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UNCERTAINTY - REFINED IMAGE 
SEGMENTATION UNDER DOMAIN SHIFT 

STATEMENT OF GOVERNMENT INTEREST 

[ 0001 ] This invention was made with United States Gov 
ernment support under Contract No. DE - NA0003525 
between National Technology & Engineering Solutions of 
Sandia , LLC and the United States Department of Energy . 
The United States Government has certain rights in this 
invention . 

BACKGROUND 

1. Field 

[ 0002 ] The disclosure relates generally to image process 
ing , and more specifically to segmentation of image data 
according to uncertainty resulting from domain shifts . 

2. Description of the Related Art 
[ 0003 ] Advances in non - destructive 3D imaging methods 
have allowed scientists to study previously hidden features 
of the natural world . X - ray computed tomography ( CT ) , 
magnetic resonance imaging ( MM ) , and other modern diag 
nostic methods are capable of generating rich data sets , but 
these methods produce images plagued by noise and scan 
ning artifacts . While it is possible in most cases for a human 
to interpret imaging data , these interpretations are often 
expensive , irreproducible , and unreliable . 
[ 0004 ] Automated image segmentation is critical in many 
fields such as medicine , manufacturing , and materials sci 
ence , where interpretation of data must be done quickly and 
consistently . Existing automated segmentation methods 
such as deep learning models have achieved high accuracy 
in many image domains , but often fail to generalize when 
applied to image data from a shifted domain . 
[ 0005 ] Therefore , it would be desirable to have a method 
and apparatus that take into account at least some of the 
issues discussed above , as well as other possible issues . 

[ 0007 ] Another illustrative embodiment provides a system 
for digital image segmentation . The system comprises a 
storage device configured to store program instructions , and 
one or more processors operably connected to the storage 
device and configured to execute the program instructions to 
cause the system to : train a neural network for image 
segmentation with a labeled training dataset from a first 
domain , wherein a subset of nodes in the neural net are 
dropped out during training ; receive , by the neural network , 
image data from a second , different domain , wherein the 
image data comprises a number of image elements ; calcu 
late , by the neural network , a vector of N values that sum to 
1 for each image element , wherein each of the N values 
represents an image segmentation class ; assign , by the 
neural network , a segmentation label to each image element , 
wherein the segmentation label corresponds to a segmenta 
tion class with a highest value in the vector calculated for the 
image element ; perform , by the neural network with active 
dropout layers , multiple inferences for each image element ; 
generate , by the neural network , an uncertainty value for 
each image element according to the inferences ; and replace 
the segmentation label of any image element with an uncer 
tainty value above a predefined threshold with a new seg 
mentation label corresponding to a segmentation class with 
a next highest value in the vector for that image element . 
[ 0008 ] Another illustrative embodiment provides a com 
puter program product for digital image segmentation . The 
computer program product comprises a computer - readable 
storage medium having program instructions embodied 
thereon to perform the steps of : training a neural network for 
image segmentation with a labeled training dataset from a 
first domain , wherein a subset of nodes in the neural net are 
dropped out during training ; receiving , by the neural net 
work , image data from a second , different domain , wherein 
the image data comprises a number of image elements ; 
calculating , by the neural network , a vector of N values that 
sum to 1 for each image element , wherein each of the N 
values represents an image segmentation class ; assigning , by 
the neural network , a segmentation label to each image 
element , wherein the segmentation label corresponds to a 
segmentation class with a highest value in the vector cal 
culated for the image element ; performing , by the neural 
network with active dropout layers , multiple inferences for 
each image element ; generating , by the neural network , an 
uncertainty value for each image element according to the 
inferences ; and replacing the segmentation label of any 
image element with an uncertainty value above a predefined 
threshold with a new segmentation label corresponding to a 
segmentation class with a next highest value in the vector for 
that image element . 
[ 0009 ] The features and functions can be achieved inde 
pendently in various examples of the present disclosure or 
may be combined in yet other examples in which further 
details can be seen with reference to the following descrip 
tion and drawings . 

a 

SUMMARY 

[ 0006 ] An illustrative embodiment provides a computer 
implemented method for digital image segmentation . The 
method comprises training a neural network for image 
segmentation with a labeled training dataset from a first 
domain , wherein a subset of nodes in the neural net are 
dropped out during training . The neural network receives 
image data from a second , different domain , wherein the 
image data comprises a number of image elements . The 
neural network calculates a vector of N values that sum to 
1 for each image element , wherein each of the N values 
represents an image segmentation class . The neural network 
assigns a segmentation label to each image element , wherein 
the label corresponds to the segmentation class with the 
highest value in the vector calculated for the image element . 
The neural network then uses active dropout layers to 
perform multiple inferences for each image element and 
generates an uncertainty value for each image element 
according to the inferences . The segmentation label of any 
image element with an uncertainty value above a predefined 
threshold is replaced with a new segmentation label corre 
sponding to the segmentation class with the next highest 
value in the vector for that image element . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0010 ] The novel features believed characteristic of the 
illustrative embodiments are set forth in the appended 
claims . The illustrative embodiments , however , as well as a 
preferred mode of use , further objectives and features 
thereof , will best be understood by reference to the follow 
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ing detailed description of an illustrative embodiment of the 
present disclosure when read in conjunction with the accom 
panying drawings , wherein : 
[ 0011 ] FIG . 1 depicts a block diagram of a binary seg 
mentation system in accordance with illustrative embodi 
ments ; 
[ 0012 ] FIG . 2 is a diagram that illustrates a node in a 
neural network in which illustrative embodiments can be 
implemented ; 
[ 0013 ] FIG . 3 is a diagram illustrating a neural network in 
which illustrative embodiments can be implemented ; 
[ 0014 ] FIG . 4 is a diagram illustrating a V - net convolu 
tional neural network in which illustrative embodiments can 
be implemented ; 
[ 0015 ] FIG . 5 depicts a flowchart illustrating a process of 
image segmentation in accordance with an illustrative 
embodiment ; 
[ 0016 ] FIG . 6A depicts a slice of a CT scan to be seg 
mented ; 
[ 0017 ] FIG . 6B illustrates predicted binary labels for the 
CT slice in FIG . 6A from a CNN without uncertainty - guided 
refinement ; 
[ 0018 ] FIG . 6C illustrates resulting binary labels after 
applying uncertainty - guided refinement in accordance with 
an illustrative embodiment ; and 
[ 0019 ] FIG . 7 is a diagram of a data processing system 
depicted in accordance with an illustrative embodiment . 

a 

a 

DETAILED DESCRIPTION 

the illustrative embodiments is performed in output space , 
after inference has occurred . However , rather than using a 
separate deep learning model to modify the outputs , the 
illustrative embodiments leverage the uncertainty in the 
model's predictions quantified by using dropout at inference 
time . 
[ 0024 ] FIG . 1 depicts a block diagram of binary segmen 
tation system in accordance with illustrative embodiments . 
Binary segmentation system 100 comprises V - net convolu 
tional neural network ( CNN ) 102 , which is used to process 
and interpret volumetric image data . V - net CNN 102 com 
prises a number of layers of nodes ( aka neurons , units ) , 
including a visible layer 104 , hidden layers 106 , and softmax 
layer 110. Hidden layers 106 include drop - out 108 , which 
comprise select nodes that are ignored during training and 
subsequent use of V - net CNN 102 to prevent it from 
overfitting particular datasets ( explained in more detail 
below ) . 
[ 0025 ) V - net CNN 102 can be trained initially with train 
ing image data 120 , which comprises a number of pixels 
( 2D ) or voxels ( 3D ) 122 representing an image . Training 
image data 120 is also defined by domain 124 , which is 
specific to the scanning equipment ( e.g. , CT scanner ) and 
settings used to collect training image data 120 , as well as 
variances in the material composition of the individual 
imaging subject ( i.e. the object being scanned ) . Domain 124 
comprises factors that influence the quality of image training 
data 120 included , e.g. , scanning artifacts 126 produced by 
the specific scanning equipment , image resolution 128 , 
pixel / voxel histogram values 130 , and the material compo 
sition of the imaging subject 132 . 
[ 0026 ] After V - net CNN 102 is trained using training 
image data 120 , it can be used to interpret new sample image 
data 134 produced by another imaging source . Like training 
image data 120 , sample image data 134 also comprises 
pixels / voxels 136 and is defined by its own domain 138 . 
Domain 138 of sample image data 134 might comprise 
scanning artifacts 140 , image resolution 142 , pixel / voxel 
histogram values 144 , or material properties of the imaging 
subject 146 that differ from those of domain 124 of the 
training image data 120 due to different scanning equipment 
used to collect the respective images and the object scanned . 
This difference between domains 124 and 138 is known as 
domain shift . Drop - out layers 108 , when applied at inference 
time , allow V - net CNN 102 to generate an uncertainty value 
116 for each pixel / voxel that is used to compensate for the 
domain shift between training image data 120 and sample 
image data 134 . 
[ 0027 ] When V - net CNN 102 processes sample image data 
134 , it produces image segmentation labels 112 for each of 
pixels / voxels 136. Segmentation labels 112 indicate an 
image segmentation class represented by a particular pixel / 
voxel . Each segmentation label 114 has an uncertainty value 
116 , which is compared to a predefined uncertainty thresh 
old 118. If the uncertainty value 116 of a segmentation label 
114 exceeds the uncertainty threshold 118 , the label is 
changed to another segmentation label with a next highest 
valued ( explained below ) . 
[ 0028 ] FIG . 2 is a diagram that illustrates a node in a 
neural network in which illustrative embodiments can be 
implemented . Node 200 combines multiple inputs 210 from 
other nodes . Each input 210 is multiplied by a respective 
weight 220 that either amplifies or dampens that input , 
thereby assigning significance to each input for the task the 

a 

[ 0020 ] The illustrative embodiments recognize and take 
into account one or more different considerations . For 
example , the illustrative embodiments recognize and take 
into account that advances in non - destructive 3D imaging 
methods have allowed scientists to study previously hidden 
features of the natural world , and while it is possible in most 
cases for a human to interpret imaging data , these interpre 
tations are often expensive , irreproducible , and unreliable . 
[ 0021 ] The illustrative embodiments also recognize and 
take into account that automated image segmentation is 
critical in many fields . Deep learning segmentation models 
are known to be sensitive to the scale , contrast , and distri 
bution of pixel values when applied to Computed Tomog 
raphy ( CT ) images . For material samples , scans are often 
obtained from a variety of scanning equipment and resolu 
tions resulting in domain shift . However , existing automated 
segmentation methods such as deep learning models often 
fail to generalize when applied to image data from a shifted 
domain due to overfitting of the models during training . 
[ 0022 ] The task of semantic segmentation has seen sig 
nificant improvement after the publication of the Fully 
Convolutional Network and the encoder - decoder networks 
that followed . One such architecture , the U - net , employed 
an encoder , decoder , and skip connections to achieve state of 
the art results on 2D biomedical segmentation . The V - net 
extended these results to 3D volumes with similar success . 
The illustrative embodiments enhance the V - net architecture 
with dropout layers for uncertainty quantification ( UQ ) . 
[ 0023 ] While semantic segmentation models have seen 
further innovation , few generalize well if there is a domain 
gap between the training and testing images . This problem , 
known as domain shift , has been tackled with adversarial 
learning , co - training , or domain statistic alignment 
approaches . Most solutions to the problem approach the 
problem at the pixel , or feature space level . The method of 

9 
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algorithm is trying to learn . The weighted inputs are col 
lected by a net input function 230 and then passed through 
an activation function 240 to determine the output 250. The 
connections between nodes are called edges . The respective 
weights of nodes and edges might change as learning 
proceeds , increasing or decreasing the weight of the respec 
tive signals at an edge . A node might only send a signal if 
the aggregate input signal exceeds a predefined threshold . 
Pairing adjustable weights with input features is how sig 
nificance is assigned to those features with regard to how the 
network classifies and clusters input data . 
[ 0029 ] Neural networks are often aggregated into layers , 
with different layers performing different kinds of transfor 
mations on their respective inputs . A node layer is a row of 
nodes that turn on or off as input is fed through the network . 
Signals travel from the first ( input ) layer to the last ( output ) 
layer , passing through any layers in between . Each layer's 
output acts as the next layer's input . 
[ 0030 ] FIG . 3 is a diagram illustrating a neural network in 
which illustrative embodiments can be implemented . As 
shown in FIG . 3 , the nodes in the neural network 300 are 
divided into a layer of visible nodes 310 and a layer of 
hidden nodes 320. The visible nodes 310 are those that 
receive information from the environment ( i.e. a set of 
external training data ) . Each visible node in layer 310 takes 
a low - level feature from an item in the dataset and passes it 
to the hidden nodes in the next layer 320. When a node in 
the hidden layer 320 receives an input value x from a visible 
node in layer 310 it multiplies x by the weight assigned to 
that connection ( edge ) and adds it to a bias b . The result of 
these two operations is then fed into an activation function 
which produces the node's output . 
[ 0031 ] In fully connected feed - forward networks , each 
node in one layer is connected to every node in the next 
layer . For example , node 321 receives input from all of the 
visible nodes 311-313 each x value from the separate nodes 
is multiplied by its respective weight , and all of the products 
are summed . The summed products are then added to the 
hidden layer bias , and the result is passed through the 
activation function to produce output 331. A similar process 
is repeated at hidden nodes 322-324 to produce respective 
outputs 332-334 . In the case of a deeper neural network , the 
outputs 330 of hidden layer 320 serve as inputs to the next 
hidden layer . 
[ 0032 ] Training a neural network occurs in a supervised 
fashion with training data comprised of a set of input - output 
pairs , ( x , y ) , where x is an input example and y is the desired y 
output of the neural network corresponding to x . Training 
typically proceeds as follows . Each x in the training data set 
is input to the neural network ( visible layer 310 ) , and the 
neural network processes the input through the hidden layer 
320 and produces an output , y ' 330. This predicted output , 
y ' , is compared to the desired output y corresponding to 
input x from the training data set , and the error between y ' 
and y is calculated . Using a calculus - based method known 
as backpropagation , the amount of each node's contribution 
to the prediction error is calculated , and each node’s weight 
is adjusted to improve the neural network's prediction . 
Several training iterations are typically used to train the 
neural network to a desired level of accuracy with respect to 
the training data . 
[ 0033 ] In machine learning , the aforementioned error is 
calculated via a cost function that estimates how the model 
is performing . It is a measure of how wrong the model is in 

terms of its ability to estimate the relationship between input 
x and output y , which is expressed as a difference or distance 
between the predicted value and the actual value . The cost 
function ( i.e. loss or error ) can be estimated by iteratively 
running the model to compare estimated predictions against 
known values of y during supervised learning . The objective 
of a machine learning model , therefore , is to find parameters , 
weights , or a structure that minimizes the cost function . 
[ 0034 ] Gradient descent is an optimization algorithm that 
attempts to find a local or global minima of a function , 
thereby enabling the model to learn the gradient or direction 
that the model should take in order to reduce errors . As the 
model iterates , it gradually converges towards a minimum 
where further tweaks to the parameters produce little or zero 
changes in the loss . At this point the model has optimized the 
weights such that they minimize the cost function . 
[ 0035 ] Neural network layers can be stacked to create 
deep networks . After training one neural net , the activities of 
its hidden nodes can be used as inputs for a higher level , 
thereby allowing stacking of neural network layers . Such 
stacking makes it possible to efficiently train several layers 
of hidden nodes . Examples of stacked networks include 
deep belief networks ( DBN ) , deep Boltzmann machines 
( DBM ) , recurrent neural networks ( RNN ) , and convolu 
tional neural networks ( CNN ) . 
[ 0036 ] FIG . 4 is a diagram illustrating a V - net convolu 
tional neural network ( CNN ) in which illustrative embodi 
ments can be implemented . The V - Net architecture 400 
consists of an input layer 410 , encoder 420 , skip connections 
430 , decoder 440 , a softmax layer 450 , and an output layer 
460. The input 410 consists of pixels / voxels representing an 
image . The pixels / voxels are encoded into a lower dimen 
sional representation by several successive layers 421-424 
comprising encoder 420 . 
[ 0037 ] The pixels / voxels are then decoded by successive 
layers 441-443 comprising the decoder 440. Each decoding 
layer uses as its input the previous decoding layer's output 
as well as a respective encoder layer's output . The respective 
inputs from encoding layers 421-424 to decoding layers 
441-443 are shown as skip connections 431-433 . For 
example , the input to decoding layer 442 comprises the 
output from decoding layer 441 and the output from encod 
ing layer 422 via skip connection 432 . 
[ 0038 ] The decoder 440 is followed by a softmax layer 
450 that produces the final output 460 comprising a vector 
of N values that sum to 1 for each voxel . 
[ 0039 ] With the goal of automatically segmenting a 
diverse set of images across domain shifts , the illustrative 
embodiments train a CNN using a labeled training set . To 
quantify the model's uncertainty on a per pixel / voxel basis , 
the illustrative embodiments employ a dropout technique 
both during training and inference . When inferring on 
examples from a domain that is shifted from the training 
example in resolution , pixel / voxel histogram value , or in 
scan artifacts tied to a specific machine , inference is run 
multiple times with active dropout layers to generate an 
uncertainty map for each pixel / voxel . The value of the 
uncertainty at each pixel / voxel location is calculated as the 
standard deviation in the values from the final softmax layer 
of the CNN over multiple inference runs . 
[ 0040 ] The CNN segmentations of domain - shifted CT 
scans consistently predict more material than is present in 
the images . However , uncertainty in the regions of the 
model's false positive material classification is higher than 
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in the regions where the segmentation appears to be accu 
rate . ( See FIG . 6B ) . The illustrative embodiments take 
advantage of this uncertainty bias and change segmentation 
labels for any pixels / voxels in regions of relatively high 
uncertainty . To automate this refinement process in the 
binary case , for example , an uncertainty value threshold 
informs the modification of segmentation labels by optimiz 
ing Equation 1 for the best threshold t : 

max | Vi ( t ) - Vo ( O ) Eq . ( 1 ) 
1 

where Vi ( t ) = { Vk | lk = 1 Auk st , 
Vo ( t ) = { vk l = 0 v Uk > t } , = 

Using the example of a three - class segmentation the neural 
network might output values of 0.1 ( class 0 ) , 0.5 ( class 1 ) , 
and 0.4 ( class 2 ) for a particular pixel / voxel . 
[ 0047 ] The neural network assigns a segmentation label to 
each image element , wherein the segmentation label corre 
sponds to the segmentation class with the highest value in 
the vector calculated for the image element ( step 508 ) . 
Continuing the example above , since class 1 had the highest 
value ( 0.5 ) , the pixel / voxel would be labeled class 1 . 
[ 0048 ] The neural network then uses active dropout layers 
to perform multiple inferences for each image element , 
wherein different nodes are dropped out for each inference 
( step 510 ) . The active dropout layers introduce variance in 
the output of the inferences . In an embodiment , a standard 
deviation is taken over the inference values for each pixel / 
voxel generated by the final softmax layer of the neural 
network . The specific number of inferences performed is 
dependent upon the underlying distribution of values that the 
neural network generates for each pixel / voxel . Therefore , 
the number of inferences might range from two to 1000+ . 
[ 0049 ] The neural network then generates an uncertainty 
value for each image element according to the inferences 
( step 512 ) . The uncertainty value represents a confidence 
level for the neural network's prediction that the pixel / voxel 
in question does in fact fall into the class for which it has 
been labeled . 
[ 0050 ] The segmentation label of any image element with 
an uncertainty value above a predefined threshold is replaced with a new segmentation label corresponding to the 
segmentation class with the next highest value in the vector 
for that image element ( step 514 ) . Continuing the example 
above , the pixel / voxel originally labeled class 1 ( value 0.5 ) 
might have an uncertainty level above the threshold . There 
fore , the neural network would change the segmentation 
label to class 2 , which had the second highest output value 
( 0.4 ) . Changing the segmentation labels of pixels / voxels 
with uncertainty values above the threshold produces the 
largest separation between average intensity of pixels / voxels 
in different segmentation classes . 
[ 0051 ] FIGS . 6A - 6C illustrate results from applying the 
method of the illustrative embodiments to CT scans of 
woven composite materials with material composition , reso 
lution , and greyscale histogram different from the training 
set . FIG . 6A depicts a slice of a CT scan to be segmented . 
FIG . 6B illustrates predicted binary labels for the CT slice in 
FIG . 6A from a CNN without uncertainty - guided refine 
ment . FIG . 6C illustrates resulting binary labels after apply 
ing uncertainty - guided refinement in accordance with an 
illustrative embodiment . 
[ 0052 ] Turning to FIG . 7 , a diagram of a data processing 
system is depicted in accordance with an illustrative 
embodiment . Data processing system 700 is an example of 
a system in which computer - readable program code or 
program instructions implementing processes of illustrative 
embodiments may be run . Data processing system 700 may 
be used to implement binary segmentation system 100 in 
FIG . 1. In this illustrative example , data processing system 
700 includes communications fabric 702 , which provides 
communications between processor unit 704 , memory 706 , 
persistent storage 708 , communications unit 710 , input / 
output unit 712 , and display 714 . 
[ 0053 ] Processor unit 704 serves to execute instructions 
for software applications and programs that may be loaded 
into memory 706. Processor unit 704 may be a set of one or 

[ 0041 ] Vk is the intensity of voxel k with CNN label 1x and 
uncertainty value Uz , and t is the uncertainty value threshold . 
Intuitively , V / ( t ) is the average value of pixels / voxels labeled 
i after refining segmentation with uncertainty threshold t . By 
maximizing Equation 1 , the illustrative embodiments creat 
ing the largest separation between the modes of pixel / voxel 
intensity . 
[ 0042 ] FIG . 5 depicts a flowchart illustrating a process of 
image segmentation in accordance with an illustrative 
embodiment . Process 500 might be implemented with 
binary segmentation system 100 in FIG . 1 and V - net CNN 
400 in FIG . 4 . 
[ 0043 ] Process 500 begins by training a neural network for 
image segmentation with a labeled training dataset from a 
first domain , wherein a subset of nodes in the neural net are 
dropped out during training ( step 502 ) . The neural network 
might be a three - dimensional V - net CNN such as CNN 400 
in FIG . 4 . 
[ 0044 ] The neural network receives image data from a 
second , different domain , wherein the image data comprises 
a number of image elements ( step 504 ) . The image elements 
might comprise two - dimensional pixels or three - dimen 
sional voxels . The image data might comprise a computed 
tomography image . The domain shift between the domain of 
the training dataset and the domain of the image data might 
result from , e.g. , differences in image scanning equipment , 
pixel / voxel histogram value , material composition of the 
imaging subject , and / or image resolution . 
[ 0045 ] The neural network then calculates a vector of N 
values that sum to 1 for each image element , wherein each 
of the N values represents an image segmentation class ( step 
506 ) . Segmentation classes are defined by the specific imag 
ing task . For example , for tumor identification in a CT scan , 
the segmentation classes might represent a simple binary 
choice of no tumor present ( class 0 ) or tumor present ( class 
1 ) . A different medical application might segment a CT 
image according to organ type , e.g. , heart ( class 0 ) , lungs 
( class 1 ) , liver ( class 2 ) , etc. As another example , in the field 
of autonomous - driving vehicles , the image might be seg 
mented into classes such as , e.g. , road ( class 0 ) , pedestrian 
( class 1 ) , stop sign ( class 2 ) , lane lines ( class 3 ) , other 
vehicles ( class 4 ) , sidewalks ( class 5 ) , etc. N is the total 
number of different segment classes predefined for the 
imaging task in question . 
[ 0046 ] For each pixel / voxel in the image , the neural net 
work calculates a value between 0 and 1 for each predefined 
class that predicts the likelihood the pixel / voxel in question 
represents that class . All N values in the vector sum to 1 . 
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a more hardware processor devices or may be a multi - proces 
sor core , depending on the particular implementation . Fur 
ther , processor unit 704 may be implemented using one or 
more heterogeneous processor systems , in which a main 
processor is present with secondary processors on a single 
chip . As another illustrative example , processor unit 704 
may be a symmetric multi - processor system containing 
multiple processors of the same type . 
[ 0054 ] A computer - readable storage device is any piece of 
hardware that is capable of storing information , such as , for 
example , without limitation , data , computer - readable pro 
gram code in functional form , and / or other suitable infor 
mation either on a transient basis and / or a persistent basis . 
Further , a computer - readable storage device excludes a 
propagation medium . Memory 706 , in these examples , may 
be , for example , a random access memory , or any other 
suitable volatile or non - volatile storage device . Persistent 
storage 708 may take various forms , depending on the 
particular implementation . For example , persistent storage 
708 may contain one or more devices . For example , persis 
tent storage 708 may be a hard drive , a flash memory , a 
rewritable optical disk , a rewritable magnetic tape , or some 
combination of the above . The media used by persistent 
storage 708 may be removable . For example , a removable 
hard drive may be used for persistent storage 708 . 
[ 0055 ] Communications unit 710 , in this example , pro 
vides for communication with other computers , data pro 
cessing systems , and devices via network communications 
unit 710 may provide communications using both physical 
and wireless communications links . The physical commu 
nications link may utilize , for example , a wire , cable , 
universal serial bus , or any other physical technology to 
establish a physical communications link for data processing 
system 700. The wireless communications link may utilize , 
for example , shortwave , high frequency , ultra - high fre 
quency , microwave , wireless fidelity ( WiFi ) , Bluetooth tech 
nology , global system for mobile communications ( GSM ) , 
code division multiple access ( CDMA ) , second - generation 
( 2G ) , third - generation ( 3G ) , fourth - generation ( 4G ) , 4G 
Long Term Evolution ( LTE ) , LTE Advanced , or any other 
wireless communication technology or standard to establish 
a wireless communications link for data processing system 
700 . 
[ 0056 ] Input / output unit 712 allows for the input and 
output of data with other devices that may be connected to 
data processing system 700. For example , input / output unit 
712 may provide a connection for user input through a 
keypad , keyboard , and / or some other suitable input device . 
Display 714 provides a mechanism to display information to 
a user and may include touch screen capabilities to allow the 
user to make on - screen selections through user interfaces or 
input data , for example . 
[ 0057 ] Instructions for the operating system , applications , 
and / or programs may be located in storage devices 716 , 
which are in communication with processor unit 704 
through communications fabric 702. In this illustrative 
example , the instructions are in a functional form on per 
sistent storage 708. These instructions may be loaded into 
memory 706 for running by processor unit 704. The pro 
cesses of the different embodiments may be performed by 
processor unit 704 using computer - implemented program 
instructions , which may be located in a memory , such as 
memory 706. These program instructions are referred to as 
program code , computer - usable program code , or computer 

readable program code that may be read and run by a 
processor in processor unit 704. The program code , in the 
different embodiments , may be embodied on different physi 
cal computer - readable storage devices , such as memory 706 
or persistent storage 708 . 
[ 0058 ] Program code 718 is located in a functional form 
on computer - readable media 720 that is selectively remov 
able and may be loaded onto or transferred to data process 
ing system 700 for running by processor unit 704. Program 
code 718 and computer - readable media 720 form computer 
program product 722. In one example , computer - readable 
media 720 may be computer - readable storage media 724 or 
computer - readable signal media 726. Computer - readable 
storage media 724 may include , for example , an optical or 
magnetic disc that is inserted or placed into a drive or other 
device that is part of persistent storage 708 for transfer onto 
a storage device , such as a hard drive , that is part of 
persistent storage 708. Computer - readable storage media 
724 also may take the form of a persistent storage , such as 
a hard drive , a thumb drive , or a flash memory that is 
connected to data processing system 700. In some instances , 
computer - readable storage media 724 may not be removable 
from data processing system 700 . 
[ 0059 ] Alternatively , program code 718 may be trans 
ferred to data processing system 700 using computer - read 
able signal media 726. Computer - readable signal media 726 
may be , for example , a propagated data signal containing 
program code 718. For example , computer - readable signal 
media 726 may be an electro - magnetic signal , an optical 
signal , and / or any other suitable type of signal . These signals 
may be transmitted over communication links , such as 
wireless communication links , an optical fiber cable , a 
coaxial cable , a wire , and / or any other suitable type of 
communications link . In other words , the communications 
link and / or the connection may be physical or wireless in the 
illustrative examples . The computer - readable media also 
may take the form of non - tangible media , such as commu 
nication links or wireless transmissions containing the pro 
gram code . 
[ 0060 ] In some illustrative embodiments , program code 
718 may be downloaded over a network to persistent storage 
708 from another device or data processing system through 
computer - readable signal media 726 for use within data 
processing system 700. For instance , program code stored in 
a computer - readable storage media in a data processing 
system may be downloaded over a network from the data 
processing system to data processing system 700. The data 
processing system providing program code 718 may be a 
server computer , a client computer , or some other device 
capable of storing and transmitting program code 718 . 
[ 0061 ] The different components illustrated for data pro 
cessing system 700 are not meant to provide architectural 
limitations to the manner in which different embodiments 
may be implemented . The different illustrative embodiments 
may be implemented in a data processing system including 
components in addition to , or in place of , those illustrated for 
data processing system 700. Other components shown in 
FIG . 7 can be varied from the illustrative examples shown . 
The different embodiments may be implemented using any 
hardware device or system capable of executing program 
code . As one example , data processing system 700 may 
include organic components integrated with inorganic com 
ponents and / or may be comprised entirely of organic com 
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ponents excluding a human being . For example , a storage 
device may be comprised of an organic semiconductor . 
[ 0062 ] As another example , a computer - readable storage 
device in data processing system 700 is any hardware 
apparatus that may store data . Memory 706 , persistent 
storage 708 , and computer - readable storage media 724 are 
examples of physical storage devices in a tangible form . 
[ 0063 ] In another example , a bus system may be used to 
implement communications fabric 702 and may be com 
prised of one or more buses , such as a system bus or an 
input / output bus . Of course , the bus system may be imple 
mented using any suitable type of architecture that provides 
for a transfer of data between different components or 
devices attached to the bus system . Additionally , a commu 
nications unit may include one or more devices used to 
transmit and receive data , such as a modem or a network 
adapter . Further , a memory may be , for example , memory 
706 or a cache such as found in an interface and memory 
controller hub that may be present in communications fabric 
702 . 
[ 0064 ] The present invention may be a system , a method , 
and / or a computer program product . The computer program 
product may include a computer - readable storage medium 
or media having computer - readable program instructions 
thereon for causing a processor to carry out aspects of the 
present invention . 
[ 0065 ] The computer - readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer - readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer - readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 
( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer - readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e.g. , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0066 ] Computer - readable program instructions described 
herein can be downloaded to respective computing process 
ing devices from a computer - readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer - readable program instructions 
from the network and forwards the computer - readable pro 

gram instructions for storage in a computer - readable storage 
medium within the respective computing / processing device . 
[ 0067 ] Computer - readable program instructions for carry 
ing out operations of the present invention may be assembler 
instructions , instruction - set - architecture ( ISA ) instructions , 
machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , or 
either source code or object code written in any combination 
of one or more programming languages , including an object 
oriented programming language such as Smalltalk , C ++ or 
the like , and conventional procedural programming lan 
guages , such as the “ C ” programming language or similar 
programming languages . The computer - readable program 
instructions may execute entirely on the user's computer , 
partly on the user's computer , as a stand - alone software 
package , partly on the user's computer and partly on a 
remote computer or entirely on the remote computer or 
server . In the latter scenario , the remote computer may be 
connected to the user's computer through any type of 
network , including a local area network ( LAN ) or a wide 
area network ( WAN ) , or the connection may be made to an 
external computer ( for example , through the Internet using 
an Internet Service Provider ) . In some embodiments , elec 
tronic circuitry including , for example , programmable logic 
circuitry , field - programmable gate arrays ( FPGA ) , or pro 
grammable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry , in order to perform aspects of the 
present invention . 
[ 0068 ] As used herein , the phrase “ a number ” means one 
or more . The phrase " at least one of ” , when used with a list 
of items , means different combinations of one or more of the 
listed items may be used , and only one of each item in the 
list may be needed . In other words , " at least one of " means 
any combination of items and number of items may be used 
from the list , but not all of the items in the list are required . 
The item may be a particular object , a thing , or a category . 
[ 0069 ] For example , without limitation , " at least one of 
item A , item B , or item C ” may include item A , item A and 
item B , or item C. This example also may include item A , 
item B , and item C or item B and item C. Of course , any 
combinations of these items may be present . In some illus 
trative examples , “ at least one of ” may be , for example , 
without limitation , two of item A ; one of item B ; and ten of 
item C ; four of item B and seven of item C ; or other suitable 
combinations . 
[ 0070 ] The flowcharts and block diagrams in the different 
depicted embodiments illustrate the architecture , function 
ality , and operation of some possible implementations of 
apparatuses and methods in an illustrative embodiment . In 
this regard , each block in the flowcharts or block diagrams 
may represent at least one of a module , a segment , a 
function , or a portion of an operation or step . For example , 
one or more of the blocks may be implemented as program 
code . 

[ 0071 ] In some alternative implementations of an illustra 
tive embodiment , the function or functions noted in the 
blocks may occur out of the order noted in the figures . For 
example , in some cases , two blocks shown in succession 
may be performed substantially concurrently , or the blocks 
may sometimes be performed in the reverse order , depend 
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ing upon the functionality involved . Also , other blocks may 
be added in addition to the illustrated blocks in a flowchart 
or block diagram . 
[ 0072 ] The descriptions of the various embodiments of the 
present invention have been presented for purposes of 
illustration , but are not intended to be exhaustive or limited 
to the embodiments disclosed . Many modifications and 
variations will be apparent to those of ordinary skill in the 
art without departing from the scope and spirit of the 
described embodiment . The terminology used herein was 
chosen to best explain the principles of the embodiment , the 
practical application or technical improvement over tech 
nologies found in the marketplace , or to enable others of 
ordinary skill in the art to understand the embodiments 
disclosed here . 
What is claimed is : 
1. A computer - implemented method for digital image 

segmentation , the method comprising : 
using a number of processors to perform the steps of : 

training a neural network for image segmentation with 
a labeled training dataset from a first domain , 
wherein a subset of nodes in the neural net are 
dropped out during training ; 

receiving , by the neural network , image data from a 
second , different domain , wherein the image data 
comprises a number of image elements ; 

calculating , by the neural network , a vector of N values 
that sum to 1 for each image element , wherein each 
of the N values represents an image segmentation 
class ; 

assigning , by the neural network , a segmentation label 
to each image element , wherein the segmentation 
label corresponds to a segmentation class with a 
highest value in the vector calculated for the image 
element ; 

performing , by the neural network with active dropout 
layers , multiple inferences for each image element ; 

generating , by the neural network , an uncertainty value 
for each image element according to the inferences ; 
and 

replacing the segmentation label of any image element 
with an uncertainty value above a predefined thresh 
old with a new segmentation label corresponding to 
a segmentation class with a next highest value in the 
vector for that image element . 

2. The method of claim 1 , wherein the neural network is 
a three - dimensional V - net convolutional neural network . 

3. The method of claim 1 , wherein the image elements 
comprise pixels . 

4. The method of claim 1 , wherein the image elements 
comprise voxels . 

5. The method of claim 1 , wherein generating the uncer 
tainty value for each image element further comprises taking 
a standard deviation over inference values for each image 
element . 

6. The method of claim 1 , wherein different domains 
result from differences in at least one of : 

image scanning equipment ; 
image element histogram value ; 
material composition of the imaging subject ; or 
image resolution . 
7. The method of claim 1 , wherein replacing the segmen 

tation labels of image elements with uncertainty values 

above the threshold produces a largest separation between 
average intensity of image elements in different segmenta 
tion classes . 

8. A system for digital image segmentation , the system 
comprising : 

a storage device configured to store program instructions ; 
and 

one or more processors operably connected to the storage 
device and configured to execute the program instruc 
tions to cause the system to : 
train a neural network for image segmentation with a 

labeled training dataset from a first domain , wherein 
a subset of nodes in the neural net are dropped out 
during training ; 

receive , by the neural network , image data from a 
second , different domain , wherein the image data 
comprises a number of image elements ; 

calculate , by the neural network , a vector of N values 
that sum to 1 for each image element , wherein each 
of the N values represents an image segmentation 
class ; 

assign , by the neural network , a segmentation label to 
each image element , wherein the segmentation label 
corresponds to a segmentation class with a highest 
value in the vector calculated for the image element ; 

perform , by the neural network with active dropout 
layers , multiple inferences for each image element ; 

generate , by the neural network , an uncertainty value 
for each image element according to the inferences ; 
and 

replace the segmentation label of any image element 
with an uncertainty value above a predefined thresh 
old with a new segmentation label corresponding to 
a segmentation class with a next highest value in the 
vector for that image element . 

9. The method of claim 8 , wherein the neural network is 
a three - dimensional V - net convolutional neural network . 

10. The method of claim 8 , wherein the image elements 
comprise pixels . 

11. The method of claim 8 , wherein the image elements 
comprise voxels . 

12. The method of claim 8 , wherein generating the 
uncertainty value for each image element further comprises 
taking a standard deviation over inference values for each 
image element . 

13. The method of claim 8 , wherein different domains 
result from differences in at least one of : 

image scanning equipment ; 
image element histogram value ; 
material composition of the imaging subject ; or 
image resolution . 
14. The method of claim 8 , wherein replacing the seg 

mentation labels of image elements with uncertainty values 
above the threshold produces a largest separation between 
average intensity of image elements in different segmenta 
tion classes . 

15. A computer program product for digital image seg 
mentation , the computer program product comprising : 

a computer - readable storage medium having program 
instructions embodied thereon to perform the steps of : 
training a neural network for image segmentation with 

a labeled training dataset from a first domain , 
wherein a subset of nodes in the neural net are 
dropped out during training ; 
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receiving , by the neural network , image data from a 
second , different domain , wherein the image data 
comprises a number of image elements ; 

calculating , by the neural network , a vector of N values 
that sum to 1 for each image element , wherein each 
of the N values represents an image segmentation 
class ; 

assigning , by the neural network , a segmentation label 
to each image element , wherein the segmentation 
label corresponds to a segmentation class with a 
highest value in the vector calculated for the image 
element ; 

performing , by the neural network with active dropout 
layers , multiple inferences for each image element ; 

generating , by the neural network , an uncertainty value 
for each image element according to the inferences ; 
and 

replacing the segmentation label of any image element 
with an uncertainty value above a predefined thresh 
old with a new segmentation label corresponding to 

a segmentation class with a next highest value in the 
vector for that image element . 

16. The method of claim 15 , wherein the neural network 
is a three - dimensional V - net convolutional neural network . 

17. The method of claim 15 , wherein the image elements 
comprise pixels . 

18. The method of claim 15 , wherein the image elements 
comprise voxels . 

19. The method of claim 15 , wherein generating the 
uncertainty value for each image element further comprises 
taking a standard deviation over inference values for each 
image element . 

20. The method of claim 15 , wherein different domains 
result from differences in at least one of : 

image scanning equipment ; 
image element histogram value ; 
material composition of the imaging subject ; or 
image resolution . 
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