US 20230121675A1
asy United States

a2y Patent Application Publication o Pub. No.: US 2023/0121675 A1
Merker et al. 43) Pub. Date: Apr. 20, 2023

(54) DEVICE AND METHOD FOR CONTROLLING (30) Foreign Application Priority Data
ATECHNICAL SYSTEM ApL. 23,2020 (DE) woovvooe 10 2020 205 146.1

(71) Applicant: Robert Bosch GmbH, Stuttgart (DE)
Publication Classification
(72) Inventors: Andreas Merker, Vaihingen/Enz (DE);

Axel Aue, Korntal-Muenchingen (DE); (51) Int. CL
Franz Nottensteiner, Moessingen (DE); GO6F 11/14 (2006.01)
Jerome Parlebas, Burgstetten (DE); GOGF 11/07 (20006.01)
Matthias Schreiber, Vaihingen/Enz
(DE) (52) U.S.CL
) CPC GOGF 11/1441 (2013.01); GO6F 11/0724
21) Appl.No: 17/910,804 (2013.01); GOGF 11/0739 (2013.01)
(22) PCT Filed: Apr. 12, 2021
(86) PCT No.: PCT/EP2021/059371 57 ABSTRACT
§ 371 (¢)(1), A method for controlling a technical system, in particular of

(2) Date: Sep. 10, 2022 a motor vehicle.

Patent Application Publication

Apr. 20, 2023 Sheet 1 of 2

US 2023/0121675 A1l

200
APP3
\\ APP2
T core” ~ 4 [“oore M oore” |
| 2022 | | 202b | | 202¢c 202 ;
""""""""""""""" APPY -
204a 204b
J J
f memory i gm
volatie noN-volatie ngé_..m...l/.i_...._.._..
DAT PRG e
|| BRG | |
—
s e DesS s
28 et 208
o ! o .5
M Fecg o § feXtarmial tnw §
| 201 | | HSM | L300 |

Patent Application Publication

s 4100
i
g resei ‘EL\-"‘.% ﬁz

L

cwaird
ifr??gréiation M?Zﬁ

EE?«FUSE

FIG. 3D

resirict

40CEss ‘“““*-*‘1 35

rights

FIG. 3G

Apr. 20, 2023 Sheet 2 of 2

assign f‘"\-—"? 1 G

lf::m APPY

I) i
g assign ,,‘g‘.__“,?';z

| I |

lsgz, APP2

assign ,,.___‘,?25

FIG. 3E

use HSM “"‘““"ié%

FIG. 3H

US 2023/0121675 A1l

use FCCU ,—-\..-—'g 1 5

Feotiect 4
Eﬁgrgg\/are JE'“‘N——-? ‘g 6

failures

L...._...E"........i

i
r_,_jm_,
erform
A STy

ans
LFSSPDH.)(‘)S 3

FIG. 3C

use Qo8 ',..___‘_1 3@

|
S, A

i set QoS Jj.-\wﬂ‘ggz

use mecharnism

s0 orders placed

sannot be overwritten or
influenced

+~—150

{

FIG. 31

US 2023/0121675 Al

DEVICE AND METHOD FOR
CONTROLLING A TECHNICAL SYSTEM

BACKGROUND INFORMATION

[0001] There are control devices that control partial func-
tions of a technical system, e.g., of a vehicle. These respec-
tively control certain sub-functions and/or associated
applications.

SUMMARY

[0002] Preferred embodiments of the present invention
relate to a device for controlling a technical system, e.g.,
of a vehicle.

[0003] Further preferred embodiments of the present
invention provide that the device comprises: a computer
comprising at least one core, a memory assigned to the com-
puter for at least temporarily storing at least one of the fol-
lowing elements: a) data, b) a computer program, in particu-
lar for executing a method according to the embodiments. In
further preferred embodiments, the computer program may
also characterize at least one application (hereinafter also
called “application”) executed on the computer, e.g., for
controlling the technical system.

[0004] In further preferred embodiments of the present
invention, the device or the computer comprises a plurality
of cores.

[0005] In further preferred embodiments of the present
invention, the memory comprises a volatile memory (e.g.,
random access memory (RAM)) and/or a non-volatile
memory (e.g., flash EEPROM).

[0006] In further preferred embodiments of the present
invention, the computer comprises at least one of the follow-
ing elements: microprocessor (LP), microcontroller (uC) ,
application-specific integrated circuit (ASIC), system on
chip (SoC), programmable logic module (e.g., FPGA, field
programmable gate array), hardware circuitry, or any com-
binations thereof.

[0007] Further preferred embodiments of the present
invention relate to a computer-readable storage medium
comprising instructions that, when executed by a computer,
cause the computer to execute the method according to the
embodiments.

[0008] Further preferred embodiments of the present
invention relate to a computer program comprising instruc-
tions that, when said computer program is executed by a
computer, cause the computer to execute the method accord-
ing to the embodiments.

[0009] Further preferred embodiments of the present
invention relate to a data carrier signal characterizing and/
or transmitting the computer program according to the
embodiments. For example, the data carrier signal may be
received over an optional data interface of the device.
[0010] Further preferred embodiments of the present
invention relate to a reset (“reset”) of at least one hardware
component, in particular for at least one application.

[0011] Further preferred embodiments of the present
invention perform a reset of modules of the device and/or
any existing circuitry, in particular external circuitry, such
that several independent applications can be executed and
preferably do not affect each other.

[0012] In further preferred embodiments of the present
invention, the device is developed to reset each core indivi-

Apr. 20, 2023

dually. Therefore, in particular, any additional cores present
in the computer are not affected by the reset of a core.
[0013] In further preferred embodiments of the present
invention, a plurality of regions or clusters may be provided
that are for example characterized by at least one core and
optionally memory assigned to the at least one core. In
further preferred embodiments, the memory may be
assigned logically and/or physically to the at least one
core. In further preferred embodiments, at least one of the
clusters may be reset independently of an operation of the
further clusters, in particular without interfering with an
operation of the further clusters. Thus, in further preferred
embodiments, for example, at least one cluster may be reset,
while optionally existing further clusters may continue to be
operated independently of resetting the one cluster, for
example to execute one or more applications.

[0014] In further preferred embodiments of the present
invention, at least one cluster may also comprise at least
one circuit component or circuit part, for example a phase-
locked loop (PLL). In further preferred embodiments, the at
least one circuit component may also be reset together with
resetting the at least one cluster.

[0015] In further preferred embodiments of the present
invention, any existing peripheral modules that can for
example be assigned to the individual applications can be
reset in a supervisor mode and/or at least one application.
[0016] In further preferred embodiments of the present
invention, optionally existing external components, such as
an external logic unit, may be reset over at least one separate
data line, for example a separate GPIO (general purpose
input output), wherein resetting is performed according to
further preferred embodiments, for example, by a supervisor
mode or by an application. In further preferred embodi-
ments, the GPIO (signal) can for this purpose for example
be routed as a reset signal to a reset input of the external
component (for example, an external component or circuit).
[0017] In further preferred embodiments of the present
invention, a plurality of reset terminals (“pins”) may be pro-
vided for any existing external components or circuitry such
that, for example, the external circuitry assigned to each
application may be reset separately.

[0018] In further preferred embodiments of the present
invention, resetting may be performed by at least one of
the following sources, which are in particular independent
of one another: a) a signal, in particular a hardware signal,
e.g., triggered by a supervisor and/or monitoring logic unit,
b) by a bit that performs the reset function when written to,
¢) when software, in particular an application, sets bits to
correspond to the reset state.

[0019] In further preferred embodiments of the present
invention, specific functions may still be specifically main-
tained in the aforementioned variant ¢). An example accord-
ing to further preferred embodiments is a timer module
(“timer”), which for example outputs a pulse width modu-
lated (PWM) signal and is not to be interrupted, in particular
also not by the reset. According to further preferred embodi-
ments, the other instances or parameters of the timer can in
this case by way of the register settings (writing or setting
the bits) be brought into a state, for example, corresponding
to the reset values (“reinitialization”) - in particular in the
same module, which according to further preferred embodi-
ments could also be reset by hardware.

[0020] In further preferred embodiments of the present
invention, using the circuit functions cited as examples

US 2023/0121675 Al

above, it is possible according to further preferred embodi-
ments to reset the components or circuit parts necessary for
operating the application, in particular independently of the
state and/or operation of the other applications (these may
be in the reset, start-up, ramp-down or normal function
state) - both by a supervisor and by at least one application
itself.

[0021] Further preferred embodiments of the present
invention relate to a method of resetting a device for con-
trolling a technical system, in particular of a motor vehicle,
for example of a control unit, wherein the resetting is per-
formed while the device or the technical system is in opera-
tion (for example, in one of a plurality of possible operating
states).

[0022] In further preferred embodiments of the present
invention, multiple, in particular mutually independent or
at least partially dependent applications are operated on
the device simultaneously or at least chronologically
overlapping.

[0023] In further preferred embodiments of the present
invention, optionally provided further components or circui-
try, in particular external components or circuitry, may be
assigned to at least one application that is executed at least
temporarily by the device or its computer or at least one core
of the computer.

[0024] In further preferred embodiments of the present
invention, the components may also be assigned to the at
least one application dynamically, i.e., during a runtime of
the device or the application.

[0025] In further preferred embodiments of the present
invention, the optionally provided further components or
circuitry may be reset in particular separately from a super-
visor and/or at least one application, in particular without
affecting a runtime behavior of at least one, preferably sev-
eral, in particular all further applications of the device.
[0026] In further preferred embodiments of the present
invention, the runtime behavior is characterized in that the
same execution times are observed, in particular with
respect to a bandwidth and/or with respect to latency bound-
ary conditions, wherein the same clock-accurate behavior is
not required in further preferred embodiments.

[0027] In further preferred embodiments of the present
invention, further applications of the device are operated
further while, or when, at least one other application of the
device resets the modules and/or circuit parts assigned to the
device.

[0028] Further preferred embodiments of the present
invention relate to a behavior of memory regions of the
memory, in particular of non-volatile memory regions
(“NVM”) of the memory, wherein in particular one or
more of the non-volatile memory regions may each be
assigned to an application or multiple applications.

[0029] Further preferred embodiments of the present
invention provide that at least one NVM memory region
can be assigned to at least one application.

[0030] In further preferred embodiments of the present
invention, the NVM memory region is arranged such that
the latter can be assigned to the at least one application for
example via a) a MPU (memory protection unit), and/or b)
via a supervisor, in particular via an assignment of a parti-
tion ID.

[0031] In further preferred embodiments of the present
invention, the device or the computer comprises three
cores (“cores”), for example, wherein an application is exe-

Apr. 20, 2023

cuted on each core, and wherein, for example, a specifiable
memory region, for example 4 megabytes (MB), is assigned
to each application.

[0032] In further preferred embodiments of the present
invention, a plurality of memory modules is provided in
the memory, in particular for the NVM memory regions,
wherein preferably at least two, preferably more than two,
further preferably all of the memory modules, are designed
such that they are constructed or assembled either comple-
tely or from smaller sub-modules.

[0033] In further preferred embodiments of the present
invention, the sub-modules have at least partially the same
characteristics as a memory module to be assigned, e.g.,
with respect to common word line controls and/or common
bit line read circuits and/or common programming voltage
feeds.

[0034] In further preferred embodiments of the present
invention, the device or computer is developed to reprogram
the associated memory regions or modules or sub-modules
independently of a state of other memory regions or mod-
ules or sub-modules, wherein in particular multiple
instances of the resources necessary for this are for example
available in each memory region. Therefore, in further pre-
ferred embodiments, it is possible for a first (memory)
region to be reprogrammed, while the other (memory)
regions continue to run the applications as if the one appli-
cation or the memory region assigned to said application is
not reprogrammed.

[0035] In further preferred embodiments of the present
invention, the one application or the memory region
assigned thereto may be reprogrammed from a supervisor
and/or a partition manager and/or an application.

[0036] In further preferred embodiments of the present
invention - in particular by providing the resources
described above - the method can also be executed in an
(in particular with regard to the computer or device) external
memory, in particular NVM memory, which for example
comprises a plurality of blocks and which can for example
have a separate word line control for the blocks and/or sepa-
rate bit line read circuits for the blocks. In further preferred
embodiments, the NVM memory may be developed as a low
power double data rate (LPDDR) memory type.

[0037] Further preferred embodiments of the present
invention relate to a method for programming (and/or repro-
gramming) a device or a memory of, or for, the device,
wherein the device is for example developed to control a
technical system, such as of a motor vehicle, characterized
by at least one of the following aspects:

[0038] a) the method is performed, e.g., in a motor vehi-
cle while in operation (e.g., in any of the various oper-
ating states of the motor vehicle),

[0039] b) multiple independent or dependent applica-
tions are operated simultaneously or at least partially
chronologically overlapping on, or by means of, the
device or controller,

[0040] c) different memory regions in and/or outside of
the computer can be assigned to the applications, in
particular flexibly and/or dynamically,

[0041] d) different memory regions in and/or outside of
the computer can be reprogrammed, in particular sepa-
rately or independently of one another, by a supervisor
and/or at least one (in particular an assigned) applica-
tion, in particular without influencing the runtime beha-
vior of at least one other application, or several, or all

US 2023/0121675 Al

other applications of the device or computer (the run-
time behavior is for example characterized in that the
same execution times (in particular with regard to a
specifiable bandwidth and/or specifiable latency
boundary conditions are observed), wherein in particu-
lar the same clock-accurate behavior according to
further preferred embodiments is not required),

[0042] e) at least one other, preferably all other, applica-
tions of the device or the computer continue to be func-
tional when one or more of the applications are
reprogrammed.

[0043] Further preferred embodiments of the present
invention relate to a fault collection and control unit,
FCCU, i.e., to a device for collecting and managing faults,
in particular to a partitioning of resources of the FCCU.
[0044] Further preferred embodiments of the present
invention provide that the FCCU is developed to ensure
independent (continued) operation of applications of the
device or computer, which for example enables functionally
deterministically separate responses (in particular responses
related to functional safety), e.g., to hardware errors. In
other words, in further preferred embodiments it is thereby
made possible that applications not affected by the, e.g.,
hardware fault can continue to be executed.

[0045] In further preferred embodiments of the present
invention, the FCCU is developed to collect hardware faults
(“HW faults”) in individual modules, such as a core, RAM
(random access memory), NVM (non-volatile memory)
and/or peripheral modules, and for example to perform
fault responses that can be set or specified by a safety
setup (device or configuration of aspects regarding func-
tional safety), e.g., activation of one or more fault pins, trig-
gering an interrupt (interrupt request), triggering a reset or
activating an NMI (non-maskable interrupt request).

[0046] In further preferred embodiments of the present
invention, fault input signals are assigned to one or more
applications, wherein in particular fault responses (see for
example the embodiments described as examples above)
can also be generated or output to the partitions and/or appli-
cations and/or associated fault pins.

[0047] In further preferred embodiments of the present
invention, the device or the computer comprises three
cores, wherein, for example, an application is executed on
each core at least temporarily, and wherein, for example, at
least one specifiable memory region, e.g., 4 megabytes
(MB), is temporarily assigned to each application.

[0048] For example, as soon as a fault is detected in a first
of the three cores (“Core 1) on which a first application
(“Application 1”) runs, a lockstep fault in Corel can be
reported to the FCCU. In further preferred embodiments,
the FCCU is configured such that the fault can preferably
only affect the actions assigned to Application 1 - e.g., the
interrupt resources in the GIC ((generic) interrupt control-
ler) of Corel, the reset of Corel, the NMI of Corel, or one/
multiple fault pins. In further preferred embodiments, in a
safety system setup it can be determined - e.g., by a super-
visor or by Application 1 -that this fault, e.g., triggers a reset
of Corel or that a reset of Corel is to be triggered when this
fault occurs. In further preferred embodiments, other appli-
cations (e.g., “Application 2” and “Application 3”) are not
influenced by the lockstep fault in Core 1 and preferably
continue to run with the same temporal behavior.

[0049] According to further preferred embodiments of the
present invention, for example, a fault can be detected in a

Apr. 20, 2023

third of the three cores (“Core 3”) to which a third applica-
tion (“Application 3”) is assigned, e.g., a non-recoverable
“double bit” fault in the NVM memory region assigned to
application 3. Preferably, the FCCU is configured such that
the fault is forwarded, in particular only, in response to the
actions assigned to application 3. Further preferably, an
interrupt request (interrupt) can be triggered, for example
by the FCCU, to application 3, e.g., to call a fault handling
routine for the double bit fault. In further preferred embodi-
ments, the fault handling routine may for example include
additional testing, e.g., to determine a severity of the safety
impact of the fault, and optionally, accordingly, either to
continue running application 3, or for example to reset it,
or even to inform other applications, for example via the
supervisor - e.g., by means of an interrupt - that they may
(also) be impacted (by the fault) and that for example corre-
sponding checks of the NVM memory assigned to Applica-
tions 1 and 2 are to be performed.

[0050] Further preferred embodiments of the present
invention relate to a method of fault handling of an applica-
tion in a device, e.g., a controller, for a technical system,
e.g., for a motor vehicle, characterized by at least one of
the following aspects:

[0051] a) the method is performed, e.g., in a motor vehi-
cle while in operation (e.g., in any of the various oper-
ating states of the motor vehicle),

[0052] b) multiple independent or dependent applica-
tions are operated simultaneously or at least partially
chronologically overlapping on, or by means of, the
device or controller,

[0053] ¢) various faults or fault events (e.g., RAM,
Core, NVM, ..)) that may occur e.g. in and/or outside
(external NVM or RAM)of the computer can each be
assigned to at least one application,

[0054] d) at least one, preferably a plurality, in particu-
lar all, applications can, at least within their resources,
evaluate a, or the, fault and/or initiate a corresponding
fault response and/or at least inform another applica-
tion, e.g., about possible safety errors, in particular in
the resources assigned to them,

[0055] e) at least one, preferably several, in particular
all, applications can be informed of a, or the, fault by
at least one other application,

[0056] f) other applications, in particular applications
not affected by a, or the, fault can continue to run, in
particular continue to run such that the runtime beha-
vior, in particular the latency boundary conditions, are
observed, wherein in particular the same clock-accurate
behavior is not required.

[0057] Further preferred embodiments of the present
invention relate to a forwarding of information characteriz-
ing an operating state, in particular an operating state
(“safety state™) with respect to a functional safety (“safety™),
of an application to at least one further unit, e.g., an external
unit, in particular a unit arranged externally to the computer
or device.

[0058] In further preferred embodiments of the present
invention, it is provided, in particular in order to be able to
ensure independent continued operation, with respect to
functionally deterministically separated safety responses to
hardware errors, of the unaffected application(s) and any
external unit(s) optionally connected thereto (such as a con-
trol unit of drivers, e.g., PHY for signals that carry a safety
load and that implement the connections of the computer

US 2023/0121675 Al

(“computer pins”), e.g., on a physical bus protocol), or also
the controls of components such as ignition/injection on an
internal combustion engine), that these circuits, which are
externally (with respect to the computer) assigned to the
applications, e.g., signal the safety state “Error” (may also
be “reset” in other preferred embodiments, but also in addi-
tion to the reset), in particular so as not to influence the cir-
cuit parts assigned to applications that are not impacted.
[0059] In further preferred embodiments of the present
invention, three cores (3 cores) are provided by way of
example, with 3 applications, wherein one of the three appli-
cations runs on each core. Three fault pins (connections,
e.g., for signaling fault states) are also provided. In further
preferred embodiments, external interfaces for a VCU
(vehicle control unit) (e.g., Application 1 on Corel) and an
injection for a combustion application (e.g., application 3 on
Core3) are provided by way of example.

[0060] In further preferred embodiments of the present
invention, the combustion application intends to switch off
the injection, for example, to reduce the torque of the
engine. For this purpose, for example, the fault pin 3 (e.g.,
which has been assigned to application 3 during startup (i.e.,
during startup of the device)) is activated, which is prefer-
ably connected to the (external) injection circuit (IC) such
that it is switched off, in particular independently of the
pulses that specify the injection timing, and for example
does not control the injection valves. In further preferred
embodiments, the VCU function continues to run simulta-
neously on Application 1 on Core 1 -this VCU for example
also transmits signals with a safety load over a CAN driver.
In further preferred embodiments, the Error Pinl (e.g.,
assigned to Application 1 during startup) is not activated,
so that the CAN signals originating from the computer or
the device are forwarded over the currently not deactivated
CAN driver (to be deactivated with Error Pinl). As a result,
the VCU application (continues) to run on Corel unaffected
by the fault of application 3, and in particular the aforemen-
tioned CAN signals continue to be transmitted.

[0061] Further preferred embodiments of the present
invention relate to a method for signaling, in particular for-
warding, the safety status of at least one application to units
or components outside the computer or device, character-
ized by at least one of the following aspects:

[0062] a) the signaling of the safety status can prefer-
ably be used as the switch-off signal, e.g., for the exter-
nal components (“peripheral modules™),

[0063] b) the signaling can be assigned to individual
applications for example running in parallel on the
computer, wherein in particular peripheral modules
assigned to an application can be reset independently
of the state of other applications or their peripheral
modules,

[0064] c¢) an assignment can be made, preferably
unchangeably, after a reset,

[0065] d) aspects of these embodiments can also be uti-
lized for external security components, such as external
crypto components (cryptography accelerator, hard-
ware security module), interfaces,

[0066] e) use in aspects of functional safety (“FUSL”)
as well as in aspects of security, e.g., against
manipulations.

[0067] Other preferred embodiments of the present inven-
tion relate to a method of controlling a technical system,
e.g., of a vehicle, wherein at least one peripheral module is

Apr. 20, 2023

assigned to at least one application. Preferably, the applica-
tions can each run in separate partitions on the computer.
[0068] In further preferred embodiments of the present
invention, the at least one peripheral module is, for example,
at least one of the following elements: timer, communica-
tion interfaces, GPIO ports (general input and/or output
ports).

[0069] This preferably makes it possible to achieve the
result that several applications do not influence one another
while in operation on the computer.

[0070] Examples of an undesirable mutual influence that
is avoidable according to further preferred embodiments of
the present invention include:

[0071] 1. Operation of an Analog-Digital Converter
(ADC): When several applications access the resources
of the ADC (e.g., channels/inputs and/or control regis-
ters), the one application can then for example over-
write the settings of another application - e.g., channel
assignment, sample time (sampling rate), conversion
time, ...

[0072] 2. CAN (Controller Area Network): When sev-
eral applications use CAN identifiers on the same CAN
bus, for example queue entries can be made in a CAN
module, wherein the software of a partition (or e.g., an
application) can overwrite the settings of another
application.

[0073] Further preferred embodiments of the present
invention provide that at least one peripheral module, can
be, preferably completely, assigned to a partition or
application.

[0074] In further preferred embodiments of the present
invention, e.g., modules are provided for the device or com-
puter, e.g., SPI (serial peripheral interface), LIN (local Inter-
connect Network), CAN, ADC, which can e.g., preferably
be completely assigned to an application, in particular
because the resources of these modules are either fully
used by the partition or application, or these modules are
present several times, in particular at such a high number
that respective individual instances of these modules can
be fully assigned to a partition or application.

[0075] Further preferred embodiments of the present
invention provide the following mechanisms, in particular
to separate these modules according to a target of a determi-
nistic function:

[0076] assigning at least one, preferably several or all
modules to a partition or application (in particular in the
module), wherein the module in particular e.g., only accepts
write and/or read commands from a bus (e.g., data bus for
connecting the module to component(s) of the computer or
device) that come with a specifiable identifier, e.g., “Parti-
tion ID,” which was for example previously assigned to the
module by a partition manager in the system setup.

[0077] In further preferred embodiments of the present
invention, modules, preferably complete modules, are
assigned in particular permanently (i.e., statically) to parti-
tions, in particular to one partition or application.

[0078] Further preferred embodiments can provide that
(peripheral) modules can be assigned to a plurality of appli-
cations, e.g., specifiable or controllable by at least one hard-
ware function, such as an address range restriction.

[0079] In further preferred embodiments of the present
invention, there are, e.g., modules in a device or computer,
e.g., GTM (timer), Ethernet, HSM (hardware security mod-
ule) (Windows), whose components or clusters or module

US 2023/0121675 Al

parts can be assigned to partitions or to applications by an
internal assignment of address ranges.

[0080] The following mechanism is provided to separate
these modules according to further preferred embodiments
of the present invention, in particular with the target of a
deterministic function:

[0081] assigning the modules to the partitions or appli-
cations using address ranges, and/or

[0082] arranging the resources in a module such that the
resources assigned to a partition (or application) lie in
an address range close to one another (e.g., adjacent),
and/or

[0083] the address range or the address ranges can e.g.
be assigned externally via a bus bridge and/or via a
memory protection unit (MPU), which e.g. ensures
that the internal master/slave(s) not belonging to the
assigned partition or application cannot read and/or
write to this address range.

[0084] Further preferred embodiments of the present
invention can thus assign (peripheral) modules to applica-
tions or partitions via a, preferably module-internal, restric-
tion of the address ranges.

[0085] Further preferred embodiments of the present
invention for example also have modules that can be sepa-
rated from one another by software (SW) mechanisms,
wherein these modules can for example be used by a plur-
ality of partitions or applications. An example according to
further preferred embodiments is for example Ethernet with-
out using implemented queues; another example according
to further preferred embodiments is a bus for inter-processor
communication, or a CAN module, in which a SW assign-
ment, in particular of the individual ID(s), is useful, for
example because the system does not have a sufficient num-
ber of CAN modules.

[0086] Further preferred embodiments of the present
invention therefore provide the following:

[0087] a) configuring these modules, especially during
startup, using a configuration tool such that the bound-
ary conditions of all partitions or applications that uti-
lize these resources are taken into account,

[0088] b) example CAN/Ethernet: the bandwidth and/or
latency from the requirement is implemented to meet
the requirements -partition the Message ID to the
queues of the modules with the corresponding priorities
to be assigned,

[0089] c) in ongoing operation, writing/reading to these
resources is managed by the partition manager (SW,
that runs in a rights mode above the partitions or appli-
cations) - there are preferably several options for call-
ing the partition manager - e.g., via a call or via trap/
emulate (writing specifically to a resource that is
blocked, and thus the higher privilege level is called
to resolve the access conflict,

[0090] d) another option according to further preferred
embodiments is to control the writing and/or reading in
ongoing operation by setting up DMA channels - these
DMA channels are then e.g., preferably only, activated
on certain triggers, and the reading and/or writing then
comprises e.g. only specific resources in the module,
and e.g. then writing/reading the data from address
ranges permanently assigned to the individual
partitions.

[0091] Further preferred embodiments of the present
invention therefore propose the following: assigning

Apr. 20, 2023

resources (e.g., peripheral modules) of the device or compu-
ter to a plurality of partitions or applications, wherein SW
functions and HW functions are used.

[0092] Further preferred embodiments of the present
invention relate to a method of controlling a technical sys-
tem, e.g., of a vehicle, wherein a Quality of Service (QoS) or
at least one parameter characterizing the quality of service is
used to at least temporarily separate partitions or applica-
tions from one another.

[0093] According to further preferred embodiments of the
present invention, it may be advantageous in devices or sys-
tems that can run multiple applications simultaneously to
also take into account one or more buses that are in particu-
lar useful for data transfers between components - in parti-
cular to achieve identical runtimes of applications or a spe-
cifiable resource distribution (in particular independently of
other applications).

[0094] Since the runtime of applications in further pre-
ferred embodiments of the present invention is influenced
by multiple factors, these factors may also be addressed
individually or in combination with one another in further
preferred embodiments: -the core itself (mechanism hyper-
visor), - access to memory (QoS), - access to modules on the
computer, such as SPI, Safety,

[0095] Further preferred embodiments of the present
invention provide utilizing a mechanism for separating
accesses to memories, as can, €.g., be provided for bus sys-
tems or bus architectures of the device or the computer, for
separating accesses to the (peripheral) modules.

[0096] In further preferred embodiments of the present
invention, at least one application, preferably multiple or
all applications, set a quality of service (“Qo0S”), e.g., char-
acterizable by latency and/or bandwidth, for at least one per-
ipheral component or at least one peripheral module. For
example:

[0097] a) Application 1 sets 15 clock cycles of latency
and 20% bus bandwidth for accesses to a peripheral
component,

[0098] b) Application 2 sets 40 clock cycles of latency
and 70% bus bandwidth for the same peripheral
component.

[0099] In other words, in further preferred embodiments
of the present invention, the QoS or QoS mechanisms
(e.g., implemented using hardware) can be used for control-
ling the bandwidth and/or latency of individual applications,
in particular for separating peripheral accesses (accesses by
applications to peripheral modules) and not to memories,
wherein in particular use is also possible for deterministic
separation of applications and a reduction of effort when
implementing a plurality of applications in a device or com-
puter, e.g., in a control unit.

[0100] Further preferred embodiments of the present
invention provide using at least one counter to emulate a
quality of service (QoS), which may be useful according to
further preferred embodiments in particular when QoS can-
not be implemented with hardware.

[0101] Further preferred embodiments of the present
invention propose to emulate one or more QoS mechanisms,
e.g., using at least one of the following elements: a) counters
for latency and/or bandwidth are implemented, b) software
evaluates these counters at a high priority level (e.g., above
applications). A possible implementation according to
further preferred embodiments for example provides: for
each bus, x * 2 registers (e.g., 32 bits wide) are implemented

US 2023/0121675 Al

as counters, wherein x characterizes a number of the parti-
tions to be supported, and the register or registers preferably
count the accesses of the respectively assigned application
for each clock cycle. Further preferably, the counter value is
for example compared every z ms to an expected counter
value, and if the counter value is greater than the expected
counter value, the application and for example the partition
manager are informed, in particular to initiate a substitute
action.

[0102] In other preferred embodiments of the present
invention - and depending on the type of device or control-
ler, or depending on the type of target system for the device
or controller - a time-synchronous grid or an angular-syn-
chronous grid (e.g., with respect to a revolution of a crank-
shaft of a combustion engine) can be used, in particular for
the above-described example of QoS emulation using
counter(s).

[0103] In further preferred embodiments of the present
invention, a counter is increased by a specifiable value,
e.g., one, for each action applied on the bus with a (in parti-
cular specifiable) partition ID, whereby for example a mea-
sure characterizing a bandwidth can be determined.

[0104] In further preferred embodiments of the present
invention, starting with a request on the bus of a (in particu-
lar specifiable) partition, the clock cycles are counted until
the partition is granted the bus (access). It is o.k. if for exam-
ple the number of counted clock cycles is less than a specifi-
able latency - if the value of the counted clock cycles is
greater than the specifiable latency, this may be stored in
further preferred embodiments and e.g. at the end of the
set time interval, it can be read out whether the latency in
the observed time interval was ever greater than the preset
time, and optionally, if yes, by how much.

[0105] In further preferred embodiments of the present
invention, it is alternatively or additionally possible, e.g.,
to perform a preset automatic comparison using hardware
and/or to trigger an interrupt.

[0106] In further preferred embodiments of the present
invention, one or more counters can be provided on at
least one bus of the device or the computer.

[0107] In further preferred embodiments of the present
invention, the counters may be used in conjunction with cor-
responding software (and/or hardware), e.g., to evaluate an
observed allocated bandwidth and/or an (observed) latency.
[0108] Further preferred embodiments of the present
invention relate to a method and device for controlling a
technical system, e.g., of a vehicle, wherein a memory pro-
tection unit (MPU) is provided, wherein the memory protec-
tion unit is used in particular to restrict access rights to at
least one bus system of the device or computer.

[0109] An advantage of operating a plurality of applica-
tions on a device or a computer according to further pre-
ferred embodiments is a short latency of a data exchange
and a high bandwidth of the exchange; as a result, for exam-
ple controllers can be computed in fewer time slots than
those specified in conventional systems because the data
from the other applications are available comparatively
quickly.

[0110] In order to make this possible and in particular to
ensure that several applications do not inadmissibly inter-
fere with each other, further preferred embodiments propose
to use an MPU within the computer or outside the computer,
e.g., in the area of the bus system, to restrict access rights.

Apr. 20, 2023

[0111] Further preferred embodiments of the present
invention can, for example, make use of the following pro-
cedure: For example, a core-external MPU is provided, e.g.,
in a bus interface, wherein two applications are provided,
each of which runs on a core.

[0112] In further preferred embodiments of the present
invention, the MPU can be configured, e.g., on system
startup, such that regions for writing are assigned in the
local memory respectively assigned to the other core, and
that regions for reading are authorized in the first memory.
It is then possible, for example, for each application to read
the data of the other core and locally provide data to the
latter by writing, in particular without it being possible to
overwrite other (memory) areas.

[0113] Accordingly, further preferred embodiments of the
present invention provide as follows: a method for using a
memory region assignment by means of an MPU to secure a
deterministic data exchange between a plurality of applica-
tions running on the computer or the device.

[0114] Accordingly, further preferred embodiments of the
present invention provide as follows: a method for securing
deterministic memory accesses and/or data exchanges of
different applications using at least one MPU. Particularly
preferably, “deterministic” in this context refers to the appli-
cation timing (i.e., the temporal behavior of the applica-
tion(s)), and in particular not to a specific number of cycles
for accessing the respective resources.

[0115] Further preferred embodiments of the present
invention relate to a method and apparatus for controlling
a technical system, e.g., of a vehicle, wherein at least one
hardware accelerator unit is used to accelerate a startup of
the system.

[0116] In modern (in particular automotive) systems, it
happens that existing software of a device is replaced with
other SW (“tuning”), in order, e.g., to make more power
available in the application (for example, more power,
HP). A method of detecting and potentially preventing this
proposes that during system boot (starting or start-up), the
software code is first checked to determine whether it is the
code that is to be actually executed or whether the code has
been manipulated, for example in the context of a tuning
action.

[0117] A method according to further preferred embodi-
ments for checking the SW code provides that at least one
checksum is determined or calculated for a specifiable mem-
ory region or the (in particular entire) memory. One problem
with this can be that determining or calculating the check-
sum takes comparatively long, therefore extending the boot
operation. In further preferred embodiments, a boot opera-
tion should be completed in e.g., 30 ms - 100 ms. However,
the checksum calculation may add a significant number of
milliseconds.

[0118] Further preferred embodiments therefore propose
to provide at least one hardware accelerator unit and to use
the latter to calculate the checksum(s) (“HW checksum
accelerator”). Further preferred embodiments may also pro-
vide a plurality of hardware accelerator units, which may
each process a part of the memory to be tested or form a
checksum for the respective part. Further preferably, the
checksum is calculated by means of the at least one hard-
ware accelerator unit prior to a start of the application(s) .
[0119] In further preferred embodiments, hardware accel-
erator units may also be assigned to different partitions or
applications.

US 2023/0121675 Al

[0120] Further preferred embodiments relate to a method
and device for controlling a technical system, e.g., a vehicle,
wherein a mechanism, preferably in the interface of the
module, is implemented in at least one hardware module
or a peripheral component, the mechanism placing orders
of a plurality of partitions or applications, which in particu-
lar cannot be overwritten or influenced by other partitions.
Further preferred embodiments may also refer to the
mechanism as “transfer window(s).”

[0121] In further preferred embodiments of the present
invention, the HW module (or a controller of the module,
e.g., a microcontroller of the module) or the peripheral com-
ponent is developed to process these orders according to a
specified rule, e.g., in a round robin method, whereby
advantageously a deterministic temporal behavior is pro-
duced for the (external) applications.

[0122] Further preferred embodiments of the present
invention provide for an implementation of Transfer Win-
dows in at least one HW module having at least one of the
following aspects:

[0123] a) The address range of the Transfer Window
can optionally be assigned to different applications/
partitions,

[0124] b) The module processes the tasks, e.g., by
means of SW, according to a specifiable method, e.g.,
a round robin method.

[0125] Other preferred embodiments of the present inven-
tion relate to a device for carrying out the method according
to at least one of the above embodiments, wherein in parti-
cular the device is developed for controlling a technical sys-
tem, in particular of a motor vehicle.

[0126] Further preferred embodiments of the present
invention provide that the device comprises: a computer
comprising at least one core, preferably a plurality of
cores, a memory assigned to the computer for at least tem-
porarily storing at least one of the following elements: a)
data, b) computer program, in particular for carrying out
the method according to the embodiments.

[0127] In further preferred embodiments of the present
invention, the memory comprises a volatile memory (e.g.,
random access memory (RAM)) and/or a non-volatile
(NVM) memory (e.g., flash EEPROM), or a combination
thereof, or with other, not explicitly mentioned types of
memory.

[0128] In further preferred embodiments of the present
invention, the device comprises at least one analog/digital
(A/D) converter developed to transform a received analog
(time and/or value-continuous) signal into a time and/or
value-discrete signal, and/or at least one further or other per-
ipheral component such as a timer and/or a data interface.
[0129] Further preferred embodiments of the present
invention relate to a computer-readable storage medium
comprising instructions that, when executed by a computer,
cause the computer to execute the method according to the
embodiments.

[0130] Further preferred embodiments of the present
invention relate to a computer program comprising instruc-
tions that, when said computer program is executed by a
computer, cause the computer to execute the method accord-
ing to the embodiments.

[0131] Further preferred embodiments of the present
invention relate to a data carrier signal characterizing and/
or transmitting the computer program according to the
embodiments. The data carrier signal can be received, for

Apr. 20, 2023

example, via one, or the, optional data interface of the
device.

[0132] Further preferred embodiments of the present
invention relate to a use of the method according to the
embodiments and/or the device according to the embodi-
ments and/or the computer-readable storage medium
according to the embodiments and/or the computer program
according to the embodiments and/or the data carrier signal
according to the embodiments of the present invention for at
least one of the following elements: a) enabling determinis-
tic runtime behavior of at least some, preferably all, applica-
tions of the device, b) avoiding a new homologation for a
first application, in particular when changing at least one
further application.

[0133] Further features, possible applications and advan-
tages of the present invention are shown in the following
description of exemplary embodiments of the present inven-
tion, which are shown in the figures. All described or
depicted features by themselves or in any combination con-
stitute the subject matter of the invention, regardless of their
formulation or representation in the description or in the
figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0134] FIG. 1 shows a schematical illustration of a simpli-
fied block diagram of a technical system according to pre-
ferred embodiments of the present invention.

[0135] FIG. 2 shows a schematical illustration of a simpli-
fied block diagram of an apparatus according to further pre-
ferred embodiments of the present invention.

[0136] FIG. 3A shows a schematical illustration of a sim-
plified flow chart with respect to method aspects according
to further preferred embodiments of the present invention.
[0137] FIGS. 3B, 3C, 3D, 3E, 3F, 3G, 3H, 3I show sche-
matical illustrations, each of a simplified flow chart with
respect to method aspects according to further preferred
embodiments of the present invention.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

[0138] Preferred embodiments relate to methods and/or a
device 200 for controlling a technical system 1, e.g., of a
vehicle 1, in particular of a motor vehicle, cf. FIG. 1.
[0139] Further preferred embodiments, cf. FIG. 2, provide
that the device 200 comprises: a computer 202 comprising at
least one (e.g., three in the present case) core(s), 202a, 2025,
202¢, a memory 204 assigned to the computer 202 for at
least temporarily storing at least one of the following ele-
ments: a) data DAT, b) computer program PRG, in particular
for executing a method according to the embodiments. In
further preferred embodiments, the computer program
PRG may also characterize at least one application APP1,
APP2, APP3 that is executed at least temporarily on the
computer 202, e.g., for controlling the technical system 1
or components thereof (e.g., brake system, combustion
engine).

[0140] In further preferred embodiments, the device 200
or the computer 202 comprises a plurality of cores 202aq,
2025, 202¢. More than the three cores 202a, 2025, 202¢ illu-
strated by way of example in FIG. 1 are also possible in
further preferred embodiments.

[0141] In further preferred embodiments, the memory 204
comprises a volatile memory 204a (e.g., random access

US 2023/0121675 Al

memory (RAM)) and/or a non-volatile (NVM) memory
2045 (e.g., flash EEPROM).

[0142] In further preferred embodiments, the computer
202 comprises at least one of the following elements or is
developed as at least one of these elements: microprocessor
(uP), microcontroller (uC) , application-specific integrated
circuit (ASIC), system on chip (SoC), programmable logic
module (e.g., FPGA, field programmable gate array), hard-
ware circuitry, or any combinations thereof.

[0143] Further preferred embodiments relate to a compu-
ter-readable storage medium SM comprising instructions
PRG that, when executed by a computer, cause the computer
202 to execute the method according to the embodiments.
[0144] Further preferred embodiments relate to a compu-
ter program PRG comprising instructions that, when said
program is executed by a computer 202, cause the computer
202 to execute the method according to the embodiments.
[0145] Further preferred embodiments relate to a data car-
rier signal DCS characterizing and/or transmitting the com-
puter program according to the embodiments. The data car-
rier signal DCS can be received, for example, via an
optional data interface 206 of the device 200.

[0146] Further preferred embodiments, cf. FIG. 3A, relate
to a reset 100, 102 of at least one hardware component, in
particular for at least one application APP1.

[0147] In further preferred embodiments, a reset 100, 102
of modules of the device 200 and/or any existing, in parti-
cular external, circuitry 208 (e.g., analog/digital converters,
ADC) is developed such that several independent applica-
tions APP1, APP2, APP3 can be operated and preferably do
not influence one another.

[0148] In further preferred embodiments, the device 200 is
developed to reset each core 202a, 2025, 202¢ individually.
In particular, any additional cores 2025, 202¢ present in the
computer 202 are as a result not affected by the reset of a
core 202a.

[0149] In further preferred embodiments, a plurality of
regions or clusters may be provided that are characterized
by, for example, at least one core 202a and optionally mem-
ory 204a assigned to the at least one core. In further pre-
ferred embodiments, the memory may be assigned logically
and/or physically to the at least one core. In further preferred
embodiments, at least one of the clusters may be reset inde-
pendently of an operation of the further clusters, in particu-
lar without interfering with an operation of the further clus-
ters. Thus, in further preferred embodiments, for example, at
least one cluster may be reset, while optionally existing
further clusters may continue to be operated independently
of resetting the one cluster, for example to execute one or
more applications.

[0150] In further preferred embodiments, at least one clus-
ter may also comprise at least one circuit component or cir-
cuit part, for example a phase-locked loop (PLL). In further
preferred embodiments, the at least one circuit component
may also be reset together with resetting the at least one
cluster.

[0151] In further preferred embodiments, any existing per-
ipheral modules that can for example be assigned to the indi-
vidual applications APP1, APP2, APP3 can be reset in a
supervisor mode and/or at least one application.

[0152] In further preferred embodiments, optionally exist-
ing external components, such as external logic units, can be
reset via at least one dedicated data line, for example a dedi-
cated GPIO (general purpose input output), wherein reset-

Apr. 20, 2023

ting is performed according to further preferred embodi-
ments, for example, by a supervisor mode or by an
application APP1, APP2, APP3. In further preferred embo-
diments, the GPIO (signal) can for this purpose for example
be routed as a reset signal to a reset input of the external
component (for example, an external component or circuit).
[0153] In further preferred embodiments, a plurality of
reset terminals (“pins”) may be provided for any existing
external components or circuitry such that, for example,
the external circuitry assigned to each application may be
reset separately.

[0154] In further preferred embodiments, resetting may be
performed by at least one of the following sources, which
are in particular independent of one another: a) a signal, in
particular a hardware signal, e.g., triggered by a supervisor
and/or monitoring logic unit, b) by a bit that performs the
reset function when written to, ¢) by software, in particular
an application that sets bits to correspond to the reset state.
[0155] In further preferred embodiments, specific func-
tions may still be specifically maintained in the aforemen-
tioned variant ¢). An optional timer, which for example out-
puts a pulse width modulated (PWM) signal, and which is
not to be interrupted, in particular also not by the reset, is
mentioned as an example according to further preferred
embodiments. According to further preferred embodiments,
the other instances or parameters of the timer can in this case
by way of the register settings (writing or setting the bits) be
brought into a state, for example, corresponding to the reset
values (“reinitialization”) - in particular in the same module,
which according to further preferred embodiments could
also be reset by hardware.

[0156] In further preferred embodiments, using the circuit
functions cited as examples above, it is possible according
to further preferred embodiments to reset the components or
circuit parts necessary for operating the application, in par-
ticular independently of the state and/or operation of the
other applications APP2, APP3 (these may be in the reset,
start-up, ramp-down or normal function state) - both by a
supervisor and by at least one application APP1 itself.
[0157] Further preferred embodiments relate to a method
of resetting a device 200 for controlling a technical system
1, in particular of a motor vehicle, for example a control
unit, wherein the resetting is performed while the device
200 or the technical system 1 is in operation (for example,
in one of a plurality of possible operating states).

[0158] In further preferred embodiments, multiple appli-
cations APP1, APP2, APP3, which are in particular
mutually independent or at least partially dependent, are
operated on the device 200 simultaneously or at least chron-
ologically overlapping.

[0159] In further preferred embodiments, optionally pro-
vided further components 208 or circuitry, in particular
external components or circuitry, may be assigned to at
least one application APP1 that is executed at least tempora-
rily by the device 200 or its computer 202 or at least one
core 202a of the computer 202.

[0160] In further preferred embodiments, the components
may also be assigned to the at least one application dynami-
cally, i.e., during a runtime of the device or the application.
[0161] In further preferred embodiments, the optionally
provided further components or circuitry may be reset in
particular separately by a supervisor and/or at least one
application, in particular without influencing a runtime

US 2023/0121675 Al

behavior of at least one, preferably several, in particular all
further applications of the device.

[0162] In further preferred embodiments, the runtime
behavior is characterized in that the same execution times
are observed, in particular with respect to a bandwidth and/
or with respect to latency boundary conditions, wherein the
same clock-accurate behavior is not required in further pre-
ferred embodiments.

[0163] In further preferred embodiments, further applica-
tions APP3 of the device 200 are operated further while, or
when, at least one other application APP2 of the device 200
resets the modules 208 and/or circuit parts assigned to the
device 200.

[0164] Further preferred embodiments, cf. FIG. 3B, relate
to a behavior of memory regions of the memory, in particu-
lar of non-volatile memory regions (“NVM”) of the mem-
ory, wherein in particular one or more of the non-volatile
memory regions SB1 may each be assigned to an applica-
tion APP1 or are, or may be, assigned 110 to multiple
applications.

[0165] Further preferred embodiments provide that at least
one NVM memory region SB1 can be assigned to one, in
particular to exactly one, application APP1.

[0166] In further preferred embodiments, the NVM mem-
ory region is arranged such that the latter can be assigned to
at least one application for example via a) a MPU (memory
protection unit), and/or b) via a supervisor, in particular via
an assignment of a partition ID.

[0167] In further preferred embodiments, the device 200
or the computer 202 comprises three cores 202a, 2025,
202¢, wherein for example an application is executed on
each core, and wherein for example a specifiable memory
region, e.g., 4 megabytes (MB), is assigned to each applica-
tion. For example, a first memory region SB1 is assigned to
a first application APP1 and a second memory region SB2 is
assigned to a second application APP1, cf. steps 110, 112
according to FIG. 3B.

[0168] In further preferred embodiments, a plurality of
memory modules is provided in the memory 204, in parti-
cular for the NVM memory regions 204b, wherein prefer-
ably at least two, preferably more than two, further prefer-
ably all of the memory modules are designed such that they
are constructed or assembled either completely or from
smaller sub-modules.

[0169] In further preferred embodiments, the sub-modules
have at least partially the same characteristics as a memory
module to be assigned, e.g., with respect to common word
line controls and/or common bit line read circuits and/or
common programming voltage feeds.

[0170] In further preferred embodiments, the device 200
or computer 202 is developed to reprogram the associated
memory regions or modules or sub-modules independently
of a state of other memory regions or modules or sub-mod-
ules, wherein in particular multiple instances of the
resources necessary for this are for example available in
each memory region. Therefore, in further preferred embo-
diments, it is possible for a first (memory) region to be
reprogrammed, while the other (memory) regions continue
to run the applications as if the one application or the mem-
ory region assigned to said application is not reprogrammed.
[0171] In further preferred embodiments, the one applica-
tion or the memory region assigned thereto may be repro-
grammed from a supervisor and/or a partition manager and/
or an application.

Apr. 20, 2023

[0172] In further preferred embodiments - in particular by
providing the resources described above - the method can
also be executed in an (in particular with regard to the com-
puter or device) external memory, in particular NVM mem-
ory, which for example comprises a plurality of blocks and
which can for example have a separate word line control for
the blocks and/or separate bit line read circuits for the
blocks. In further preferred embodiments, the NVM mem-
ory may be developed as a low power double data rate
(LPDDR) memory type.

[0173] Further preferred embodiments relate to a method
for programming (and/or reprogramming) a device or a
memory of, or for, the device, wherein the device is for
example developed to control a technical system, such as
of a motor vehicle, characterized by at least one of the fol-
lowing aspects:

[0174] a) the method is performed, e.g., in a motor vehi-
cle while in operation (e.g., in one of the various oper-
ating states of the motor vehicle),

[0175] b) multiple independent or dependent applica-
tions are operated simultaneously or at least partially
chronologically overlapping on, or by means of, the
device or controller,

[0176] c) different memory regions in and/or outside of
the computer can be assigned to the applications, in
particular flexibly and/or dynamically,

[0177] d) different memory regions in and/or outside of
the computer can be reprogrammed, in particular sepa-
rately or independently of one another, by a supervisor
and/or at least one (in particular an assigned) applica-
tion, in particular without influencing the runtime beha-
vior of at least one other application, or several, or all
other applications of the device or computer (the run-
time behavior is for example characterized in that the
same execution times (in particular with regard to a
specifiable bandwidth and/or specifiable latency
boundary conditions are observed), wherein in particu-
lar the same clock-accurate behavior according to
further preferred embodiments is not required),

[0178] e) at least one other, preferably all other, applica-
tions of the device or the computer continue to be func-
tional when one or more of the applications are
reprogrammed.

[0179] Further preferred embodiments, cf. FIG. 3C, relate
to a fault collection and control unit, FCCU, 201 (FIG. 2),
i.e., to a device for collecting and managing faults, in parti-
cular to a partitioning of resources of the FCCU. Step 115 of
FIG. 3C symbolizes the use of the FCCU 201.

[0180] Further preferred embodiments provide that the
FCCU 1is developed to ensure independent (continued)
operation of applications of the device or computer, which
for example enables functionally deterministically separate
responses (in particular responses related to functional
safety), e.g., to hardware errors. In other words, in further
preferred embodiments it is thereby made possible that
applications not affected by the, e.g., hardware fault can
continue to be executed.

[0181] In further preferred embodiments, the FCCU is
developed to collect 116 (FIG. 3C) hardware failures
(“HW failures”) in individual modules, such as a core,
RAM (random access memory), NVM (non-volatile mem-
ory) and/or peripheral modules, and to for example perform
117 fault responses that can be implemented by a safety
setup (device or configuration of aspects regarding func-

US 2023/0121675 Al

tional safety), e.g., activation of one or more fault pins, trig-
gering an interrupt (interrupt request), triggering a reset or
activating an NMI (non-maskable interrupt request).

[0182] In further preferred embodiments, fault input sig-
nals are assigned to one or more applications, wherein in
particular fault responses (see for example the embodiments
described as examples above) can also be generated or out-
put to the partitions and/or applications and/or associated
fault pins.

[0183] For example, once a fault is detected in a first core
(“Core 17) 202a (FIG. 2) of the three cores on which, for
example, a first application APP1 (“Application 1”) runs, a
lockstep fault in Corel 2024 can e.g. be reported to FCCU
201. In further preferred embodiments, the FCCU 201 is
configured such that the fault can preferably only affect
the actions assigned to Application 1 - e.g., the interrupt
resources in the GIC ((generic) interrupt controller) of
Corel 202a, the reset of Corel, the NMI of Corel, or one/
several fault pin(s). In further preferred embodiments, it
can be determined in a safety system setup - e.g., by a super-
visor or Application 1 - that this fault e.g., triggers a reset of
Corel or that a reset of Corel is triggered when this fault
occurs. In further preferred embodiments, other applications
(e.g., “Application 2” and “Application 3”) are not influ-
enced by the lockstep fault in core 1 and preferably continue
to run with the same temporal behavior.

[0184] According to further preferred embodiments, for
example, in a third Core 202¢ (“Core 3”) of the three cores
to which a third application APP3 (“Application 3”) is
assigned, a fault may be detected, e.g., a non-recoverable
“double bit” fault in the NVM memory region assigned to
application 3. Preferably, FCCU 201 is configured such that
the fault is forwarded, in particular only in response to the
actions assigned to application 3. Further preferably, an
interrupt request can be triggered, for example by the
FCCU, to application 3, e.g., to call a fault handling routine
for the double bit fault. In further preferred embodiments,
the fault handling routine may for example include addi-
tional testing, e.g., to determine a severity of the safety
impact of the fault, and optionally, accordingly, either to
continue running application 3, or for example to reset it,
or also to inform other applications, for example via the
supervisor - e.g., by means of an interrupt - that they may
(also) be impacted (by the fault) and that for example corre-
sponding checks of the NVM memory assigned to Applica-
tions 1 and 2 are to be performed.

[0185] Further preferred embodiments of the present
invention relate to a method of fault handling of an applica-
tion in a device, e.g., a controller, for a technical system,
e.g., for a motor vehicle, characterized by at least one of
the following aspects:

[0186] a) the method is performed, e.g., in a motor vehi-
cle while in operation (e.g., in any of the various oper-
ating states of the motor vehicle),

[0187] b) multiple independent or dependent applica-
tions are operated simultaneously or at least partially
chronologically overlapping on, or by means of, the
device or controller,

[0188] c¢) various faults or fault events (e.g., RAM,
Core, NVM, ..)) that may occur e.g. in and/or outside
(external NVM or RAM) of the computer can each be
assigned to at least one application,

[0189] d) at least one, preferably a plurality, in particu-
lar all, applications can, at least within their resources,

Apr. 20, 2023

evaluate a, or the, fault and/or initiate a corresponding
fault response and/or at least inform another applica-
tion, e.g., about possible safety errors, in particular in
the resources assigned to them,

[0190] e) at least one, preferably several, in particular
all, applications can be informed of a, or the, fault by
at least one other application,

[0191] f) other applications, in particular applications
not affected by a, or the, fault can continue to run, in
particular continue to run such that the runtime beha-
vior, in particular the latency boundary conditions, are
observed, wherein in particular the same clock-accurate
behavior is not required.

[0192] Further preferred embodiments, cf. FIG. 3D, relate
to a forwarding 120 of information I1-FUSI characterizing
an operating state, in particular an operating state (“safety
state”) with respect to a functional safety of an application
APP1, APP2, APP3, to at least one further unit, e.g., an
external unit 300 (FIG. 2), in particular to a unit 300
arranged externally to the computer 202 or device 200.
[0193] In further preferred embodiments, it is provided, in
particular in order to be able to ensure independent contin-
ued operation, with respect to functionally deterministically
separated safety responses to hardware errors, of the unaf-
fected application(s) and any external unit(s) optionally con-
nected thereto (such as a control unit of drivers, e.g., PHY
for signals that carry a safety load and that implement the
connections of the computer (“computer pins”), e.g., on a
physical bus protocol), or also the controls of components
such as ignition/injection on an internal combustion engine),
that these circuits, which are externally (with respect to the
computer) assigned to the applications, e.g., signal the
safety state “Error” (may also be “reset” in other preferred
embodiments, but also in addition to the reset), in particular
so as not to influence the circuit parts assigned to applica-
tions that are not impacted.

[0194] In further preferred embodiments, three cores are
provided by way of example, with 3 applications, wherein
one of the three applications runs on each core. Three fault
pins (connections, e.g., for signaling fault states) are also
provided. In further preferred embodiments, external inter-
faces for a VCU (vehicle control unit) (e.g., Application 1
on Corel) and an injection for a combustion application
(e.g., Application 3 on Core3) are provided by way of
example.

[0195] In further preferred embodiments, the combustion
application intends to switch off the injection, for example,
to reduce the torque of the engine. For this purpose, for
example, the fault pin 3 (e.g., which has been assigned to
application 3 during startup (i.e., during startup of the
device)) is activated, which is preferably connected to the
(external) injection circuit (IC) such that it is switched off,
in particular independently of the pulses that specify the
injection timing, and for example does not control the injec-
tion valves. In further preferred embodiments, the VCU
function continues to run simultaneously on Application 1
on Core 1 - this VCU for example also transmits signals
with a safety load over a CAN driver. In further preferred
embodiments, the Error Pinl (e.g., assigned to Application 1
during startup) is not activated, so that the CAN signals ori-
ginating from the computer or the device are forwarded over
the currently not deactivated CAN driver (to be deactivated
with Error Pinl). As a result, the VCU application (con-
tinues) to run on Corel unaffected by the fault of application

US 2023/0121675 Al

3, and in particular the aforementioned CAN signals con-
tinue to be transmitted.

[0196] Further preferred embodiments relate to a method
for signaling, in particular forwarding, the safety status of at
least one application to units or components outside the
computer or device, characterized by at least one of the fol-
lowing aspects:

[0197] a) the signaling of the safety status can prefer-
ably be used as the switch-off signal, e.g., for the exter-
nal components (“peripheral modules™),

[0198] b) the signaling can be assigned to individual
applications for example running in parallel on the
computer, wherein in particular peripheral modules
assigned to an application can be reset independently
of the state of other applications or their peripheral
modules,

[0199] ¢) an assignment can be made, preferably
unchangeably, after a reset,

[0200] d) aspects of these embodiments can also be uti-
lized for external security components, such as external
crypto components (cryptography accelerator, hard-
ware security module), interfaces,

[0201] e) use in aspects of functional safety (“FUSL”)
as well as in aspects of security, e.g., against
manipulation.

[0202] Further preferred embodiments, cf. FIG. 3E, relate
to a method for controlling a technical system 1, e.g., a vehi-
cle 1, wherein at least one peripheral module 206 is assigned
to at least one, in particular precisely one, application APP1,
cf. Step 125 of FIG. 3E. Preferably, the applications may
each run in separate partitions on the computer 202.

[0203] In further preferred embodiments, the at least one
peripheral module 206 is, for example, at least one of the
following elements: A timer, communication interfaces
206, GPIO ports (general input and/or output ports).

[0204] This preferably makes it possible to achieve the
result that several applications APP1, APP2, APP3 do not
influence one another while in operation on the computer
202.

[0205] Examples of an undesirable mutual influence that
is avoidable according to further preferred embodiments
include:

[0206] 1. Operation of an Analog-Digital Converter
(ADC): when several applications access the resources
of the ADC (e.g., channels/inputs and/or control regis-
ters), the one application can then for example over-
write the settings of another application - e.g., channel
assignment, sample time (sampling rate), conversion
time, ...

[0207] 2. CAN (Controller Area Network): when sev-
eral applications use CAN identifiers on the same
CAN bus, for example queue entries can be made in a
CAN module, wherein the software of a partition (or
e.g., an application) can overwrite the settings of
another application.

[0208] Further preferred embodiments provide that at least
one peripheral module, can be, preferably completely,
assigned to a partition or application.

[0209] In further preferred embodiments, e.g., modules
are provided for the device or computer, e.g., SPI (serial
peripheral interface), LIN (local Interconnect Network),
CAN, ADC, which can e.g., preferably be completely
assigned to an application, in particular because the
resources of these modules are either fully used by the parti-

Apr. 20, 2023

tion or application, or these modules are present several
times, in particular at such a high number that respective
individual instances of these modules can be fully assigned
to a partition or application.

[0210] Further preferred embodiments propose the fol-
lowing mechanisms, in particular to separate these modules
according to a target of a deterministic function:

[0211] assigning at least one, preferably several or all
modules to a partition or application (in particular in the
module), wherein the module in particular e.g., only accepts
write and/or read commands from a bus (e.g., data bus for
connecting the module to component(s) of the computer or
device) that come with a specifiable identifier, e.g., “Parti-
tion ID,” which was for example previously assigned to the
module by a partition manager in system setup.

[0212] In further preferred embodiments, modules, prefer-
ably complete modules, are assigned in particular perma-
nently (i.e., statically) to partitions, in particular to one par-
tition or application.

[0213] Further preferred embodiments can provide that
(peripheral) modules can be assigned to a plurality of appli-
cations, e.g., specifiable or controllable by at least one hard-
ware function, such as an address range restriction.

[0214] In further preferred embodiments, there are e.g.,
modules in a device or computer, e.g., GTM (timer), Ether-
net, HSM (hardware security module) (Windows), whose
components or clusters or module parts can be assigned to
partitions or to applications by an internal assignment of
address ranges.

[0215] The following mechanism is proposed to separate
these modules according to further preferred embodiments,
in particular with the target of a deterministic function:

[0216] assigning the modules to the partitions or appli-
cations using address ranges, and/or

[0217] arranging the resources in a module such that the
resources assigned to a partition (or application) lie in
an address range close to one another (e.g., adjacent),
and/or

[0218] the address range or the address ranges can e.g.,
be assigned externally via a bus bridge and/or via a
memory protection unit (MPU), which e.g. ensures
that the internal master/slave(s) not belonging to the
assigned partition or application cannot read and/or
write to this address range.

[0219] Further preferred embodiments can thus assign
(peripheral) modules to applications or partitions via a, pre-
ferably module-internal, restriction of the address ranges.
[0220] Further preferred embodiments for example also
have modules that can be separated from one another by
software (SW) mechanisms, wherein these modules can
for example be used by a plurality of partitions or applica-
tions. An example according to further preferred embodi-
ments is for example Ethernet without using implemented
queues; another example according to further preferred
embodiments is a bus for inter-processor communication,
or a CAN module, in which a SW assignment, in particular
of the individual ID(s), is useful, for example because the
system does not have a sufficient number of CAN modules.
[0221] Further preferred embodiments therefore propose
the following:

[0222] a) configuring these modules, especially during
startup, using a configuration tool such that the bound-
ary conditions of all partitions or applications that uti-
lize these resources are taken into account,

US 2023/0121675 Al

[0223] b) example CAN/Ethernet: the bandwidth and/or
latency from the requirement is implemented to meet
the requirements -partition the Message ID to the
queues of the modules with the corresponding priorities
to be assigned,

[0224] ¢) in ongoing operation, writing/reading to these
resources is managed by the partition panager (SW that
runs in a rights mode above the partitions or applica-
tions) - there are preferably several options for calling
the partition manager - e.g., via a call or via trap/emu-
late (writing specifically to a resource that is blocked,
and thus as a result the higher privilege level is called to
resolve the access conflict,

[0225] d) another option according to further preferred
embodiments is to control the writing and/or reading in
ongoing operation by setting up DMA channels - these
DMA channels are then e.g., preferably only, activated
on certain triggers, and the reading and/or writing then
comprises e.g. only specific resources in the module,
and e.g. then writing/reading the data from address
ranges permanently assigned to the individual
partitions.

[0226] Further preferred embodiments therefore propose
the following: assigning resources (e.g. peripheral modules)
of the device or computer to a plurality of partitions or appli-
cations, wherein SW functions and HW functions are used.
[0227] Further preferred embodiments, cf. FIG. 3F, relate
to a method of controlling a technical system, e.g., of a vehi-
cle, wherein a Quality of Service (QoS) or at least one para-
meter characterizing the quality of service is used, cf. Step
130, to at least temporarily separate the partitions or appli-
cations from one another.

[0228] According to further preferred embodiments, it
may be advantageous in devices or systems that can run
multiple applications simultaneously to also take into
account one or more buses that are in particular useful for
data transfers between components - in particular to achieve
identical runtimes of applications or a specifiable resource
distribution (in particular independently of other
applications).

[0229] Since the runtime of applications in further pre-
ferred embodiments is influenced by multiple factors, these
factors may also be addressed individually or in combina-
tion with one another in further preferred embodiments: -
the core itself (mechanism hypervisor), - access to memory
(QoS), - access to modules on the computer, such as SPI,
Safety, ...

[0230] Further preferred embodiments propose to utilize a
mechanism for separating accesses to memories, as can e.g.
be provided for bus systems or bus architectures of the
device or the computer, for separating accesses to the (per-
ipheral) modules.

[0231] In further preferred embodiments, at least one
application, preferably multiple or all applications, set a
quality of service (“QoS”), e.g., characterizable by latency
and/or bandwidth, for at least one peripheral component or
at least one peripheral module, cf. the optional Step 132
according to FIG. 3F. For example:

[0232] a) Application 1 sets 15 clock cycles of latency
and 20% bus bandwidth for accesses to a peripheral
component,

[0233] b) Application 2 sets 40 clock cycles of latency
and 70% bus bandwidth for the same peripheral
component.

Apr. 20, 2023

[0234] In other words, in further preferred embodiments,
the QoS or QoS mechanisms can be used (e.g., implemented
using hardware) for controlling the bandwidth and/or
latency of individual applications APP1, in particular for
separating peripheral accesses (accesses by applications to
peripheral modules) and not to memories, wherein in parti-
cular use is also possible for deterministic separation of
applications and a reduction of effort when implementing
a plurality of applications in a device or computer, e.g., in
a control unit.

[0235] Further preferred embodiments propose to use at
least one counter to emulate a quality of service (QoS),
which may be useful according to further preferred embodi-
ments in particular when QoS cannot be implemented with
hardware.

[0236] Further preferred embodiments propose to emulate
one or more QoS mechanisms, e.g., using at least one of the
following elements: a) counters for latency and/or band-
width are implemented, b) software evaluates these counters
at a high priority level (e.g., above applications). A possible
implementation according to further preferred embodiments
for example provides: for each bus, x * 2 registers (e.g.,
32 bits wide) are implemented as counters, wherein x char-
acterizes a number of the partitions to be supported, and the
register or registers preferably count the accesses of the
respectively assigned application for each clock cycle.
Further preferably, the counter value is for example com-
pared every z ms to an expected counter value, and if the
counter value is greater than the expected counter value, the
application and for example the partition manager are
informed, in particular to initiate a substitute action.

[0237] In other preferred embodiments - and depending on
the type of device 200 or controller, or depending on the
type of target system 1 for the device or controller - a
time-synchronous grid or an angular-synchronous grid
(e.g., with respect to a revolution of a crankshaft of a com-
bustion engine) can be used, in particular for the above-
described example of QoS emulation using counter(s).
[0238] In further preferred embodiments, a counter is
increased by a specifiable value, e.g., one, for each action
applied on the bus with a (in particular specifiable) partition
ID, whereby for example a measure characterizing a band-
width can be determined.

[0239] In further preferred embodiments, starting with a
request on the bus of a (in particular specifiable) partition,
the clock cycles are counted until the partition is granted the
bus (access). It is o.k. if for example the number of counted
clock cycles is less than a specifiable latency - if the value of
the counted clock cycles is greater than the specifiable
latency, this may be stored in further preferred embodiments
and e.g. at the end of the set time interval, it can be read out
whether the latency in the observed time interval was ever
greater than the preset time, and optionally, if yes, by how
much.

[0240] In further preferred embodiments, it is alternatively
or additionally possible, e.g., to perform a preset automatic
comparison using hardware and/or to trigger an interrupt.
[0241] In further preferred embodiments, one or more
counters can be provided on at least one bus of the device
or the computer.

[0242] In further preferred embodiments, the counters
may be used in conjunction with corresponding software
(and/or hardware), e.g., to evaluate an observed allocated
bandwidth and/or an (observed) latency.

US 2023/0121675 Al

[0243] Further preferred embodiments, cf. FIG. 3G, relate
to a method and device for controlling a technical system,
e.g., a vehicle, wherein a memory protection unit (MPU) is
provided, wherein the memory protection unit is used, cf.
Step 135, in particular to restrict access rights to at least
one bus system of the device 200 or computer 202.

[0244] An advantage of operating a plurality of applica-
tions on a device or a computer according to further pre-
ferred embodiments is a short latency of a data exchange
and a high bandwidth of the exchange; as a result, for exam-
ple controllers can be computed in fewer time slots than
those specified in conventional systems because the data
from the other applications are available comparatively
quickly.

[0245] In order to make this possible and in particular to
ensure that several applications do not inadmissibly inter-
fere with each other, further preferred embodiments propose
to use an MPU within the computer or outside the computer,
e.g., in the area of the bus system, to restrict access rights.

[0246] Further preferred embodiments can for example
make use of the following procedure: for example, a core-
external MPU is provided, e.g., in a bus interface, wherein
two applications are provided, each of which runs on a core.
[0247] In further preferred embodiments, the MPU can be
configured, e.g., on system startup, such that regions for
writing are assigned in the local memory respectively
assigned to the other core, and that regions for reading are
authorized in the first memory. It is then possible, for exam-
ple, for each application to read the data of the other core
and locally provide data to the latter by writing, in particular
without it being possible to overwrite other (memory) areas.
[0248] Accordingly, further preferred embodiments pro-
pose as follows: a method for using a memory region assign-
ment by means of an MPU to secure a deterministic data
exchange between a plurality of applications running on
the computer or the device.

[0249] Accordingly, further preferred embodiments pro-
pose as follows: a method for securing deterministic mem-
ory accesses and/or data exchanges of different applications
using at least one MPU. Particularly preferably, “determi-
nistic” in this context refers to the application timing (i.e.,
the temporal behavior of the application(s)), and in particu-
lar not to a specific number of cycles for accessing the
respective resources.

[0250] Further preferred embodiments, cf. FIG. 3H, relate
to a method and device for controlling a technical system,
e.g., of a vehicle, wherein at least one hardware accelerator
unit HSM (FIG. 2) is used to accelerate a startup of the sys-
tem or the device 200.

[0251] In modern (in particular automotive) systems, it
happens that existing software of a device is replaced with
other SW (“tuning”), in order e.g. to make more power
available in the application (example more power, HP). A
method of detecting and potentially preventing this proposes
that during system boot (starting or start-up), the software
code is first checked to determine whether it is the code that
is to be actually executed or whether the code has been
manipulated, for example in the context of a tuning action.
[0252] A method according to further preferred embodi-
ments for checking the SW code provides that at least one
checksum is determined or calculated for a specifiable mem-
ory region or the (in particular entire) memory. One problem
with this can be that determining or calculating the check-
sum takes comparatively long, therefore extending the boot

Apr. 20, 2023

operation. In further preferred embodiments, a boot opera-
tion should be completed in e.g., 30 ms - 100 ms. However,
the checksum calculation may add a significant number of
milliseconds.

[0253] Further preferred embodiments therefore proposed
to provide at least one hardware accelerator unit HSM and
use the latter to calculate the checksum(s) (“HW checksum
accelerator”). Further preferred embodiments may also pro-
vide a plurality of hardware accelerator units, which may
each process a part of the memory to be tested or form a
checksum for the respective part. Further preferably, the
checksum is calculated by means of the at least one hard-
ware accelerator unit prior to a start of the application(s)
APP1, APP2, APP3.

[0254] In further preferred embodiments, hardware accel-
erator units may also be assigned to different partitions or
applications.

[0255] Further preferred embodiments, cf. FIG. 31, relate
to a method and a device 200 for controlling a technical
system 1, e.g., a vehicle 1, wherein a mechanism, preferably
in the interface of the module 208, is implemented, cf. Step
150 according to FIG. 3L, in at least one hardware module
208 or a peripheral component, the mechanism placing
orders of a plurality partitions or applications APP1,
APP2, APP3, which in particular cannot be overwritten or
influenced by respectively other partitions or applications.
Further preferred embodiments may also refer to the
mechanism as “transfer window(s).”

[0256] In further preferred embodiments, the HW module
(or a controller of the module, e.g., a microcontroller of the
module) or the peripheral component is developed to pro-
cess these orders according to a specified rule, e.g., in a
round robin method, whereby advantageously a determinis-
tic temporal behavior is produced for the (external)
applications.

[0257] Further preferred embodiments provide for an
implementation of Transfer Windows in at least one HW
module having at least one of the following aspects:

[0258] a) the address range of the Transfer Window can
optionally be assigned to different applications/
partitions,

[0259] D) the module processes the tasks, e.g., by means
of SW, according to a specifiable method, e.g., a round-
robin method.

[0260] Further preferred embodiments relate to a use of
the method according to the embodiments and/or the device
according to the embodiments and/or the computer-readable
storage medium according to the embodiments and/or the
computer program according to the embodiments and/or
the data carrier signal according to the embodiments for at
least one of the following elements: a) enabling a determi-
nistic runtime behavior of at least some, preferably all,
applications of the device, b) avoiding a new homologation
for a first application, in particular when changing at least
one further application.

1-14. (canceled)

15. A method for controlling a technical system, the method

comprising:

resetting at least one hardware component of a device,
wherein a) the device includes a plurality of cores and
the resetting includes a resetting of a single core of the
plurality of cores, such that the resetting of the single core
does not influence one or more further cores of the plur-
ality of cores, and/or b) a resetting of modules of the

US 2023/0121675 Al

device and/or of any existing external circuits is carried
out such that several independent applications can be
operated and the several independent applications do
not influence one another.

16. The method according to claim 15, wherein the techni-
cal system is a technical system of a motor vehicle or for a
motor vehicle.

17. The method according to claim 15, comprising:

assigning at least one memory region of a non-volatile

memory, to an application or to a plurality of applica-
tions, the assigning including assigning a first memory
region of the non-volatile memory a first application
and assigning a second memory region of the non-vola-
tile memory to a second application.

18. The method according to claim 15, comprising:

collecting and managing faults using a fault collection and

control unit (FCCU), the FCCU being configured to
ensure an independent continued operation of applica-
tions of the device, the FCCU configured to collect hard-
ware errors occurring in individual modules and to exe-
cute fault responses.

19. The method as recited in claim 15, further comprising:

forwarding information characterizing an operating state

with regard to a functional safety of an application, to at
least one further unit, the at least one further unit being a
unit arranged externally to the device.

20. The method according to claim 15, further comprising:

assigning at least one peripheral module to precisely one

application.

21. The method according to claim 15, further comprising:

at least temporarily separating partitions or applications

from one another using a quality of service and/or at
least one parameter characterizing the quality of service,
wherein at least one application sets a quality of service,
characterizable by latency and/or bandwidth, for at least
one peripheral component.

22. The method according to claim 15, further comprising:

securing a deterministic data exchange between a plurality

of applications running on a computer or the device,
using a memory region assignment using at least one
memory protection unit.

23. The method according to claim 15, further comprising:

Apr. 20, 2023

accelerating a start-up of the device using at least one hard-

ware accelerator unit.

24. The method according to claim 15, further comprising:

placing orders by a plurality of partitions or applications

which cannot be overwritten or influenced respectively
by other partitions or applications, using a mechanism
implemented in at least one hardware module or periph-
eral component.

25. A device for controlling a technical system of a motor
vehicle, the device configured to:

reset at least one hardware component of the device,

wherein a) the device includes a plurality of cores and
the resetting includes a resetting of a single core of the
plurality of cores, such that the resetting of the single core
does not influence one or more further cores of the plur-
ality of cores, and/or b) a resetting of modules of the
device and/or of any existing external circuits is carried
out such that several independent applications can be
operated and the several independent applications do
not influence one another.

26. A non-transitory computer-readable storage medium
on which are stored instructions for controlling a technical
system of a motor vehicle, the instructions, when executed
by a computer, causing the computer to perform the following
steps:

resetting at least one hardware component of a device,

wherein a) the device includes a plurality of cores and
the resetting includes a resetting of a single core of the
plurality of cores, such that the resetting of the single core
does not influence one or more further cores of the plur-
ality of cores, and/or b) a resetting of modules of the
device and/or of any existing external circuits is carried
out such that several independent applications can be
operated and the several independent applications do
not influence one another.

27. The method as recited in claim 15, wherein the method
is used for at least one of the following: a) enabling a determi-
nistic runtime behavior of at least some applications of the
device, b) avoiding anew homologation for a first application
when changing at least one further application.

* % % % W

