
US 20200293952A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0293952 A1

Siddiqui et al . (43) Pub . Date : Sep. 17 , 2020

(54) CATEGORICAL FEATURE ENHANCEMENT
MECHANISM FOR GRADIENT BOOSTING
DECISION TREE

(52) U.S. CI .
CPC G06N 20/20 (2019.01) ; G06K 9/6232

(2013.01) ; G06K 9/6286 (2013.01)
(71) Applicant : Microsoft Technology Licensing , LLC ,

Redmond , WA (US)

(72) Inventors : Mohammad Zeeshan Siddiqui ,
Bellevue , WA (US) ; Thomas Finley ,
Bellevue , WA (US) ; Sarthak Shah ,
Redmond , WA (US)

(21) Appl . No .: 16 / 355,348

(57) ABSTRACT
A computer implemented method of generating a gradient
boosting decision tree for obtaining predictions includes
finding split points by sorting variable values of a feature by
their gradient during training of the gradient boosting deci
sion tree , performing a linear search to find a subset of
variables with maximum split gain , and modifying a node of
the gradient boosting decision tree to have multiple split
points on the node for a feature as a function of the linear
search . In a further example , a computer implemented
method of controlling overfitting in a gradient boosting
decision tree includes combining values of low population
feature values into a virtual bin , fanning out the virtual bin
into feature values having a low population , and including
the low population feature values into multiple split points
on a node of the gradient boosting decision tree .

(22) Filed : Mar. 15 , 2019

Publication Classification

(51) Int . Cl .
GOON 20/20 (2006.01)
G06K 9/62 (2006.01)

A 100
110

SORT VALUES BY GRADIENT

120
PERFORM LINEAR SEARCH FOR

SUBSET WITH MAXIMUM SPLIT GAINS

-130
MODIFY NODE TO HAVE MULTILPLE

SPLIT POINTS

Patent Application Publication Sep. 17 , 2020 Sheet 1 of 6 US 2020/0293952 A1

A 100
110

SORT VALUES BY GRADIENT

120
PERFORM LINEAR SEARCH FOR

SUBSET WITH MAXIMUM SPLIT GAINS

-130
MODIFY NODE TO HAVE MULTILPLE

SPLIT POINTS

FIG . 1A .

150

-160
COMBINE IN VIRTUAL BIN

170
FAN OUT

180
INCLUDE LOW POPULATION
VALUES INTO SPLIT POINTS

FIG . 1B

r
200

VISUAL TREE ANALYTICS
FILE VIEW

205

to be

215

TREE EXPLORER

4 x TREEO + x

SEARCHTREESBY FEATURE NAVEGO

Patent Application Publication

220

225

235

?

DO DOOD

ob da dod ? dappa

225

00

FEATURE EXPLORER FEATURE NAMES UNIQUECARRER.WNOR UNIQUECARREROHOR UNQUECARREROO OR UNIQUECARRERUA OR UNIQUECARRIERUS OR UNQUECARRIEREVOR UNQUECARRERFOOR UNIQUECARRERMQOR UNIQUECARRERMWOR UNIQUECARRERAS

aano

0

225

2104

A

225

ODOTOO 0000 000
00 00

2

3

1 000 22 OPCA De
22

230
230

DATE.DAYOFMONTH5OR 240-4 DATE.DAYOFMONTH.11 OR DATE.DAYOFMONTH.14OR DATE.DAYOFMONTH.15OR DATE.DAYOFMONTH.16OR DATE.DAYOFMONTH.18OR DATE.DAYOFMONTH.19ORI DATE DAYOFMONTH . 21 OR DATE.DAYOFMONTH 250R

Sep. 17 , 2020 Sheet 2 of 6

PR 400 COOP 10 do pooh
000000 dbou
5

popa ? daddbagaadu

230

230

OD

do

6

7

245 - H DATE.DAYOFMONTH.1OR DATE.DAYOFMONTH2OR DATE.DAYOFMONTH.14OR DATE.DAYOFMONTH.150R DATE.DAYOFMONTH.16OR DATE.DAYOFMONTH.17 OR DATE.DAYOFMONTH.18 OR DATE.DAYOFMONTH.19OR
US 2020/0293952 A1

FIG . 2

300

VISUAL TREE ANALYTICS
FILE VIEW

305

A D B . TREE EXPLORER

4 X TREEO + x

SEARCHTREESBY FEATURE NAVEGO

315

Patent Application Publication

320
325

3104

FEATURE EXPLORER FEATURE NAMES
335 HUNQUECARREREV 340 HORIGN.ORD 345 | DATEMONTH.9

325

0

2

0

330

TIME.600 DATE.MONTH.12 DEST.EWR DATE.MONTH.6 DATE MONTH.7 DEST.ORD ORIGIN.EWR DATE.MONTH2 DATE.DAYOFMONTH.15 DATE MONTH8 UNIQUECARRIERUS DATE.MONTH.3 DEST.LGA

2

3

Sep. 17 , 2020 Sheet 3 of 6

4

5

325

330

6

7

330

US 2020/0293952 A1

FIG . 3

400

Patent Application Publication

PARAMETER

VALUES

ITER (NUMBER OF TREES)

20 , 60 , 80 , 100

NL (NUMBER OF LEAVES)

20,30

MIL (MINIMUM DOCUMENTS FOR A LEAF

10 , 20

LR (LEARNING RATE)

0.15 , 0.20

CAT (CATEGORICAL SPLIT ON / OFF)

+ ,

Sep. 17 , 2020 Sheet 4 of 6

MAXCAT (MAXIMUM CATEGORICAL SPLIT POINTS) 8 , 16 , 32 , 64 , 128 , 256

MDOP (MINIMUM DOCUMENT PERCENTAGE FOR

0.1 , 0.01 , 0.001 , 0.0001

CATEGORICAL SPLIT) MDO (MINIMUM DOCUMENTS FOR CATEGORICAL
SPLIT)

0 , 50 , 100 , 200

FIG . 4

US 2020/0293952 A1

500

NAME

CRITEO - CLICK PREDICTION

AVAZU AD TRACKING DATA
CLICK AND TRACKING FRAUD FLIGHT DELAY

PREDICTION DETECTION
39

175

50

10 1

1

10

5

0.689
0.689

Patent Application Publication

6

1 22 0.7201 100 1858 423.08 1388.811 26.26

0.9722 100 5449 662.41 4724.24 1.83

0.9757 100 1617 204.37 1376.76 2.17

5 5 0.6945 0.6937 100 100 113 19.38 19 3.5 87 12.23 0.16 0.17

19.849

70.52

33.7

6.84

3.48

DATASET DATASET ROW TRAINING

44 1

(KAGGLE) COUNT IN

MILLIONS

TEST

1 0.250

FEATURE NON - CATEGORICAL

13

COUNT CATEGORICAL

26

AUC

0.7690 0.7719

TREES

100 100

TOTAL

2828 98

WITHOUT

PRE - TRAINING 995.44 35.34

CATEGORICAL SPLITS
TIME IN

TRAINING 1800.42 42.52

SECONDS

SAVING MODEL 8.23 6.62
EVERYTHING ELSE +

23.91 13.52

PREDICTION
AUC

0.7924 | 0.7806

TREES

100 100

TOTAL

2244

WITH

96

CATEGORICAL

PRE - TRAINING 1037.42 30.89

SPLITS

TIME IN

TRAINING 1170.64 42.84

(ORS)

SECONDS

SAVING MODEL 7.17 6.29
EVERYTHING ELSE +

28.77 15.98

PREDICTION

3.05 % 1.12 %

WITH AND

AUC

WITHOUT

0.0234 0.0087

DELTA
CATEGORICAL

-20.65 % -2.04 %

SPLIT

TIME

-584 -2

0.6987

0.7306 100

0.9781 100

60 82.555

Sep. 17 , 2020 Sheet 5 of 6

1457 449.69 957.23 26.56

0.9825 100 775 197.99 527.86 15.93

2039 532.46 1428.97 12.35

0.6972 60 15.834 3.3769 8.45

21 56 0.19

0.18

23.52

65.22

33.22

5.386
3.8271

1.46 % 0.0105 -21.58 %

0.61 % 0.0059 -62.58 % -3410

0.70 % 0.0068 -52.07 % -842

0.62 % 0.51 % 0.0043 0.0035 -26.94 % -18.30 % -30.445 -3.546

US 2020/0293952 A1

-401
FIG . 5

Patent Application Publication Sep. 17 , 2020 Sheet 6 of 6 US 2020/0293952 A1

600

602 603
6184 PROGRAM

6144 PROCESSING
UNIT

VOLATILE

6084
6204 NON - VOLATILE

-610 REMOVABLE
STORAGE

6164 COMMUNICATION
INTERFACE

NON - REMOVABLE
STORAGE

INPUT
INTERFACE

OUTPUT
INTERFACE

612 606 604

FIG . 6

US 2020/0293952 A1 Sep. 17 , 2020
1

CATEGORICAL FEATURE ENHANCEMENT
MECHANISM FOR GRADIENT BOOSTING

DECISION TREE

[0011] FIG . 6 is a block schematic diagram of a computer
system to implement one or more example embodiments .

DETAILED DESCRIPTION
BACKGROUND

[0001] A gradient boosting decision tree is an algorithm
that can be used for classification and regression problems .
Gradient boosting decisions trees are represented as a tree
like set of nodes forming a branch - like structure , in which
each internal node represents a “ test ” on an attribute (e.g. if
the age of a person is greater than or equal to 18) , each
branch represents the outcome of the test , and each leaf node
represents a numerical score that is mapped to a class label
(decision taken after computing all attributes) . The paths
from root to leaf represent classification rules . Gradient
boosting decision trees may be used to reach a conclusion or
predict an event or outcome given the input .
[0002] Gradient boosting is a machine learning technique
for regression and classification problems , which produces a
prediction model in the form of an ensemble of weak
prediction models , typically decision trees . The technique
builds the prediction model in a stage - wise fashion and
generalizes the prediction model by allowing optimization
of an arbitrary differentiable loss function .

SUMMARY

[0003] A computer implemented method of generating a
gradient boosting decision tree for obtaining predictions
includes finding split points by sorting variable values of a
feature by their gradient during training of the gradient
boosting decision tree , performing a linear search to find a
subset of variables with maximum split gain , and modifying
a node of the gradient boosting decision tree to have multiple
split points on the node for a feature as a function of the
linear search .
[0004] In a further example , a computer implemented
method of controlling overfitting in a gradient boosting
decision tree includes combining values of low population
feature values into a virtual bin , fanning out the virtual bin
into feature values having a low population , and including
the low population feature values into multiple split points
on a node of the gradient boosting decision tree .

[0012] In the following description , reference is made to
the accompanying drawings that form a part hereof , and in
which is shown by way of illustration specific embodiments
which may be practiced . These embodiments are described
in sufficient detail to enable those skilled in the art to
practice the invention , and it is to be understood that other
embodiments may be utilized and that structural , logical and
electrical changes may be made without departing from the
scope of the present invention . The following description of
example embodiments is , therefore , not to be taken in a
limited sense , and the scope of the present invention is
defined by the appended claims .
[0013] The functions or algorithms described herein may
be implemented in software in one embodiment . The soft
ware may consist of computer executable instructions stored
on computer readable media or computer readable storage
device such as one or more non - transitory memories or other
type of hardware - based storage devices , either local or
networked . Further , such functions correspond to modules ,
which may be software , hardware , firmware or any combi
nation thereof . Multiple functions may be performed in one
or more modules as desired , and the embodiments described
are merely examples . The software may be executed on a
digital signal processor , ASIC , microprocessor , or other type
of processor operating on a computer system , such as a
personal co server or other computer system , turning
such computer system into a specifically programmed
machine .
[0014] The functionality can be configured to perform an
operation using , for instance , software , hardware , firmware ,
or the like . For example , the phrase " configured to " can refer
to a logic circuit structure of a hardware element that is to
implement the associated functionality . The phrase " config
ured to ” can also refer to a logic circuit structure of a
hardware element that is to implement the coding design of
associated functionality of firmware or softwa The term
" module ” refers to a structural element that can be imple
mented using any suitable hardware (e.g. , a processor ,
among others) , software (e.g. , an application , among others) ,
firmware , or any combination of hardware , software , and
firmware . The term , “ logic ” encompasses any functionality
for performing a task . For instance , each operation illus
trated in the flowcharts corresponds to logic for performing
that operation . An operation can be performed using , soft
ware , hardware , firmware , or the like . The terms , “ compo
nent , ” “ system , ” and the like may refer to computer - related
entities , hardware , and software in execution , firmware , or
combination thereof . A component may be a process running
on a processor , an object , an executable , a program , a
function , a subroutine , a computer , or a combination of
software and hardware . The term , " processor , ” may refer to
a hardware component , such as a processing unit of a
computer system .
[0015] Furthermore , the claimed subject matter may be
implemented as a method , apparatus , or article of manufac
ture using standard programming and engineering tech
niques to produce software , firmware , hardware , or any
combination thereof to control a computing device to imple
ment the disclosed subject matter . The term , “ article of
manufacture , ” as used herein is intended to encompass a

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG . 1A is a flowchart illustrating a computer
implemented method of improving a decision tree utilizing
multiple split points according to an example embodiment .
[0006] FIG . 1B is a flowchart illustrating a computer
implemented method of preventing overfitting according to
an example embodiment .
[0007] FIG . 2 is a user interface for interacting with
decision trees and providing multiple split points according
to an example embodiment .
[0008] FIG . 3 is a user interface for interacting with
decision trees illustrating decision trees without the use of multiple split points according to an example embodiment .
[0009] FIG . 4 is a table illustrating parameters and values
based on a sweep of machine learning performance with
multiple split points turned on and off according to an
example embodiment .
[0010] FIG . 5 is a table illustrating test result for various
example applications using multiple split points according
to an example embodiment .

US 2020/0293952 A1 Sep. 17 , 2020
2

computer program accessible from any computer - readable
storage device or media . Computer - readable storage media
can include , but are not limited to , magnetic storage devices ,
e.g. , hard disk , floppy disk , magnetic strips , optical disk ,
compact disk (CD) , digital versatile disk (DVD) , smart
cards , flash memory devices , among others . In contrast ,
computer - readable media , i.e. , not storage media , may addi
tionally include communication media such as transmission
media for wireless signals and the like .
[0016] A machine learning algorithm constructs a gradient
boosting decision tree by evaluating each feature - value pair
in the training dataset for best split gain at a node . The
algorithm then partitions the data based on this feature - value
pair and this process is repeated on the child nodes until a
terminating condition such as max leaves or minimum
documents per leaf is reached . This process of creating a
gradient boosting decision tree is repeated to create more
decision trees to better classify the data that was classified
incorrectly by giving it a higher weight to reduce the overall
loss . The process of building a series of learners or decision
trees continues until some terminating condition such as
maximum trees / iterations is reached . Example gradient
boosting decision trees include FastTree , XGBoost , Ada
Boost , and others .
[0017] At a node in a decision tree , one feature - value pair
is chosen as a split point . At the time of inferencing or
scoring the tree is traversed by comparing input feature
values to this feature - value split point . The feature at a node
tells what feature to look for in the input and informs what
value to compare against , and based on the evaluation , a left
or right turn is taken in the tree traversal . The leaf nodes
contain a numerical score that is used to make a decision
[0018] An optimization is performed for categorical vari
ables in a gradient boosting decision tree . Typically , decision
trees maintain a single threshold as a split point on a node .
Maintaining multiple split points on a node in the case of
categorical variables improves accuracy , referred to as the
area under the curve , and significantly reduces training time .
The use of such split points can also result in lower com
puting resource utilization during use of the trees to make
predictions , as the gradient boosting decision tree is gener
ally more balanced and requires fewer resources to traverse .
[0019] Methods are described that improve the area under
the curve for a gradient boosting decision tree to maintain
multiple split points on a node of decision tree algorithm ,
instead of one , and prevent overfitting by combining low
population feature values during a node split process . Split
points are identified by sorting the values of a feature seen
during training by their gradient (ratio of sum weight and
count) and then doing a linear search to find the contiguous
subset with maximum split .
[0020] Overfitting is prevented by combining low popu
lation feature values during node split process to achieve
better accuracy and speed . Maintaining multiple split points
on a node in the case of categorical variables improves area
under the curve up to second decimal (3.05 %) on real ad
click prediction datasets and reduces training time by as
much as 62 % on datasets that were benchmarked .
[0021] The accuracy of the tree is improved by introduc
ing more expressive split points for categorical variables . An
example would be expanding the split point to include more
than one value , such instead of the age being greater than 18 ,
the split point may determine if the age is 5 or 6 or 7 or 10
or 11 or 18. Such a split point is said to be more expressive ,

or alternatively , more accurate . A categorical variable is one
that takes on discrete values , such as day , month , city , etc. At
the time of scoring , instead of doing comparison on a single
feature - value pair a logical OR is done on multiple feature
values (as node split feature) with the input feature - value .
[0022] FIG . 1A is a flowchart illustrating a computer
implemented method 100 of improving a gradient boosting
decision tree . While decision trees may be used in multiple
different applications , one application used for discussion
herein , is that of predicting on - time performance for sched
uled airplane flights . Example categorical variables may
include airline carrier , day of the week , and date of month .
[0023] Method 100 begins by finding split points by
sorting values of a feature during training by their gradient
at operation 110. The gradient of a feature is obtained as a
ratio of sum weight and count for the feature . Given a set of
discrete feature values , example for feature say " color ” the
values could look like “ red ” , “ green ” , “ blue ” , “ yellow ” . The
values are sorted by gradient .
[0024] A linear search or scan of the sorted values is
performed at operation 120 to include values in our split
points as long as split gain is increasing and not decreasing .
This is a “ dynamic programming ” approach to find a subset
with maximum gain .
[0025] At operation 130 , a node of the gradient boosting
decision tree is modified to have multiple split points on the
node for a feature with values based on the sorted values
found by the linear search . Generating the gradient boosting
decision tree may include modifying an existing gradient
boosting decision tree .
[0026] To prevent overfitting , a method 150 , illustrated in
flowchart form in FIG . 1B , may be performed prior to
method 100. Values of low population are combined into a
virtual bin at operation 160. An explicit count or relative
percentage of values comprising a low population may be
set by a user . The virtual bin is fanned out at operation 170
into feature values that were low population . At operation
180 , the low population values are included into the split
points . The concept of knobs is illustrated below and is
basically a construct to allow one to adjust the overfitting
properties by setting different thresholds or tests to control
the amount of overfitting .
[0027] Method 150 , is specific to prevent discrimination
or bias against feature values that may be important but have
fewer count and hence their gradient will be less and that
will result in them being excluded from split points . These
feature values are combined as if they were one feature value
and then included in the array of feature values before the
linear scan 120 to find the subset with maximum gain . If this
combined feature values is included in the split points , a fan
out is performed and all these values are represented in the
split points .
[0028] As an example , Microsoft FastTree was trained on
Flight Delay - 1M dataset using categorical splits as illus
trated at a user interface 200 in FIG . 2. A list of trees is
illustrated in a tree explorer box 205 , with one of the trees
210 being selected for viewing in a larger , tree window 215 .
Tree window 215 illustrates a single root node 220 and
multiple internal nodes 225. Leaf nodes 230 are indicated at
the bottom of the tree and represent a numerical score that
is mapped to a decision , in this case , whether or not a flight
will be delayed .
[0029] The split feature chosen at the first node is
" UniqueCarrier ” and its list of values chosen are WN , OH ,

US 2020/0293952 A1 Sep. 17 , 2020
3

00 , UA , US , EV , etc. , separated by “ OR ” as indicated in
box 235. This means at the time of scoring the evaluation at
the node will be true if “ UniqueCarrier ” feature in the input
has a value that is equal to any of the values in box 235 : (i.e. ,
WN , OH , OO , UA , etc.) . As child nodes are encountered , the
split feature chosen are seen to be “ Date.DayOfMonth ” ,
though the same feature has been chosen but the list of
feature values are different as shown in boxes 240 and 245 .
[0030] In FIG . 3 at user interface 300 , the same training
data was used with FastTree but without a categorical split
feature . A list of trees is illustrated in a tree explorer box 305 ,
with one of the trees 310 being selected for viewing in a
larger , tree window 315. Tree window 315 illustrates a
single root node 320 and multiple internal nodes 325. Leaf
nodes 330 are indicated at the bottom of the tree and
represent decisions , in this case , whether or not a flight will
be delayed .
[0031] The split feature on the first node is “ UniqueCar
rier ” and it has single split value ' EV ' at box 335 , the split
features chosen on child nodes is “ Origin ” at box 340 with
split value as “ ORD ” and the split feature chosen on another
child node is “ Date.Month ” at box 345 with split value as
“ 9 ” . Comparing the trees at tree explore boxes 205 with
categorical splits and box 305 without categorical splits , it is
seen that the trees constructed using categorical splits are in
general balanced and have less branching in comparison to
trees constructed without categorical splits that are mostly
imbalanced with extreme branching .
[0032] Split points may be found by sorting the values of
a feature seen during training by their gradient (ratio of sum
weight and count) and then doing a linear search to find the
subset with maximum split gain . This is a dynamic pro
gramming approach to find a subset of split points that
constitute a good but not the best split gain and has a linear
runtime .
[0033] One of the challenges of categorical split points is
overfitting because the split points are expressive . Since the
values of a feature are sorted by gradient it is very easy to
not include a value that has fewer document counts as part
of the split points as it will have a low gradient and will be
placed on the other side of the sorted array . To overcome
this , values that are “ low population ” are combined into one
virtual bin prior to carrying out the split procedure . If the
virtual bin is part of feature values that are chosen as the split
point the virtual bin is fanned out into feature values that
were low population and are included in split points . This
approach helps with overfitting by generalizing the tree and
by reducing the number of feature values to scan in the split
process results in a faster training time . Knobs to control
overfitting and improve the performance include one or
more of the following :
[0034] 1. Maximum categorical split points — Split pro
cess could continue and introduce too many split points that
can overfit the dataset and even slow down training . This
knob sets the upper limit on the number of split points .
[0035] 2. Minimum Document Percentage for Categorical
Split — This knob is used to identify low population bins to
construct virtual bin . The knob indicates the minimum
documents a bin needs to have so that it is not classified as
a low population bin . It calculates minimum documents as
a percentage of documents at that node .
[0036] 3. Minimum Documents for Categorical Split
Same as above but this knob allows the passing of a constant
value for the minimum number of documents to include .

[0037] 4. Bundling — Used to turn on / off combining low
population feature values into a virtual bin .
[0038] The use of categorical splits has been tested by
training and testing on several datasets that have categorical
variables . Some example datasets included :
[0039] 1. Criteo dataset (Kaggle) . Criteo is an online
display advertisement company and this dataset is used to
predict if the user is going to click an ad . It has ~ 46 million
rows in its training test . Two subsets of the dataset were used
for train - test datasets . In a first test , the top 44 million rows
were used to for training and the bottom 1 million were used
for testing . In a second test , 1 million rows were used for
training and 0.25 million rows were used for testing .
[0040] 2. Avazu dataset (Kaggle — a machine learning
platform) . Avazu is an advertisement platform based in
Brunei in Asia . The dataset is used to predict whether a
mobile ad will be clicked . The dataset has ~ 40M rows in
training set . The top 39M rows were used for a training
dataset and bottom 1M rows for a test dataset
[0041] 3. TalkingData AdTracking Fraud Detection Chal
lenge (Kaggle) . The goal is to predict if a user will download
an app after clicking a mobile app ad . The dataset has
~ 185M rows for training . Two different tests were conducted
on different divisions of the training set . In a first test , the top
175 million rows were used for training and bottom 10
million rows were used for testing . In a second test , from top
180 million rows were randomly chosen , 50 million rows
(subsampled) for test and then from bottom took 5 million
rows for test .
[0042] 4. Flight delay dataset . Predict whether a flight will
be delayed . There are two datasets . The first dataset has
training set of 10 million rows and other dataset has training
set of 1 million rows . The test set for both have 0.689 million
rows .

[0043] A hyperparameter sweep was performed on the
parameters illustrated in the table 400 in FIG . 4 on bench
marking platform to show learning performance for each
dataset to get the best AUC (area under the curve) with the
categorical splits feature turned on and off . The first four
parameters are common to gradient boosting decision trees
with and without the categorical split optimization . The last
three parameters are specific to categorical features optimi
zation .
[0044] Results are shown in table 500 in FIG . 5 where :
[0045] 1. AUC — Area under the curve .
[0046] 2. Time — Total time to carry our train - test experi
ment .
[0047] 3. Pre - training - Time spent before training such as
FastTree data preparation , in - memory binning , feature con
version and transforms .
[0048] 4. Training - Time spending during training .
[0049] 5. Everything else + prediction - producing Total
Time- (Pre - training + Training + Saving Model)
[0050] Various speed gains may be observed .
[0051] 1. Pre - Training FastTree with categorical splits
often performs better in pre - training even though the split
logic and inferencing happens later . This is because in
pre - training FastTree will try to figure out one - hot categori
cal feature boundaries in the feature vector using heuristics
but with categorical splits turned on these boundaries are
given explicitly by the user using categorical transform that
marks the column as categorical . Feature boundaries are
preserved in the metadata of the column when a concat or
drop slots transform is applied .

US 2020/0293952 A1 Sep. 17 , 2020
4

a

[0052] 2. Training is where bulk of the speed gain comes
from because in the split logic during combining of low
population bins / feature values into a single virtual bin we
reduce the number of bins to scan to find the best split point
and maximize split gain .
[0053] 3. Post - Training - By having multiple split points
in a node , branching is reduced . Reduced branching results
in some speed gain but at the same time , the binary search
to see if an input feature value is present in the list of
categorical split values in a node (logical OR) could take up
few extra cycles .
[0054] Overall there is significant speed gains across all
the six datasets that were tested on and these gains become
more pronounced with larger datasets .
[0055] Accuracy gains - An increased AUC was observed
by using categorical split features across all the datasets and
these gains are either in second or third decimal places . In
the experiment setup the ad click prediction test datasets had
document count ranging from 1 million to 10 million , so this
translates to substantial increase in the revenue if used with
these results and setup . The accuracy gains also increase
with larger datasets except in the case of “ Talking data ad
tracking fraud detection ” where the accuracy gain was
marginal between large and small dataset because the
smaller dataset (50M rows) was subsampled from the origi
nal dataset of 185M rows so it had nearly the same level of
coverage as the larger dataset with 175M rows .
[0056] AUC and speed gains increase with the number of
categorical features in the dataset , as the use of categorical
splits appears to benefit datasets with high number of
categorical features . This occurs because the algorithm can
be more expressive about the split points on a node by
maintaining more than one of them that better confines the
feature space for a label during training . The challenge with
being more expressive about split point is overfitting that
was countered using the bundling technique to generalize
the tree while still being expressive about split points . Splits
also made the trees more compressed and balanced , a
property that could improve speed during inferencing .
[0057] FIG . 6 is a block schematic diagram of a computer
system 600 to implement and manage decision trees utiliz
ing multiple split points , preventing overfitting , and for
performing methods and algorithms according to example
embodiments . All components need not be used in various
embodiments .
[0058] One example computing device in the form of a
computer 600 may include a processing unit 602 , memory
603 , removable storage 610 , and non - removable storage
612. Although the example computing device is illustrated
and described as computer 600 , the computing device may
be in different forms in different embodiments . For example ,
the computing device may instead be a smartphone , a tablet ,
smartwatch , smart storage device (SSD) , or other computing
device including the same or similar elements as illustrated
and described with regard to FIG . 6. Devices , such as
smartphones , tablets , and smartwatches , are generally col
lectively referred to as mobile devices or user equipment .
[0059] Although the various data storage elements are
illustrated as part of the computer 600 , the storage may also
or alternatively include cloud - based storage accessible via a
network , such as the Internet or server - based storage . Note
also that an SSD may include a processor on which the
parser may be run , allowing transfer of parsed , filtered data
through I / O channels between the SSD and main memory .

[0060] Memory 603 may include volatile memory 614 and
non - volatile memory 608. Computer 600 may include or
have access to a computing environment that includes
variety of computer - readable media , such as volatile
memory 614 and non - volatile memory 608 , removable
storage 610 and non - removable storage 612. Computer
storage includes random access memory (RAM) , read only
memory (ROM) , erasable programmable read - only memory
(EPROM) or electrically erasable programmable read - only
memory (EEPROM) , flash memory or other memory tech
nologies , compact disc read - only memory (CD ROM) , Digi
tal Versatile Disks (DVD) or other optical disk storage ,
magnetic cassettes , magnetic tape , magnetic disk storage or
other magnetic storage devices , or any other medium
capable of storing computer - readable instructions .
[0061] Computer 600 may include or have access to a
computing environment that includes input interface 606 ,
output interface 604 , and a communication interface 616 .
Output interface 604 may include a display device , such as
a touchscreen , that also may serve as an input device . The
input interface 606 may include one or more of a touch
screen , touchpad , mouse , keyboard , camera , one or more
device - specific buttons , one or more sensors integrated
within or coupled via wired or wireless data connections to
the computer 600 , and other input devices . The computer
may operate in a networked environment using a commu
nication connection to connect to one or more remote
computers , such as database servers . The remote computer
may include a personal computer (PC) , server , router , net
work PC , a peer device or other common data flow network
switch , or the like . The communication connection may
include a Local Area Network (LAN) , a Wide Area Network
(WAN) , cellular , Wi - Fi , Bluetooth , or other networks .
According to one embodiment , the various components of
computer 600 are connected with a system bus 620 .
[0062] Computer - readable instructions stored on a com
puter - readable medium are executable by the processing unit
602 of the computer 600 , such as a program 618. The
program 618 in some embodiments comprises software to
implement one or more methods for using multiple split
points in decision trees and for preventing overfitting . A hard
drive , CD - ROM , and RAM are some examples of articles
including a non - transitory computer - readable medium such
as a storage device . The terms computer - readable medium
and storage device do not include carrier waves to the extent
carrier waves are deemed too transitory . Storage can also
include networked storage , such as a storage area network
(SAN) . Computer program 618 along with the workspace
manager 622 may be used to cause processing unit 602 to
perform one or more methods or algorithms described
herein .

EXAMPLES

[0063] Brad to add when claims finalized , plus here is a
potential claim phrased as an example for overfitting should
that be divided out later :

[0064] 1. A computer implemented method of generating
a gradient boosting decision tree for obtaining predictions
includes finding split points by sorting variable values of a
feature by their gradient during training of the gradient
boosting decision tree , performing a linear search to find a
subset of variables with maximum split gain , and modifying

US 2020/0293952 A1 Sep. 17 , 2020
5

a node of the gradient boosting decision tree to have multiple
split points on the node for a feature as a function of the
linear search .
[0065] 2. The method of example 1 and further including
prior to finding split points , controlling overfitting by com
bining values of low population feature values into a virtual
bin , fanning out the virtual bin into feature values having a
low population , and including the low population feature
values into the split points .
[0066] 3. The method of example 2 and further including
using at least one knob to control overfitting .
[0067] 4. The method of example 3 and further including
setting an upper limit on a number of split points via a
maximum split point knob .
[0068] 5. The method of example 3 and further comprising
setting a minimum number of documents for a categorical
split via a minimum knob .
[0069] 6. The method of example 3 and further including
using a bundling control knob to turn on or off the operation
of combining low population feature values into the virtual
bin .
[0070] 7. The method of any of examples 1-6 wherein the
decision tree is a gradient boosting binary tree .
[0071] 8. The method of any of examples 1-7 wherein the
gradient of the feature is determined as a ratio of a sum
weight and count .
[0072] 9. The method of any of examples 1-8 wherein
during training of the gradient boosting decision tree , at a
time of scoring , a logical OR is performed on multiple
feature values at a node with the input feature - value .
[0073] 10. A machine - readable storage device has instruc
tions for execution by a processor of a machine to cause the
processor to perform operations to perform a method of
improving a gradient boosting decision tree for obtaining
predictions . The operations include finding split points by
sorting variable values of a feature by their gradient during
training of the gradient boosting decision tree , performing a
linear search to find a subset of variables with maximum
split gain , and modifying a node of the gradient boosting
decision tree to have multiple split points on the node for a
feature as a function of the linear search
[0074] 11. The device of example 10 wherein the opera
tions further comprise prior to finding split points , control
ling overfitting by combining values of low population
feature values into a virtual bin , fanning out the virtual bin
into feature values that were low population , and including
the low population feature values into the split points .
[0075] 12. The device of example 11 and further including
using at least one knob to control overfitting .
[0076] 13. The device of example 12 wherein the at least
one knob provides an upper limit on a number of split points
via a maximum split point knob , a minimum number of
documents for a categorical split via a minimum knob , and
a bundling control knob to turn on or off the operation of
combining low population feature values into the virtual bin .
[0077] 14. The device of any of examples 10-13 wherein
the decision tree is a gradient boosting binary tree .
[0078] 15. The device of any of examples 10-14 wherein
the gradient of a feature is determined as a ratio of a sum
weight and count .
[0079] 16. The device of any of examples 10-15 wherein
during training of the gradient boosting decision tree , at a
time of scoring , a logical OR is performed on multiple
feature - values at a node with the input feature - value .

[0080] 17. A device includes a processor and a memory
device coupled to the processor and having a program stored
thereon for execution by the processor to perform opera
tions . The operations include finding split points by sorting
variable values of a feature by their gradient during training
of the gradient boosting decision tree , performing a linear
search to find a subset of variables with maximum split gain ,
and modifying a node of the gradient boosting decision tree
to have multiple split points on the node for a feature as a
function of the linear search .
[0081] 18. The device of example 17 wherein the opera
tions further include , prior to finding split points , controlling
overfitting by combining values of low population feature
values into a virtual bin , fanning out the virtual bin into
feature values that were low population , and including the
low population feature values into the split points .
[0082] 19. The device of example 18 wherein the opera
tions further include using at least one knob to provide an
upper limit on a number of split points via a maximum split
point knob , a minimum number of documents for a cat
egorical split via a minimum knob , and a bundling control
knob to turn on or off the operation of combining low
population feature values into the virtual bin .
[0083] 20. The device of any of examples 17-19 wherein
the gradient boosting decision tree is a gradient boosting
linear binary tree , wherein the gradient of a feature is
determined as a ratio of a sum weight and count , and
wherein during training of the gradient boosting decision
tree , at a time of scoring , a logical OR is performed on
multiple feature - values at a node with the input feature
value .
[0084] 21. In a further example , a computer implemented
method of controlling overfitting in a gradient boosting
decision tree includes combining values of low population
feature values into a virtual bin , fanning out the virtual bin
into feature values having a low population , and including
the low population feature values into multiple split points
on a node of the gradient boosting decision tree .
[0085] Although a few embodiments have been described
in detail above , other modifications are possible . For
example , the logic flows depicted in the figures do not
require the particular order shown , or sequential order , to
achieve desirable results . Other steps may be provided , or
steps may be eliminated , from the described flows , and other
components may be added to , or removed from , the
described systems . Other embodiments may be within the
scope of the following claims .

1. A computer implemented method of generating a
gradient boosting decision tree for obtaining predictions , the
method comprising :

finding split points by sorting variable values of a feature
by their gradient during training of the gradient boost
ing decision tree ;

performing a linear search to find a subset of variables
with maximum split gain ; and

modifying a node of the gradient boosting decision tree to
have multiple split points on the node for a feature as
a function of the linear search .

2. The method of claim 1 and further comprising prior to
finding split points , controlling overfitting by :

combining values of low population feature values into a
virtual bin ;

fanning out the virtual bin into feature values having a low
population ; and

US 2020/0293952 A1 Sep. 17 , 2020
6

including the low population feature values into the split
points .

3. The method of claim 2 and further comprising using at
least one knob to control overfitting .

4. The method of claim 3 and further comprising setting
an upper limit on a number of split points via a maximum
split point knob .

5. The method of claim 3 and further comprising setting
a minimum number of documents for a categorical split via
a minimum knob .

6. The method of claim 3 and further comprising using a
bundling control knob to turn on or off the operation of
combining low population feature values into the virtual bin .

7. The method of claim 1 wherein the decision tree is a
gradient boosting binary tree .

8. The method of claim 1 wherein the gradient of the
feature is determined as a ratio of a sum weight and count .

9. The method of claim 1 wherein during training of the
gradient boosting decision tree , at a time of scoring , a logical
OR is performed on multiple feature values at a node with
the input feature - value .

10. A machine - readable storage device having instruc
tions for execution by a processor of a machine to cause the
processor to perform operations to perform a method of
improving a gradient boosting decision tree for obtaining
predictions , the operations comprising :

finding split points by sorting variable values of a feature
by their gradient during training of the gradient boost
ing decision tree ;

performing a linear search to find a subset of variables
with maximum split gain ; and

modifying a node of the gradient boosting decision tree to
have multiple split points on the node for a feature as
a function of the linear search

11. The device of claim 10 wherein the operations further
comprise prior to finding split points , controlling overfitting
by :

combining values of low population feature values into a
virtual bin ;

fanning out the virtual bin into feature values that were
low population ; and

including the low population feature values into the split
points .

12. The device of claim 11 and further comprising using
at least one knob to control overfitting .

13. The device of claim 12 wherein the at least one knob
provides :

an upper limit on a number of split points via a maximum
split point knob ;

a minimum number of documents for a categorical split
via a minimum knob ; and

a bundling control knob to turn on or off the operation of
combining low population feature values into the vir
tual bin .

14. The device of claim 10 wherein the decision tree is a
gradient boosting binary tree .

15. The device of claim 10 wherein the gradient of a
feature is determined as a ratio of a sum weight and count .

16. The device of claim 10 wherein during training of the
gradient boosting decision tree , at a time of scoring , a logical
OR is performed on multiple feature - values at a node with
the input feature - value .

17. A device comprising :
a processor ; and
a memory device coupled to the processor and having a

program stored thereon for execution by the processor
to perform operations comprising :
finding split points by sorting variable values of a

feature by their gradient during training of the gra
dient boosting decision tree ;

performing a linear search to find a subset of variables
with maximum split gain , and

modifying a node of the gradient boosting decision tree
to have multiple split points on the node for a feature
as a function of the linear search .

18. The device of claim 17 wherein the operations further
comprise prior to finding split points , controlling overfitting
by :

combining values of low population feature values into a
virtual bin ;

fanning out the virtual bin into feature values that were
low population , and

including the low population feature values into the split
points .

19. The device of claim 18 wherein the operations further
comprise using at least one knob to provide :

an upper limit on a number of split points via a maximum
split point knob ;

a minimum number of documents for a categorical split
via a minimum knob ; and

a bundling control knob to turn on or off the operation of
combining low population feature values into the vir
tual bin .

20. The device of claim 17 wherein the gradient boosting
decision tree is a gradient boosting linear binary tree ,
wherein the gradient of a feature is determined as a ratio of
a sum weight and count , and wherein during training of the
gradient boosting decision tree , at a time of scoring , a logical
OR is performed on multiple feature - values at a node with
the input feature - value .

