wO 20207114799 A1 |0 0000 KO Y000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

\
(19) World Intellectual Property =~
Organization O OO0 0 0
International Bureau / (10) International Publication Number
(43) International Publication Date = WO 2020/114799 A1
11 June 2020 (11.06.2020) WIRPOIPCT
(51) International Patent Classification: JAPAN LIMITED, 19-21 NIHONBASHI-HAKOZAKI-
GO6N 10/00 (2019.01) GO6F 9/54 (2006.01) CHO, CHUO-KU, Tokyo 103-8510 (JP).
(21) International Application Number: (74) Agent: WILLIAMS, Julian; [BM United Kingdom Lim-
PCT/EP2019/082191 ited, Intellectual Property Law, Hursley Park, Winchester
(22) International Filing Date: Hampshire SO21 2JN (GB).
22 November 2019 (22.11.2019) (81) Designated States (unless otherwise indicated, for every
- . . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
30) Priority Data: Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
o 1;;;‘11 Z:4621 v 06 D ber 2018 (06.12.2018) US HR, HU, ID, IL, IN, IR, IS, JO, J, KE, KG, KH, KN, KP,
; ecember 2018 (06.12.2018) KR, KW.KZ, LA,LC, LK. LR, LS, LU, LY, MA, MD, ME.,
(71) Applicant: INTERNATIONAL BUSINESS MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
MACHINES CORPORATION [US/US]; New Orchard OM, PA, FE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
Road, Armonk, New York 10504 (US). SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
X TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour, (84) Designated States (unless otherwise indicated, for every
Portsmouth Hampshire PO6 3AU (GB). kind of regional protection available). ARIPO (BW, GH,
. : . GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
(72) Inventors: HORII, Hiroshi; IBM JAPAN LIMIT- UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
ED, 19-21 NIHONBASHI-HAKOZAKICHO, CHUO-

KU, Tokyo 103-8510 (JP). CHIBA, Hitomi;

IBM

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: CONTROLLED NOT GATE PARALLELIZATION IN QUANTUM COMPUTING SIMULATION

QUANTUM A
CIRCUIT -
DATA 412 .| PROCESSING
"| COMPONENT 406
REPLICATION | _ |
COMPONENT 402 | =
PARALLELIZATION| ., MEMORY 408
COMPONENT 404 |
<—>| STORAGE 410
 J OUTPUT DATA
414
SYSTEM 400

(57) Abstract: Techniques facilitating controlled NOT gate parallelization in quantum computing simulation are provided. A system
can comprise a memory that stores computer executable components and a processor that executes the computer executable components
stored in the memory. The computer executable components can comprise a selector component that can select a first qubit and a
second qubit. The first qubit canbe a control qubit. The computer executable components can also comprise a parallelization component
that can reorder the first qubit with the second qubit and a replication component that can simulate a controlled NOT gate during the

reordering by the parallelization component.

[Continued on next page]

WO 2020/114799 A | [IN 1]} 00P 000 A 00O

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2020/114799 PCT/EP2019/082191

CONTROLLED NOT GATE PARALLELIZATION IN QUANTUM COMPUTING SIMULATION

BACKGROUND

[0001] Simulation of quantum computations can be challenging to directly simulate due to the size of the quantum
computing systems, even with the use of powerful computers. For example, Smelyanskiy1 et al. discusses
“implementation of a quantum simulator on a classical computer, that can simulate general single qubit gates and
two-qubit controlled gates.” See Smelyanskiy1 et al., "gHIPSTER: The Quantum High Performance Software
Testing Environment," 2016, arXiv:1601.07195v2 [quant-ph], Abstract. Further, Smelyanskiy1 et al. discusses
performance of “a number of single- and multi-node optimizations, including vectorization, multi-threading, cache

blocking, as well as overlapping computation with communication.” See id.

[0002] However, these simulations can be inefficient as it relates to the execution time (e.g., the time needed to
perform the simulated computation). These simulations can also be inefficient due to the amount of storage space

needed. Accordingly, opportunities exist to improve quantum computing simulations.

SUMMARY

[0003] The following presents a summary to provide a basic understanding of one or more embodiments of the
invention. This summary is not intended to identify key or critical elements, or delineate any scope of the particular
embodiments of the invention or any scope of the claims. Its sole purpose is to present concepts in a simplified
form as a prelude to the more detailed description that is presented later. In embodiments of the invention
described herein, systems, computer-implemented methods, apparatuses, and/or computer program products that

facilitate controlled NOT gate parallelization in quantum computing simulation are provided.

[0004] According to an embodiment of the invention, a system can comprise a memory that stores computer
executable components and a processor that executes the computer executable components stored in the memory.
The computer executable components can comprise a replication component that simulates a controlled NOT gate
during a qubit-reordering. The computer executable components can also comprise an analysis component that
performs memory access balancing based on the controlled NOT gate being simulated by the replication
component during the qubit-reordering. Thus, the advantage of mitigating and/or reducing fragmented access of a
quantum memory can be provided. Further, another advantage can be that inefficiency of a thread locality can be

mitigated and/or reduced.

[0005] According to another embodiment of the invention, a computer-implemented method can comprise
simulating, by a system operatively coupled to a processor, a controlled NOT gate during a qubit-reordering. The

computer-implemented method can also comprise performing, by the system, a memory access balancing based

WO 2020/114799 PCT/EP2019/082191
2

on simulating the controlled NOT gate during the qubit-reordering. Thus, the benefits of mitigating and/or reducing

inefficient thread locality and/or fragmented access of a quantum memory can be provided.

[0006] According to a further embodiment of the invention, a computer program product that facilitates quantum
computing simulation of a controlled NOT gate is provided herein. The computer program product can comprise a
computer readable storage medium having program instructions embodied therewith. The program instructions can
be executable by a processor to cause the processor to simulate the controlled NOT gate during a qubit-reordering.
The program instructions can also cause the processor to perform memory access balancing based on the
controlled NOT gate being simulated during the qubit-reordering. Thus, the advantage of providing mitigation
and/or reduction of fragmented access of a quantum memory can be realized. Further, the advantage of providing

mitigation and/or reduction of an inefficient thread locality can be realized.

[0007] Another embodiment of the invention relates to a method that can comprise selecting, by a system
operatively coupled to a processor, a first qubit and a second qubit, wherein the first qubit is a control qubit. The
method can also comprise reordering, by the system, the first qubit with the second qubit. A controlled NOT gate
can be simulated during the reordering. Advantages of such a method include the migration and/or reduction of

fragmented access of a quantum memory and/or the mitigation and/or reduction of inefficient thread locality.

[0008] Yet another embodiment of the invention relates to a computer program product that facilitates
improvement of a quantum computing simulation of a controlled NOT gate while avoiding unbalanced memory
access of a control qubit, the computer program product comprising a computer readable storage medium having
program instructions embodied therewith, the program instructions are executable by a processor to cause the
processor o select the control qubit and a non-control qubit, wherein the non-control qubit and the control qubit are
different qubits. The program instructions can also cause the processor to reorder the control qubit with the non-
control qubit and simulate a controlled NOT gate while the control qubit is reordered with the non-control qubit. An
advantage of such a computer program product is that inefficient thread locality and/or fragmented access of a

guantum memory can be mitigated and/or reduced.

DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1A is a schematic representation of a non-uniform memory access architecture and cache line that

comprises a balanced memory access where each thread accesses local memory.

[0010] FIG. 1B is a schematic representation of a non-uniform memory access architecture and cache line that

comprises an unbalanced memory access due to on inefficient thread locality.

[0011] FIG. 1C is a schematic representation of a non-uniform memory access architecture and cache line that

WO 2020/114799 PCT/EP2019/082191
3

comprises an unbalanced memory access due to fragmented access.

[0012] FIG. 2 is a schematic representation of a result of a controlled NOT gate simulation.

[0013] FIG. 3is a bit-reordering example in accordance with an embodiment of the invention.

[0014] FIG. 4 is a block diagram of a system that facilitates controlled NOT gate parallelization in quantum

computing simulation in accordance with an embodiment of the invention.

[0015] FIG. 5is a block diagram of a system that implements selection of qubits for memory access balancing in

accordance with an embodiment of the invention.

[0016] FIG. 6 is a flow diagram of a computer-implemented method that facilitates controlled NOT gate

parallelization in quantum computing simulation in accordance with an embodiment of the invention.

[0017] FIG. 7 is a flow diagram of a computer-implemented method that facilitates selecting one or more bits to

facilitate qubit-reordering in accordance with an embodiment of the invention.

[0018] FIG. 8 is a flow diagram of a computer-implemented method that facilitates evaluation of a memory access

balancing attempt in accordance with an embodiment of the invention.

[0019] FIG. 9is a flow diagram of a computer-implemented method that facilitates controlled NOT gate

parallelization in quantum computing simulation in accordance with an embodiment of the invention.

[0020] FIG. 10 is a block diagram of an operating environment in which embodiments of the invention can be

facilitated.

DETAILED DESCRIPTION

[0021] The following detailed description is merely illustrative and is not intended to limit embodiments of the
invention and/or application or uses thereof. Furthermore, there is no intention to be bound by any expressed or
implied information presented in the preceding Background or Summary sections, or in the Detailed Description

section.

[0022] Embodiments of the invention are now described with reference to the drawings, wherein like referenced
numerals are used to refer to like elements throughout. In the following description, for purposes of explanation,

numerous specific details are set forth in order to provide a more thorough understanding of the embodiments of

WO 2020/114799 PCT/EP2019/082191
4

the invention. It is evident, however, in various cases, that the embodiments of the invention can be practiced

without these specific details.

[0023] In quantum computing, a controlled NOT gate (CNOT or C-NOT) is a quantum gate that can be simulated
to various degrees of accuracy using a combination of CNOT gates and single qubit rotations. A quantum gate (or
quantum logic gate) is a basic quantum circuit that operates on a small number of qubits. Quantum gates are

reversible gates, and are the building blocks of a quantum circuit.

[0024] State of g-qubits of a quantum computer is represented by a 29 sized array of complex types. An index of

the array is represented with binary format and a probability of 0 of i-th qubit is calculated complex values where i-th
bit (an order is from right to left) of an index is 0. For example, a state of 4 qubits is represented with an array of 16
complex values and a probability of 0 of 2nd qubit is calculated with complex values of 0000, 0001, 0100, 0101,
1000, 1001, 1100, and 1101th in the array (all of the 2nd binary is 0 in these indexes).

[0025] Quantum gates can be represented by unitary matrices. Various quantum gates can operate on spaces of
one or two qubits. The quantum gates can be described by 27 x 27 sized unitary matrices. The variables on which
the gate acts upon (e.g., quantum states) are vectors in 27 complex dimensions where n is the number of qubits on
which the gate acts upon (e.g., the number of qubits of the variable). Controlled gates act on two qubits, where one

qubit acts as a control for an operation.

[0026] Simulation of the CNOT could produce unbalanced memory accesses from the perspective of a Non-
Uniform Memory Access (NUMA) architecture and cache line. For example, an unbalanced memory access could

be based on an inefficient thread locality and/or a fragmented access.

[0027] In further detail, a CNOT can modify half of the states in quantum computing simulation. A control bit, gc,

can determine a modified area. A transfer bit, qi, can determine what states are swapped. By being aware with

NUMA architecture, respective threads can frequently access states allocated in its NUMA node. This can be

express as the thread has affinity to a NUMA node. A too high ge and/or a low gc can cause inefficient memory
access in its simulation. For example, if gc is high, memory access can become unbalanced. In another example,

if e is low, memory access can become fragmented.

[0028] FIG. 1A illustrates a schematic representation 100 of a NUMA architecture and cache line that comprises a
balanced memory access where each thread accesses local memory. In this example, memory allocation is
between NUMAO and NUMA1. For the example illustrated, there can be thirty-two states, and this is a five-qubit
example. To simulate a quantum computer, an array of complex types can be utilized and, for the example

illustrated, there are thirty-two quantum complex values used to represent the five-qubit quantum computer. As

WO 2020/114799 PCT/EP2019/082191
5
illustrated, the first set of boxes 102 (e.g., the first sixteen states illustrated) represent NUMAQ and the second set
of boxes 104 (e.g., the second sixteen states illustrated) represent NUMA1. The boxes can comprise respective

complex values. For example, the first box has a complex value of 00001.

[0029] Thread affinity for NUMAQO is represented by the first set of arrows 106 and thread affinity for NUMA1 is

represented by the second set of arrows 108. Further, cache lines are represented by arrows 110.

[0030] The CNOT operation can utilize two qubits. For the CNOT operation, half of the states can be swapped,
for example. The following equation can be utilized to swap the qubits, where CX is the CNOT gate, and g is a

qubit.

CX qa] q[b]: If a-th bit is 1, swap b-th bit
Equation 1.

[0031] Using the above equation for FIG. 1A results in CX q[3] q[2]. Accordingly, the one or more threads of FIG.

1A access local memory, which comprises balanced memory access.

[0032] FIG. 1B illustrates a schematic representation 112 of a NUMA architecture and cache line that comprises
an unbalanced memory access due to on inefficient thread locality. Using Equation 1 results in CX q[4] q[2] for FIG.
1B, which creates the problem of an inefficient thread locality. This result is due to gc being too high (e.g., 4 in this
example). In this case, the thread for NUMAO (e.g., NUMAO hardware) is always accessing the state of NUMA1, as
represented by the first set of arrows 114. A memory value that accesses a remote memory node, as illustrated,
takes longer to access the memory than the case where local memory access is being performed (as in FIG. 1A).
Accordingly, FIG. 1B has a slow memory access. A solution provided with the various aspects discussed herein is
that the qubit-reordering minimizes and/or reduces the inefficiency a thread locality, resulting in a more efficient

thread locality.

[0033] FIG. 1C illustrates a schematic representation 116 of a NUMA architecture and cache line that comprises
an unbalanced memory access due to fragmented access. In the case of FIG. 1C, using Equation 1 results in CX
q[0] g[2] as represented by the four sets of arrows, 118-124. In this situation, gcis too low (e.g., 0 in this example),

which causes the problem of fragmented access. A solution provided with the various aspects discussed herein is

that the qubit-reordering minimizes and/or reduces fragmented access of a quantum memory.

[0034] FIG. 2 illustrates a schematic representation 200 of a result of a controlled NOT gate simulation. Target
bits 202 (e.g., 30 target bits numbered 0 to 29) are represented on the X axis, control bits 204 (e.g., 30 control bits

numbered 0 to 29) are represented on the Z axis, and elapsed time 206 (in seconds) is represented on the Y axis.

WO 2020/114799 PCT/EP2019/082191
6

The schematic representation is of a 30 qubit simulation having 4 NUMA nodes and 128 bytes cacheline.

[0035] Inefficient thread locality, as discussed with respect to FIG. 1B is illustrated within box 208. This problem
can be caused based on the 30 control bits being less than or equal to log2(#NUMA) or 30-Control-bit <=
log2(#NUMA). The invention solves the problem of inefficient thread locality by implementing qubit-reordering for
quantum computing, to avoid unbalanced memory access while simulating a CNOT gate and while mitigating

and/or reducing inefficient thread locality, resulting in a more efficient thread locality.

[0036] The problem of fragmented access, as discussed with respect to FIG. 1C is illustrated within box 210.
This can be caused based on the control bit being less than log2(cacheline size) or Control-bit < log2(cacheline
size). The invention solves the problem of fragmented access by implementing qubit-reordering for quantum
computing, to avoid unbalanced memory access while simulating CNOT gate and while mitigating and/or reducing

fragmented access of a quantum memory.

[0037] The various aspects discussed herein can change the quantum register allocation to minimize fragmented
access and inefficient thread locality. For example, FIG. 3 illustrates a bit-reordering example in accordance with

an embodiment of the invention.

[0038] lllustrated at 300 is a first quantum register allocation. Applied to a first qubit (e.g., bit index 0) can be a
first gate, which is a first X-gate 302; a second gate, which is a CNOT gate 304; a third gate, which is a second X-
gate 306, and a first measure 308. A second measure 310 can be on a second qubit (e.g., bit index 1). lllustrated
at 312 is a second quantum register allocation, which is a reallocation (or a reordering) of the first quantum register

allocation. For example, the first qubit and the second qubit can be swapped.

[0039] As an example, the following simple algorithm can be utilized for bit reordering. Qubits can be randomly
allocated in the register and the number of inefficient memory states can be calculated. The minimum number of
inefficient memory access can be determined and qubit reordering can be performed. A determination can be
made as to be most efficient qubit reordering. It is noted that although an example algorithm has been descried,

other algorithms can be utilized, and the disclosed aspects are not limited to this example.

[0040] In quantum computing, when a quantum register is measured, its state (0 or 1) to a classical register.
Even if runtime changes allocation of qubits in a quantum circuit, results of the circuits are equivalent by keeping
allocation of classical registers. Embodiments described herein comprise systems, computer-implemented
methods, and computer program products that can facilitate CNOT parallelization. For example, as discussed
herein, bit-reordering can be performed to minimize control-qubits which are equal or higher than (# of qubits) -
log2(# of NUMA nodes). The bit-reordering discussed herein can additionally, or alternatively, be performed to

minimize control-qubits that are lower than log2(# of NUMA nodes).

WO 2020/114799 PCT/EP2019/082191
7

[0041] FIG. 4 is a block diagram of a system 400 that facilitates controlled NOT gate parallelization in quantum
computing simulation in accordance with an embodiment of the invention. Aspects of systems (e.g., the system
400 and the like), apparatuses, or processes explained in this disclosure can constitute machine-executable
component(s) embodied within machine(s), e.g., embodied in one or more computer readable mediums (or media)
associated with one or more machines. Such component(s), when executed by the one or more machines, e.g.,
computer(s), computing device(s), virtual machine(s), etc. can cause the machine(s) to perform the operations

described.

[0042] The system 400 can be any type of component, machine, device, facility, apparatus, and/or instrument that
comprises a processor and/or can be capable of effective and/or operative communication with a wired and/or
wireless network. Components, machines, apparatuses, devices, facilities, and/or instrumentalities that can
comprise the system 400 can include tablet computing devices, handheld devices, server class computing
machines and/or databases, laptop computers, notebook computers, desktop computers, cell phones, smart
phones, consumer appliances and/or instrumentation, industrial and/or commercial devices, hand-held devices,

digital assistants, multimedia Internet enabled phones, multimedia players, and the like.

[0043] The system 400 can be a quantum computing system associated with technologies such as, but not
limited to, quantum circuit technologies, quantum processor technologies, quantum computing technologies,
artificial intelligence technologies, medicine and materials technologies, supply chain and logistics technologies,
financial services technologies, and/or other digital technologies. The system 400 can employ hardware and/or
software to solve problems that are highly technical in nature, that are not abstract and that cannot be performed as
a set of mental acts by a human. Some of the processes performed can be performed by one or more specialized
computers (e.g., one or more specialized processing units, a specialized computer with a quantum computing

component, etc.) to carry out defined tasks related to machine learning.

[0044] The system 400 and/or components of the system 400 can be employed to solve new problems that arise
through advancements in technologies mentioned above, computer architecture, and/or the like. The system 400
can provide technical improvements to quantum computing systems, quantum circuit systems, gquantum processor
systems, artificial intelligence systems, and/or other systems. The system 400 can also provide technical
improvements to a quantum processor (e.g., a superconducting quantum processor) by improving processing
performance, processing efficiency, processing characteristics, timing characteristics, andfor power efficiency of the

quantum processor.

[0045] The system 400 can comprise a replication component 402, a parallelization component 404, a processing
component 406, a memory 408, and/or a storage 410. The memory 408 can store computer executable
components and instructions. The processing component 406 (e.g., a processor) can facilitate execution of the

instructions (e.g., computer executable components and corresponding instructions) by the replication component

WO 2020/114799 PCT/EP2019/082191
8

402, the parallelization component 404, and/or other system components. One or more of the replication
component 402, the parallelization component 404, the processing component 406, the memory 408, and/or the
storage 410 can be electrically, communicatively, and/or operatively coupled to one another to perform one or more

functions of the system 400.

[0046] The replication component 402 can receive, as input data, quantum circuit data 412. For example, the
quantum circuit data 412 can be a machine-readable description of a quantum circuit. The quantum circuit can be a
model for one or more quantum computations associated with a sequence of quantum gates. In one example, the
quantum circuit data can include textual data indicative of a text-format language (e.g., a QASM text-format
language) that describes a quantum circuit. For instance, the textual data can, for example, textually describe one

or more qubit gates of a quantum circuit associated with one or more qubits.

[0047] Based, at least in part, on the input data (e.g., the quantum circuit data 412), the replication component
402 can simulate a controlled NOT gate (e.g., the CNOT gate 304) during a qubit-reordering. Further, the
parallelization component 404 can perform memory access balancing based on the controlled NOT gate being
simulated by the replication component 402 during the qubit-reordering. The parallelization component 404 can
output, as output data 414, a result of the memory access balancing. The parallelization component 404 can
perform the memory access balancing to reduce and/or minimize a fragmented access of a quantum memory (as
discussed with respect to FIG. 1C and FIG. 2). Additionally, or alternatively, implementations, the parallelization
component 404 can perform the memory access balancing to reduce an/or minimize an inefficient thread locality
(as discussed with respect to FIG. 1B and FIG. 2).

[0048] The parallelization component 404 can perform the memory access balancing and can generate the output
data 414 based on classifications, correlations, inferences and/or expressions associated with principles of artificial
intelligence. For instance, the parallelization component 404, as well as other system components, can employ an
automatic classification system and/or an automatic classification process to determine which qubit to select as a
control bit, which qubit to select as a target bit, when to select one or more other bits as the control bit and/or the
target bit, whether the memory access balancing was successful and so on. In one example, the parallelization
component 404 can employ a probabilistic and/or statistical-based analysis (e.g., factoring into the analysis utilities
and costs) to learn and/or generate inferences with respect to selection of the one or more qubits and
corresponding balancing that should be applied to the one or more qubits. In an aspect, the parallelization
component 404 can comprise an inference component (not shown) that can further enhance automated aspects of
the parallelization component 404 utilizing in part inference-based schemes to facilitate learning and/or generating
inferences associated with the selection of qubits and/or a result of the memory access balancing in order to
achieve reduced and/or minimized fragmented access of a quantum memory and/or reduced and/or minimized

thread locality.

WO 2020/114799 PCT/EP2019/082191
9

[0049] The parallelization component 404 can employ any suitable machine-learning based techniques,
statistical-based techniques, and/or probabilistic-based techniques. For example, the parallelization component
404 can employ expert systems, fuzzy logic, SVMs, Hidden Markov Models (HMMs), greedy search algorithms,
rule-based systems, Bayesian models (e.g., Bayesian networks), neural networks, other non-linear training
techniques, data fusion, utility-based analytical systems, systems employing Bayesian models, etc. In another
aspect, the parallelization component 404 can perform a set of machine learning computations associated with
qubit selection and/or memory access balancing. For example, the parallelization component 404 can perform a
set of clustering machine learning computations, a set of logistic regression machine learning computations, a set of
decision tree machine learning computations, a set of random forest machine learning computations, a set of
regression tree machine learning computations, a set of least square machine learning computations, a set of
instance-based machine learning computations, a set of regression machine learning computations, a set of
support vector regression machine learning computations, a set of k-means machine learning computations, a set
of spectral clustering machine learning computations, a set of rule leaming machine learning computations, a set of
Bayesian machine learning computations, a set of deep Boltzmann machine computations, a set of deep belief
network computations, and/or a set of different machine learning computations to determine a manner of memory

access balancing and/or a result of the memory access balancing.

[0050] It is to be appreciated that the system 400 (e.g., the replication component 402 and/or the parallelization
component 404, as well as other system components) performs a qubit selection, a memory access balancing (or
rebalancing) and/or generates a result of the memory access balancing at substantially the same time as the
replication component 402 simulates a controlled NOT gate during a qubit-reordering, which cannot be performed
by a human (e.qg., is greater than the capability of a single human mind). For example, an amount of data
processed, a speed of data processed, and/or data types of data processed by the system 400 (e.g., the replication
component 402 and/or the parallelization component 404) over a certain period of time can be greater, faster, and
different than an amount, speed, and data type that can be processed by a single human mind over the same
period of time. The system 400 (e.g., the replication component 402 and/or the parallelization component 404) can
also be fully operational towards performing one or more other functions (e.g., fully powered on, fully executed, etc.)
while also performing the above-referenced quantum circuit analysis and/or pulse signal generation process.
Moreover, output data 414 generated and coordinated by the system 400 (e.g., the replication component 402
and/or the parallelization component 404) can include information that is impossible to obtain manually by a user.
For example, a type of information included in the quantum circuit data 412, a variety of information associated with
the quantum circuit data 412, and/or optimization of the quantum circuit data 412 utilized to facilitate the memory
access balancing and/or to generate and output the output data 414 can be more complex than information that can

be obtained manually and processed by a user.

[0051] FIG. 5is a block diagram of a system 500 that implements selection of qubits for memory access

balancing in accordance with an embodiment of the invention.

WO 2020/114799 PCT/EP2019/082191
10
[0052] The system 500 can comprise one or more of the components and/or functionality of the system 400, and

vice versa. The various aspects discussed herein can be utilized to improve quantum computing simulation of a
CNOT gate to avoid (e.g., mitigate and/or reduce) unbalanced memory access of a ge (control gbit or qubit) and to

improve cache hits of g: (target gbit) in a computer system having N number of NUMA-nodes.

[0053] The system 500 can comprise a selector component 502 that can select a first bit and a second bit for the
qubit-reordering. The first bit can be a control bit. In an example, the selector component 502 can select the first
bit based on a determination that the first bit is a bit that is equal to or higher than a sum comprising a number of
qubits less a binary logarithm (log2) of a number of non-uniform memory access nodes. In another example, the
selector component 502 can select the first bit based on a determination that the first bit is a bit that is less a binary
logarithm (log2) of a number of non-uniform memory access nodes. In yet another example, the selector
component 502 can select the second bit based on a determination that the second bit is different from the first bit

and is not a target bit with the first bit as the control bit. The selector component 502 can also select other qubits.

[0054] The system 500 can also comprise an evaluation component 504 that can determine whether the memory
access balancing performed by the parallelization component 404 was successful or was not successful. Thus, the
evaluation component 504 can determine whether there was a memory access improvement, or whether there was
a lack of memory access improvement. For example, the evaluation component 504 can analyze the memory
access balancing to determine if a reduction and/or minimization of control qubits which are equal to or higher than
a sum comprising a number of qubits less a first binary logarithm (log2) of a number of non-uniform memory access
nodes was achieved. In another example, the evaluation component 504 can analyze the memory access
balancing to determine if a reduction and/or minimization of control qubits, which are less than a second binary

logarithm (log2) of the number of non-uniform memory access nodes was achieved.

[0055] Also included in the system 500 can be an arrangement component 506 that can implement the qubit-
reordering for quantum computing, wherein the arrangement component 506 can reorder a first bit with a second
bit. Further, based on a determination by the evaluation component 504 that the qubit reordering and/or memory
access balancing was successful (e.g., the above results were achieved), the arrangement component 506 can
reorder the first bit and/or the second bit with a third bit (and/or subsequent bits). For example, the evaluation
component 504 (or another system component) can determine that there are more qubits that should be reordered
and, thus, the third bit (and/or subsequent bits) can be reordered, as discussed herein, until there are no additional

qubits that should be reordered, as determined by the evaluation component 504 (or another system component).

[0056] Further, based on the evaluation component 504 determining there was a memory access improvement,
the selector component 502 can select another qubit as the control qubit or as the target qubit. The parallelization
component 404 can perform another memory access balancing based on the CNOT gate being simulated by the

replication component 402 during a second (or subsequent) qubit-reordering.

WO 2020/114799 PCT/EP2019/082191
11

[0057] If the determination by the evaluation component 504 is that the qubit reordering and/or memory access
balancing was not successful (e.g., the above results were not achieved), a reversal component 508 can revert the

(most recent) qubit-reordering.

[0058] Further, based on the evaluation component 504 determining there was a lack of memory access
improvement, the selector component 502 can select another qubit as the control qubit or as the target qubit. The
parallelization component 404 can perform another memory access balancing based on the CNOT gate being
simulated by the replication component 402 during a second (or subsequent) qubit-reordering. As discussed
above, the evaluation component 504 (or another system component) can determine that there are more qubits that
should be reordered and, thus, the third bit (and/or subsequent bits) can be reordered, as discussed herein, until
there are no additional qubits that should be reordered, as determined by the evaluation component 504 (or another

system component).

[0059] FIG. 6 is a flow diagram of a computer-implemented method 600 that facilitates controlled NOT gate

parallelization in quantum computing simulation in accordance with an embodiment of the invention.

[0060] At 602 of the method 600, a system operatively coupled to a processor can simulate a controlled NOT
gate during a qubit-reordering (e.g., via the replication component 402). Further, at 604 of the method 600, the
system can perform a memory access balancing based on the simulating the controlled NOT gate during the qubit-
reordering (e.g., via the parallelization component 404). The memory access balancing can minimize fragmented
access of a quantum memory. Additionally, or alternatively, the memory access balancing can minimize a thread

locality.

[0061] FIG. 7 is a flow diagram of a computer-implemented method 700 that facilitates selecting one or more bits

to facilitate qubit-reordering in accordance with an embodiment of the invention.

[0062] The method 700 begins, at 702, when a system comprising a processor ¢an select a first bit and at least a
second bit (e.g., via the selector component 502). The first bit and at least the second bit can be selected for qubit-

reordering and the first bit can be a control bit according to various implementations.

[0063] In an example, selection of the first bit can be based on a determination that the first bit is a bit that is
equal to or higher than a sum comprising a number of qubits less a binary logarithm (log2) of a number of non-
uniform memory access nodes. In another example, selection of the first bit can be based on a determination that
the first bit is a bit that is less a binary logarithm (log2) of @ number of non-uniform memory access nodes. Ina
further example, selection of the first bit can be based on a determination that the second bit is different from the

first bit and is not a target bit with the first bit as the control bit.

WO 2020/114799 PCT/EP2019/082191
12

[0064] The method 700 continues, at 704, when the system can simulate a controlled NOT gate during a qubit
reordering (e.g., via the replication component 402). Further, at 706 of the method 700, the system can perform a
memory access balancing (e.g., via the parallelization component 404). During the memory access balancing, the

controlled NOT gate can be simulated.

[0065] FIG. 8 is a flow diagram of a computer-implemented method 800 that facilitates evaluation of a memory

access balancing attempt in accordance with an embodiment of the invention.

[0066] The method 800 starts, at 802, when a system operatively coupled to a processor simulates a controlled
NOT gate during a first qubit-reordering (e.g., via the replication component 402). Further, at 804, the system can
perform a first memory access balancing based on the simulating the controlled NOT gate during the first qubit-

reordering (e.g., via the parallelization component 404).

[0067] A determination can be made, at 806 of the method 800, whether the first memory access balancing was
successful (e.g., via the evaluation component 504). If the determination is that the first memory access balancing
was not successful (“NO”), at 808 the system can revert the first qubit-reordering (e.g., via the reversal component
508). If the determination is that the first memory access balancing was successful (YES”), or after the reversion
at 806, the method 800 can continue, at 810, and the system can simulate the controlled NOT gate during a second

qubit reordering (e.g., via the parallelization component 404).

[0068] The method 800 can continue, at 812, with a determination whether the second memory access balancing
was successful (e.g., via the evaluation component 504). If not successful (“NO”), the method 800 can return to
806 and can revert the second qubit-reordering (e.g., via the reversal component 508). If successful (YES”), or
after the reversion of the second qubit-reordering, and based on there being further qubits to reorder, the method
800 can continue, at 810 and the controlled NOT gate can be simulated during a subsequent qubit reordering (e.g.,
via the parallelization component 404). The determination at 812, the reversion at 806, and/or the simulation at
810, can continue until a determination is made that there are no further qubits that need to be reordered according

to various implementations.

[0069] FIG. 9is a flow diagram of a computer-implemented method 900 that facilitates controlled NOT gate

parallelization in quantum computing simulation in accordance with an embodiment of the invention.

[0070] The method 900 starts, at 902, when a system comprising a processor can select a first bit, which can be
a control-bit gc (e.g., via the selector component 502). The selection of the first bit can be based on a determination

that a bit of a plurality of bits comprises a value that is equal or higher than [(# of qubits) - log2(# of NUMA nodes)].
Alternatively, the selection of the first bit can be based on a determination that a bit of a plurality of bits comprises a

value that is lower than log2(# of NUMA nodes).

WO 2020/114799 PCT/EP2019/082191
13

[0071] At 904 of the method 900, the system can select a second bit, which can be bit g, (e.g., via the selector

component 502). The selection of the second bit can be based on a determination that a bit of the plurality of bits is

not the first bit (e.g., is not the control bit qc, is bit different from the control bit gc) and that the bit is not specified as

a target bit with ge¢ as the control-bit.

[0072] At 906 of the method 900, an attempt can be made, by the system, to reorder the first bit with the second
bit (e.g., reorder the control bit gc with bit g) (e.g., via the parallelization component 404). Further, at 908 of the

method 900, a determination can be made whether memory access has been improved (e.g., via the evaluation
component 504). For example, the determination at 908 can be whether an inefficient memory access has been

improved (e.g., the inefficiency has been improved).

[0073] If the determination is that the inefficiency has not been improved (“NO”), the method 900 can continue, at
910 and the last reordering can be reverted (e.g., via the reversal component 508). For example, the last
reordering can be reversed to the previous reordering. Upon or after the reversion of the last reordering, or if the
determination at 908 is that the inefficiency has been improved (“YES”), the method 900 can continue, at 912, with
a determination whether additional reordering should be implemented (e.g., via the evaluation component 504). For
example, the determination to perform additional reordering can be based on whether there are additional bits that

can be reordered.

[0074] If additional reordering is not to be performed (“NQO”), the method 900 can stop, at 914. However, if
additional reordering should be performed (“YES”), the method can continue, at 902, with selection of the first bit
(e.g., the control bit can be reused). However, in some implementations, the selection at 902 can be of another bit
that can be utilized as the control bit. It is to be understood that the determination of performing another (or
subsequent) reordering at 912 can be recursive. For example, after selection of a control bit (e.g., a first bit) and
another bit (e.g., the second bit or a subsequent bit), reordering can be performed, and a determination can be

made whether another reordering should be performed.

[0075] As discussed herein, provided can be a system, computer-implemented method, computer program
product, or other embodiment of the invention that can facilitate quantum computing simulation of a controlled NOT
gate. For example, a computer program product can comprise a computer readable storage medium having
program instructions embodied therewith, the program instructions are executable by a processor to cause the
processor to simulate the controlled NOT gate during a qubit-reordering and perform memory access balancing

based on the controlled NOT gate being simulated during the qubit-reordering.

[0076] In an example, the program instructions can cause the processor to select a first bit based on based on a

determination that the first bit is a bit that is equal to or higher than a sum comprising a number of qubits less a first

WO 2020/114799 PCT/EP2019/082191
14

binary logarithm (log2) of a number of non-uniform memory access nodes, wherein the first bit is a control bit.
Alternatively, the program instructions can cause the processor to select a first bit based on a determination that the
first bit is a bit that is less than a second binary logarithm (log2) of the number of non-uniform memory access
nodes. According to some implementations, the program instructions can cause the processor to select a second
bit based on a determination that the second bit is different from the first bit and is not a target bit with the first bit as

the control bit.

[0077] Further, as discussed herein, provided can be a system, computer-implemented method, computer
program product, or other embodiment that can facilitate improvement of a quantum computing simulation of a
controlled NOT gate while avoiding unbalanced memory access of a control qubit. For example, a computer
program product can comprise a computer readable storage medium having program instructions embodied
therewith, the program instructions are executable by a processor to cause the processor to select the control qubit
and a non-control qubit, wherein the non-control qubit and the control qubit are different qubits, reorder the control
qubit with the non-control qubit, and simulate a controlled NOT gate while the control qubit is reordered with the

non-control qubit.

[0078] In an example implementation, the program instructions can cause the processor to reduce control qubits
that are equal to or higher than a first quantity of qubits minus a first binary logarithm (log2) of a second quantity of
non-uniform memory access nodes. According to another example implementation, the program instructions can
cause the processor to reduce control qubits that are lower than a second binary logarithm (log2) of a quantity of

non-uniform memory access nodes.

[0079] For simplicity of explanation, the computer-implemented methodologies are depicted and described as a
series of acts. It is to be understood and appreciated that the subject innovation is not limited by the acts illustrated
and/or by the order of acts, for example acts can occur in various orders and/or concurrently, and with other acts
not presented and described herein. Furthermore, not all illustrated acts can be required to implement the
computer-implemented methodologies in accordance with the disclosed subject matter. In addition, those skilled in
the art will understand and appreciate that the computer-implemented methodologies could alternatively be
represented as a series of interrelated states via a state diagram or events. Additionally, it should be further
appreciated that the computer-implemented methodologies disclosed hereinafter and throughout this specification
are capable of being stored on an article of manufacture to facilitate transporting and transferring such computer-
implemented methodologies to computers. The term article of manufacture, as used herein, is intended to

encompass a computer program accessible from any computer-readable device or storage media.

[0080] In order to provide a context for the various aspects of the invention, FIG. 10 as well as the following
discussion are intended to provide a general description of a suitable environment in which the various aspects of

the invention can be implemented. FIG. 10 illustrates a block diagram of an operating environment 1000 in which

WO 2020/114799 PCT/EP2019/082191
15

embodiments of the invention can be facilitated. With reference to FIG. 10, the operating environment 1000 can
also include a computer 1012. The computer 1012 can also include a processing unit 1014, a system memory
1016, and a system bus 1018. The system bus 1018 couples system components including, but not limited to, the
system memory 1016 to the processing unit 1014. The processing unit 1014 can be any of various available
processors. Dual microprocessors and other multiprocessor architectures also can be employed as the processing
unit 1014. The system bus 1018 can be any of several types of bus structure(s) including the memory bus or
memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus
architectures including, but not limited to, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA),
Extended ISA (EISA), Intelligent Drive Electronics (IDE), Video Electronics Standards Association (VESA)Local Bus
(VLB), Peripheral Component Interconnect (PCI), Card Bus, Universal Serial Bus (USB), Advanced Graphics Port
(AGP), Firewire (IEEE 1394), and Small Computer Systems Interface (SCSI). The system memory 1016 can also
include volatile memory 1020 and nonvolatile memory 1022. The basic input/output system (BIOS), containing the
basic routines to transfer information between elements within the computer 1012, such as during start-up, is stored
in nonvolatile memory 1022. By way of illustration, and not limitation, nonvolatile memory 1022 can include Read
Only Memory (ROM), Programmable ROM (PROM), Electrically Programmable ROM (EPROM), Electrically
Erasable Programmable ROM (EEPROM), flash memory, or nonvolatile Random Access Memory (RAM) (e.g.,
Ferroelectric RAM (FeRAM)). Volatile memory 1020 can also include RAM, which acts as external cache memory.
By way of illustration and not limitation, RAM is available in many forms such as Static RAM (SRAM), Dynamic
RAM (DRAM), Synchronous DRAM (SDRAM), Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM
(ESDRAM), Synchlink DRAM (SLDRAM), Direct Rambus RAM (DRRAM), direct Rambus dynamic RAM
(DRDRAM), and Rambus dynamic RAM.

[0081] Computer 1012 can also include removable/non-removable, volatile/non-volatile computer storage media.
FIG. 10 illustrates, for example, a disk storage 1024. Disk storage 1024 can also include, but is not limited to,
devices like a magnetic disk drive, floppy disk drive, tape drive, Jaz drive, Zip drive, LS-100 drive, flash memory
card, or memory stick. The disk storage 1024 also can include storage media separately or in combination with
other storage media including, but not limited to, an optical disk drive such as a compact disk ROM device (CD-
ROM), CD recordable drive (CD-R Drive), CD rewritable drive (CD-RW Drive) or a digital versatile disk ROM drive
(DVD-ROM). To facilitate connection of the disk storage 1024 to the system bus 1018, a removable or non-
removable interface is typically used, such as interface 1026. FIG. 10 also depicts software that acts as an
intermediary between users and the basic computer resources described in the suitable operating environment
1000. Such software can also include, for example, an operating system 1028. Operating system 1028, which can
be stored on disk storage 1024, acts to control and allocate resources of the computer 1012. System applications
1030 take advantage of the management of resources by operating system 1028 through program modules 1032
and program data 1034, e.g., stored either in system memory 1016 or on disk storage 1024. It is to be appreciated
that this disclosure can be implemented with various operating systems or combinations of operating systems. A

user enters commands or information into the computer 1012 through input device(s) 1036. Input devices 1036

WO 2020/114799 PCT/EP2019/082191
16

include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard,
microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web
camera, and the like. These and other input devices connect to the processing unit 1014 through the system bus
1018 via interface port(s) 1038. Interface port(s) 1038 include, for example, a serial port, a parallel port, a game
port, and a universal serial bus (USB). Output device(s) 1040 use some of the same type of ports as input
device(s) 1036. Thus, for example, a USB port can be used to provide input to computer 1012, and to output
information from computer 1012 to an output device 1040. Output adapter 1042 is provided to illustrate that there
are some output devices 1040 like monitors, speakers, and printers, among other output devices 1040, which
require special adapters. The output adapters 1042 include, by way of illustration and not limitation, video and
sound cards that provide a method of connection between the output device 1040 and the system bus 1018. It
should be noted that other devices and/or systems of devices provide both input and output capabilities such as

remote computer(s) 1044.

[0082] Computer 1012 can operate in a networked environment using logical connections to one or more remote
computers, such as remote computer(s) 1044. The remote computer(s) 1044 can be a computer, a server, a
router, a network PC, a workstation, a microprocessor based appliance, a peer device or other common network
node and the like, and typically can also include many or all of the elements described relative to computer 1012,
For purposes of brevity, only a memory storage device 1046 is illustrated with remote computer(s) 1044. Remote
computer(s) 1044 is logically connected to computer 1012 through a network interface 1048 and then physically
connected via communication connection 1050. Network interface 1048 encompasses wire and/or wireless
communication networks such as local-area networks (LAN), wide-area networks (WAN), cellular networks, etc.
LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI),
Ethernet, Token Ring and the like. WAN technologies include, but are not limited to, point-to-point links, circuit
switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching
networks, and Digital Subscriber Lines (DSL). Communication connection(s) 1050 refers to the hardware/software
employed to connect the network interface 1048 to the system bus 1018. While communication connection 1050 is
shown for illustrative clarity inside computer 1012, it can also be external to computer 1012. The hardware/software
for connection to the network interface 1048 can also include, for exemplary purposes only, internal and external
technologies such as, modems including regular telephone grade modems, cable modems and DSL modems,

ISDN adapters, and Ethernet cards.

[0083] The present invention may be a system, a method, an apparatus and/or a computer program product at
any possible technical detail level of integration. The computer program product can include a computer readable
storage medium (or media) having computer readable program instructions thereon for causing a processor to carry
out aspects of the present invention. The computer readable storage medium can be a tangible device that can
retain and store instructions for use by an instruction execution device. The computer readable storage medium

can be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical

WO 2020/114799 PCT/EP2019/082191
17

storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of
the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium can also
include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access
memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory
stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having
instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage
medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other
freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a

wire.

[0084] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external
storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless
network. The network can comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface
in each computing/processing device receives computer readable program instructions from the network and
forwards the computer readable program instructions for storage in a computer readable storage medium within the
respective computing/processing device. Computer readable program instructions for carrying out operations of the
present invention can be assembler instructions, instruction-set-architecture (ISA) instructions, machine
instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, configuration
data for integrated circuitry, or either source code or object code written in any combination of one or more
programming languages, including an object oriented programming language such as Smalltalk, C++, or the like,
and procedural programming languages, such as the "C" programming language or similar programming
languages. The computer readable program instructions can execute entirely on the user's computer, partly on the
user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the latter scenario, the remote computer can be
connected to the user's computer through any type of network, including a local area network (LAN) or a wide area
network (WAN), or the connection can be made to an external computer (for example, through the Internet using an
Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) can execute the computer
readable program instructions by utilizing state information of the computer readable program instructions to

personalize the electronic circuitry, in order to perform aspects of the present invention.

[0085] Aspects of the present invention are described herein with reference to flowchart illustrations and/or block

diagrams of methods, apparatus (systems), and computer program products according to embodiments of the

WO 2020/114799 PCT/EP2019/082191
18

invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer
readable program instructions. These computer readable program instructions can be provided to a processor of a
general purpose computer, special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the computer or other
programmable data processing apparatus, create method for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks. These computer readable program instructions can also be stored
in a computer readable storage medium that can direct a computer, a programmable data processing apparatus,
and/or other devices to function in a particular manner, such that the computer readable storage medium having
instructions stored therein comprises an article of manufacture including instructions which implement aspects of
the function/act specified in the flowchart and/or block diagram block or blocks. The computer readable program
instructions can also be loaded onto a computer, other programmable data processing apparatus, or other device to
cause a series of operational acts to be performed on the computer, other programmable apparatus or other device
to produce a computer implemented process, such that the instructions which execute on the computer, other
programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block

diagram block or blocks.

[0086] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and computer program products according to various embodiments
of the present invention. In this regard, each block in the flowchart or block diagrams can represent a module,
segment, or portion of instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the blocks can occur out of
the order noted in the Figures. For example, two blocks shown in succession can, in fact, be executed substantially
concurrently, or the blocks can sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations
of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-
based systems that perform the specified functions or acts or carry out combinations of special purpose hardware

and computer instructions.

[0087] While the subject matter has been described above in the general context of computer-executable
instructions of a computer program product that runs on a computer and/or computers, those skilled in the art will
recognize that this disclosure also can be implemented in combination with other program modules. Generally,
program modules include routines, programs, components, data structures, etc. that perform particular tasks and/or
implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive
computer-implemented methods can be practiced with other computer system configurations, including single-
processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as

computers, hand-held computing devices (e.g., PDA, phone), microprocessor-based or programmable consumer or

WO 2020/114799 PCT/EP2019/082191
19

industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing
environments where tasks are performed by remote processing devices that are linked through a communications
network. However, some, if not all aspects of this disclosure can be practiced on stand-alone computers. Ina
distributed computing environment, program modules can be located in both local and remote memory storage

devices.

[0088] As used in this application, the terms “component,” “system,” “platform,” “interface,” and the like, can refer
to and/or can include a computer-related entity or an entity related to an operational machine with one or more
specific functionalities. The entities disclosed herein can be either hardware, a combination of hardware and
software, software, or software in execution. For example, a component can be, but is not limited to being, a
Process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a
computer. By way of illustration, both an application running on a server and the server can be a component. One
or more components can reside within a process and/or thread of execution and a component can be localized on
one computer and/or distributed between two or more computers. In another example, respective components can
execute from various computer readable media having various data structures stored thereon. The components
can communicate via local and/or remote processes such as in accordance with a signal having one or more data
packets (e.g., data from one component interacting with another component in a local system, distributed system,
andfor across a network such as the Internet with other systems via the signal). As another example, a component
can be an apparatus with specific functionality provided by mechanical parts operated by electric or electronic
circuitry, which is operated by a software or firmware application executed by a processor. In such a case, the
processor can be internal or external to the apparatus and can execute at least a part of the software or firmware
application. As yet another example, a component can be an apparatus that provides specific functionality through
electronic components without mechanical parts, wherein the electronic components can include a processor or
other method to execute software or firmware that confers at least in part the functionality of the electronic
components. In an aspect, a component can emulate an electronic component via a virtual machine, e.g., within a

cloud computing system.

[0089] In addition, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or.” That is, unless
specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive
permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is
satisfied under any of the foregoing instances. Moreover, articles “a” and “an” as used in the subject specification
and annexed drawings should generally be construed to mean “one or more” unless specified otherwise or clear
from context to be directed to a singular form. As used herein, the terms “example” and/or “exemplary” are utilized
to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed
herein is not limited by such examples. In addition, any aspect or design described herein as an “example” and/or
“exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it

meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art.

WO 2020/114799 PCT/EP2019/082191
20

[0090] Asitis employed in the subject specification, the term “processor” can refer to substantially any computing
processing unit or device comprising, but not limited to, single-core processors; single-processors with software
multithread execution capability; multi-core processors; multi-core processors with software multithread execution
capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms
with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific
integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a
programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor
logic, discrete hardware components, or any combination thereof designed to perform the functions described
herein. Further, processors can exploit nano-scale architectures such as, but not limited to, molecular and
quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of
user equipment. A processor can also be implemented as a combination of computing processing units. In this

disclosure, terms such as “store,” “storage,” “data store,” data storage,” “database,” and substantially any other
information storage component relevant to operation and functionality of a component are utilized to refer to
“memory components,” entities embodied in a “memory,” or components comprising a memory. It is to be
appreciated that memory and/or memory components described herein can be either volatile memory or nonvolatile
memory, or can include both volatile and nonvolatile memory. By way of illustration, and not limitation, nonvolatile
memory can include ROM, PROM, EPROM, EEPROM, flash memory, or nonvolatile RAM (e.g., FeRAM. Volatile
memory can include RAM, which can act as external cache memory, for example. Additionally, the disclosed
memory components of systems or computer-implemented methods herein are intended to include, without being

limited to including, these and any other suitable types of memory.

[0091] What has been described above include mere examples of systems and computer-implemented methods.
It is, of course, not possible to describe every conceivable combination of components or computer-implemented
methods for purposes of describing this disclosure, but one of ordinary skill in the art can recognize that many
further combinations and permutations of this disclosure are possible. Furthermore, to the extent that the terms

“includes,” “has,” “possesses,” and the like are used in the detailed description, claims, appendices and drawings
such terms are intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted
when employed as a transitional word in a claim. The descriptions of the various embodiments have been
presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing
from the scope of the described embodiments. The terminology used herein was chosen to best explain the
principles of the embodiments, the practical application or technical improvement over technologies found in the

marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.

WO 2020/114799 PCT/EP2019/082191
21

CLAIMS

1. A system, comprising:

a memory that stores computer executable components; and

a processor that executes the computer executable components stored in the memory, wherein the
computer executable components comprise:

a replication component that simulates a controlled NOT gate during a qubit-reordering; and

a parallelization component that performs memory access balancing based on the controlled NOT gate

being simulated by the replication component during the qubit-reordering.

2. The system of claim 1, wherein the computer executable components further comprise
a selector component that selects a first bit and a second bit for the qubit-reordering, wherein the first bit is

a control bit.
3. The system of claim 2, wherein the selector component selects the first bit based on a determination that
the first bit is a bit that is equal to or higher than a sum comprising @ number of qubits less a binary logarithm (log2)

of a number of non-uniform memory access nodes.

4, The system of claim 2, wherein the selector component selects the first bit based on a determination that

the first bit is a bit that is less a binary logarithm (log2) of @ number of non-uniform memory access nodes.

5. The system of claim 2, wherein the selector component selects the second bit based on a determination

that the second bit is different from the first bit and is not a target bit with the first bit as the control bit.
6. The system of claim 1 wherein the computer executable components further comprise:

an arrangement component that implements the qubit-reordering for quantum computing, wherein the
arrangement component reorders a first bit with a second bit.
7. The system of claim 1, wherein the computer executable components further comprise:

a reversal component that reverts the qubit-reordering based on an evaluation component determining a
lack of memory access improvement.
8. The system of claim 1, wherein the qubit-reordering minimizes fragmented access of a quantum memory.

9. The system of claim 1, wherein the qubit-reordering minimizes a thread locality.

10. The system of claim 1, wherein the qubit-reordering is a first qubit-reordering, and wherein the replication

WO 2020/114799 PCT/EP2019/082191
22

component simulates the controlled NOT gate during a second qubit reordering based on a determination by an

evaluation component that the memory access balancing was successful.

1. A computer-implemented method, comprising:

simulating, by a system operatively coupled to a processor, a controlled NOT gate during a qubit-
reordering; and

performing, by the system, a memory access balancing based on the simulating the controlled NOT gate

during the qubit-reordering.

12. The computer-implemented method of claim 11, further comprising:
selecting, by the system, a first bit and a second bit for the qubit-reordering, wherein the first bit is a control
bit.

13. The computer-implemented method of claim 12, wherein the selecting the first bit comprises selecting the
first bit based on a determination that the first bit is a bit that is equal to or higher than a sum comprising a number

of qubits less a binary logarithm (log2) of a number of non-uniform memory access nodes.

14. The computer-implemented method of claim 12, wherein the selecting the first bit comprises selecting the
first bit based on a determination that the first bit is a bit that is less a binary logarithm (log2) of a number of non-

uniform memory access nodes.

15. The computer-implemented method of claim 12, wherein the selecting the second bit comprises selecting
the second bit based on a determination that the second bit is different from the first bit and is not a target bit with

the first bit as the control bit.

16. The computer-implemented method of claim 11, further comprising reverting, by the system, the qubit-

reordering based on a determination of a lack of memory access improvement.

17. The computer-implemented method of claim 11, wherein the qubit-reordering is a first qubit-reordering,
and wherein the computer-implemented method further comprises:

determining, by the system, that the memory access balancing was successful; and

simulating, by the system, the controlled NOT gate during a second qubit reordering based on the

determining.

18. A method, comprising:
selecting, by a system operatively coupled to a processor, a first qubit and a second qubit, wherein the first
qubit is a control qubit; and

WO 2020/114799 PCT/EP2019/082191
23

reordering, by the system, the first qubit with the second qubit, wherein a controlled NOT gate is simulated

during the reordering.

19. The method of claim 18, wherein the reordering the first qubit with the second qubit comprises minimizing,
by the system, an occurrence of one or more control qubits that are equal to or higher than a first quantity of qubits

minus a binary logarithm (log2) of a second quantity of non-uniform memory access nodes.

20. The method of claim 18, wherein the reordering the first qubit with the second qubit comprises minimizing,
by the system, an occurrence of one or more control qubits that are lower than a binary logarithm (log2) of a

quantity of non-uniform memory access nodes.

21. A computer program product that facilitates quantum computing simulation of a controlled NOT gate, the
computer program product comprising a computer readable storage medium having program instructions embodied
therewith, the program instructions are executable by a processor to cause the processor to perform the steps of a

method as claimed in any of claims 11 to 20.

10

WO 2020/114799

104

102

10

1/10

FIG. 1A

104
N

112
Y

PCT/EP2019/082191

104

102

FIG. 1C

FIG. 1B

WO 2020/114799 PCT/EP2019/082191

2/10

bbb
| e

A

ot
wm

Wl

B

St

s

FIG. 2

202—

20

20

PCT/EP2019/082191

WO 2020/114799

3/10

bk

Sml\A

0€

€ ‘OIA

PCT/EP2019/082191

WO 2020/114799

4/10

P “OId

viv
vVivd LNdLNo

00b WALSAS
A
0LF HOVIOLS —>
«p| POV INANOJNOD
80y AJOWHIN NOILVZITHTIVIVd
«p| 207 INANOdWOD
90b LNANOIINOD NOLLVOI'ldaY
ONISSTOO¥d [+
\J

Oy vivd
LINDNMID
IWNINVNO

PCT/EP2019/082191

WO 2020/114799

5/10

S "OId

viv
vVivd LNdLNo

00S WALSAS
_ A
0IF HOVIOLS |e—»
«— $0S INANOJINOD
80y LMOWAN NOLLVNIVAA
20S INANOJINOD
90y INANOJINOD , , “— MOIDATAS
ONISSAD0Ud
0 INANOJINOD
80S LNANOdINOD «—> — NOLLVZITATIVIVd
TVSYAATA
20F INANOJINOD
90€ LNANOdINODO <« +——> NOLLVOI'TdaY
INFNAONVIIY Y

Oy vivd
LINDNMID
IWNINVNO

WO 2020/114799 PCT/EP2019/082191

6/10

’/—600
6021

SIMULATING, BY A SYSTEM OPERATIVELY
COUPLED TO A PROCESSOR, A
CONTROLLED-NOT GATE DURING A
QUBIT-REORDERING

6041 l

PERFORMING, BY THE SYSTEM, A
MEMORY ACCESS BALANCING BASED ON
THE SIMULATING THE CONTROLLED-NOT

GATE DURING THE QUBIT-REORDERING

FIG. 6

WO 2020/114799 PCT/EP2019/082191

7/10

{—700
702
W

SELECTING, BY A SYSTEM COMPRISING A
PROCESSOR, A FIRST BIT AND A SECOND BIT
FOR THE QUBIT-REORDERING, WHEREIN THE

FIRST BIT IS A CONTROL BIT

7041 l

SIMULATING, BY THE SYSTEM, A
CONTROLLED-NOT GATE DURING A QUBIT-
REORDERING

706~ ¢

PERFORMING, BY THE SYSTEM, A MEMORY
ACCESS BALANCING BASED ON THE
SIMULATING THE CONTROLLED-NOT GATE
DURING THE QUBIT-REORDERING

FIG.7

WO 2020/114799

8/10

802
j

PCT/EP2019/082191

800
e

SIMULATING, BY A SYSTEM OPERATIVELY
COUPLED TO A PROCESSOR, A
CONTROLLED-NOT GATE DURING A FIRST
QUBIT-REORDERING

8041 l

REORDERING

PERFORMING, BY THE SYSTEM, A FIRST
MEMORY ACCESS BALANCING BASED ON
THE CONTROLLED-NOT GATE BEING
SIMULATED DURING THE FIRST QUBIT-

80

BALANCING
SUCCESSFUL?

808
j

REVERTING, BY THE
SYSTEM, THE QUBIT-
REORDERING

WAS SECOND

BALANCING
SUCCESSFUL?

812

WAS THE FIRST
MEMORY ACCESS

810
[_

SIMULATING, BY THE SYSTEM,

™ THE CONTROLLED-NOT GATE

DURING A SECOND (OR
SUBSEQUENT) QUBIT
REORDERING

(OR SUBSEQUENT)
MEMORY ACCESS

FIG. 8

WO 2020/114799 PCT/EP2019/082191

9/10

902
j ’/—900

SELECT A CONTROL-BIT q., WHICH IS:
EQUAL OR HIGHER THAN [(# OF
QUBITS) - LOG2(# OF NUMA NODES)]
OR
LOWER THAN LOG2(# OF NUMA
NODES)

904j *

SELECT A BIT q, WHICH IS:
NOT q,
AND
NOT SPECIFIED A TARGET BIT WITH q. AS
CONTROL-BIT

LAV

ATTEMPT TO REORDER q. WITH q

IS INEFFICIENT MEMORY
ACCESS IMPROVED?

9101

REVERT THE LAST
REORDERING

YES

DO MORE?

STOP

FIG. 9

WO 2020/114799

PCT/EP2019/082191

10/10
: OPERATING SYSTEM
| _—1030
| { APPLICATIONS
[————————— - 1032
: MODULES |
| _—1034
| iDATA /—1012
1014 ¥
i PROCESSING & 1042
UNIT [_
: | | OUTPUT OUTPUT
: 1016 ADAPTER(S) :l DEVICE(S)
_ 1/ SYSTEM) 1038 1040
| [~
MEMORY
INTERFACE
VOLATILE [}-1020[] PORT(S) | INPUT
— DEVICE(S)
\M
VOLATILE 1022¥1018 k1036
5 1050
INTERFACE m [NETWORK
<9026 COMMUNICATION e | INTERFACE
CONNECTION(S)
I 048
_L DISK
STORAGE REMOTE
COMPUTER(S)
1024 <>
MEMORY
STORAGE | N\ 044
Liod6

FIG. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2019/082191

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6N10/00
ADD. GO6F9/54

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6N GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X THOMAS H\"ANER ET AL:

14853,
DOI: 10.1145/3126908.3126947

paragraph 4

"0.5 Petabyte

Simulation of a 45-Qubit Quantum Circuit",
ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY

4 April 2017 (2017-04-04), XP081292850,

page 1 - page 10, left-hand column,

1-21

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 February 2020

Date of mailing of the international search report

17/02/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Volkmer, Markus

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2019/082191

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A TYSON JONES ET AL: "QuEST and High
Performance Simulation of Quantum
Computers",

ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

4 December 2018 (2018-12-04), XP081431609,
page 1 - page 8, right-hand column,
paragraph 1

A MIKHAIL SMELYANSKIY ET AL: "gHiPSTER: The
Quantum High Performance Software Testing
Environment",

ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201
OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY
14853,

26 January 2016 (2016-01-26), XP080680316,
cited in the application

the whole document

A THOMAS HANER ET AL: "High performance
emulation of quantum circuits",

20161113; 1077952576 - 1077952576,

13 November 2016 (2016-11-13), pages 1-9,
XP058308714,

ISBN: 978-1-4673-8815-3

the whole document

A US 20147039866 Al (WECKER DAVID B [US])

6 February 2014 (2014-02-06)

the whole document

A WO 2016/200747 Al (MICROSOFT TECHNOLOGY
LICENSING LLC [US])

15 December 2016 (2016-12-15)

the whole document

A US 7 596 788 B1 (SHPIGELMAN IGOR [CA])

29 September 2009 (2009-09-29)

the whole document

1-21

1-21

1-21

1-21

1-21

1-21

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2019/082191
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014039866 Al 06-02-2014 NONE
WO 2016200747 Al 15-12-2016 EP 3304363 Al 11-04-2018
US 2018181685 Al 28-06-2018
WO 2016200747 Al 15-12-2016
US 7596788 Bl 29-09-2009 US 7596788 B1 29-09-2009
US 2010146515 Al 10-06-2010
US 2014019988 Al 16-01-2014
US 2016335013 Al 17-11-2016
US 2016335121 Al 17-11-2016

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report
	Page 38 - wo-search-report

