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(57) ABSTRACT

Systems and methods for intraocular lens selection include
receiving, by one or more computing devices implementing
a prediction engine, pre-operative multi-dimensional images
of'an eye; extracting, by the prediction engine, pre-operative
measurements of the eye based on the pre-operative images;
estimating, by the prediction engine using a prediction
model based on a machine learning strategy, a post-operative
position of an intraocular lens based on the extracted pre-
operative measurements; selecting a power of the intraocular
lens based on the estimated post-operative position of the
intraocular lens; and selecting the intraocular lens based on
the selected power. In some embodiments, the systems and
methods further include receiving post-operative multi-di-
mensional images of the eye after implantation of the
selected intraocular lens, extracting post-operative measure-
ments of the eye, and updating the prediction model based
on the pre-operative measurements and the post-operative
measurements.
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SYSTEMS AND METHODS FOR
INTRAOCULAR LENS SELECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application is a continuation of U.S.
patent application Ser. No. 17/023,348 filed Sep. 16, 2020
which is a continuation of U.S. patent application Ser. No.
16/171,515 filed Oct. 26, 2018 (U.S. Pat. No. 10,888,380),
which claims the benefit of U.S. Provisional Patent Appli-
cation No. 62/697,367 filed Jul. 12, 2018 (expired) and
entitted “OPTHALMIC IMAGING SYSTEM FOR
INTRAOCULAR LENS POWER PREDICTION” which is
hereby incorporated by reference in its entirety.

BACKGROUND

Field of the Disclosure

[0002] The present disclosure relates to systems and meth-
ods of using multi-dimensional images of an eye to aid in the
selection of an intraocular lens to be implanted.

Description of Related Art

[0003] Cataract surgery involves removing the natural
lens of an eye and, in most cases, replacing the natural lens
with an artificial intraocular lens (IOL). To achieve an
optimal post-operative visual outcome, a good pre-operative
surgical plan is crucial. Some of the important pre-operative
planning decisions are the selection of an appropriate IOL
power and an estimate of an effective lens position (ELP)
which are determined according to measurements taken of
the patient’s eye’s anatomical and optical characteristics and
used in one or more IOL power calculation formulas. See,
for example, Cooke, et al., “Comparison of 9 Intraocular
Lens Power Calculation Formulas,” J. Cataract Refract.
Surg. Vol. 42, pp. 1157-64, 2016; Goto, et al., “Prediction of
Postoperative Intraocular Lens Position with Angle-to-
Angle Depth Using Anterior Segment Optical Coherence
Tomography,” Ophthalmology Vol. 123, pp. 2474-80, 2016;
Kane, et al., “Intraocular Lens Power Formula Accuracy:
Comparison of 7 Formulas,” J. Cataract Refract. Surg. Vol.
42, pp. 1490-1500, 2016; Martinez-Enriquez, et al. “Esti-
mation of Intraocular Lens Position from Full Crystalline
Lens Geometry: Towards a New Generation of Intraocular
Lens Power Calculation Formulas,” Nature Scientific
Reports Vol. 8:9829, 2018; Melles, et al.,, “Accuracy of
Intraocular Lens Calculation Formulas,” Ophthalmology
Vol. 125(2), pp. 1-10; Norrby, et al. “Prediction of the True
IOL Position,” Ophthalmology Vol. 101, pp. 1440-46, 2017,
and Olsen, “Calculation of Intraocular Lens Power: A
Review,” Acta Ophthalmol Scand, Vol. 85, pp. 472-85,
2007, each of which is hereby incorporated by reference in
its entirety.

[0004] Typically, the measurements used in the IOL pre-
diction formulas are one-dimensional measurements taken
on the optical axis using an optical and/or ultrasound biom-
eter. These traditional measurement practices lead to inac-
curacy in the ELP which, in turn, leads to the selection of an
IOL power that results in a suboptimal vision outcome for
the patient.

[0005] Therefore, there is a need in the art for techniques
for preoperatively assessing a patient’s eye to measure
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anatomical parameters that may be used to better select an
intraocular lens for implantation that leads to optimized
vision outcomes for patients.

SUMMARY

[0006] According to some embodiments, a method
includes receiving, by one or more computing devices
implementing a prediction engine, one or more pre-opera-
tive multi-dimensional images of an eye; extracting, by the
prediction engine, one or more pre-operative measurements
of'the eye based on the one or more pre-operative images of
the eye; estimating, by the prediction engine using a first
prediction model based on a machine learning strategy, a
post-operative position of an intraocular lens based on the
one or more extracted pre-operative measurements of the
eye; selecting a power of the intraocular lens based on at
least the estimated post-operative position of the intraocular
lens; and selecting the intraocular lens based on at least the
selected power.

[0007] According to some embodiments, a prediction
engine includes one or more processors. The prediction
engine is configured to receive one or more pre-operative
multi-dimensional images of an eye obtained by a diagnostic
device; extract one or more pre-operative measurements of
the eye based on the one or more pre-operative images of the
eye; estimate, using a first prediction model based on a
machine learning strategy, a post-operative position of an
intraocular lens based on the one or more extracted pre-
operative measurements of the eye; recommend a power of
the intraocular lens based on at least the estimated post-
operative position of the intraocular lens; and provide the
recommended power to a user to facilitate selection of the
intraocular lens for implantation.

[0008] According to some embodiments, a non-transitory
machine-readable medium comprising a plurality of
machine-readable instructions which when executed by one
or more processors are adapted to cause the one or more
processors to perform a method. The method includes
receiving one or more pre-operative multi-dimensional
images of an eye; extracting one or more pre-operative
measurements of the eye based on the one or more pre-
operative images of the eye; estimating, using a prediction
model based on a machine learning strategy, a post-operative
position of an intraocular lens based on the one or more
extracted pre-operative measurements of the eye; recom-
mending a power of the intraocular lens based on at least the
estimated post-operative position of the intraocular lens; and
providing the recommended power to a user to facilitate
selection of the intraocular lens for implantation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] For a more complete understanding of the present
technology, its features, and its advantages, reference is
made to the following description, taken in conjunction with
the accompanying drawings.

[0010] FIG. 1 is a diagram of a system for IOL selection
according to some embodiments.

[0011] FIG. 2 is a diagram of a method of implanting an
IOL using a prediction engine according to some embodi-
ments.

[0012] FIG. 3 is a diagram of a method of measuring
characteristics of an eye according to some embodiments.
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[0013] FIG. 4 is a diagram of an eye and characteristics of
the eye according to some embodiments.

[0014] FIGS. 5A and 5B are diagrams of processing
systems according to some embodiments.

[0015] FIG. 6 is a diagram of a multi-layer neural network
according to some embodiments.

[0016] In the figures, elements having the same designa-
tions have the same or similar functions.

DETAILED DESCRIPTION

[0017] This description and the accompanying drawings
that illustrate inventive aspects, embodiments, implementa-
tions, or modules should not be taken as limiting—the
claims define the protected invention. Various mechanical,
compositional, structural, electrical, and operational
changes may be made without departing from the spirit and
scope of this description and the claims. In some instances,
well-known circuits, structures, or techniques have not been
shown or described in detail in order not to obscure the
invention. Like numbers in two or more figures represent the
same or similar elements.

[0018] In this description, specific details are set forth
describing some embodiments consistent with the present
disclosure. Numerous specific details are set forth in order to
provide a thorough understanding of the embodiments. It
will be apparent, however, to one skilled in the art that some
embodiments may be practiced without some or all of these
specific details. The specific embodiments disclosed herein
are meant to be illustrative but not limiting. One skilled in
the art may realize other elements that, although not spe-
cifically described here, are within the scope and the spirit
of this disclosure. In addition, to avoid unnecessary repeti-
tion, one or more features shown and described in associa-
tion with one embodiment may be incorporated into other
embodiments unless specifically described otherwise or if
the one or more features would make an embodiment
non-functional.

[0019] The technology described below involves systems
and methods of using a collection of pre- and post-operative
multi-dimensional images of the eyes of training patients
with supervised machine learning to predict a post-operative
anterior chamber depth, a power for an intraocular lens
(IOL) of a new patient, and a post-operative manifest
refraction spherical equivalent (MRSE).

[0020] As explained above, IOL power predictions have
traditionally relied on measurements from an optical and/or
ultrasound biometer. Some of the more commonly used
measured characteristics of the eye used in IOL power
calculation formulas are the corneal radius of curvature (K),
the axial length (AL) (which includes an eye’s anterior
chamber depth (ACD)), lens thickness, vitreous chamber
depth, the horizontal distance between the borders of the
corneal limbus (also known as the corneal white-to-white
distance), and/or the like.

[0021] However, two- or three-dimensional measurements
of a patient’s eye provide additional anatomical detail that
may be used to better predict a post-operative anterior
chamber depth (also referred to as an estimated lens position
(ELP)) and IOL power. In some examples, use of a better
predictive mechanism may be used to improve post-opera-
tive refractive outcome in the MRSE.

[0022] Some embodiments of the present disclosure
involve obtaining pre- and post-operative diagnostic training
data in the form of two- or three-dimensional images of the
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eyes of a collection of patients, obtaining a plurality of
measurements from pre-operative diagnostic images of a
new patient, and using one or more machine learning
techniques to create a prediction model for calculating an
estimate of post-operative anterior chamber depth (ACD,,,,,)
for the new patient based on a plurality of measurements of
the new patient. The postoperative anterior chamber depth
may then be used to select an appropriate power for the
implanted IOL.

[0023] FIG. 1 illustrates a system 100 for a system for IOL
selection according to some embodiments. System 100
includes an IOL selection platform 105 coupled with one or
more diagnostic training data sources 110 via a network 115.
In some examples, network 115 may include one or more
switching devices, routers, local area networks (e.g., an
Ethernet), wide area networks (e.g., the Internet), and/or the
like. Each of the diagnostic training data sources 110 may be
a database, a data repository, and/or the like made available
by an, ophthalmic surgery practice, an eye clinic, a medical
university, an electronic medical records (EMR) repository,
and/or the like. Each of the diagnostic training data sources
110 may provide IOL selection platform 105 with training
data in the form of one or more of multi-dimensional images
of patients’ pre- and post-operative eyes, surgical planning
data, surgical console parameter logs, surgical complication
logs, patient medical history, patient demographic data,
and/or the like. IOL selection platform 105 may store the
training data in one or more databases 155 which may be
configured to anonymize, encrypt, and/or otherwise safe-
guard the training data.

[0024] IOL selection platform 105 includes a prediction
engine 120 which may (as explained in greater detail below)
process the received training data, extract measurements
from the multi-dimensional images, perform raw data analy-
sis on the training data, train machine learning algorithms
and/or models to predict ACD,,,, based on pre-operative
measurements, and iteratively refine the machine learning to
optimize ACD,,,,,, prediction for use with future patients to
improve their post-implantation outcomes (e.g., better opti-
cal properties of the eye with the implanted IOL). In some
examples, prediction engine 120 may use one or more
prediction models (e.g., one or more a neural networks) that
are trained based on pre-operative measurements and cor-
responding post-operative outcomes obtained from the one
or more diagnostic training data sources 110.

[0025] IOL selection platform 105 is further coupled, via
network 115, to one or more devices of an ophthalmic
practice 125. The one or more devices include a diagnostic
device 130. Diagnostic device 130 is used to obtain one or
more multi-dimensional images of an eye of a patient 135.
Diagnostic device 130 may be any of a number of devices
for obtaining multi-dimensional images of ophthalmic
anatomy such as an optical coherence tomography (OCT)
device, a rotating camera (e.g., a Scheimpflug camera), a
magnetic resonance imaging (MM) device, and/or the like.

[0026] The ophthalmic practice 125 may also include one
or more computing devices 140 for obtaining, from the
diagnostic device 130, the multi-dimensional images of
patient 135 and sending them to IOL selection platform 105.
The one or more computing devices 140 may be one or more
of a stand-alone computer, a tablet and/or other smart
device, a surgical console, a computing device integrated
into the diagnostic device 130, and/or the like.
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[0027] IOL selection platform 105 may receive the multi-
dimensional images of patient 135, extract measurements
from the images, and generate a predicted ACD,,,,, based on
the measurements and using prediction engine 120. Predic-
tion engine may then be used to select an 10L power for
patient 135. IOL selection platform 105 may then provide
ophthalmic practice 125 with the predicted ACD,,,,,, and/or
selected IOL power.

[0028] Diagnostic device 130 may further be used to
obtain post-operative multi-dimensional images of patient
135 after the patient undergoes cataract removal and IOL
implantation using the selected IOL power provided by
prediction engine 120. The one or more computing devices
140 may then send the post-operative multi-dimensional
images of patient 135 to IOL selection platform 105 for use
in iteratively training and/or updating the models used by
prediction engine 120 so as to incorporate information from
patient 135 for use with future patients.

[0029] The predicted ACD,,,, and/or selected IOL power
may be displayed on computing device 140 and/or another
computing device, display, surgical console, and/or the like.
Additionally, IOL selection platform 105 and/or the one or
more computing devices 140 may identify and/or measure,
in the multi-dimensional images, various characteristics of
the anatomy of patient 135, as explained below in more
detail. Further, IOL selection platform 105 and/or the one or
more computing devices 140 may create graphical elements
that identify, highlight, and/or otherwise depict the patient
anatomy and/or the measured characteristics. IOL selection
platform 105 and/or the one or more computing devices 140
may supplement the multi-dimensional images with the
graphical elements. In some examples, the multi-dimen-
sional images may be displayed with graphical elements
overlaid on the images.

[0030] In some embodiments, IOL selection platform 105
may further include a surgical planner 150 that may be used
to provide one or more surgical plans to ophthalmic practice

125 that uses the predicted ACD,,,, and/or the selected IOL
power.
[0031] In some embodiments, system 100 may further

include a stand-alone surgical planner 160 and/or ophthal-
mic practice 125 may further include a surgical planner
module 170 on the one or more computing device 140.

[0032] According to some embodiments, the methods
described in further detail below may take advantage of
measurements that may be extracted from the multi-dimen-
sional images of ophthalmic anatomy instead of using
one-dimensional on axis measurements from an optical
and/or ultrasound biometer and/or white-to-white measure-
ments taken on a front view image (e.g., a Placido image) of
an eye. The one-dimensional measurements are typically
suboptimal for predicting ACD,,, , and selecting IOL power
for a number of reasons. For example, white-to-white mea-
surements may impart inaccuracy in IOL selection due to
human error while measuring the white-to-white distance
when anatomical factors such as Arcus Senilis are present. In
addition, an optical and/or ultrasound biometer does not
measure the angle between a pupillary axis of the pre-
operative eye and a line of sight axis of the pre-operative eye
when the pre-operative eye is fixated on a fixation point.
Further traditional IOL selection formulas simply measure a
lens thickness in one-dimension and assume that the lens has
its equator at the center of the lens thickness measurement,
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when the typical optical lens has a longer lens thickness
posterior to the lens equator than a lens thickness anterior to
the lens equator.

[0033] The embodiments described in more detail herein
avoid these inaccurate or suboptimal measurements through
the use of multi-dimensional diagnostic images and a variety
of new measurements that are superior to known measure-
ments coming from an optical and/or ultrasound biometer
for predicting ACD,,,,, and selecting IOL power. According
to some embodiments, the measurements used to improve
the prediction of ACD,,,, and/or selection of IOL power may
include one or more of:

[0034] 1. an angle to angle width describing the width of
a line joining each of the two angular recesses of a
cornea of the pre-operative eye;

[0035] ii. an angle to angle depth measured as the
perpendicular distance between an intersection point on
the line joining each of the two angular recesses of the
cornea of the pre-operative eye and the posterior cor-
neal surface of the pre-operative eye;

[0036] iii. the angle between a pupillary axis of the
pre-operative eye and a line of sight axis of the pre-
operative eye when the pre-operative eye is fixated on
a fixation point; and/or

[0037] iv. an estimated position of the lens equator
determined as an equator line between each of two
intersection points of an anterior lens radius and a
posterior lens radius.

[0038] As discussed above and further emphasized here,
FIG. 1 is merely an example which should not unduly limit
the scope of the claims. One of ordinary skill in the art would
recognize many variations, alternatives, and modifications.
According to some embodiments, IOL selection platform
130 and/or one or more components of IOL selection
platform, such as databases 155, prediction engine 120,
and/or surgical planner 150, may be integrated into the one
or more devices of ophthalmic practice 125. In some
examples, computing device 140 may host IOL selection
platform 105, databases 155, prediction engine 120, and/or
surgical planner 150. In some examples, surgical planner
150 may be combined with surgical planner 170.

[0039] FIG. 2 is a diagram of a method 200 of implanting
an [OL using a prediction engine according to some embodi-
ments. One or more of the processes 210-290 of method 200
may be implemented, at least in part, in the form of
executable code stored on non-transitory, tangible, machine-
readable media that when run by one or more processors
(e.g., the processors of prediction engine 120, IOL predic-
tion platform, diagnostic device 140, the one or more
computing devices 140, and/or one or more of the surgical
planners 150, 160, and/or 170) may cause the one or more
processors to perform one or more of the processes 210-290.
[0040] Ata process 210, one or more pre-operative images
are obtained. In some examples, the one or more pre-
operative images may include multi-dimensional images. In
some examples, the one or more pre-operative images may
be obtained using a diagnostic device, such as diagnostic
device 130, an OCT device, a rotating (e.g., Scheimpflug)
camera, an MRI device, and/or the like. In some examples,
the one or more pre-operative images may be provided to a
prediction engine, such as prediction engine 120.

[0041] At a process 220, one or more pre-operative mea-
surements may be extracted from the one or more pre-
operative images. In some examples, the extracting may be
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performed by the prediction engine, such as prediction
engine 120. According the some embodiments, the one or
more pre-operative measurements may be extracted via
measurements of various aspects of the anatomy of the eye
as captured in the one or more pre-operative images accord-
ing to a method 300 of measuring characteristics of an eye
as shown in FIG. 3. One or more of the processes 310-390
of method 300 may be implemented, at least in part, in the
form of executable code stored on non-transitory, tangible,
machine-readable media that when run by one or more
processors (e.g., the processors of prediction engine 120,
IOL prediction platform, and/or the like) may cause the one
or more processors to perform one or more of the processes
310-390. In some embodiments, process 340 is optional and
may be omitted. Application of method 300 is described
with respect to FIG. 4, which is a diagram of an eye 400 and
characteristics of the eye according to some embodiments.
[0042] At a process 310, nasal and temporal angles 405
and 410, respectively, of an anterior chamber 480 of the eye
are identified. In some examples, nasal and temporal angles
405 and 410 of anterior chamber 480 may be identified from
the one or more images of the eye (e.g., the one or more
pre-operative images obtained during process 210) by iden-
tifying the structures identifying the anterior chamber 480 of
the eye (e.g., using one or more edge detection and/or region
detection algorithms) and noting the acute angles at the
edges of anterior chamber 480 located toward the temporal
and nasal extents of anterior chamber 480.

[0043] At a process 320, an angle-to angle width of
anterior chamber 480 is determined. In some examples, the
angle-to-angle width of anterior chamber 480 corresponds to
a length of line 415 between nasal and temporal angles 405
and 410 as identified during process 310.

[0044] At a process 330, a posterior corneal surface 420 of
the eye is identified. In some examples, posterior corneal
surface 420 may be identified from the one or more images
of the eye (e.g., the one or more pre-operative images
obtained during process 210) by identitying the structures
which identify a cornea 475 and/or anterior chamber 480 of
the eye (e.g., using one or more edge detection and/or region
detection algorithms) and noting the transition between
cornea 475 and anterior chamber 480.

[0045] At an optional process 340, a depth of a pupillary
plane is determined. In some examples, the depth of the
pupillary plane corresponds to the perpendicular distance
from posterior corneal surface 420 and line 415 between the
angular recesses corresponds to a length of line 425 between
line 415 (as identified during process 320) and posterior
corneal surface 420 (as identified during process 330),
which is perpendicular to line 415 and has a longest length
before reaching posterior corneal surface 420.

[0046] At a process 350, a pupillary axis 430 and a line of
sight axis 435 of the eye are identified. In some examples,
pupillary axis 435 corresponds to the axis formed by extend-
ing perpendicular distance line 425 determined during pro-
cess 340. In some examples, line of sight axis 435 may be
determined by identifying the line between a fixation point
440 to which the vision of eye 400 is fixated and fovea 445.
[0047] Ataprocess 360, an angle K between pupillary axis
430 and line of sight axis 435 is determined.

[0048] At a process 370, an anterior lens surface 450 and
a posterior lens surface 455 of the eye are identified. In some
examples, anterior lens surface 450 and/or posterior lens
surface 455 may be identified from the one or more images
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of the eye (e.g., the one or more pre-operative images
obtained during process 210) by identifying the structures
identifying the lens of the eye (e.g., using one or more edge
detection and/or region detection algorithms) and noting the
transition between the lens and the suspensory ligaments,
pupil, and/or vitreous humor of the eye.

[0049] At a process 380, a position of an equator of the
lens is determined. In the examples of FIG. 4, the equator of
the lens corresponds to line 460. In some examples, the
position of the lens corresponds to the perpendicular dis-
tance between the equator of the lens (e.g., line 460) and
posterior corneal surface 420 as measured along pupillary
axis 430. In some examples, the equator of the lens is
typically not located at a midpoint between anterior lens
surface 450 and posterior lens surface 455 (as identified
during process 370) because the thickness of the posterior
portion of the lens is typically thicker than the anterior
portion of the lens. In some examples, the location of the
equator of the lens (e.g., line 460) from anterior lens surface
450 may be estimated according to Equation 1, where r is
half of the diameter of the lens (e.g., half the length of line
460) and R1 is a radius of anterior lens surface 450. In some
examples, the location of the equator of the lens from
posterior lens surface may be estimated according to Equa-
tion 2 where R2 is a radius of posterior lens surface 455. In
some examples, a combination of Equations 1 and 2 may be
used to determine the estimate of the location of the equator
of the lens. In some examples, the radii R1 and/or R2 may
be determined using a regression analysis to find a best fit
circular arc to anterior lens surface 450 and posterior lens
surface 455, respectively.

Anterior Lens Thickness=R1-VY R1?-#? Equation 1

Posterior Lens Thickness=R2-R2%—? Equation 2

[0050] Ata process 390, an anterior chamber depth (ACD)
of'the eye is determined. In the examples of FIG. 4, the ACD
corresponds to the perpendicular distance 470 between
posterior corneal surface 420 and anterior lens surface 450
along pupillary axis 430.

[0051] As discussed above and further emphasized here,
FIG. 3 is merely an example which should not unduly limit
the scope of the claims. One of ordinary skill in the art would
recognize many variations, alternatives, and modifications.
According to some embodiments, additional measurements
of the anatomy of the eye may be determined. In some
examples, the additional measurements may include a cor-
neal power of the eye.

[0052] Referring back to FIG. 2, at a process 230 a
post-operative anterior chamber depth (ACD,,,,) is esti-
mated using a prediction model. In some examples, the
prediction model may correspond to one of the one or more
prediction models used by prediction engine 120, which has
been previously trained based on previous lens implantation
procedures and corresponding patient outcomes as described
in further detail below with respect to process 290. In some
examples, one or more of the eye characteristics determined
during process 220 (e.g., one or more of an angle-to-angle
width of the cornea, a depth of the pupillary plane, an angle
between the pupillary axis 430 and line of sight 435 of the
eye, a diameter of the lens, an estimate of a position of the
lens equator, a pre-operative anterior chamber depth (ACD
pre), a corneal power, and/or the like, such as described with
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respect to FIGS. 3 and 4) may be provided as inputs to the
prediction model, which generates the estimated ACD,,,,.
[0053] At a process 240, an intraocular lens (IOL) power
is selected. In some examples, a recommended 10L power
may be determined using a prediction model. In some
examples, the prediction model may correspond to one of
the one or more prediction models used by prediction engine
120, which has been previously trained based on previous
lens implantation procedures and corresponding patient out-
comes as described in further detail below with respect to
process 290. In some examples, one or more of the eye
characteristics determined during process 220 and/or the
ACD,,,, estimated during process 230 may be provided as
inputs to the prediction model, which generates the recom-
mended IOL power. In some examples, the prediction model
used to recommend the IOL power may be a same or a
different prediction model as the prediction model used to
estimate ACD,,,,. In some examples, the recommend 10L
power may be selected as the IOL power for the lens to
implant or, alternatively, the surgeon or other operator may
select a different IOL power based, at least in part, on the
recommended IOL power.

[0054] At a process, 250, a post-operative MRSE (MRSE-
pose) 18 estimated. In some examples, the MRSE,,,, may be
determined using a prediction model. In some examples, the
prediction model may correspond to one of the one or more
prediction models used by prediction engine 120, which has
been previously trained based on previous lens implantation
procedures and corresponding patient outcomes as described
in further detail below with respect to process 290. In some
examples, one or more of the eye characteristics determined
during process 220, the ACD,,, estimated during process
230, and/or the IOL power selected during process 240 may
be provided as inputs to the prediction model, which gen-
erates the estimated MRSE, . In some examples, the
prediction model used to estimate the may be a same or a
different prediction model as the prediction model used to
estimate ACD,,., and/or the prediction model used to rec-
ommend the IOL power.

[0055] At a process 260, the IOL is implanted. In some
examples, an IOL having the IOL power selected during
process 240 and a size based on the position and/or diameter
of the lens, and/or the like may be implanted at location
corresponding to the estimated position of the equator of the
lens determined during process 380.

[0056] At a process 270, one or more post-operative
images may be obtained. In some examples, the one or more
post-operative images may be obtained using a process
similar to process 210, but after the IOL is implanted during
process 260.

[0057] At a process 280, one or more post-operative
measurements of the eye are obtained. In some examples,
the one or more post-operative measurements may include
an ACD,,,,,, of the IOL after implantation of the IOL and/or
an MRSE, , after implantation of the IOL. In some
examples, ACD,,,,, may be extracted using a process similar
to process 390 as aided by the other processes of method
300. In some examples, the MRSE,,,;, may be determined
based on optical measurements of the eye.

[0058] At a process 290, the one or more prediction
models are updated. In some examples, the one or more
pre-operative measurements extracted during process 220,
the ACD,,,,, measurement extracted during process 280, the

IOL power selected during process 240, and the MRSE

‘post

Dec. 7, 2023

extracted during process may be combined to form a new
training data combination. In some examples, the new
training data combination may be added to the one or more
of diagnostic training data sources 110. In some examples,
the new training data combination may be used to iteratively
improve the prediction models so that during a next use of
method 200 (e.g., when method 200 is applied for a next
patient) a more accurate ACD,,,,,, may be estimated during
process 230, a better recommendation for the IOL power be
made during process 240, and/or a more accurate MRSE
may be estimated during process 250 and thus a better
post-operative vision outcome for the next patient may be
obtained. In some examples, the differences between the
estimated ACD,,,., and the actual ACD,,,, the differences
between the recommended IOL power and the selected IOL
power, and/or the differences between the estimated MRSE-
pos and the actual MRSE,, ., may be used to provide training
feedback (e.g., via back propagation) to the one or more
models.

[0059] As discussed above and further emphasized here,
FIG. 2 is merely an example which should not unduly limit
the scope of the claims. One of ordinary skill in the art would
recognize many variations, alternatives, and modifications.
According to some embodiments, the prediction engine may
be used to estimate a different measure of estimated lens
position other than ACD,,,,. In some examples, the esti-
mated post-operative lens position may correspond to the
equator of the IOL with the estimated post-operative posi-
tion of the equator of the IOL being used to select the IOL
power during process 230.

[0060] In some embodiments, other predictive models
(e.g., neural network models) may be trained and used to
improve other aspects of method 200 including, for
example, a predictive model to select the IOL power during
process 240.

[0061] FIGS. 5A and 5B are diagrams of processing
systems according to some embodiments. Although two
embodiments are shown in FIGS. 5A and 5B, persons of
ordinary skill in the art will also readily appreciate that other
system embodiments are possible. According to some
embodiments, the processing systems of FIGS. 5A and/or
5B are representative of computing systems that may be
included in one or more of IOL selection platform 105,
ophthalmic practice 125, prediction engine 120, diagnostic
device 130, the one or more computing devices 140, any of
surgical planner 150, 160, and/or 170, and/or the like.
[0062] FIG. 5A illustrates a computing system 500 where
the components of system 500 are in electrical communi-
cation with each other using a bus 505. System 500 includes
a processor 510 and a system bus 505 that couples various
system components including memory in the form of a read
only memory (ROM) 520, a random access memory (RAM)
525, and/or the like (e.g., PROM, EPROM, FLASH-
EPROM, and/or any other memory chip or cartridge) to
processor 510. System 500 may further include a cache 512
of high-speed memory connected directly with, in close
proximity to, or integrated as part of processor 510. System
500 may access data stored in ROM 520, RAM 525, and/or
one or more storage devices 530 through cache 512 for
high-speed access by processor 510. In some examples,
cache 512 may provide a performance boost that avoids
delays by processor 510 in accessing data from memory 515,
ROM 520, RAM 525, and/or the one or more storage
devices 530 previously stored in cache 512. In some
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examples, the one or more storage devices 530 store one or
more software modules (e.g., software modules 532, 534,
536, and/or the like). Software modules 532, 534, and/or 536
may control and/or be configured to control processor 510 to
perform various actions, such as the processes of methods
200 and/or 300. And although system 500 is shown with
only one processor 510, it is understood that processor 510
may be representative of one or more central processing
units (CPUs), multi-core processors, microprocessors,
microcontrollers, digital signal processors (DSPs), field pro-
grammable gate arrays (FPGAs), application specific inte-
grated circuits (ASICs), graphics processing units (GPUs),
tensor processing units (TPUs), and/or the like. In some
examples, system 500 may be implemented as a stand-alone
subsystem and/or as a board added to a computing device or
as a virtual machine.

[0063] To enable user interaction with system 500, system
500 includes one or more communication interfaces 540
and/or one or more input/output (I/O) devices 545. In some
examples, the one or more communication interfaces 540
may include one or more network interfaces, network inter-
face cards, and/or the like to provide communication accord-
ing to one or more network and/or communication bus
standards. In some examples, the one or more communica-
tion interfaces 540 may include interfaces for communicat-
ing with system 500 via a network, such as network 115. In
some examples, the one or more /O devices 545 may
include on or more user interface devices (e.g., keyboards,
pointing/selection devices (e.g., mice, touch pads, scroll
wheels, track balls, touch screens, and/or the like), audio
devices (e.g., microphones and/or speakers), sensors, actua-
tors, display devices, and/or the like).

[0064] Each of the one or more storage devices 530 may
include non-transitory and non-volatile storage such as that
provided by a hard disk, an optical medium, a solid-state
drive, and/or the like. In some examples, each of the one or
more storage devices 530 may be co-located with system
500 (e.g., a local storage device) and/or remote from system
500 (e.g., a cloud storage device).

[0065] FIG. 5B illustrates a computing system 550 based
on a chipset architecture that may be used in performing any
of the methods (e.g., methods 200 and/or 300) described
herein. System 550 may include a processor 555, represen-
tative of any number of physically and/or logically distinct
resources capable of executing software, firmware, and/or
other computations, such as one or more CPUs, multi-core
processors, microprocessors, microcontrollers, DSPs,
FPGAs, ASICs, GPUs, TPUs, and/or the like. As shown,
processor 555 is aided by one or more chipsets 560, which
may also include one or more CPUs, multi-core processors,
microprocessors, microcontrollers, DSPs, FPGAs, ASICs,
GPUs, TPUs, co-processors, coder-decoders (CODECs),
and/or the like. As shown, the one or more chipsets 560
interface processor 555 with one or more of one or more /O
devices 565, one or more storage devices 570, memory 575,
a bridge 580, and/or one or more communication interfaces
590. In some examples, the one or more 1/O devices 565, one
or more storage devices 570, memory, and/or one or more
communication interfaces 590 may correspond to the simi-
larly named counterparts in FIG. 5A and system 500.
[0066] In some examples, bridge 580 may provide an
additional interface for providing system 550 with access to
one or more user interface (UI) components, such as one or
more keyboards, pointing/selection devices (e.g., mice,
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touch pads, scroll wheels, track balls, touch screens, and/or
the like), audio devices (e.g., microphones and/or speakers),
display devices, and/or the like.

[0067] According to some embodiments, systems 500
and/or 560 may provide a graphical user interface (GUI)
suitable for aiding a user (e.g., a surgeon and/or other
medical personnel) in the performance of the processes of
methods 200 and/or 300. The GUI may include instructions
regarding the next actions to be performed, diagrams of
annotated and/or un-annotated anatomy, such as pre-opera-
tive and/or post-operative images of an eye (e.g., such as
depicted in FIG. 4), requests for input, and/or the like. In
some examples, the GUI may display true-color and/or
false-color images of the anatomy, and/or the like.

[0068] FIG. 6 is a diagram of a multi-layer neural network
600 according to some embodiments. In some embodiments,
neural network 600 may be representative of a neural
network used to implement each of the one or more predic-
tion models described with respect to processes 230, 240,
250, and/or 290 and used by prediction engine 120. Neural
network 600 processes input data 610 using an input layer
620. In some examples, input data 610 may correspond to
the input data provided to the one or more prediction models
during process 230 and/or the training data provided to the
one or more prediction models during the updating during
process 290 used to train the one or more prediction models.
Input layer 620 includes a plurality of neurons that are used
to condition input data 610 by scaling, range limiting, and/or
the like. Each of the neurons in input layer 620 generates an
output that is fed to the inputs of a hidden layer 631. Hidden
layer 631 includes a plurality of neurons that process the
outputs from input layer 620. In some examples, each of the
neurons in hidden layer 631 generates an output that are then
propagated through one or more additional hidden layers
that end with hidden layer 639. Hidden layer 639 includes a
plurality of neurons that process the outputs from the
previous hidden layer. The outputs of hidden layer 639 are
fed to an output layer 640. Output layer 640 includes one or
more neurons that are used to condition the output from
hidden layer 639 by scaling, range limiting, and/or the like.
It should be understood that the architecture of neural
network 600 is representative only and that other architec-
tures are possible, including a neural network with only one
hidden layer, a neural network without an input layer and/or
output layer, a neural network with recurrent layers, and/or
the like.

[0069] In some examples, each of input layer 620, hidden
layers 631-639, and/or output layer 640 includes one or
more neurons. In some examples, each of input layer 620,
hidden layers 631-639, and/or output layer 640 may include
a same number or a different number of neurons. In some
examples, each of the neurons takes a combination (e.g., a
weighted sum using a trainable weighting matrix W) of its
inputs x, adds an optional trainable bias b, and applies an
activation function f to generate an output a as shown in
Equation 3. In some examples, the activation function f may
be a linear activation function, an activation function with
upper and/or lower limits, a log-sigmoid function, a hyper-
bolic tangent function, a rectified linear unit function, and/or
the like. In some examples, each of the neurons may have a
same or a different activation function.

a=f{Wx+b) Equation 3
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[0070] In some examples, neural network 600 may be
trained using supervised learning (e.g., during process 290)
where combinations of training data that include a combi-
nation of input data and a ground truth (e.g., expected)
output data. Differences between the output of neural net-
work 600 as generated using the input data for input data 610
and comparing output data 650 as generated by neural
network 600 to the ground truth output data. Differences
between the generated output data 650 and the ground truth
output data may then be fed back into neural network 600 to
make corrections to the various trainable weights and biases.
In some examples, the differences may be fed back using a
back propagation technique using a stochastic gradient
descent algorithm, and/or the like. In some examples, a large
set of training data combinations may be presented to neural
network 600 multiple times until an overall loss function
(e.g., a mean-squared error based on the differences of each
training combination) converges to an acceptable level.

[0071] Methods according to the above-described embodi-
ments may be implemented as executable instructions that
are stored on non-transitory, tangible, machine readable
media. The executable instructions, when run by one or
more processors (e.g., processor 510 and/or process 555)
may cause the one or more processors to perform one or
more of the processes of methods 200 and/or 300. Some
common forms of machine readable media that may include
the processes of methods 200 and/or 300 are, for example,
floppy disk, flexible disk, hard disk, magnetic tape, any other
magnetic medium, CD-ROM, any other optical medium,
punch cards, paper tape, any other physical medium with
patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, and/or any
other medium from which a processor or computer is
adapted to read.

[0072] Devices implementing methods according to these
disclosures may comprise hardware, firmware, and/or soft-
ware, and may take any of a variety of form factors. Typical
examples of such form factors include laptops, smart
phones, small form factor personal computers, personal
digital assistants, and/or the like. Portions of the function-
ality described herein also may be embodied in peripherals
and/or add-in cards. Such functionality may also be imple-
mented on a circuit board among different chips or different
processes executing in a single device, by way of further
example.

[0073] Although illustrative embodiments have been
shown and described, a wide range of modification, change
and substitution is contemplated in the foregoing disclosure
and in some instances, some features of the embodiments
may be employed without a corresponding use of other
features. One of ordinary skill in the art would recognize
many variations, alternatives, and modifications. Thus, the
scope of the invention should be limited only by the fol-
lowing claims, and it is appropriate that the claims be
construed broadly and in a manner consistent with the scope
of the embodiments disclosed herein.

What is claimed is:
1. A method comprising:

receiving, by one or more computing devices implement-
ing a prediction engine, one or more pre-operative
multi-dimensional images of an eye, wherein the pre-
operative multi-dimensional images of the eye includes
an estimated position of a lens equator determined as an
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equator line between each of two intersection points of
an anterior lens radius and a posterior lens radius;

extracting, by the prediction engine, one or more pre-
operative measurements of the eye based on the one or
more pre-operative images of the eye;

estimating, by the prediction engine using a first predic-

tion model based on a machine learning strategy, a
post-operative position of an intraocular lens based on
the one or more extracted pre-operative measurements
of the eye;

selecting a power of the intraocular lens based on at least

the estimated post-operative position of the intraocular
lens; and

selecting the intraocular lens based on at least the selected

power.

2. The method of claim 1, further comprising:

receiving one or more post-operative multi-dimensional

images of the eye after implantation of the selected
intraocular lens;

extracting one or more post-operative measurements of

the eye; and

updating the first prediction model based on the one or

more pre-operative measurements and the one or more
post-operative measurements.

3. The method of claim 1, wherein the first prediction
model comprises a neural network.

4. The method of claim 1, wherein the post-operative
position of the intraocular lens is an anterior corneal depth
(ACD) of the intraocular lens or a position of an equator of
the intraocular lens.

5. The method of claim 1, wherein selecting the intraocu-
lar lens is further based on one or more of the estimated
post-operative position of the intraocular lens or a diameter
of a pre-operative lens.

6. The method of claim 1, wherein the one or more
pre-operative measurements include one or more of a group
consisting of:

an angle-to-angle width of an anterior chamber of the eye;

a depth of a pupillary plane;

an angle between a pupillary axis of the eye and a line of

sight axis of the eye when vision of the eye is fixated
on a fixation point;

a diameter of a pre-operative lens of the eye;

a pre-operative anterior chamber depth of the eye, and

a refractive power of a cornea of the eye.

7. The method of claim 1, wherein selecting the power
comprises recommending, by the prediction engine using a
second prediction model, a recommended power for the
intraocular lens based on at least the estimated post-opera-
tive position.

8. The method of claim 7, further comprising updating the
second prediction model based on the recommended power
and the selected power.

9. The method of claim 1, further comprising estimating,
by the prediction engine using a second prediction model, a
post-operative manifest refraction spherical equivalent
(MRSE) based on at least the estimated post-operative
position and the selected power.

10. The method of claim 9, further comprising:

measuring an actual power-operative MRSE; and

updating the second prediction model based on the esti-
mated post-operative MRSE and the actual power-
operative MRSE.
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11. The method of claim 1, wherein the one or more
pre-operative multi-dimensional images are each received
from a diagnostic device selected from a group consisting of
an optical coherence tomography (OCT) device, a rotating
Scheimpflug camera, and a magnetic resonance imaging
(MRI) device.

12. The method of claim 1, further comprising planning
one or more procedures for implantation of the intraocular
lens.

13. The method of claim 1, further comprising displaying
one of the one or more pre-operative multi-dimensional
images annotated with one of the one or more extracted
pre-operative measurements.

14. A prediction engine comprising:

one or more processors;

wherein the prediction engine is configured to:

receive one or more pre-operative multi-dimensional

images of an eye obtained by a diagnostic device,
wherein the pre-operative multi-dimensional images of
the eye includes an estimated position of a lens equator
determined as an equator line between each of two
intersection points of an anterior lens radius and a
posterior lens radius;

extract one or more pre-operative measurements of the

eye based on the one or more pre-operative images of
the eye;

estimate, using a first prediction model based on a

machine learning strategy, a post-operative position of
an intraocular lens based on the one or more extracted
pre-operative measurements of the eye;

recommend a power of the intraocular lens based on at

least the estimated post-operative position of the
intraocular lens; and

provide the recommended power to a user to facilitate

selection of the intraocular lens for implantation.

15. The prediction engine of claim 14, wherein the
prediction engine is further configured to:

receive one or more post-operative multi-dimensional

images of the eye after implantation of the selected
intraocular lens;

extract one or more post-operative measurements of the

eye; and

update the first prediction model based on the one or more

pre-operative measurements and the one or more post-
operative measurements.

16. The prediction engine of claim 14, wherein the
post-operative position of the intraocular lens is an anterior
corneal depth (ACD) of the intraocular lens or a position of
an equator of the intraocular lens.

Dec. 7, 2023

17. The prediction engine of claim 14, wherein the one or
more pre-operative measurements include one or more of a
group consisting of:

an angle-to-angle width of an anterior chamber of the eye;

a depth of a pupillary plane;

an angle between a pupillary axis of the eye and a line of

sight axis of the eye when vision of the eye is fixated
on a fixation point;

a diameter of a pre-operative lens of the eye;

a pre-operative anterior chamber depth of the eye, and

a refractive power of a cornea of the eye.

18. The prediction engine of claim 14, further comprising
estimating, by the prediction engine using a second predic-
tion model, a post-operative manifest refraction spherical
equivalent (MRSE) based on at least the estimated post-
operative position and a selected power of the intraocular
lens.

19. A non-transitory machine-readable medium compris-
ing a plurality of machine-readable instructions which when
executed by one or more processors are adapted to cause the
one or more processors to perform a method comprising:

receiving one or more pre-operative multi-dimensional

images of an eye, wherein the pre-operative multi-
dimensional images of the eye includes an estimated
position of a lens equator determined as an equator line
between each of two intersection points of an anterior
lens radius and a posterior lens radius;

extracting one or more pre-operative measurements of the

eye based on the one or more pre-operative images of
the eye;
estimating, using a prediction model based on a machine
learning strategy, a post-operative position of an
intraocular lens based on the one or more extracted
pre-operative measurements of the eye;

recommending a power of the intraocular lens based on at
least the estimated post-operative position of the
intraocular lens; and

providing the recommended power to a user to facilitate

selection of the intraocular lens for implantation.

20. The non-transitory machine-readable medium of
claim 19, wherein the method further comprises:

receiving one or more post-operative multi-dimensional

images of the eye after implantation of the selected
intraocular lens;

extracting one or more post-operative measurements of

the eye; and
updating the prediction model based on the one or more
pre-operative measurements and the one or more post-
operative measurements.
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