US 20180189168A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2018/0189168 A1

DWARAKANATH et al. 43) Pub. Date: Jul. 5, 2018
(54) TEST AUTOMATION USING MULTIPLE (52) US. CL
PROGRAMMING LANGUAGES CPC GOG6F 11/3664 (2013.01); GO6F 11/3684
(2013.01)
(71) Applicant: Accenture Global Solutions Limited,
Dublin (IE) (57) ABSTRACT
(72) Inventors: Anurag DWARAKANATH, Bangalore A device may receive information identifying a first set of
(IN); Dipin Era, Thalassery (IN); instructions. The first set of instructions may identify an
Subani Basha Nure, Bangalore (IN); action to perform to test a first program. The device may
Neville Dubash, Mumbai (IN); Sanjay identify a second set of instructions, related to testing a
Podder, Thane (IN); Aditya second program, that can be used in association with the first
Priyadarshi, Boston, MA (US); Bargay set of instructions. The first test may be similar to the second
Jayaraman, Hosur (IN) test. The device may identify multiple steps, of the first set
of instructions, that can be combined to form a third set of
(21) Appl. No.: 15/395,436 instructions. The third set of instructions may be used to test
. the first program or a third program. The device may
(22) Filed: Dec. 30, 2016 generate program code in a first programming language to
.. . . perform the action. The first programming language may be
Publication Classification different than a second programming language used to write
(51) Imt. ClL the first set of instructions. The device may perform the
GO6F 11/36 (2006.01) action.
700
e Test Automation Platiorm 210
Test Generation Framework E
integrated §
Development - P !
710 : E nviror? ment Scoping and Validation ;
Test Script | ;
! DSL Editor Grammar i
{
Dependencies ‘ 7
Tester 730 b ‘ : 130
Java Code Code Generator !
i
760y §
Execution Framework ;
1
|
Application Application Application ;
}
'
}
'

Web Browser

Vi "Old

US 2018/0189168 A1l

N~ S.

{(1+01un02) Winjat} Lebenbug|
= I8JUN09 ejgeueA apepdn |

EBH67 TEIBsIg

WLOJEl UORBWIOINY 188 801AB(] WD

Jul. 5,2018 Sheet 1 of 8

BIQISIA 0
S1 plel uinias AJieA pinoys | uayy A.I_I
\ LIOSMOI] = JOSMOIg C

5

zopog weibod | apoo welboud
uonoe uo uuLoped pue FOZL POl
8poo weiboid $8900id d.._“..m

0tt

UNPD
\1 MOY | Alene ybBnouyl doo) | puY e

1-0¢l ~L-0C1
1 8pon weiboid

Patent Application Publication

gl "Old

US 2018/0189168 A1l

JyBidyoleas ¥ouo | puy ~B-02T

¥ apon weiboly

' £
o] \ e e o e e i o ot e e o oy o T 7 e o et o o e
— { STAPYIOUING B4y Ut | Toldo 341 109195 | puYy,
z S ccatiliiniiniiniintints D5 COAERT DO [+
g 91 UZ/80/0€ O SIMUBASCHOSEP PISLIXS] 8L 1S | pUY,
2 g 8pony Weiboid
2 HWIOJ1Bl4 UOIBLUOINY 188 | a0maqg ey
e
(=
Q /
i {}.108L,
M siduog 188 Jubiy e oog, :o0ueUBIS AI_ .
woo adwexs
abed Jo) Wbhi4yyoogeidwexs 1diog 1894 C
=
S C G 9poQ welbold w..Wml apoo wieiboud
= uonoe uo wioyed pue ~0C1 5
S DINGA
= apoo wesboid sseo0iy oI
m oET Kuouwioy
= Aiouopeugssp
= I -
B roul ainpedacyoaiep | PlauIxey oy 108 | pu
] LedsQyO®iep | piaixeysu) |PUY | ot
=
«
=
2
&
A

Y— 00l

US 2018/0189168 A1l

80IN0seY
Bunndwon

¢ 'Old

Jul. 5,2018 Sheet 3 of 8

80IN0SY
Bugndwon

444

801N0SoY
Bugndwon

Patent Application Publication

cce
304N0S9Y
Bugndwion

0l ¢ uiojie|d HojBWONY IS8 L

0ce Juswuosaug BupndwoD pnolo

0te
801A8(]
oD

US 2018/0189168 A1l

Jul. 5,2018 Sheet 4 of 8

Patent Application Publication

0Z¢

aoepsiuj
UOHEDIUNWILIOD

€ 9Old

09¢

jusuodwion
Indino

05t

usuodwio)
nduyy

ove

weuocdwon
abeloig

sy

Asotuapy

0ce

JO8SB800)

»/. oig

sng

¥— pog

US 2018/0189168 A1l

Jul. 5,2018 Sheet 5 of 8

Patent Application Publication

¥ "Old

189} 8y} Jo/pue ‘epod weifosd puooss ey ‘epod

wieiboud 1811 8y} 0] PalRRs UOHIE UR WIIONS Ovy

(apoo weibosd 38ty

ayj jo uondod Jenoied ay) so/pue ‘Bey sy fWis)
al yim payeosse 'afenbue) Buwwesboid
pu0oas e ut ‘apod wesboid puodss Agusp]

1

apoo weiboud
1844 3Y1 jo uotpod senoed e uojpue ‘Bere
‘unsy B Ajliuepi 01 apoo weuboid 3siiy oy} ss800id
.

!

DIABD B Jo/pUe aiemyos
j0159] B yiim pajeoosse ‘abenbue) Buuwesboid
184 B Ul ‘9poo weiboud 154 sae0ey

1154

.

-

744

i i

0Ly

1

US 2018/0189168 A1l

Jul. 5,2018 Sheet 6 of 8

Patent Application Publication

G 'Old

159] a4y

J0/pue 1du0s 188} aif} 0} PolR[e) UOHOR UR WioPed 0es

1dLOS 158) JBUIOUE YIIM PB)EIDOSSE
JoBJIUE 18] Jayloue 0} Jejius St 1d10S 158) 9 0cs
M PSIBIDOSSE JOBYNE 1S8) B JOUISUM suiuIsiag

B0IABP B JO/pUR BIMIOS

10189} B YiIM Pa1RIoosse JduU0S 188} B SA1808Y Ol4

¥— 00S

US 2018/0189168 A1l

Jul. 5,2018 Sheet 7 of 8

Patent Application Publication

9 "Old

sdejs js8) J0 }8S 8y}

Jo/pue 1dios 158} 8y 0} pale|al Uonoe Ue Wiopsed 0v9

S

s1duos 1881 jo Ajuenb pioysaiy) B Ui papnoul

s1 days 159) Jejnojed sy} JeUisym sunsieQ 0€9

e

sdels 189} o 18s 8y} Ul pepnioul dois

S

1891 Jejnoied e Ajnuspl 03 1du0s 159} ay) $$8001d 0c9
301A0p
B JO/pUE SIEMYOS J0 189} B Yiim pajenosse sdajs 019
1S9} JO 198 B sepnjous 18y 1dLos 158) B aAl009Yy

US 2018/0189168 A1l

Jul. 5,2018 Sheet 8 of 8

Patent Application Publication

L "Old

19SMOIE g8

0Z1

;;; ~
i
H
H
uoneoyddy voneonddy uoneoiddy “
w
H
MICMBUIR L UOIIN0aXT M
AD9L !
H
w
lojersuan spon > 8po0 BABP M
0vZ i

! 19189

sepouspuade ,?wln ! 1581
> w
Jewwels) 027 J0up3 18d i
11dLog 3581
one SBud S WIUONAUT 1Y
uogepiie pue Buidoos _ Juowdoeneq |
poyesbajuy| w
WO IR UCTEIBUasy 1591 w
lll i
01T uuojle|d uohewoIny 188 |
¥ 00L

US 2018/0189168 Al

TEST AUTOMATION USING MULTIPLE
PROGRAMMING LANGUAGES

BACKGROUND

[0001] A test script is a set of instructions that will be
performed to test whether a system (e.g., a computer system
or software application) functions as expected. For example,
a test script may be a software program written in a
programming language. A programming language is a for-
mal computer language or constructed language designed to
communicate instructions to a machine, such as a computer.
There are numerous different programming languages, such
as C++ and Java.

SUMMARY

[0002] According to some possible implementations, a
device may include one or more processors to receive
information identifying a set of steps to perform. The set of
steps may be related to a test of a program. One or more
steps, of the set of steps, may be written in a first program-
ming language. The one or more processors may determine
whether the set of steps is associated with a first artifact that
is similar to a second artifact associated with another set of
steps based on the information identifying the set of steps.
The first artifact may identify information related to the test
of the program and the second artifact may identify infor-
mation related to another test of another program. The one
or more processors may determine whether two or more
steps, of the set of steps, can be combined into a combined
set of steps based on determining whether the set of steps is
associated with the first artifact that is similar to the second
artifact. The one or more processors may identify program
code written in a second programming language based on
determining whether the two or more steps, of the set of
steps, can be combined into the combined set of steps. The
one or more processors may perform an action related to the
test of the program based on identifying the program code.
[0003] According to some possible implementations, a
method may include receiving, by a device, information
identifying a first set of instructions. The first set of instruc-
tions may identify one or more actions to perform to test a
first program. The method may include identifying, by the
device, a second set of instructions that can be used in
association with the first set of instructions based on infor-
mation related to a first test of the first program and
information related to a second test of a second program.
The second set of instructions may be related to testing the
second program. The first test may be similar to the second
test. The method may include identifying, by the device,
multiple steps, of the first set of instructions, that can be
combined to form a third set of instructions based on
identifying the second set of instructions that can be used in
association with the first set of instructions. The third set of
instructions are to be used to test the first program or to test
a third program. The method may include generating, by the
device, program code in a first programming language to
perform the one or more actions based on identifying the
multiple steps of the first set of instructions that can be
combined to form the third set of instructions. The first
programming language may be different than a second
programming language used to write the first set of instruc-
tions. The method may include performing, by the device,
the one or more actions based on generating the program
code.

Jul. 5, 2018

[0004] According to some possible implementations, a
non-transitory computer-readable medium may store one or
more instructions that, when executed by one or more
processors, cause the one or more processors to receive
information identifying a test script. The test script may
include one or more steps related to a test of a program. The
one or more steps may be written in a first programming
language. The one or more instructions, when executed by
the one or more processors, may cause the one or more
processors to determine whether the test script and another
test script are associated with similar artifacts based on
receiving the information identifying the test script. The
similar artifacts may include information associated with
different tests of different programs. The one or more
instructions, when executed by the one or more processors,
may cause the one or more processors to determine whether
a plurality of steps, of the one or more steps, can be
combined into a set of steps based on determining whether
the test script and the other test script are associated with the
similar artifacts. The one or more instructions, when
executed by the one or more processors, may cause the one
or more processors to identify program code written in a
second programming language based on determining
whether the plurality of steps of the one or more steps can
be combined into the set of steps. The first programming
language and the second programming language may be
different. The one or more instructions, when executed by
the one or more processors, may cause the one or more
processors to perform an action related to the test script
based on identifying the program code.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIGS. 1A and 1B are diagrams of an overview of
an example implementation described herein;

[0006] FIG. 2 is a diagram of an example environment in
which systems and/or methods, described herein, may be
implemented;

[0007] FIG. 3 is a diagram of example components of one
or more devices of FIG. 2;

[0008] FIG. 4 is a flow chart of an example process for
generating program code in a first programming language
based on program code in a second programming language;
[0009] FIG. 5 is a flow chart of an example process for
identifying test scripts that are associated with similar test
artifacts;

[0010] FIG. 6 is a flow chart of an example process for
identifying test steps of a test script that can be combined
into another test script; and

[0011] FIG. 7 is a diagram of an example implementation
described herein.

DETAILED DESCRIPTION

[0012] The following detailed description of example
implementations refers to the accompanying drawings. The
same reference numbers in different drawings may identify
the same or similar elements.

[0013] A test script may be used to test functionality of a
program, an application, or a device. In such a case, the
creation and maintenance of the test script may require
significant technical skill. For example, a test script may
have to be programmed using program code. In addition,
different test scripts that test different functionality may have
to be written in different programming languages.

US 2018/0189168 Al

[0014] Implementations described herein provide a test
automation platform that may receive a test script in a first
programming language and generate and/or identify pro-
gram code in a second programming language (e.g., to be
used to execute the test script or a portion of the test script).
Additionally, the test automation platform may identify test
scripts that are similar to a received test script. Further, the
test automation platform may identify steps of various test
scripts that may be combined into a single test script.
[0015] Inthis way, the test automation platform reduces an
amount of technical skill needed to create test scripts by
reducing a quantity of programming languages that a tester
may have to know. Additionally, the test automation plat-
form reduces repetitious creation of test scripts, thereby
increasing the efficiency of creating test scripts. Further, the
test automation platform conserves processing resources by
reducing an amount of programming code that the test
automation platform and/or another device compiles/ex-
ecutes. Still further, the test automation platform conserves
memory resources by reducing a quantity of lines of code
that the test automation platform and/or another device
stores. Additionally, the test automation platform may
reduce an amount of code required to be written by a tester.
[0016] FIGS. 1A and 1B are diagrams of an overview of
an example implementation 100 described herein. FIGS. 1A
and 1B show six features of a test automation platform
related to processing program code. As described herein,
reference numbers 110, 120-1, and 130-1 relate to a first
feature of the test automation platform, reference numbers
110, 120-2, and 130-2 relate to a second feature, and so
forth. As shown in FIG. 1A, example implementation 100
may include a client device and a test automation platform.
[0017] As shown by reference number 110, the client
device may provide program code to the test automation
platform. As shown by reference numbers 120-1 through
120-3 (and 120-4 through 120-6 in FIG. 1B), the client
device may provide program code to the test automation
platform, as described in more detail below. For example,
the test automation platform may receive program code
written in an English-like domain-specific language (e.g., a
domain specific language with a syntax similar to English,
such as a subject-verb-object syntax) that is mapped to
another programming language, such as Java. As shown by
reference number 130, the test automation platform may
process the program code, and may perform an action, as
will be described further below with respect to reference
numbers 130-1 through 130-3 (and 130-4 through 130-6 for
FIG. 1B).

[0018] In some implementations, the program code may
be handwritten by a user of the client device. Additionally,
or alternatively, the program code may be included in a
program file. In some implementations, the program code
may include thousands or millions of lines of program code,
and/or may relate to thousands or millions of test scripts
which may test thousands or millions of devices, applica-
tions, programs, and/or the like. In some implementations,
the program code may be in a first programming language
(e.g., a natural language programming language).

[0019] As shown by reference number 120-1, the program
code may include a particular term or phrase, such as a line
or phrase typed by a user of the client device (e.g., And |
loop through every). As shown by reference number 130-1,
the test automation platform may identify portions of pro-
gram code in a second programming language (e.g., Java)

Jul. 5, 2018

associated with the identified term or phrase, and may
provide various options for the user to select based on the
identified term or phrase. For example, the test automation
platform may identify the term loop in the program code
received from the client device and determine that the
program code is to be used to loop through data. Continuing
with the previous example, the test automation platform may
display options for different types of loops (e.g., “Row” for
a loop through rows of data and “Column” for a loop
through columns of data), from which a user of the client
device may select, based on identifying the term loop in the
program code.

[0020] In some implementations, the test automation plat-
form may generate program code in a second programming
language based on the user selection. For example, if a user
of the client device selects “Row,” the test automation
platform may generate program code in the second program-
ming language to loop through rows of data. As another
example, if a user of the client device selects “Column,” the
test automation platform may generate program code in the
second programming language to loop through columns of
data.

[0021] In this way, the test automation platform may
dynamically identify program code in a first programming
language and generate one or more portions of program code
in a second programming language. In addition, the test
automation platform may use a high-level template (e.g., a
program code template associated with the term loop) that
maps to multiple low-level actions or commands in the
second programming language (e.g., commands related to
looping through rows and/or columns).

[0022] As shown by reference number 120-2, the program
code in a first programming language may include informa-
tion identifying a particular browser (e.g., a web browser) to
be used by the program code (e.g., shown as browsel). In
some cases, program code may have to be in a particular
language to use the particular browser (e.g., a second
programming language different than the first programming
language). As shown by reference number 130-2, the test
automation platform may generate program code in a second
programming language (e.g., in a programming language
used by the browser) based on the browser identified in the
program code in the first programming language. In some
implementations, the generated program code may cause the
same actions or result as the received program code in the
first programming language.

[0023] In this way, the test automation platform may
receive program code in a first programming language and
dynamically generate program code in a second program-
ming language based on a browser or software associated
with the program code in the first programming language.
This reduces an amount of technical skill needed by a tester
by reducing or eliminating the need for the tester to know
multiple programming languages. In addition, the test auto-
mation platform may generate program code based on
specific aspects, or idiosyncrasies, of a browser or other
program used to test software and/or device.

[0024] As shown by reference number 120-3, the program
code may include program code in different programming
languages (e.g., as shown by italic and non-italic text). As
shown by reference number 130-3, the test automation
platform may identify a first portion of the program code in
a first programming language (e.g., return (counter+1))
based on an identifier (e.g., languagel) in a second portion

US 2018/0189168 Al

of'the program code in a second programming language that
identifies the first programming language. The test automa-
tion platform may execute the program code shown by
reference number 120-3 despite the program code including
portions of program code in different programming lan-
guages. In this way, the test automation platform may
identify and execute program code written in multiple
programming languages. In addition, this permits integra-
tion of multiple programming languages, thereby improving
an efficiency of generating test scripts.

[0025] In this way, and as described above with respect to
FIG. 1A, a test automation platform may receive program
code in a first programming language and may process the
program code to dynamically generate program code in a
second programming language.

[0026] As shown in FIG. 1B, and as further shown by
reference number 120-4, the test automation platform may
receive program code that identifies a particular type of
object (e.g., textfield, which may identity a text field, a text
box, and/or the like that receives text). In some cases, a
particular action may not be performed on a particular type
of'object (e.g., due to a pre-defined rule). For example, a text
box may not be clickable (e.g., as may be the case with a
button). Due to this, a tester may not want program code that
identifies a particular type of object to include a reference to
an object of a different type.

[0027] As shown by reference number 130-4, the test
automation platform may identify objects of the particular
type and may provide information identifying the objects for
display (e.g., to permit a user to select an object of the
particular type). For example, the test automation platform
may identify text boxes associated with a user interface
based on identifying textfield in the program code and may
provide information identifying the text boxes for display to
permit the user to select a particular text box for the program
code to reference. Continuing with the previous example,
the test automation platform may not provide options for a
type of object different than the type of object identified in
the program code (e.g., a button or a dropdown menu).
[0028] In this way, the test automation platform may
improve generation of program code by reducing or elimi-
nating references to objects that may not be used with the
program code. This reduces errors related to the program
code, thereby conserving processing resources that would
otherwise be used to execute erroneous program code.
[0029] As shown by reference number 120-5, the test
automation platform may receive program code that identi-
fies a particular test script (e.g., “TS01”). As shown by
reference number 130-5, the test automation platform may
identify a test artifact (e.g., a document, a description, a
diagram, etc. related to development or testing of software)
that is the same or similar to the test artifact with which the
test script is associated.

[0030] For example, the test automation platform may
process project requirements, program code, or diagrams
related to a first test script and a second test script to identify
terms and/or tags. Continuing with the previous example,
the test automation platform may determine whether terms
and/or tags associated with the first test script and the second
test script are similar (e.g., indicating that the test artifacts
associated with the first test script and the second test script
are similar) and may determine that first test script and the
second test script can be used together based on the asso-
ciated terms and/or tags being similar.

Jul. 5, 2018

[0031] In this way, the test automation platform increases
an efficiency of using test scripts by identifying test scripts
that are associated with similar test artifacts and can poten-
tially be used in combination to test software and/or a
device.

[0032] As shown by reference number 120-6, the test
automation platform may receive program code that
includes various test steps of a test script. As shown by
reference number 130-6, the test automation platform may
identify test steps that can be combined into a separate,
combined test script. For example, the test automation
platform may process the test script to identity particular
terms or characters that identify a test step, and may deter-
mine whether the identified test step is included in a thresh-
old quantity of other test scripts.

[0033] Continuing with the previous example, when the
test automation platform determines that the test steps are
included in a threshold quantity of other test scripts, the test
automation platform may generate a separate, combined test
script that includes the test steps. The separate, combined
test script may be referenced by another test script, thereby
reducing or eliminating the need for the other test script to
include the test steps of the separate, combined test script. In
this way, the test automation platform increases an efficiency
of using test scripts by identifying test steps that can be
combined into a separate, combined test script for use by
another test script. This increases the modularity of the test
script and thereby reduces the maintenance effort of the
tester.

[0034] In this way, and as described above by FIG. 1B, a
test automation platform may receive program code in a first
programming language and may process the program code
to dynamically generate program code in a second program-
ming language. In addition, as further described, the test
automation platform may identify test scripts that can be
used in combination based on being associated with similar
test artifacts, and may identify test steps of a test script that
can be combined into a separate, combined test script.
[0035] In this way, the test automation platform reduces
the amount of technical skill needed to create test scripts by
reducing a quantity of programming languages that a tester
may have to know. Additionally, or alternatively, the test
automation platform reduces repetitious creation of test
scripts, thereby increasing an efficiency of creating test
scripts. Additionally, or alternatively, the test automation
platform conserves processing resources by reducing the
amount of programming code that the test automation plat-
form and/or another device compiles/executes. Additionally,
or alternatively, the test automation platform conserves
memory resources by reducing a quantity of lines of pro-
gram code that the test automation platform and/or another
device stores. Additionally, or alternatively, the test automa-
tion platform may reduce an amount of program code
required to be written by a tester.

[0036] As indicated above, FIGS. 1A and 1B are provided
merely as an example. Other examples are possible and may
differ from what was described with regard to FIGS. 1A and
1B.

[0037] FIG. 2 is a diagram of an example environment 200
in which systems and/or methods, described herein, may be
implemented. As shown in FIG. 2, environment 200 may
include a test automation platform 210, a cloud computing
environment 220, a set of computing resources 222, and a
client device 230. Devices of environment 200 may inter-

US 2018/0189168 Al

connect via wired connections, wireless connections, or a
combination of wired and wireless connections.

[0038] Test automation platform 210 includes one or more
devices capable of processing program code in a program-
ming language and generating or identifying program code
in another programming language. For example, test auto-
mation platform 210 may include a cloud server or a group
of cloud servers. In some implementations, test automation
platform 210 may be designed to be modular such that
certain software components can be swapped in or out
depending on a particular need. As such, test automation
platform 210 may be easily and/or quickly reconfigured for
different uses.

[0039] In some implementations, as shown, test automa-
tion platform 210 may be hosted in cloud computing envi-
ronment 220. Notably, while implementations described
herein describe test automation platform 210 as being hosted
in cloud computing environment 220, in some implementa-
tions, test automation platform 210 may not be cloud-based
(i.e., may be implemented outside of a cloud computing
environment) or may be partially cloud-based.

[0040] Cloud computing environment 220 includes one or
more personal computers, workstation computers, server
devices, or other types of computation and/or communica-
tion devices. In some implementations, computing resource
222 may host test automation platform 210. The cloud
resources may include compute instances executing in com-
puting resource 222, storage devices provided in computing
resource 222, data transfer devices provided by computing
resource 222, etc. In some implementations, computing
resource 222 may communicate with other computing
resources 222 via wired connections, wireless connections,
or a combination of wired and wireless connections.
[0041] Computing resource 222 includes an environment
that hosts test automation platform 210. Cloud computing
environment 220 may provide computation, software, data
access, storage, etc. services that do not require end-user
(e.g., client device 230) knowledge of a physical location
and configuration of system(s) and/or device(s) that host test
automation platform 210. As shown, cloud computing envi-
ronment 220 may include a group of computing resources
222 (referred to collectively as “computing resources 222”
and individually as “computing resource 222”).

[0042] As further shown in FIG. 2, computing resource
222 may include a group of cloud resources, such as one or
more applications (“APPs”) 222-1, one or more virtual
machines (“VMs”) 222-2, one or more virtualized storages
(“VSs”) 222-3, or one or more hypervisors (“HYPs™) 222-4.
[0043] Application 222-1 includes one or more software
applications that may be provided to or accessed by one or
more devices of environment 200. Application 222-1 may
eliminate a need to install and execute the software appli-
cations on devices of environment 200. For example, appli-
cation 222-1 may include software associated with test
automation platform 210 and/or any other software capable
of being provided via cloud computing environment 220. In
some implementations, one application 222-1 may send/
receive information to/from one or more other applications
222-1, via virtual machine 222-2.

[0044] Virtual machine 222-2 includes a software imple-
mentation of a machine (e.g., a computer) that executes
programs like a physical machine. Virtual machine 222-2
may be either a system virtual machine or a process virtual
machine, depending upon use and degree of correspondence

Jul. 5, 2018

to any real machine by virtual machine 222-2. A system
virtual machine may provide a complete system platform
that supports execution of a complete operating system
(“OS”). A process virtual machine may execute a single
program, and may support a single process. In some imple-
mentations, virtual machine 222-2 may execute on behalf of
a user (e.g., client device 230), and may manage infrastruc-
ture of cloud computing environment 220, such as data
management, synchronization, or long-duration data trans-
fers.

[0045] Virtualized storage 222-3 includes one or more
storage systems and/or one or more devices that use virtu-
alization techniques within the storage systems or devices of
computing resource 222. In some implementations, within
the context of a storage system, types of virtualizations may
include block virtualization and file virtualization. Block
virtualization may refer to abstraction (or separation) of
logical storage from physical storage so that the storage
system may be accessed without regard to physical storage
or heterogeneous structure. The separation may permit
administrators of the storage system flexibility in how the
administrators manage storage for end users. File virtual-
ization may eliminate dependencies between data accessed
at a file level and a location where files are physically stored.
This may enable optimization of storage use, server con-
solidation, and/or performance of non-disruptive file migra-
tions.

[0046] Hypervisor 222-4 may provide hardware virtual-
ization techniques that allow multiple operating systems
(e.g., “guest operating systems”) to execute concurrently on
a host computer, such as computing resource 222. Hyper-
visor 222-4 may present a virtual operating platform to the
guest operating systems, and may manage the execution of
the guest operating systems. Multiple instances of a variety
of operating systems may share virtualized hardware
resources.

[0047] Client device 230 includes one or more devices
capable of receiving, generating, storing, processing, and/or
providing information associated with program code. For
example, client device 230 may include a communication
and/or computing device, such as a desktop computer, a
mobile phone (e.g., a smart phone or a radiotelephone), a
laptop computer, a tablet computer, a gaming device, a
wearable communication device (e.g., a smart wristwatch, a
pair of smart eyeglasses, or an activity band), or a similar
type of device. In some implementations, client device 230
may provide program code to test automation platform 210,
as described elsewhere herein. Additionally, or alternatively,
client device 230 may receive information from test auto-
mation platform 210 related to other program code, as
described elsewhere herein.

[0048] The number and arrangement of devices and net-
works shown in FIG. 2 are provided as an example. In
practice, there may be additional devices and/or networks,
fewer devices and/or networks, different devices and/or
networks, or differently arranged devices and/or networks
than those shown in FIG. 2. Furthermore, two or more
devices shown in FIG. 2 may be implemented within a
single device, or a single device shown in FIG. 2 may be
implemented as multiple, distributed devices. Additionally,
or alternatively, a set of devices (e.g., one or more devices)
of environment 200 may perform one or more functions
described as being performed by another set of devices of
environment 200.

US 2018/0189168 Al

[0049] FIG. 3 is a diagram of example components of a
device 300. Device 300 may correspond to test automation
platform 210, computing resource 222, cloud computing
environment 220, and/or client device 230. In some imple-
mentations, test automation platform 210, computing
resource 222, cloud computing environment 220, and/or
client device 230 may include one or more devices 300
and/or one or more components of device 300. As shown in
FIG. 3, device 300 may include a bus 310, a processor 320,
a memory 330, a storage component 340, an input compo-
nent 350, an output component 360, and a communication
interface 370.

[0050] Bus 310 includes a component that permits com-
munication among the components of device 300. Processor
320 is implemented in hardware, firmware, or a combination
of hardware and software. Processor 320 includes a central
processing unit (CPU), a graphics processing unit (GPU), an
accelerated processing unit (APU), a microprocessor, a
microcontroller, a digital signal processor (DSP), a field-
programmable gate array (FPGA), an application-specific
integrated circuit (ASIC), or another type of processing
component. In some implementations, processor 320
includes one or more processors capable of being pro-
grammed to perform a function. Memory 330 includes a
random access memory (RAM), a read only memory
(ROM), and/or another type of dynamic or static storage
device (e.g., a flash memory, a magnetic memory, and/or an
optical memory) that stores information and/or instructions
for use by processor 320.

[0051] Storage component 340 stores information and/or
software related to the operation and use of device 300. For
example, storage component 340 may include a hard disk
(e.g., a magnetic disk, an optical disk, a magneto-optic disk,
and/or a solid state disk), a compact disc (CD), a digital
versatile disc (DVD), a floppy disk, a cartridge, a magnetic
tape, and/or another type of non-transitory computer-read-
able medium, along with a corresponding drive.

[0052] Input component 350 includes a component that
permits device 300 to receive information, such as via user
input (e.g., a touch screen display, a keyboard, a keypad, a
mouse, a button, a switch, and/or a microphone). Addition-
ally, or alternatively, input component 350 may include a
sensor for sensing information (e.g., a global positioning
system (GPS) component, an accelerometer, a gyroscope,
and/or an actuator). Output component 360 includes a com-
ponent that provides output information from device 300
(e.g., a display, a speaker, and/or one or more light-emitting
diodes (LEDs)).

[0053] Communication interface 370 includes a trans-
ceiver-like component (e.g., a transceiver and/or a separate
receiver and transmitter) that enables device 300 to com-
municate with other devices, such as via a wired connection,
a wireless connection, or a combination of wired and wire-
less connections. Communication interface 370 may permit
device 300 to receive information from another device
and/or provide information to another device. For example,
communication interface 370 may include an Ethernet inter-
face, an optical interface, a coaxial interface, an infrared
interface, a radio frequency (RF) interface, a universal serial
bus (USB) interface, a Wi-Fi interface, a cellular network
interface, or the like.

[0054] Device 300 may perform one or more processes
described herein. Device 300 may perform these processes
in response to processor 320 executing software instructions

Jul. 5, 2018

stored by a non-transitory computer-readable medium, such
as memory 330 and/or storage component 340. A computer-
readable medium is defined herein as a non-transitory
memory device. A memory device includes memory space
within a single physical storage device or memory space
spread across multiple physical storage devices.

[0055] Software instructions may be read into memory
330 and/or storage component 340 from another computer-
readable medium or from another device via communication
interface 370. When executed, software instructions stored
in memory 330 and/or storage component 340 may cause
processor 320 to perform one or more processes described
herein. Additionally, or alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to perform one or more processes described
herein. Thus, implementations described herein are not
limited to any specific combination of hardware circuitry
and software.

[0056] The number and arrangement of components
shown in FIG. 3 are provided as an example. In practice,
device 300 may include additional components, fewer com-
ponents, different components, or differently arranged com-
ponents than those shown in FIG. 3. Additionally, or alter-
natively, a set of components (e.g., one or more components)
of' device 300 may perform one or more functions described
as being performed by another set of components of device
300.

[0057] FIG. 4 is a flow chart of an example process 400 for
generating program code in a first programming language
based on program code in a second programming language.
In some implementations, one or more process blocks of
FIG. 4 may be performed by test automation platform 210.
In some implementations, one or more process blocks of
FIG. 4 may be performed by another device or a group of
devices separate from or including test automation platform
210, such as client device 230.

[0058] As shown in FIG. 4, process 400 may include
receiving first program code, in a first programming lan-
guage, associated with a test of software and/or a device
(block 410). For example, test automation platform 210 may
receive first program code in a first programming language.

[0059] In some implementations, test automation platform
210 may receive the first program code in a first program-
ming language (e.g., from client device 230). For example,
test automation platform 210 may receive the first program
code when a user of client device 230 inputs the first
program code in a code editor, when test automation plat-
form 210 receives a program file that includes the first
program code, and/or the like. In some implementations, test
automation platform 210 may receive the first program code
periodically, according to a schedule, based on input from a
user of client device 230, and/or automatically from another
device.

[0060] In some implementations, program code may
include text-based code that may be executed by a device, by
software executing on the device, by software executing
remotely, and/or the like. For example, program code may
include Java code, C++, or another type of hardware and/or
software based code. In some implementations, when test
automation platform 210 receives program code, test auto-
mation platform 210 may receive thousands, millions, or
billions of lines of program code. Additionally, or alterna-

US 2018/0189168 Al

tively, the program code may relate to testing thousands,
millions, or billions of software programs, devices, and/or
the like.

[0061] In some implementations, a programming lan-
guage may include a computer language or constructed
language designed to communicate instructions to a machine
(e.g., a computer). For example, the programming language
may include Java, C++, Gherkin, a domain-specific lan-
guage, a natural language programming language that has a
natural language syntax (e.g., an English-like syntax, such as
a subject-verb-object syntax), and/or the like. In some
implementations, use of a natural language programming
language may improve testing by reducing an amount of
technical skill needed to write and/or maintain program
code. In some implementations, the programming language
may be used to create software, such as to control the
behavior of a machine and/or to express an algorithm.
[0062] In some implementations, a first programming lan-
guage may be mapped to a second programming language.
For example, a natural language programming language
may be mapped to another programming language, such as
Java. In some implementations, the first programming lan-
guage and the second programming language may be
mapped based on program code. For example, a term or a
portion of program code of a natural language programming
language may be mapped to a term or a portion of Java code
(e.g., using a data structure, a set of rules, etc.). This permits
quick and efficient identification and/or generation of pro-
gram code in a programming language based on program
code in another programming language, thereby conserving
processing resources.

[0063] In some implementations, a term or a portion of
program code of a first programming language may be
mapped to multiple terms or portions of program code of a
second programming language. For example, a portion of
program code in a natural language programming language
may be mapped to multiple terms or portions of Java code.
As a particular example, the term loop in a natural language
programming language may be mapped to a first portion of
Java code that loops through rows of a table and a second
portion of Java code that loops through columns of a table.
This conserves memory resources by reducing a quantity of
portions of a first programming language that test automa-
tion platform 210 may have to store.

[0064] In this way, test automation platform 210 may
receive program code in a first programming language.
[0065] As further shown by FIG. 4, process 400 may
include processing the first program code to identify a term,
a tag, and/or a particular portion of the first program code
(block 420). For example, test automation platform 210 may
process the first program code to identify a term, a tag,
and/or a particular portion of the first program code. In some
implementations, test automation platform 210 may process
the first program code using natural language processing,
text analysis, computational linguistics, machine learning,
and/or artificial intelligence to identify a term, a tag, and/or
a particular portion of the first program code.

[0066] In some implementations, when test automation
platform 210 receives the first program code, test automa-
tion platform 210 may process the first program code to
determine whether a term, a tag, and/or a portion of the first
program code is mapped to second program code in another
programming language. For example, test automation plat-
form 210 may process the first program code using a data

Jul. 5, 2018

structure that identifies mapped terms, tags, and/or portions
of program code. In some implementations, test automation
platform 210 may compare a term, a tag, and/or a portion of
the first program code and terms, tags, and/or portions of
program code stored in a data structure and may determine
a mapping when the comparison indicates a match.

[0067] In some implementations, when test automation
platform 210 receives the first program code, test automa-
tion platform 210 may process the first program code to
identify an identifier that identifies a particular browser (e.g.,
a web browser), software program, and/or the like, which is
to use, execute, or be controlled by the first program code.
In some implementations, different browsers, software pro-
grams, and/or the like may use program code in program-
ming languages different from the first programming lan-
guage. In some implementations, test automation platform
210 may process the first program code to identify second
program code in a second programming language based on
the identifier in the first program code that identifies the
particular browser, software program, and/or the like, as
described elsewhere herein.

[0068] In some implementations, when test automation
platform 210 receives the first program code, test automa-
tion platform 210 may process the first program code to
identify a term, a tag, and/or a portion of program code that
identifies second program code written in a different pro-
gramming language. For example, test automation platform
210 may process the first program code to identify a portion
of the first program code, such as JavaCode{ }, to identify
second program code written in Java (e.g., where the { }
characters contain the second program code written in Java).
In this way, a test script may include program code written
in various programming languages, thereby reducing or
eliminating a need for a tester to separately write test scripts,
or portions thereof, in different programming languages.
[0069] Insome implementations, test automation platform
210 may store a set of rules. In some implementations, the
set of rules may relate to a syntax, format, or structure of a
programming language. Additionally, or alternatively, the
set of rules may relate to a variable, an object, and/or the
like, defined in program code. For example, the set of rules
may define a particular object of a web page as a text box
that receives or displays text, a button or other control that
is clickable, a dropdown menu that includes various selec-
tion options, and/or the like.

[0070] Insome implementations, test automation platform
210 may receive the set of rules (e.g., prior to storing the set
of rules). For example, test automation platform 210 may
receive the set of rules from a user (e.g., such as when a user
defines the set of rules using program code), when test
automation platform 210 processes text (e.g., a text docu-
ment, a text file, a web page, etc.) using natural language
processing, text analysis, computational linguistics, machine
learning, and/or artificial intelligence to identify the set of
rules, and/or the like.

[0071] As a specific example, test automation platform
210 may process a document object model (DOM) of a web
page to identify various types of objects of the web page,
such as a text box, a control, a drop-down menu, or a radio
button. In this case, test automation platform 210 may
identify a set of rules based on the type of object and/or other
information included in text related to the web page (e.g.,
text included as a comment in program code of the web
page). For example, where a text box is identified, test

US 2018/0189168 Al

automation platform 210 may determine that a particular
object of a web page is a text box and may determine a set
of rules that prevent program code from attempting to click
the text box (as may be permitted if the object were a
control) or performing other actions other than inputting text
into the text box.

[0072] In some implementations, when test automation
platform 210 receives program code, test automation plat-
form 210 may process the program code using a set of rules.
For example, test automation platform 210 may parse the
program code to identify a term, a tag, or a portion of
program code and may determine whether the program code
satisfies the set of rules using the term, the tag, and/or the
portion of program code.

[0073] Insome implementations, test automation platform
210 may determine whether a term, a tag, or a portion of
program code is associated with a set of rules. For example,
test automation platform 210 may use a data structure that
includes portions of program code, terms, and/or tags and
corresponding sets of rules to determine whether a term, a
tag, and/or a portion of program code is associated with a set
of rules.

[0074] Insome implementations, test automation platform
210 may determine whether the program code satisfies a set
of rules. For example, test automation platform 210 may
receive program code that is associated with a text box of a
web page (e.g., to input text into the text box). In this case,
test automation platform 210 may determine that the pro-
gram code, when executed, inputs text into the text box, and
does not click the text box (as though the text box were a
control) or perform another unpermitted action related to the
text box, by identifying a term related to inputting text into
a text box, a portion of program code that causes text to be
input into a text box, and/or the like.

[0075] Insome implementations, test automation platform
210 may determine whether program code satisfies the set of
rules in real-time or near real-time (e.g., as the program code
is being written, prior to compiling or executing the program
code, etc.). This increases an efficiency of determining
whether the program code satisfies a set of rules, thereby
conserving processing resources. In addition, this conserves
processing resources that would otherwise be used to com-
pile and/or attempt to execute program code that does not
satisfy the set of rules.

[0076] In this way, test automation platform 210 improves
generation of program code by determining whether the
program code satisfies a set of rules, thereby reducing or
eliminating errors related to writing the program code. In
addition, this reduces or eliminates an amount of technical
skill needed to write program code.

[0077] In this way, test automation platform 210 may
process first program code to identify a term, a tag, and/or
a particular portion of the first program code.

[0078] As further shown in FIG. 4, process 400 may
include identifying second program code, in a second pro-
gramming language, associated with the term, the tag,
and/or the particular portion of the first program code (block
430). For example, test automation platform 210 may iden-
tify second program code, in a second programming lan-
guage, associated with the term, the tag, and/or the particular
portion of the first program code.

[0079] In some implementations, when test automation
platform 210 identifies first program code that is mapped to
second program code, test automation platform 210 may

Jul. 5, 2018

identify one or more portions of second program code to
which the first program code is mapped. For example, test
automation platform 210 may identify one or more portions
of Java code that are mapped to the term loop in a natural
language programming language, such as one or more
portions related to looping through rows of data and/or
columns of data. In this way, test automation platform 210
may efficiently and dynamically identify one or more por-
tions of program code in a second programming language.
[0080] Insome implementations, test automation platform
210 may identify second program code based on determin-
ing that a particular browser, software program, and/or the
like is identified by the first program code. For example,
when test automation platform 210 determines that the first
program code is to use a particular browser when executed
(e.g., based on an identifier included in the program code),
test automation platform 210 may identify second program
in a second programming language associated with the
browser.

[0081] Continuing with the previous example, test auto-
mation platform 210 may identity a portion of Java code as
the second program code to which the first program code
(e.g., in a natural language programming language) is
mapped based on the first program code identifying the
particular browser. Conversely, for example, if the identifier
identified a different browser, test automation platform 210
may identify a portion of C++ program code, rather than
Java code, as the second program code.

[0082] In this way, test automation platform 210 may
dynamically identify program code in various programming
languages based on a browser, software program, and/or the
like related to testing of a software program using the first
program code. This improves an efficiency of testing a
software program using various programming languages,
thereby conserving processing resources. In addition, this
further improves an efficiency of testing a software program
by reducing or eliminating an amount of technical skill
needed when testing.

[0083] In some implementations, when test automation
platform 210 determines that the first program code includes
program code in multiple programming languages, such as
by identifying JavaCode{ } in the first program code, test
automation platform 210 may identify the second program
code in the second programming language (e.g., by identi-
fying the second program code between the { } characters of
JavaCode{ } in the first program code). In this way, a test
script may include program code written in various pro-
gramming languages, thereby reducing or eliminating a need
for a tester to separately write test scripts, or portions
thereof, when different programming languages are used.
[0084] In this way, test automation platform 210 may
identify second program code, in a second programming
language, associated with the term, the tag, and/or the
particular portion of the first program code.

[0085] As further shown by FIG. 4, process 400 may
include performing an action related to the first program
code, the second program code, and/or the test (block 440).
For example, test automation platform 210 may perform an
action related to the first program code and/or the second
program code.

[0086] Insome implementations, test automation platform
210 may perform an action when test automation platform
210 identifies the second program code. For example, test
automation platform 210 may select the second program

US 2018/0189168 Al

code, execute the second program code, compile the second
program code, include the second program code in a pro-
gram file, and/or the like. In some implementations, test
automation platform 210 may perform a test of a software
program and/or a device using the second program code.
Additionally, or alternatively, test automation platform 210
may provide the second program code to another device to
permit the other device to test a software program. This
improves testing of a software program by enabling test
automation platform 210 to manage testing across multiple
devices.

[0087] In some implementations, when test automation
platform 210 identifies multiple portions of second program
code, test automation platform 210 may perform an action
related to the multiple portions of second program code. For
example, test automation platform 210 may provide infor-
mation for display indicating that multiple portions are
identified (e.g., to permit a user of client device 230 to select
a portion for test automation platform 210 to use). Addi-
tionally, or alternatively, test automation platform 210 may
select a portion by default, at random, based on a previous
selection (e.g., determined through use of pattern recogni-
tion techniques or machine learning), and/or the like. In this
way, test automation platform 210 may dynamically perform
an action when the first program code in a first programming
language maps to multiple portions of second program code
in a second programming language.

[0088] Insome implementations, test automation platform
210 may provide information for display (e.g., via a display
of client device 230) that indicates whether a particular
portion of program code satisfies a set of rules. Additionally,
or alternatively, test automation platform 210 may provide
information for display that identifies a particular portion of
program code that does not satisfy a set of rules. This
increases an efficiency of writing program code by enabling
a tester to quickly and efficiently identify a portion of
program code that does not satisfy a set of rules.

[0089] Although FIG. 4 shows example blocks of process
400, in some implementations, process 400 may include
additional blocks, fewer blocks, different blocks, or differ-
ently arranged blocks than those depicted in FIG. 4. Addi-
tionally, or alternatively, two or more of the blocks of
process 400 may be performed in parallel.

[0090] FIG. 5is a flow chart of an example process 500 for
identifying test scripts that are associated with similar test
artifacts. In some implementations, one or more process
blocks of FIG. 5 may be performed by test automation
platform 210. In some implementations, one or more process
blocks of FIG. 5 may be performed by another device or a
group of devices separate from or including test automation
platform 210, such as client device 230.

[0091] As shown in FIG. 5, process 500 may include
receiving a test script associated with a test of software
and/or a device (block 510). For example, test automation
platform 210 may receive a test script. A test script may
include a set of instructions to be performed to test func-
tioning of software, a device, and/or the like.

[0092] Insome implementations, test automation platform
210 may further receive a test scenario (e.g., a description of
what is being tested, such as “verify login functionality™), a
test condition (e.g., a description of particular functionality
being tested, such as “verify successful login with valid
credentials,” “verify unsuccessful login with invalid creden-
tials,” or “verify forgot password workflow™), and/or a test

Jul. 5, 2018

artifact (e.g., a set of test scenarios, test conditions, and/or
test scripts). Additionally, or alternatively, a test artifact may
include documentation related to a use case, various types of
diagrams (e.g., class diagrams or Unified Modeling Lan-
guage (UML) models), a requirements and/or design docu-
ment, and/or the like.

[0093] Insome implementations, test automation platform
210 may receive a test script in a manner similar to that
described above with respect to first program code (e.g., by
a user of client device 230 inputting the test script). In some
implementations, the test script may be written using pro-
gram code. In some implementations, test automation plat-
form 210 may further receive text, such as natural language
text that describes a test script, as part of the test script, text
in a document (e.g., a requirements document, etc.), and/or
the like.

[0094] In some implementations, similar to that described
above, test automation platform 210 may receive thousands,
millions, or billions of test scripts and/or lines of text. In
some implementations, test automation platform 210 may
process the test script and/or text using natural language
processing, text analysis, computational linguistics, machine
learning, and/or artificial intelligence to parse the test script
and/or text and identify a particular term, tag, and/or phrase
included in the test script and/or text.

[0095] In some implementations, when test automation
platform 210 processes the test script and/or the text, test
automation platform 210 may generate a set of words (e.g.,
a bag-of-words) for the test script and/or text that includes
terms, tags, and/or phrases of the test script and/or text.
Additionally, or alternatively, test automation platform 210
may remove stop words, identify root words of other words
(e.g., identify “process” as a root word of “processing,”
“processes,” etc.), replace particular words with known
synonyms, and/or the like. This permits efficient use of
terms, tags, and/or phrases of the test script and/or the text,
thereby conserving processing resources.

[0096] In this way, test automation platform 210 may
receive a test script associated with a test of software and/or
a device.

[0097] As further shown in FIG. 5, process 500 may
include determining whether a test artifact associated with
the test script is similar to another test artifact associated
with another test script (block 520). For example, test
automation platform 210 may determine whether a test
artifact associated with the test script is similar to another
test artifact for another test.

[0098] Insome implementations, test automation platform
210 may determine whether a test artifact associated with
the received test script is the same as another test artifact
associated with another test script. For example, test auto-
mation platform 210 may compare information identifying a
test artifact associated with a first test script and information
identifying another test artifact and may determine that the
test artifacts are the same when the comparison indicates a
match (e.g., indicating that the test artifacts are the same). In
this way, test automation platform 210 may automatically
identify whether two or more test artifacts are the same.
[0099] Insome implementations, test automation platform
210 may identify another test script when test automation
platform 210 determines that a test script is associated with
the same test artifact as the other test script. For example,
test automation platform 210 may identify the other test
script using a data structure that includes information iden-

US 2018/0189168 Al

tifying test artifacts and associated test scripts. In some
implementations, test automation platform 210 may select
the other test script to use (e.g., in combination with the
received test script) and/or may provide information for
display identifying the other test script, such as to permit a
user of client device 230 to select the other test script for use.
In this way, test automation platform 210 may identify
another test script based on being associated with the same
test artifact as the received test script, thereby increasing an
efficiency of identifying test scripts that could potentially be
used in combination.

[0100] Insome implementations, test automation platform
210 may determine whether a first test artifact is similar to
a second test artifact (e.g., rather than determining whether
the first and second test artifacts are the same). For example,
test automation platform 210 may determine whether a test
script and/or text associated with the first test artifact is
similar to a test script and/or text associated with a second
test artifact.

[0101] Insome implementations, test automation platform
210 may process a test script and/or text (e.g., to determine
whether the test artifacts are similar). For example, test
automation platform 210 may process a test script and/or
text associated with a test artifact (e.g., to determine whether
the test artifact is similar to another test artifact). In some
implementations, test automation platform 210 may process
the test script and/or text using a technique, as described
below.

[0102] Insome implementations, test automation platform
210 may determine a vector for a test artifact. For example,
test automation platform 210 may determine a vector for the
first test artifact using a term and/or a tag included in a test
script and/or text related to the first test artifact. In some
implementations, test automation platform 210 may deter-
mine a vector for the first test artifact and another vector for
the second test artifact. This permits easy comparison of sets
of terms and/or tags associated with different test artifacts,
thereby conserving processing resources.

[0103] Insome implementations, test automation platform
210 may determine a vector using a technique. For example,
test automation platform 210 may determine a vector using
a term frequency and inverse document frequency (tf-idf)
technique that generates a vector for a set of terms and/or
tags. Continuing with the previous example, test automation
platform 210 may determine the vector by determining a
score for various terms, phrases, operators, and/or the like
included in a test script and/or text associated with the test
artifact. For example, when determining the score, test
automation platform 210 may use a data structure that
includes various terms, phrases, operators, and/or the like
and corresponding scores. In some implementations, test
automation platform 210 may use the scores to generate a
vector. In some implementations, when generating the vec-
tor using the scores, test automation platform 210 may sum
the scores (e.g., for terms, phrases, etc. of a test artifact or
test script), multiply the scores, sum some scores and
subtract others, and/or the like to generate the vector.
[0104] In some implementations, when determining
whether two or more test artifacts are similar, test automa-
tion platform 210 may determine a similarity between two
vectors. In some implementations, test automation platform
210 may determine the similarity using a technique. For
example, test automation platform 210 may determine a
similarity between a vector for the first test artifact and

Jul. 5, 2018

another vector for a second test artifact using a cosine
similarity technique that generates a score indicating a
similarity between the vector for the first test artifact and the
vector for the second test artifact. Continuing with the
previous example, when using the cosine similarity tech-
nique, test automation platform 210 may compare scores for
various vectors and/or scores for terms, phrases, and/or
operators included in a test script and/or text of test artifacts
to determine whether the test artifacts are similar.

[0105] In some implementations, test automation platform
210 may determine whether two test artifacts are similar
based on a result of determining the similarity. For example,
test automation platform 210 may determine whether two
test artifacts are similar based on a score generated by the
cosine similarity technique satisfying a threshold. In this
way, test automation platform 210 may quickly and effi-
ciently determine whether two or more test artifacts are
similar, thereby conserving processing resources and/or
increasing an efficiency of comparing test artifacts.

[0106] In this way, test automation platform 210 may
determine whether a test artifact associated with a test script
is similar to another test artifact associated with another test
script for another test.

[0107] As further shown in FIG. 5, process 500 may
include performing an action related to the test script and/or
the test (block 530). For example, test automation platform
210 may perform an action related to the test script and/or
the test. In some implementations, test automation platform
210 may perform a test of software and/or a device using the
test script. For example, test automation platform 210 may
perform test steps of a test script to test software and/or a
device. Additionally, or alternatively, test automation plat-
form 210 may provide the test script to another device to
permit the other device to test software. This improves
testing of a software program by enabling test automation
platform 210 to manage testing across multiple devices.
[0108] Insome implementations, test automation platform
210 may select a test script associated with a test artifact
based on determining that the test artifact and another test
artifact are the same or similar. In some implementations,
test automation platform 210 may select the test script
randomly, based on a prior user selection (e.g., using
machine learning or artificial intelligence), based on a test
script having similar test steps as a test script associated with
the other test artifact, as determined in a manner similar to
that described above with respect to test artifacts, and/or the
like. In this case, test automation platform 210 may provide
information for display that identifies a test artifact and/or
test scripts associated with the test artifact, such as to permit
a user of client device 230 to select a test script associated
with the test artifact.

[0109] In this way, test automation platform 210 may
identify test scripts associated with the same or similar test
artifacts. This permits re-use of test scripts, thereby con-
serving processing and/or memory resources by reducing or
eliminating creation and/or storage of redundant test scripts.
[0110] Although FIG. 5 shows example blocks of process
500, in some implementations, process 500 may include
additional blocks, fewer blocks, different blocks, or differ-
ently arranged blocks than those depicted in FIG. 5. Addi-
tionally, or alternatively, two or more of the blocks of
process 500 may be performed in parallel.

[0111] FIG. 6 is a flow chart of an example process 600 for
identifying test steps of a test script that can be combined

US 2018/0189168 Al

into another test script. In some implementations, one or
more process blocks of FIG. 6 may be performed by test
automation platform 210. In some implementations, one or
more process blocks of FIG. 6 may be performed by another
device or a group of devices separate from or including test
automation platform 210, such as client device 230.

[0112] As shown in FIG. 6, process 600 may include
receiving a test script that includes a set of test steps
associated with a test of software and/or a device (block
610). For example, test automation platform 210 may
receive a test script that includes a set of test steps associated
with a test of software and/or a device. In some implemen-
tations, test automation platform 210 may receive the test
script in a manner similar to that described above with
respect to program code. In some implementations, a set of
test steps may include a set of instructions that cause
software and/or a device to perform an action. The set of test
steps may be defined using program code, written in text,
and/or the like.

[0113] In this way, test automation platform 210 may
receive a test script that includes a set of test steps associated
with a test of software and/or a device.

[0114] As further shown in FIG. 6, process 600 may
include processing the test script to identify a particular test
step included in the set of test steps (block 620). For
example, test automation platform 210 may process the test
script to identify a particular test step included in the set of
test steps.

[0115] In some implementations, test automation platform
210 may process the test script to parse the test script. For
example, test automation platform 210 may parse program
code and/or text of a test script to identify various test steps
included in the set of test steps. In some implementations,
test automation platform 210 may process the test script to
identify a term that identifies a test step. For example, test
automation platform 210 may identify, as an independent
test step, a clause or phrase that includes or begins with the
program code and/or text And I set, And I wait, And I click,
or And I select.

[0116] Additionally, or alternatively, test automation plat-
form 210 may process the test script to identify a character
that identifies a test step. For example, test automation
platform 210 may identify, as an independent test step, a
clause or phrase that ends with a; (i.e., a semi-colon), is
encompassed by { }, or contains one or more other special
characters associated with a test step by known practices or
conventions. In this way, test automation platform 210 may
quickly and efficiently identify a test step of a test script. In
addition, this conserves memory resources by reducing or
eliminating the need for test automation platform 210 to
store information identifying the test steps of a test script or
to receive information that identifies the test steps prior to
processing the test script.

[0117] In some implementations, test automation platform
210 may identify a particular test step of the set of test steps.
For example, test automation platform 210 may identify a
first test step, a second test step, etc. of a test script based on
processing the test script (e.g., based on identifying inde-
pendent test steps included in the test script). In this way, test
automation platform 210 may receive and process a test
script.

[0118] As further shown in FIG. 6, process 600 may
include determining whether the particular test step is
included in a threshold quantity of test scripts (block 630).

Jul. 5, 2018

For example, test automation platform 210 may determine
whether the particular test step is included in a threshold
quantity of other test scripts.

[0119] In some implementations, test automation platform
210 may identify a maximal substring of a test step. For
example, test automation platform 210 may identify a maxi-
mal substring of a string of characters of a test step that is
included in more than one test script. As another example,
test automation platform 210 may identify a maximal sub-
string of a logical block (e.g., an “and” logical block, an “or”
logical block, or another set of test steps that perform an
action) included in more than one test script. In some
implementations, a maximal substring may include the
longest string, or strings, that is a substring of; or is common
to, two or more strings. In some implementations, test
automation platform 210 may identify the maximal sub-
string of a test step by identifying various length strings of
program code and/or text of a test step.

[0120] In some implementations, when identifying a
maximal substring, test automation platform 210 may gen-
erate a suffix tree for strings of program code and/or text of
a test step. Additionally, or alternatively, test automation
platform 210 may parse program code and/or text of mul-
tiple test steps into various strings of characters with differ-
ent lengths and compare the various strings. In some imple-
mentations, test automation platform 210 may identify the
longest string of characters, or a string of characters with a
threshold quantity of characters, that is common to the
multiple test steps. In this way, test automation platform 210
may identify a maximal substring of a test step.

[0121] In some implementations, test automation platform
210 may determine whether a maximal substring of a test
step is included in a threshold quantity of test scripts. For
example, test automation platform 210 may compare the
maximal substring to program code and/or text of test steps
for other test scripts and determine whether the comparison
indicates a match. In some implementations, test automation
platform 210 may determine a quantity of times the com-
parison indicates a match and may determine whether the
quantity satisfies a threshold. In this way, test automation
platform 210 may identify a set of test steps included in
various test scripts that could potentially be combined into
a separate, combined test script.

[0122] This conserves memory resources by storing a
separate, combined test script that includes frequently used
test steps, rather than storing the same frequently used test
steps multiple times. In addition, this improves creation of
test scripts by reducing or eliminating redundant creation of
a test step for various test scripts.

[0123] In this way, test automation platform 210 may
determine whether a particular test step is included in a
threshold quantity of test scripts.

[0124] As further shown in FIG. 6, process 600 may
include performing an action related to the test script and/or
the set of test steps (block 640). For example, test automa-
tion platform 210 may perform an action related to the test
script and/or the set of test steps. In some implementations,
test automation platform 210 may perform a test of software
and/or a device. For example, test automation platform 210
may perform test steps of a test script to test software and/or
a device. Additionally, or alternatively, test automation plat-
form 210 may provide a test script to another device to
permit the other device to test software and/or a device. This

US 2018/0189168 Al

improves testing of a software program by enabling test
automation platform 210 to manage testing across multiple
devices.

[0125] In some implementations, test automation platform
210 may provide, for display, information identifying a set
of'test steps and/or test scripts in which a maximal substring
is included (e.g., via a display of client device 230). Addi-
tionally, or alternatively, test automation platform 210 may
send a message to client device 230 to notify a developer
that a maximal substring of a test script is included in a
threshold quantity of other test steps or test scripts. Addi-
tionally, or alternatively, test automation platform 210 may
generate a report that includes information identifying a set
of test steps in which a maximal substring is included and
information indicating a potential quantity of lines of pro-
gram code and/or memory resources that could be conserved
by combining the set of test steps into a separate, combined
test script.

[0126] In this way, test automation platform 210 may
perform an action related to a test step and/or a test script.

[0127] Although FIG. 6 shows example blocks of process
600, in some implementations, process 600 may include
additional blocks, fewer blocks, different blocks, or differ-
ently arranged blocks than those depicted in FIG. 6. Addi-
tionally, or alternatively, two or more of the blocks of
process 600 may be performed in parallel.

[0128] FIG. 7 is a diagram of an example implementation
700 described herein. As shown in FIG. 7, example imple-
mentation 700 may include test automation platform 210
and a web browser. As further shown in FIG. 7, test
automation platform 210 may include a test generation
framework that includes an integrated development envi-
ronment, an execution framework, and various applications
and/or modules.

[0129] As shown by reference number 710, a tester may
provide a test script to test automation platform 210. In some
implementations, the tester may input the test script in a
domain-specific language (DSL), such as a constrained
English-like language like Gherkin, using a DSL editor of an
integrated development environment. Additionally, or alter-
natively, the tester may use the DSL editor to upload a
program file that includes the test script.

[0130] As shown by reference number 720, test automa-
tion platform 210 may enforce one or more rules of the DSL
using a module and/or an application. In some implemen-
tations, test automation platform 210 may determine
whether the DSL provided by the tester satisfies a grammar
rule using a grammar module that specifies the manner in
which a test step can be written. Additionally, or alterna-
tively, the grammar module may identify tester inputs in the
test script and the actions to be performed on the inputs (e.g.,
which may be provided to the code generator module).

[0131] Insome implementations, test automation platform
210 may use a scoping and validation module to identify
prompts to provide for display to the tester based on the
received test script (e.g., scoping) and to determine whether
the test script satisfies other rules, such as data type match-
ing rules or unique identifier rules (e.g., validation). In this
way, test automation platform 210 improves automatic test-
ing by reducing or eliminating use of erroneous program
code. This conserves processing resources that would oth-
erwise be used to compile and/or execute erroneous program
code.

Jul. 5, 2018

[0132] As shown by reference numbers 730 and 740, test
automation platform 210 may generate Java code based on
the DSL program code of the received test script. In some
implementations, test automation platform 210 may gener-
ate Java code such that a result of executing the Java code,
or an action caused by execution of the Java code, is the
same as would have occurred with execution of the received
test script written in the DSL. Additionally, or alternatively,
when a tester makes changes to the test script, the code
generator module may automatically generate Java code to
record the changes. In this way, test automation platform 210
may receive first program code in a first programming
language (e.g., a DSL) and generate second program code in
a second programming language (e.g., Java). This improves
automatic testing by reducing an amount of technical skill
needed by a tester.

[0133] As shown by reference number 750, a dependen-
cies module may determine whether dependencies related to
the test generation framework are satisfied. For example, test
automation platform 210 may use the dependencies module
to determine whether software that is needed for other
modules to properly run are installed on test automation
platform 210 or that test automation platform 210 has
accesses to the needed software.

[0134] As shown by reference number 760, test automa-
tion platform 210 may use one or more applications of an
execution framework to execute the generated Java code.
For example, test automation platform 210 may use a
Selenium application, a TestNG application, a Jenkins appli-
cation, and/or the like, to execute the generated Java code.
As shown by reference number 770, when executed, the
Java code may cause test automation platform 210 to
perform an action using a web browser. For example, test
automation platform 210 may use the web browser to test
functionality of a web site or web-based system, such as
login functionality.

[0135] In this way, test automation platform 210 may
automatically test software and/or a device.

[0136] As indicated above, FIG. 7 is provided merely as
an example. Other examples are possible and may differ
from what was described with regard to FIG. 7.

[0137] Implementations described herein provide a test
automation platform that may receive a test script in a first
programming language and generate and/or identify pro-
gram code in a second programming language (e.g., to be
used to execute the test script or a portion of the test script).
Additionally, or alternatively, the test automation platform
may identify a test script that is similar to a received test
script. Additionally, or alternatively, the test automation
platform may identify a step of various test scripts that may
be combined into a single test script.

[0138] In this way, the test automation platform reduces
the amount of technical skill needed to create a test script by
reducing a quantity of programming languages that a tester
may have to know. Additionally, or alternatively, the test
automation platform reduces repetitious creation of test
scripts, thereby increasing the efficiency of creating test
scripts. Additionally, or alternatively, the test automation
platform conserves processing resources by reducing an
amount of program code that the test automation platform
and/or another device compiles/executes. Additionally, or
alternatively, the test automation platform conserves
memory resources by reducing a quantity of lines of pro-
gram code that the test automation platform and/or another

US 2018/0189168 Al

device stores. Additionally, or alternatively, the test automa-
tion platform may reduce an amount of program code
required to be written by a tester.
[0139] The foregoing disclosure provides illustration and
description, but is not intended to be exhaustive or to limit
the implementations to the precise form disclosed. Modifi-
cations and variations are possible in light of the above
disclosure or may be acquired from practice of the imple-
mentations.
[0140] As used herein, the term component is intended to
be broadly construed as hardware, firmware, and/or a com-
bination of hardware and software.
[0141] Some implementations are described herein in con-
nection with thresholds. As used herein, satisfying a thresh-
old may refer to a value being greater than the threshold,
more than the threshold, higher than the threshold, greater
than or equal to the threshold, less than the threshold, fewer
than the threshold, lower than the threshold, less than or
equal to the threshold, equal to the threshold, etc.
[0142] It will be apparent that systems and/or methods,
described herein, may be implemented in different forms of
hardware, firmware, or a combination of hardware and
software. The actual specialized control hardware or soft-
ware code used to implement these systems and/or methods
is not limiting of the implementations. Thus, the operation
and behavior of the systems and/or methods were described
herein without reference to specific software code—it being
understood that software and hardware can be designed to
implement the systems and/or methods based on the descrip-
tion herein.
[0143] Even though particular combinations of features
are recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
possible implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of possible implementations
includes each dependent claim in combination with every
other claim in the claim set.
[0144] No element, act, or instruction used herein should
be construed as critical or essential unless explicitly
described as such. Also, as used herein, the articles “a” and
“an” are intended to include one or more items, and may be
used interchangeably with “one or more.” Furthermore, as
used herein, the term “set” is intended to include one or more
items (e.g., related items, unrelated items, a combination of
related and unrelated items, etc.), and may be used inter-
changeably with “one or more.” Where only one item is
intended, the term “one” or similar language is used. Also,
as used herein, the terms “has,” “have,” “having,” or the like
are intended to be open-ended terms. Further, the phrase
“based on” is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.
What is claimed is:
1. A device, comprising:
one or more processors to:
receive information identifying a set of steps to per-
form,
the set of steps being related to a test of a program,
one or more steps, of the set of steps, being written
in a first programming language;
determine whether the set of steps is associated with a
first artifact that is similar to a second artifact asso-

Jul. 5, 2018

ciated with another set of steps based on the infor-
mation identifying the set of steps,
the first artifact identifying information related to the
test of the program and the second artifact iden-
tifying information related to another test of
another program;
determine whether two or more steps, of the set of
steps, can be combined into a combined set of steps
based on determining whether the set of steps is
associated with the first artifact that is similar to the
second artifact;
identify program code written in a second program-
ming language based on determining whether the
two or more steps, of the set of steps, can be
combined into the combined set of steps; and
perform an action related to the test of the program
based on identifying the program code.
2. The device of claim 1, where the one or more proces-
sors are further to:
determine whether the first artifact and the second artifact
are the same based on the information related to the test
identified by the first artifact and the information
related to the other test identified by the second artifact;
identify the other set of steps based on determining
whether the first artifact and the second artifact are the
same,
the other set of steps being associated with the second
artifact; and
where the one or more processors, when performing the
action, are to:
perform the action based on identifying the other set of
steps.
3. The device of claim 1, where the one or more proces-
sors are further to:
identify a term associated with the first artifact and
another term associated with the second artifact based
on the information related to the test identified by the
first artifact and the information related to the other test
identified by the second artifact;
determine whether the term and the other term are similar
based on identifying the term and the other term; and
determine whether the first artifact and the second artifact
are similar based on determining whether the term and
the other term are similar.
4. The device of claim 1, where the one or more proces-
sors are further to:
identify a maximal substring of the two or more steps
based on the information identifying the set of steps;
and
where the one or more processors, when determining
whether the two or more steps of the set of steps can be
combined into the combined set of steps, are to:
determine whether the two or more steps of the set of
steps can be combined into the combined set of steps
based on identifying the maximal substring of the
two or more steps.
5. The device of claim 1, where the one or more proces-
sors are further to:
process the two or more steps to identify one or more
logical blocks of the set of steps based on the infor-
mation identifying the set of steps; and
where the one or more processors, when determining
whether the two or more steps of the set of steps can be
combined into the combined set of steps, are to:

US 2018/0189168 Al

determine whether the two or more steps of the set of
steps can be combined into the combined set of steps
based on identifying the one or more logical blocks.
6. The device of claim 1, where the one or more proces-
sors are further to:
receive information identifying a browser to use during
the test of the program; and
where the one or more processors, when identifying the
program code, are to:
identify the program code based on the information
identifying the browser.
7. The device of claim 1, where the one or more proces-
sors, when performing the action, are to:
select the two or more steps based on determining that the
two or more steps can be combined into the combined
set of steps; and
store the two or more steps as the combined set of steps
based on selecting the two or more steps.
8. A method, comprising:
receiving, by a device, information identifying a first set
of instructions,
the first set of instructions identifying one or more
actions to perform to test a first program;
identifying, by the device, a second set of instructions that
can be used in association with the first set of instruc-
tions based on information related to a first test of the
first program and information related to a second test of
a second program,
the second set of instructions being related to testing
the second program,
the first test being similar to the second test;
identifying, by the device, multiple steps, of the first set
of instructions, that can be combined to form a third set
of instructions based on identifying the second set of
instructions that can be used in association with the first
set of instructions,
the third set of instructions to be used to test the first
program or to test a third program;
generating, by the device, program code in a first pro-
gramming language to perform the one or more actions
based on identifying the multiple steps of the first set of
instructions that can be combined to form the third set
of instructions,
the first programming language being different than a
second programming language used to write the first
set of instructions; and
performing, by the device, the one or more actions based
on generating the program code.
9. The method of claim 8, further comprising:
determining a first score for the first test based on the
information related to the first test and a second score
for the second test based on the information related to
the second test;
performing a comparison of the first score and the second
score based on determining the first score and the
second score;
determining that the first score and the second score are
similar based on a result of the comparison; and
where identifying the second set of instructions com-
prises:
identifying the second set of instructions based on
determining that the first score and the second score
are similar.

Jul. 5, 2018

10. The method of claim 9, further comprising:
determining a cosine similarity of the first score and the
second score based on determining the first score and
the second score; and
where determining that the first score and the second
score are similar comprises:
determining that the first score and the second score are
similar based on determining the cosine similarity of
the first score and the second score.
11. The method of claim 8, further comprising:
determining a measure of similarity between the infor-
mation related to the first test and the information
related to the second test based on receiving the infor-
mation identifying the first set of instructions;
determining whether the measure of similarity satisfies a
threshold based on determining the measure of simi-
larity; and
where identifying the second set of instructions com-
prises:
identifying the second set of instructions based on
determining whether the measure of similarity sat-
isfies the threshold.
12. The method of claim 8, further comprising:
determining a frequency of use of the multiple steps based
on the information identifying the first set of instruc-
tions;
determining whether the frequency of use satisfies a
threshold based on determining the frequency of use;
and
where identifying the multiple steps comprises:
identifying the multiple steps based on determining
whether the frequency of use satisfies the threshold.
13. The method of claim 8, further comprising:
processing the first set of instructions to identify one or
more steps of the first set of instructions based on
receiving the information identifying the first set of
instructions,
the one or more steps being identified by a particular
term or character, and where identifying the multiple
steps comprises:
identifying the multiple steps based on identifying the
one or more steps using the particular term or
character.
14. The method of claim 8, further comprising:
receiving a set of rules associated with the first set of
instructions, the first programming language, or the
second programming language;
determining whether the first set of instructions satisfies
the set of rules based on receiving the set of rules; and
where generating the program code comprises:
generating the program code based on determining
whether the first set of instructions satisfies the set of
rules.
15. A non-transitory computer-readable medium storing
instructions, the instructions comprising:
one or more instructions that, when executed by one or
more processors, cause the one or more processors to:
receive information identifying a test script,
the test script including one or more steps related to
a test of a program,
the one or more steps being written in a first pro-
gramming language;
determine whether the test script and another test script
are associated with similar artifacts based on receiv-
ing the information identifying the test script,

US 2018/0189168 Al

the similar artifacts including information associated
with different tests of different programs;
determine whether a plurality of steps, of the one or
more steps, can be combined into a set of steps based
on determining whether the test script and the other
test script are associated with the similar artifacts;
identify program code written in a second program-
ming language based on determining whether the
plurality of steps of the one or more steps can be
combined into the set of steps,
the first programming language and the second pro-
gramming language being different; and
perform an action related to the test script based on
identifying the program code.

16. The non-transitory computer-readable medium of
claim 15, where the one or more instructions, when executed
by the one or more processors, further cause the one or more
processors to:

process an artifact and another artifact to identify a

plurality of terms associated with the artifact and

another plurality of terms associated with the other

artifact based on receiving the information identifying

the test script,

the test script being associated with the artifact,

the other test script being associated with the other
artifact;

determine a vector for the artifact based on the plurality

of terms and another vector for the other artifact based
on the other plurality of terms based on processing the
artifact and the other artifact;

determine a cosine similarity between the vector and the

other vector based on determining the vector and the
other vector; and

where the one or more instructions, that cause the one or

more processors to determine whether the test script

and the other test script are associated with the similar

artifacts, cause the one or more processors to:

determine whether the test script and the other test
script are associated with the similar artifacts based
on determining the cosine similarity.

17. The non-transitory computer-readable medium of
claim 16, where the one or more instructions, that cause the
one or more processors to determine the vector and the other
vector, further cause the one or more processors to:

determine the vector or the other vector using a term-

frequency and inverse document frequency (tf-idf)
technique.

Jul. 5, 2018

18. The non-transitory computer-readable medium of
claim 15, where the one or more instructions, when executed
by the one or more processors, further cause the one or more
processors to:

process the test script to identify at least one logical block

of the test script based on receiving the information

identifying the test script,

the at least one logical block including at least one step
of the one or more steps; and

where the one or more instructions, that cause the one or

more processors to determine whether the plurality of
steps of the one or more steps can be combined into the
set of steps, cause the one or more processors to:
determine whether the plurality of steps of the one or
more steps can be combined into the set of steps
based on identifying the at least one logical block.

19. The non-transitory computer-readable medium of
claim 18, where the one or more instructions, when executed
by the one or more processors, further cause the one or more
processors to:

process the at least one logical block to identify a maximal

substring of the at least one logical block based on
identifying the at least one logical block; and

where the one or more instructions, that cause the one or

more processors to determine whether the plurality of

steps of the one or more steps can be combined into the

set of steps, cause the one or more processors to:

determine whether the plurality of steps of the one or
more steps can be combined into the set of steps
based on identifying the maximal substring.

20. The non-transitory computer-readable medium of
claim 19, where the one or more instructions, when executed
by the one or more processors, further cause the one or more
processors to:

determine whether the maximal substring is included in a

threshold quantity of test scripts based on identifying
the maximal substring; and

where the one or more instructions, that cause the one or

more processors to determine whether the plurality of
steps of the one or more steps can be combined into the
set of steps, cause the one or more processors to:
determine whether the plurality of steps of the one or
more steps can be combined into the set of steps
based on determining whether the maximal substring
is included in the threshold quantity of test scripts.

#* #* #* #* #*

