»UK Patent .,GB

(m2572287

(13)B

(45)Date of B Publication 04.03.2020

(54) Title of the Invention: Managing lowest point of coherency (LPC) memory using

service layer adapter

(51) INT CL: GO6F 12/0815 (2016.01)

(21) Application No: 1909219.6
(22) Date of Filing: 27.11.2017
Date Lodged: 04.07.2019
(30) Priority Data:
(31) 15364458 (32) 30.11.2016 (33) US
(86) International Application Data:
PCT/IB2017/057408 En 27.11.2017
(87) International Publication Data:
wW02018/100478 En 07.06.2018
(43) Date of Reproduction by UK Office 25.09.2019

(56) Documents Cited:

US 20160217101 A1
US 20110145447 A1

US 20140101403 A1
UsS 20060080078 A1

(58) Field of Search:

As for published application 2572287 A viz:

INT CL GO6F
Other: WPI; EPODOC; CNPAT; CNKI; IEEE
updated as appropriate

Additional Fields
Other: None

GO6F 12/1081 (2016.01)

GO6F 13/16 (2006.01)

(72) Inventor(s):

Lakshminarayana Baba Arimilli
William Starke

Yiftach Benjamini

Jeffrey A Stuecheli
Bartholomew Blaner

Etai Adar

(73) Proprietor(s):
International Business Machines Corporation
(Incorporated in USA - New York)

New Orchard Road, Armonk, New York 10504,
United States of America

(74) Agent and/or Address for Service:

IBM United Kingdom Limited

Intellectual Property Law, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

d L8CCL4C dO

¥ W AR ¥ M AN M NP O A A N R f O Y e P N F f S wm ¥ B

1/6

Computing System
152

RAM 168 Accelerator

rrossssor Adapter Functional Unit
199 209 Operating 194
Front Video Bus System
Side 164 Memory | | 194
162 Bus Service Layer
o inath Adapter
Adapter | Communications Bus 190 A

Expansion Bus 160

User Input

/0 181

Adapter

Comm. Drive

Adapter
167

Adapter

LSRR
ooooo
LIR PR NN
——r T
00000
ooooo
oooooo
oooooo
ooooo
cccccc
oooooo
ooooo

|
|
|
|
l
l
|
|
|
|
|
l
|
|
|
)
)
i Bus Bus 166
|
|
)
l
|
|
|
|
)
|
|
|
|
|
)
l
|

ooooo
ooooo

FIG. 1

A

. N Mk F R MV s) M. § §

| S W

¥ ¥ o F - R WS W W e Y T

2/6

¢ Ol

061

sng suonesIuNWWon

9%l

1055900.14

0lc

Je)gUYy YUl

cle
18)s1bey ssaIppy aseg

80¢
oldel OVLX
90¢
lahe7 Alows\
¥0C
Jahe
aoIAIeg Aoualayon
c0¢C
lafe

90IAI8g Uone|suel |

6l
la)depy Jahe aoIAIeg

91¢
Aows|

1Y

18]|0NU0N) BIPSN

61
Jun [euonoun

10)BJ8[800Y

L B F - B oS W W e ST T T e W k. N Mk F R MV s) M. F F N wmS F [W W

3/6

Instruction 320 Functional Unit 194

Service Layer Adapter 192

Recelve, By The Adapter, A Memory Access Instruction From The
Accelerator 302

Access Instruction 304

Retrieve, By The Adapter, A Real Address For The Memory

Determine, Using Base Address Registers On The Adapter, That

The Real Address Targets The LPC Memory, Wherein The Base

Address Registers Direct Memory Access Requests Between The
LPC Memory And Other Memory Locations On The Host

Computing System 306

Send, By The Adapter, The Memory Access Instruction And The
Real Address To A Media Controller For The LPC Memory,
Wherein The Media Controller For The LPC Memory Is Attached
To The Adapter Via A Memory Interface 308

Memory Access

Instruction And Real
Address 326

Media Controller

214

FIG. 3

L B F - B oS W W e ST T T e W k. N Mk F R MV s) M. F F N wmS F [W W

4/6

Instruction 320 Functional Unit 194

Service Layer Adapter 192

Recelve, By The Adapter, A Memory Access Instruction From The
Accelerator 302

Access Instruction 304

: Retrieve, By The Adapter, A Real Address For The Memory

Determine, Using Base Address Registers On The Adapter, That

The Real Address Targets The LPC Memory, Wherein The Base

Address Registers Direct Memory Access Requests Between The
LPC Memory And Other Memory Locations On The Host

Computing System 306

Send, By The Adapter, The Memory Access Instruction And The
Real Address To A Media Controller For The LPC Memory,

Memory Access
/ Instruction And Real

Wherein The Media Controller For The LPC Memory Is Attached Address 326

To The Adapter Via A Memory Interface 308

t | Receive, From The Processor, A Subsequent Memory Access
Instruction 402

Determine, Using Base Address Registers On The Adapter, That
The Subsequent Memory Access Instruction Targets The LPC
Memory 404

Media Controller
214

Send, By The Adapter, The Subsequent Memory Access

Instruction And The Real Address For The Subsequent Memory Subsequent Memory

Access Instruction
And Real Address 328

Access Instruction To The Media Controller For The LPC Memory
406

FIG. 4

L B F - B oS W W e ST T T e W k. N Mk F R MV s) M. F F N wmS F [W W

5/6

Instruction 320 Functional Unit 194

Service Layer Adapter 192

Recelve, By The Adapter, A Memory Access Instruction From The
Accelerator 302

Access Instruction 304

: Retrieve, By The Adapter, A Real Address For The Memory

Determine, Using Base Address Registers On The Adapter, That

The Real Address Targets The LPC Memory, Wherein The Base

Address Registers Direct Memory Access Requests Between The
LPC Memory And Other Memory Locations On The Host

Computing System 306

Media Controller

214

Send, By The Adapter, The Memory Access Instruction And The
Real Address To A Media Controller For The LPC Memory,

Memory Access
/ Instruction And Real

Wherein The Media Controller For The LPC Memory Is Attached Address 326

To The Adapter Via A Memory Interface 308

t | Receive, From The Accelerator, A Subsequent Memory Access
Instruction 502

Determine, Using Base Address Registers On The Adapter, That
The Subsequent Memory Access Instruction Does Not Target The
LPC Memory 504

Processor
156

Subsequent Memory
Access Instruction

And Real Address 328

Send, By The Adapter, The Subsequent Memory Access

Instruction And The Real Address For The Subsequent Memory
Access Instruction To The Processor 506

FIG. S

L B F - B oS W W e ST T T e W k. N Mk F R MV s) M. F F N wmS F [W W

6/6

Instruction 320 Functional Unit 194

Service Layer Adapter 192

Recelve, By The Adapter, A Memory Access Instruction From The
Accelerator 302

Recelve, By The Adapter From The Accelerator, A Request To

Initiate A Memory Access Operation Comprising An Effective
Address 602

Translate The Effective Address To The Real Address 604

Provide, By The Adapter To The Accelerator, A Translation Tag
((XTAG') Corresponding To The Real Address 606

Recelve, By The Adapter From The Accelerator, The Memory
Access Instruction Comprising The XTAG 603
Retrieve, By The Adapter, A Real Address For The Memory
Access Instruction 304

Determine, Using Base Address Registers On The Adapter, That
The Real Address Targets The LPC Memory, Wherein The Base
Address Registers Direct Memory Access Requests Between The

LPC Memory And Other Memory Locations On The Host
Computing System 306

Memory Access

Instruction Comprising
XTAG 332

Media Controller
214

Send, By The Adapter, The Memory Access Instruction And The
Real Address To A Media Controller For The LPC Memory,
Wherein The Media Controller For The LPC Memory Is Attached
To The Adapter Via A Memory Interface 308

Memory Access

Instruction And Real
Address 326

... FIG. ©

MANAGING LOWEST POINT OF COHERENCY (LPC) MEMORY USING SERVICE LAYER ADAPTER

BACKGROUND

Field of the Invention

[0001] The field of the invention 1s data processing, or, more specifically, methods,
apparatus, and products for managing lowest point of coherency (LPC) memory using a service

layer adapter.

Description of Related Art

[0002] The development of the EDVAC computer system of 1948 1s often cited as the
beginning of the computer era. Since that time, computer systems have evolved into extremely
complicated devices. Today's computers are much more sophisticated than early systems such
as the EDVAC. Computer systems typically include a combination of hardware and software
components, application programs, operating systems, processors, buses, memory, input/output
devices, and so on. As advances in semiconductor processing and computer architecture push
the performance of the computer higher and higher, more sophisticated computer software has
evolved to take advantage of the higher performance of the hardware, resulting in computer

systems today that are much more powerful than just a few years ago.

SUMMARY

[0003] Methods, systems, and apparatus for managing lowest point of coherency (LPC)
memory using a service layer adapter are disclosed 1n this specification. Managing lowest point
of coherency (LPC) memory using a service layer adapter, the adapter coupled to a processor
and an accelerator on a host computing system, the processor configured for symmetric multi-
processing, includes receiving, by the adapter, a memory access instruction from the
accelerator; retrieving, by the adapter, a real address for the memory access instruction;
determining, using base address registers on the adapter, that the real address targets the LPC

memory, wherein the base address registers direct memory access requests between the LPC

memory and other memory locations on the host computing system; and sending, by the
adapter, the memory access instruction and the real address to a media controller for the LPC
memory, wherein the media controller for the LPC memory 1s attached to the adapter via a

memory interface.

[0004] The foregoing and other objects, features and advantages of the invention will be
apparent from the following more particular descriptions of exemplary embodiments of the
invention as illustrated 1in the accompanying drawings wherein like reference numbers generally

represent like parts of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Embodiments of the present invention will now be described, by way of example
only, with reference to the accompanying drawings 1n which:

Figure 1 sets forth a block diagram of an example system configured for managing lowest point
of coherency (LPC) memory using a service layer adapter according to embodiments of the
present invention.

Figure 2 sets forth a block diagram for managing LPC memory using a service layer adapter
according to embodiments of the present invention.

Figure 3 sets forth a flow chart illustrating an exemplary method for managing LPC memory
using a service layer adapter according to embodiments of the present invention.

Figure 4 sets forth a flow chart illustrating an exemplary method for managing LPC memory
using a service layer adapter according to embodiments of the present invention.

Figure 5 sets forth a flow chart illustrating an exemplary method for managing LPC memory
using a service layer adapter according to embodiments of the present invention.

Figure 6 sets forth a flow chart 1llustrating an exemplary method for managing LPC memory

using a service layer adapter according to embodiments of the present invention.

DETAILED DESCRIPTION

[0006] Exemplary methods, apparatus, and products for managing lowest point of
coherency (LPC) memory using a service layer adapter in accordance with the present

invention are described with reference to the accompanying drawings, beginning with Figure 1.

Figure 1 sets forth a block diagram of automated computing machinery comprising an
exemplary computing system (152) configured for managing lowest point of coherency (LPC)
memory using a service layer adapter according to embodiments of the present invention. The
computing system (152) of Figure 1 includes at least one computer processor (156) or ‘CPU’ as
well as random access memory (168) (‘RAM’) which 1s connected through a high speed
memory bus (166) and bus adapter (158) to processor (156) and to other components of the
computing system (152).

[0007] Stored in RAM (168) 1s an operating system (154). Operating systems useful in
computers configured for managing lowest point of coherency (LPC) memory using a service
layer adapter according to embodiments of the present invention include UNIXTM, LinuxTM,
Microsoft XPTM, AIXTM, IBM’s 10STM, and others as will occur to those of skill in the art.
The operating system (154) in the example of Figure 1 1s shown in RAM (168), but many
components of such software typically are stored 1in non-volatile memory also, such as, for

example, on a disk drive (170).

[0008] The computing system (152) of Figure 1 includes disk drive adapter (172) coupled
through expansion bus (160) and bus adapter (158) to processor (156) and other components of
the computing system (152). Disk drive adapter (172) connects non-volatile data storage to the
computing system (152) in the form of disk drive (170). Disk drive adapters useful in
computers configured for managing lowest point of coherency (LPC) memory using a service
layer adapter according to embodiments of the present invention include Integrated Drive
Electronics (‘IDE’) adapters, Small Computer System Interface (‘SCSI’) adapters, and others as
will occur to those of skill in the art. Non-volatile computer memory also may be implemented
for as an optical disk drive, electrically erasable programmable read-only memory (so-called
‘EEPROM’ or ‘Flash” memory), RAM drnives, and so on, as will occur to those of skill in the
art.

[0009] The example computing system (152) of Figure 1 includes one or more input/output
(‘I/O’) adapters (178). 1/0 adapters implement user-oriented input/output through, for example,
software drivers and computer hardware for controlling output to display devices such as

computer display screens, as well as user input from user input devices (181) such as keyboards

and mice. The example computing system (152) of Figure 1 includes a video adapter (209),
which 1s an example of an I/O adapter specially designed for graphic output to a display device
(180) such as a display screen or computer monitor. Video adapter (209) 1s connected to
processor (156) through a high speed video bus (164), bus adapter (158), and the front side bus
(162), which 1s also a high speed bus.

[0010] The exemplary computing system (152) of Figure 1 includes a communications
adapter (167) for data communications with other computers (182) and for data
communications with a data communications network. Such data communications may be
carried out serially through RS-232 connections, through external buses such as a Universal
Serial Bus (‘USB’), through data communications networks such as IP data communications
networks, and 1n other ways as will occur to those of skill in the art. Communications adapters
implement the hardware level of data communications through which one computer sends data
communications to another computer, directly or through a data communications network.
Examples of communications adapters useful in computers configured for managing lowest
point of coherency (LPC) memory using a service layer adapter according to embodiments of
the present invention include modems for wired dial-up communications, Ethernet (IEEE
802.3) adapters for wired data communications, and 802.11 adapters for wireless data

communications.

[0011] The exemplary computing system (152) of Figure 1 includes a communications bus
(190) that connects the processor and RAM (168) (via the bus adapter (158)) to the service
layer adapter (192) and the accelerator functional unit (194).

[0012] Figure 2 1s an example block diagram of a system configured for managing lowest
point of coherency (LPC) memory using a service layer adapter. Figure 2 includes the
accelerator functional unit (194), memory (216) a media controller (214), the service layer
adapter (192), a communications bus (190), and a processor (156). The service layer adapter
(192) includes a translation service layer (202), a coherency service layer (204), a memory

layer (206), and a link arbiter (210). The memory layer (206) includes an XTAG table (208)
and a base address register (212).

[0013] The accelerator functional unit (AFU) (194) 1s an accelerator configured to extend
the functionality of the computing system. The AFU (194) may be a removable component of
the computing system installed to perform a specific task or group of tasks. Example AFUs
(194) include, for example, network interface cards, graphics accelerator cards, and storage

adapter cards.

[0014] The communications bus (190) 1s a medium through which data 1s moved between
hardware components on the computing system. The communications bus (190) may include a
bus controller that manages data transmitted on the communications bus (190). Example

communications buses (190) include peripheral component interconnect express (PCle) buses.

[0015] The AFU (194) may be configured to send coherency-based operations and memory
access 1nstructions to other hardware elements on the computing system via the
communications bus. The processor (156) may include a coherent accelerator processor proxy
that provides, to the AFU (194), access to the coherent symmetric multiprocessing bus on the
processor (156). The proxy may be used by a coherent accelerator proxy intertace that allows

the AFU (194) to participate in symmetric multiprocessing coherency protocols.

[0016] The service layer adapter (192) adapts the communications between the AFU (194)
and the coherent accelerator proxy interface. Communication between the service layer adapter
(192) and the proxy 1s encapsulated into packets over the communications bus to the processor.
The service layer adapter (192) may be implemented on an external chip, such as a field

programmable gate array or application specific integrated circuit.

[0017] The service layer adapter (192) may be configured to service coherency-based
operations 1mitiated by the AFU (194). The service layer adapter (192) includes a translation
service layer (202), a coherency service layer (204), and a memory layer (206). The translation
service layer (202) may include elements and logic for retrieving a context for an operation and
translating effective addresses to real addresses using an effective-to-real address translation
(ERAT). The effective address 1s an address used by elements and processes in the computing
system to refer to memory locations. However, the effective address must be translated into a

real address 1in order to access the requested data. Effective addresses may be referred as virtual

addresses, and real addresses may be referred to as physical addresses. The translation service
layer (202) may also include a context cache to store frequently accessed contexts and an

ERAT cache to store frequently accessed real address translations.

[0018] The coherency service layer (204) may include elements and logic to carry out
coherency-based operations. The coherency service layer (204) receives context-based
communications from the AFU (194) (via a coherency interface) and communicates with the
other layers 1n the service layer adapter (192) to service the operations. The coherency service
layer (204) may also include a data cache to store data frequently targeted by coherency-based
operations. The coherency service layer (204) also handles other tasks related to maintaining

data coherency between the AFU (194) and other memory locations on the computing system.

[0019] The service layer adapter (192) also provides a memory interface to a media
controller (214) and memory (216) via a memory layer (206). The memory layer (206)
provides access to the memory (216) and media controller (214) and manages access to the
memory (216) as lowest point of coherency (LPC) memory. Managing the memory (216) as
LPC memory may include providing memory management unit-type services for the memory,
such as snooping to maintain coherency of the memory (216) as well as directing memory

access requests between the LPC memory (216) and memory located elsewhere on the system.

[0020] The memory layer (206) may provide, to the AFU (194), access to the memory
(216). Accessing the memory (216) attached to the service layer adapter (192) may have lower
latency than accessing memory elsewhere on the system. Further, the memory (216) may be
assigned, 1n part or in whole, to other elements on the system that require or benefit from a
larger amount of memory. For example, the processor (156) may be utilized for activities that
require a large amount of memory. The memory may be provided via the memory interface on

the service layer adapter (192) at a lower cost or as part of an upgrade to the system.

[0021] Further, the memory (216) may be partitioned between the AFU (194) and other
elements on the system, such as the processor (158). Doing so provides the AFU (194) with
low-latency access to memory while bolstering the memory reserves of the processor (158) or

other elements requiring additional memory. The memory may be volatile memory distinct

from the RAM and distinct from other memory managed by the processor and memory

management unit.

[0022] The memory layer (206) also includes a base address register (212). The base
address register (212) provides a base address from which a memory mapping begins. The base
address register (212) may functionally direct memory addresses within memory access
instructions to different memory locations on the system, including memory (216), memory on

the processor (156), and memory coupled to other service layer adapters on the host system.

[0023] The memory layer (206) communicates with a media controller (214) via a memory
interface. The media controller (214) 1s a device configured to facilitate communication
between the memory layer (206) of the service layer adapter (192) and the memory (216). The
media controller (214) may be unique to the type of memory (216) device attached thereto.

[0024] The media controller (214) may communicate with the memory layer (206) over a
memory interface. The memory interface on the memory layer (206) may be a distinct
communication interface from the coherency interface on the coherency service layer (204).

For example, the coherency interface and the memory interface may be separate pins on the
chip that the service layer adapter (192) 1s implemented upon. Further, the service layer adapter
(192) may include multiple ports exposed to the AFU (194). The exposed ports may be used by
the AFU (194) to distribute memory access 1nstructions according to the AFU (194)

requirements.

[0025] The memory layer (206) provides translation services using translation tags
(XTAGs). XTAGs are provided to the AFU (194) and stored in the XTAG table (208) mapped
to a real address. The XTAG table (208) maps XTAGs to internal addresses, such as real
addresses, used by the processor (156) and memory layer (206). An XTAG 1s used by the AFU
(194) to 1dentifty memory locations within memory access instructions. The AFU (194) may
have no access to or knowledge of real addresses used by the processor (156) or other device on
the computing system. Although the XTAG table (208) 1s shown within the memory layer
(206), the XTAG table (208) may reside anywhere on the service layer adapter (192) or
accessible by the service layer adapter (192).

[0026] The AFU (194) may be allocated memory from the memory (216) or elsewhere on
the system, such as memory on the processor (158) or other memory managed by the memory
management unit. The AFU (194) may not be aware of the physical location of the memory
accessible via the service layer adapter (192). In other words, the AFU (194) will access all
allocated memory via the service layer adapter (192) using the same 1nstruction set regardless
of the location of the memory. The memory attached to the service layer adapter (192) may,

however, provide lower latency access than memory elsewhere on the system.

[0027] The link arbiter (210) provides a translation layer to facilitate communication
between the service layer adapter (192) and other hardware elements on the computing system,
such as the processors. The link arbiter (210) may also provide an interface to update different
caches (e.g., context cache, ERAT cache) on the service layer adapter (192) in the event of a

cache miss.

[0028] For further explanation, Figure 3 sets forth a flow chart illustrating an exemplary
method for managing lowest point of coherency (LPC) memory using a service layer adapter
according to embodiments of the present invention. The method of Figure 3 includes receiving
(302), by the adapter (192), a memory access instruction (320) from the accelerator (194).
Receiving (302), by the adapter (192), a memory access instruction (320) from the accelerator
(194) may be carried out by receiving, by the adapter (192) from the accelerator (194), a
request to 1nitiate a memory access operation comprising an effective address; translating the
effective address to the real address; providing, by the adapter (192) to the accelerator (194), a
translation tag (*XTAG’) corresponding to the real address; and receiving, by the adapter (192)

from the accelerator (194), the memory access instruction comprising the XTAG.

[0029] The memory access instruction may be received by the adapter via the coherency
interface on the adapter. Alternatively, the memory access instruction may be received by
another interface coupling the accelerator (194) and the adapter (192). For example, the
adapter (192) may provide specialized interfaces for memory access instructions, such as a

direct memory access interface.

[0030] The method of Figure 3 also includes retrieving (304), by the adapter (192), a real
address for the memory access instruction. Retrieving (304), by the adapter (192), a real
address for the memory access instruction may be carried out by obtaining, from an XTAG
table, the real address mapped to the XTAG and replacing, by the adapter, the XTAG 1n the
memory access instruction with the real address. The real address may be derived from the
memory access instruction algorithmically. For example, the adapter (192) may apply an
algorithm to elements of the memory access instruction, such as an XTAG, to obtain the real

address.

[0031] Retrieving (304), by the adapter (192), a real address for the memory access
instruction may also be carried out by determining that the adapter (194) 1s authorized to access
the targeted location in memory. For example, the ERAT or other structure may indicate
whether the accelerator (194) or the associated context has permission to access the memory

1dentified by the effective address or the associated real address.

[0032] The method of Figure 3 also includes determining (306), using base address
registers on the adapter (192), that the real address targets the LPC memory, wherein the base
address registers direct memory access requests between the LPC memory and other memory
locations on the host computing system. Determining (306), using base address registers on the
adapter (192), that the real address targets the LPC memory, wherein the base address registers
direct memory access requests between the LPC memory and other memory locations on the
host computing system may be carried out by determining a base address for the real address
and using the combined base address and real address to determine the location on the system
that the memory for the real address resides. The location may be the memory attached to the
media controller (214), memory on the processor, memory controlled by the memory
management unit (such as system RAM), or memory attached to another service layer adapter

on the system.

[0033] The method of Figure 3 also includes sending (308), by the adapter (192), the
memory access instruction and the real address (326) to a media controller (214) for the LPC
memory, wherein the media controller (214) for the LPC memory 1s attached to the adapter

(192) via a memory interface. Sending (308), by the adapter (192), the memory access

10

instruction and the real address (326) to a media controller (214) for the LPC memory, wherein
the media controller (214) for the LPC memory 1s attached to the adapter (192) via a memory
interface may be carried out by placing the memory access instruction and real address (326) on
the memory interface attached to the media controller (214). Sending (308), by the adapter
(192), the memory access instruction and the real address (326) to a media controller (214) for
the LPC memory, wherein the media controller (214) for the LPC memory 1s attached to the
adapter (192) via a memory interface may also be carried out by the media controller (214)
translating the memory access instruction into lower-level instructions suitable for servicing the

memory access instruction by the attached memory.

[0034] For further explanation, Figure 4 sets forth a flow chart illustrating an exemplary
method for managing lowest point of coherency (LPC) memory using a service layer adapter
according to embodiments of the present invention that includes receiving (302), by the adapter
(192), a memory access 1nstruction (320) from the accelerator (194); retrieving (304), by the
adapter (192), a real address for the memory access instruction; determining (306), using base
address registers on the adapter (192), that the real address targets the LPC memory, wherein
the base address registers direct memory access requests between the LPC memory and other
memory locations on the host computing system; and sending (308), by the adapter (192), the
memory access instruction and the real address (326) to a media controller (214) for the LPC
memory, wherein the media controller (214) for the LPC memory 1s attached to the adapter

(192) via a memory interface.

[0035] The method of Figure 4 differs from the method of Figure 3, however, in that Figure
4 further includes receiving (402), from the processor, a subsequent memory access instruction.
Receiving (402), from the processor, a subsequent memory access 1nstruction may be carried
out by a core or other element on the processor generating a subsequent memory access
instruction with a real address targeting a memory location on the memory attached to the
service layer adapter (192). The memory access instruction may be directed, via a base address

register on the processor, to the service layer adapter (192).

[0036] The method of Figure 4 further includes determining (404), using base address

registers on the adapter, that the subsequent memory access instruction targets the LPC

11

memory. Determining (404), using base address registers on the adapter, that the subsequent
memory access instruction targets the LPC memory may be carried out by determining a base
address for the real address and using the combined base address and real address to determine

that the subsequent memory access request targets a location on the memory attached to the

adapter (192).

[0037] The method of Figure 4 further includes sending (406), by the adapter (192), the
subsequent memory access instruction and the real address for the subsequent memory access
instruction (328) to the media controller (214) for the LPC memory. Sending (406), by the
adapter (192), the subsequent memory access instruction and the real address for the subsequent
memory access instruction (328) to the media controller (214) for the LPC memory may be
carried out by placing the subsequent memory access instruction and real address (328) on the
memory interface attached to the media controller (214). The subsequent memory access
instruction may target a portion of the same memory attached the adapter (192) accessed by the
accelerator, although the processor and accelerator (194) may be restricted to locations on the

memory for which they are permitted to access.

[0038] For further explanation, Figure S sets forth a flow chart illustrating an exemplary
method for managing lowest point of coherency (LPC) memory using a service layer adapter
according to embodiments of the present invention that includes receiving (302), by the adapter
(192), a memory access 1nstruction (320) from the accelerator (194); retrieving (304), by the
adapter (192), a real address for the memory access instruction; determining (306), using base
address registers on the adapter (192), that the real address targets the LPC memory, wherein
the base address registers direct memory access requests between the LPC memory and other
memory locations on the host computing system; and sending (308), by the adapter (192), the
memory access instruction and the real address (326) to a media controller (214) for the LPC
memory, wherein the media controller (214) for the LPC memory 1s attached to the adapter

(192) via a memory interface.

[0039] The method of Figure 5 differs from the method of Figure 3, however, in that Figure
5 further includes receiving (502), from the accelerator (194), a subsequent memory access

instruction. Receiving (502), from the accelerator (194), a subsequent memory access

12

instruction may be carried out by receiving a subsequent memory access instruction comprising

an XTAG. The XTAG may be translated into a real address using the XTAG table.

[0040] The method of Figure 5 further includes determining (504), using base address
registers on the adapter (192), that the subsequent memory access instruction does not target the
LPC memory. Determining (504), using base address registers on the adapter (192), that the
subsequent memory access instruction does not target the LPC memory may be carried out by
determining a base address for the real address and using the combined base address and real
address to determine that the subsequent memory access request targets a memory location not

on the memory attached to the adapter (192).

[0041] The method of Figure 5 further includes sending (506), by the adapter (192), the
subsequent memory access instruction and the real address for the subsequent memory access
instruction (328) to the processor (156). Sending (506), by the adapter (192), the subsequent
memory access instruction and the real address for the subsequent memory access instruction
(328) to the processor (156) may be carried out by receiving, by the processer, the subsequent
memory access instruction (328) and determining whether the targeted memory location 1s on
the processor or another adapter on the system (e.g., using a base address register). If the
targeted memory 1s processor memory, the processor services the subsequent memory access
request. If the targeted memory i1s attached to another adapter, then the subsequent memory

access request may be forwarded to the adapter managing that memory.

[0042] For further explanation, Figure 6 sets forth a flow chart illustrating an exemplary
method for managing lowest point of coherency (LPC) memory using a service layer adapter
according to embodiments of the present invention that includes receiving (302), by the adapter
(192), a memory access 1nstruction (320) from the accelerator (194); retrieving (304), by the
adapter (192), a real address for the memory access instruction; determining (306), using base
address registers on the adapter (192), that the real address targets the LPC memory, wherein
the base address registers direct memory access requests between the LPC memory and other
memory locations on the host computing system; and sending (308), by the adapter (192), the

memory access instruction and the real address (326) to a media controller (214) for the LPC

13

memory, wherein the media controller (214) for the LPC memory 1s attached to the adapter

(192) via a memory interface.

[0043] The method of Figure 6 differs from the method of Figure 3, however, 1n that
recerving (302), by the adapter (192), a memory access instruction (320) from the accelerator
(194) includes receiving (602), by the adapter (192) from the accelerator (194), a request to
1initiate a memory access operation comprising an effective address; translating (604) the
effective address to the real address; providing (606), by the adapter (192) to the accelerator
(194), a translation tag (‘ XTAG’) (330) corresponding to the real address; and receiving (608),
by the adapter (192) from the accelerator (194), the memory access instruction comprising the

XTAG (332).

[0044] Receiving (602), by the adapter (192) from the accelerator (194), a request to initiate
a memory access operation comprising an effective address may be carried out by the
accelerator (194) transmitting the request to 1nitiate a memory access operation to a coherency
interface on the coherency service layer of the adapter (192). The request to initiate a memory
access operation may include a location i1dentifier, a process handle, and the operation
1identifier. The location 1dentifier 1s an address that the accelerator uses to refer to a memory
location on the processor, RAM, or other hardware element on the computing system. The
location 1dentifier may be, for example, an effective address. The process handle 1s an
1identifier of the context for the request. The context 1s used by the adapter (192) to translate the
location identifier into a real address understood by the target device. The operation 1dentifier
may 1dentify the type of operation the AFU (194) 1s 1nitiating, such as a memory access

instruction.

[0045] Translating (604) the effective address to the real address may be carried out by
using the ERAT on the adapter to convert the effective address to a real address. Providing
(606), by the adapter (192) to the accelerator (194), a translation tag (‘XTAG”) (330)
corresponding to the real address may be carried out by determining, by the adapter (192), the
real address for the memory access instruction and storing the real address 1n an XTAG table on

the adapter (192).

14

[0046] Recelving (608), by the adapter (192) from the accelerator (194), the memory access
instruction comprising the XTAG (332) may be carried out by the accelerator (194)
transmitting the memory access instruction comprising the XTAG (332) to the adapter (192) via
the coherency interface or another specialized interface, such as a direct memory access

interface.

[0047] In view of the explanations set forth above, readers will recognize that the benefits
of managing lowest point of coherency (LPC) memory using a service layer adapter according

to embodiments of the present invention include:

. Improving the operation of a computer system by providing an open processor
memory interface to an AFU independent of the coherent interface, increasing storage access

efficiency.

. Improving the operation of a computer system by providing, to AFUs, protected

access to LPC memory attached to the adapter, reducing latency.

. Improving the operation of a computer system by managing memory access by

AFUs to memory local to the adapter and remote to the adapter, increasing memory integrity.

[0048] Exemplary embodiments of the present invention are described largely 1n the
context of a fully functional computer system for managing lowest point of coherency (LPC)
memory using a service layer adapter. Readers of skill in the art will recognize, however, that
the present invention also may be embodied in a computer program product disposed upon
computer readable storage media for use with any suitable data processing system. Such
computer readable storage media may be any storage medium for machine-readable
information, including magnetic media, optical media, or other suitable media. Examples of
such media include magnetic disks 1n hard drives or diskettes, compact disks for optical drives,
magnetic tape, and others as will occur to those of skill in the art. Persons skilled 1n the art will
immediately recognize that any computer system having suitable programming means will be
capable of executing the steps of the method of the invention as embodied 1n a computer

program product. Persons skilled in the art will recognize also that, although some of the

15

exemplary embodiments described 1n this specification are oriented to software installed and
executing on computer hardware, nevertheless, alternative embodiments implemented as

firmware or as hardware are well within the scope of the present invention.

[0049] The present invention may be a system, a method, and/or a computer program
product. The computer program product may include a computer readable storage medium (or
media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

[0050] The computer readable storage medium can be a tangible device that can retain and
store 1nstructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but 1s not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic storage device, a semiconductor
storage device, or any suitable combination of the foregoing. A non-exhaustive list of more
specific examples of the computer readable storage medium 1ncludes the following: a portable
computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM),
an erasable programmable read-only memory (EPROM or Flash memory), a static random
access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as
punch-cards or raised structures in a groove having instructions recorded thereon, and any
suitable combination of the foregoing. A computer readable storage medium, as used herein, 1s
not to be construed as being transitory signals per se, such as radio waves or other freely
propagating electromagnetic waves, electromagnetic waves propagating through a waveguide
or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical

signals transmitted through a wire.

[0051] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local
area network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls,

switches, gateway computers and/or edge servers. A network adapter card or network interface

16

1n each computing/processing device recetves computer readable program instructions from the
network and forwards the computer readable program 1nstructions for storage in a computer

readable storage medium within the respective computing/processing device.

[0052] Computer readable program instructions for carrying out operations of the present
invention may be assembler instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firmware instructions, state-
setting data, or either source code or object code written in any combination of one or more
programming languages, including an object oriented programming language such as Smalltalk,
C++ or the like, and conventional procedural programming languages, such as the "C"
programming language or similar programming languages. The computer readable program
instructions may execute entirely on the user's computer, partly on the user's computer, as a
stand-alone software package, partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of network, including a local area network
(LAN) or a wide area network (W AN), or the connection may be made to an external computer
(for example, through the Internet using an Internet Service Provider). In some embodiments,
electronic circuitry including, for example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable
program instructions by utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to perform aspects of the present

invention.

[0053] Aspects of the present invention are described herein with reference to flowchart
1llustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
1llustrations and/or block diagrams, can be implemented by computer readable program

instructions.

[0054] These computer readable program instructions may be provided to a processor of a

general purpose computer, special purpose computer, or other programmable data processing

17

apparatus to produce a machine, such that the instructions, which execute via the processor of
the computer or other programmable data processing apparatus, create means for implementing
the functions/acts specified in the flowchart and/or block diagram block or blocks. These
computer readable program 1nstructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other
devices to function 1n a particular manner, such that the computer readable storage medium
having instructions stored therein comprises an article of manufacture including instructions

which implement aspects of the function/act specified in the flowchart and/or block diagram

block or blocks.

[0055] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable apparatus or other device to
produce a computer implemented process, such that the instructions which execute on the
computer, other programmable apparatus, or other device implement the functions/acts

specified 1n the flowchart and/or block diagram block or blocks.

[0056] The tflowchart and block diagrams 1n the Figures 1llustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block 1n the flowchart or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
block may occur out of the order noted 1n the figures. For example, two blocks shown in
succession may, in fact, be executed substantially concurrently, or the blocks may sometimes
be executed 1n the reverse order, depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart 1llustration, and combinations of
blocks 1n the block diagrams and/or flowchart i1llustration, can be implemented by special
purpose hardware-based systems that perform the specified functions or acts or carry out

combinations of special purpose hardware and computer instructions.

18

[0057] It will be understood from the foregoing description that modifications and changes
may be made 1n various embodiments of the present invention without departing from 1ts true
spirit. The descriptions 1n this specification are for purposes of illustration only and are not to
be construed 1n a imiting sense. The scope of the present invention 1s limited only by the

language of the following claims.

19

CLAIMS

1. A method of managing lowest point of coherency (LPC) memory using a service layer
adapter, the adapter coupled to a processor and an accelerator on a host computing system, the
processor configured for symmetric multi-processing, the method comprising:

recerving, by the adapter, a memory access instruction from the accelerator;

retrieving, by the adapter, a real address for the memory access instruction;

determining, using base address registers on the adapter, that the real address targets the
LPC memory, wherein the base address registers direct memory access requests between the
LPC memory and other memory locations on the host computing system; and

sending, by the adapter, the memory access instruction and the real address to a media
controller for the LPC memory, wherein the media controller for the LPC memory 1s attached

to the adapter via a memory interface.

2. The method of claim 1, further comprising:

recerving, from the processor, a subsequent memory access instruction;

determining, using base address registers on the adapter, that the subsequent memory
access 1nstruction targets the LPC memory; and

sending, by the adapter, the subsequent memory access instruction and the real address

for the subsequent memory access instruction to the media controller for the LPC memory.

3. The method of claim 1, further comprising:

recerving, from the accelerator, a subsequent memory access instruction;

determining, using base address registers on the adapter, that the subsequent memory
access 1nstruction does not target the LPC memory; and

sending, by the adapter, the subsequent memory access instruction and the real address

for the subsequent memory access instruction to the processor.

4. The method of claim 1, wherein receiving, from the accelerator, a memory access
instruction targeting the LPC memory comprises:
recerving, by the adapter from the accelerator, a request to 1nitiate a memory access

operation comprising an effective address;

20

translating the effective address to the real address;

providing, by the adapter to the accelerator, a translation tag (‘ XTAG’) corresponding to
the real address; and

recerving, by the adapter from the accelerator, the memory access instruction

comprising the XTAG.

5. The method of claim 1, wherein the other memory locations comprise processor

memory and memory coupled to additional adapters on the host computing system.

6. The method of claim 1, wherein the LPC memory 1s partitioned between the accelerator

and the processor

7. The method of claim 1, wherein the memory access instruction 1s received by the

adapter via a coherency interface on the adapter.

8. An adapter for managing lowest point of coherency (LPC) memory using a service layer
adapter, the adapter coupled to a processor and an accelerator on a host computing system, the
processor configured for symmetric multi-processing, the adapter configured to carry out the
steps of:

receiving, by the adapter, a memory access instruction from the accelerator;

retrieving, by the adapter, a real address for the memory access instruction;

determining, using base address registers on the adapter, that the real address targets the
LPC memory, wherein the base address registers direct memory access requests between the
LPC memory and other memory locations on the host computing system; and

sending, by the adapter, the memory access instruction and the real address to a media
controller for the LPC memory, wherein the media controller for the LPC memory 1s attached

to the adapter via a memory interface.

9. The adapter of claim 8, the steps further comprising:
recerving, from the processor, a subsequent memory access instruction,
determining, using base address registers on the adapter, that the subsequent memory

access 1nstruction targets the LPC memory; and

21

sending, by the adapter, the subsequent memory access instruction and the real address

for the subsequent memory access instruction to the media controller for the LPC memory.

10. The adapter of claim 8, the steps further comprising:

recerving, from the accelerator, a subsequent memory access instruction;

determining, using base address registers on the adapter, that the subsequent memory
access 1nstruction does not target the LPC memory; and

sending, by the adapter, the subsequent memory access instruction and the real address

for the subsequent memory access instruction to the processor.

11. The adapter of claim 8, wherein receiving, from the accelerator, a memory access
instruction targeting the LPC memory comprises:

recerving, by the adapter from the accelerator, a request to 1nitiate a memory access
operation comprising an effective address;

translating the effective address to the real address;

providing, by the adapter to the accelerator, a translation tag (" XTAG’) corresponding to
the real address; and

recerving, by the adapter from the accelerator, the memory access instruction

comprising the XTAG.

12. The adapter of claim 8, wherein the other memory locations comprise processor

memory and memory coupled to additional adapters on the host computing system.

13. The adapter of claim 8, wherein the LPC memory 1s partitioned between the accelerator

and the processor

14, The adapter of claim 8, wherein the memory access instruction 1s received by the

adapter via a coherency interface on the adapter.

15. A computer program product for managing lowest point of coherency (LPC) memory
using a service layer adapter, the adapter coupled to a processor and an accelerator on a host

computing system, the processor configured for symmetric multi-processing, the computer

22

program product disposed upon a computer readable medium, the computer program product
comprising computer program instructions that, when executed, cause the adapter to carry out
the steps of:

recerving, by the adapter, a memory access instruction from the accelerator;

retrieving, by the adapter, a real address for the memory access instruction;

determining, using base address registers on the adapter, that the real address targets the
LPC memory, wherein the base address registers direct memory access requests between the
LPC memory and other memory locations on the host computing system; and

sending, by the adapter, the memory access instruction and the real address to a media
controller for the LPC memory, wherein the media controller for the LPC memory 1s attached

to the adapter via a memory interface.

16. The computer program product of claim 13, the steps further comprising:

recerving, from the processor, a subsequent memory access instruction,

determining, using base address registers on the adapter, that the subsequent memory
access 1nstruction targets the LPC memory; and

sending, by the adapter, the subsequent memory access instruction and the real address

for the subsequent memory access instruction to the media controller for the LPC memory.

17. The computer program product of claim 15, the steps further comprising:
recerving, from the accelerator, a subsequent memory access instruction;

determining, using base address registers on the adapter, that the subsequent memory
access 1nstruction does not target the LPC memory; and

sending, by the adapter, the subsequent memory access instruction and the real address

for the subsequent memory access instruction to the processor.

18. The computer program product of claim 15, wherein receiving, from the accelerator, a
memory access instruction targeting the LPC memory comprises:

recerving, by the adapter from the accelerator, a request to 1nitiate a memory access
operation comprising an effective address;

translating the effective address to the real address;

23

providing, by the adapter to the accelerator, a translation tag (‘XTAG’) corresponding to
the real address; and
recerving, by the adapter from the accelerator, the memory access instruction

comprising the XTAG.

19. The computer program product of claim 15, wherein the other memory locations
comprise processor memory and memory coupled to additional adapters on the host computing

system.

20. The computer program product of claim 15, wherein the LPC memory 1s partitioned

between the accelerator and the processor

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - CLAIMS
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - CLAIMS
	Page 30 - CLAIMS

