a2 United States Patent
Geng

US011860903B1

US 11,860,903 B1
Jan. 2, 2024

(10) Patent No.:
45) Date of Patent:

(54) CLUSTERING DATA BASE ON VISUAL
MODEL

(71) Applicant: Ciitizen, LL.C, San Francisco, CA (US)
(72) Inventor: Kunling Geng, Milpitas, CA (US)
(73) Assignee: Ciitizen, LL.C, San Francisco, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 813 days.

(21) Appl. No.: 16/702,405

(22) Filed: Dec. 3, 2019
(51) Imt.CL
GO6F 16/00 (2019.01)
GO6F 16/28 (2019.01)
GO6F 16/55 (2019.01)
(52) US. CL
CPC GO6F 16/285 (2019.01); GOGF 16/55

(2019.01)
(58) Field of Classification Search
CPC ..o GO6F 16/285; GO6F 16/55
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0068019 Al* 3/2018 Novikoff GO6F 16/4393

2018/0107933 Al* 42018 Wang GO6F 16/9535
2018/0143980 Al* 5/2018 Tanikella GOG6F 16/285
2020/0193552 Al* 6/2020 Turkelson GO6K 9/6232

2020/0279171 Al*
2020/0311077 Al*
2021/0110527 Al1*

9/2020 Mazzoleni ..
10/2020 Zhang
4/2021 Wheaton ..

.... GO6F 16/9035
.... GO6F 3/068
.. GO6F 40/284

OTHER PUBLICATIONS

Triwijoyo et al., Analysis of Document Clustering based on Cosine
Similarity and K-Main Algorithms. (Year: 2019).*

Altuncu et al., From free text to clusters of content in health records:
an unsupervised graph partitioning approach. (Year: 2019).*

Zhu et a., Measuring Patient Similarities via a Deep Architecture
with Medical Concept Embedding. (Year: 2019).*

Elin Liitz, Unsupervised learning to detect patient subgroups in
electronic health records. (Year: 2019).*

Goeg et al., Clustering clinical models from local electronic health
records based on semantic similarity. (Year: 2015).*

Wang et al., Unsupervised machine learning for the discovery of
latent disease clusters and patient subgroups using electronic health
records. (Year: 2019).*

* cited by examiner

Primary Examiner — Syed H Hasan

(74) Attorney, Agent, or Firm — Sterne, Kessler,
Goldstein & Fox PL.L.C.

(57) ABSTRACT

Some embodiments provide a non-transitory machine-read-
able medium that stores a program. The program receives a

2007/0168382 Al* 7/2007 Tillberg GO6F 16/313 . '
707/E17.084 plurality of documents. The program further uses a visual
2008/0046441 Al* 2/2008 Wencccoovervrcenn. GOG6F 40/137 model to generate a vector representation for each document
2010/0223214 Al* 9/2010 Kirpal ...cccooovvieninne. GOG6F 16/86 in the plurality of documents. The program also clusters the
706/12 plurality of documents into a set of clusters based on the
2013/0294690 Al* 11/2013 Urbach GO6V 10/40 . s
182/176 vector representations of the plurality of documents. The
2015/0199351 Al* 7/2015 Borenstein GOGF 16/43 ~ program further determines a sample set of documents from
707/740 the plurality of documents based on the set of clusters.
2016/0162514 Al* 6/2016 Cheung GOG6F 16/958
707/741 20 Claims, 7 Drawing Sheets
Convolutional Neural Network 00
Image
222 ——> e —> > o
. . Full
Convolutional Activation Pooling Connegte q
Layer Layer N
23/5 Layer 21y 5 Layer Output
=2 210 — 220 Vector
230

US 11,860,903 B1

Sheet 1 of 7

Jan. 2, 2024

U.S. Patent

1 'Old

wewnoo(sjdwes

gel

[

[

H

0> Jebeuepy Buijdweg pue Buusisnd

— STT
le QEomN r ele Jobeueyy
IGLIES Biea Buueisn|) Gcl
Juswindo g
«— |
orT o7 [\
Jebeuel 101087 Jaueauod eleQq 7

US 11,860,903 B1

Sheet 2 of 7

Jan. 2, 2024

U.S. Patent

(¥4
Jojo8p

Indino

¢ 9Ol
2z 2 ore 50z
S150ULO Jake Jake Jake
P H>__3n_ J Buljood UOlEAIOY |[BUOIIN|OAUOD

O
(QV

YJOM]JEN [eJnaN |eUOIN|OAUOY)

I@T —

Gec
abeuw

U.S. Patent Jan. 2, 2024 Sheet 3 of 7 US 11,860,903 B1

300

~~

Receiving a plurality of documents 310

'

[Using a visual model to generate a vector representation for

each document in the plurality of documents 320

'

Clustering the plurality of documents into a set of clusters
based on the vector representations of the plurality of - 330
documents

'

Determining a sample set of documents from the plurality of
documents based on the set of clusters

!

Redacting the set of terms in the document - 350

- 340

FIG. 3

US 11,860,903 B1

Sheet 4 of 7

Jan. 2, 2024

U.S. Patent

YAZ7
Jojejouuy

.

v
yadx3

5

O N
X <

GEr
SISPOIN IV

5177
soIn8(JURID

ﬁ

ovy
so1AeQ JUBID

¥ "Old

<

N

O
<

3357
JabBeuey [opoiN IV

0ocv
wiojeld

uonejouuy

A

er47
sunadid Buuies |

A

0S¥
eleg
psidwes

Sy
Jebeuepy Budweg

pue Bulaisn|)

Sov
eleq
uonoONPOId

sylomewel Buiuies eAlOy

ooy

US 11,860,903 B1

Sheet 5 of 7

Jan. 2, 2024

U.S. Patent

g 'Old —
s
T4 AR
Jopeay
wnips\ ebelolg 81%
ajgepesay waisAg Bunesad
Jeindwon
9lg
eleq weiboid
025
wnipsiy ebelois 7ic
ejgepeay swelbo.d uoneoyddy
- Jgindwo)
1745 AOWBN WalsAg
walsAsgng uonesIuNwWwwWo?)
uisisAsgng abeiolg
g— 9¢s
09
305 505 805
nwn nin wajsAsang O/l
Buisseoold | | Buisseooid 90S
win
o600 20% 20G Buisseo0id
Hin win
Buisseooud Buissadold
Z-70G J0ssa00.d T-70G Josseo0.d
waisAsgng Buissed0.d
*~
009

US 11,860,903 B1

Sheet 6 of 7

9 'Old

819
We)sAg UoiedIuNWWo)

909 ¥09

029 Kiowas (s)Josseosoid

waejsAg abeloig

200 WwelsAg Buissesold

Jan. 2, 2024

8¢9
8|NPOJA] UOIEIIUNWIWOY)

929 919 719 29 019
SINPOIN O/ DIN Joxeads (s)iosueg Ae|dsiq

¥2o
(s)uoneoijddy

wesAg Indinp/induj

[e0,
Ol
O

[443)
waeisAg Bunelsdp V/

U.S. Patent

009

US 11,860,903 B1

L 'Old

807
weno

Sheet 7 of 7

907
uelD

8lZ

(s)eseqgeieq 91z Vi 01z
(s)eoinies (s)uoneol|ddy (s)uomieN

wieisAg Bunndwon pnoin

N
-
N~

v0.

Jan. 2, 2024

U.S. Patent

el

c0.
el

004

US 11,860,903 B1

1
CLUSTERING DATA BASE ON VISUAL
MODEL

BACKGROUND

For machine learning algorithms, a mathematical model is
typically used to make predictions or decisions for a given
input. In order to produce sufficiently accurate predictions,
a mathematical model needs to be trained using training
data. A number of different techniques can be used to train
a mathematical model. For example, an unsupervised learn-
ing technique involves building a mathematical model based
a set of input data. The input data may be analyzed to
identify commonalities in the input data. This way, the
mathematical model can then react based on the presence or
absence of these commonalities for a given piece of new
data. Another technique is supervised learning. With super-
vised learning, a mathematical model is trained using input
data and corresponding desired output data. Supervised
learning often employs a user that reviews all the training
data and labels them accordingly in order to augment the
data with additional information. Mathematical models can
need a lot of training data to produce sufficiently accurate
predictions. Therefore, the review and labeling of training
data can require a lot of human resources and be very
time-consuming.

SUMMARY

In some embodiments, a non-transitory machine-readable
medium stores a program executable by at least one pro-
cessing unit of a device. The program receives a plurality of
documents. The program further uses a visual model to
generate a vector representation for each document in the
plurality of documents. The program also clusters the plu-
rality of documents into a set of clusters based on the vector
representations of the plurality of documents. The program
further determines a sample set of documents from the
plurality of documents based on the set of clusters.

In some embodiments, the program may further convert
each document in the plurality of documents into a set of
images. Using the visual model to generate the vector
representation of the document may include generating, by
the visual model, a vector for each image in the set of
images. Clustering the documents into the set of clusters
may include clustering the sets of images into the set of
clusters based on the sets of vectors. Clustering the plurality
of documents into the set of clusters may include grouping
documents in the plurality of documents having similar
vector representations into a same cluster. A first document
in the plurality of documents and a second document in the
plurality of documents may have similar vector representa-
tions if a cosine similarity between the vector representation
of the first document and the vector representation of the
second document is greater than a defined threshold value.

In some embodiments, determining the sample set of
documents from the plurality of documents may include
randomly selecting a set of documents from each cluster in
the set of clusters and including the set of documents in the
sample set of documents. The visual model may be imple-
mented using a convolutional neural network comprising an
input layer and a set of hidden layers.

In some embodiments, a method receives a plurality of
documents. The method further uses a visual model to
generate a vector representation for each document in the
plurality of documents. The method also clusters the plu-
rality of documents into a set of clusters based on the vector

25

35

40

45

2

representations of the plurality of documents. The method
further determines a sample set of documents from the
plurality of documents based on the set of clusters.

In some embodiments, the method may further convert
each document in the plurality of documents into a set of
images. Using the visual model to generate the vector
representation of the document may include generating, by
the visual model, a vector for each image in the set of
images. Clustering the documents into the set of clusters
may include clustering the sets of images into the set of
clusters based on the sets of vectors. Clustering the plurality
of documents into the set of clusters may include grouping
documents in the plurality of documents having similar
vector representations into a same cluster. A first document
in the plurality of documents and a second document in the
plurality of documents may have similar vector representa-
tions if a cosine similarity between the vector representation
of the first document and the vector representation of the
second document is greater than a defined threshold value.

In some embodiments, determining the sample set of
documents from the plurality of documents may include
randomly selecting a set of documents from each cluster in
the set of clusters and including the set of documents in the
sample set of documents. The visual model may be imple-
mented using a convolutional neural network comprising an
input layer and a set of hidden layers.

In some embodiments, a system include a set of process-
ing units and a non-transitory machine-readable medium
that stores instructions. The instructions cause at least one
processing unit to receive a plurality of documents. The
instructions further cause the at least one processing unit to
use a visual model to generate a vector representation for
each document in the plurality of documents. The instruc-
tions also cause the at least one processing unit to cluster the
plurality of documents into a set of clusters based on the
vector representations of the plurality of documents. The
instructions further cause the at least one processing unit to
determine a sample set of documents from the plurality of
documents based on the set of clusters.

In some embodiments, the instructions may further cause
the at least one processing unit to convert each document in
the plurality of documents into a set of images. Using the
visual model to generate the vector representation of the
document may include generating, by the visual model, a
vector for each image in the set of images. Clustering the
documents into the set of clusters may include clustering the
sets of images into the set of clusters based on the sets of
vectors. Clustering the plurality of documents into the set of
clusters may include grouping documents in the plurality of
documents having similar vector representations into a same
cluster. A first document in the plurality of documents and a
second document in the plurality of documents may have
similar vector representations if a cosine similarity between
the vector representation of the first document and the vector
representation of the second document is greater than a
defined threshold value. Determining the sample set of
documents from the plurality of documents may include
randomly selecting a set of documents from each cluster in
the set of clusters and including the set of documents in the
sample set of documents.

The following detailed description and accompanying
drawings provide a better understanding of the nature and
advantages of various embodiments of the present disclo-
sure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a clustering and sampling manager
according to some embodiments.

US 11,860,903 B1

3

FIG. 2 illustrates an example convolutional neural net-
work according to some embodiments.

FIG. 3 illustrates a process for clustering and sampling
data according to some embodiments.

FIG. 4 illustrates a system for facilitating active learning
according to some embodiments.

FIG. 5 illustrates an exemplary computer system, in
which various embodiments may be implemented.

FIG. 6 illustrates an exemplary computing device, in
which various embodiments may be implemented.

FIG. 7 illustrates an exemplary system, in which various
embodiments may be implemented.

DETAILED DESCRIPTION

In the following description, for purposes of explanation,
numerous examples and specific details are set forth in order
to provide a thorough understanding of the present disclo-
sure. It will be evident, however, to one skilled in the art that
various embodiment of the present disclosure as defined by
the claims may include some or all of the features in these
examples alone or in combination with other features
described below, and may further include modifications and
equivalents of the features and concepts described herein.

1. Overview

Described herein are techniques for clustering data based
on a visual model. In some embodiments, these techniques
involve processing multiple text documents using a visual
model. The visual model may be configured to detect and
classify objects in documents. To process a text document,
the document is converted into an image. The visual model
is used to determine a vector representation of the document
based on the image. Next, the documents are grouped into
different groups based on the vector representations of the
documents. In some embodiments, a random sample of
documents can be selected from the different groups of
documents in order to train a machine learning model that is
used for automatedly annotating training data.

2. Clustering and Sampling Manager

FIG. 1 illustrates a clustering and sampling manager 100
according to some embodiments. As shown, clustering and
sampling manager 100 includes data converter 105, vector
manager 110, clustering manager 115, and data sampler 120.
Data converter 105 handles incoming documents. For
instance, FIG. 1 shows clustering and sampling manager 100
receiving, as input, several documents 125. In some embodi-
ments, each of the documents 125 are text documents. For
example, documents 125 may be portable document format
(PDF) files. In this example, when clustering and sampling
manager 100 receives documents 125, clustering and sam-
pling manager 100 sends them to data converter 105. Upon
receiving documents 125, data converter 105 converts each
document 125 into a set of images. In some cases, a
document 125 can have several pages. For each page in a
document 125, data converter 105 converts the page into an
image. For instance, if a document 125 has five pages, data
converter 105 converts the document 125 into five images,
one image for each page. After converting documents 125
into sets of images, data converter 105 sends the images to
vector manager 110 for further processing.

Vector manager 110 is configured to generate vector
representations for documents 125 based on images of the
document 125 that vector manager 110 receives from data

10

15

20

25

30

35

40

45

50

55

60

65

4

converter 105. To generate a vector representation for a
document 125, vector manager 110 may use a visual model
configured to detect and classify objects in images. In some
embodiments, the visual model can be implemented using a
convolutional neural network (CNN). Examples of CNN
architectures used to implement the visual model include a
visual geometry group (VGG)-16 architecture, a VGG-19
architecture, a residual neural network (ResNet) architec-
ture, a dense convolutional network (DenseNet) architec-
ture, etc.

FIG. 2 illustrates an example convolutional neural net-
work 200 according to some embodiments. Specifically,
FIG. 2 illustrates an example CNN that may be used to
implement the visual model used by vector manager 110 to
generate vector representations of documents 125. As
shown, CNN 200 includes convolutional layer 205, activa-
tion layer 210, pooling layer 215, and fully connected layer
220. Convolutional layer 205 may be a filter that is passed
over image 225 and views several pixels at a time (e.g. 3x3
or 5x5). A convolution operation is performed by calculating
a dot product of the original pixel values with weights
defined in the filter. The results are summed up into one
number that represents all the pixels observed by the filter.
Convolutional layer 205 can generates a matrix that is
smaller in size than the pixel resolution of image 225.
Activation layer 210 analyzes the matrix generated by
convolutional layer 205 by introducing non-linearity so that
CNN 200 can train itself using a backpropagation algorithm.
In some embodiments, the activation function used in the
backpropagation algorithm may be a rectified linear unit
(ReLu) function. Pooling layer 215 may downsample and
reduce the size of the matrix. A filter is passed over the
results of the previous layer and selects one number out of
each group of values (e.g., the maximum value). Pooling
layer 215 allows CNN 200 to train faster by focusing on the
most important information in each feature of the image.
Fully connected layer 220 can be a multilayer perceptron
structure. The input to fully connected layer 220 is a
one-dimensional vector representing the output of the pre-
vious layers (e.g., convolutional layer 205, activation layer
210, and pooling layer 215). The output of fully connected
layer 220 is output vector 230, a one-dimensional vector.
Output vector 230 is the vector representation of image 225.

FIG. 2 illustrates a CNN with one group of layers that
includes a convolutional layer, an activation layer, and a
pooling layer. One of ordinary skill in the art will realize
that, in some embodiments, any number of additional groups
of such layers may be included and sequentially arranged in
CNN 200. For example, CNN 200 may include a first group
of layers that includes a first convolutional layer, a first
activation layer, and a first pooling layer, followed by a
second group of layers that includes a second convolutional
layer, a second activation layer, and a second, pooling layer,
and so on and so forth. Additionally, CNN 200 can include
any number of additional fully connected layers after the
groups of layers that includes convolutional, activation
layer, and pooling layers. The output of the last fully
connected layer is output vector 230.

Returning to FIG. 1, vector manager 110 can generate a
vector representation for a document 125 by generating a
vector (e.g., output vector 230) for each image in the set of
images into which data converter 105 converted the docu-
ment 125. In some embodiments, a vector of a page of a
document is a numerical representation of the visual appear-
ance of the page in terms of formatting, layout, styles, etc.
After generating vectors for the pages of each document

US 11,860,903 B1

5

125, vector manager 110 sends the vectors to clustering
manager 115 for additional processing.

Clustering manager 115 is responsible for grouping (e.g.,
clustering) documents 125 into different groups (e.g., clus-
ters) based on the vector representations of documents 125.
As illustrated in FIG. 1, clustering manager 115 has grouped
documents 125 into clusters 130a-130%. In some embodi-
ments, clustering manager 115 groups documents into clus-
ters 130a-130% by grouping each page of documents 125
into clusters 130a-130% based on the vectors of each page of
the documents 125. Clustering manager 115 groups docu-
ments (or pages of documents) with similar vectors into the
same cluster 130. In some embodiments, clustering manager
115 determines that two vectors are similar if the vector
distance between the two vectors is less than a defined
distance value. In some such embodiments, clustering man-
ager 115 determines the vector distance between the two
vectors by calculating the cosine similarity between the two
vectors. Cosine similarity uses values between 0 and 1 to
represent the similarity between two vectors, where 0 rep-
resents the least amount of similarity and 1 represents the
most amount of similarity. As such, clustering manager 115
determines that two vectors are similar if the cosine simi-
larity value is greater than a defined value (e.g., 0.8).
Clustering manager 115 can use any number of different
clustering algorithms to group documents 125 into clusters
130a-130% based on the vector representations of documents
125. For example, in some embodiments, clustering man-
ager 115 uses a hierarchical clustering algorithm to group
documents 125 into clusters 1304-130%. In other embodi-
ments, clustering manager 115 uses a K-means algorithm to
group documents 125 into clusters 130a-130%. In yet some
other embodiments, clustering manager 115 uses a density-
based spatial clustering of applications with noise (DB
SCAN) algorithm to group documents 125 into clusters
130a-130%. As mentioned above, a vector of a page of a
document is a numerical representation of the visual appear-
ance of the page in terms of formatting, layout, styles. Thus,
the documents 125 that clustering manager 115 groups in a
particular cluster 130 are essentially all visually similar in
terms of formatting, layout, styles, etc. Once clustering
manager 115 finishes grouping documents 125 into clusters
130a-130%, clustering manager 115 sends the groupings to
data sampler 120.

Data sampler 120 is configured to sample data from the
clusters determined by clustering manager 115. For
example, when data sampler 120 receives clusters 130a-
130% from clustering manager 115, data sampler 120 deter-
mines a sample set of documents 135 from documents 125
based on the set of clusters 130a-130%. Data sampler 120 can
randomly select a defined number of documents (or pages of
documents) from each of the clusters 1304-130%. The
selected documents from each of the clusters 130a-130%
form the sample set of documents 135. In some embodi-
ments, data sampler 120 randomly selects a first defined
number of documents (e.g., five documents, ten documents,
etc.) from a particular cluster 130 if the number of docu-
ments (or pages of documents) in the particular cluster 130
is greater than a defined threshold number of documents
(e.g., twenty documents, fifty documents, etc.). If the num-
ber of documents in the particular cluster 130 is not greater
than the defined threshold number of documents, data sam-
pler 120 randomly selects a second defined number of
documents (e.g., two documents, three documents, etc.)
from the particular cluster 130.

FIG. 3 illustrates a process 300 for clustering and sam-
pling data according to some embodiments. In some

20

40

45

65

6

embodiments, clustering and sampling manager 100 per-
forms process 300. Process 300 begins by receiving, at 310,
a plurality of documents. Referring to FIG. 1 as an example,
clustering and sampling manager 100 can receive a plurality
of documents 125. Once received, cluster and sampling
manager 100 may send documents 125 to data converter 105
to convert to images.

Next, process 300 uses, at 320, a visual model to generate
a vector representation for each document in the plurality of
documents. Referring to FIGS. 1 and 2 as an example, vector
manager 110 may use a visual model to generate vector
representations for documents 125. The visual model used
by vector manager 110 can be implemented using CNN 200.
As illustrated in FIG. 2, the values of pixels in image 225 are
input into CNN 200 and propagated through the input layer
and hidden layers 1-n. The values output by neurons 224-
230 of the last hidden layer, hidden layer n, form an output
vector 230 that is the vector representation of image 225. As
such, vector manager 110 can generate vector representa-
tions for documents 125 using the images into which data
converter 105 converted documents 125.

Process 300 then clusters, at 330, the plurality of docu-
ments into a set of clusters based on the vector representa-
tions of the plurality of documents. Referring to FIG. 1 as an
example, clustering manager 115 can cluster documents 125
into clusters 130a-130% based on the vector representations
of documents 125. Clustering manager 115 may group
documents (or pages of documents) with similar vectors into
the same cluster 130.

Finally, process 300 determines, at 340, a sample set of
documents from the plurality of documents based on the set
of clusters. Referring to FIG. 1 as an example, data sampler
120 can determine a sample set of documents 135 from the
plurality of documents 125 based on clusters 130a-130%.
Data sampler 120 may randomly select a defined number of
documents (or pages of documents) from each of the clusters
130a-130%. The selected documents collectively form the
sample set of documents 135. In some embodiments, data
sampler 120 can randomly select a different defined number
of documents from a particular cluster 130 based on the
number of documents (or pages of documents) in the par-
ticular cluster 130. For example, if the number of documents
in the particular cluster 130 is greater than a defined thresh-
old number of documents, data sampler randomly selects a
first defined number of documents from the particular cluster
130. Otherwise, data sampler 120 randomly selects a second
defined number of documents, which is different than the
first defined number of documents, from the particular
cluster 130.

2. Example Active Learning System

The section above describes a clustering and sampling
manager that clusters data (e.g., documents) based on a
visual model and randomly samples the data based on the
clustered data. The clustering and sampling manager can be
used in any number of different scenarios. For example, in
some embodiments, the clustering and sampling manager
may be used in an active learning system that automates
many of the active learning operations for in artificial
intelligence (Al) and machine learning algorithms.

FIG. 4 illustrates a system 400 for facilitating active
learning according to some embodiments. In particular, FIG.
4 illustrates an example of a scenario in which a clustering
and sampling manager may be used. As shown, system 400
includes production data 405, active learning framework
410, Al models storage 435, client device 440, and client

US 11,860,903 B1

7

device 445. Active learning framework 410 may receive
production data 405. In some embodiments, production data
405 includes text documents (e.g., documents 125, etc.) that
is received from users of a document processing system
(e.g., a medical document processing system) and stored in
a data storage (e.g., a database). Al models storage 435
stores trained Al models that are configured to automatedly
annotate documents (e.g., production data 405) without
human intervention. Client devices 440 and 445 are config-
ured to interact and communicate with active learning
framework 410. For example, users of client devices 440
and 445 can access annotation platform 420 to annotate
documents and review annotated documents.

As illustrated in FIG. 4, active learning framework 410
includes clustering and sampling manager 415, annotation
platform 420, training pipeline 425, and Al model manager
430. Clustering and sampling manager 415 can be imple-
mented by clustering and sampling manager 100. As such,
clustering and sampling manager 415 receives, as input,
production data 405. As mentioned above, in some embodi-
ments, production data 405 includes text documents that is
received from users of a document processing system and
stored in a data storage. In some such embodiments, clus-
tering and sampling manager 415 retrieves production data
405 from the data storage at defined intervals (e.g., once a
week, once every two weeks, once a month, etc.). Then,
clustering and sampling manager 415 uses a visual model to
generate vector representations of production data 405,
cluster production data 405 into groups based on the vector
representations, and determine a sample of production data
405 (sampled data 450 in this example) based on the groups
of production data 405. Clustering and sampling manager
415 can also store the vector representations of production
data 405 in a data storage (e.g., a database). The, the next
time clustering and sampling manager 415 receives produc-
tion data that has not been annotated, clustering and sam-
pling manager 415 can compare the similarity of the vector
representations of the newly received production data with
the vector representations of previously processed produc-
tion data. Clustering and sampling manager 415 does not
consider any production data in the newly received produc-
tion data that is similar to previously processed production
data when determining sampled data 450. As such, when
clustering and sampling manager 415 samples the newly
received production data to generate sampled data 450,
clustering and sampling manager 415 samples from the
remaining production data that does not include data that is
similar to previously processed production data. Clustering
and sampling manager 415 sends sampled data 450 to
annotation platform 420.

Annotation platform 420 provides tools and services for a
user (annotator 447 in this example) of client device 445 to
annotate sampled data 450. For instance, annotation plat-
form 420 can organize sampled data 450 and provide client
device 445 a graphical user interface (GUI) for presenting
sampled data 450 to annotator 447. In this way, annotator
447 is able to provide annotation platform 420, via the GUI
presented on client device 445, annotations and/or labels to
sampled data 450. In some embodiments, the sampled data
450 that annotator 447 annotates has already been automa-
tedly annotated by Al model manager 430. In some such
embodiments, annotator 447 reviews the automatedly anno-
tated sampled data 450 and ensures that the annotations are
correct. After annotator 447 is done annotating sampled data
450, annotation platform may organize the annotated
sampled data 450 and provide client device 440 a GUI for
presenting the annotated sampled data 450 to expert 442

10

15

20

25

30

35

40

45

50

55

60

8

Expert 442 can review the annotated sampled data 450 to
ensure that the annotations and/or labels are correct. Having
an expert review sampled data 450 annotated by annotator
447 is particularly useful in certain domains (e.g., medial
domain, legal domain, engineering domain, etc.) that require
specialized knowledge. Once expert 442 has finished
reviewing the annotated sampled data 450, client device 440
can send the reviewed sampled data 450 to client device 445
for annotator 447 to view. This way, annotator 447 can see
the corrections made to the annotated sampled data 450 and
prevent such mistakes from happening for future annotations
of data. In addition, after expert 442 has finished reviewing
the annotated sampled data 450, annotation platform 420
sends the reviewed and annotated sampled data 450 to
training pipeline 425 for further processing.

Training pipeline 425 is configured to train Al models.
For instance, to train a new Al model, training pipeline 425
may generate the Al model and then train the Al model using
the reviewed and annotated sampled data 450 that training
pipeline 425 receives from annotation platform 420. Once
training pipeline 425 completes the training of the Al model
based on the reviewed and annotated sampled data 450,
training pipeline 425 stores it in Al models storage 435.
When training pipeline 425 receives more sampled data
from annotation platform 420, training pipeline 425 retrieve
the Al model from Al models storage 435, trains it using the
received sampled data, and stores the Al model back in Al
models storage 435 after training pipeline 425 finishes
training the Al model with the sampled data. In some
embodiments, the Al model that is trained by training
pipeline 425 and used by Al model manager 430 is the visual
model of the sectionizer described in concurrently filed U.S.
patent application Ser. No. , titled “Sectionizing
Documents Based On Visual And Language Models,” filed
on Dec. 3, 2019, which is herein incorporated by reference
in its entirety. In other embodiments, the Al model that is
trained by training pipeline 425 and used by Al model
manager 430 an image classification model, an instance
segmentation model, etc.

Al model manager 430 is responsible for automatedly
annotation data. For example, Al model manager 430 can
receive from annotation platform 420 data and a request to
annotate the data. In response to the request, Al model
manager 430 retrieves the appropriate Al model from Al
models storage 435. In the case of data that is similar to
production data 405, Al model manager 430 retrieves the Al
model from Al models storage 435 that has been trained
using sampled data 450 and is configured to annotate data.
Next, Al models manager 430 uses the retrieved Al model
to automatedly annotate sampled data 450 received from
annotation platform 420. After automatedly annotating
sampled data 450, Al model manager 430 sends the anno-
tated data to annotation platform 420.

3. Example Systems

FIG. 5 illustrates an exemplary computer system 500 for
implementing various embodiments described above. For
example, computer system 500 may be used to implement
clustering and sampling manager 100, active learning frame-
work 410, clustering and sampling manager 415, annotation
platform 420, training pipeline 425, Al model manager 430,
client device 440, and client device 445. Computer system
500 may be a desktop computer, a laptop, a server computer,
or any other type of computer system or combination
thereof. Some or all elements of data converter 105, vector
manager 110, clustering manager 115, data sampler 120,

US 11,860,903 B1

9

clustering and sampling manager 415, annotation platform
420, training pipeline 425, Al model manager 430, or
combinations thereof can be included or implemented in
computer system 500. In addition, computer system 500 can
implement many of the operations, methods, and/or pro-
cesses described above (e.g., process 300). As shown in FIG.
5, computer system 500 includes processing subsystem 502,
which communicates, via bus subsystem 526, with input/
output (I/O) subsystem 508, storage subsystem 510 and
communication subsystem 524.

Bus subsystem 526 is configured to facilitate communi-
cation among the various components and subsystems of
computer system 500. While bus subsystem 526 is illus-
trated in FIG. 5 as a single bus, one of ordinary skill in the
art will understand that bus subsystem 526 may be imple-
mented as multiple buses. Bus subsystem 526 may be any of
several types of bus structures (e.g., a memory bus or
memory controller, a peripheral bus, a local bus, etc.) using
any of a variety of bus architectures. Examples of bus
architectures may include an Industry Standard Architecture
(ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, a Video Electronics Standards
Association (VESA) local bus, a Peripheral Component
Interconnect (PCI) bus, a Universal Serial Bus (USB), etc.

Processing subsystem 502, which can be implemented as
one or more integrated circuits (e.g., a conventional micro-
processor or microcontroller), controls the operation of
computer system 500. Processing subsystem 502 may
include one or more processors 504. Each processor 504
may include one processing unit 506 (e.g., a single core
processor such as processor 504-1) or several processing
units 506 (e.g., a multicore processor such as processor
504-2). In some embodiments, processors 504 of processing
subsystem 502 may be implemented as independent proces-
sors while, in other embodiments, processors 504 of pro-
cessing subsystem 502 may be implemented as multiple
processors integrate into a single chip or multiple chips.
Still, in some embodiments, processors 504 of processing
subsystem 502 may be implemented as a combination of
independent processors and multiple processors integrated
into a single chip or multiple chips.

In some embodiments, processing subsystem 502 can
execute a variety of programs or processes in response to
program code and can maintain multiple concurrently
executing programs or processes. At any given time, some or
all of the program code to be executed can reside in
processing subsystem 502 and/or in storage subsystem 510.
Through suitable programming, processing subsystem 502
can provide various functionalities, such as the functionali-
ties described above by reference to process 300, etc.

/O subsystem 508 may include any number of user
interface input devices and/or user interface output devices.
User interface input devices may include a keyboard, point-
ing devices (e.g., a mouse, a trackball, etc.), a touchpad, a
touch screen incorporated into a display, a scroll wheel, a
click wheel, a dial, a button, a switch, a keypad, audio input
devices with voice recognition systems, microphones,
image/video capture devices (e.g., webcams, image scan-
ners, barcode readers, etc.), motion sensing devices, gesture
recognition devices, eye gesture (e.g., blinking) recognition
devices, biometric input devices, and/or any other types of
input devices.

User interface output devices may include visual output
devices (e.g., a display subsystem, indicator lights, etc.),
audio output devices (e.g., speakers, headphones, etc.), etc.
Examples of a display subsystem may include a cathode ray
tube (CRT), a flat-panel device (e.g., a liquid crystal display

10

15

20

25

30

35

40

45

50

55

60

65

10

(LCD), a plasma display, etc.), a projection device, a touch
screen, and/or any other types of devices and mechanisms
for outputting information from computer system 500 to a
user or another device (e.g., a printer).

As illustrated in FIG. 5, storage subsystem 510 includes
system memory 512, computer-readable storage medium
520, and computer-readable storage medium reader 522.
System memory 512 may be configured to store software in
the form of program instructions that are loadable and
executable by processing subsystem 502 as well as data
generated during the execution of program instructions. In
some embodiments, system memory 512 may include vola-
tile memory (e.g., random access memory (RAM)) and/or
non-volatile memory (e.g., read-only memory (ROM), pro-
grammable read-only memory (PROM), erasable program-
mable read-only memory (EPROM), electrically erasable
programmable read-only memory (EEPROM), flash
memory, etc.). System memory 512 may include different
types of memory, such as static random access memory
(SRAM) and/or dynamic random access memory (DRAM).
System memory 512 may include a basic input/output
system (BIOS), in some embodiments, that is configured to
store basic routines to facilitate transferring information
between elements within computer system 500 (e.g., during
start-up). Such a BIOS may be stored in ROM (e.g., a ROM
chip), flash memory, or any other type of memory that may
be configured to store the BIOS.

As shown in FIG. 5, system memory 512 includes appli-
cation programs 514, program data 516, and operating
system (OS) 518. OS 518 may be one of various versions of
Microsoft Windows, Apple Mac OS, Apple OS X, Apple
macOS, and/or Linux operating systems, a variety of com-
mercially-available UNIX or UNIX-like operating systems
(including without limitation the variety of GNU/Linux
operating systems, the Google Chrome® OS, and the like)
and/or mobile operating systems such as Apple i0OS, Win-
dows Phone, Windows Mobile, Android, BlackBerry OS,
Blackberry 10, and Palm OS, WebOS operating systems.

Computer-readable storage medium 520 may be a non-
transitory computer-readable medium configured to store
software (e.g., programs, code modules, data constructs,
instructions, etc.). Many of the components (e.g., data
converter 105, vector manager 110, clustering manager 115,
data sampler 120, clustering and sampling manager 415,
annotation platform 420, training pipeline 425, and Al
model manager 430) and/or processes (e.g., process 300)
described above may be implemented as software that when
executed by a processor or processing unit (e.g., a processor
or processing unit of processing subsystem 502) performs
the operations of such components and/or processes. Storage
subsystem 510 may also store data used for, or generated
during, the execution of the software.

Storage subsystem 510 may also include computer-read-
able storage medium reader 522 that is configured to com-
municate with computer-readable storage medium 520.
Together and, optionally, in combination with system
memory 512, computer-readable storage medium 520 may
comprehensively represent remote, local, fixed, and/or
removable storage devices plus storage media for temporar-
ily and/or more permanently containing, storing, transmit-
ting, and retrieving computer-readable information.

Computer-readable storage medium 520 may be any
appropriate media known or used in the art, including
storage media such as volatile, non-volatile, removable,
non-removable media implemented in any method or tech-
nology for storage and/or transmission of information.
Examples of such storage media includes RAM, ROM,

US 11,860,903 B1

11

EEPROM, flash memory or other memory technology, com-
pact disc read-only memory (CD-ROM), digital versatile
disk (DVD), Blu-ray Disc (BD), magnetic cassettes, mag-
netic tape, magnetic disk storage (e.g., hard disk drives), Zip
drives, solid-state drives (SSD), flash memory card (e.g.,
secure digital (SD) cards, CompactFlash cards, etc.), USB
flash drives, or any other type of computer-readable storage
media or device.

Communication subsystem 524 serves as an interface for
receiving data from, and transmitting data to, other devices,
computer systems, and networks. For example, communi-
cation subsystem 524 may allow computer system 500 to
connect to one or more devices via a network (e.g., a
personal area network (PAN), a local area network (LAN),
a storage area network (SAN), a campus area network
(CAN), a metropolitan area network (MAN), a wide area
network (WAN), a global area network (GAN), an intranet,
the Internet, a network of any number of different types of
networks, etc.). Communication subsystem 524 can include
any number of different communication components.
Examples of such components may include radio frequency
(RF) transceiver components for accessing wireless voice
and/or data networks (e.g., using cellular technologies such
as 2@, 3G, 4G, 5G, etc., wireless data technologies such as
Wi-Fi, Bluetooth, ZigBee, etc., or any combination thereof),
global positioning system (GPS) receiver components, and/
or other components. In some embodiments, communication
subsystem 524 may provide components configured for
wired communication (e.g., Ethernet) in addition to or
instead of components configured for wireless communica-
tion.

One of ordinary skill in the art will realize that the
architecture shown in FIG. 5 is only an example architecture
of computer system 500, and that computer system 500 may
have additional or fewer components than shown, or a
different configuration of components. The various compo-
nents shown in FIG. 5 may be implemented in hardware,
software, firmware or any combination thereof, including
one or more signal processing and/or application specific
integrated circuits.

FIG. 6 illustrates an exemplary computing device 600 for
implementing various embodiments described above. For
example, computing device 600 may be used to implement
client device 440 and client device 445. Computing device
600 may be a cellphone, a smartphone, a wearable device,
an activity tracker or manager, a tablet, a personal digital
assistant (PDA), a media player, or any other type of mobile
computing device or combination thereof. As shown in FIG.
6, computing device 600 includes processing system 602,
input/output (I/O) system 608, communication system 618,
and storage system 620. These components may be coupled
by one or more communication buses or signal lines.

Processing system 602, which can be implemented as one
or more integrated circuits (e.g., a conventional micropro-
cessor or microcontroller), controls the operation of com-
puting device 600. As shown, processing system 602
includes one or more processors 604 and memory 606.
Processors 604 are configured to run or execute various
software and/or sets of instructions stored in memory 606 to
perform various functions for computing device 600 and to
process data.

Each processor of processors 604 may include one pro-
cessing unit (e.g., a single core processor) or several pro-
cessing units (e.g., a multicore processor). In some embodi-
ments, processors 604 of processing system 602 may be
implemented as independent processors while, in other
embodiments, processors 604 of processing system 602 may

10

15

20

25

30

35

40

45

50

55

60

65

12

be implemented as multiple processors integrate into a
single chip. Still, in some embodiments, processors 604 of
processing system 602 may be implemented as a combina-
tion of independent processors and multiple processors
integrated into a single chip.

Memory 606 may be configured to receive and store
software (e.g., operating system 622, applications 624, 1/0
module 626, communication module 628, etc. from storage
system 620) in the form of program instructions that are
loadable and executable by processors 604 as well as data
generated during the execution of program instructions. In
some embodiments, memory 606 may include volatile
memory (e.g., random access memory (RAM)), non-volatile
memory (e.g., read-only memory (ROM), programmable
read-only memory (PROM), erasable programmable read-
only memory (EPROM), electrically erasable program-
mable read-only memory (EEPROM), flash memory, etc.),
or a combination thereof.

1/0 system 608 is responsible for receiving input through
various components and providing output through various
components. As shown for this example, I/O system 608
includes display 610, one or more sensors 612, speaker 614,
and microphone 616. Display 610 is configured to output
visual information (e.g., a graphical user interface (GUI)
generated and/or rendered by processors 604). In some
embodiments, display 610 is a touch screen that is config-
ured to also receive touch-based input. Display 610 may be
implemented using liquid crystal display (LCD) technology,
light-emitting diode (LED) technology, organic LED
(OLED) technology, organic electro luminescence (OEL)
technology, or any other type of display technologies. Sen-
sors 612 may include any number of different types of
sensors for measuring a physical quantity (e.g., temperature,
force, pressure, acceleration, orientation, light, radiation,
etc.). Speaker 614 is configured to output audio information
and microphone 616 is configured to receive audio input.
One of ordinary skill in the art will appreciate that /O
system 608 may include any number of additional, fewer,
and/or different components. For instance, [/O system 608
may include a keypad or keyboard for receiving input, a port
for transmitting data, receiving data and/or power, and/or
communicating with another device or component, an image
capture component for capturing photos and/or videos, etc.

Communication system 618 serves as an interface for
receiving data from, and transmitting data to, other devices,
computer systems, and networks. For example, communi-
cation system 618 may allow computing device 600 to
connect to one or more devices via a network (e.g., a
personal area network (PAN), a local area network (LAN),
a storage area network (SAN), a campus area network
(CAN), a metropolitan area network (MAN), a wide area
network (WAN), a global area network (GAN), an intranet,
the Internet, a network of any number of different types of
networks, etc.). Communication system 618 can include any
number of different communication components. Examples
of such components may include radio frequency (RF)
transceiver components for accessing wireless voice and/or
data networks (e.g., using cellular technologies such as 2G,
3G, 4G, 5@, etc., wireless data technologies such as Wi-Fi,
Bluetooth, ZigBee, etc., or any combination thereof), global
positioning system (GPS) receiver components, and/or other
components. In some embodiments, communication system
618 may provide components configured for wired commu-
nication (e.g., Ethernet) in addition to or instead of compo-
nents configured for wireless communication.

Storage system 620 handles the storage and management
of data for computing device 600. Storage system 620 may

US 11,860,903 B1

13

be implemented by one or more non-transitory machine-
readable mediums that are configured to store software (e.g.,
programs, code modules, data constructs, instructions, etc.)
and store data used for, or generated during, the execution of
the software.

In this example, storage system 620 includes operating
system 622, one or more applications 624, I/O module 626,
and communication module 628. Operating system 622
includes various procedures, sets of instructions, software
components and/or drivers for controlling and managing
general system tasks (e.g., memory management, storage
device control, power management, etc.) and facilitates
communication between various hardware and software
components. Operating system 622 may be one of various
versions of Microsoft Windows, Apple Mac OS, Apple OS
X, Apple macOS, and/or Linux operating systems, a variety
of commercially-available UNIX or UNIX-like operating
systems (including without limitation the variety of GNU/
Linux operating systems, the Google Chrome® OS, and the
like) and/or mobile operating systems such as Apple iOS,
Windows Phone, Windows Mobile, Android, BlackBerry
OS, Blackberry 10, and Palm OS, WebOS operating sys-
tems.

Applications 624 can include any number of different
applications installed on computing device 600. Examples
of such applications may include a browser application, an
address book application, a contact list application, an email
application, an instant messaging application, a word pro-
cessing application, JAVA-enabled applications, an encryp-
tion application, a digital rights management application, a
voice recognition application, location determination appli-
cation, a mapping application, a music player application,
etc.

1/0 module 626 manages information received via input
components (e.g., display 610, sensors 612, and microphone
616) and information to be outputted via output components
(e.g., display 610 and speaker 614). Communication module
628 facilitates communication with other devices via com-
munication system 618 and includes various software com-
ponents for handling data received from communication
system 618.

One of ordinary skill in the art will realize that the
architecture shown in FIG. 6 is only an example architecture
of computing device 600, and that computing device 600
may have additional or fewer components than shown, or a
different configuration of components. The various compo-
nents shown in FIG. 6 may be implemented in hardware,
software, firmware or any combination thereof, including
one or more signal processing and/or application specific
integrated circuits.

FIG. 7 illustrates an exemplary system 700 for imple-
menting various embodiments described above. For
example, one of client devices 702-708 may be used to
implement client device 440, one of client devices 702-708
may be used to implement client device 445, and cloud
computing system 712 may be used to implement active
learning platform 410. As shown, system 700 includes client
devices 702-708, one or more networks 710, and cloud
computing system 712. Cloud computing system 712 is
configured to provide resources and data to client devices
702-708 via networks 710. In some embodiments, cloud
computing system 700 provides resources to any number of
different users (e.g., customers, tenants, organizations, etc.).
Cloud computing system 712 may be implemented by one or
more computer systems (e.g., servers), virtual machines
operating on a computer system, or a combination thereof.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

As shown, cloud computing system 712 includes one or
more applications 714, one or more services 716, and one or
more databases 718. Cloud computing system 700 may
provide applications 714, services 716, and databases 718 to
any number of different customers in a self-service, sub-
scription-based, elastically scalable, reliable, highly avail-
able, and secure manner.

In some embodiments, cloud computing system 700 may
be adapted to automatically provision, manage, and track a
customer’s subscriptions to services offered by cloud com-
puting system 700. Cloud computing system 700 may pro-
vide cloud services via different deployment models. For
example, cloud services may be provided under a public
cloud model in which cloud computing system 700 is owned
by an organization selling cloud services and the cloud
services are made available to the general public or different
industry enterprises. As another example, cloud services
may be provided under a private cloud model in which cloud
computing system 700 is operated solely for a single orga-
nization and may provide cloud services for one or more
entities within the organization. The cloud services may also
be provided under a community cloud model in which cloud
computing system 700 and the cloud services provided by
cloud computing system 700 are shared by several organi-
zations in a related community. The cloud services may also
be provided under a hybrid cloud model, which is a com-
bination of two or more of the aforementioned different
models.

In some instances, any one of applications 714, services
716, and databases 718 made available to client devices
702-708 via networks 710 from cloud computing system
700 is referred to as a “cloud service.” Typically, servers and
systems that make up cloud computing system 700 are
different from the on-premises servers and systems of a
customer. For example, cloud computing system 700 may
host an application and a user of one of client devices
702-708 may order and use the application via networks
710.

Applications 714 may include software applications that
are configured to execute on cloud computing system 712
(e.g., a computer system or a virtual machine operating on
a computer system) and be accessed, controlled, managed,
etc. via client devices 702-708. In some embodiments,
applications 714 may include server applications and/or
mid-tier applications (e.g., HI'TP (hypertext transport pro-
tocol) server applications, FTP (file transfer protocol) server
applications, CGI (common gateway interface) server appli-
cations, JAVA server applications, etc.). Services 716 are
software components, modules, application, etc. that are
configured to execute on cloud computing system 712 and
provide functionalities to client devices 702-708 via net-
works 710. Services 716 may be web-based services or
on-demand cloud services.

Databases 718 are configured to store and/or manage data
that is accessed by applications 714, services 716, and/or
client devices 702-708. For instance, Al models storage 435
may be stored in databases 718. Databases 718 may reside
on a non-transitory storage medium local to (and/or resident
in) cloud computing system 712, in a storage-area network
(SAN), on a non-transitory storage medium local located
remotely from cloud computing system 712. In some
embodiments, databases 718 may include relational data-
bases that are managed by a relational database management
system (RDBMS). Databases 718 may be a column-oriented
databases, row-oriented databases, or a combination thereof.
In some embodiments, some or all of databases 718 are
in-memory databases. That is, in some such embodiments,

US 11,860,903 B1

15

data for databases 718 are stored and managed in memory
(e.g., random access memory (RAM)).

Client devices 702-708 are configured to execute and
operate a client application (e.g., a web browser, a propri-
etary client application, etc.) that communicates with appli-
cations 714, services 716, and/or databases 718 via networks
710. This way, client devices 702-708 may access the
various functionalities provided by applications 714, ser-
vices 716, and databases 718 while applications 714, ser-
vices 716, and databases 718 are operating (e.g., hosted) on
cloud computing system 700. Client devices 702-708 may
be computer system 500 or computing device 600, as
described above by reference to FIGS. 5 and 6, respectively.
Although system 700 is shown with four client devices, any
number of client devices may be supported.

Networks 710 may be any type of network configured to
facilitate data communications among client devices 702-
708 and cloud computing system 712 using any of a variety
of network protocols. Networks 710 may be a personal area
network (PAN), a local area network (LAN), a storage area
network (SAN), a campus area network (CAN), a metro-
politan area network (MAN), a wide area network (WAN),
a global area network (GAN), an intranet, the Internet, a
network of any number of different types of networks, etc.

The above description illustrates various embodiments of
the present disclosure along with examples of how aspects
of the present disclosure may be implemented. The above
examples and embodiments should not be deemed to be the
only embodiments, and are presented to illustrate the flex-
ibility and advantages of various embodiments of the present
disclosure as defined by the following claims. Based on the
above disclosure and the following claims, other arrange-
ments, embodiments, implementations and equivalents will
be evident to those skilled in the art and may be employed
without departing from the spirit and scope of the present
disclosure as defined by the claims.

What is claimed is:

1. A non-transitory machine-readable medium storing a
program executable by at least one processing unit of a
device, the program comprising sets of instructions for:

receiving a plurality of documents;

generating a vector representation using a visual model

for each document in the plurality of documents,
wherein the visual model detects pixel values for each
page of each document and propagates the pixel values
through a neural network to generate the vector repre-
sentation;

clustering each page of each document into a set of

clusters based on the vector representations of the
plurality of documents;

determining a sample set of documents from the plurality

of documents based on the set of clusters, wherein the
sample set of documents includes at least a first set of
documents from a first set of clusters and a second set
of documents from a second set of clusters;

receiving annotations for each document in the sample set

of documents from an annotator; and

training an annotation Al model using the received anno-

tations for each document in the sample set of docu-
ments.

2. The non-transitory machine-readable medium of claim
1, wherein the program further comprises a set of instruc-
tions for converting each page of each document in the
plurality of documents into an image, wherein generating
the vector representation for the document comprises gen-
erating, by the visual model, a vector for each image based
on the pixel values.

10

15

20

25

30

35

40

45

50

55

60

65

16

3. The non-transitory machine-readable medium of claim
2, wherein clustering each page of each document into the
set of clusters comprises clustering each image into the set
of clusters based on the vector representations.

4. The non-transitory machine-readable medium of claim
1, wherein the clustering comprises grouping pages in the
plurality of documents having similar vector representations
into a same cluster.

5. The non-transitory machine-readable medium of claim
4, wherein a first document in the plurality of documents and
a second document in the plurality of documents have
similar vector representations if a cosine similarity between
the vector representation of the first document and the vector
representation of the second document is greater than a
defined threshold value.

6. The non-transitory machine-readable medium of claim
1, wherein determining the sample set of documents from
the plurality of documents comprises randomly selecting a
set of documents from each cluster in the set of clusters and
including the set of documents in the sample set of docu-
ments.

7. The non-transitory machine-readable medium of claim
1, wherein the visual model is implemented using a convo-
Iutional neural network comprising an input layer and a set
of hidden layers.

8. A method comprising:

receiving a plurality of documents;

generating a vector representation using a visual model

for each document in the plurality of documents,
wherein the visual model detects pixel values for each
page of each document and propagates the pixel values
through a neural network to generate the vector repre-
sentation;

clustering each page of each document into a set of

clusters based on the vector representations of the
plurality of documents;

determining a sample set of documents from the plurality

of documents based on the set of clusters, wherein the
sample set of documents includes at least a first set of
documents from a first set of clusters and a second set
of documents from a second set of clusters;

receiving annotations for each document in the sample set

of documents from an annotator; and

training an annotation Al model using the received anno-

tations for each document in the sample set of docu-
ments.

9. The method of claim 8, further comprising converting
each page of each document in the plurality of documents
into an image, wherein generating the vector representation
for the document comprises generating, by the visual model,
a vector for each image based on the pixel values.

10. The method of claim 9, wherein clustering each page
of each document into the set of clusters comprises cluster-
ing each image into the set of clusters based on the vector
representations.

11. The method of claim 8, wherein the clustering com-
prises grouping pages in the plurality of documents having
similar vector representations into a same cluster.

12. The method of claim 11, wherein a first document in
the plurality of documents and a second document in the
plurality of documents have similar vector representations if
a cosine similarity between the vector representation of the
first document and the vector representation of the second
document is greater than a defined threshold value.

13. The method of claim 8, wherein determining the
sample set of documents from the plurality of documents
comprises randomly selecting a set of documents from each

US 11,860,903 B1

17

cluster in the set of clusters and including the set of
documents in the sample set of documents.

14. The method of claim 8, wherein the visual model is
implemented using a convolutional neural network compris-
ing an input layer and a set of hidden layers.

15. A system comprising:

a set of processing units; and

a non-transitory machine-readable medium storing

instructions that when executed by at least one pro-
cessing unit in the set of processing units cause the at
least one processing unit to:
receive a plurality of documents;
generate a vector representation using a visual model for
each document in the plurality of documents, wherein
the visual model detects pixel values for each page of
each document and propagates the pixel values through
a neural network to generate the vector representation;

cluster each page of each document into a set of clusters
based on the vector representations of the plurality of
documents;

determine a sample set of documents from the plurality of

documents based on the set of clusters, wherein the
sample set of documents includes at least a first set of
documents from a first set of clusters and a second set
of documents from a second set of clusters;

receiving annotations for each document in the sample set

of documents from an annotator; and

25

18

training an annotation Al model using the received anno-
tations for each document in the sample set of docu-
ments.

16. The system of claim 15, wherein the instructions
further cause the at least one processing unit to convert each
page of each document in the plurality of documents into an
image, wherein generating the vector representation for the
document comprises generating, by the visual model, a
vector for each image based on the pixel values.

17. The system of claim 16, wherein clustering each page
of each document into the set of clusters comprises cluster-
ing each image into the set of clusters based on the vector
representations.

18. The system of claim 15, wherein the clustering
comprises grouping pages in the plurality of documents
having similar vector representations into a same cluster.

19. The system of claim 18, wherein a first document in
the plurality of documents and a second document in the
plurality of documents have similar vector representations if
a cosine similarity between the vector representation of the
first document and the vector representation of the second
document is greater than a defined threshold value.

20. The system of claim 15, wherein determining the
sample set of documents from the plurality of documents
comprises randomly selecting a set of documents from each
cluster in the set of clusters and including the set of
documents in the sample set of documents.

#* #* #* #* #*

