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CATEGORICAL FEATURE ENHANCEMENT 
MECHANISM FOR GRADIENT BOOSTING 

DECISION TREE 

[ 0011 ] FIG . 6 is a block schematic diagram of a computer 
system to implement one or more example embodiments . 

DETAILED DESCRIPTION 
BACKGROUND 

[ 0001 ] A gradient boosting decision tree is an algorithm 
that can be used for classification and regression problems . 
Gradient boosting decisions trees are represented as a tree 
like set of nodes forming a branch - like structure , in which 
each internal node represents a “ test ” on an attribute ( e.g. if 
the age of a person is greater than or equal to 18 ) , each 
branch represents the outcome of the test , and each leaf node 
represents a numerical score that is mapped to a class label 
( decision taken after computing all attributes ) . The paths 
from root to leaf represent classification rules . Gradient 
boosting decision trees may be used to reach a conclusion or 
predict an event or outcome given the input . 
[ 0002 ] Gradient boosting is a machine learning technique 
for regression and classification problems , which produces a 
prediction model in the form of an ensemble of weak 
prediction models , typically decision trees . The technique 
builds the prediction model in a stage - wise fashion and 
generalizes the prediction model by allowing optimization 
of an arbitrary differentiable loss function . 

SUMMARY 

[ 0003 ] A computer implemented method of generating a 
gradient boosting decision tree for obtaining predictions 
includes finding split points by sorting variable values of a 
feature by their gradient during training of the gradient 
boosting decision tree , performing a linear search to find a 
subset of variables with maximum split gain , and modifying 
a node of the gradient boosting decision tree to have multiple 
split points on the node for a feature as a function of the 
linear search . 
[ 0004 ] In a further example , a computer implemented 
method of controlling overfitting in a gradient boosting 
decision tree includes combining values of low population 
feature values into a virtual bin , fanning out the virtual bin 
into feature values having a low population , and including 
the low population feature values into multiple split points 
on a node of the gradient boosting decision tree . 

[ 0012 ] In the following description , reference is made to 
the accompanying drawings that form a part hereof , and in 
which is shown by way of illustration specific embodiments 
which may be practiced . These embodiments are described 
in sufficient detail to enable those skilled in the art to 
practice the invention , and it is to be understood that other 
embodiments may be utilized and that structural , logical and 
electrical changes may be made without departing from the 
scope of the present invention . The following description of 
example embodiments is , therefore , not to be taken in a 
limited sense , and the scope of the present invention is 
defined by the appended claims . 
[ 0013 ] The functions or algorithms described herein may 
be implemented in software in one embodiment . The soft 
ware may consist of computer executable instructions stored 
on computer readable media or computer readable storage 
device such as one or more non - transitory memories or other 
type of hardware - based storage devices , either local or 
networked . Further , such functions correspond to modules , 
which may be software , hardware , firmware or any combi 
nation thereof . Multiple functions may be performed in one 
or more modules as desired , and the embodiments described 
are merely examples . The software may be executed on a 
digital signal processor , ASIC , microprocessor , or other type 
of processor operating on a computer system , such as a 
personal co server or other computer system , turning 
such computer system into a specifically programmed 
machine . 
[ 0014 ] The functionality can be configured to perform an 
operation using , for instance , software , hardware , firmware , 
or the like . For example , the phrase " configured to " can refer 
to a logic circuit structure of a hardware element that is to 
implement the associated functionality . The phrase " config 
ured to ” can also refer to a logic circuit structure of a 
hardware element that is to implement the coding design of 
associated functionality of firmware or softwa The term 
" module ” refers to a structural element that can be imple 
mented using any suitable hardware ( e.g. , a processor , 
among others ) , software ( e.g. , an application , among others ) , 
firmware , or any combination of hardware , software , and 
firmware . The term , “ logic ” encompasses any functionality 
for performing a task . For instance , each operation illus 
trated in the flowcharts corresponds to logic for performing 
that operation . An operation can be performed using , soft 
ware , hardware , firmware , or the like . The terms , “ compo 
nent , ” “ system , ” and the like may refer to computer - related 
entities , hardware , and software in execution , firmware , or 
combination thereof . A component may be a process running 
on a processor , an object , an executable , a program , a 
function , a subroutine , a computer , or a combination of 
software and hardware . The term , " processor , ” may refer to 
a hardware component , such as a processing unit of a 
computer system . 
[ 0015 ] Furthermore , the claimed subject matter may be 
implemented as a method , apparatus , or article of manufac 
ture using standard programming and engineering tech 
niques to produce software , firmware , hardware , or any 
combination thereof to control a computing device to imple 
ment the disclosed subject matter . The term , “ article of 
manufacture , ” as used herein is intended to encompass a 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] FIG . 1A is a flowchart illustrating a computer 
implemented method of improving a decision tree utilizing 
multiple split points according to an example embodiment . 
[ 0006 ] FIG . 1B is a flowchart illustrating a computer 
implemented method of preventing overfitting according to 
an example embodiment . 
[ 0007 ] FIG . 2 is a user interface for interacting with 
decision trees and providing multiple split points according 
to an example embodiment . 
[ 0008 ] FIG . 3 is a user interface for interacting with 
decision trees illustrating decision trees without the use of multiple split points according to an example embodiment . 
[ 0009 ] FIG . 4 is a table illustrating parameters and values 
based on a sweep of machine learning performance with 
multiple split points turned on and off according to an 
example embodiment . 
[ 0010 ] FIG . 5 is a table illustrating test result for various 
example applications using multiple split points according 
to an example embodiment . 
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computer program accessible from any computer - readable 
storage device or media . Computer - readable storage media 
can include , but are not limited to , magnetic storage devices , 
e.g. , hard disk , floppy disk , magnetic strips , optical disk , 
compact disk ( CD ) , digital versatile disk ( DVD ) , smart 
cards , flash memory devices , among others . In contrast , 
computer - readable media , i.e. , not storage media , may addi 
tionally include communication media such as transmission 
media for wireless signals and the like . 
[ 0016 ] A machine learning algorithm constructs a gradient 
boosting decision tree by evaluating each feature - value pair 
in the training dataset for best split gain at a node . The 
algorithm then partitions the data based on this feature - value 
pair and this process is repeated on the child nodes until a 
terminating condition such as max leaves or minimum 
documents per leaf is reached . This process of creating a 
gradient boosting decision tree is repeated to create more 
decision trees to better classify the data that was classified 
incorrectly by giving it a higher weight to reduce the overall 
loss . The process of building a series of learners or decision 
trees continues until some terminating condition such as 
maximum trees / iterations is reached . Example gradient 
boosting decision trees include FastTree , XGBoost , Ada 
Boost , and others . 
[ 0017 ] At a node in a decision tree , one feature - value pair 
is chosen as a split point . At the time of inferencing or 
scoring the tree is traversed by comparing input feature 
values to this feature - value split point . The feature at a node 
tells what feature to look for in the input and informs what 
value to compare against , and based on the evaluation , a left 
or right turn is taken in the tree traversal . The leaf nodes 
contain a numerical score that is used to make a decision 
[ 0018 ] An optimization is performed for categorical vari 
ables in a gradient boosting decision tree . Typically , decision 
trees maintain a single threshold as a split point on a node . 
Maintaining multiple split points on a node in the case of 
categorical variables improves accuracy , referred to as the 
area under the curve , and significantly reduces training time . 
The use of such split points can also result in lower com 
puting resource utilization during use of the trees to make 
predictions , as the gradient boosting decision tree is gener 
ally more balanced and requires fewer resources to traverse . 
[ 0019 ] Methods are described that improve the area under 
the curve for a gradient boosting decision tree to maintain 
multiple split points on a node of decision tree algorithm , 
instead of one , and prevent overfitting by combining low 
population feature values during a node split process . Split 
points are identified by sorting the values of a feature seen 
during training by their gradient ( ratio of sum weight and 
count ) and then doing a linear search to find the contiguous 
subset with maximum split . 
[ 0020 ] Overfitting is prevented by combining low popu 
lation feature values during node split process to achieve 
better accuracy and speed . Maintaining multiple split points 
on a node in the case of categorical variables improves area 
under the curve up to second decimal ( 3.05 % ) on real ad 
click prediction datasets and reduces training time by as 
much as 62 % on datasets that were benchmarked . 
[ 0021 ] The accuracy of the tree is improved by introduc 
ing more expressive split points for categorical variables . An 
example would be expanding the split point to include more 
than one value , such instead of the age being greater than 18 , 
the split point may determine if the age is 5 or 6 or 7 or 10 
or 11 or 18. Such a split point is said to be more expressive , 

or alternatively , more accurate . A categorical variable is one 
that takes on discrete values , such as day , month , city , etc. At 
the time of scoring , instead of doing comparison on a single 
feature - value pair a logical OR is done on multiple feature 
values ( as node split feature ) with the input feature - value . 
[ 0022 ] FIG . 1A is a flowchart illustrating a computer 
implemented method 100 of improving a gradient boosting 
decision tree . While decision trees may be used in multiple 
different applications , one application used for discussion 
herein , is that of predicting on - time performance for sched 
uled airplane flights . Example categorical variables may 
include airline carrier , day of the week , and date of month . 
[ 0023 ] Method 100 begins by finding split points by 
sorting values of a feature during training by their gradient 
at operation 110. The gradient of a feature is obtained as a 
ratio of sum weight and count for the feature . Given a set of 
discrete feature values , example for feature say " color ” the 
values could look like “ red ” , “ green ” , “ blue ” , “ yellow ” . The 
values are sorted by gradient . 
[ 0024 ] A linear search or scan of the sorted values is 
performed at operation 120 to include values in our split 
points as long as split gain is increasing and not decreasing . 
This is a “ dynamic programming ” approach to find a subset 
with maximum gain . 
[ 0025 ] At operation 130 , a node of the gradient boosting 
decision tree is modified to have multiple split points on the 
node for a feature with values based on the sorted values 
found by the linear search . Generating the gradient boosting 
decision tree may include modifying an existing gradient 
boosting decision tree . 
[ 0026 ] To prevent overfitting , a method 150 , illustrated in 
flowchart form in FIG . 1B , may be performed prior to 
method 100. Values of low population are combined into a 
virtual bin at operation 160. An explicit count or relative 
percentage of values comprising a low population may be 
set by a user . The virtual bin is fanned out at operation 170 
into feature values that were low population . At operation 
180 , the low population values are included into the split 
points . The concept of knobs is illustrated below and is 
basically a construct to allow one to adjust the overfitting 
properties by setting different thresholds or tests to control 
the amount of overfitting . 
[ 0027 ] Method 150 , is specific to prevent discrimination 
or bias against feature values that may be important but have 
fewer count and hence their gradient will be less and that 
will result in them being excluded from split points . These 
feature values are combined as if they were one feature value 
and then included in the array of feature values before the 
linear scan 120 to find the subset with maximum gain . If this 
combined feature values is included in the split points , a fan 
out is performed and all these values are represented in the 
split points . 
[ 0028 ] As an example , Microsoft FastTree was trained on 
Flight Delay - 1M dataset using categorical splits as illus 
trated at a user interface 200 in FIG . 2. A list of trees is 
illustrated in a tree explorer box 205 , with one of the trees 
210 being selected for viewing in a larger , tree window 215 . 
Tree window 215 illustrates a single root node 220 and 
multiple internal nodes 225. Leaf nodes 230 are indicated at 
the bottom of the tree and represent a numerical score that 
is mapped to a decision , in this case , whether or not a flight 
will be delayed . 
[ 0029 ] The split feature chosen at the first node is 
" UniqueCarrier ” and its list of values chosen are WN , OH , 
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00 , UA , US , EV , etc. , separated by “ OR ” as indicated in 
box 235. This means at the time of scoring the evaluation at 
the node will be true if “ UniqueCarrier ” feature in the input 
has a value that is equal to any of the values in box 235 : ( i.e. , 
WN , OH , OO , UA , etc. ) . As child nodes are encountered , the 
split feature chosen are seen to be “ Date.DayOfMonth ” , 
though the same feature has been chosen but the list of 
feature values are different as shown in boxes 240 and 245 . 
[ 0030 ] In FIG . 3 at user interface 300 , the same training 
data was used with FastTree but without a categorical split 
feature . A list of trees is illustrated in a tree explorer box 305 , 
with one of the trees 310 being selected for viewing in a 
larger , tree window 315. Tree window 315 illustrates a 
single root node 320 and multiple internal nodes 325. Leaf 
nodes 330 are indicated at the bottom of the tree and 
represent decisions , in this case , whether or not a flight will 
be delayed . 
[ 0031 ] The split feature on the first node is “ UniqueCar 
rier ” and it has single split value ' EV ' at box 335 , the split 
features chosen on child nodes is “ Origin ” at box 340 with 
split value as “ ORD ” and the split feature chosen on another 
child node is “ Date.Month ” at box 345 with split value as 
“ 9 ” . Comparing the trees at tree explore boxes 205 with 
categorical splits and box 305 without categorical splits , it is 
seen that the trees constructed using categorical splits are in 
general balanced and have less branching in comparison to 
trees constructed without categorical splits that are mostly 
imbalanced with extreme branching . 
[ 0032 ] Split points may be found by sorting the values of 
a feature seen during training by their gradient ( ratio of sum 
weight and count ) and then doing a linear search to find the 
subset with maximum split gain . This is a dynamic pro 
gramming approach to find a subset of split points that 
constitute a good but not the best split gain and has a linear 
runtime . 
[ 0033 ] One of the challenges of categorical split points is 
overfitting because the split points are expressive . Since the 
values of a feature are sorted by gradient it is very easy to 
not include a value that has fewer document counts as part 
of the split points as it will have a low gradient and will be 
placed on the other side of the sorted array . To overcome 
this , values that are “ low population ” are combined into one 
virtual bin prior to carrying out the split procedure . If the 
virtual bin is part of feature values that are chosen as the split 
point the virtual bin is fanned out into feature values that 
were low population and are included in split points . This 
approach helps with overfitting by generalizing the tree and 
by reducing the number of feature values to scan in the split 
process results in a faster training time . Knobs to control 
overfitting and improve the performance include one or 
more of the following : 
[ 0034 ] 1. Maximum categorical split points — Split pro 
cess could continue and introduce too many split points that 
can overfit the dataset and even slow down training . This 
knob sets the upper limit on the number of split points . 
[ 0035 ] 2. Minimum Document Percentage for Categorical 
Split — This knob is used to identify low population bins to 
construct virtual bin . The knob indicates the minimum 
documents a bin needs to have so that it is not classified as 
a low population bin . It calculates minimum documents as 
a percentage of documents at that node . 
[ 0036 ] 3. Minimum Documents for Categorical Split 
Same as above but this knob allows the passing of a constant 
value for the minimum number of documents to include . 

[ 0037 ] 4. Bundling — Used to turn on / off combining low 
population feature values into a virtual bin . 
[ 0038 ] The use of categorical splits has been tested by 
training and testing on several datasets that have categorical 
variables . Some example datasets included : 
[ 0039 ] 1. Criteo dataset ( Kaggle ) . Criteo is an online 
display advertisement company and this dataset is used to 
predict if the user is going to click an ad . It has ~ 46 million 
rows in its training test . Two subsets of the dataset were used 
for train - test datasets . In a first test , the top 44 million rows 
were used to for training and the bottom 1 million were used 
for testing . In a second test , 1 million rows were used for 
training and 0.25 million rows were used for testing . 
[ 0040 ] 2. Avazu dataset ( Kaggle — a machine learning 
platform ) . Avazu is an advertisement platform based in 
Brunei in Asia . The dataset is used to predict whether a 
mobile ad will be clicked . The dataset has ~ 40M rows in 
training set . The top 39M rows were used for a training 
dataset and bottom 1M rows for a test dataset 
[ 0041 ] 3. TalkingData AdTracking Fraud Detection Chal 
lenge ( Kaggle ) . The goal is to predict if a user will download 
an app after clicking a mobile app ad . The dataset has 
~ 185M rows for training . Two different tests were conducted 
on different divisions of the training set . In a first test , the top 
175 million rows were used for training and bottom 10 
million rows were used for testing . In a second test , from top 
180 million rows were randomly chosen , 50 million rows 
( subsampled ) for test and then from bottom took 5 million 
rows for test . 
[ 0042 ] 4. Flight delay dataset . Predict whether a flight will 
be delayed . There are two datasets . The first dataset has 
training set of 10 million rows and other dataset has training 
set of 1 million rows . The test set for both have 0.689 million 
rows . 

[ 0043 ] A hyperparameter sweep was performed on the 
parameters illustrated in the table 400 in FIG . 4 on bench 
marking platform to show learning performance for each 
dataset to get the best AUC ( area under the curve ) with the 
categorical splits feature turned on and off . The first four 
parameters are common to gradient boosting decision trees 
with and without the categorical split optimization . The last 
three parameters are specific to categorical features optimi 
zation . 
[ 0044 ] Results are shown in table 500 in FIG . 5 where : 
[ 0045 ] 1. AUC — Area under the curve . 
[ 0046 ] 2. Time — Total time to carry our train - test experi 
ment . 
[ 0047 ] 3. Pre - training - Time spent before training such as 
FastTree data preparation , in - memory binning , feature con 
version and transforms . 
[ 0048 ] 4. Training - Time spending during training . 
[ 0049 ] 5. Everything else + prediction - producing Total 
Time- ( Pre - training + Training + Saving Model ) 
[ 0050 ] Various speed gains may be observed . 
[ 0051 ] 1. Pre - Training FastTree with categorical splits 
often performs better in pre - training even though the split 
logic and inferencing happens later . This is because in 
pre - training FastTree will try to figure out one - hot categori 
cal feature boundaries in the feature vector using heuristics 
but with categorical splits turned on these boundaries are 
given explicitly by the user using categorical transform that 
marks the column as categorical . Feature boundaries are 
preserved in the metadata of the column when a concat or 
drop slots transform is applied . 
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[ 0052 ] 2. Training is where bulk of the speed gain comes 
from because in the split logic during combining of low 
population bins / feature values into a single virtual bin we 
reduce the number of bins to scan to find the best split point 
and maximize split gain . 
[ 0053 ] 3. Post - Training - By having multiple split points 
in a node , branching is reduced . Reduced branching results 
in some speed gain but at the same time , the binary search 
to see if an input feature value is present in the list of 
categorical split values in a node ( logical OR ) could take up 
few extra cycles . 
[ 0054 ] Overall there is significant speed gains across all 
the six datasets that were tested on and these gains become 
more pronounced with larger datasets . 
[ 0055 ] Accuracy gains - An increased AUC was observed 
by using categorical split features across all the datasets and 
these gains are either in second or third decimal places . In 
the experiment setup the ad click prediction test datasets had 
document count ranging from 1 million to 10 million , so this 
translates to substantial increase in the revenue if used with 
these results and setup . The accuracy gains also increase 
with larger datasets except in the case of “ Talking data ad 
tracking fraud detection ” where the accuracy gain was 
marginal between large and small dataset because the 
smaller dataset ( 50M rows ) was subsampled from the origi 
nal dataset of 185M rows so it had nearly the same level of 
coverage as the larger dataset with 175M rows . 
[ 0056 ] AUC and speed gains increase with the number of 
categorical features in the dataset , as the use of categorical 
splits appears to benefit datasets with high number of 
categorical features . This occurs because the algorithm can 
be more expressive about the split points on a node by 
maintaining more than one of them that better confines the 
feature space for a label during training . The challenge with 
being more expressive about split point is overfitting that 
was countered using the bundling technique to generalize 
the tree while still being expressive about split points . Splits 
also made the trees more compressed and balanced , a 
property that could improve speed during inferencing . 
[ 0057 ] FIG . 6 is a block schematic diagram of a computer 
system 600 to implement and manage decision trees utiliz 
ing multiple split points , preventing overfitting , and for 
performing methods and algorithms according to example 
embodiments . All components need not be used in various 
embodiments . 
[ 0058 ] One example computing device in the form of a 
computer 600 may include a processing unit 602 , memory 
603 , removable storage 610 , and non - removable storage 
612. Although the example computing device is illustrated 
and described as computer 600 , the computing device may 
be in different forms in different embodiments . For example , 
the computing device may instead be a smartphone , a tablet , 
smartwatch , smart storage device ( SSD ) , or other computing 
device including the same or similar elements as illustrated 
and described with regard to FIG . 6. Devices , such as 
smartphones , tablets , and smartwatches , are generally col 
lectively referred to as mobile devices or user equipment . 
[ 0059 ] Although the various data storage elements are 
illustrated as part of the computer 600 , the storage may also 
or alternatively include cloud - based storage accessible via a 
network , such as the Internet or server - based storage . Note 
also that an SSD may include a processor on which the 
parser may be run , allowing transfer of parsed , filtered data 
through I / O channels between the SSD and main memory . 

[ 0060 ] Memory 603 may include volatile memory 614 and 
non - volatile memory 608. Computer 600 may include or 
have access to a computing environment that includes 
variety of computer - readable media , such as volatile 
memory 614 and non - volatile memory 608 , removable 
storage 610 and non - removable storage 612. Computer 
storage includes random access memory ( RAM ) , read only 
memory ( ROM ) , erasable programmable read - only memory 
( EPROM ) or electrically erasable programmable read - only 
memory ( EEPROM ) , flash memory or other memory tech 
nologies , compact disc read - only memory ( CD ROM ) , Digi 
tal Versatile Disks ( DVD ) or other optical disk storage , 
magnetic cassettes , magnetic tape , magnetic disk storage or 
other magnetic storage devices , or any other medium 
capable of storing computer - readable instructions . 
[ 0061 ] Computer 600 may include or have access to a 
computing environment that includes input interface 606 , 
output interface 604 , and a communication interface 616 . 
Output interface 604 may include a display device , such as 
a touchscreen , that also may serve as an input device . The 
input interface 606 may include one or more of a touch 
screen , touchpad , mouse , keyboard , camera , one or more 
device - specific buttons , one or more sensors integrated 
within or coupled via wired or wireless data connections to 
the computer 600 , and other input devices . The computer 
may operate in a networked environment using a commu 
nication connection to connect to one or more remote 
computers , such as database servers . The remote computer 
may include a personal computer ( PC ) , server , router , net 
work PC , a peer device or other common data flow network 
switch , or the like . The communication connection may 
include a Local Area Network ( LAN ) , a Wide Area Network 
( WAN ) , cellular , Wi - Fi , Bluetooth , or other networks . 
According to one embodiment , the various components of 
computer 600 are connected with a system bus 620 . 
[ 0062 ] Computer - readable instructions stored on a com 
puter - readable medium are executable by the processing unit 
602 of the computer 600 , such as a program 618. The 
program 618 in some embodiments comprises software to 
implement one or more methods for using multiple split 
points in decision trees and for preventing overfitting . A hard 
drive , CD - ROM , and RAM are some examples of articles 
including a non - transitory computer - readable medium such 
as a storage device . The terms computer - readable medium 
and storage device do not include carrier waves to the extent 
carrier waves are deemed too transitory . Storage can also 
include networked storage , such as a storage area network 
( SAN ) . Computer program 618 along with the workspace 
manager 622 may be used to cause processing unit 602 to 
perform one or more methods or algorithms described 
herein . 

EXAMPLES 

[ 0063 ] Brad to add when claims finalized , plus here is a 
potential claim phrased as an example for overfitting should 
that be divided out later : 

[ 0064 ] 1. A computer implemented method of generating 
a gradient boosting decision tree for obtaining predictions 
includes finding split points by sorting variable values of a 
feature by their gradient during training of the gradient 
boosting decision tree , performing a linear search to find a 
subset of variables with maximum split gain , and modifying 
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a node of the gradient boosting decision tree to have multiple 
split points on the node for a feature as a function of the 
linear search . 
[ 0065 ] 2. The method of example 1 and further including 
prior to finding split points , controlling overfitting by com 
bining values of low population feature values into a virtual 
bin , fanning out the virtual bin into feature values having a 
low population , and including the low population feature 
values into the split points . 
[ 0066 ] 3. The method of example 2 and further including 
using at least one knob to control overfitting . 
[ 0067 ] 4. The method of example 3 and further including 
setting an upper limit on a number of split points via a 
maximum split point knob . 
[ 0068 ] 5. The method of example 3 and further comprising 
setting a minimum number of documents for a categorical 
split via a minimum knob . 
[ 0069 ] 6. The method of example 3 and further including 
using a bundling control knob to turn on or off the operation 
of combining low population feature values into the virtual 
bin . 
[ 0070 ] 7. The method of any of examples 1-6 wherein the 
decision tree is a gradient boosting binary tree . 
[ 0071 ] 8. The method of any of examples 1-7 wherein the 
gradient of the feature is determined as a ratio of a sum 
weight and count . 
[ 0072 ] 9. The method of any of examples 1-8 wherein 
during training of the gradient boosting decision tree , at a 
time of scoring , a logical OR is performed on multiple 
feature values at a node with the input feature - value . 
[ 0073 ] 10. A machine - readable storage device has instruc 
tions for execution by a processor of a machine to cause the 
processor to perform operations to perform a method of 
improving a gradient boosting decision tree for obtaining 
predictions . The operations include finding split points by 
sorting variable values of a feature by their gradient during 
training of the gradient boosting decision tree , performing a 
linear search to find a subset of variables with maximum 
split gain , and modifying a node of the gradient boosting 
decision tree to have multiple split points on the node for a 
feature as a function of the linear search 
[ 0074 ] 11. The device of example 10 wherein the opera 
tions further comprise prior to finding split points , control 
ling overfitting by combining values of low population 
feature values into a virtual bin , fanning out the virtual bin 
into feature values that were low population , and including 
the low population feature values into the split points . 
[ 0075 ] 12. The device of example 11 and further including 
using at least one knob to control overfitting . 
[ 0076 ] 13. The device of example 12 wherein the at least 
one knob provides an upper limit on a number of split points 
via a maximum split point knob , a minimum number of 
documents for a categorical split via a minimum knob , and 
a bundling control knob to turn on or off the operation of 
combining low population feature values into the virtual bin . 
[ 0077 ] 14. The device of any of examples 10-13 wherein 
the decision tree is a gradient boosting binary tree . 
[ 0078 ] 15. The device of any of examples 10-14 wherein 
the gradient of a feature is determined as a ratio of a sum 
weight and count . 
[ 0079 ] 16. The device of any of examples 10-15 wherein 
during training of the gradient boosting decision tree , at a 
time of scoring , a logical OR is performed on multiple 
feature - values at a node with the input feature - value . 

[ 0080 ] 17. A device includes a processor and a memory 
device coupled to the processor and having a program stored 
thereon for execution by the processor to perform opera 
tions . The operations include finding split points by sorting 
variable values of a feature by their gradient during training 
of the gradient boosting decision tree , performing a linear 
search to find a subset of variables with maximum split gain , 
and modifying a node of the gradient boosting decision tree 
to have multiple split points on the node for a feature as a 
function of the linear search . 
[ 0081 ] 18. The device of example 17 wherein the opera 
tions further include , prior to finding split points , controlling 
overfitting by combining values of low population feature 
values into a virtual bin , fanning out the virtual bin into 
feature values that were low population , and including the 
low population feature values into the split points . 
[ 0082 ] 19. The device of example 18 wherein the opera 
tions further include using at least one knob to provide an 
upper limit on a number of split points via a maximum split 
point knob , a minimum number of documents for a cat 
egorical split via a minimum knob , and a bundling control 
knob to turn on or off the operation of combining low 
population feature values into the virtual bin . 
[ 0083 ] 20. The device of any of examples 17-19 wherein 
the gradient boosting decision tree is a gradient boosting 
linear binary tree , wherein the gradient of a feature is 
determined as a ratio of a sum weight and count , and 
wherein during training of the gradient boosting decision 
tree , at a time of scoring , a logical OR is performed on 
multiple feature - values at a node with the input feature 
value . 
[ 0084 ] 21. In a further example , a computer implemented 
method of controlling overfitting in a gradient boosting 
decision tree includes combining values of low population 
feature values into a virtual bin , fanning out the virtual bin 
into feature values having a low population , and including 
the low population feature values into multiple split points 
on a node of the gradient boosting decision tree . 
[ 0085 ] Although a few embodiments have been described 
in detail above , other modifications are possible . For 
example , the logic flows depicted in the figures do not 
require the particular order shown , or sequential order , to 
achieve desirable results . Other steps may be provided , or 
steps may be eliminated , from the described flows , and other 
components may be added to , or removed from , the 
described systems . Other embodiments may be within the 
scope of the following claims . 

1. A computer implemented method of generating a 
gradient boosting decision tree for obtaining predictions , the 
method comprising : 

finding split points by sorting variable values of a feature 
by their gradient during training of the gradient boost 
ing decision tree ; 

performing a linear search to find a subset of variables 
with maximum split gain ; and 

modifying a node of the gradient boosting decision tree to 
have multiple split points on the node for a feature as 
a function of the linear search . 

2. The method of claim 1 and further comprising prior to 
finding split points , controlling overfitting by : 

combining values of low population feature values into a 
virtual bin ; 

fanning out the virtual bin into feature values having a low 
population ; and 
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including the low population feature values into the split 
points . 

3. The method of claim 2 and further comprising using at 
least one knob to control overfitting . 

4. The method of claim 3 and further comprising setting 
an upper limit on a number of split points via a maximum 
split point knob . 

5. The method of claim 3 and further comprising setting 
a minimum number of documents for a categorical split via 
a minimum knob . 

6. The method of claim 3 and further comprising using a 
bundling control knob to turn on or off the operation of 
combining low population feature values into the virtual bin . 

7. The method of claim 1 wherein the decision tree is a 
gradient boosting binary tree . 

8. The method of claim 1 wherein the gradient of the 
feature is determined as a ratio of a sum weight and count . 

9. The method of claim 1 wherein during training of the 
gradient boosting decision tree , at a time of scoring , a logical 
OR is performed on multiple feature values at a node with 
the input feature - value . 

10. A machine - readable storage device having instruc 
tions for execution by a processor of a machine to cause the 
processor to perform operations to perform a method of 
improving a gradient boosting decision tree for obtaining 
predictions , the operations comprising : 

finding split points by sorting variable values of a feature 
by their gradient during training of the gradient boost 
ing decision tree ; 

performing a linear search to find a subset of variables 
with maximum split gain ; and 

modifying a node of the gradient boosting decision tree to 
have multiple split points on the node for a feature as 
a function of the linear search 

11. The device of claim 10 wherein the operations further 
comprise prior to finding split points , controlling overfitting 
by : 

combining values of low population feature values into a 
virtual bin ; 

fanning out the virtual bin into feature values that were 
low population ; and 

including the low population feature values into the split 
points . 

12. The device of claim 11 and further comprising using 
at least one knob to control overfitting . 

13. The device of claim 12 wherein the at least one knob 
provides : 

an upper limit on a number of split points via a maximum 
split point knob ; 

a minimum number of documents for a categorical split 
via a minimum knob ; and 

a bundling control knob to turn on or off the operation of 
combining low population feature values into the vir 
tual bin . 

14. The device of claim 10 wherein the decision tree is a 
gradient boosting binary tree . 

15. The device of claim 10 wherein the gradient of a 
feature is determined as a ratio of a sum weight and count . 

16. The device of claim 10 wherein during training of the 
gradient boosting decision tree , at a time of scoring , a logical 
OR is performed on multiple feature - values at a node with 
the input feature - value . 

17. A device comprising : 
a processor ; and 
a memory device coupled to the processor and having a 

program stored thereon for execution by the processor 
to perform operations comprising : 
finding split points by sorting variable values of a 

feature by their gradient during training of the gra 
dient boosting decision tree ; 

performing a linear search to find a subset of variables 
with maximum split gain , and 

modifying a node of the gradient boosting decision tree 
to have multiple split points on the node for a feature 
as a function of the linear search . 

18. The device of claim 17 wherein the operations further 
comprise prior to finding split points , controlling overfitting 
by : 

combining values of low population feature values into a 
virtual bin ; 

fanning out the virtual bin into feature values that were 
low population , and 

including the low population feature values into the split 
points . 

19. The device of claim 18 wherein the operations further 
comprise using at least one knob to provide : 

an upper limit on a number of split points via a maximum 
split point knob ; 

a minimum number of documents for a categorical split 
via a minimum knob ; and 

a bundling control knob to turn on or off the operation of 
combining low population feature values into the vir 
tual bin . 

20. The device of claim 17 wherein the gradient boosting 
decision tree is a gradient boosting linear binary tree , 
wherein the gradient of a feature is determined as a ratio of 
a sum weight and count , and wherein during training of the 
gradient boosting decision tree , at a time of scoring , a logical 
OR is performed on multiple feature - values at a node with 
the input feature - value . 


