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MACHINE LEARNING TO INTEGRATE 
KNOWLEDGE AND NATURAL LANGUAGE 

PROCESSING 

BACKGROUND 
[ 0001 ] The present embodiment ( s ) relate to natural lan 
guage processing . More specifically , the embodiment ( s ) 
relate to an artificial intelligence platform to convey and 
utilize recollection in natural language processing . 
[ 0002 ] In the field of artificial intelligent computer sys 
tems , natural language systems ( such as the IBM WatsonTM 
artificial intelligent computer system and other natural lan 
guage question answering systems ) process natural language 
based on knowledge acquired by the system . To process 
natural language , the system may be trained with data 
derived from a database or corpus of knowledge , but the 
resulting outcome can be incorrect or inaccurate for a variety 
of reasons relating to the peculiarities of language constructs 
and human reasoning or new training data that is incorrect . 
[ 0003 ] Machine learning , which is a subset of Artificial 
intelligence ( AI ) , utilizes algorithms to learn from data and 
create foresights based on this data . Al refers to the intelli 
gence when machines , based on information , are able to 
make decisions , which maximizes the chance of success in 
a given topic . More specifically , AI is able to learn from a 
data set to solve problems and provide relevant recommen 
dations . Al is a subset of cognitive computing , which refers 
to systems that learn at scale , reason with purpose , and 
naturally interact with humans . Cognitive computing is a 
mixture of computer science and cognitive science . Cogni 
tive computing utilizes self - teaching algorithms that use data 
minimum , visual recognition , and natural language process 
ing to solve problems and optimize human processes . 
[ 0004 ] Cognitive systems are inherently non - determinis 
tic . Specifically , data output from cognitive systems are 
susceptible to information provided and used as input . For 
example , as new machine learning models are deployed 
there is not guarantee that the system will extract the same 
entities as done previously . New models may adversely 
affect prior model results . Similarly , an error introduced 
through a document may result in extracting incorrect data 
and providing the incorrect data as output . Accordingly , 
there is a need to create deterministic behavior in the 
cognitive system ( s ) . 

edge graph . The asset value entry includes the assigned 
veracity value . A BC identifier that corresponds to the BC 
ledger entry is created , and the BC identifier is stored with 
the knowledge graph entry . Based on the knowledge graph 
entry and the corresponding BC ledger entry , select data in 
the KG may be utilized by the knowledge engine to support 
an evaluation . More specifically , the evaluation support a 
determination of provenance of select data , and in addition 
supports quantifying the data . The knowledge engine gen 
erates a list of evaluated data , including a sort of the data in 
the list based on the assigned veracity value . A data element 
is returned from the sorted list , which in one embodiment is 
the data element with the strongest veracity score among 
data element entries in the list . 
[ 0007 ] In another aspect a computer program product is 
provided to process natural language . The computer pro 
gram product includes a computer readable storage device 
having embodied program code that is executable by a 
processing unit . Program code is provided to store data in a 
knowledge graph . This includes program code to extract 
data and a data relationship from structure and / or unstruc 
tured data , program code to create an entry in the knowledge 
graph , with the entry including selective storage of the 
extracted data and data relationship and assignment of a 
veracity value to the stored data , program code to create an 
asset value entry in a BC ledger that corresponds to the 
knowledge graph with the entry including the assigned 
veracity value , program code to create a BC identifier that 
corresponds to the BC ledger entry , and program code to 
store the created BC identifier with the knowledge graph 
entry . In addition , program code is provides to support 
evaluation of stored data . Specifically , program code evalu 
ates select data stored in the knowledge graph , which 
includes the program code employing the BC identifier to 
determine provenance of the select data and to quantify the 
data . Program code is also provided to generate a list of 
evaluated data , and to sort the data in the list based on a 
corresponding veracity value . An outcome is generated from 
the list in the form of a data element with a strongest 
represented veracity score in the sorted list . 
[ 0008 ] In yet another aspect , a method is provided for 
processing natural language . The method includes storing 
data in a knowledge graph , evaluating the stored data , 
identifying a data element in the evaluated data . The storing 
of the data includes : extracting data and a data relationship 
from structured and / or unstructured data , creating an entry in 
the knowledge graph and selectively storing the extracted 
data and data relationship in the graph , assigning a veracity 
value to the stored data , creating an asset value entry in a 
corresponding BC ledger , creating a BC identifier , and 
storing the BC identifier with the knowledge graph entry . 
The evaluation of the stored data includes employing the BC 
identifier to determine provenance of the select data and also 
to quantify the data . Based on the evaluation , a list is 
generated and sorted based on the assigned veracity value ( s ) . 
A data element with a strongest identified veracity value is 
returned from the list . 
[ 0009 ] These and other features and advantages will 
become apparent from the following detailed description of 
the presently preferred embodiment ( s ) , taken in conjunction 
with the accompanying drawings . 

SUMMARY 

[ 0005 ] The embodiments include a system , computer pro 
gram product , and method for natural language processing 
directed at deterministic data for cognitive systems . 
[ 0006 ] . In one aspect , a system is provided with a process 
ing unit operatively coupled to memory , with an artificial 
intelligence platform in communication with the processing 
unit and memory . A knowledge engine , which is in com 
munication with the processing unit , is provided to manager 
data . More specifically , the knowledge engine extracts data 
and a data relationship from structured and / or unstructured 
data . The knowledge engine creates an entry for the 
extracted data and the data relationship in a knowledge 
graph , and selectively stores the data and data relationship in 
the knowledge graph , including assignment of a veracity 
value to the stored data . In addition , an asset value entry is 
created in a corresponding blockchain ( BC ) ledger that 
corresponds to or is otherwise associated with the knowl - 
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BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

[ 0010 ] The drawings reference herein forms a part of the 
specification . Features shown in the drawings are meant as 
illustrative of only some embodiments , and not of all 
embodiments , unless otherwise explicitly indicated . 
[ 0011 ] FIG . 1 depicts a system diagram illustrating a 
schematic diagram of a natural language process system . 
[ 0012 ] FIG . 2 depicts a block diagram a block diagram is 
provided illustrating the NL processing tools shown in FIG . 
1 and their associated APIs . 
10013 ] FIG . 3 depicts a flow chart illustrating a process for 
populating a knowledge graph ( KG ) from natural language 
( NL ) output of a natural language processing ( NLP ) system . 
[ 0014 ] FIG . 4 depicts a flow chart illustrating a process for 
creating a new triplet from extracted data . 
[ 0015 ] FIGS . 5A and 5B depict a flow chart illustrating a 
process for extracting triplets from NLP output . 
[ 0016 ] FIG . 6 depicts a flow chart illustrating a process for 
partitioning a KG . 
[ 0017 ] FIG . 7 depicts a flow chart illustrating a process for 
linking two KGs . 
[ 0018 ] FIGS . 8A and 8B depict a flow chart illustrating a 
process for leveraging a machine learning model ( MLM ) to 
augment the query input . 
[ 00191 FIG . 9 depicts a flow chart illustrating a process for 
training an existing MLM . 
[ 0020 ] FIG . 10 depicts a flowchart illustrating a process 
for progressive and adaptive MLM configuration . 

DETAILED DESCRIPTION 
[ 0021 ] It will be readily understood that the components of 
the present embodiments , as generally described and illus 
trated in the Figures herein , may be arranged and designed 
in a wide variety of different configurations . Thus , the 
following details description of the embodiments of the 
apparatus , system , method , and computer program product 
of the present embodiments , as presented in the Figures , is 
not intended to limit the scope of the embodiments , as 
claimed , but is merely representative of selected embodi 
ments . 
[ 0022 ] Reference throughout this specification to " a select 
embodiment , " " one embodiment , ” or “ an embodiment ” 
means that a particular feature , structure , or characteristic 
described in connection with the embodiment is included in 
at least one embodiments . Thus , appearances of the phrases 
" a select embodiment , " " in one embodiment , ” or “ in an 
embodiment " in various places throughout this specification 
are not necessarily referring to the same embodiment . 
[ 0023 ] The illustrated embodiments will be best under 
stood by reference to the drawings , wherein like parts are 
designated by like numerals throughout . The following 
description is intended only by way of example , and simply 
illustrates certain selected embodiments of devices , systems , 
and processes that are consistent with the embodiments as 
claimed herein . 
[ 0024 ] Ontology functions as a structural framework to 
organize information and concepts . Natural language under 
standing ( NLU ) is a subset of natural language processing 
( NLP ) . NLU uses algorithms to transform speech into a 
structured ontology . In one embodiment , the ontology is 
constructed from the taxonomy of NLU output . NLU pro - 
vides the definitions required to construct the ontology in 

terms of classes , subclasses , domain , range , data properties , 
and object properties . Ontology individuals are mapped to 
objects . Processing the same or similar documents provides 
the data required to build the ontology , also referred to as the 
initial ontology . The ontology is defined by the Machine 
Learning Model ( MLM ) being applied by a knowledge 
graph ( KG ) manager to a data store ; the ontology is con 
structed using output of an associated NLP service . More 
specifically , the ontology is generated with facts or mentions 
that the MLM has generated . The facts or mentions make up 
the individuals of the ontology . In one embodiment , the 
ontology is in the form of a KG with the facts or mentions 
represented as nodes in the graph . The structure of the KG 
may be kept constant , while allowing information to be 
added or removed . Similarly , the ontology may be used to 
create new and retrain existing MLMs . In one embodiment , 
when the KG is modified , new entities and relationships are 
realized and employed to automate training of the MLM , the 
MLM becomes dynamic and progressive . Accordingly , the 
ontology as represented by the KG and the MLM are 
inter - related . 
[ 0025 ] Referring to FIG . 1 , a schematic diagram of a 
natural language processing system ( 100 ) is depicted . As 
shown , a server ( 110 ) is provided in communication with a 
plurality of computing devices ( 180 ) , ( 182 ) , ( 184 ) , ( 186 ) , 
and ( 188 ) across a network connection ( 105 ) . The server 
( 110 ) is configured with a processing unit ( 112 ) operatively 
coupled to memory ( 114 ) across a bus ( 116 ) . A tool in the 
form of a knowledge engine ( 170 ) is shown local to the 
server ( 110 ) , and operatively coupled to the processing unit 
( 112 ) and / or memory ( 114 ) . As shown , the knowledge 
engine ( 170 ) contains one or more tools ( 172 ) - ( 178 ) . The 
tools ( 172 ) - ( 178 ) provide natural language processing over 
the network ( 105 ) from one or more computing devices 
( 180 ) , ( 182 ) , ( 184 ) , ( 186 ) and ( 188 ) . More specifically , the 
computing devices ( 180 ) , ( 182 ) , ( 184 ) , ( 186 ) , and ( 188 ) 
communicate with each other and with other devices or 
components via one or more wires and / or wireless data 
communication links , where each communication link may 
comprise one or more of wires , routers , switches , transmit 
ters , receivers , or the like . In this networked arrangement , 
the server ( 110 ) and the network connection ( 105 ) may 
enable natural language processing and resolution for one or 
more content users . Other embodiments of the server ( 110 ) 
may be used with components , systems , sub - systems , and / or 
devices other than those that are depicted herein . 
[ 0026 ] The tools , including the knowledge engine ( 170 ) , 
or in one embodiment , the tools embedded therein including 
the KG manager ( 172 ) , the accuracy manager ( 174 ) , the BC 
manager ( 176 ) , and the MLM manager ( 178 ) , may be 
configured to receive input from various sources , including 
but not limited to input from the network ( 105 ) , one or more 
knowledge graphs from a node - graph data store ( 160 ) opera 
tively coupled to a corpus of structured data ( 168 ) via an 
interface ( 166 ) , a BC network ( 150 ) , and a library of one or 
more machine learning models ( MLMs ) ( 140 ) . As shown , 
the node - graph data store ( 160 ) functions as a library ( 162 ) 
of knowledge graphs , with a plurality of KGs , including 
KG . ( 164A ) , KG ( 164B ) , and KGy ( 164N ) . The quantity of 
KGs shown herein should not be considered limiting . Each 
KG is a representation of an ontology of concepts . More 
specifically , each KG ( 164A ) , ( 164B ) , and ( 164N ) includes 
a plurality of related subjects and objects . In one embodi 
ment , related KGs are stored in an associated KG container , 
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with the corpus ( 160 ) storing one or more KG containers . In 
one embodiment , KGs may also be acquired from other 
sources , and as such , the data store depicted should not be 
considered limiting . 
[ 0027 ] The various computing devices ( 180 ) , ( 182 ) , ( 184 ) , 
( 186 ) , and ( 188 ) in communication with the network ( 105 ) 
demonstrate access points for content creators and content 
uses . Some of the computing devices may include devices 
for a database storing the corpus of data as a body of 
information used by the knowledge engine ( 170 ) , and in one 
embodiment the tools ( 172 ) - ( 178 ) , to embed deterministic 
behavior into the system . The network ( 105 ) may include 
local network connections and remote connections in vari - 
ous embodiments , such that the knowledge engine ( 170 ) and 
the embedded tools ( 172 ) - ( 178 ) may operate in environ 
ments of any size , including local and global , e . g . the 
Internet . Additionally , the server ( 110 ) and the knowledge 
engine ( 170 ) serves as a front - end system that can make 
available a variety of knowledge extracted from or repre 
sented in documents , network accessible sources and / or 
structured data sources . In this manner , some processes 
populate the server ( 110 ) with the server ( 110 ) also including 
input interfaces to receive requests and respond accordingly . 
Content creators and content users may also be available in 
data repositories , such as , but not limited to , ( 140 ) and ( 160 ) , 
and the list of demonstrated access points here should not be 
considered limiting . 
[ 0028 ] As shown , the node - graph data store ( 160 ) is 
operatively coupled to the server ( 110 ) . The node - graph data 
store ( 160 ) includes a KG library ( 162 ) with one or more 
KGS ( 164A ) - ( 164N ) for use by the server ( 110 ) . Content 
users may access the system via API administration or 
orchestration platforms , as shown and described in FIG . 2 , 
and natural language input received via the NLU input path . 
[ 0029 ] As described in detail below , the server ( 110 ) and 
the knowledge engine ( 170 ) processes natural language 
queries through use of one or more machine learning mod 
els , hereinafter MLMs , to extract or store content in one or 
more KGs stored in the node - graph data store ( 160 ) . Block 
chain technology , hereinafter “ BC ” , is leveraged into the 
content to effectively provide authenticity , e . g . provenance , 
of stored or received data . The MLM manager ( 178 ) func 
tions as a tool , or in one embodiment , an API within the 
knowledge engine ( 170 ) , and is used to create , link , and / or 
modify an associated MLM . As further described below , 
MLMs are generated , created , or modified specific to a 
particular knowledge domain . The MLMs are created to 
extract entities and relationships from unstructured data . 
These models are specifically created to understand a par 
ticular domain of knowledge ( e . g . biographical information , 
stock market , astronomy , etc . ) . 
[ 0030 ] The BC is represented herein as the BC Network 
( 150 ) in the form of a decentralized and distributed digital 
ledger for recording the history of transactions . More spe 
cifically , the BC refers to a type of data structure that enables 
digitally identifying and tracking transactions and sharing 
this information across a distributed network of computers . 
The BC effectively creates a distributed trust network via 
transparently and securely tracking ownership . As shown 
and described herein , the BC is leveraged together with the 
MLM manager ( 178 ) , accuracy manager ( 174 ) , and KG 
manager ( 172 ) to integrate knowledge with natural language 
processing . 

[ 0031 ] The server ( 110 ) may be the IBM WatsonTM system 
available from International Business Machines Corporation 
of Armonk , N . Y . , which is augmented with the mechanisms 
of the illustrative embodiments described hereafter . The 
IBM WatsonTM knowledge manager system imports knowl 
edge into natural language processing ( NLP ) . Specifically , 
as described in detail below , as data is received , organized , 
and / or stored , the data may be true or false . The server ( 110 ) 
alone cannot differentiate , or more specifically , authenticate 
the veracity of the data . As shown herein , the server ( 110 ) 
receives input content ( 102 ) which it then evaluates to 
extract features of the content ( 102 ) that in turn are then 
applied to the node - graph data store ( 160 ) . In particular , 
received content ( 102 ) may be processed by the IBM 
WatsonTM server ( 110 ) which performs analysis to evaluate 
or impart authenticity of the input content ( 102 ) using one or 
more reasoning algorithms . 
[ 0032 ] To process natural language , the server ( 110 ) uti 
lizes an information handling system in the form of the 
knowledge engine ( 170 ) and associated tool ( 172 ) - ( 178 ) to 
support NLP . Though shown as being embodied in or 
integrated with the server ( 110 ) , the information handling 
system may be implemented in a separate computing system 
( e . g . , 190 ) that is connected across the network ( 105 ) to the 
server ( 110 ) . Wherever embodied , one or more MLMs are 
utilized to manage and process data , and more specifically , 
to detect and identify natural language and create or utilize 
deterministic output . As shown , the tools include the KG 
manager ( 172 ) , the accuracy manager ( 174 ) , a BC manager 
( 176 ) and the MLM manager ( 178 ) . The MLM manager 
( 178 ) is shown operatively coupled to an MLM library ( 140 ) 
shown herein with a plurality of MLMs , including MLM , 
( 142 ) , MLM , ( 144 ) , and MLMY ( 146 ) , although the quantity 
of MLMs shown and described should not be considered 
limiting . It is understood that in one embodiment the MLM 
is an algorithm employed or adapted to support the NLP . 
Although shown local to the server ( 110 ) , tools ( 170 ) - ( 178 ) 
may collectively or individually be embedded in memory 
( 114 ) . 
[ 0033 ] One or more MLMs ( 142 ) - ( 146 ) function to man 
age data , including store data in a KG . As understood , a KG 
is a structured ontology and does not merely store data . 
Specifically , the knowledge engine ( 170 ) extracts data and 
one or more data relationships from unstructured data , 
creates an entry for the extracted data and data relationship 
( s ) in a KG , and stores the data and data relationship ( s ) in the 
KG entry . In one embodiment , data in the KG is stored or 
represented in a node and a relationship between two data 
elements is represented as an edge connecting two nodes . 
Similarly , in one embodiment , each node has a node level 
veracity value and each relationship has a relationship 
veracity value , with the relationship veracity value calcu 
lated based on the veracity values of the two inter - connected 
nodes . In addition to the data extraction and storage , the 
MLM ( s ) , MLM , ( 142 ) assigns or otherwise designates a 
veracity value to the data stored in the KG . In one embodi 
ment , the veracity value is a composite score comprised of 
staunchness , source reliability , and human feedback , as 
described in detail below . In one embodiment , the veracity 
value may include additional factors or a subset of the 
factors , and as such , should not be considered limiting . The 
assigned veracity value is stored in the KG . The assigned 
veracity value is also stored in an entry in the identified BC 
ledger . Each entry in the BC ledger has a corresponding 
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identifier , referred to herein as a BC identifier , which iden 
tifies the ledger and address of the ledger entry . The BC 
identifier is stored in the KG with the identified data and 
identifies the corresponding BC ledger and location of the 
stored veracity value . In one embodiment , the KG manager 
( 172 ) manages storage of the BC identifier in the KG . 
Accordingly , the assigned or created veracity value is stored 
in the BC and is a duplicated copy of the veracity values in 
the KG in the node - graph data store ( 160 ) . 
[ 0034 ] It is understood that each KG organizes and pro 
vides structure to large quantities of data . A KG may be a 
single ontology , or in one embodiment , a KG or a KG 
container may be comprised of a plurality of KGs that are 
linked together to demonstrate their relationship or associa 
tion . The KG manager ( 172 ) functions to manage structure 
and organization of the KGs . For example , a large KG may 
be too cumbersome or expensive to manage . In this scenario , 
the KG manager ( 172 ) may partition the KG , effectively 
creating at least two partitions , e . g . a first KG partition and 
a second KG partition . The KG may be partitioned based on 
one or more factors . For example , in one embodiment , the 
KG may be partitioned by topics or sub - topics . Similarly , 
each fact represented in the KG has an associated veracity 
value that is a composite of a plurality of factors , including 
but not limited to a staunchness indicator , a source reliability 
measure , and a human feedback factor . The KG manager 
( 172 ) may partition the KG based upon the veracity value , 
or in one embodiment , based on one or more of the factors 
that comprise the veracity value . In one embodiment , after 
the KG has been partitioned into at least a first and a second 
partition , the KG manager ( 172 ) may designate one or more 
of the components of the veracity value to each node or edge 
represented in the partition . For example , following the KG 
partitioning , the KG manager ( 172 ) may populate and assign 
a first reliability value to data in the first partition , and in one 
embodiment , the KG manager ( 172 ) may further populate 
and assign a second reliability value , different than the first 
reliability value , to data in the second partition . Modification 
of one or more of the components of the veracity value 
effectively changes the veracity value . However , it is under 
stood that the values of one or more of the components of the 
veracity value may change over time , and as such , this 
change is reflected or embodied with the associated data . 
Accordingly , the KG manager ( 172 ) functions to manage 
data and provide structure and value to the data . 
[ 0035 ] One of the functions of the KG manager ( 172 ) is to 
link or join two or more KGs . Joining or linking KGs is the 
inverse of partitioning a KG . The functionality of joining or 
linking KGs requires the KG manager ( 172 ) to compare one 
or more data elements in one KG with one or more data 
elements in a second KG and to eliminate or at least reduce 
the appearance of duplicate data . As articulated above , each 
data element represented in the KG has an associated 
composite score . The KG manager ( 172 ) may use one 
component , multiple components , or the veracity value itself 
as a factor for the data comparison and evaluation . Once 
joined or linked , it may be feasible or warranted to remove 
duplicate data items . Data in the linked KGs determined to 
be duplicate data is selectively removed by the KG manager 
( 172 ) . One characteristic of removing duplicate data is the 
ability to maintain a constant structure of the KG . Accord 
ingly , the KG manager ( 172 ) functions to manage the 
structure of the KG by managing the data represented in the 
KG . 

[ 0036 ] The BC manager ( 176 ) has multiple functions with 
respect to the machine learning environment . As described 
above , the BC manager ( 176 ) may function with the MLM 
( s ) to maintain the authenticity of the associated data . The 
BC manager ( 176 ) produces contracts for BC network 
interactions , provides provenance , retrieves BC information , 
and manages all BC interactions for the system . 
[ 0037 ] The evaluation of the NL input is managed by the 
MLM , MLM , ( 142 ) . A conflict or error associated with the 
NL input is identified by query results from the KG gener 
ated from the NL input , and more specifically the sorting of 
the query results . When there is a conflict between the query 
results and the NL input , with the query results having a 
strong veracity value , it is an indication that the NL input 
may be incorrect . The accuracy manager ( 174 ) corrects the 
NL input by replacing the language of the NL input with an 
identified or selected triplet from the generated list . The 
triplet , also referred to herein as memory , is based on two or 
more nodes in the KG and a relationship between the two or 
more nodes . In one embodiment , the triplet is a subject 
verb - object relationship as captured from the KG . In one 
embodiment , the identification or selection may be based on 
the highest veracity value , which in one embodiment is 
selected by the user . Similarly , in another embodiment , the 
identification or selection may be based on one or more of 
the factors that comprise the composite veracity value . 
Another form of a conflict may arise when the knowledge 
engine ( 150 ) identifies an immutable factor associated with 
one or more entries in the list and further identifies a conflict 
between the immutable factor and the NL input . This conflict 
is resolved by the accuracy manager ( 174 ) correcting the NL 
input with a replacement of the language of the NL input 
with the triplet associated with the entry having the immu 
table factor . In addition to a conflict , another resolution may 
be in the accuracy manager ( 174 ) identifying a partial match 
between the NL input with the sorted list entries . The partial 
match enables or directs the KG manager ( 172 ) and the BC 
manager ( 176 ) to create a new entry in the KG and a 
corresponding BC ledger , respectively , for the NL input . In 
addition , the KG manager ( 172 ) connects the new entry and 
the existing KG entry corresponding to the partial match . It 
is further understood that the NL input may not generate any 
matches , e . g . empty set . If there is no match , the KG 
manager ( 172 ) and the BC manager ( 176 ) create a new KG 
entry and BC ledger entry , respectively , corresponding to the 
NL input . Accordingly , NL input is processed by the MLM , 
MLM . , ( 142 ) , and in one embodiment the accuracy manager 
( 174 ) , in view of the data organized in the KG ( s ) . 
[ 0038 ] As shown and described herein , an MLM library 
( 140 ) is operatively coupled to the server ( 110 ) and contains 
a plurality of MLMs to support natural language processing 
in the AI platform . One or more of the MLMs may be 
dynamic and trained to adapt to new entities and relation 
ships . Different KGs may be associated with different 
knowledge domains . For example , a first MLM , MLM , 
( 142 ) , may be identified or selected from the library ( 140 ) 
based on its alignment with KG , ( 164A ) . In response to 
processing NL input , MLM , ( 142 ) may be applied against 
KG . ( 164A ) and separately applied against a second KG , 
KG , ( 164B ) . The MLM manager ( 178 ) processes results 
from both KGs together with their corresponding veracity 
values , and based on the processing , a modification of one 
of the KGs is identified . In one embodiment , the veracity 
values are evaluated to identify the authenticity of the 
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modification . Subject to the authentication , the MLM man 
ager ( 178 ) dynamically modifies the associated MLM , 
MLM , ( 142 ) . In one embodiment , the identified modifica 
tion may be an expansion of the associated data set to 
include an additional field . Similarly , in one embodiment , 
the MLM manager ( 178 ) may ascertain that the modification 
is synchronic or diachronic , and use this classification as an 
element to oversee the modification . In one embodiment , the 
modification of MLM , ( 142 ) results in creation of a new 
MLM , e . g . MLMy ( 146 ) , and in one embodiment retention 
of the original MLM , MLM , ( 142 ) . Accordingly , the MLM 
library ( 140 ) may expand subject to the dynamic modifica 
tion of the MLMs . 
[ 0039 ] Types of information handling systems that can 
utilize system ( 110 ) range from small handheld devices , 
such as a handheld computer / mobile telephone ( 180 ) to 
large mainframe systems , such as a mainframe computer 
( 182 ) . Examples of a handheld computer ( 180 ) include 
personal digital assistants ( PDAs ) , personal entertainment 
devices , such as MP4 players , portable televisions , and 
compact disc players . Other examples of information han 
dling systems include pen or tablet computer ( 184 ) , laptop 
or notebook computer ( 186 ) , personal computer system 
( 188 ) and server ( 190 ) . As shown , the various information 
handling systems can be networked together using computer 
network ( 105 ) . Types of computer network ( 105 ) that can be 
used to interconnect the various information handling sys 
tems include Local Area Networks ( LANS ) , Wireless Local 
Area Networks ( WLANs ) , the Internet , the Public Switched 
Telephone Network ( PSTN ) , other wireless networks , and 
any other network topology that can be used to interconnect 
the information handling systems . Many of the information 
handling systems include nonvolatile data stores , such as 
hard drives and / or nonvolatile memory . Some of the infor 
mation handling systems may use separate nonvolatile data 
stores ( e . g . , server ( 190 ) utilizes nonvolatile data store 
( 190a ) , and mainframe computer ( 182 ) utilizes nonvolatile 
data store ( 182a ) . The nonvolatile data store ( 182a ) can be 
a component that is external to the various information 
handling systems or can be internal to one of the information 
handling systems . 
[ 0040 ] An information handling system may take many 
forms , some of which are shown in FIG . 1 . For example , an 
information handling system may take the form of a desktop , 
server , portable , laptop , notebook , or other form factor 
computer or data processing system . In addition , an infor 
mation handling system may take other form factors such as 
a personal digital assistant ( PDA ) , a gaming device , ATM 
machine , a portable telephone device , a communication 
device or other devices that include a processor and memory . 
[ 0041 ] An Application Program Interface ( API ) is under 
stood in the art as a software intermediary between two or 
more applications . With respect NL processing system 
shown and described in FIG . 1 , one or more APIs may be 
utilized to support one or more of the tools ( 172 ) - ( 178 ) and 
their associated functionality . Referring to FIG . 2 , a block 
diagram ( 200 ) is provided illustrating the NL processing 
tools and their associated APIs . As shown , a plurality of 
tools are embedded within the knowledge engine ( 205 ) , with 
the tools including the accuracy manager ( 210 ) associated 
with API . ( 212 ) , the KG manager ( 220 ) associated with API , 
( 222 ) , the BC manager ( 230 ) associated with API2 ( 232 ) , 
and the MLM manager ( 240 ) associated with APIZ ( 242 ) . 
Each of the APIs may be implemented in one or more 

languages and interface specifications . API . ( 212 ) provides 
for asset comparison , veracity determination , veracity deci 
sion , and veracity assignments ; API , ( 222 ) provides for KG 
creation , update , and deletion ; API , ( 232 ) provides MLM 
creation , update and deletion ; and APIZ ( 242 ) provides for 
BC contract creation , block creation , network communica 
tion , and block addition . As shown , each of the APIs ( 212 ) , 
( 222 ) , ( 232 ) , and ( 242 ) are operatively coupled to an API 
orchestrator ( 250 ) , otherwise known as an orchestration 
layer , which is understood in the art to function as an 
abstraction layer to transparently thread together the sepa 
rate APIs . In one embodiment , the functionality of the 
separate APIs may be joined or combined . As such , the 
configuration of the APIs shown herein should not be 
considered limiting . Accordingly , as shown herein , the func 
tionality of the tools may be embodied or supported by their 
respective APIs . 
[ 0042 ] To provide additional details for an improved 
understanding of selected embodiments of the present dis 
closure , reference is now made to FIG . 3 which illustrates a 
process in a form for initializing a KG . When a system is 
initialized , the KG is empty . MLMs are created or utilized to 
extract entities and relationships from unstructured data . The 
MLMs are created to understand a particular domain of 
knowledge , i . e . biographical information , financial market , 
fields of science , etc . Representative data is used to teach the 
system to identify the text of the entities and relationships 
defined in the model . Referring to FIG . 3 , a flow chart ( 300 ) 
is provided illustrating a process for populating a KG from 
natural language output of an NLP system . As part of the KG 
initialization and population process , veracity values for the 
extracted triplets are specified . The veracity value is com 
prised of a staunchness indicator , a source reliability indi 
cator , and a human feedback indicator . In one embodiment , 
each of the indicators that comprise the veracity value is a 
numerical value on a scale between 0 and 1 . The staunchness 
indicator reflects certainty of an underlying fact . In one 
embodiment , a staunchness value of 1 reflects that the fact 
is definitely true , a value of 0 reflects that the fact is 
definitely false , and a value between 0 and 1 indicates a level 
of certainty or uncertainty about the fact . The source reli 
ability factor is associated with the source , e . g . origin , of the 
fact , including but not limited to , data and time a fact was 
ascertained . The human feedback indicator tracks the quan 
tity of affirmations and refutations of a fact . In one embodi 
ment , this factor tracks the quantity of responses . Accord 
ingly , as the KG is initialized and populated with data , the 
components of the veracity value are selected or set to be 
assigned to the triplets extracted via the NLP system . 
[ 0043 ] Classification , such as synchronic and diachronic 
information , is employed to describe data that either stays 
constant or can change over time , respectively . In the case of 
an example of supervised training , the staunchness value is 
set to 1 , the source reliability value is set to 1 , and the human 
feedback is set to 0 . These values are merely an example , 
and in one embodiment may vary . In one embodiment , a KG 
application program interface ( API ) provides a platform to 
specify the veracity values . As shown , an MLM is created by 
defining entities and relationships ( 302 ) . The MLM is 
trained using representative data ( 304 ) . Following step 
( 304 ) , the MLM is used with NLP to extract triplets from the 
training data ( 306 ) . The extracted triplet may be saved to a 
file or streamed . In one embodiment , the extracted triplet is 
a subject - verb - object relationship . Following step ( 306 ) , the 
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[ 0047 ] In the course of processing non - training data , if an 
exact triplet match is not found , a new memory is created 
and stored in the corresponding or identified KG . This can 
be realized when considering the processing of multiple 
documents on the same subject . For example , one document 
may identify a fact with a first date , and a second document 
may identify the same fact with a second date . However , 
only one of the dates is factually correct . As shown in FIGS . 
3 and 4 , each triplet entered into the KG has a corresponding 
veracity value , which functions as an indicator of correct 
ness of the stored memory . These veracity scores may be 
used to establish accuracy and / or correctness of conflicting 
facts populated into the KG . 
[ 0048 ] Referring to FIGS . 5A and 5B , a flow chart ( 500 ) 
is provided illustrating a process for extracting triplets from 
the NLP output . As shown , a query or statement is presented 
to the KG ( 502 ) through the accuracy manager . The presen 
tation may be for a variety of reasons , including but not 
limited to , fact checking . The MLM is used with NLP to 
extract triplets from the KG ( 504 ) , and the KG API is used 
to read and parse out triplets from the NLP output ( 506 ) . The 
following table illustrate an example triplet : 

TABLE 1 
Subject - Entity Relationship Subject - Entity - Value 
George Washington Born On Feb . 22 , 1832 

extracted triplets are employed to populate the KG ( 308 ) . In 
one embodiment , the KG API is used to read and parse out 
the triplets from the NLU output . In one embodiment , the 
triplets populated into the KG are referred to as memories . 
The MLM is created through training , after which the MLM 
is applied against data to populate the KG . Accordingly , the 
MLM together with the NLP extract triplets from data and 
populate a previously empty KG . 
[ 0044 ] For each subject - entity extracted from the NLP 
output ( 310 ) , it is determined if the subject - entity exists in 
the associated KG ( 312 ) . A positive response to the deter 
mination at step ( 312 ) is followed by determining if there is 
a known relationship associated with the extracted subject 
entity ( 314 ) . If the response to the determination at step 
( 314 ) is affirmative , then it is determined if the subject - entity 
together with the associated relationship and the assigned 
veracity value is presented in the KG ( 316 ) . A positive 
response to the determination at step ( 316 ) is an indication 
that the subject - entity relationship is present in the KG , and 
the process concludes . However , a negative response to any 
one of the determinations shown at steps ( 312 ) , ( 314 ) , and 
( 316 ) , is followed by the creation of a new triplet and an 
entry of the new triplet in the KG ( 318 ) . Accordingly , as 
shown , the MLM is employed to extract data from an NLP 
document and to access the KG manager to selectively 
populate the KG with the extracted data . 
[ 0045 ] Referring to FIG . 4 , a flow chart ( 400 ) is provided 
illustrating a process for creating a new triplet from the 
extracted data . As described in FIG . 3 , the veracity value 
components of the extracted data are established or assigned . 
In one embodiment , the veracity value components are 
established based on the supervision associated with the KG 
initialization . For each new triplet , e . g . subject - verb - object 
relationship , the veracity values are assigned to the triplet 
( 402 ) . In one embodiment , the veracity values are assigned 
via the KG API . Following step ( 402 ) , an entry is created in 
a corresponding or designated BC ledger ( 404 ) . More spe 
cifically , at step ( 404 ) , the BC entry stores the triplet veracity 
values and an identifier , referred to herein as a BC identifier , 
is created and thereafter retrieved . In one embodiment , the 
retrieved BC identifier is a uniform resource identifier ( URI ) 
or other unique asset identifier . Following step ( 404 ) , the 
new triplet is inserted into the KG together with the asso 
ciated BC identifier ( 406 ) . In one embodiment , the KG API 
implements the insertion of the triplet and the associated BC 
identifier at step ( 406 ) . Accordingly , as demonstrated , the 
veracity values of each new triplet are stored in a corre 
sponding BC ledger , and an associated BC identifier is 
stored or otherwise associated with the triplet in the KG 
entry . 
[ 0046 ] The processes shown and described in FIGS . 3 and 
4 may also be employed for populating a KG from natural 
language output of an NLP system using unsupervised 
training , e . g . the data may be unreliable , or using supervised 
training . As shown and described in FIGS . 3 and 4 , the KG 
API is utilized to set the veracity values for the data being 
extracted from the NLP output . Depending on the source , the 
veracity values can be set to indicate uncertainty For 
example , in one embodiment , the staunchness indicator may 
be set to 0 . 5 , the source reliability may be set to 0 . 5 , and the 
human feedback value may be set to 0 . Accordingly , the 
unsupervised training may be reflected in a different set of 
veracity values . 

[ 0049 ] Following step ( 506 ) , the variable XTotaj is assigned 
to the quantity of parsed triplets ( 508 ) . It is then determined 
if X Toto is greater than zero ( 510 ) . A negative response to the 
determination at step ( 510 ) concludes the extraction process 
( 512 ) , since this is an indication that the query produced an 
empty set . However , a positive response to the determination 
at step ( 510 ) is followed by processing the parsed triplet ( s ) 
( 514 ) . The triplet counting variable is set to one ( 516 ) , and 
for each triplety the KG is queried to fetch all triplets with 
the same subject - entity and relationship ( 518 ) . As shown 
and described in FIGS . 3 and 4 , each triplet has an associated 
BC identifier . The BC identifier is utilized to access the 
corresponding BC ledger and fetch the stored triplet veracity 
value ( 520 ) . Following step ( 520 ) , the triplet counting 
variable is incremented ( 522 ) . It is then determined if each 
of the identified triplets has been processed ( 527 ) . A negative 
response to the determination at step ( 522 ) is followed by a 
return to step ( 518 ) . Similarly , a positive response to the 
determination concludes the process of querying the KG and 
the corresponding BC ledger entries ( 526 ) , and the extracted 
and processed triplets are subject to a sort ( 528 ) . The sort at 
( 528 ) functions to place the triplets into an order . For 
example , in one embodiment , the triplets may be sorted in 
ascending order by the staunchness indicator , source reli 
ability , and human feedback . Similarly , the sort order may be 
customizable to accommodate specific use cases . For 
example , in one embodiment , the human feedback indicator 
may be prioritized . Accordingly , the triplet extraction uti 
lizes the KG to obtain or identify the triplet and associated 
BC identifier , which is utilized to acquire the associated 
veracity values , which are then employed as a characteristic 
for sorting the triplets . 
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[ 0050 ] The following table , Table 2 , is an expansion of 
Table 1 , showing an example sort of two triplets : 

TABLE 2 

Subject 
Entity 

Re 
lationship 

Subject 
Entity 
Value 

Source 
Staunchness Reliability 

Indicator Indicator 

Human 
Feedback 
Indicator 

BornOn 1 . 0 1 . 0 George 
Washington 
George 
Washington 

Bornon 
Feb . 22 , 
1732 
Feb . 22 , 
1832 

0 . 5 0 . 5 0 

In the example of Table 2 , there are two triplet entries , each 
associated with a different subject - entity value . As shown , 
the entries are sorted in ascending order by either the 
staunchness indicator or the source reliability indicator . The 
sorting factor should not be considered limiting . In one 
embodiment , the sorting may be inverted and in descending 
order , or based on a different component of the veracity 
value . The first triplet entry in this example is defined by the 
subject entity and the relationship is considered to have the 
greatest veracity value , e . g . veracity score . 
[ 0051 ] The business use case drives the interpretation of 
the query results . For example , if a triplet with a higher 
confidence score is realized , the system can be configured to 
automatically replace the original value of the subject entity 
value with a value that has a higher veracity score . A 
staunchness indicator is a reflection of the accuracy of the 
returned information . As shown , following step ( 528 ) , the 
business use case is applied to the search results ( 530 ) . The 
application at step ( 530 ) is followed by querying both the 
KG and the appropriate or identified BC ledgers ( 532 ) 
associated with the corresponding BC identifiers in the KG . 
The query at step ( 532 ) obtains all associated relationships 
and subject - entity values . More specifically , this enables an 
analytical review of all data for a subject - entity . Following 
step ( 532 ) , the NLP input or output data is augmented ( 534 ) . 
Examples of the augmentation include , but are not limited 
to : correction , analysis , augmentation , and masking . Cor 
rection includes replacing a subject entity value with data 
from memory . In one embodiment , the replacement is local , 
e . g . against the query , and is not reflected in the KG or the 
BC . Analysis includes addition of a list of subject - relation 
values with veracity . Augmentation includes supplementing 
results with all known subject - relation values that have the 
highest level of confidence , e . g . one value per subject 
relationship pair . Masking includes deletion of one or more 
triplets from the NLP output . Following step ( 532 ) , the 
augmented data is returned . Accordingly , different use cases 
are optionally available to drive the interpretation of the 
search results , which may also be augmented , to return one 
or more appropriate data element from the NLP input . 
[ 0052 ] As shown and described in FIGS . 5A and 5B , one 
or more queries may be processed against a created KG . It 
is understood that the KGs function as a tool to organize 
data , with each triplet reflected in the graph represented or 
otherwise associated with the veracity score components , 
e . g . staunchness , reliability , and feedback . It is understood 
that one or more of the veracity score components may be 
dynamic , e . g . the values are subject to change over time . 
This change may be uniform throughout a select KG , 
thereby affecting each triplet represented in the KG , or the 
change may be non - uniform and selectively affecting one or 
more triplets in the KG . 

[ 0053 ] Referring to FIG . 6 , a flow chart ( 600 ) is provided 
illustrating a process for partitioning one or more KGs . The 
example of the partitioning shown herein is based on a 
change in a reliability factor . This is merely an example , and 
in one embodiment the partitioning may be based on a 
change of the staunchness or feedback factors . The reliabil 
ity factor reflects a measurement of the reliability of the 
source of the data . A reliability factor value is received 
( 602 ) . In one embodiment , the reliability factor value is part 
of the NL input and feedback through the KG API . The KG 
is consulted to identify entries associated with the received 
reliability value ( 604 ) . It is then determined if any KG 
entries have been identified ( 606 ) . Anegative response to the 
determination at step ( 606 ) concludes the partitioning pro 
cess since there is no basis for subjecting the KG based on 
the received reliability factor ( 616 ) . However , a positive 
response to the determination at step ( 606 ) is following by 
creating a partition within the KG ( 608 ) and populating the 
created partition with the entries in the KG with the iden 
tified reliability value ( 610 ) . The partition creation at step 
( 608 ) effectively creates a second partition ( 612 ) populated 
with the remaining entries in the original KG . 
[ 0054 ] It is understood that the entries in the first and 
second partitions of the KG have different reliability factor 
values . As described above , the veracity value functions as 
a composite of the staunchness , reliability , and feedback 
values . A change in any of the individual component values 
has an effect on the composite , which may affect any query 
results . Following step ( 612 ) , a veracity evaluation within 
the KG , including the first and second partitions , takes place 
( 614 ) . The evaluation at step ( 614 ) includes a comparison of 
data populated in the first KG partition , e . g . first data , with 
data populated in the second partition , e . g . second data . In 
one embodiment , the veracity evaluation is automatically 
performed after the partitioning . It is understood that data 
populated in the first partition will have a different veracity 
value than the data in the second partition . The partitioning 
shown herein is based on a change of one component 
represented in the veracity value . In one embodiment , the 
partitioning may take place on two or more veracity value 
components or changes to the components . Accordingly , a 
change in any one of the components that comprise the 
veracity value may include creation of one or more parti 
tions of the associated KG . 
[ 0055 ] As shown in FIG . 6 , a KG may be subject to 
partitioning . An inverse concept may take place by linking 
or otherwise joining two or more KGs and associated BC 
ledger ( s ) . Referring to FIG . 7 , a flow chart ( 700 ) is provided 
illustrating a process for linking two KGs and the associated 
BC ledger ( s ) . In one embodiment , KGs that are at least 
tangentially related may be linked . The relationship may be 
based on content or relationships represented in the KGs . As 
shown , a query is presented to a knowledge base ( 702 ) , and 
two or more KGs are identified ( 704 ) . In one embodiment , 
the KG API identifies that the two KGs contain data that are 
relevant to the query . Similarly , in one embodiment , the KG 
API may identify more than two KGs , and as such , the 
quantity of identified KGs should not be considered limiting . 
A link is established between or among the identified KGs 
( 706 ) . The linking of two or more KGs maintains the 
structure of the separate KGs , i . e . the structures remain 
constant . 
[ 0056 ] It is understood that the relationship between the 
KGs , and specifically , the data represented therein may 
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provide query results with conflicting triplets , e . g . memo 
ries . To resolve the potential conflicts , an evaluation of the 
linked KGs is conducted to compare data elements ( 708 ) . 
More specifically , the comparison includes an evaluation of 
data represented in each of the linked KGs ( 710 ) , including 
their corresponding veracity value components . Identified 
conflicting data elements are selectively replaced based on at 
least one of the veracity value components ( 712 ) , e . g . 
staunchness , reliability , and feedback . The replacement fol 
lows the structure of the separate KGs . In other words , nodes 
in the KGs are not removed or added with the linking . Rather 
the data represented in the identified nodes may be replaced . 
Accordingly , the replacement of conflicting entries in the 
linked KGs mitigates conflicting query results . 
[ 0057 ] Referring to FIGS . 8A and 8B , a flow chart ( 800 ) 
is provided illustrating leveraging the MLM to augment the 
query input . More specifically , the results of the query 
submission may indicate an error directed at the query input . 
As shown , natural language input is received and processed 
( 802 ) . The received input is queried against context ( 804 ) , 
including one or more specified KGs , and in one embodi 
ment , a corresponding BC ledger . The query processing 
produces results in the form of one or more triplets , e . g . 
memories , which are extracted or identified from the speci 
fied KG ( s ) ( 806 ) . As described above , each triplet includes 
a subject , object , and an associated relationship . The vari 
able XTotaí is assigned to the quantity of triplets extracted or 
identified from the KG ( 808 ) . It is then determined if the 
quantity extracted at step ( 808 ) includes at least one triplet 
( 810 ) . A positive response to the determination at step ( 810 ) 
is followed by initializing an associated triplet counting 
variable ( 812 ) . Each triplet has a BC identifier that corre 
sponds to a BC ledger entry , which includes the veracity 
values associated with or assigned to the triplet . For each 
extracted or identified triplet , e . g . triplety , the BC identifier 
is obtained ( 814 ) , from which the BC ledger is consulted and 
the corresponding veracity value is identified ( 816 ) . Follow 
ing step ( 816 ) the triplet counting variable is incremented 
( 818 ) , and an assessment is conducted to determine if each 
of the extracted or identified KGs have been evaluated ( 820 ) . 
A negative response to the determination at step ( 820 ) is 
followed by a return to step ( 814 ) , and a positive response 
concludes the triplet extraction and identified process . 
Accordingly , for each triplet determined to be associated 
with the query input , the associated veracity values are 
identified 
[ 0058 ] A negative response to the determination at step 
( 810 ) is followed by creating a new triplet for entry in the 
associated KG ( 822 ) . The new triplet corresponds to the 
received natural language input , e . g . query submission , and 
a veracity score is assigned to the new triplet ( 824 ) . In 
addition , an entry in a BC ledger corresponding to the KG 
is created ( 826 ) . A BC identifier associated with the BC 
ledger entry is created and stored with the new triplet in the 
KG ( 828 ) and the assigned veracity score is stored in the 
corresponding ledger entry ( 830 ) . Accordingly , an empty set 
of triplets returned from the query input results in an 
addition to the KG and the corresponding BC ledger . 
[ 0059 ] It is understood that the query submission may 
return a response in the form of one or more triplets from the 
associated KG , as identified by a positive response to the 
determination at step ( 820 ) . After the identified triplets have 
been processed and sorted ( 832 ) , the MLM augments the 
natural language input to correspond to the sorting of the 

identified triplets ( 834 ) . The augmentation may take one or 
more forms . For example , in one embodiment , the augmen 
tation arises from a conflict between the natural language 
input and the sorted triplets ( 836 ) . When the conflict is 
identified , the augmentation by the MLM is in the form of 
identification of the correct triplet from the sorting ( 838 ) , 
and modifying the NL input to correspond to the identified 
triplet ( 840 ) . The identification at step ( 838 ) may take on 
different forms . For example , in one embodiment , the iden 
tification may be based on the associated veracity values , 
which as described above is a composite score . Similarly , in 
one embodiment , one or more of the components that 
comprise the veracity value may be employed as a sorting 
factor to sort the list of triplets . In another embodiment , the 
sort may be based on an immutable factor associated with 
the triplet entries , sorting the triplets based on the immutable 
factor . Accordingly , the augmentation may be based on an 
identified conflict . 
[ 0060 ] It is understood that the augmentation may take on 
other forms in response to a match or , in one embodiment , 
a partial match . When the augmentation arises from a match 
between the natural language input and at least one of the 
triplets in the sorting ( 842 ) , an entry for the natural language 
input is created in the corresponding KG , together with the 
BC ledger entry ( 844 ) . Similarly , when the augmentation 
arises from a partial match between the natural language 
input ( 846 ) and at least one of the identified triplets , a new 
triplet for entry in the associated KG is created ( 848 ) . The 
new triplet corresponds to the received NL input , e . g . query 
submission , and a veracity score is assigned to the new 
triplet ( 848 ) . In addition , an entry in a BC ledger corre 
sponding to the KG is created ( 850 ) . A BC identifier 
associated with the BC ledger entry is created and stored 
with the new triplet in the KG ( 852 ) and the assigned 
veracity score is stored in the corresponding ledger entry 
( 854 ) . In addition , the new triplet entry in the KG is 
connected with triplet ( s ) identified with the partial match 
( 856 ) . Accordingly , as demonstrated , the augmentation for a 
match or partial match includes creation of an entry in the 
corresponding KG and the associated BC ledger . 
[ 0061 ] As shown and described in FIGS . 3 - 8B , the MLM 
is employed to support natural language processing in the 
form of a query submission to identify data stored in a KG , 
and in one embodiment to augment the query submission . It 
is also understood that the MLMs are dynamic and subject 
to change . The KG may be utilized to create one or more 
new MLMs , and / or to retrain an existing MLM . When the 
ontology is modified , new entities and relationships are 
realized . This new information may then be utilized to 
automate training of the MLM , thereby support a dynamic 
and progressive MLM , create a new MLM , or augment an 
existing MLM . 
[ 0062 ] Referring to FIG . 9 , a flow chart ( 900 ) provides a 
process for training an existing MLM . In the process shown 
herein there is an NLP library of MLMs . An MLM , referred 
to herein as a first MLM , within the library is identified or 
selected based on its alignment to a knowledge domain 
expressed in a KG , referred to herein as a first KG , ( 902 ) . In 
response to receipt of natural language input that is queried 
against the first KG , the identified or selected first MLM 
processes the query input and extracts one or more triplets 
from the first KG ( 904 ) . Additionally , a second KG is 
identified ( 906 ) , and in one embodiment is related to the first 
KG . The MLM processes the same query with the second 
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KG and one or more triplets are extracted from the second 
KG ( 908 ) . Each triplet extracted at steps ( 904 ) and ( 908 ) are 
also referred to herein as memories , and include a subject , 
object , and a relationship . As discussed above , each triplet 
has an associated BC identifier that indicates the BC ledger 
that stores the corresponding veracity value ( s ) . Following 
step ( 908 ) , each extracted triplet is processed to identify 
their associated veracity value stored in their corresponding 
BC ledger entry ( 910 ) . The triplet of the first KG and the 
triplet of the second KG are evaluated and compared ( 912 ) . 
More specifically , the evaluation at step ( 912 ) assesses if the 
content and / or structure of the first KG was subject to a 
modification , as reflected in the second KG ( 914 ) . For a 
MLM to be dynamically modified , the determination is if the 
two subject KGs have related structure and content . The 
modification may be evidenced via comparison of the trip 
lets returned from the first and second KGs . A negative 
response to the evaluation at step ( 914 ) concludes the MLM 
modification ( 922 ) . However , a positive response to the 
evaluation at step ( 914 ) is followed by identification of the 
content and / or structural change ( 916 ) . In addition , the 
corresponding veracity values are assessed to validate the 
authenticity of the change ( s ) ( 918 ) . Based on the validation 
at step ( 918 ) , the structure of the MLM is subject to dynamic 
modification ( 920 ) . 
[ 0063 ] The modification at step ( 920 ) may take different 
forms . For example , in one embodiment , the modification of 
the MLM may conform to the validated change ( s ) reflected 
in the second KG entry as compared to the first KG entry . In 
another embodiment , the modification may be based on an 
assessment of the corresponding veracity values of the 
extracted data . Accordingly , the MLM is demonstrated to be 
subject to change based upon changes in the KGs . 
[ 0064 ] Furthermore , it is understood that data and associ 
ated relationships represented in the KGs may be synchronic 
or diachronic information . The classification may be 
imported into the evaluation at step ( 912 ) . Data that should 
not change and is demonstrated to have been modified 
should not be reflected in an MLM modification . Accord 
ingly , the data classification may be imported into the data 
evaluation and associated MLM evaluation . 
[ 0065 ] Referring to FIG . 10 , a flow chart ( 1000 ) is pro 
vided illustrating a process for progressive and adaptive 
MLM configuration . The KG API periodically searches an 
associated or identified KG for new entities , relationships , 
and data ( 1002 ) . The identification at step ( 1002 ) may be 
accomplished by checking the data and / or time of the entries 
within the KG or comparing the entities and relationships 
from an existing MLM with data contained in the KG . A list 
of entities and relationships that are present in the KG and 
absent from the MLM of interest is produced ( 1004 ) . The list 
is produced in a format that is consumable by the training 
tool used to generate MLMs . The consumable data is 
streamed to update the structure of an existing MLM ( 1006 ) . 
In one embodiment , the KG API generates a linguistic 
statement from the KG that expresses each triplet that can 
then be fed to the MLM for training . Following step ( 1006 ) , 
the updated MLM is stored in an MLM library as a new 
MLM ( 1008 ) . In one embodiment , the progressive MLM 
configuration is incremental as it represents incremental 
changes of an existing MLM . Incremental machine learning 
functions to synchronize the MLM with the structure of a 
KG . Continuous or incremental changes are performed on a 

target MLM so that with each incremental change , the 
MLM ' s capability to extract data from the KG increases and 
the MLM effectively adapts . 
[ 0066 ] The system and flow charts shown herein may also 
be in the form of a computer program device for use with an 
intelligent computer platform in order to facilitate NL pro 
cessing . The device has program code embodied therewith . 
The program code is executable by a processing unit to 
support the described functionality . 
[ 0067 ] As shown and described , in one embodiment , the 
processing unit supports functionality to search the corpus 
for evidence of existing KGs and corresponding MLMs 
together with the corresponding BC ledgers and associated 
entrie ( s ) . The composite veracity score qualifies and / or 
quantifies the associated data , and provides a weight for 
conducting one or more assessments . The recordation of the 
veracity score together with the associated components in a 
corresponding BC ledger provides authenticity to the data . 
Each entry in the outcome set is evaluated based on the 
corresponding veracity score . As described herein , the KGS 
are subject to modification , including partitioning and link 
ing , as well as assignment of veracity score components to 
the data represented or assigned to one or more select KGs . 
Similarly , as described herein , the MLMs may be dynami 
cally adjusted to reflect structural changes to one or more of 
the KGs . More specifically , the MLMs adjust to new entities 
and entity relationships . 
[ 0068 ] It will be appreciated that there is disclosed herein 
a system , method , apparatus , and computer program product 
for dynamic MLM generation and augmentation through the 
use of memory and external learning . As disclosed , the 
system , method , apparatus , and computer program product 
apply NL processing to support the MLM , and for the MLM 
to support the KG persistence . 
100691 . While particular embodiments of the present 
invention have been shown and described , it will be obvious 
to those skilled in the art that , based upon the teachings 
herein , changes and modifications may be made without 
departing from this invention and its broader aspects . There 
fore , the appended claims are to encompass within their 
scope all such changes and modifications as are within the 
true spirit and scope of this invention . Furthermore , it is to 
be understood that the invention is solely defined by the 
appended claims . It will be understood by those with skill in 
the art that if a specific number of an introduced claim 
element is intended , such intent will be explicitly recited in 
the claim , and in the absence of such recitation no such 
limitation is present . For non - limiting example , as an aid to 
understanding , the following appended claims contain usage 
of the introductory phrases at least one ” and “ one or more ” 
to introduce claim elements . However , the use of such 
phrases should not be construed to imply that the introduc 
tion of a claim element by the indefinite articles “ a ” or “ an ” 
limits any particular claim containing such introduced claim 
element to inventions containing only one such element , 
even when the same claim includes the introductory phrases 
" one or more ” or “ at least one ” and indefinite articles such 
as “ a ” or “ an ” ; the same holds true for the use in the claims 
of definite articles . 
[ 0070 ] The present invention may be a system , a method , 
and / or a computer program product . In addition , selected 
aspects of the present invention may take the form of an 
entirely hardware embodiment , an entirely software embodi 
ment ( including firmware , resident software , micro - code , 
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etc . ) or an embodiment combining software and / or hardware 
aspects that may all generally be referred to herein as a 
“ circuit , ” “ module ” or “ system . ” Furthermore , aspects of the 
present invention may take the form of computer program 
product embodied in a computer readable storage medium 
( or media ) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present invention . Thus embodied , the disclosed system , a 
method , and / or a computer program product are operative to 
improve the functionality and operation of a machine learn 
ing model based on veracity values and leveraging BC 
technology . 
10071 ] The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
dynamic or static random access memory ( RAM ) , a read 
only memory ( ROM ) , an erasable programmable read - only 
memory ( EPROM or Flash memory ) , a magnetic storage 
device , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e . g . , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0072 ] Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0073 ] Computer readable program instructions for carry 
ing out operations of the present invention may be assembler 
instructions , instruction - set - architecture ( ISA ) instructions , 
machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , or 
either source code or object code written in any combination 
of one or more programming languages , including an object 
oriented programming language such as Java , Smalltalk , 
C + + or the like , and conventional procedural programming 
languages , such as the “ C ” programming language or similar 
programming languages . The computer readable program 
instructions may execute entirely on the user ' s computer , 

partly on the user ' s computer , as a stand - alone software 
package , partly on the user ' s computer and partly on a 
remote computer or entirely on the remote computer or 
server or cluster of servers . In the latter scenario , the remote 
computer may be connected to the user ' s computer through 
any type of network , including a local area network ( LAN ) 
or a wide area network ( WAN ) , or the connection may be 
made to an external computer ( for example , through the 
Internet using an Internet Service Provider ) . In some 
embodiments , electronic circuitry including , for example , 
programmable logic circuitry , field - programmable gate 
arrays ( FPGA ) , or programmable logic arrays ( PLA ) may 
execute the computer readable program instructions by 
utilizing state information of the computer readable program 
instructions to personalize the electronic circuitry , in order to 
perform aspects of the present invention . 
[ 0074 ] Aspects of the present invention are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 
blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer readable program instruc 
tions . 
10075 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and / 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 
[ 0076 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
100771 The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the block may occur out of the order noted 
in the figures . For example , two blocks shown in succession 
may , in fact , be executed substantially concurrently , or the 
blocks may sometimes be executed in the reverse order , 
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depending upon the functionality involved . It will also be 
noted that each block of the block diagrams and / or flowchart 
illustration , and combinations of blocks in the block dia 
grams and / or flowchart illustration , can be implemented by 
special purpose hardware - based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions . 
10078 ] It will be appreciated that , although specific 
embodiments of the invention have been described herein 
for purposes of illustration , various modifications may be 
made without departing from the spirit and scope of the 
invention . In particular , the natural language processing may 
be carried out by different computing platforms or across 
multiple devices . Furthermore , the data storage and / or cor 
pus may be localized , remote , or spread across multiple 
systems . Accordingly , the scope of protection of this inven 
tion is limited only by the following claims and their 
equivalents . 
What is claimed is : 
1 . A computer system comprising : 
a processing unit operatively coupled to memory ; 
an artificial intelligence platform , in communication with 

the processing unit and memory ; 
a knowledge engine in communication with the process 

ing unit to manage data , including : 
extract data and a data relationship from data selected 

from the group consisting of : structured data , 
unstructured data , and combinations thereof ; 

create an entry for the extracted data and data relation 
ship in a knowledge graph ( KG ) and selectively store 
the extracted data and data relationship in the KG , 
including assign a veracity value to the stored data ; 

create an asset value entry in a blockchain ( BC ) ledger 
corresponding to the KG , the entry including the 
assigned veracity value ; 

create a BC identifier corresponding to the BC ledger 
entry ; and 

store the created BC identifier with the KG entry ; 
evaluate select data stored in the KG , including employ 

the BC identifier to determine provenance of the 
select data and to quantify the data ; and 

generate a list of the evaluated data , and sort the data 
in the generated list based on the assigned veracity 
value ; and 

a data element returned from the sorted list with a strongest 
veracity score . 

2 . The system of claim 1 , further comprising the knowl 
edge engine to : 

create a first partition within the KG and populate and 
assign a first reliability value to first data in the first 
partition ; 

create a second partition within the KG and populate and 
assign a second reliability value to second data in the 
second partition , wherein the first and second reliability 
values are different . 

3 . The system of claim 2 , further comprising the knowl 
edge engine to automatically perform a veracity evaluation 
within the KG , including comparison of the first and second 
data . 

4 . The system of claim 1 , further comprising the knowl 
edge engine to : 

establish a link between two knowledge graphs , including 
compare and evaluate data elements in a second KG 
with data elements in a first KG , and selectively replace 

data elements based on a value selected from the group 
consisting of : reliability , feedback , and combinations 
thereof . 

5 . The system of claim 4 , further comprising the knowl 
edge engine to maintain a structure of the KG constant 
following establishment of the link between the first KG and 
the second KG . 

6 . The system of claim 1 , wherein the data is stored in a 
node in the KG and the relationship is represented as an edge 
connecting two nodes , each node having a node level 
veracity value and each relationship having a relationship 
veracity value , wherein the relationship value is calculated 
based on the veracity values of the nodes in the relationship . 

7 . A computer program product to process natural lan 
guage , the computer program product comprising a com 
puter readable storage device having program code embod 
ied therewith , the program code executable by a processing 
unit to : 

store data in a knowledge graph ( KG ) , comprising : 
extract data and a data relationship from data selected 

from the group consisting of : structured data , 
unstructured data , and combinations thereof ; 

create an entry in the KG and selectively store the 
extracted data and data relationship in the KG , 
including assign a veracity value to the stored data ; 

create an asset value entry in a blockchain ( BC ) ledger 
corresponding to the KG , the entry including the 
assigned veracity value ; 

create a BC identifier corresponding to the BC ledger 
entry ; and 

store the created BC identifier with the KG entry ; 
evaluate select data stored in the KG , including employ 

the BC identifier to determine provenance of the select 
data and to quantify the data ; 

generate a list of the evaluated data , and sort the data in 
the generated list based on the assigned veracity value ; 
and 

generate an outcome , wherein the outcome is a data 
element returned from the sorted list with a strongest 
veracity score . 

8 . The computer program product of claim 7 , further 
comprising program code to : 

create a first partition within the KG and populate and 
assign a first reliability value to first data in the first 
partition ; 

create a second partition within the KG and populate and 
assign a second reliability value to second data in the 
second partition , wherein the first and second reliability 
values are different . 

9 . The computer program product of claim 8 , further 
comprising program code to automatically perform a verac 
ity evaluation within the KG , including comparison of the 
first and second data . 

10 . The computer program product of claim 7 , further 
comprising program code to : 

establish a link between two knowledge graphs , including 
compare and evaluate data elements in a second KG 
with data elements in a first KG , and selectively replace 
data elements based on a value selected from the group 
consisting of : reliability , feedback , and combinations 
thereof . 
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11 . The computer program product of claim 10 , further 
comprising program code to maintain a structure of the KG 
constant following establishment of the link between the 
first KG and the second KG . 

12 . The computer program product of claim 7 , wherein 
the data is stored in a node in the KG and the relationship is 
represented as an edge connecting two nodes , each node 
having a node level veracity value and each relationship 
having a relationship veracity value , wherein the relation 
ship value is calculated based on the veracity values of the 
nodes in the relationship . 

13 . A method for processing natural language , compris 
ing : 

storing data in a knowledge graph ( KG ) , comprising : 
extracting data and a data relationship from data 

selected from the group consisting of : structured 
data , unstructured data , and combinations thereof ; 

creating an entry in the KG and selectively storing the 
extracted data and data relationship in the KG , 
including assigning a veracity value to the stored 
data ; 

creating an asset value entry in a blockchain ( BC ) 
ledger corresponding to the KG , the entry including 
the assigned veracity value ; 

creating a BC identifier corresponding to the BC ledger 
entry ; and 

storing the created BC identifier with the KG entry ; 
evaluating select data stored in the KG , including employ 

ing the BC identifier to determine provenance of the 
select data and to quantify the data ; 

generating a list of the evaluated data , and sorting the data 
in the generated list based on the assigned veracity 
value ; and 

a data element returned from the sorted list with a 
strongest veracity score . 

14 . The method of claim 13 , further comprising 
creating a first partition within the KG and populating and 

assigning a first reliability value to first data in the first 
partition ; 

creating a second partition within the KG and populating 
and assigning a second reliability value to second data 
in the second partition , wherein the first and second 
reliability values are different . 

15 . The method of claim 14 , further comprising automati 
cally performing a veracity evaluation within the KG , 
including comparison of the first and second data . 

16 . The method of claim 13 , further comprising : 
establishing a link between two knowledge graphs , 

including comparing and evaluating data elements in a 
second KG with data elements in a first KG , and 
selectively replacing data elements based on a value 
selected from the group consisting of : reliability , feed 
back , and combinations thereof . 

17 . The method of claim 16 , further comprising main 
taining a structure of the KG constant following establish 
ment of the link between the first KG and the second KG . 

18 . The method of claim 13 , wherein the data is stored in 
a node in the KG and the relationship is represented as an 
edge connecting two nodes , each node having a node level 
veracity value and each relationship having a relationship 
veracity value , wherein the relationship value is calculated 
based on the veracity values of the nodes in the relationship . 

* * * * * 


