by using the ran
dom seed as an initial seed of a pseudo-random number
function to generate a first cookie signature, and gener
ate each Successive cookie signature by using a preced
ing cookie signature as a seed for the pseudo-random
number function.

17. The system of claim 16, wherein the packet engine is
further configured to

generate a cookie by concatenating one or more cookie
signatures in the array.

18. The system of claim 11, wherein the packet engine is
further configured to

use the generated cookie signature as part of a SYN cookie
or a HTTP DOS cookie.

19. The system of claim 11, wherein the packet engine is
further configured to:

receive from a client, a SYN request at a first core of a node
in the cluster;

respond to the client with a SYN-ACK message compris
ing a cookie with the cookie signature;

receive from the client, an ACK message at a second core of
the node in the cluster, the ACK message comprising a
client cookie signature; and

accept the ACK message in response to matching the client
cookie signature with the cookie signature.

20. The system of claim 19, wherein the packet engine is
further configured to

store a current cookie signature as a previous cookie sig
nature, and the generated cookie signature as the current
cookie signature;

compare the client cookie signature with the current cookie
signature and the previous cookie signature;

determine whether a new random seed is stored in a
memory accessible by a second core;

store, at the second core, the current cookie signature as the
previous cookie signature;

generate a new current cookie signature based on the new
random seed in the memory accessible by the second
core; and

allocate resources in response to matching the client cookie
signature with the new current cookie signature.

k k k k k

