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EFFICIENT SHARING AND COMPRESSION 
EXPANSION OF DATA ACROSS 

PROCESSING SYSTEMS 

RELATED APPLICATION 

synchronously together as often as possible to increase 
processing efficiency . The efficiency provided by parallel 
machine learning algorithm implementations allows the use 
of high capacity networks and enables those networks to be 
trained on larger datasets . 
[ 0006 ] Conventional techniques do not provide for data 
sharing across processing systems through a library , which 
is inefficient and cumbersome . Further , conventional tech 
niques are limited to compression of data and thus do not 
anticipate expansion or re - expansion of compression mod 
els . 

a [ 0001 ] This Application is a continuation of and claims the 
benefit of and priority to U.S. application Ser . No. 16/696 , 
852 , entitled EFFICIENT SHARING AND COMPRES 
SION EXPANSION OF DATA ACROSS PROCESSING 
SYSTEMS , by Abhishek R. Appu , et al . , filed Nov. 26 , 2019 , 
now allowed , which is a continuation of and claims the 
benefit of and priority to U.S. application Ser . No. 15/495 , 
081 , entitled EFFICIENT SHARING AND COMPRES 
SION EXPANSION OF DATA ACROSS PROCESSING 
SYSTEMS , by Abhishek R. Appu , et al . , filed Apr. 24 , 2017 , 
now issued as U.S. Pat . No. 10,497,084 , the entire contents 
of which are incorporated herein by reference . 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIELD 

a 
[ 0002 ] Embodiments described herein relate generally to 
data processing and more particularly to facilitate a tool for 
facilitating efficient sharing and compression expansion of 
data across processing systems . 

BACKGROUND 

[ 0007 ] Embodiments are illustrated by way of example , 
and not by way of limitation , in the figures of the accom 
panying drawings in which like reference numerals refer to 
similar elements . So that the manner in which the above 
recited features can be understood in detail , a more particu 
lar description , briefly summarized above , may be had by 
reference to embodiments , some of which are illustrated in 
the appended drawings . It is to be noted , however , that the 
appended drawings illustrate only typical embodiments and 
are therefore not to be considered limiting of its scope , for 
the drawings may illustrate other equally effective embodi 
ments . 
[ 0008 ] FIG . 1 is a block diagram illustrating a computer 
system configured to implement one or more aspects of the 
embodiments described herein . 
[ 0009 ] FIG . 2A - 2D illustrate a parallel processor compo 
nents , according to an embodiment . 
[ 0010 ] FIG . 3A - 3B are block diagrams of graphics mul 
tiprocessors , according to embodiments . 
[ 0011 ] FIG . 4A - 4F illustrate an exemplary architecture in 
which a plurality of graphics processing units are commu 
nicatively coupled to a plurality of multi - core processors . 
[ 0012 ] FIG . 5 is a conceptual diagram of a graphics 
processing pipeline , according to an embodiment . 
[ 0013 ] FIG . 6 illustrates a computing device hosting a 
smart resource distribution mechanism according to one 
embodiment . 
[ 0014 ] FIG . 7 illustrates smart resource distribution 
mechanism according to one embodiment . 
[ 0015 ] FIG . 8A illustrates a tree - like communication 
structure for facilitating energy - efficient distribution of deep 
learning according to one embodiment . 
[ 0016 ] FIG . 8B illustrates a process structure for facilitat 
ing effective communication in distributed deep learning 
according to one embodiment . 
[ 0017 ] FIG . 9 illustrates a method for facilitating effi 
ciency in energy , communication , and debugging at autono 
mous machines according to one embodiment . 
[ 0018 ] FIG . 10 illustrates a machine learning software 
stack , according to an embodiment . 
[ 0019 ] FIG . 11 illustrates a highly - parallel general - pur 
pose graphics processing unit , according to an embodiment . 
[ 0020 ] FIG . 12 illustrates a multi - GPU computing system , 
according to an embodiment . 
[ 0021 ] FIG . 13A - 13B illustrate layers of exemplary deep 
neural networks . 
[ 0022 ] FIG . 14 illustrates training and deployment of a 
deep neural network . 
[ 0023 ] FIG . 15 illustrates training and deployment of a 
deep neural network 

[ 0003 ] Current parallel graphics data processing includes 
systems and methods developed to perform specific opera 
tions on graphics data such as , for example , linear interpo 
lation , tessellation , rasterization , texture mapping , depth 
testing , etc. Traditionally , graphics processors used fixed 
function computational units to process graphics data ; how 
ever , more recently , portions of graphics processors have 
been made programmable , enabling such processors to sup 
port a wider variety of operations for processing vertex and 
fragment data . 
[ 0004 ] To further increase performance , graphics proces 
sors typically implement processing techniques such as 
pipelining that attempt to process , in parallel , as much 
graphics data as possible throughout the different parts of the 
graphics pipeline . Parallel graphics processors with single 
instruction , multiple thread ( SIMT ) architectures 
designed to maximize the amount of parallel processing in 
the graphics pipeline . In an SIMT architecture , groups of 
parallel threads attempt to execute program instructions 
synchronously together as often as possible to increase 
processing efficiency . A general overview of software and 
hardware for SIMT architectures can be found in Shane 
Cook , CUDA Programming , Chapter 3 , pages 37-51 ( 2013 ) 
and / or Nicholas Wilt , CUDA Handbook , A Comprehensive 
Guide to GPU Programming , Sections 2.6.2 to 3.1.2 ( June 
2013 ) . 
[ 0005 ] Machine learning has been successful at solving 
many kinds of tasks . The computations that arise when 
training and using machine learning algorithms ( e.g. , neural 
networks ) lend themselves naturally to efficient parallel 
implementations . Accordingly , parallel processors such as 
general - purpose graphic processing units ( GPGPUs ) have 
played a significant role in the practical implementation of 
deep neural networks . Parallel graphics processors with 
single instruction , multiple thread ( SIMT ) architectures are 
designed to maximize the amount of parallel processing in 
the graphics pipeline . In an SIMT architecture , groups of 
parallel threads attempt to execute program instructions 

are 

a 
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a [ 0024 ] FIG . 16 is a block diagram illustrating distributed 
learning . 
[ 0025 ] FIG . 17 illustrates an exemplary inferencing sys 
tem on a chip ( SOC ) suitable for performing inferencing 
using a trained model . 
[ 0026 ] FIG . 18 is a block diagram of an embodiment of a 
computer system with a processor having one or more 
processor cores and graphics processors . 
[ 0027 ] FIG . 19 is a block diagram of one embodiment of 
a processor having one or more processor cores , an inte 
grated memory controller , and an integrated graphics pro 

a 

cessor . 

a 

[ 0028 ] FIG . 20 is a block diagram of one embodiment of 
a graphics processor which may be a discreet graphics 
processing unit , or may be graphics processor integrated 
with a plurality of processing cores . 
[ 0029 ] FIG . 21 is a block diagram of an embodiment of a 
graphics processing engine for a graphics processor . 
[ 0030 ] FIG . 22 is a block diagram of another embodiment 
of a graphics processor . 
[ 0031 ] FIG . 23 is a block diagram of thread execution 
logic including an array of processing elements . 
[ 0032 ] FIG . 24 illustrates a graphics processor execution 
unit instruction format according to an embodiment . 
[ 0033 ] FIG . 25 is a block diagram of another embodiment 
of a graphics processor which includes a graphics pipeline , 
a media pipeline , a display engine , thread execution logic , 
and a render output pipeline . 
[ 0034 ] FIG . 26A is a block diagram illustrating a graphics 
processor command format according to an embodiment . 
[ 0035 ] FIG . 26B is a block diagram illustrating a graphics 
processor command sequence according to an embodiment . 
[ 0036 ] FIG . 27 illustrates exemplary graphics software 
architecture for a data processing system according to an 
embodiment . 
[ 0037 ] FIG . 28 is a block diagram illustrating an IP core 
development system that may be used to manufacture an 
integrated circuit to perform operations according to an 
embodiment . 
[ 0038 ] FIG . 29 is a block diagram illustrating an exem 
plary system on a chip integrated circuit that may be 
fabricated using one or more IP cores , according to an 
embodiment . 
[ 0039 ] FIG . 30 is a block diagram illustrating an exem 
plary graphics processor of a system on a chip integrated 
circuit . 
[ 0040 ] FIG . 31 is a block diagram illustrating an addi 
tional exemplary graphics processor of a system on a chip 
integrated circuit . 

a 

referenced throughout this document . Further , terms like 
“ autonomous machine ” or simply “ machine ” , “ autonomous 
vehicle ” or simply “ vehicle ” , “ autonomous agent or simply 
" agent ” , “ autonomous device ” or “ computing device ” , 
“ robot ” , and / or the like , may be interchangeably referenced 
throughout this document . 
[ 0043 ] In some embodiments , a graphics processing unit 
( GPU ) is communicatively coupled to host / processor cores 
to accelerate graphics operations , machine - learning opera 
tions , pattern analysis operations , and various general pur 
pose GPU ( GPGPU ) functions . The GPU may be commu 
nicatively coupled to the host processor / cores over a bus or 
another interconnect ( e.g. , a high - speed interconnect such as 
PCIe or NVLink ) . In other embodiments , the GPU may be 
integrated on the same package or chip as the cores and 
communicatively coupled to the cores over an internal 
processor bus / interconnect ( i.e. , internal to the package or 
chip ) . Regardless of the manner in which the GPU is 
connected , the processor cores may allocate work to the 
GPU in the form of sequences of commands / instructions 
contained in a work descriptor . The GPU then uses dedicated 
circuitry / logic for efficiently processing these commands / 
instructions . 
[ 0044 ] In the following description , numerous specific 
details are set forth . However , embodiments , as described 
herein , may be practiced without these specific details . In 
other instances , well - known circuits , structures and tech 
niques have not been shown in detail in order not to obscure 
the understanding of this description . 
[ 0045 ] System Overview I 
[ 0046 ] FIG . 1 is a block diagram illustrating a computing 
system 100 configured to implement one or more aspects of 
the embodiments described herein . The computing system 
100 includes a processing subsystem 101 having one or 
more processor ( s ) 102 and a system memory 104 commu 
nicating via an interconnection path that may include a 
memory hub 105. The memory hub 105 may be a separate 
component within a chipset component or may be integrated 
within the one or more processor ( s ) 102. The memory hub 
105 couples with an I / O subs m 111 via a communication 
link 106. The I / O subsystem 111 includes an I / O hub 107 
that can enable the computing system 100 to receive input 
from one or more input device ( s ) 108. Additionally , the I / O 
hub 107 can enable a display controller , which may be 
included in the one or more processor ( s ) 102 , to provide 
outputs to one or more display device ( s ) 110A . In one 
embodiment , the one or more display device ( s ) 110A 
coupled with the I / O hub 107 can include a local , internal , 
or embedded display device . 
[ 0047 ] In one embodiment , the processing subsystem 101 
includes one or more parallel processor ( s ) 112 coupled to 
memory hub 105 via a bus or other communication link 113 . 
The communication link 113 may be one of any number of 
standards based communication link technologies or proto 
cols , such as , but not limited to PCI Express , or may be a 
vendor specific communications interface or communica 
tions fabric . In one embodiment , the one or more parallel 
processor ( s ) 112 form a computationally focused parallel or 
vector processing system that an include a large number of 
processing cores and / or processing clusters , such as a many 
integrated core ( MIC ) processor . In one embodiment , the 
one or more parallel processor ( s ) 112 form a graphics 
processing subsystem that can output pixels to one of the one 
or more display device ( s ) 110A coupled via the I / O Hub 107 . 

a 

. 

DETAILED DESCRIPTION 

a 

[ 004 ] Embodiments provide for a novel technique for 
facilitating data sharing across processing systems using a 
surface library such that data produced on one graphics 
processor , application processor , etc. , can be retrieved from 
the surface library and used by another if working on the 
same convolution . Embodiments further provide for a novel 
technique for facilitating expansion or re - expansion of com 
pressed models for performance and communication effi 
ciency . 
[ 0042 ] It is to be noted that terms or acronyms like 
“ convolutional neural network ” , “ CNN ” , “ neural network ” , 
“ NN ” , “ deep neural network ” , “ DNN ” , “ recurrent neural 
network ” , “ RNN ” , and / or the like may be interchangeably 

- 
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The one or more parallel processor ( s ) 112 can also include 
a display controller and display interface ( not shown ) to 
enable a direct connection to one or more display device ( s ) 
110B . 
[ 0048 ] Within the I / O subsystem 111 , a system storage 
unit 114 can connect to the I / O hub 107 to provide a storage 
mechanism for the computing system 100. An I / O switch 
116 can be used to provide an interface mechanism to enable 
connections between the I / O hub 107 and other components , 
such as a network adapter 118 and / or wireless network 
adapter 119 that may be integrated into the platform , and 
various other devices that can be added via one or more 
add - in device ( s ) 120. The network adapter 118 can be an 
Ethernet adapter or another wired network adapter . The 
wireless network adapter 119 can include one or more of a 
Wi - Fi , Bluetooth , near field communication ( NFC ) , or other 
network device that includes one or more wireless radios . 
[ 0049 ] The computing system 100 can include other com 
ponents not explicitly shown , including USB or other port 
connections , optical storage drives , video capture devices , 
and the like , may also be connected to the I / O hub 107 . 
Communication paths interconnecting the various compo 
nents in FIG . 1 may be implemented using any suitable 
protocols , such as PCI ( Peripheral Component Interconnect ) 
based protocols ( e.g. , PCI - Express ) , or any other bus or 
point - to - point communication interfaces and / or protocol ( s ) , 
such as the NV - Link high - speed interconnect , or intercon 
nect protocols known in the art . 
[ 0050 ] In one embodiment , the one or more parallel pro 
cessor ( s ) 112 incorporate circuitry optimized for graphics 
and video processing , including , for example , video output 
circuitry , and constitutes a graphics processing unit ( GPU ) . 
In another embodiment , the one or more parallel processor 
( s ) 112 incorporate circuitry optimized for general purpose 
processing , while preserving the underlying computational 
architecture , described in greater detail herein . In yet another 
embodiment , components of the computing system 100 may 
be integrated with one or more other system elements on a 
single integrated circuit . For example , the one or more 
parallel processor ( s ) , 112 memory hub 105 , processor ( s ) 
102 , and I / O hub 107 can be integrated into a system on chip 
( SOC ) integrated circuit . Alternatively , the components of 
the computing system 100 can be integrated into a single 
package to form a system in package ( SIP ) configuration . In 
one embodiment , at least a portion of the components of the 
computing system 100 can be integrated into a multi - chip 
module ( MCM ) , which can be interconnected with other 
multi - chip modules into a modular computing system . 
[ 0051 ] It will be appreciated that the computing system 
100 shown herein is illustrative and that variations and 
modifications are possible . The connection topology , includ 
ing the number and arrangement of bridges , the number of 
processor ( s ) 102 , and the number of parallel processor ( s ) 
112 , may be modified as desired . For instance , in some 
embodiments , system memory 104 is connected to the 
processor ( s ) 102 directly rather than through a bridge , while 
other devices communicate with system memory 104 via the 
memory hub 105 and the processor ( s ) 102. In other alter 
native topologies , the parallel processor ( s ) 112 are con 
nected to the I / O hub 107 or directly to one of the one or 
more processor ( s ) 102 , rather than to the memory hub 105 . 
In other embodiments , the I / O hub 107 and memory hub 105 
may be integrated into a single chip . Some embodiments 
may include two or more sets of processor ( s ) 102 attached 

via multiple sockets , which can couple with two or more 
instances of the parallel processor ( s ) 112 . 
[ 0052 ] Some of the particular components shown herein 
are optional and may not be included in all implementations 
of the computing system 100. For example , any number of 
add - in cards or peripherals may be supported , or some 
components may be eliminated . Furthermore , some archi 
tectures may use different terminology for components 
similar to those illustrated in FIG . 1. For example , the 
memory hub 105 may be referred to as a Northbridge in 
some architectures , while the I / O hub 107 may be referred 
to as a Southbridge . 
[ 0053 ] FIG . 2A illustrates a parallel processor 200 , accord 
ing to an embodiment . The various components of the 
parallel processor 200 may be implemented using one or 
more integrated circuit devices , such as programmable pro 
cessors , application specific integrated circuits ( ASICs ) , or 
field programmable gate arrays ( FPGA ) . The illustrated 
parallel processor 200 is a variant of the one or more parallel 
processor ( s ) 112 shown in FIG . 1 , according to an embodi 
ment . 

[ 0054 ] In one embodiment , the parallel processor 200 
includes a parallel processing unit 202. The parallel pro 
cessing unit includes an 1/0 unit 204 that enables commu 
nication with other devices , including other instances of the 
parallel processing unit 202. The I / O unit 204 may be 
directly connected to other devices . In one embodiment , the 
1/0 unit 204 connects with other devices via the use of a hub 
or switch interface , such as memory hub 105. The connec 
tions between the memory hub 105 and the I / O unit 204 
form a communication link 113. Within the parallel process 
ing unit 202 , the I / O unit 204 connects with a host interface 
206 and a memory crossbar 216 , where the host interface 
206 receives commands directed to performing processing 
operations and the memory crossbar 216 receives commands 
directed to performing memory operations . 
[ 0055 ] When the host interface 206 receives a command 
buffer via the I / O unit 204 , the host interface 206 can direct 
work operations to perform those commands to a front end 
208. In one embodiment , the front end 208 couples with a 
scheduler 210 , which is configured to distribute commands 
or other work items to a processing cluster array 212. In one 
embodiment , the scheduler 210 ensures that the processing 
cluster array 212 is properly configured and in a valid state 
before tasks are distributed to the processing clusters of the 
processing cluster array 212 . 
[ 0056 ] The processing cluster array 212 can include up to 
“ N ” processing clusters ( e.g. , cluster 214A , cluster 214B , 
through cluster 214N ) . Each cluster 214A - 214N of the 
processing cluster array 212 can execute a large number of 
concurrent threads . The scheduler 210 can allocate work to 
the clusters 214A - 214N of the processing cluster array 212 
using various scheduling and / or work distribution algo 
rithms , which may vary depending on the workload arising 
for each type of program or computation . The scheduling 
can be handled dynamically by the scheduler 210 , or can be 
assisted in part by compiler logic during compilation of 
program logic configured for execution by the processing 
cluster array 212 . 
[ 0057 ] In one embodiment , different clusters 214A - 214N 
of processing cluster array 212 can be allocated for process 
ing different types of programs or for performing different 
types of computations . 

a 
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[ 0058 ] The processing cluster array 212 can be configured 
to perform various types of parallel processing operations . 
In one embodiment , the processing cluster array 212 is 
configured to perform general - purpose parallel compute 
operations . For example , the processing cluster array 212 
can include logic to execute processing tasks including 
filtering of video and / or audio data , performing modeling 
operations , including physics operations , and performing 
data transformations . 
[ 0059 ] In one embodiment , the processing cluster array 
212 is configured to perform parallel graphics processing 
operations . In embodiments in which the parallel processor 
200 is configured to perform graphics processing operations , 
the processing cluster array 212 can include additional logic 
to support the execution of such graphics processing opera 
tions , including , but not limited to texture sampling logic to 
perform texture operations , as well as tessellation logic and 
other vertex processing logic . Additionally , the processing 
cluster array 212 can be configured to execute graphics 
processing related shader programs such as , but not limited 
to vertex shaders , tessellation shaders , geometry shaders , 
and pixel shaders . The parallel processing unit 202 can 
transfer data from system memory via the I / O unit 204 for 
processing . During processing the transferred data can be 
stored to on - chip memory ( e.g. , parallel processor memory 
222 ) during processing , then written back to system 
memory . 
[ 0060 ] In one embodiment , when the parallel processing 
unit 202 is used to perform graphics processing , the sched 
uler 210 can be configured to divide the processing work 
load into approximately equal sized tasks , to better enable 
distribution of the graphics processing operations to multiple 
clusters 214A - 214N of the processing cluster array 212. In 
some embodiments , portions of the processing cluster array 
212 can be configured to perform different types of process 
ing . For example , a first portion may be configured to 
perform vertex shading and topology generation , a second 
portion may be configured to perform tessellation and geom 
etry shading , and a third portion may be configured to 
perform pixel shading or other screen space operations , to 
produce a rendered image for display . Intermediate data 
produced by one or more of the clusters 214A - 214N may be 
stored in buffers to allow the intermediate data to be trans 
mitted between clusters 214A - 214N for further processing . 
[ 0061 ] During operation , the processing cluster array 212 
can receive processing tasks to be executed via the scheduler 
210 , which receives commands defining processing tasks 
from front end 208. For graphics processing operations , 
processing tasks can include indices of data to be processed , 
e.g. , surface ( patch ) data , primitive data , vertex data , and / or 
pixel data , as well as state parameters and commands 
defining how the data is to be processed ( e.g. , what program 
is to be executed ) . The scheduler 210 may be configured to 
fetch the indices corresponding to the tasks or may receive 
the indices from the front end 208. The front end 208 can be 
configured to ensure the processing cluster array 212 is 
configured to a valid state before the workload specified by 
incoming command buffers ( e.g. , batch - buffers , push buf 
fers , etc. ) is initiated . 
[ 0062 ] Each of the one or more instances of the parallel 
processing unit 202 can couple with parallel processor 
memory 222. The parallel processor memory 222 can be 
accessed via the memory crossbar 216 , which can receive 
memory requests from the processing cluster array 212 as 

well as the I / O unit 204. The memory crossbar 216 can 
access the parallel processor memory 222 via a memory 
interface 218. The memory interface 218 can include mul 
tiple partition units ( e.g. , partition unit 220A , partition unit 
220B , through partition unit 220N ) that can each couple to 
a portion ( e.g. , memory unit ) of parallel processor memory 
222. In one implementation , the number of partition units 
220A - 220N is configured to be equal to the number of 
memory units , such that a first partition unit 220A has a 
corresponding first memory unit 224A , a second partition 
unit 220B has a corresponding memory unit 224B , and an 
Nth partition unit 220N has a corresponding Nth memory 
unit 224N . In other embodiments , the number of partition 
units 220A - 220N may not be equal to the number of 
memory devices . 
[ 0063 ] In various embodiments , the memory units 224A 
224N can include various types of memory devices , includ 
ing dynamic random access memory ( DRAM ) or graphics 
random access memory , such as synchronous graphics ran 
dom access memory ( SGRAM ) , including graphics double 
data rate ( GDDR ) memory . In one embodiment , the memory 
units 224A - 224N may also include 3D stacked memory , 
including but not limited to high bandwidth memory 
( HBM ) . Persons skilled in the art will appreciate that the 
specific implementation of the memory units 224A - 224N 
can vary , and can be selected from one of various conven 
tional designs . Render targets , such as frame buffers or 
texture maps may be stored across the memory units 224A 
224N , allowing partition units 220A - 220N to write portions 
of each render target in parallel to efficiently use the avail 
able bandwidth of parallel processor memory 222. In some 
embodiments , a local instance of the parallel processor 
memory 222 may be excluded in favor of a unified memory 
design that utilizes system memory in conjunction with local 
cache memory . 
[ 0064 ] In one embodiment , any one of the clusters 214A 
214N of the processing cluster array 212 can process data 
that will be written to any of the memory units 224A - 224N 
within parallel processor memory 222. The memory cross 
bar 216 can be configured to transfer the output of each 
cluster 214A - 214N to any partition unit 220A - 220N or to 
another cluster 214A - 214N , which can perform additional 
processing operations on the output . Each cluster 214A 
214N can communicate with the memory interface 218 
through the memory crossbar 216 to read from or write to 
various external memory devices . In one embodiment , the 
memory crossbar 216 has a connection to the memory 
interface 218 to communicate with the I / O unit 204 , as well 
as a connection to a local instance of the parallel processor 
memory 222 , enabling the processing units within the dif 
ferent processing clusters 214A - 214N to communicate with 
system memory or other memory that is not local to the 
parallel processing unit 202. In one embodiment , the 
memory crossbar 216 can use virtual channels to separate 
traffic streams between the clusters 214A - 214N and the 
partition units 220A - 220N . 
[ 0065 ] While a single instance of the parallel processing 
unit 202 is illustrated within the parallel processor 200 , any 
number of instances of the parallel processing unit 202 can 
be included . For example , multiple instances of the parallel 
processing unit 202 can be provided on a single add - in card , 
or multiple add - in cards can be interconnected . The different 
instances of the parallel processing unit 202 can be config 
ured to inter - operate even if the different instances have 
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different numbers of processing cores , different amounts of 
local parallel processor memory , and / or other configuration 
differences . For example , and in one embodiment , some 
instances of the parallel processing unit 202 can include 
higher precision floating point units relative to other 
instances . Systems incorporating one or more instances of 
the parallel processing unit 202 or the parallel processor 200 
can be implemented in a variety of configurations and form 
factors , including but not limited to desktop , laptop , or 
handheld personal computers , servers , workstations , game 
consoles , and / or embedded systems . 
[ 0066 ] FIG . 2B is a block diagram of a partition unit 220 , 
according to an embodiment . In one embodiment , the par 
tition unit 220 is an instance of one of the partition units 
220A - 220N of FIG . 2A . As illustrated , the partition unit 220 
includes an L2 cache 221 , a frame buffer interface 225 , and 
a ROP 226 ( raster operations unit ) . The L2 cache 221 is a 
read / write cache that is configured to perform load and store 
operations received from the memory crossbar 216 and ROP 
226. Read misses and urgent write - back requests are output 
by L2 cache 221 to frame buffer interface 225 for process 
ing . Dirty updates can also be sent to the frame buffer via the 
frame buffer interface 225 for opportunistic processing . In 
one embodiment , the frame buffer interface 225 interfaces 
with one of the memory units in parallel processor memory , 
such as the memory units 224A - 224N of FIG . 2A ( e.g. , 
within parallel processor memory 222 ) . 
[ 0067 ] In graphics applications , the ROP 226 is a process 
ing unit that performs raster operations , such as stencil , z 
test , blending , and the like . The ROP 226 then outputs 
processed graphics data that is stored in graphics memory . In 
some embodiments , the ROP 226 includes compression 
logic to compress z or color data that is written to memory 
and decompress z or color data that is read from memory . In 
some embodiments , the ROP 226 is included within each 
processing cluster ( e.g. , cluster 214A - 214N of FIG . 2A ) 
instead of within the partition unit 220. In such embodiment , 
read and write requests for pixel data are transmitted over 
the memory crossbar 216 instead of pixel fragment data . 
[ 0068 ] The processed graphics data may be displayed on 
a display device , such as one of the one or more display 
device ( s ) 110 of FIG . 1 , routed for further processing by the 
processor ( s ) 102 , or routed for further processing by one of 
the processing entities within the parallel processor 200 of 
FIG . 2A . 
[ 0069 ] FIG . 2C is a block diagram of a processing cluster 
214 within a parallel processing unit , according to an 
embodiment . In one embodiment , the processing cluster is 
an instance of one of the processing clusters 214A - 214N of 
FIG . 2A . The processing cluster 214 can be configured to 
execute many threads in parallel , where the term “ thread ” 
refers to an instance of a particular program executing on a 
particular set of input data . In some embodiments , single 
instruction , multiple - data ( SIMD ) instruction issue tech 
niques are used to support parallel execution of a large 
number of threads without providing multiple independent 
instruction units . In other embodiments , single - instruction , 
multiple - thread ( SIMT ) techniques are used to support par 
allel execution of a large number of generally synchronized 
threads , using a common instruction unit configured to issue 
instructions to a set of processing engines within each one of 
the processing clusters . Unlike a SIMD execution regime , 
where all processing engines typically execute identical 
instructions , SIMT execution allows different threads to 

more readily follow divergent execution paths through a 
given thread program . Persons skilled in the art will under 
stand that a SIMD processing regime represents a functional 
subset of a SIMT processing regime . 
[ 0070 ] Operation of the processing cluster 214 can be 
controlled via a pipeline manager 232 that distributes pro 
cessing tasks to SIMT parallel processors . The pipeline 
manager 232 receives instructions from the scheduler 210 of 
FIG . 2A and manages execution of those instructions via a 
graphics multiprocessor 234 and / or a texture unit 236. The 
illustrated graphics multiprocessor 234 is an exemplary 
instance of an SIMT parallel processor . However , various 
types of SIMT parallel processors of differing architectures 
may be included within the processing cluster 214. One or 
more instances of the graphics multiprocessor 234 can be 
included within a processing cluster 214. The graphics 
multiprocessor 234 can process data and a data crossbar 240 
can be used to distribute the processed data to one of 
multiple possible destinations , including other shader units . 
The pipeline manager 232 can facilitate the distribution of 
processed data by specifying destinations for processed data 
to be distributed vis the data crossbar 240 . 
[ 0071 ] Each graphics multiprocessor 234 within the pro 
cessing cluster 214 can include an identical set of functional 
execution logic ( e.g. , arithmetic logic units , load - store units , 
etc. ) . The functional execution logic can be configured in a 
pipelined manner in which new instructions can be issued 
before previous instructions are complete . The functional 
execution logic may be provided . The functional logic 
supports a variety of operations including integer and float 
ing point arithmetic comparison operations , Boolean opera 
tions bit - shifting , and computation of various algebraic 
functions . In one embodiment , the same functional - unit 
hardware can be leveraged to perform different operations 
and any combination of functional units may be present . 
[ 0072 ] The instructions transmitted to the processing clus 
ter 214 constitutes a thread . A set of threads executing across 
the set of parallel processing engines is a thread group . A 
thread group executes the same program on different input 
data . Each thread within a thread group can be assigned to 
a different processing engine within a graphics multiproces 
sor 234. A thread group may include fewer threads than the 
number of processing engines within the graphics multipro 
cessor 234. When a thread group includes fewer threads than 
the number of processing engines , one or more of the 
processing engines may be idle during cycles in which that 
thread group is being processed . A thread group may also 
include more threads than the number of processing engines 
within the graphics multiprocessor 234. When the thread 
group includes more threads than the number of processing 
engines within the graphics multiprocessor 234 , processing 
can be performed over consecutive clock cycles . In one 
embodiment , multiple thread groups can be executed con 
currently on a graphics multiprocessor 234 . 
[ 0073 ] In one embodiment , the graphics multiprocessor 
234 includes an internal cache memory to perform load and 
store operations . In one embodiment , the graphics multipro 
cessor 234 can forego an internal cache and use a cache 
memory ( e.g. , L1 cache 308 ) within the processing cluster 
214. Each graphics multiprocessor 234 also has access to L2 
caches within the partition units ( e.g. , partition units 220A 
220N of FIG . 2A ) that are shared among all processing 
clusters 214 and may be used to transfer data between 
threads . The graphics multiprocessor 234 may also access 
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cores 262 and load / store units 266 are coupled with cache 
memory 272 and shared memory 270 via a memory and 
cache interconnect 268 . 

[ 0078 ] In one embodiment , the instruction cache 252 
receives a stream of instructions to execute from the pipeline 
manager 232. The instructions are cached in the instruction 
cache 252 and dispatched for execution by the instruction 
unit 254. The instruction unit 254 can dispatch instructions 
as thread groups ( e.g. , warps ) , with each thread of the thread 
group assigned to a different execution unit within GPGPU 
core 262. An instruction can access any of a local , shared , or 
global address space by specifying an address within a 
unified address space . The address mapping unit 256 can be 
used to translate addresses in the unified address space into 
a distinct memory address that can be accessed by the 
load / store units 266 . 

a 

off - chip global memory , which can include one or more of 
local parallel processor memory and / or system memory . 
Any memory external to the parallel processing unit 202 
may be used as global memory . Embodiments in which the 
processing cluster 214 includes multiple instances of the 
graphics multiprocessor 234 can share common instructions 
and data , which may be stored in the L1 cache 308 . 
[ 0074 ] Each processing cluster 214 may include an MMU 
245 ( memory management unit ) that is configured to map 
virtual addresses into physical addresses . In other embodi 
ments , one or more instances of the MMU 245 may reside 
within the memory interface 218 of FIG . 2A . The MMU 245 
includes a set of page table entries ( PTEs ) used to map a 
virtual address to a physical address of a tile ( talk more 
about tiling ) and optionally a cache line index . The MMU 
245 may include address translation lookaside buffers ( TLB ) 
or caches that may reside within the graphics multiprocessor 
234 or the L1 cache or processing cluster 214. The physical 
address is processed to distribute surface data access locality 
to allow efficient request interleaving among partition units . 
The cache line index may be used to determine whether a 
request for a cache line is a hit or miss . 
[ 0075 ] In graphics and computing applications , a process 
ing cluster 214 may be configured such that each graphics 
multiprocessor 234 is coupled to a texture unit 236 for 
performing texture mapping operations , e.g. , determining 
texture sample positions , reading texture data , and filtering 
the texture data . Texture data is read from an internal texture 
L1 cache ( not shown ) or in some embodiments from the L1 
cache within graphics multiprocessor 234 and is fetched 
from an L2 cache , local parallel processor memory , or 
system memory , as needed . Each graphics multiprocessor 
234 outputs processed tasks to the data crossbar 240 to 
provide the processed task to another processing cluster 214 
for further processing or to store the processed task in an L2 
cache , local parallel processor memory , or system memory 
via the memory crossbar 216. A preROP 242 ( pre - raster 
operations unit ) is configured to receive data from graphics 
multiprocessor 234 , direct data to ROP units , which may be 
located with partition units as described herein ( e.g. , parti 
tion units 220A - 220N of FIG . 2A ) . The preROP 242 unit can 
perform optimizations for color blending , organize pixel 
color data , and perform address translations . 
[ 0076 ] It will be appreciated that the core architecture 
described herein is illustrative and that variations and modi 
fications are possible . Any number of processing units , e.g. , 
graphics multiprocessor 234 , texture units 236 , preROPs 
242 , etc. , may be included within a processing cluster 214 . 
Further , while only one processing cluster 214 is shown , a 
parallel processing unit as described herein may include any 
number of instances of the processing cluster 214. In one 
embodiment , each processing cluster 214 can be configured 
to operate independently of other processing clusters 214 
using separate and distinct processing units , Ll caches , etc. 
[ 0077 ] FIG . 2D shows a graphics multiprocessor 234 , 
according to one embodiment . In such embodiment , the 
graphics multiprocessor 234 couples with the pipeline man 
ager 232 of the processing cluster 214. The graphics mul 
tiprocessor 234 has an execution pipeline including but not 
limited to an instruction cache 252 , an instruction unit 254 , 
an address mapping unit 256 , a register file 258 , one or more 
general purpose graphics processing unit ( GPGPU ) cores 
262 , and one or more load / store units 266. The GPGPU 

[ 0079 ] The register file 258 provides a set of registers for 
the functional units of the graphics multiprocessor 324. The 
register file 258 provides temporary storage for operands 
connected to the data paths of the functional units ( e.g. , 
GPGPU cores 262 , load / store units 266 ) of the graphics 
multiprocessor 324. In one embodiment , the register file 258 
is divided between each of the functional units such that 
each functional unit is allocated a dedicated portion of the 
register file 258. In one embodiment , the register file 258 is 
divided between the different warps being executed by the 
graphics multiprocessor 324 . 
[ 0080 ] The GPGPU cores 262 can each include floating 
point units ( FPUs ) and / or integer arithmetic logic units 
( ALUS ) that are used to execute instructions of the graphics 
multiprocessor 324. The GPGPU cores 262 can be similar in 
architecture or can differ in architecture , according to 
embodiments . For example , and in one embodiment , a first 
portion of the GPGPU cores 262 include a single precision 
FPU and an integer ALU while a second portion of the 
GPGPU cores include a double precision FPU . In one 
embodiment , the FPUs can implement the IEEE 754-2008 
standard for floating point arithmetic or enable variable 
precision floating point arithmetic . The graphics multipro 
cessor 324 can additionally include one or more fixed 
function or special function units to perform specific func 
tions such as copy rectangle or pixel blending operations . In 
one embodiment one or more of the GPGPU cores can also 
include fixed or special function logic . 
[ 0081 ] The memory and cache interconnect 268 is an 
interconnect network that connects each of the functional 
units of the graphics multiprocessor 324 to the register file 
258 and to the shared memory 270. In one embodiment , the 
memory and cache interconnect 268 is a crossbar intercon 
nect that allows the load / store unit 266 to implement load 
and store operations between the shared memory 270 and 
the register file 258. The register file 258 can operate at the 
same frequency as the GPGPU cores 262 , thus data transfer 
between the GPGPU cores 262 and the register file 258 is 
very low latency . The shared memory 270 can be used to 
enable communication between threads that execute on the 
functional units within the graphics multiprocessor 234. The 
cache memory 272 can be used as a data cache for example , 
to cache texture data communicated between the functional 
units and the texture unit 236. The shared memory 270 can 
also be used as a program managed cached . Threads execut 
ing on the GPGPU cores 262 can programmatically store 
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data within the shared memory in addition to the automati 
cally cached data that is stored within the cache memory 
272 . 
[ 0082 ] FIGS . 3A - 3B illustrate additional graphics multi 
processors , according to embodiments . The illustrated 
graphics multiprocessors 325 , 350 are variants of the graph 
ics multiprocessor 234 of FIG . 2C . The illustrated graphics 
multiprocessors 325 , 350 can be configured as a streaming 
multiprocessor ( SM ) capable of simultaneous execution of a 
large number of execution threads . 
[ 0083 ] FIG . 3A shows a graphics multiprocessor 325 
according to an additional embodiment . The graphics mul 
tiprocessor 325 includes multiple additional instances of 
execution resource units relative to the graphics multipro 
cessor 234 of FIG . 2D . For example , the graphics multipro 
cessor 325 can include multiple instances of the instruction 
unit 332A - 332B , register file 334A - 334B , and texture unit ( s ) 
344A - 344B . The graphics multiprocessor 325 also includes 
multiple sets of graphics or compute execution units ( e.g. , 
GPGPU core 336A - 336B , GPGPU core 337A - 337B , 
GPGPU core 338A - 338B ) and multiple sets of load / store 
units 340A - 340B . In one embodiment , the execution 
resource units have a common instruction cache 330 , texture 
and / or data cache memory 342 , and shared memory 346 . 
The various components can communicate via an intercon 
nect fabric 327. In one embodiment , the interconnect fabric 
327 includes one or more crossbar switches to enable 
communication between the various components of the 
graphics multiprocessor 325 . 
[ 0084 ] FIG . 3B shows a graphics multiprocessor 350 
according to an additional embodiment . The graphics pro 
cessor includes multiple sets of execution resources 356A 
356D , where each set of execution resource includes mul 
tiple instruction units , register files , GPGPU cores , and load 
store units , as illustrated in FIG . 2D and FIG . 3A . The 
execution resources 356A - 356D can work in concert with 
texture unit ( s ) 360A - 360D for texture operations , while 
sharing an instruction cache 354 , and shared memory 362. In 
one embodiment , the execution resources 356A - 356D can 
share an instruction cache 354 and shared memory 362 , as 
well as multiple instances of a texture and / or data cache 
memory 358A - 358B . The various components can commu 
nicate via an interconnect fabric 352 similar to the intercon 
nect fabric 327 of FIG . 3A . 
[ 0085 ] Persons skilled in the art will understand that the 
architecture described in FIGS . 1 , 2A - 2D , and 3A - 3B are 
descriptive and not limiting as to the scope of the present 
embodiments . Thus , the techniques described herein may be 
implemented on any properly configured processing unit , 
including , without limitation , one or more mobile applica 
tion processors , one or more desktop or server central 
processing units ( CPUs ) including multi - core CPUs , one or 
more parallel processing units , such as the parallel process 
ing unit 202 of FIG . 2A , as well as one or more graphics 
processors or special purpose processing units , without 
departure from the scope of the embodiments described 
herein . 
[ 0086 ] In some embodiments , a parallel processor or 
GPGPU as described herein is communicatively coupled to 
host / processor cores to accelerate graphics operations , 
machine learning operations , pattern analysis operations , 
and various general purpose GPU ( GPGPU ) functions . The 
GPU may be communicatively coupled to the host proces 
sor / cores over a bus or other interconnect ( e.g. , a high - speed 

interconnect such as PCIe or NVLink ) . In other embodi 
ments , the GPU may be integrated on the same package or 
chip as the cores and communicatively coupled to the cores 
over an internal processor bus / interconnect ( i.e. , internal to 
the package or chip ) . Regardless of the manner in which the 
GPU is connected , the processor cores may allocate work to 
the GPU in the form of sequences of commands / instructions 
contained in a work descriptor . The GPU then uses dedicated 
circuitry / logic for efficiently processing these commands / 
instructions . 
[ 0087 ] Techniques for GPU to Host Processor Intercon 
nection 

[ 0088 ] FIG . 4A illustrates an exemplary architecture in 
which a plurality of GPUs 410-413 are communicatively 
coupled to a plurality of multi - core processors 405-406 over 
high - speed links 440-443 ( e.g. , buses , point - to - point inter 
connects , etc. ) . In one embodiment , the high - speed links 
440-443 support a communication throughput of 4 GB / s , 30 
GB / s , 80 GB / s or higher , depending on the implementation . 
Various interconnect protocols may be used including , but 
not limited to , PCIe 4.0 or 5.0 and NVLink 2.0 . However , 
the underlying principles of the invention are not limited to 
any particular communication protocol or throughput . 
[ 0089 ] In addition , in one embodiment , two or more of the 
GPUs 410-413 are interconnected over high - speed links 
444-445 , which may be implemented using the same or 
different protocols / links than those used for high - speed links 
440-443 . Similarly , two or more of the multi - core processors 
405-406 may be connected over high speed link 433 which 
may be symmetric multi - processor ( SMP ) buses operating at 
20 GB / s , 30 GB / s , 120 GB / s or higher . Alternatively , all 
communication between the various system components 
shown in FIG . 4A may be accomplished using the same 
protocols / links ( e.g. , over a common interconnection fab 
ric ) . As mentioned , however , the underlying principles of the 
invention are not limited to any particular type of intercon 
nect technology . 
[ 0090 ] In one embodiment , each multi - core processor 
405-406 is communicatively coupled to a processor memory 
401-402 , via memory interconnects 430-431 , respectively , 
and each GPU 410-413 is communicatively coupled to GPU 
memory 420-423 over GPU memory interconnects 450-453 , 
respectively . The memory interconnects 430-431 and 450 
453 may utilize the same or different memory access tech 
nologies . By way of example , and not limitation , the pro 
cessor memories 401-402 and GPU memories 420-423 may 
be volatile memories such as dynamic random access 
memories ( DRAMs ) ( including stacked DRAMs ) , Graphics 
DDR SDRAM ( GDDR ) ( e.g. , GDDR5 , GDDR6 ) , or High 
Bandwidth Memory ( HBM ) and / or may be non - volatile 
memories such as 3D XPoint or Nano - Ram . In one embodi 
ment , some portion of the memories may be volatile 
memory and another portion may be non - volatile memory 
( e.g. , using a two - level memory ( 2LM ) hierarchy ) . 
[ 0091 ] As described below , although the various proces 
sors 405-406 and GPUs 410-413 may be physically coupled 
to a particular memory 401-402 , 420-423 , respectively , a 
unified memory architecture may be implemented in which 
the same virtual system address space ( also referred to as the 
" effective address ” space ) is distributed among all of the 
various physical memories . For example , processor memo 
ries 401-402 may each comprise 64 GB of the system 
memory address space and GPU memories 420-423 may 
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each comprise 32 GB of the system memory address space 
( resulting in a total of 256 GB addressable memory in this 
example ) . 
[ 0092 ] FIG . 4B illustrates additional details for an inter 
connection between a multi - core processor 407 and a graph 
ics acceleration module 446 in accordance with one embodi 
ment . The graphics acceleration module 446 may include 
one or more GPU chips integrated on a line card which is 
coupled to the processor 407 via the high - speed link 440 . 
Alternatively , the graphics acceleration module 446 may be 
integrated on the same package or chip as the processor 407 . 
[ 0093 ] The illustrated processor 407 includes a plurality of 
cores 460A - 460D , each with a translation lookaside buffer 
461A - 461D and one or more caches 462 A - 462D . The cores 
may include various other components for executing instruc 
tions and processing data which are not illustrated to avoid 
obscuring the underlying principles of the invention ( e.g. , 
instruction fetch units , branch prediction units , decoders , 
execution units , reorder buffers , etc. ) . The caches 462A 
462D may comprise level 1 ( L1 ) and level 2 ( L2 ) caches . In 
addition , one or more shared caches 426 may be included in 
the caching hierarchy and shared by sets of the cores 
460A - 460D . For example , one embodiment of the processor 
407 includes 24 cores , each with its own L1 cache , twelve 
shared L2 caches , and twelve shared L3 caches . In this 
embodiment , one of the L2 and L3 caches are shared by two 
adjacent cores . The processor 407 and the graphics accel 
erator integration module 446 connect with system memory 
441 , which may include processor memories 401-402 . 
[ 0094 ] Coherency is maintained for data and instructions 
stored in the various caches 462A - 462D , 456 and system 
memory 441 via inter - core communication over a coherence 
bus 464. For example , each cache may have cache coher 
ency logic / circuitry associated therewith to communicate to 
over the coherence bus 464 in response to detected reads or 
writes to particular cache lines . In one implementation , a 
cache snooping protocol is implemented over the coherence 
bus 464 to snoop cache accesses . Cache snooping / coherency 
techniques are well understood by those of skill in the art 
and will not be described in detail here to avoid obscuring 
the underlying principles of the invention . 
[ 0095 ] In one embodiment , a proxy circuit 425 commu 
nicatively couples the graphics acceleration module 446 to 
the coherence bus 464 , allowing the graphics acceleration 
module 446 to participate in the cache coherence protocol as 
a peer of the cores . In particular , an interface 435 provides 
connectivity to the proxy circuit 425 over high - speed link 
440 ( e.g. , a PCIe bus , NVLink , etc. ) and an interface 437 
connects the graphics acceleration module 446 to the link 
440 . 

[ 0096 ] In one implementation , an accelerator integration 
circuit 436 provides cache management , memory access , 
context management , and interrupt management services on 
behalf of a plurality of graphics processing engines 431 , 
432 , N of the graphics acceleration module 446. The graph 
ics processing engines 431 , 432 , N may each comprise a 
separate graphics processing unit ( GPU ) . Alternatively , the 
graphics processing engines 431 , 432 , N may comprise 
different types of graphics processing engines within a GPU 
such as graphics execution units , media processing engines 
( e.g. , video encoders / decoders ) , samplers , and blit engines . 
In other words , the graphics acceleration module may be a 
GPU with a plurality of graphics processing engines 431 

432 , N or the graphics processing engines 431-432 , N may 
be individual GPUs integrated on a common package , line 
card , or chip . 
[ 0097 ] In one embodiment , the accelerator integration 
circuit 436 includes a memory management unit ( MMU ) 
439 for performing various memory management functions 
such as virtual - to - physical memory translations ( also 
referred to as effective - to - real memory translations ) and 
memory access protocols for accessing system memory 441 . 
The MMU 439 may also include a translation lookaside 
buffer ( TLB ) ( not shown ) for caching the virtual / effective to 
physical / real address translations . In one implementation , a 
cache 438 stores commands and data for efficient access by 
the graphics processing engines 431-432 , N. In one embodi 
ment , the data stored in cache 438 and graphics memories 
433-434 , N is kept coherent with the core caches 462A 
462D , 456 and system memory 411. As mentioned , this may 
be accomplished via proxy circuit 425 which takes part in 
the cache coherency mechanism on behalf of cache 438 and 
memories 433-434 , N ( e.g. , sending updates to the cache 
438 related to modifications / accesses of cache lines on 
processor caches 462A - 462D , 456 and receiving updates 
from the cache 438 ) . 
[ 0098 ] A set of registers 445 store context data for threads 
executed by the graphics processing engines 431-432 , N and 
a context management circuit 448 manages the thread con 
texts . For example , the context management circuit 448 may 
perform save and restore operations to save and restore 
contexts of the various threads during contexts switches 
( e.g. , where a first thread is saved and a second thread is 
stored so that the second thread can be execute by a graphics 
processing engine ) . For example , on a context switch , the 
context management circuit 448 may store current register 
values to a designated region in memory ( e.g. , identified by 
a context pointer ) . It may then restore the register values 
when returning to the context . In one embodiment , an 
interrupt management circuit 447 receives and processes 
interrupts received from system devices . 
[ 0099 ] In one implementation , virtual / effective addresses 
from a graphics processing engine 431 are translated to 
real / physical addresses in system memory 411 by the MMU 
439. One embodiment of the accelerator integration circuit 
436 supports multiple ( e.g. , 4 , 8 , 16 ) graphics accelerator 
modules 446 and / or other accelerator devices . The graphics 
accelerator module 446 may be dedicated to a single appli 
cation executed on the processor 407 or may be shared 
between multiple applications . In one embodiment , a virtu 
alized graphics execution environment is presented in which 
the resources of the graphics processing engines 431-432 , N 
are shared with multiple applications or virtual machines 
( VMs ) . The resources may be subdivided into “ slices ” which 
are allocated to different VMs and / or applications based on 
the processing requirements and priorities associated with 
the VMs and / or applications . 
[ 0100 ] Thus , the accelerator integration circuit acts as a 
bridge to the system for the graphics acceleration module 
446 and provides address translation and system memory 
cache services . In addition , the accelerator integration circuit 
436 may provide virtualization facilities for the host pro 
cessor to manage virtualization of the graphics processing 
engines , interrupts , and memory management . 
[ 0101 ] Because hardware resources of the graphics pro 
cessing engines 431-432 , N are mapped explicitly to the real 
address space seen by the host processor 407 , any host 
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processor can address these resources directly using an 
effective address value . One function of the accelerator 
integration circuit 436 , in one embodiment , is the physical 
separation of the graphics processing engines 431-432 , N so 
that they appear to the system as independent units . 
[ 0102 ] As mentioned , in the illustrated embodiment , one 
or more graphics memories 433-434 , M are coupled to each 
of the graphics processing engines 431-432 , N , respectively . 
The graphics memories 433-434 , M store instructions and 
data being processed by each of the graphics processing 
engines 431-432 , N. The graphics memories 433-434 , M 
may be volatile memories such as DRAMs ( including 
stacked DRAMs ) , GDDR memory ( e.g. , GDDR5 , GDDR6 ) , 
or HBM , and / or may be non - volatile memories such as 3D 
XPoint or Nano - Ram . 
[ 0103 ] In one embodiment , to reduce data traffic over link 
440 , biasing techniques are used to ensure that the data 
stored in graphics memories 433-434 , M is data which will 
be used most frequently by the graphics processing engines 
431-432 , N and preferably not used by the cores 460A - 460D 
( at least not frequently ) . Similarly , the biasing mechanism 
attempts to keep data needed by the cores ( and preferably 
not the graphics processing engines 431-432 , N ) within the 
caches 462A - 462D , 456 of the cores and system memory 
411 . 
[ 0104 ] FIG . 4C illustrates another embodiment in which 
the accelerator integration circuit 436 is integrated within 
the processor 407. In this embodiment , the graphics pro 
cessing engines 431-432 , N communicate directly over the 
high - speed link 440 to the accelerator integration circuit 436 
via interface 437 and interface 435 ( which , again , may be 
utilize any form of bus or interface protocol ) . The accelera 
tor integration circuit 436 may perform the same operations 
as those described with respect to FIG . 4B , but potentially at 
a higher throughput given its close proximity to the coher 
ency bus 462 and caches 462A - 462D , 426 . 
[ 0105 ] One embodiment supports different programming 
models including a dedicated - process programming model 
( no graphics acceleration module virtualization ) and shared 
programming models ( with virtualization ) . The latter may 
include programming models which are controlled by the 
accelerator integration circuit 436 and programming models 
which are controlled by the graphics acceleration module 
446 . 
[ 0106 ] In one embodiment of the dedicated process model , 
graphics processing engines 431-432 , N are dedicated to a 
single application or process under a single operating sys 
tem . The single application can funnel other application 
requests to the graphics engines 431-432 , N , providing 
virtualization within a VM / partition . 
[ 0107 ] In the dedicated - process programming models , the 
graphics processing engines 431-432 , N , may be shared by 
multiple VM / application partitions . The shared models 
require a system hypervisor to virtualize the graphics pro 
cessing engines 431-432 , N to allow access by each oper 
ating system . For single - partition systems without a hyper 
visor , the graphics processing engines 431-432 , N are owned 
by the operating system . In both cases , the operating system 
can virtualize the graphics processing engines 431-432 , N to 
provide access to each process or application . 
[ 0108 ] For the shared programming model , the graphics 
acceleration module 446 or an individual graphics process 
ing engine 431-432 , N selects a process element using a 
process handle . In one embodiment , process elements are 

stored in system memory 411 and are addressable using the 
effective address to real address translation techniques 
described herein . The process handle may be an implemen 
tation - specific value provided to the host process when 
registering its context with the graphics processing engine 
431-432 , N ( that is , calling system software to add the 
process element to the process element linked list ) . The 
lower 16 - bits of the process handle may be the offset of the 
process element within the process element linked list . 
[ 0109 ] FIG . 4D illustrates an exemplary accelerator inte 
gration slice 490. As used herein , a “ slice ” comprises a 
specified portion of the processing resources of the accel 
erator integration circuit 436. Application effective address 
space 482 within system memory 411 stores process ele 
ments 483. In one embodiment , the process elements 483 are 
stored in response to GPU invocations 481 from applications 
480 executed on the processor 407. A process element 483 
contains the process state for the corresponding application 
480. A work descriptor ( WD ) 484 contained in the process 
element 483 can be a single job requested by an application 
or may contain a pointer to a queue of jobs . In the latter case , 
the WD 484 is a pointer to the job request queue in the 
application's address space 482 . 
[ 0110 ] The graphics acceleration module 446 and / or the 
individual graphics processing engines 431-432 , N can be 
shared by all or a subset of the processes in the system . 
Embodiments of the invention include an infrastructure for 
setting up the process state and sending a WD 484 to a 
graphics acceleration module 446 to start a job in a virtu 
alized environment . 

[ 0111 ] In one implementation , the dedicated - process pro 
gramming model is implementation - specific . In this model , 
a single process owns the graphics acceleration module 446 
or an individual graphics processing engine 431. Because 
the graphics acceleration module 446 is owned by a single 
process , the hypervisor initializes the accelerator integration 
circuit 436 for the owning partition and the operating system 
initializes the accelerator integration circuit 436 for the 
owning process at the time when the graphics acceleration 
module 446 is assigned . 
[ 0112 ] In operation , a WD fetch unit 491 in the accelerator 
integration slice 490 fetches the next WD 484 which 
includes an indication of the work to be done by one of the 
graphics processing engines of the graphics acceleration 
module 446. Data from the WD 484 may be stored in 
registers 445 and used by the MMU 439 , interrupt manage 
ment circuit 447 and / or context management circuit 446 as 
illustrated . For example , one embodiment of the MMU 439 
includes segment / page walk circuitry for accessing segment / 
page tables 486 within the OS virtual address space 485. The 
interrupt management circuit 447 may process interrupt 
events 492 received from the graphics acceleration module 
446. When performing graphics operations , an effective 
address 493 generated by a graphics processing engine 
431-432 , N is translated to a real address by the MMU 439 . 
[ 0113 ] In one embodiment , the same set of registers 445 
are duplicated for each graphics processing engine 431-432 , 
N and / or graphics acceleration module 446 and may be 
initialized by the hypervisor or operating system . Each of 
these duplicated registers may be included in an accelerator 
integration slice 490. Exemplary registers that may be 
initialized by the hypervisor are shown in Table 1 . 
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TABLE 1 

Hypervisor Initialized Registers 
1 Slice Control Register 
2 Real Address ( RA ) Scheduled Processes Area Pointer 
3 Authority Mask Override Register 
4 Interrupt Vector Table Entry Offset 
5 Interrupt Vector Table Entry Limit 
6 State Register 
7 Logical Partition ID 
8 Real address ( RA ) Hypervisor Accelerator Utilization Record Pointer 
9 Storage Description Register 

[ 0114 ] Exemplary registers that may be initialized by the 
operating system are shown in Table 2 . 

TABLE 2 

Operating System Initialized Registers 

system call with a graphics acceleration module 446 type , a 
work descriptor ( WD ) , an authority mask register ( AMR ) 
value , and a context save / restore area pointer ( CSRP ) . The 
graphics acceleration module 446 type describes the targeted 
acceleration function for the system call . The graphics 
acceleration module 446 type may be a system - specific 
value . The WD is formatted specifically for the graphics 
acceleration module 446 and can be in the form of a graphics 
acceleration module 446 command , an effective address 
pointer to a user - defined structure , an effective address 
pointer to a queue of commands , or any other data structure 
to describe the work to be done by the graphics acceleration 
module 446. In one embodiment , the AMR value is the AMR 
state to use for the current process . The value passed to the 
operating system is similar to an application setting the 
AMR . If the accelerator integration circuit 436 and graphics 
acceleration module 446 implementations do not support a 
User Authority Mask Override Register ( UAMOR ) , the 
operating system may apply the current UAMOR value to 
the AMR value before passing the AMR in the hypervisor 
call . The hypervisor 496 may optionally apply the current 
Authority Mask Override Register ( AMOR ) value before 
placing the AMR into the process element 483. In one 
embodiment , the CSRP is one of the registers 445 containing 
the effective address of an area in the application's address 
space 482 for the graphics acceleration module 446 to save 
and restore the context state . This pointer is optional if no 
state is required to be saved between jobs or when a job is 
preempted . The context save / restore area may be pinned 
system memory . 
[ 0120 ] Upon receiving the system call , the operating sys 
tem 495 may verify that the application 480 has registered 
and been given the authority to use the graphics acceleration 
module 446. The operating system 495 then calls the hyper 
visor 496 with the information shown in Table 3 . 

1 
2 
3 
4 
5 
6 

Process and Thread Identification 
Effective Address ( EA ) Context Save / Restore Pointer 
Virtual Address ( VA ) Accelerator Utilization Record Pointer 
Virtual Address ( VA ) Storage Segment Table Pointer 
Authority Mask 
Work descriptor 

a 

TABLE 3 

OS to Hypervisor Call Parameters 

[ 0115 ] In one embodiment , each WD 484 is specific to a 
particular graphics acceleration module 446 and / or graphics 
processing engines 431-432 , N. It contains all the informa 
tion a graphics processing engine 431-432 , N requires to do 
its work or it can be a pointer to a memory location where 
the application has set up a command queue of work to be 
completed . 
[ 0116 ] FIG . 4E illustrates additional details for one 
embodiment of a shared model . This embodiment includes 
a hypervisor real address space 498 in which a process 
element list 499 is stored . The hypervisor real address space 
498 is accessible via a hypervisor 496 which virtualizes the 
graphics acceleration module engines for the operating 
system 495 . 
[ 0117 ] The shared programming models allow for all or a 
subset of processes from all or a subset of partitions in the 
system to use a graphics acceleration module 446. There are 
two programming models where the graphics acceleration 
module 446 is shared by multiple processes and partitions : 
time - sliced shared and graphics directed shared . 
[ 0118 ] In this model , the system hypervisor 496 owns the 
graphics acceleration module 446 and makes its function 
available to all operating systems 495. For a graphics 
acceleration module 446 to support virtualization by the 
system hypervisor 496 , the graphics acceleration module 
446 may adhere to the following requirements : 1 ) An 
application's job request must be autonomous ( that is , the 
state does not need to be maintained between jobs ) , or the 
graphics acceleration module 446 must provide a context 
save and restore mechanism . 2 ) An application's job request 
is guaranteed by the graphics acceleration module 446 to 
complete in a specified amount of time , including any 
translation faults , or the graphics acceleration module 446 
provides the ability to preempt the processing of the job . 3 ) 
The graphics acceleration module 446 must be guaranteed 
fairness between processes when operating in the directed 
shared programming model . 
[ 0119 ] In one embodiment , for the shared model , the 
application 480 is required to make an operating system 495 

1 A work descriptor ( WD ) 
2 An Authority Mask Register ( AMR ) value ( potentially masked ) . 
3 An effective address ( EA ) Context Save / Restore Area Pointer ( CSRP ) 
4 A process ID ( PID ) and optional thread ID ( TID ) 
5 A virtual address ( VA ) accelerator utilization record pointer ( AURP ) 
6 The virtual address of the storage segment table pointer ( SSTP ) 
7 A logical interrupt service number ( LISN ) 

[ 0121 ] Upon receiving the hypervisor call , the hypervisor 
496 verifies that the operating system 495 has registered and 
been given the authority to use the graphics acceleration 
module 446. The hypervisor 496 then puts the process 
element 483 into the process element linked list for the 
corresponding graphics acceleration module 446 type . The 
process element may include the information shown in Table 
4 

TABLE 4 

Process Element Information 

1 A work descriptor ( WD ) 
2 An Authority Mask Register ( AMR ) value ( potentially masked ) . 
3 An effective address ( EA ) Context Save / Restore Area Pointer ( CSRP ) 
4 A process ID ( PID ) and optional thread ID ( TID ) 
5 A virtual address ( VA ) accelerator utilization record pointer ( AURP ) 
6 The virtual address of the storage segment table pointer ( SSTP ) 
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TABLE 4 - continued 

Process Element Information 

7 A logical interrupt service number ( LISN ) 
8 Interrupt vector table , derived from the hypervisor call parameters . 
9 A state register ( SR ) value 

10 A logical partition ID ( LPID ) 
11 A real address ( RA ) hypervisor accelerator utilization record pointer 
12 The Storage Descriptor Register ( SDR ) 

a 

[ 0122 ] In one embodiment , the hypervisor initializes a 
plurality of accelerator integration slice 490 registers 445 . 
[ 0123 ] As illustrated in FIG . 4F , one embodiment of the 
invention employs a unified memory addressable via a 
common virtual memory address space used to access the 
physical processor memories 401-402 and GPU memories 
420-423 . In this implementation , operations executed on the 
GPUs 410-413 utilize the same virtual / effective memory 
address space to access the processors memories 401-402 
and vice versa , thereby simplifying programmability . In one 
embodiment , a first portion of the virtual / effective address 
space is allocated to the processor memory 401 , a second 
portion to the second processor memory 402 , a third portion 
to the GPU memory 420 , and so on . The entire virtual / 
effective memory space ( sometimes referred to as the effec 
tive address space ) is thereby distributed across each of the 
processor memories 401-402 and GPU memories 420-423 , 
allowing any processor or GPU to access any physical 
memory with a virtual address mapped to that memory . 
[ 0124 ] In one embodiment , bias / coherence management 
circuitry 494A - 494E within one or more of the MMUS 
439A - 439E ensures cache coherence between the caches of 
the host processors ( e.g. , 405 ) and the GPUs 410-413 and 
implements biasing techniques indicating the physical 
memories in which certain types of data should be stored . 
While multiple instances of bias / coherence management 
circuitry 494A - 494E are illustrated in FIG . 4F , the bias / 
coherence circuitry may be implemented within the MMU 
of one or more host processors 405 and / or within the 
accelerator integration circuit 436 . 
[ 0125 ] One embodiment allows GPU - attached memory 
420-423 to be mapped as part of system memory , and 
accessed using shared virtual memory ( SVM ) technology , 
but without suffering the typical performance drawbacks 
associated with full system cache coherence . The ability to 
GPU - attached memory 420-423 to be accessed as system 
memory without onerous cache coherence overhead pro 
vides a beneficial operating environment for GPU offload . 
This arrangement allows the host processor 405 software to 
setup operands and access computation results , without the 
overhead of tradition I / O DMA data copies . Such traditional 
copies involve driver calls , interrupts and memory mapped 
I / O ( MMIO ) accesses that are all inefficient relative to 
simple memory accesses . At the same time , the ability to 
access GPU attached memory 420-423 without cache coher 
ence overheads can be critical to the execution time of an 
offloaded computation . In cases with substantial streaming 
write memory traffic , for example , cache coherence over 
head can significantly reduce the effective write bandwidth 
seen by a GPU 410-413 . The efficiency of operand setup , the 
efficiency of results access , and the efficiency of GPU 
computation all play a role in determining the effectiveness 
of GPU offload . 

[ 0126 ] In one implementation , the selection of between 
GPU bias and host processor bias is driven by a bias tracker 
data structure . A bias table may be used , for example , which 
may be a page - granular structure ( i.e. , controlled at the 
granularity of a memory page ) that includes 1 or 2 bits per 
GPU - attached memory page . The bias table may be imple 
mented in a stolen memory range of one or more GPU 
attached memories 420-423 , with or without a bias cache in 
the GPU 410-413 ( e.g. , to cache frequently / recently used 
entries of the bias table ) . Alternatively , the entire bias table 
may be maintained within the GPU . 
[ 0127 ] In one implementation , the bias table entry asso 
ciated with each access to the GPU - attached memory 420 
423 is accessed prior the actual access to the GPU memory , 
causing the following operations . First , local requests from 
the GPU 410-413 that find their page in GPU bias are 
forwarded directly to a corresponding GPU memory 420 
423. Local requests from the GPU that find their page in host 
bias are forwarded to the processor 405 ( e.g. , over a high 
speed link as discussed above ) . In one embodiment , requests 
from the processor 405 that find the requested page in host 
processor bias complete the request like a normal memory 
read . Alternatively , requests directed to a GPU - biased page 
may be forwarded to the GPU 410-413 . The GPU may then 
transition the page to a host processor bias if it is not 
currently using the page . 
[ 0128 ] The bias state of a page can be changed either by 
a software - based mechanism , a hardware - assisted software 
based mechanism , or , for a limited set of cases , a purely 
hardware - based mechanism . 
[ 0129 ] One mechanism for changing the bias state 
employs an API call ( e.g. OpenCL ) , which , in turn , calls the 
GPU's device driver which , in turn , sends a message ( or 
enqueues a command descriptor ) to the GPU directing it to 
change the bias state and , for some transitions , perform a 
cache flushing operation in the host . The cache flushing 
operation is required for a transition from host processor 405 
bias to GPU bias , but is not required for the opposite 
transition . 
[ 0130 ] In one embodiment , cache coherency is maintained 
by temporarily rendering GPU - biased pages uncacheable by 
the host processor 405. To access these pages , the processor 
405 may request access from the GPU 410 which may or 
may not grant access right away , depending on the imple 
mentation . Thus , to reduce communication between the 
processor 405 and GPU 410 it is beneficial to ensure that 
GPU - biased pages are those which are required by the GPU 
but not the host processor 405 and vice versa . 
[ 0131 ] Graphics Processing Pipeline 
[ 0132 ] FIG . 5 illustrates a graphics processing pipeline 
500 , according to an embodiment . In one embodiment , a 
graphics processor can implement the illustrated graphics 
processing pipeline 500. The graphics processor can be 
included within the parallel processing subsystems as 
described herein , such as the parallel processor 200 of FIG . 
2A , which , in one embodiment , is a variant of the parallel 
processor ( s ) 112 of FIG . 1. The various parallel processing 
systems can implement the graphics processing pipeline 500 
via one or more instances of the parallel processing unit 
( e.g. , parallel processing unit 202 of FIG . 2A ) as described 
herein . For example , a shader unit ( e.g. , graphics multipro 
cessor 234 of FIG . 2D ) may be configured to perform the 
functions of one or more of a vertex processing unit 504 , a 
tessellation control processing unit 508 , a tessellation evalu 
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ation processing unit 512 , a geometry processing unit 516 , 
and a fragment / pixel processing unit 524. The functions of 
data assembler 502 , primitive assemblers 506 , 514 , 518 , 
tessellation unit 510 , rasterizer 522 , and raster operations 
unit 526 may also be performed by other processing engines 
within a processing cluster ( e.g. , processing cluster 214 of 
FIG . 3A ) and a corresponding partition unit ( e.g. , partition 
unit 220A - 220N of FIG . 2C ) . The graphics processing 
pipeline 500 may also be implemented using dedicated 
processing units for one or more functions . In one embodi 
ment , one or more portions of the graphics processing 
pipeline 500 can be performed by parallel processing logic 
within a general - purpose processor ( e.g. , CPU ) . In one 
embodiment , one or more portions of the graphics process 
ing pipeline 500 can access on - chip memory ( e.g. , parallel 
processor memory 222 as in FIG . 2A ) via a memory 
interface 528 , which may be an instance of the memory 
interface 218 of FIG . 2A . 
[ 0133 ] In one embodiment , the data assembler 502 is a 
processing unit that collects vertex data for surfaces and 
primitives . The data assembler 502 then outputs the vertex 
data , including the vertex attributes , to the vertex processing 
unit 504. The vertex processing unit 504 is a programmable 
execution unit that executes vertex shader programs , light 
ing and transforming vertex data as specified by the vertex 
shader programs . The vertex processing unit 504 reads data 
that is stored in cache , local or system memory for use in 
processing the vertex data and may be programmed to 
transform the vertex data from an object - based coordinate 
representation to a world space coordinate space or a nor 
malized device coordinates space . 
[ 0134 ] A first instance of a primitive assembler 506 
receives vertex attributes from the vertex processing unit 
504. The primitive assembler 506 readings stored vertex 
attributes as needed and constructs graphics primitives for 
processing by tessellation control processing unit 508. The 
graphics primitives include triangles , line segments , points , 
patches , and so forth , as supported by various graphics 
processing application programming interfaces ( APIs ) . 
[ 0135 ] The tessellation control processing unit 508 treats 
the input vertices as control points for a geometric patch . 
The control points are transformed from an input represen 
tation from the patch ( e.g. , the patch's bases ) to a represen 
tation that is suitable for use in surface evaluation by the 
tessellation evaluation processing unit 512. The tessellation 
control processing unit 508 can also compute tessellation 
factors for edges of geometric patches . A tessellation factor 
applies to a single edge and quantifies a view - dependent 
level of detail associated with the edge . A tessellation unit 
510 is configured to receive the tessellation factors for edges 
of a patch and to tessellate the patch into multiple geometric 
primitives such as line , triangle , or quadrilateral primitives , 
which are transmitted to a tessellation evaluation processing 
unit 512. The tessellation evaluation processing unit 512 
operates on parameterized coordinates of the subdivided 
patch to generate a surface representation and vertex attri 
butes for each vertex associated with the geometric primi 
tives . 
[ 0136 ] A second instance of a primitive assembler 514 
receives vertex attributes from the tessellation evaluation 
processing unit 512 , reading stored vertex attributes as 
needed , and constructs graphics primitives for processing by 
the geometry processing unit 516. The geometry processing 
unit 516 is a programmable execution unit that executes 

geometry shader programs to transform graphics primitives 
received from primitive assembler 514 as specified by the 
geometry shader programs . In one embodiment , the geom 
etry processing unit 516 is programmed to subdivide the 
graphics primitives into one or more new graphics primi 
tives and calculate parameters used to rasterize the new 
graphics primitives . 
[ 0137 ] In some embodiments , the geometry processing 
unit 516 can add or delete elements in the geometry stream . 
The geometry processing unit 516 outputs the parameters 
and vertices specifying new graphics primitives to primitive 
assembler 518. The primitive assembler 518 receives the 
parameters and vertices from the geometry processing unit 
516 and constructs graphics primitives for processing by a 
viewport scale , cull , and clip unit 520. The geometry pro 
cessing unit 516 reads data that is stored in parallel processor 
memory or system memory for use in processing the geom 
etry data . The viewport scale , cull , and clip unit 520 per 
forms clipping , culling , and viewport scaling and outputs 
processed graphics primitives to a rasterizer 522 . 
[ 0138 ] The rasterizer 522 can perform depth culling and 
other depth - based optimizations . The rasterizer 522 also 
performs scan conversion on the new graphics primitives to 
generate fragments and outputs those fragments and asso 
ciated coverage data to the fragment / pixel processing unit 
524 . 
[ 0139 ] The fragment / pixel processing unit 524 is a pro 
grammable execution unit that is configured to execute 
fragment shader programs or pixel shader programs . The 
fragment / pixel processing unit 524 transforming fragments 
or pixels received from rasterizer 522 , as specified by the 
fragment or pixel shader programs . For example , the frag 
ment / pixel processing unit 524 may be programmed to 
perform operations included but not limited to texture map 
ping , shading , blending , texture correction and perspective 
correction to produce shaded fragments or pixels that are 
output to a raster operations unit 526. The fragment / pixel 
processing unit 524 can read data that is stored in either the 
parallel processor memory or the system memory for use 
when processing the fragment data . Fragment or pixel 
shader programs may be configured to shade at sample , 
pixel , tile , or other granularities , depending on the sampling 
rate configured for the processing units . 
( 0140 ] The raster operations unit 526 is a processing unit 
that performs raster operations including , but not limited to 
stencil , z test , blending , and the like , and outputs pixel data 
as processed graphics data to be storage in graphics memory , 
e.g. , parallel processor memory 222 as in FIG . 2A , and / or 
system memory 104 as in FIG . 1 , to be displayed on the one 
or more display device ( s ) 110 or for further processing by 
one of the one or more processor ( s ) 102 or parallel processor 
( s ) 112. In some embodiments , the raster operations unit 526 
is configured to compress z or color data that is written to 
memory and decompress z or color data that is read from 
memory . 
[ 0141 ] FIG . 6 illustrates a computing device 600 hosting 
a data sharing and compression expansion mechanism 
( “ sharing and expansion mechanism ” ) 610 according to one 
embodiment . Computing device 600 represents a commu 
nication and data processing device including ( but not 
limited to ) smart wearable devices , smartphones , virtual 
reality ( VR ) devices , head - mounted display ( HMDs ) , 
mobile computers , Internet of Things ( IoT ) devices , laptop 
computers , desktop computers , server computers , etc. , and 
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be similar to or the same as computing device 100 of FIG . 
1 ; accordingly , for brevity , clarity , and ease of understand 
ing , many of the details stated above with reference to FIGS . 
1-5 are not further discussed or repeated hereafter . 
[ 0142 ] Computing device 600 may further include ( with 
out limitations ) an autonomous machine or an artificially 
intelligent agent , such as a mechanical agent or machine , an 
electronics agent or machine , a virtual agent or machine , an 
electro - mechanical agent or machine , etc. Examples of 
autonomous machines or artificially intelligent agents may 
include ( without limitation ) robots , autonomous vehicles ( e.g. , self - driving cars , self - flying planes , self - sailing boats , 
etc. ) , autonomous equipment ( self - operating construction 
vehicles , self - operating medical equipment , etc. ) , and / or the 
like . Throughout this document , “ computing device ” may be 
interchangeably referred to as “ autonomous machine ” or 
" artificially intelligent agent " or simply " robot " . 
[ 0143 ] It contemplated that although " autonomous 
vehicle ” and “ autonomous driving ” are referenced through 
out this document , embodiments are not limited as such . For 
example , " autonomous vehicle ” is not limed to an automo 
bile but that it may include any number and type of autono 
mous machines , such as robots , autonomous equipment , 
household autonomous devices , and / or the like , and any one 
or more tasks or operations relating to such autonomous 
machines may be interchangeably referenced with autono 
mous driving 
[ 0144 ] Computing device 600 may further include ( with 
out limitations ) large computing systems , such as server 
computers , desktop computers , etc. , and may further include 
set - top boxes ( e.g. , Internet - based cable television set - top 
boxes , etc. ) , global positioning system ( GPS ) -based devices , 
etc. Computing device 600 may include mobile computing 
devices serving as communication devices , such as cellular 
phones including smartphones , personal digital assistants 
( PDAs ) , tablet computers , laptop computers , e - readers , 
smart televisions , television platforms , wearable devices 
( e.g. , glasses , watches , bracelets , smartcards , jewelry , cloth 
ing items , etc. ) , media players , etc. For example , in one 
embodiment , computing device 600 may include a mobile 
computing device employing a computer platform hosting 
an integrated circuit ( “ IC ” ) , such as system on a chip ( “ SOC ” 
or “ SOC ” ) , integrating various hardware and / or software 
components of computing device 600 on a single chip . 
[ 0145 ] As illustrated , in one embodiment , computing 
device 600 may include any number and type of hardware 
and / or software components , such as ( without limitation ) 
graphics processing unit ( “ GPU ” or simply " graphics pro 
cessor ” ) 614 , graphics driver ( also referred to as “ GPU 
driver ” , “ graphics driver logic ” , “ driver logic ” , user - mode 
driver ( UMD ) , UMD , user - mode driver framework 
( UMDF ) , UMDF , or simply “ driver " ) 616 , central process 
ing unit ( “ CPU ” or simply " application processor ” ) 612 , 
memory 608 , network devices , drivers , or the like , as well as 
input / output ( 1/0 ) sources 604 , such as touchscreens , touch 
panels , touch pads , virtual or regular keyboards , virtual or 
regular mice , ports , connectors , etc. Computing device 600 
may include operating system ( OS ) 606 serving as an 
interface between hardware and / or physical resources of the 
computer device 600 and a user . It is contemplated that 
graphics processor 614 and application processor 612 may 
be one or more of processor ( s ) 102 of FIG . 1 . 
[ 014 ] It is to be appreciated that a lesser or more 
equipped system than the example described above may be 

preferred for certain implementations . Therefore , the con 
figuration of computing device 600 may vary from imple 
mentation to implementation depending upon numerous 
factors , such as price constraints , performance requirements , 
technological improvements , or other circumstances . 
[ 0147 ] Embodiments may be implemented as any or a 
combination of : one or more microchips or integrated cir 
cuits interconnected using a parentboard , hardwired logic , 
software stored by a memory device and executed by a 
microprocessor , firmware , an application specific integrated 
circuit ( ASIC ) , and / or a field programmable gate array 
( FPGA ) . The terms “ logic ” , “ module ” , “ component ” , 
“ engine ” , and “ mechanism ” may include , by way of 
example , software or hardware and / or combinations of soft 
ware and hardware . 
[ 0148 ] In one embodiment , sharing and expansion mecha 
nism 610 may be hosted or facilitated by operating system 
606 of computing device 600. In another embodiment , 
sharing and expansion mechanism 610 may be hosted by or 
part of graphics processing unit ( " GPU ” or simply “ graphics 
processor ” ) 614 or firmware of graphics processor 614. For 
example , sharing and expansion mechanism 610 may be 
embedded in or implemented as part of the processing 
hardware of graphics processor 614. Similarly , in yet 
another embodiment , sharing and expansion mechanism 610 
may be hosted by or part of central processing unit ( “ CPU ” 
or simply " application processor " ) 612. For example , shar 
ing and expansion mechanism 610 may be embedded in or 
implemented as part of the processing hardware of applica 
tion processor 612. In yet another embodiment , sharing and 
expansion mechanism 610 may be hosted by or part of any 
number and type of components of computing device 600 , 
such as a portion of sharing and expansion mechanism 610 
may be hosted by or part of operating system 606 , another 
portion may be hosted by or part of graphics processor 614 , 
another portion may be hosted by or part of application 
processor 612 , while one or more portions of sharing and 
expansion mechanism 610 may be hosted by or part of 
operating system 606 and / or any number and type of devices 
of computing device 600. It is contemplated that one or more 
portions or components of sharing and expansion mecha 
nism 610 may be employed as hardware , software , and / or 
firmware . 
[ 0149 ] It is contemplated that embodiments are not limited 
to any particular implementation or hosting of sharing and 
expansion mechanism 610 and that sharing and expansion 
mechanism 610 and one or more of its components may be 
implemented as hardware , software , firmware , or any com 
bination thereof . 
[ 0150 ] Computing device 600 may host network interface 
( s ) to provide access to a network , such as a LAN , a wide 
area network ( WAN ) , a metropolitan area network ( MAN ) , 
a personal area network ( PAN ) , Bluetooth , a cloud network , 
a mobile network ( e.g. , 3rd Generation ( 3G ) , 4th Generation 
( 4G ) , etc. ) , an intranet , the Internet , etc. Network interface 
( s ) may include , for example , a wireless network interface 
having antenna , which may represent one or more antenna 
( e ) . Network interface ( s ) may also include , for example , a 
wired network interface to communicate with remote 
devices via network cable , which may be , for example , an 
Ethernet cable , a coaxial cable , a fiber optic cable , a serial 
cable , or a parallel cable . 
[ 0151 ] Embodiments may be provided , for example , as a 
computer program product which may include one or more 
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614 , application processor 612 , field programmable gate 
array ( FPGA ) , application - specific integrated circuit 
( ASIC ) , and / or the like , using a surface library . For example , 
in one embodiment , any processor working on the same 
convolution can retrieve data from the surface library , where 
this data had been produced by another processor . In another 
embodiment , this data may be stored persistently across 
runs . 

> 

9 

machine - readable media having stored thereon machine 
executable instructions that , when executed by one or more 
machines such as a computer , network of computers , or 
other electronic devices , may result in the one or more 
machines carrying out operations in accordance with 
embodiments described herein . Amachine - readable medium 
may include , but is not limited to , floppy diskettes , optical 
disks , CD - ROMs ( Compact Disc - Read Only Memories ) , 
and magneto - optical disks , ROMs , RAMS , EPROMs ( Eras 
able Programmable Read Only Memories ) , EEPROMs 
( Electrically Erasable Programmable Read Only Memories ) , 
magnetic or optical cards , flash memory , or other type of 
media / machine - readable medium suitable for storing 
machine - executable instructions . 
[ 0152 ] Moreover , embodiments may be downloaded as a 
computer program product , wherein the program may be 
transferred from a remote computer ( e.g. , a server ) to a 
requesting computer ( e.g. , a client ) by way of one or more 
data signals embodied in and / or modulated by a carrier wave 
or other propagation medium via a communication link 
( e.g. , a modem and / or network connection ) . 
[ 0153 ] Throughout the document , term " user ” may be 
interchangeably referred to as " viewer ” , " observer ” , “ per 
son ” , “ individual ” , “ end - user " , and / or the like . It is to be 
noted that throughout this document , terms like “ graphics 
domain ” may be referenced interchangeably with " graphics 
processing unit ” , “ graphics processor ” , or simply “ GPU ” 
and similarly , “ CPU domain ” or “ host domain ” may be 
referenced interchangeably with " computer processing 
unit " , " application processor ” , or simply " CPU ” . 
[ 0154 ] It is to be noted that terms like “ node ” , “ computing 
node ” , “ server ” , “ server device ” , “ cloud computer " , " cloud 
server ” , “ cloud server computer " , " machine " , " host 
machine ” , " device ” , “ computing device ” , “ computer ” , 
" computing system ” , and the like , may be used interchange 
ably throughout this document . It is to be further noted that 
terms like " application ” , “ software application ” , “ program ” , 
“ software program ” , “ package ” , “ software package ” , and 
the like , may be used interchangeably throughout this docu 
ment . Also , terms like “ job ” , “ input ” , “ request ” , “ message ” , 
and the like , may be used interchangeably throughout this 
document . 
[ 0155 ] FIG . 7 illustrates sharing and expansion mecha 
nism 610 of FIG . 6 according to one embodiment . For 
brevity , many of the details already discussed with reference 
to FIGS . 1-6 are not repeated or discussed hereafter . In one 
embodiment , sharing and expansion mechanism 610 may 
include any number and type of components , such as ( with 
out limitations ) : detection / observation logic 701 ; library 
generation / mapping logic 703 ; data sharing / retrieval logic 
705 ; communication / compatibility logic 707 ; and compres 
sion / expansion logic 709 . 
[ 0156 ] As aforementioned , data sharing is an efficient 
manner for having access to all the relevant data without 
going through long processes and procedures or re - inventing 
the wheel . However , conventional data sharing techniques 
are limited in their user as they do not provide for data 
sharing across processing systems , where one processing 
system can retrieve any portion of shared data if that portion 
is relevant to the work being performed by or at the 
processing system . 
[ 0157 ] Embodiments provide for a novel technique for 
offering to share data produced on any number and type of 
processing systems or devices , such as graphics processor 

[ 0158 ] In one embodiment , detection / observation logic 
701 may be used to detect and observe processors , such as 
graphics processor 614 , as they work on , for example , 
convolution , where this information may be shared with 
sharing / retrieval logic 703 and library logic 705. For 
example , if graphics processor 614 is working on convolu 
tion neural networks ( CNNs ) , graphics processor 614 may 
be facilitated by sharing / retrieval logic 703 to store the 
intermediate neural network ( NN ) data as a data surface in 
surface library 731 located at one or more cloud databases 
or datacenters , such as database ( s ) 730 , in communication 
with computing devices 600 , 740 over one or more com 
munication medium ( s ) 725 , such as a cloud network . 
[ 0159 ] In one embodiment , library logic 703 may be used 
to generate one or more surface libraries , such as surface 
library 731 , as desired or necessitated , as graphics processor 
614 is detected by detection / observation logic 701 as work 
ing on the convolution and having data that is capable of 
being stored at surface library 731 and subsequently used by 
one or more other processing devices , such as application 
processor 612 , application processor 742 , graphics proces 
sor 744 , etc. In another embo ment , if there are available 
sufficient number of or amount of space in surface libraries , 
additional or new surface libraries may not be generated and 
data sharing / retrieval logic 703 may simply be used to 
trigger graphics processor 614 to store its data at one of the 
libraries , such as surface library 731 , and establish mapping 
of the data stored with the corresponding processing device , 
such as graphics processor 614 , as facilitated by library logic 
705 . 

[ 0160 ] Once the data has been stored , in one embodiment , 
it is now available to other processing devices , whether it be 
application processor 612 at computing device 600 , or one 
or more processing devices at another deep learning system , 
such as application and graphics processors 742 , 744 at 
computing device 740 , over communication medium 730 . 
For example , if graphics processor 744 is also working to the 
same or similar convolution or problem as graphics proces 
sor 614 , graphics processor 744 may access the intermediate 
NN data at surface library 731 as facilitated by sharing 
retrieval logic 703 . 
[ 0161 ] For example , if computing devices 600 , 740 are 
two autonomous machines ( e.g. , vehicles , robots , etc. ) that 
are side - by - side , having a similar view , experiencing the 
same environmental conditions , etc. , the two graphics pro 
cessors 612 , 742 , respectively , can shared the NN data using 
surface library 731 at database ( s ) 730 over communication 
medium ( s ) 725 . 
[ 0162 ] Further , in one embodiment , any surfaces produced 
in this matter may be optionally compressed by compres 
sion / expansion logic 709 for an even faster transmission 
time . Moreover , shared surfaces , as facilitated by shared 
library 731 , may be used for cross - checking results by 
multiple deep learning systems , such as autonomous 
machines 600 , 740 as further illustrated in FIG . 8A . 
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[ 0163 ] Embodiments further provide for a novel technique 
for re - expansion of compressed models for achieving high 
performance and communication efficiency . For example , 
certain models can be too large to send over the air and thus , 
model compression may be used to reduce the number of 
layers and one or more of the models may be expended back 
to their original size , such as in high performance computing 
( HPC ) . 
[ 0164 ] Conventional techniques are merely limited in their 
approach to communicating data models between a number 
of autonomous machines , such as vehicles , etc. , which is 
inefficient in most cases , such as when there are millions of 
autonomous vehicles , such as autonomous machines 600 
and 740 , involved on the road , requiring a large amount of 
bandwidth to deliver data models over one or more com 
munication medium ( s ) 725 . 
[ 0165 ] Embodiments provide for a novel technique for 
compressing data models , while expanding them with an 
artefact to allow for smooth communication over commu 
nication medium ( s ) 725 without being costly , such as in 
terms of system or network resources , bandwidth , etc. 
[ 0166 ] For example , in case of a large number of autono 
mous vehicles , such as autonomous machines 600 , 740 , 
being on the road , it would be desirable to facilitate com 
munication of information between such vehicles , such as 
traffic data , whether information , emergency alerts , etc. , as 
frequency and quickly as desired or necessitated . However , 
conventional systems are not capable of expanding com 
pressed models . 
[ 0167 ] In one embodiment , as further illustrated with 
respect to FIG . 8B , compression / expansion logic 709 may 
be used to compress a data model and assign an artefact to 
the compressed model such that the artefact serves as both 
an extension to the compressed model and a form of 
identification if the compressed model is communicated 
from one machine 600 to another machine 740 over com 
munication medium ( s ) 725 . 
[ 0168 ] It is contemplated that “ artefact ” or the use of 
artefact is merely according to one embodiment and that 
there may be other several techniques by which a com 
pressed model may be re - combined to get the original 
model , such additional techniques may include ( without 
limitation ) using a “ light ” retraining within the vehicle , 
" hints ” from peer vehicles / drivers , and / or the like . 
[ 0169 ] For example , in one embodiment , an original or 
regular model of data may be compressed by applying an 
artefact by compression / expansion logic 709 , where this 
compressed model and the corresponding artefact are com 
municated from one autonomous machine 600 to another 
autonomous machine 740 over one or more communication 
medium ( s ) 725 ( e.g. , cloud , Internet , etc. ) . The artefact may 
then be received at autonomous machine 740 ( in autono 
mous vehicle , for example ) , followed by the reception of a 
combo of compressed model and artifact . The two are then 
separated and autonomous machine 740 can now use the 
model in its original and uncompressed model . 
[ 0170 ] Further , communication / compatibility logic 707 
may be used to facilitate the needed communication and 
compatibility between any number of devices of computing 
device 600 and various components of sharing and expan 
sion mechanism 610 . 
[ 0171 ] Communication / compatibility logic 707 may be 
used to facilitate dynamic communication and compatibility 
between computing device 600 and any number and type of 

other computing devices ( such as mobile computing device , 
desktop computer , server computing device , etc. ) ; process 
ing devices or components ( such as CPUs , GPUs , etc. ) ; 
capturing / sensing / detecting devices ( such as capturing / sens 
ing components including cameras , depth sensing cameras , 
camera sensors , red green blue ( “ RGB ” or “ rgb ” ) sensors , 
microphones , etc. ) ; display devices ( such as output compo 
nents including display screens , display areas , display pro 
jectors , etc. ) ; user / context - awareness components and / or 
identification / verification sensors / devices ( such as biometric 
sensors / detectors , scanners , etc. ) ; database ( s ) 730 , such as 
memory or storage devices , databases , and / or data sources 
( such as data storage devices , hard drives , solid - state drives , 
hard disks , memory cards or devices , memory circuits , etc. ) ; 
communication medium ( s ) 725 , such as one or more com 
munication channels or networks ( e.g. , cloud networks , the 
Internet , intranets , cellular networks , proximity networks , 
such as Bluetooth , Bluetooth low energy ( BLE ) , Bluetooth 
Smart , Wi - Fi proximity , Radio Frequency Identification 
( RFID ) , Near Field Communication ( NFC ) , Body Area 
Network ( BAN ) , etc. ) ; wireless or wired communications 
and relevant protocols ( e.g. , Wi - Fi® , WiMAX , Ethernet , 
etc. ) ; connectivity and location management techniques ; 
software applications / websites ( e.g. , social and / or business 
networking websites , etc. , business applications , games and 
other entertainment applications , etc. ) ; and programming 
languages , etc. , while ensuring compatibility with changing 
technologies , parameters , protocols , standards , etc. 
[ 0172 ] Further , any use of a particular brand , word , term , 
phrase , name , and / or acronym , such as “ detecting ” , “ observ 
ing ” , “ training ” , “ selecting ” , “ compressing ” , “ associating ” , 
“ applying ” , “ sharing ” , “ storing ” , “ retrieving ” , “ surface 
library ” , “ compressed model ” , “ expanded model ” , “ expand 
ing ” , “ training set ” , “ agent ” , “ machine ” , “ vehicle ” , “ robot ” , 
“ driving ” , “ CNN ” , “ DNN ” , “ NN ” , “ execution unit ” , “ EU ” , 
" shared local memory ” , “ SLM ” , “ graphics streams ” , 
" cache ” , “ graphics cache ” , “ GPU ” , “ graphics processor ” , 
« GPU domain ” , “ GPGPU ” , “ CPU ” , “ application proces 
sor ” , “ CPU domain ” , “ graphics driver ” , “ workload ” , " appli 
cation ” , “ graphics pipeline ” , “ pipeline processes ” , “ API ” , 
“ 3D API ” , “ OpenGL® ” , “ DirectX® ” , “ hardware ” , “ soft 
ware ” , “ agent ” , “ graphics driver ” , “ kernel mode graphics 
driver ” , “ user - mode driver ” , “ user - mode driver framework ” , 
“ buffer ” , “ graphics buffer ” , “ task ” , “ process ” , “ operation ” , 
" software application ” , “ game ” , etc. , should not be read to 
limit embodiments to software or devices that carry that 
label in products or in literature external to this document . 
[ 0173 ] It is contemplated that any number and type of 
components may be added to and / or removed from com 
pression and expansion mechanism 610 to facilitate various 
embodiments including adding , removing , and / or enhancing 
certain features . For brevity , clarity , and ease of understand 
ing of compression and expansion mechanism 610 , many of 
the standard and / or known components , such as those of a 
computing device , are not shown or discussed here . It is 
contemplated that embodiments , as described herein , are not 
limited to any particular technology , topology , system , 
architecture , and / or standard and are dynamic enough to 
adopt and adapt to any future changes . 
[ 0174 ] FIG . 8A illustrates a network setup 800 for data 
sharing and retrieval across processing systems according to 
one embodiment . For brevity , many of the details previously 
discussed with reference to FIGS . 1-7 may not be discussed 
or repeated hereafter . Any processes relating to setup 800 

2 



US 2021/0390654 A1 Dec. 16 , 2021 
16 

2 

may be performed by processing logic that may comprise 
hardware ( e.g. , circuitry , dedicated logic , programmable 
logic , etc. ) , software ( such as instructions run on a process 
ing device ) , or a combination thereof , as facilitated by 
sharing and expansion mechanism 610 of FIG . 6. The 
processes associated with setup 800 may be illustrated or 
recited in linear sequences for brevity and clarity in presen 
tation ; however , it is contemplated that any number of them 
can be performed in parallel , asynchronously , or in different 
orders . Further , embodiments are not limited to any particu 
lar architectural placement , framework , setup , or structure of 
processes and / or components , such as setup 800 . 
[ 0175 ] As illustrated here and described with reference to 
FIG . 7 , the novel technique for data sharing and retrieval as 
facilitated by sharing and expansion mechanism 610 may 
hosted and used by any number and type of computing 
devices , such as autonomous machines 600 , 740 , 810 ( e.g. , 
vehicles , robots , etc. ) over one or more communication 
mediums 725 , such as a cloud network . 
[ 0176 ] In the illustrated embodiment , database ( s ) 730 , 
such as cloud databases ( s ) or datacenter ( s ) , may host one or 
more surface libraries , such as surface library 731 , where 
data , such as intermediate NN data , may be stored , retrieved , 
and shared by any number and type of processing devices , 
such as processors 612 , 614 , 742 , 744 and 812 , 814 of 
autonomous machines 600 , 740 , and 810 , respectively . 
[ 0177 ] FIG . 8B illustrates a transaction sequence 850 for 
data sharing and retrieval across processing systems accord 
ing to one embodiment . For brevity , many of the details 
previously discussed with reference to FIGS . 1-7 may not be 
discussed or repeated hereafter . Any processes relating to 
transaction sequence 850 may be performed by processing 
logic that may comprise hardware ( e.g. , circuitry , dedicated 
logic , programmable logic , etc. ) , software ( such as instruc 
tions run on a processing device ) , or a combination thereof , 
as facilitated by sharing and expansion mechanism 610 of 
FIG . 6. The processes associated with transaction sequence 
850 may be illustrated or recited in linear sequences for 
brevity and clarity in presentation ; however , it is contem 
plated that any number of them can be performed in parallel , 
asynchronously , or in different orders . Further , embodiments 
are not limited to any particular architectural placement , 
framework , setup , or structure of processes and / or compo 
nents , such as transaction sequence 850 . 
[ 0178 ] As illustrated , in one embodiment , original model 
851A is selected and the compressed at block 853 and 
expanded with artefact 855 , resulting in compressed model 
857A . This compressed model 857A is then transmitted 
along with artefact from one autonomous machine or any 
computing device to another autonomous machine or any 
other computing device at block 859 over communication 
medium 725 ( e.g. , cloud network , Internet , proximity net 
work , Bluetooth , etc. ) . 
[ 0179 ] The transmitted compressed model is received at 
the receiving autonomous machine at 861 , where it is 
received as a combined package 863 having a combination 
of compressed model 857B ( that is the same as compressed 
model 857A ) and artefact 855B ( which is the same as 
artefact 855A ) . At the autonomous machine , artefact 855B is 
removed and compressed model 857B is expanded back into 
uncompressed model 851B ( which is the same as uncom 
pressed original model 851 ) . 
[ 0180 ] FIG.9 illustrates a method 900 for facilitating data 
sharing across processing devices using surface library 

according to one embodiment . For brevity , many of the 
details previously discussed with reference to FIGS . 1-8B 
may not be discussed or repeated hereafter . Any processes 
relating to method 900 may be performed by processing 
logic that may comprise hardware ( e.g. , circuitry , dedicated 
logic , programmable logic , etc. ) , software ( such as instruc 
tions run on a processing device ) , or a combination thereof , 
as facilitated by sharing and expansion mechanism 610 of 
FIG . 6. The processes associated with method 900 may be 
illustrated or recited in linear sequences for brevity and 
clarity in presentation ; however , it is contemplated that any 
number of them can be performed in parallel , asynchro 
nously , or in different orders . 
[ 0181 ] Method 900 begins at block 901 with detection of 
a processor , such as a graphics processor at an autonomous 
machine , working on a CNN . At block 903 , the processor is 
facilitated to store any intermediate NN data relating to the 
CNN as a data surface in a surface library at a database , such 
as a cloud database , over a communication medium , such as 
a cloud network . In one embodiment , this surface library and 
other such surface libraries may be created at various 
database or datacenters and make available to any number 
and type of processors at various autonomous machines . 
[ 0182 ] At bock 905 , another processor of this or another 
autonomous is working on the same CNN and access the 
data surface stored at the surface library by the graphics 
processor . This processor may be another processor may be 
an application processor at the same or another autonomous 
machine or another graphics processor or other such pro 
cessors at the same or another autonomous machine . At 
block 907 , this second processor , such as graphics processor , 
at another autonomous machine then accesses the data 
surface and proceeds with retrieving this stored data to be 
used for working on the CNN . Further , surface produced this 
may be optionally compressed for faster transmission time . 
[ 0183 ] Machine Learning Overview 
[ 0184 ] A machine learning algorithm is an algorithm that 
can learn based on a set of data . Embodiments of machine 
learning algorithms can be designed to model high - level 
abstractions within a data set . For example , image recogni 
tion algorithms can be used to determine which of several 
categories to which a given input belong ; regression algo 
rithms can output a numerical value given an input ; and 
pattern recognition algorithms can be used to generate 
translated text or perform text to speech and / or speech 
recognition . 
[ 0185 ] An exemplary type of machine learning algorithm 
is a neural network . There are many types of neural net 
works ; a simple type of neural network is a feedforward 
network . A feedforward network may be implemented as an 
acyclic graph in which the nodes are arranged in layers . 
Typically , a feedforward network topology includes an input 
layer and an output layer that are separated by at least one 
hidden layer . The hidden layer transforms input received by 
the input layer into a representation that is useful for 
generating output in the output layer . The network nodes are 
fully connected via edges to the nodes in adjacent layers , but 
there are no edges between nodes within each layer . Data 
received at the nodes of an input layer of a feedforward 
network are propagated ( i.e. , “ fed forward ” ) to the nodes of 
the output layer via an activation function that calculates the 
states of the nodes of each successive layer in the network 
based on coefficients ( " weights ” ) respectively associated 
with each of the edges connecting the layers . Depending on 
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the specific model being represented by the algorithm being 
executed , the output from the neural network algorithm can 
take various forms . 
[ 0186 ] Before a machine learning algorithm can be used to 
model a particular problem , the algorithm is trained using a 
training data set . Training a neural network involves select 
ing a network topology , using a set of training data repre 
senting a problem being modeled by the network , and 
adjusting the weights until the network model performs with 
a minimal error for all instances of the training data set . For 
example , during a supervised learning training process for a 
neural network , the output produced by the network in 
response to the input representing an instance in a training 
data set is compared to the " correct ” labeled output for that 
instance , an error signal representing the difference between 
the output and the labeled output is calculated , and the 
weights associated with the connections are adjusted to 
minimize that error as the error signal is backward propa 
gated through the layers of the network . The network is 
considered “ trained ” when the errors for each of the outputs 
generated from the instances of the training data set are 
minimized . 
[ 0187 ] The accuracy of a machine learning algorithm can 
be affected significantly by the quality of the data set used 
to train the algorithm . The training process can be compu 
tationally intensive and may require a significant amount of 
time on a conventional general - purpose processor . Accord 
ingly , parallel processing hardware is used to train many 
types of machine learning algorithms . This is particularly 
useful for optimizing the training of neural networks , as the 
computations performed in adjusting the coefficients in 
neural networks lend themselves naturally to parallel imple 
mentations . Specifically , many machine learning algorithms 
and software applications have been adapted to make use of 
the parallel processing hardware within general - purpose 
graphics processing devices . 
[ 0188 ] FIG . 10 is a generalized diagram of a machine 
learning software stack 1000. A machine learning applica 
tion 1002 can be configured to train a neural network using 
training dataset to use a trained deep neural network to 

implement machine intelligence . The machine learning 
application 1002 can include training and inference func 
tionality for a neural network and / or specialized software 
that can be used to train a neural network before deploy 
ment . The machine learning application 1002 can implement 
any type of machine intelligence including but not limited to 
image recognition , mapping and localization , autonomous 
navigation , speech synthesis , medical imaging , or language 
translation . 
[ 0189 ] Hardware acceleration for the machine learning 
application 1002 can be enabled via a machine learning 
framework 1004. The machine learning framework 1004 
can provide a library of machine learning primitives . 
Machine learning primitives are basic operations that are 
commonly performed by machine learning algorithms . 
Without the machine learning framework 1004 , developers 
of machine learning algorithms would be required to create 
and optimize the main computational logic associated with 
the machine learning algorithm , then re - optimize the com 
putational logic as new parallel processors are developed . 
Instead , the machine learning application can be configured 
to perform the necessary computations using the primitives 
provided by the machine learning framework 1004. Exem 
plary primitives include tensor convolutions , activation 

functions , and pooling , which are computational operations 
that are performed while training a convolutional neural 
network ( CNN ) . The machine learning framework 1004 can 
also provide primitives to implement basic linear algebra 
subprograms performed by many machine learning algo 
rithms , such as matrix and vector operations . 
[ 0190 ] The machine learning framework 1004 can process 
input data received from the machine learning application 
1002 and generate the appropriate input to a compute 
framework 1006. The compute framework 1006 can abstract 
the underlying instructions provided to the GPGPU driver 
1008 to enable the machine learning framework 1004 to take 
advantage of hardware acceleration via the GPGPU hard 
ware 1010 without requiring the machine learning frame 
work 1004 to have intimate knowledge of the architecture of 
the GPGPU hardware 1010. Additionally , the compute 
framework 1006 can enable hardware acceleration for the 
machine learning framework 1004 across a variety of types 
and generations of the GPGPU hardware 1010 . 
[ 0191 ] GPGPU Machine Learning Acceleration 
[ 0192 ] FIG . 11 illustrates a highly - parallel general - pur 
pose graphics processing unit 1100 , according to an embodi 
ment . In one embodiment , the general - purpose processing 
unit ( GPGPU ) 1100 can be configured to be particularly 
efficient in processing the type of computational workloads 
associated with training deep neural networks . Additionally , 
the GPGPU 1100 can be linked directly to other instances of 
the GPGPU to create a multi - GPU cluster to improve 
training speed for particularly deep neural networks . 
[ 0193 ] The GPGPU 1100 includes a host interface 1102 to 
enable a connection with a host processor . In one embodi 
ment , the host interface 1102 is a PCI Express interface . 
However , the host interface can also be a vendor specific 
communications interface or communications fabric . The 
GPGPU 1100 receives commands from the host processor 
and uses a global scheduler 1104 to distribute execution 
threads associated with those commands to a set of compute 
clusters 1106A - H . The compute clusters 1106A - H share a 
cache memory 1108. The cache memory 1108 can serve as 
a higher - level cache for cache memories within the compute 
clusters 1106A - H . 

[ 0194 ] The GPGPU 1100 includes memory 1114A - B 
coupled with the compute clusters 1106A - H via a set of 
memory controllers 1112A - B . In various embodiments , the 
memory 1114A - B can include various types of memory 
devices including dynamic random memory 
( DRAM ) or graphics random access memory , such as syn 
chronous graphics random access memory ( SGRAM ) , 
including graphics double data rate ( GDDR ) memory . In one 
embodiment , the memory units 224A - N may also include 
3D stacked memory , including but not limited to high 
bandwidth memory ( HBM ) . 
[ 0195 ] In embodiment , each compute cluster 
GPLAB06A - H includes a set of graphics multiprocessors , 
such as the graphics multiprocessor 400 of FIG . 4A . The 
graphics multiprocessors of the compute cluster multiple 
types of integer and floating point logic units that can 
perform computational operations at a range of precisions 
including suited for machine learning computations . For 
example , and in one embodiment at least a subset of the 
floating - point units in each of the compute clusters 1106A - H 
can be configured to perform 16 - bit or 32 - bit floating point 
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embodiment the processor 1202 includes direct support for 
the P2P GPU links 1216 and can connect directly to the 
GPGPUs 1206A - D . 
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operations , while a different subset of the floating - point units 
can be configured to perform 64 - bit floating point opera 
tions . 

[ 0196 ] Multiple instances of the GPGPU 1100 can be 
configured to operate as a compute cluster . The communi 
cation mechanism used by the compute cluster for synchro 
nization and data exchange varies across embodiments . In 
one embodiment , the multiple instances of the GPGPU 1100 
communicate over the host interface 1102. In one embodi 
ment . the GPGPU 1100 includes an 1/0 hub 1108 that 
couples the GPGPU 1100 with a GPU link 1110 that enables 
a direct connection to other instances of the GPGPU . In one 
embodiment , the GPU link 1110 is coupled to a dedicated 
GPU - to - GPU bridge that enables communication and syn 
chronization between multiple instances of the GPGPU 
1100. In one embodiment , the GPU link 1110 couples with 
a high - speed interconnect to transmit and receive data to 
other GPGPUs or parallel processors . In one embodiment , 
the multiple instances of the GPGPU 1100 are located in 
separate data processing systems and communicate via a 
network device that is accessible via the host interface 1102 . 
In one embodiment , the GPU link 1110 can be configured to 
enable a connection to a host processor in addition to or as 
an alternative to the host interface 1102 . 

a 
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[ 0197 ] While the illustrated configuration of the GPGPU 
1100 can be configured to train neural networks , one 
embodiment provides alternate configuration of the GPGPU 
1100 that can be configured for deployment within a high 
performance or low power inferencing platform . In an 
inferencing configuration , the GPGPU 1100 includes fewer 
of the compute clusters 1106A - H relative to the training 
configuration . Additionally , memory technology associated 
with the memory 1114A - B may differ between inferencing 
and training configurations . In one embodiment , the infer 
encing configuration of the GPGPU 1100 can support infer 
encing specific instructions . For example , an inferencing 
configuration can provide support for one or more 8 - bit 
integer dot product instructions , which are commonly used 
during inferencing operations for deployed neural networks . 
[ 0198 ] FIG . 12 illustrates a multi - GPU computing system 
1200 , according to an embodiment . The multi - GPU com 
puting system 1200 can include a processor 1202 coupled to 
multiple GPGPUs 1206A - D via a host interface switch 
1204. The host interface switch 1204 , in one embodiment , is 
a PCI express switch device that couples the processor 1202 
to a PCI express bus over which the processor 1202 can 
communicate with the set of GPGPUS 1206A - D . Each of the 
multiple GPGPUs 1206A - D can be an instance of the 
GPGPU 1100 of FIG . 11. The GPGPUs 1206A - D can 
interconnect via a set of high - speed point to point GPU to 
GPU links 1216. The high - speed GPU to GPU links can 
connect to each of the GPGPUs 1206A - D via a dedicated 
GPU link , such as the GPU link 1110 as in FIG . 11. The P2P 
GPU links 1216 enable direct communication between each 
of the GPGPUs 1206A - D without requiring communication 
over the host interface bus to which the processor 1202 is 
connected . With GPU - to - GPU traffic directed to the P2P 
GPU links , the host interface bus remains available for 
system memory access or to communicate with other 
instances of the multi - GPU computing system 1200 , for 
example , via one or more network devices . While in the 
illustrated embodiment the GPGPUs 1206A - D connect to 
the processor 1202 via the host interface switch 1204 , in one 

Machine Learning Neural Network Implementations 
[ 0199 ] The computing architecture provided by embodi 
ments described herein can be configured to perform the 
types of parallel processing that is particularly suited for 
training and deploying neural networks for machine learn 
ing . A neural network can be generalized as a network of 
functions having a graph relationship . As is well - known in 
the art , there are a variety of types of neural network 
implementations used in machine learning . One exemplary 
type of neural network is the feedforward network , as 
previously described . 
[ 0200 ] A second exemplary type of neural network is the 
Convolutional Neural Network ( CNN ) . A CNN is a special 
ized feedforward neural network for processing data having 
a known , grid - like topology , such as image data . Accord 
ingly , CNNs are commonly used for compute vision and 
image recognition applications , but they also may be used 
for other types of pattern recognition such as speech and 
language processing . The nodes in the CNN input layer are 
organized into a set of “ filters ” ( feature detectors inspired by 
the receptive fields found in the retina ) , and the output of 
each set of filters is propagated to nodes in successive layers 
of the network . The computations for a CNN include apply 
ing the convolution mathematical operation to each filter to 
produce the output of that filter . Convolution is a specialized 
kind of mathematical operation performed by two functions 
to produce a third function that is a modified version of one 
of the two original functions . In convolutional network 
terminology , the first function to the convolution can be 
referred to as the input , while the second function can be 
referred to as the convolution kernel . The output may be 
referred to as the feature map . For example , the input to a 
convolution layer can be multidimensional array of data 
that defines the various color components of an input image . 
The convolution kernel can be a multidimensional array of 
parameters , where the parameters are adapted by the training 
process for the neural network . 
[ 0201 ] Recurrent neural networks ( RNNs ) are a family of 
feedforward neural networks that include feedback connec 
tions between layers . RNNs enable modeling of sequential 
data by sharing parameter data across different parts of the 
neural network . The architecture for a RNN includes cycles . 
The cycles represent the influence of a present value of a 
variable on its own value at a future time , as at least a portion 
of the output data from the RNN is used as feedback for 
processing subsequent input in a sequence . This feature 
makes RNNs particularly useful for language processing due 
to the variable nature in which language data can be com 
posed . 
[ 0202 ] The figures described below present exemplary 
feedforward , CNN , and RNN networks , as well as describe 
a general process for respectively training and deploying 
each of those types of networks . It will be understood that 
these descriptions are exemplary and non - limiting as to any 
specific embodiment described herein and the concepts 
illustrated can be applied generally to deep neural networks 
and machine learning techniques in general . 
[ 0203 ] The exemplary neural networks described above 
can be used to perform deep learning . Deep learning is 
machine learning using deep neural networks . The deep 
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neural networks used in deep learning are artificial neural 
networks composed of multiple hidden layers , as opposed to 
shallow neural networks that include only a single hidden 
layer . Deeper neural networks are generally more computa 
tionally intensive to train . However , the additional hidden 
layers of the network enable multistep pattern recognition 
that results in reduced output error relative to shallow 
machine learning techniques . 
[ 0204 ] Deep neural networks used in deep learning typi 
cally include a front - end network to perform feature recog 
nition coupled to a back - end network which represents a 
mathematical model that can perform operations ( e.g. , 
object classification , speech recognition , etc. ) based on the 
feature representation provided to the model . Deep learning 
enables machine learning to be performed without requiring 
hand crafted feature engineering to be performed for the 
model . Instead , deep neural networks can learn features 
based on statistical structure or correlation within the input 
data . The learned features can be provided to a mathematical 
model that can map detected features to an output . The 
mathematical model used by the network is generally spe 
cialized for the specific task to be performed , and different 
models will be used to perform different task . 
[ 0205 ] Once the neural network is structured , a learning 
model can be applied to the network to train the network to 
perform specific tasks . The learning model describes how to 
adjust the weights within the model to reduce the output 
error of the network . Backpropagation of errors is a common 
method used to train neural networks . An input vector is 
presented to the network for processing . The output of the 
network is compared to the desired output using a loss 
function and an error value is calculated for each of the 
neurons in the output layer . The error values are then 
propagated backwards until each neuron has an associated 
error value which roughly represents its contribution to the 
original output . The network can then learn from those 
errors using an algorithm , such as the stochastic gradient 
descent algorithm , to update the weights of the of the neural 
network . 
[ 0206 ] FIG . 13A - B illustrate an exemplary convolutional 
neural network . FIG . 13A illustrates various layers within a 
CNN . As shown in FIG . 13A , an exemplary CNN used to 
model image processing can receive input 1302 describing 
the red , green , and blue ( RGB ) components of an input 
image . The input 1302 can be processed by multiple con 
volutional layers ( e.g. , convolutional layer 1304 , convolu 
tional layer 1306 ) . The output from the multiple convolu 
tional layers may optionally be processed by a set of fully 
connected layers 1308. Neurons in a fully connected layer 
have full connections to all activations in the previous layer , 
as previously described for a feedforward network . The 
output from the fully connected layers 1308 can be used to 
generate an output result from the network . The activations 
within the fully connected layers 1308 can be computed 
using matrix multiplication instead of convolution . Not all 
CNN implementations are make use of fully connected 
layers DPLA08 . For example , in some implementations the 
convolutional layer 1306 can generate output for the CNN . 
[ 0207 ] The convolutional layers are sparsely connected , 
which differs from traditional neural network configuration 
found in the fully connected layers 1308. Traditional neural 
network layers are fully connected , such that every output 
unit interacts with every input unit . However , the convolu 
tional layers are sparsely connected because the output of 

the convolution of a field is input ( instead of the respective 
state value of each of the nodes in the field ) to the nodes of 
the subsequent layer , as illustrated . The kernels associated 
with the convolutional layers perform convolution opera 
tions , the output of which is sent to the next layer . The 
dimensionality reduction performed within the convolu 
tional layers is one aspect that enables the CNN to scale to 
process large images . 
[ 0208 ] FIG . 13B illustrates exemplary computation stages 
within a convolutional layer of a CNN . Input to a convolu 
tional layer 1312 of a CNN can be processed in three stages 
of a convolutional layer 1314. The three stages can include 
a convolution stage 1316 , a detector stage 1318 , and a 
pooling stage 1320. The convolution layer 1314 can then 
output data to a successive convolutional layer . The final 
convolutional layer of the network can generate output 
feature map data or provide input to a fully connected layer , 
for example , to generate a classification value for the input 
to the CNN . 
[ 0209 ] In the convolution stage 1316 performs several 
convolutions in parallel to produce a set of linear activations . 
The convolution stage 1316 can include an affine transfor 
mation , which is any transformation that can be specified as 
a linear transformation plus a translation . Affine transfor 
mations include rotations , translations , scaling , and combi 
nations of these transformations . The convolution stage 
computes the output of functions ( e.g. , neurons ) that are 
connected to specific regions in the input , which can be 
determined as the local region associated with the neuron . 
The neurons compute a dot product between the weights of 
the neurons and the region in the local input to which the 
neurons are connected . The output from the convolution 
stage 1316 defines a set of linear activations that are pro 
cessed by successive stages of the convolutional layer 1314 . 
[ 0210 ] The linear activations can be processed by a detec 
tor stage 1318. In the detector stage 1318 , each linear 
activation is processed by a non - linear activation function . 
The non - linear activation function increases the nonlinear 
properties of the overall network without affecting the 
receptive fields of the convolution layer . Several types of 
non - linear activation functions may be used . One particular 
type is the rectified linear unit ( ReLU ) , which uses an 
activation function defined as f ( x ) = max ( 0 , x ) , such that the 
activation is thresholded at zero . 
[ 0211 ] The pooling stage 1320 uses a pooling function that 
replaces the output of the convolutional layer 1306 with a 
summary statistic of the nearby outputs . The pooling func 
tion can be used to introduce translation invariance into the 
neural network , such that small translations to the input do 
not change the pooled outputs . Invariance to local transla 
tion can be useful in scenarios where the presence of a 
feature in the input data is more important than the precise 
location of the feature . Various types of pooling functions 
can be used during the pooling stage 1320 , including max 
pooling , average pooling , and 12 - norm pooling . Addition 
ally , some CNN implementations do not include a pooling 
stage . Instead , such implementations substitute and addi 
tional convolution stage having an increased stride relative 
to previous convolution stages . 
[ 0212 ] The output from the convolutional layer 1314 can 
then be processed by the next layer 1322. The next layer 
1322 can be an additional convolutional layer or one of the 
fully connected layers 1308. For example , the first convo 
lutional layer 1304 of FIG . 13A can output to the second 
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convolutional layer 1306 , while the second convolutional 
layer can output to a first layer of the fully connected layers 
1308 . 

[ 0213 ] FIG . 14 illustrates an exemplary recurrent neural 
network 1400. In a recurrent neural network ( RNN ) , the 
previous state of the network influences the output of the 
current state of the network . RNNs can be built in a variety 
of ways using a variety of functions . The use of RNNs 
generally revolves around using mathematical models to 
predict the future based on a prior sequence of inputs . For 
example , an RNN may be used to perform statistical lan 
guage modeling to predict an upcoming word given a 
previous sequence of words . The illustrated RNN 1400 can 
be described has having an input layer 1402 that receives an 
input vector , hidden layers 1404 to implement a recurrent 
function , a feedback mechanism 1405 to enable a ‘ memory ' 
of previous states , and an output layer 1406 to output a 
result . The RNN 1400 operates based on time - steps . The 
state of the RNN at a given time step is influenced based on 
the previous time step via the feedback mechanism 1405 . 
For a given time step , the state of the hidden layers 1404 is 
defined by the previous state and the input at the current time 
step . An initial input ( x , ) at a first - time step can be processed 
by the hidden layer 1404. A second input ( x2 ) can be 
processed by the hidden layer 1404 using state information 
that is determined during the processing of the initial input 
( x1 ) . A given state can be computed as sz = f ( Ux , + WSt - 1 ) , 
where U and W are parameter matrices . The function f is 
generally a nonlinearity , such as the hyperbolic tangent 
function ( Tan h ) or a variant of the rectifier function f ( x ) 
= max ( 0 , x ) . However , the specific mathematical function 
used in the hidden layers 1404 can vary depending on the 
specific implementation details of the RNN 1400 . 
[ 0214 ] In addition to the basic CNN and RNN networks 
described , variations on those networks may be enabled . 
One example RNN variant is the long short term memory 
( LSTM ) RNN . LSTM RNNs are capable of learning long 
term dependencies that may be necessary for processing 
longer sequences of language . A variant on the CNN is a 
convolutional deep belief network , which has a structure 
similar to a CNN and is trained in a manner similar to a deep 
belief network . A deep belief network ( DBN ) is a generative 
neural network that is composed of multiple layers of 
stochastic ( random ) variables . DBNs can be trained layer by - layer using greedy unsupervised learning . The learned 
weights of the DBN can then be used to provide pre - train 
neural networks by determining an optimal initial set of 
weights for the neural network . 
[ 0215 ] FIG . 15 illustrates training and deployment of a 
deep neural network . Once a given network has been struc 
tured for a task the neural network is trained using a training 
dataset 1502. Various training frameworks 1504 have been 
developed to enable hardware acceleration of the training 
process . For example , the machine learning framework 1004 
of FIG . 10 may be configured as a training framework 1004 . 
The training framework 1004 can hook into an untrained 
neural network 1506 and enable the untrained neural net to 
be trained using the parallel processing resources described 
herein to generate a trained neural net 1508 . 
[ 0216 ] To start the training process the initial weights may 
be chosen randomly or by pre - training using a deep belief 
network . The training cycle then be performed in either a 
supervised or unsupervised manner . 

[ 0217 ] Supervised learning is a learning method in which 
training is performed as a mediated operation , such as when 
the training dataset 1502 includes input paired with the 
desired output for the input , or where the training dataset 
includes input having known output and the output of the 
neural network is manually graded . The network processes 
the inputs and compares the resulting outputs against a set of 
expected or desired outputs . Errors are then propagated back 
through the system . The training framework 1504 can adjust 
to adjust the weights that control the untrained neural 
network 1506. The training framework 1504 can provide 
tools to monitor how well the untrained neural network 1506 
is converging towards a model suitable to generating correct 
answers based on known input data . The training process 
occurs repeatedly as the weights of the network are adjusted 
to refine the output generated by the neural network . The 
training process can continue until the neural network 
reaches a statistically desired accuracy associated with a 
trained neural net 1508. The trained neural network 1508 
can then be deployed to implement any number of machine 
learning operations . 
[ 0218 ] Unsupervised learning is a learning method in 
which the network attempts to train itself using unlabeled 
data . Thus , for unsupervised learning the training dataset 
1502 will include input data without any associated output 
data . The untrained neural network 1506 can learn groupings 
within the unlabeled input and can determine how individual 
inputs are related to the overall dataset . Unsupervised train 
ing can be used to generate a self - organizing map , which is 
a type of trained neural network 1507 capable of performing 
operations useful in reducing the dimensionality of data . 
Unsupervised training can also be used to perform anomaly 
detection , which allows the identification of data points in an 
input dataset that deviate from the normal patterns of the 
data . 
[ 0219 ] Variations on supervised and unsupervised training 
may also be employed . Semi - supervised learning is a tech 
nique in which in the training dataset 1502 includes a mix of a 
labeled and unlabeled data of the same distribution . Incre 
mental learning is a variant of supervised learning in which 
input data is continuously used to further train the model . 
Incremental learning enables the trained neural network 
1508 to adapt to the new data 1512 without forgetting the 
knowledge instilled within the network during initial train 
ing . 
[ 0220 ] Whether supervised or unsupervised , the training 
process for particularly deep neural networks may be too 
computationally intensive for a single compute node . 
Instead of using a single compute node , a distributed net 
work of computational nodes can be used to accelerate the 
training process . 
[ 0221 ] FIG . 16 is a block diagram illustrating distributed 
learning . Distributed learning is a training model that uses 
multiple distributed computing nodes to perform supervised 
or unsupervised training of a neural network . The distributed 
computational nodes can each include one or more host 
processors and one or more of the general - purpose process 
ing nodes , such as the highly - parallel general - purpose 
graphics processing unit 1100 as in FIG . 1100. As illustrated , 
distributed learning can be performed model parallelism 
1602 , data parallelism 1604 , or a combination of model and 
data parallelism 1604 . 
[ 0222 ] In model parallelism 1602 , different computational 
nodes in a distributed system can perform training compu 

a 

a 



US 2021/0390654 A1 Dec. 16 , 2021 
21 

tations for different parts of a single network . For example , 
each layer of a neural network can be trained by a different 
processing node of the distributed system . The benefits of 
model parallelism include the ability to scale to particularly 
large models . Splitting the computations associated with 
different layers of the neural network enables the training of 
very large neural networks in which the weights of all layers 
would not fit into the memory of a single computational 
node . In some instances , model parallelism can be particu 
larly useful in performing unsupervised training of large 
neural networks . 
[ 0223 ] In data parallelism 1604 , the different nodes of the 
distributed network have a complete instance of the model 
and each node receives a different portion of the data . The 
results from the different nodes are then combined . While 
different approaches to data parallelism are possible , data 
parallel training approaches all require a technique of com 
bining results and synchronizing the model parameters 
between each node . Exemplary approaches to combining 
data include parameter averaging and update based data 
parallelism . Parameter averaging trains each node on a 
subset of the training data and sets the global parameters 
( e.g. , weights , biases ) to the average of the parameters from 
each node . Parameter averaging uses a central parameter 
server that maintains the parameter data . Update based data 
parallelism is similar to parameter averaging except that 
instead of transferring parameters from the nodes to the 
parameter server , the updates to the model are transferred . 
Additionally , update based data parallelism can be per 
formed in a decentralized manner , where the updates are 
compressed and transferred between nodes . 
[ 0224 ] Combined model and data parallelism 1606 can be 
implemented , for example , in a distributed system in which 
each computational node includes multiple GPUs . Each 
node can have a complete instance of the model with 
separate GPUs within each node are used to train different 
portions of the model . 
[ 0225 ) Distributed training has increased overhead rela 
tive to training on a single machine . However , the parallel 
processors and GPGPUs described herein can each imple 
ment various techniques to reduce the overhead of distrib 
uted training , including techniques to enable high bandwidth 
GPU - to - GPU data transfer and accelerated remote data 
synchronization . 
[ 0226 ] Exemplary Machine Learning Applications 
[ 0227 ] Machine learning can be applied to solve a variety 
of technological problems , including but not limited to 
computer vision , autonomous driving and navigation , 
speech recognition , and language processing . Computer 
vision has traditionally been one of the most active research 
areas for machine learning applications . Applications of 
computer vision range from reproducing human visual abili 
ties , such as recognizing faces , to creating new categories of 
visual abilities . For example , computer vision applications 
can be configured to recognize sound waves from the 
vibrations induced in objects visible in a video . Parallel 
processor accelerated machine learning enables computer 
vision applications to be trained using significantly larger 
training dataset than previously feasible and enables infer 
encing systems to be deployed using low power parallel 
processors . 
[ 0228 ] Parallel processor accelerated machine learning 
has autonomous driving applications including lane and road 
sign recognition , obstacle avoidance , navigation , and driv 

ing control . Accelerated machine learning techniques can be 
used to train driving models based on datasets that define the 
appropriate responses to specific training input . The parallel 
processors described herein can enable rapid training of the 
increasingly complex neural networks used for autonomous 
driving solutions and enables the deployment of low power 
inferencing processors in a mobile platform suitable for 
integration into autonomous vehicles . 
[ 0229 ] Parallel processor accelerated deep neural net 
works have enabled machine learning approaches to auto 
matic speech recognition ( ASR ) . ASR includes the creation 
of a function that computes the most probable linguistic 
sequence given an input acoustic sequence . Accelerated 
machine learning using deep neural networks have enabled 
the replacement of the hidden Markov models ( HMMs ) and 
Gaussian mixture models ( GMMs ) previously used for ASR . 
[ 0230 ] Parallel processor accelerated machine learning 
can also be used to accelerate natural language processing . 
Automatic learning procedures can make use of statistical 
inference algorithms to produce models that are robust to 
erroneous or unfamiliar input . Exemplary natural language 
processor applications include automatic machine transla 
tion between human languages . 
[ 0231 ] The parallel processing platforms used for machine 
learning can be divided into training platforms and deploy 
ment platforms . Training platforms are generally highly 
parallel and include optimizations to accelerate multi - GPU 
single node training and multi - node , multi - GPU training . 
Exemplary parallel processors suited for training include the 
highly - parallel general - purpose graphics processing unit 
1100 of FIG . 1100 and the multi - GPU computing system 
1200 of FIG . 1200. On the contrary , deployed machine 
learning platforms generally include lower power parallel 
processors suitable for use in products such as cameras , 
autonomous robots , and autonomous vehicles . 
[ 0232 ] FIG . 17 illustrates an exemplary inferencing sys 
tem on a chip ( SOC ) 1700 suitable for performing inferenc 
ing using a trained model . The SOC 1700 can integrate 
processing components including a media processor 1702 , a 
vision processor 1704 , a GPGPU 1706 and a multi - core 
processor 1708. The SOC 1700 can additionally include 
on - chip memory 1705 that can enable a shared on - chip data 
pool that is accessible by each of the processing compo 
nents . The processing components can be optimized for low 
power operation to enable deployment to a variety of 
machine learning platforms , including autonomous vehicles 
and autonomous robots . For example , one implementation 
of the SOC 1700 can be used as a portion of the main control 
system for an autonomous vehicle . Where the SOC 1700 is 
configured for use in autonomous vehicles the SOC is 
designed and configured for compliance with the relevant 
functional safety standards of the deployment jurisdiction . 
[ 0233 ] During operation , the media processor 1702 and 
vision processor 1704 can work in concert to accelerate 
computer vision operations . The media processor 1702 can 
enable low latency decode of multiple high - resolution ( e.g. , 
4K , 8K ) video streams . The decoded video streams can be 
written to a buffer in the on - chip - memory 1705. The vision 
processor 1704 can then parse the decoded video and 
perform preliminary processing operations on the frames of 
the decoded video in preparation of processing the frames 
using a trained image recognition model . For example , the 
vision processor 1704 can accelerate convolution operations 
for a CNN that is used to perform image recognition on the a 
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high - resolution video data , while back end model compu 
tations are performed by the GPGPU 1706 . 
[ 0234 ] The multi - core processor 1708 can include control 
logic to assist with sequencing and synchronization of data 
transfers and shared memory operations performed by the 
media processor 1702 and the vision processor 1704. The 
multi - core processor 1708 can also function as an applica 
tion processor to execute software applications that can 
make use of the inferencing compute capability of the 
GPGPU 1706. For example , at least a portion of the navi 
gation and driving logic can be implemented in software 
executing on the multi - core processor 1708. Such software 
can directly issue computational workloads to the GPGPU 
1706 or the computational workloads can be issued to the 
multi - core processor 1708 , which can offload at least a 
portion of those operations to the GPGPU 1706 . 
[ 0235 ] The GPGPU 1706 can include compute clusters 
such as a low power configuration of the compute clusters 
1106A - 1106H within the highly - parallel general - purpose 
graphics processing unit 1100. The compute clusters within 
the GPGPU 1706 can support instruction that are specifi 
cally optimized to perform inferencing computations on a 
trained neural network . For example , the GPGPU 1706 can 
support instructions to perform low precision computations 
such as 8 - bit and 4 - bit integer vector operations . 
[ 0236 ] System Overview II 
[ 0237 ] FIG . 18 is a block diagram of a processing system 
1800 , according to an embodiment . In various embodiments , 
the system 1800 includes one or more processors 1802 and 
one or more graphics processors 1808 , and may be a single 
processor desktop system , a multiprocessor workstation 
system , or a server system having a large number of pro 
cessors 1802 or processor cores 1807. In on embodiment , 
the system 1800 is a processing platform incorporated 
within a system - on - a - chip ( SOC ) integrated circuit for use in 
mobile , handheld , or embedded devices . 
[ 0238 ] An embodiment of system 1800 can include , or be 
incorporated within a server - based gaming platform , a game 
console , including a game and media console , a mobile 
gaming console , a handheld game console , or an online 
game console . In some embodiments system 1800 is a 
mobile phone , smart phone , tablet computing device or 
mobile Internet device . Data processing system 1800 can 
also include , couple with , or be integrated within a wearable 
device , such as a smart watch wearable device , smart 
eyewear device , augmented reality device , or virtual reality 
device . In some embodiments , data processing system 1800 
is a television or set top box device having one or more 
processors 1802 and a graphical interface generated by one 
or more graphics processors 1808 . 
[ 0239 ] In some embodiments , the one or more processors 
1802 each include one or more processor cores 1807 to 
process instructions which , when executed , perform opera 
tions for system and user software . In some embodiments , 
each of the one or more processor cores 1807 is configured 
to process a specific instruction set 1809. In some embodi 
ments , instruction set 1809 may facilitate Complex Instruc 
tion Set Computing ( CISC ) , Reduced Instruction Set Com 
puting ( RISC ) , or computing via a Very Long Instruction 
Word ( VLIW ) . Multiple processor cores 1807 may each 
process a different instruction set 1809 , which may include 
instructions to facilitate the emulation of other instruction 
sets . Processor core 1807 may also include other processing 
devices , such a Digital Signal Processor ( DSP ) . 

[ 0240 ] In some embodiments , the processor 1802 includes 
cache memory 1804. Depending on the architecture , the 
processor 1802 can have a single internal cache or multiple 
levels of internal cache . In some embodiments , the cache 
memory is shared among various components of the pro 
cessor 1802. In some embodiments , the processor 1802 also 
uses an external cache ( e.g. , a Level - 3 ( L3 ) cache or Last 
Level Cache ( LLC ) ) ( not shown ) , which may be shared 
among processor cores 1807 using known cache coherency 
techniques . A register file 1806 is additionally included in 
processor 1802 which may include different types of regis 
ters for storing different types of data ( e.g. , integer registers , 
floating point registers , status registers , and an instruction 
pointer register ) . Some registers may be general - purpose 
registers , while other registers may be specific to the design 
of the processor 1802 . 
[ 0241 ] In some embodiments , processor 1802 is coupled 
to a processor bus 1810 to transmit communication signals 
such as address , data , or control signals between processor 
1802 and other components in system 1800. In one embodi 
ment , the system 1800 uses an exemplary ‘ hub ' system 
architecture , including a memory controller hub 1816 and an 
Input Output ( I / O ) controller hub 1830. A memory controller 
hub 1816 facilitates communication between a memory 
device and other components of system 1800 , while an I / O 
Controller Hub ( CH ) 1830 provides connections to I / O 
devices via a local I / O bus . In one embodiment , the logic of 
the memory controller hub 1816 is integrated within the 
processor 
[ 0242 ] Memory device 1820 can be a dynamic random 
access memory ( DRAM ) device , a static random access 
memory ( SRAM ) device , flash memory device , phase 
change memory device , or some other memory device 
having suitable performance to serve as process memory . In 
one embodiment , the memory device 1820 can operate as 
system memory for the system 1800 , to store data 1822 and 
instructions 1821 for use when the one or more processors 
1802 executes an application or process . Memory controller 
hub 1816 also couples with an optional external graphics 
processor 1812 , which may communicate with the one or 
more graphics processors 1808 in processors 1802 to per 
form graphics and media operations . 
[ 0243 ] In some embodiments , ICH 1830 enables periph 
erals to connect to memory device 1820 and processor 1802 
via a high - speed I / O bus . The I / O peripherals include , but 
are not limited to , an audio controller 1846 , a firmware 
interface 1828 , a wireless transceiver 1826 ( e.g. , Wi - Fi , 
Bluetooth ) , a data storage device 1824 ( e.g. , hard disk drive , 
flash memory , etc. ) , and a legacy I / O controller 1840 for 
coupling legacy ( e.g. , Personal System 2 ( PS / 2 ) ) devices to 
the system . One or more Universal Serial Bus ( USB ) con 
trollers 1842 connect input devices , such as keyboard and 
mouse 1844 combinations . A network controller 1834 may 
also couple to ICH 1830. In some embodiments , a high 
performance network controller ( not shown ) couples to 
processor bus 1810. It will be appreciated that the system 
1800 shown is exemplary and not limiting , as other types of 
data processing systems that are differently configured may 
also be used . For example , the I / O controller hub 1830 may 
be integrated within the one or more processor 1802 , or the 
memory controller hub 1816 and I / O controller hub 1830 
may be integrated into a discreet external graphics proces 
sor , such as the external graphics processor 1812 . 
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[ 0244 ] FIG . 19 is a block diagram of an embodiment of a 
processor 1900 having one or more processor cores 1902A 
1902N , an integrated memory controller 1914 , and an inte 
grated graphics processor 1908. Those elements of FIG . 19 
having the same reference numbers ( or names ) as the 
elements of any other figure herein can operate or function 
in any manner similar to that described elsewhere herein , but 
are not limited to such . Processor 1900 can include addi 
tional cores up to and including additional core 1902N 
represented by the dashed lined boxes . Each of processor 
cores 1902A - 1902N includes one or more internal cache 
units 1904A - 1904N . In some embodiments , each processor 
core also has access to one or more shared cached units 
1906 . 

[ 0245 ] The internal cache units 1904A - 1904N and shared 
cache units 1906 represent a cache memory hierarchy within 
the processor 1900. The cache memory hierarchy may 
include at least one level of instruction and data cache within 
each processor core and one or more levels of shared 
mid - level cache , such as a Level 2 ( L2 ) , Level 3 ( L3 ) , Level 
4 ( L4 ) , or other levels of cache , where the highest level of 
cache before external memory is classified as the LLC . In 
some embodiments , cache coherency logic maintains coher 
ency between the various cache units 1906 and 1904A 
1904N . 

[ 0246 ] In some embodiments , processor 1900 may also 
include a set of one or more bus controller units 1916 and a 
system agent core 1910. The one or more bus controller units 
1916 manage a set of peripheral buses , such as one or more 
Peripheral Component Interconnect buses ( e.g. , PCI , PCI 
Express ) . System agent core 1910 provides management 
functionality for the various processor components . In some 
embodiments , system agent core 1910 includes one or more 
integrated memory controllers 1914 to manage access to 
various external memory devices ( not shown ) . 
[ 0247 ] In some embodiments , one or more of the proces 
sor cores 1902A - 1902N include support for simultaneous 
multi - threading . In such embodiment , the system agent core 
1910 includes components for coordinating and operating 
cores 1902A - 1902N during multi - threaded processing . Sys 
tem agent core 1910 may additionally include a power 
control unit ( PCU ) , which includes logic and components to 
regulate the power state of processor cores 1902A - 1902N 
and graphics processor 1908 . 
[ 0248 ] In some embodiments , processor 1900 additionally 
includes graphics processor 1908 to execute graphics pro 
cessing operations . In some embodiments , the graphics 
processor 1908 couples with the set of shared cache units 
1906 , and the system agent core 1910 , including the one or 
more integrated memory controllers 1914. In some embodi 
ments , a display controller 1911 is coupled with the graphics 
processor 1908 to drive graphics processor output to one or 
more coupled displays . In some embodiments , display con 
troller 1911 may be a separate module coupled with the 
graphics processor via at least one interconnect , or may be 
integrated within the graphics processor 1908 or system 
agent core 1910 . 
[ 0249 ] In some embodiments , a ring based interconnect 
unit 1912 is used to couple the internal components of the 
processor 1900. However , an alternative interconnect unit 
may be used , such as a point - to - point interconnect , a 
switched interconnect , or other techniques , including tech 

niques well known in the art . In some embodiments , graph 
ics processor 1908 couples with the ring interconnect 1912 
via an I / O link 1913 . 
[ 0250 ] The exemplary I / O link 1913 represents at least one 
of multiple varieties of I / O interconnects , including an 
on - package I / O interconnect which facilitates communica 
tion between various processor components and a high 
performance embedded memory module 1918 , such as an 
eDRAM module . In some embodiments , each of the pro 
cessor cores 1902-1902N and graphics processor 1908 use 
embedded memory modules 1918 as a shared Last Level 
Cache . 

[ 0251 ] In some embodiments , processor cores 1902A 
1902N are homogenous cores executing the same instruction 
set architecture . In another embodiment , processor cores 
1902A - 1902N are heterogeneous in terms of instruction set 
architecture ( ISA ) , where one or more of processor cores 
1902A - N execute a first instruction set , while at least one of 
the other cores executes a subset of the first instruction set 
or a different instruction set . In one embodiment processor 
cores 1902A - 1902N are heterogeneous in terms of micro 
architecture , where one or more cores having a relatively 
higher power consumption couple with one or more power 
cores having a lower power consumption . Additionally , 
processor 1900 can be implemented on one or more chips or 
as an SoC integrated circuit having the illustrated compo 
nents , in addition to other components . 
[ 0252 ] FIG . 20 is a block diagram of a graphics processor 
2000 , which may be a discrete graphics processing unit , or 
may be a graphics processor integrated with a plurality of 
processing cores . In some embodiments , the graphics pro 
cessor communicates via a memory mapped I / O interface to 
registers on the graphics processor and with commands 
placed into the processor memory . In some embodiments , 
graphics processor 2000 includes a memory interface 2014 
to access memory . Memory interface 2014 can be an inter 
face to local memory , one or more internal caches , one or 
more shared external caches , and / or to system memory . 
[ 0253 ] In some embodiments , graphics processor 2000 
also includes a display controller 2002 to drive display 
output data to a display device 2020. Display controller 2002 
includes hardware for one or more overlay planes for the 
display and composition of multiple layers of video or user 
interface elements . In some embodiments , graphics proces 
sor 2000 includes a video codec engine 2006 to encode , 
decode , or transcode media to , from , or between one or more 
media encoding formats , including , but not limited to Mov 
ing Picture Experts Group ( MPEG ) formats such as MPEG 
2 , Advanced Video Coding ( AVC ) formats such as H.264 / 
MPEG - 4 AVC , as well as the Society of Motion Picture & 
Television Engineers ( SMPTE ) 421M / VC - 1 , and Joint Pho 
tographic Experts Group ( JPEG ) formats such as JPEG , and 
Motion JPEG ( MJPEG ) formats . 
[ 0254 ] In some embodiments , graphics processor 2000 
includes a block image transfer ( BLIT ) engine 2004 to 
perform two - dimensional ( 2D ) rasterizer operations includ 
ing , for example , bit - boundary block transfers . However , in 
one embodiment , 2D graphics operations are performed 
using one or more components of graphics processing 
engine ( GPE ) 2010. In some embodiments , graphics pro 
cessing engine 2010 is a compute engine for performing 
graphics operations , including three - dimensional ( 3D ) 
graphics operations and media operations . 

. 
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additionally include batch command buffers storing batches 
of multiple commands . The commands for the 3D pipeline 
2012 can also include references to data stored in memory , 
such as but not limited to vertex and geometry data for the 
3D pipeline 2012 and / or image data and memory objects for 
the media pipeline 2016. The 3D pipeline 2012 and media 
pipeline 2016 process the commands and data by performing 
operations via logic within the respective pipelines or by 
dispatching one or more execution threads to a graphics core 
array 2114 . 

[ 0255 ] In some embodiments , GPE 2010 includes a 3D 
pipeline 2012 for performing 3D operations , such as ren 
dering three - dimensional images and scenes using process 
ing functions that act upon 3D primitive shapes ( e.g. , 
rectangle , triangle , etc. ) . The 3D pipeline 2012 includes 
programmable and fixed function elements that perform 
various tasks within the element and / or spawn execution 
threads to a 3D / Media sub - system 2015. While 3D pipeline 
2012 can be used to perform media operations , an embodi 
ment of GPE 2010 also includes a media pipeline 2016 that 
is specifically used to perform media operations , such as 
video post - processing and image enhancement . 
[ 0256 ] In some embodiments , media pipeline 2016 
includes fixed function or programmable logic units to 
perform one or more specialized media operations , such as 
video decode acceleration , video de - interlacing , and video 
encode acceleration in place of , or on behalf of video codec 
engine 2006. In some embodiments , media pipeline 2016 
additionally includes a thread spawning unit to spawn 
threads for execution on 3D / Media sub - system 2015. The 
spawned threads perform computations for the media opera 
tions on one or more graphics execution units included in 
3D / Media sub - system 2015 . 
[ 0257 ] In some embodiments , 3D / Media subsystem 2015 
includes logic for executing threads spawned by 3D pipeline 
2012 and media pipeline 2016. In one embodiment , the 
pipelines send thread execution requests to 3D / Media sub 
system 2015 , which includes thread dispatch logic for arbi 
trating and dispatching the various requests to available 
thread execution resources . The execution resources include 
an array of graphics execution units to process the 3D and 
media threads . In some embodiments , 3D / Media subsystem 
2015 includes one or more internal caches for thread instruc 
tions and data . In some embodiments , the subsystem also 
includes shared memory , including registers and addressable 
memory , to share data between threads and to store output 
data . 
[ 0258 ] 3D / Media Processing 
[ 0259 ] FIG . 21 is a block diagram of a graphics processing 
engine 2110 of a hics processor in accordance with 
some embodiments . In one embodiment , the graphics pro 
cessing engine ( GPE ) 2110 is a version of the GPE 2010 
shown in FIG . 20. Elements of FIG . 21 having the same 
reference numbers ( or names ) as the elements of any other 
figure herein can operate or function in any manner similar 
to that described elsewhere herein , but are not limited to 
such . For example , the 3D pipeline 2012 and media pipeline 
2016 of FIG . 20 are illustrated . The media pipeline 2016 is 
optional in some embodiments of the GPE 2110 and may not 
be explicitly included within the GPE 2110. For example , 
and in at least one embodiment , a separate media and / or 
image processor is coupled to the GPE 2110 . 
[ 0260 ] In some embodiments , GPE 2110 couples with or 
includes a command streamer 2103 , which provides a com 
mand stream to the 3D pipeline 2012 and / or media pipelines 
2016. In some embodiments , command streamer 2103 is 
coupled with memory , which can be system memory , or one 
or more of internal cache memory and shared cache 
memory . In some embodiments , command streamer 2103 
receives commands from the memory and sends the com 
mands to 3D pipeline 2012 and / or media pipeline 2016. The 
commands are directives fetched from a ring buffer , which 
stores commands for the 3D pipeline 2012 and media 
pipeline 2016. In one embodiment , the ring buffer can 

[ 0261 ] In various embodiments , the 3D pipeline 2012 can 
execute one or more shader programs , such as vertex shad 
ers , geometry shaders , pixel shaders , fragment shaders , 
compute shaders , or other shader programs , by processing 
the instructions and dispatching execution threads to the 
graphics core array 2114. The graphics core array 2114 
provides a unified block of execution resources . Multi 
purpose execution logic ( e.g. , execution units ) within the 
graphic core array 2114 includes support for various 3D API 
shader languages and can execute multiple simultaneous 
execution threads associated with multiple shaders . 
[ 0262 ] In some embodiments , the graphics core array 2114 
also includes execution logic to perform media functions , 
such as video and / or image processing . In one embodiment , 
the execution units additionally include general - purpose 
logic that is programmable to perform parallel general 
purpose computational operations , in addition to graphics 
processing operations . The general - purpose logic can per 
form processing operations in parallel or in conjunction with 
general purpose logic within the processor core ( s ) 1807 of 
FIG . 18 or core 1902A - 1902N as in FIG . 19 . 
[ 0263 ] Output data generated by threads executing on the 
graphics core array 2114 can output data to memory in a 
unified return buffer ( URB ) 2118. The URB 2118 can store 
data for multiple threads . In some embodiments , the URB 
2118 may be used to send data between different threads 
executing on the graphics core array 2114. In some embodi 
ments , the URB 2118 may additionally be used for synchro 
nization between threads on the graphics core array and 
fixed function logic within the shared function logic 2120 . 
[ 0264 ] In some embodiments , graphics core array 2114 is 
scalable , such that the array includes a variable number of 
graphics cores , each having a variable number of execution 
units based on the target power and performance level of 
GPE 2110. In one embodiment , the execution resources are 
dynamically scalable , such that execution resources may be 
enabled or disabled as needed . 
[ 0265 ] The graphics core array 2114 couples with shared 
function logic 2120 that includes multiple resources that are 
shared between the graphics cores in the graphics core array . 
The shared functions within the shared function logic 2120 
are hardware logic units that provide specialized supple 
mental functionality to the graphics core array 2114. In 
various embodiments , shared function logic 2120 includes 
but is not limited to sampler 2121 , math 2122 , and inter 
thread communication ( ITC ) 2123 logic . Additionally , some 
embodiments implement one or more cache ( s ) 2125 within 
the shared function logic 2120. A shared function is imple 
mented where the demand for a given specialized function 
is insufficient for inclusion within the graphics core array 
2114. Instead a single instantiation of that specialized func 
tion is implemented as a stand - alone entity in the shared 
function logic 2120 and shared among the execution 
resources within the graphics core array 2114. The precise 
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set of functions that are shared between the graphics core 
array 2114 and included within the graphics core array 2114 
varies between embodiments . 
[ 0266 ] FIG . 22 is a block diagram of another embodiment 
of a graphics processor 2200. Elements of FIG . 22 having 
the same reference numbers ( or names ) as the elements of 
any other figure herein can operate or function in any 
manner similar to that described elsewhere herein , but are 
not limited to such . 
[ 0267 ] In some embodiments , graphics processor 2200 
includes a ring interconnect 2202 , a pipeline front - end 2204 , 
a media engine 2237 , and graphics cores 2280A - 2280N . In 
some embodiments , ring interconnect 2202 couples the 
graphics processor to other processing units , including other 
graphics processors or one or more general - purpose proces 
sor cores . In some embodiments , the graphics processor is 
one of many processors integrated within a multi - core 
processing system . 
[ 0268 ] In some embodiments , graphics processor 2200 
receives batches of commands via ring interconnect 2202 . 
The incoming commands are interpreted by a command 
streamer 2203 in the pipeline front - end 2204. In some 
embodiments , graphics processor 2200 includes scalable 
execution logic to perform 3D geometry processing and 
media processing via the graphics core ( s ) 2280A - 2280N . 
For 3D geometry processing commands , command streamer 
2203 supplies commands to geometry pipeline 2236. For at 
least some media processing commands , command streamer 
2203 supplies the commands to a video front end 2234 , 
which couples with a media engine 2237. In some embodi 
ments , media engine 2237 includes a Video Quality Engine 
( VQE ) 2230 for video and image post - processing and a 
multi - format encode / decode ( MFX ) 2233 engine to provide 
hardware - accelerated media data encode and decode . In 
some embodiments , geometry pipeline 2236 and media 
engine 2237 each generate execution threads for the thread 
execution resources provided by at least one graphics core 
2280A . 
[ 0269 ] In some embodiments , graphics processor 2200 
includes scalable thread execution resources featuring 
modular cores 2280A - 2280N ( sometimes referred to as core 
slices ) , each having multiple sub - cores 2250A - 2250N , 
2260A - 2260N ( sometimes referred to as core sub - slices ) . In 
some embodiments , graphics processor 2200 can have any 
number of graphics cores 2280A through 2280N . In some 
embodiments , graphics processor 2200 includes a graphics 
core 2280A having at least a first sub - core 2250A and a 
second core sub - core 2260A . In other embodiments , the 
graphics processor is a low power processor with a single 
sub - core ( e.g. , 2250A ) . In some embodiments , graphics 
processor 2200 includes multiple graphics cores 2280A 
2280N , each including a set of first sub - cores 2250A - 2250N 
and a set of second sub - cores 2260A - 2260N . Each sub - core 
in the set of first sub - cores 2250A - 2250N includes at least a 
first set of execution units 2252A - 2252N and media / texture 
samplers 2254A - 2254N . Each sub - core in the set of second 
sub - cores 2260A - 2260N includes at least a second set of 
execution units 2262A - 2262N and samplers 2264A - 2264N . 
In some embodiments , each sub - core 2250A - 2250N , 
2260A - 2260N shares a set of shared resources 2270A 
2270N . In some embodiments , the shared resources include 
shared cache memory and pixel operation logic . Other 
shared resources may also be included in the various 
embodiments of the graphics processor . 

[ 0270 ] Execution Logic 
[ 0271 ] FIG . 23 illustrates thread execution logic 2300 
including an array of processing elements employed in some 
embodiments of a GPE . Elements of FIG . 23 having the 
same reference numbers ( or names ) as the elements of any 
other figure herein can operate or function in any manner 
similar to that described elsewhere herein , but are not 
limited to such . 
[ 0272 ] In some embodiments , thread execution logic 2300 
includes a pixel shader 2302 , a thread dispatcher 2304 , 
instruction cache 2306 , scalable execution unit array 
including a plurality of execution units 2308A - 2308N , a 
sampler 2310 , a data cache 2312 , and a data port 2314. In 
one embodiment , the included components are intercon 
nected via an interconnect fabric that links to each of the 
components . In some embodiments , thread execution logic 
2300 includes one or more connections to memory , such as 
system memory or cache memory , through one or more of 
instruction cache 2306 , data port 2314 , sampler 2310 , and 
execution unit array 2308A - 2308N . In some embodiments , 
each execution unit ( e.g. 2308A ) is an individual vector 
processor capable of executing multiple simultaneous 
threads and processing multiple data elements in parallel for 
each thread . In some embodiments , execution unit array 
2308A - 2308N includes any number individual execution 
units . 
[ 0273 ] In some embodiments , execution unit array 2308A 
2308N is primarily used to execute “ shader ” programs . In 
some embodiments , the execution units in array 2308A 
2308N execute an instruction set that includes native support 
for many standard 3D graphics shader instructions , such that 
shader programs from graphics libraries ( e.g. , Direct 3D and 
OpenGL ) are executed with a minimal translation . The 
execution units support vertex and geometry processing 
( e.g. , vertex programs , geometry programs , vertex shaders ) , 
pixel processing ( e.g. , pixel shaders , fragment shaders ) and 
general - purpose processing ( e.g. , compute and media shad 
ers ) . 
[ 0274 ] Each execution unit in execution unit array 2308A 
2308N operates on arrays of data elements . The number of 
data elements is the “ execution size , " or the number of 
channels for the instruction . An execution channel is a 
logical unit of execution for data element access , masking , 
and flow control within instructions . The number of chan 
nels may be independent of the number of physical Arith 
metic Logic Units ( ALUs ) or Floating Point Units ( FPUs ) 
for a particular graphics processor . In some embodiments , 
execution units 2308A - 2308N support integer and floating 
point data types . 
[ 0275 ] The execution unit instruction set includes single 
instruction multiple data ( SIMD ) or single instruction mul 
tiple thread ( SIMT ) instructions . The various data elements 
can be stored as a packed data type in a register and the 
execution unit will process the various elements based on 
the data size of the elements . For example , when operating 
on a 256 - bit wide vector , the 256 bits of the vector are stored 
in a register and the execution unit operates on the vector as 
four separate 64 - bit packed data elements ( Quad - Word 
( QW ) size data elements ) , eight separate 32 - bit packed data 
elements ( Double Word ( DW ) size data elements ) , sixteen 
separate 16 - bit packed data elements ( Word ( W ) size data 
elements ) , or thirty - two separate 8 - bit data elements ( byte 
( B ) size data elements ) . However , different vector widths 
and register sizes are possible . 
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[ 0276 ] One or more internal instruction caches ( e.g. , 2306 ) 
are included in the thread execution logic 2300 to cache 
thread instructions for the execution units . In some embodi 
ments , one or more data caches ( e.g. , 2312 ) are included to 
cache thread data during thread execution . In some embodi 
ments , sampler 2310 is included to provide texture sampling 
for 3D operations and media sampling for media operations . 
In some embodiments , sampler 2310 includes specialized 
texture or media sampling functionality to process texture or 
media data during the sampling process before providing the 
sampled data to an execution unit . 
[ 0277 ] During execution , the graphics and media pipelines 
send thread initiation requests to thread execution logic 2300 
via thread spawning and dispatch logic . In some embodi 
ments , thread execution logic 2300 includes a local thread 
dispatcher 2304 that arbitrates thread initiation requests 
from the graphics and media pipelines and instantiates the 
requested threads on one or more execution units 2308A 
2308N . For example , the geometry pipeline ( e.g. , 2236 of 
FIG . 22 ) dispatches vertex processing , tessellation , or geom 
etry processing threads to thread execution logic 2300 ( FIG . 
23 ) . In some embodiments , thread dispatcher 2304 can also 
process runtime thread spawning requests from the execut 
ing shader programs . 
[ 0278 ] Once a group of geometric objects has been pro 
cessed and rasterized into pixel data , pixel shader 2302 is 
invoked to further compute output information and cause 
results to be written to output surfaces ( e.g. , color buffers , 
depth buffers , stencil buffers , etc. ) . In some embodiments , 
pixel shader 2302 calculates the values of the various vertex 
attributes that are to be interpolated across the rasterized 
object . In some embodiments , pixel shader 2302 then 
executes an application programming interface ( API ) -sup 
plied pixel shader program . To execute the pixel shader 
program , pixel shader 2302 dispatches threads to an execu 
tion unit ( e.g. , 2308A ) via thread dispatcher 2304. In some 
embodiments , pixel shader 2302 uses texture sampling logic 
in sampler 2310 to access texture data in texture maps stored 
in memory . Arithmetic operations on the texture data and the 
input geometry data compute pixel color data for each 
geometric fragment , or discards one or more pixels from 
further processing . 
[ 0279 ] In some embodiments , the data port 2314 provides 
a memory access mechanism for the thread execution logic 
2300 output processed data to memory for processing on a 
graphics processor output pipeline . In some embodiments , 
the data port 2314 includes or couples to one or more cache 
memories ( e.g. , data cache 2312 ) to cache data for memory 
access via the data port . 
[ 0280 ] FIG . 24 is a block diagram illustrating a graphics 
processor instruction formats 2400 according to some 
embodiments . In one or more embodiment , the graphics 
processor execution units support an instruction set having 
instructions in multiple formats . The solid lined boxes 
illustrate the components that are generally included in an 
execution unit instruction , while the dashed lines include 
components that are optional or that are only included in a 
sub - set of the instructions . In some embodiments , instruc 
tion format 2400 described and illustrated are macro - instruc 
tions , in that they are instructions supplied to the execution 
unit , as opposed to micro - operations resulting from instruc 
tion decode once the instruction is processed . 
[ 0281 ] In some embodiments , the graphics processor 
execution units natively support instructions in a 128 - bit 

instruction format 2410. A 64 - bit compacted instruction 
format 2430 is available for some instructions based on the 
selected instruction , instruction options , and number of 
operands . The native 128 - bit instruction format 2410 pro 
vides access to all instruction options , while some options 
and operations are restricted in the 64 - bit instruction format 
2430. The native instructions available in the 64 - bit instruc 
tion format 2430 vary by embodiment . In some embodi 
ments , the instruction is compacted in part using a set of 
index values in an index field 2413. The execution unit 
hardware references a set of compaction tables based on the 
index values and uses the compaction table outputs to 
reconstruct a native instruction in the 128 - bit instruction 
format 2410 . 
[ 0282 ] For each format , instruction opcode 2412 defines 
the operation that the execution unit is to perform . The 
execution units execute each instruction in parallel across 
the multiple data elements of each operand . For example , in 
response to an add instruction the execution unit performs a 
simultaneous add operation across each color channel rep 
resenting a texture element or picture element . By default , 
the execution unit performs each instruction across all data 
channels of the operands . In some embodiments , instruction 
control field 2414 enables control over certain execution 
options , such as channels selection ( e.g. , predication ) and 
data channel order ( e.g. , swizzle ) . For 128 - bit instructions 
2410 an exec - size field 2416 limits the number of data 
channels that will be executed in parallel . In some embodi 
ments , exec - size field 2416 is not available for use in the 
64 - bit compact instruction format 2430 . 
[ 0283 ] Some execution unit instructions have up to three 
operands including two source operands , srco 2420 , src1 
2422 , and one destination 2418. In some embodiments , the 
execution units support dual destination instructions , where 
one of the destinations is implied . Data manipulation 
instructions can have a third source operand ( e.g. , SRC2 
2424 ) , where the instruction opcode 2412 determines the 
number of source operands . An instruction's last source 
operand can be an immediate ( e.g. , hard - coded ) value passed 
with the instruction . 
[ 0284 ] In some embodiments , the 128 - bit instruction for 
mat 2410 includes an access / address mode information 2426 
specifying , for example , whether direct register addressing 
mode or indirect register addressing mode is used . When 
direct register addressing mode is used , the register address 
of one or more operands is directly provided by bits in the 
instruction 2410 . 
[ 0285 ] In some embodiments , the 128 - bit instruction for 
mat 2410 includes an access / address mode field 2426 , which 
specifies an address mode and / or an access mode for the 
instruction . In one embodiment , the access mode to define a 
data access alignment for the instruction . Some embodi 
ments support access modes including a 16 - byte aligned 
access mode and a 1 - byte aligned access mode , where the 
byte alignment of the access mode determines the access 
alignment of the instruction operands . For example , when in 
a first mode , the instruction 2410 may use byte - aligned 
addressing for source and destination operands and when in 
a second mode , the instruction 2410 may use 16 - byte 
aligned addressing for all source and destination operands . 
[ 0286 ] In one embodiment , the address mode portion of 
the access / address mode field 2426 determines whether the 
instruction is to use direct or indirect addressing . When 
direct register addressing mode is used bits in the instruction 



US 2021/0390654 A1 Dec. 16 , 2021 
27 

a 

2410 directly provide the register address of one or more 
operands . When indirect register addressing mode is used , 
the register address of one or more operands may be 
computed based on an address register value and an address 
immediate field in the instruction . 
[ 0287 ] In some embodiments , instructions are grouped 
based on opcode 2412 bit - fields to simplify Opcode decode 
2440. For an 8 - bit opcode , bits 4 , 5 , and 6 allow the 
execution unit to determine the type of opcode . The precise 
opcode grouping shown is merely an example . In some 
embodiments , a move and logic opcode group 2442 includes 
data movement and logic instructions ( e.g. , move ( mov ) , 
compare ( cmp ) ) . In some embodiments , move and logic 
group 2442 shares the five most significant bits ( MSB ) , 
where move ( mov ) instructions are in the form of 
0000xxxxb and logic instructions are in the form of 
0001xxxxb . A flow control instruction group 2444 ( e.g. , call , 
jump ( jmp ) ) includes instructions in the form of 0010xxxxb 
( e.g. , 0x20 ) . A miscellaneous instruction group 2446 
includes a mix of instructions , including synchronization 
instructions ( e.g. , wait , send ) in the form of 0011xxxxb ( e.g. , 
0x30 ) . A parallel math instruction group 2448 includes 
component - wise arithmetic instructions ( e.g. , add , multiply 
( mul ) ) in the form of 0100xxxxb ( e.g. , Ox40 ) . The parallel 
math group 2448 performs the arithmetic operations in 
parallel across data channels . The vector math group 2450 
includes arithmetic instructions ( e.g. , dp4 ) in the form of 
0101xxxxb ( e.g. , Ox50 ) . The vector math group performs 
arithmetic such as dot product calculations on vector oper 
ands . 
[ 0288 ] Graphics Pipeline 
[ 0289 ] FIG . 25 is a block diagram of another embodiment 
of a graphics processor 2500. Elements of FIG . 25 having 
the same reference numbers ( or names ) as the elements of 
any other figure herein can operate or function in any 
manner similar to that described elsewhere herein , but are 
not limited to such . 
[ 0290 ] In some embodiments , graphics processor 2500 
includes a graphics pipeline 2520 , a media pipeline 2530 , a 
display engine 2540 , thread execution logic 2550 , and a 
render output pipeline 2570. In some embodiments , graphics 
processor 2500 is a graphics processor within a multi - core 
processing system that includes one or more general - pur 
pose processing cores . The graphics processor is controlled 
by register writes to one or more control registers ( not 
shown ) or via commands issued to graphics processor 2500 
via a ring interconnect 2502. In some embodiments , ring 
interconnect 2502 couples graphics processor 2500 to other 
processing components , such as other graphics processors or 
general - purpose processors . Command from ring intercon 
nect 2502 are interpreted by a command streamer 2503 , 
which supplies instructions to individual components of 
graphics pipeline 2520 or media pipeline 2530 . 
[ 0291 ] In some embodiments , command streamer 2503 
directs the operation of a vertex fetcher 2505 that reads 
vertex data from memory and executes vertex - processing 
commands provided by command streamer 2503. In some 
embodiments , vertex fetcher 2505 provides vertex data to a 
vertex shader 2507 , which performs coordinate space trans 
formation and lighting operations to each vertex . In some 
embodiments , vertex fetcher 2505 and vertex shader 2507 
execute vertex - processing instructions by dispatching 
execution threads to execution units 2552A , 2552B via a 
thread dispatcher 2531 . 

[ 0292 ] In some embodiments , execution units 2552A , 
2552B are an array of vector processors having an instruc 
tion set for performing graphics and media operations . In 
some embodiments , execution units 2552A , 2552B have an 
attached L1 cache 2551 that is specific for each array or 
shared between the arrays . The cache can be configured as 
a data cache , an instruction cache , or a single cache that is 
partitioned to contain data and instructions in different 
partitions . 
[ 0293 ] In some embodiments , graphics pipeline 2520 
includes tessellation components to perform hardware - ac 
celerated tessellation of 3D objects . In some embodiments , 
a programmable hull shader 2511 configures the tessellation 
operations . A programmable domain shader 2517 provides 
back - end evaluation of tessellation output . A tessellator 
2513 operates at the direction of hull shader 2511 and 
contains special purpose logic to generate a set of detailed 
geometric objects based on a coarse geometric model that is 
provided as input to graphics pipeline 2520. In some 
embodiments , if tessellation is not used , tessellation com 
ponents 2511 , 2513 , 2517 can be bypassed . 
[ 0294 ] In some embodiments , complete geometric objects 
can be processed by a geometry shader 2519 via one or more 
threads dispatched to execution units 2552A , 2552B , or can 
proceed directly to the clipper 2529. In some embodiments , 
the geometry shader operates on entire geometric objects , 
rather than vertices or patches of vertices as in previous 
stages of the graphics pipeline . If the tessellation is disabled 
the geometry shader 2519 receives input from the vertex 
shader 2507. In some embodiments , geometry shader 2519 
is programmable by a geometry shader program to perform 
geometry tessellation if the tessellation units are disabled . 
[ 0295 ] Before rasterization , a clipper 2529 processes ver 
tex data . The clipper 2529 may be a fixed function clipper or 
a programmable clipper having clipping and geometry 
shader functions . In some embodiments , a rasterizer and 
depth test component 2573 in the render output pipeline 
2570 dispatches pixel shaders to convert the geometric 
objects into their per pixel representations . In some embodi 
ments , pixel shader logic is included in thread execution 
logic 2550. In some embodiments , an application can bypass 
rasterization and access un - rasterized vertex data via a 
stream out unit 2523 . 
[ 0296 ] The graphics processor 2500 has an interconnect 
bus , interconnect fabric , or some other interconnect mecha 
nism that allows data and message passing amongst the 
major components of the processor . In some embodiments , 
execution units 2552A , 2552B and associated cache ( s ) 2551 , 
texture and media sampler 2554 , and texture / sampler cache 
2558 interconnect via a data port 2556 to perform memory 
access and communicate with render output pipeline com 
ponents of the processor . In some embodiments , sampler 
2554 , caches 2551 , 2558 and execution units 2552A , 2552B 
each have separate memory access paths . 
[ 0297 ] In some embodiments , render output pipeline 2570 
contains a rasterizer and depth test component 2573 that 
converts vertex - based objects into an associated pixel - based 
representation . In some embodiments , the render output 
pipeline 2570 includes a windower / masker unit to perform 
fixed function triangle and line rasterization . An associated 
render cache 2578 and depth cache 2579 are also available 
in some embodiments . A pixel operations component 2577 
performs pixel - based operations on the data , though in some 
instances , pixel operations associated with 2D operations 
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mand data . In some embodiments , a graphics processor 
command parser examines the client field of each command 
to condition the further processing of the command and 
route the command data to the appropriate client unit . In 
some embodiments , the graphics processor client units 
include a memory interface unit , a render unit , a 2D unit , a 
3D unit , and a media unit . Each client unit has a correspond 
ing processing pipeline that processes the commands . Once 
the command is received by the client unit , the client unit 
reads the opcode 2604 and , if present , sub - opcode 2605 to 
determine the operation to perform . The client unit performs 
the command using information in data field 2606. For some 
commands an explicit command size 2608 is expected to 
specify the size of the command . In some embodiments , the 
command parser automatically determines the size of at least 
some of the commands based on the command opcode . In 
some embodiments , commands are aligned via multiples of 
a double word . 

[ 0304 ] The flow diagram in FIG . 26B shows an exemplary 
graphics processor command sequence 2610. In some 
embodiments , software or firmware of a data processing 
system that features an embodiment of a graphics processor 
uses a version of the command sequence shown to set up , 
execute , and terminate a set of graphics operations . A sample 
command sequence is shown and described for purposes of 
example only as embodiments are not limited to these 
specific commands or to this command sequence . Moreover , 
the commands may be issued as batch of commands in a 
command sequence , such that the graphics processor will 
process the sequence of commands in at least partially 
concurrence . 

( e.g. bit block image transfers with blending ) are performed 
by the 2D engine 2541 , or substituted at display time by the 
display controller 2543 using overlay display planes . In 
some embodiments , a shared L3 cache 2575 is available to 
all graphics components , allowing the sharing of data with 
out the use of main system memory . 
[ 0298 ] In some embodiments , graphics processor media 
pipeline 2530 includes a media engine 2537 and a video 
front end 2534. In some embodiments , video front end 2534 
receives pipeline commands from the command streamer 
2503. In some embodiments , media pipeline 2530 includes 
a separate command streamer . In some embodiments , video 
front - end 2534 processes media commands before sending 
the command to the media engine 2537. In some embodi 
ments , media engine 2537 includes thread spawning func 
tionality to spawn threads for dispatch to thread execution 
logic 2550 via thread dispatcher 2531 . 
[ 0299 ] In some embodiments , graphics processor 2500 
includes a display engine 2540. In some embodiments , 
display engine 2540 is external to processor 2500 and 
couples with the graphics processor via the ring interconnect 
2502 , or some other interconnect bus or fabric . In some 
embodiments , display engine 2540 includes a 2D engine 
2541 and a display controller 2543. In some embodiments , 
display engine 2540 contains special purpose logic capable 
of operating independently of the 3D pipeline . In some 
embodiments , display controller 2543 couples with a display 
device ( not shown ) , which may be a system integrated 
display device , as in a laptop computer , or an external 
display device attached via a display device connector . 
[ 0300 ] In some embodiments , graphics pipeline 2520 and 
media pipeline 2530 are configurable to perform operations 
based on multiple graphics and media programming inter 
faces and are not specific to any one application program 
ming interface ( API ) . In some embodiments , driver software 
for the graphics processor translates API calls that are 
specific to a particular graphics or media library into com 
mands that can be processed by the graphics processor . In 
some embodiments , support is provided for the Open Graph 
ics Library ( OpenGL ) and Open Computing Language 
( OpenCL ) from the Khronos Group , the Direct3D library 
from the Microsoft Corporation , or support may be provided 
to both OpenGL and D3D . Support may also be provided for 
the Open Source Computer Vision Library ( OpenCV ) . A 
future API with a compatible 3D pipeline would also be 
supported if a mapping can be made from the pipeline of the 
future API to the pipeline of the graphics processor . 
[ 0301 ] Graphics Pipeline Programming 
[ 0302 ] FIG . 26A is a block diagram illustrating a graphics 
processor command format 2600 according to some embodi 
ments . FIG . 26B is a block diagram illustrating a graphics 
processor command sequence 2610 according to an embodi 
ment . The solid lined boxes in FIG . 26A illustrate the 
components that are generally included in a graphics com 
mand while the dashed lines include components that are 
optional or that are only included in a sub - set of the graphics 
commands . The exemplary graphics processor command 
format 2600 of FIG . 26A includes data fields to identify a 
target client 2602 of the command , a command operation 
code ( opcode ) 2604 , and the relevant data 2606 for the 
command . A sub - opcode 2605 and a command size 2608 are 
also included in some commands . 
[ 0303 ] In some embodiments , client 2602 specifies the 
client unit of the graphics device that processes the com 

[ 0305 ] In some embodiments , the graphics processor com 
mand sequence 2610 may begin with a pipeline flush 
command 2612 to cause any active graphics pipeline to 
complete the currently pending commands for the pipeline . 
In some embodiments , the 3D pipeline 2622 and the media 
pipeline 2624 do not operate concurrently . The pipeline flush 
is performed to cause the active graphics pipeline to com 
plete any pending commands . In response to a pipeline flush , 
the command parser for the graphics processor will pause 
command processing until the active drawing engines com 
plete pending operations and the relevant read caches are 
invalidated . Optionally , any data in the render cache that is 
marked ‘ dirty ' can be flushed to memory . In some embodi 
ments , pipeline flush command 2612 can be used for pipe 
line synchronization or before placing the graphics proces 
sor into a low power state . 
[ 0306 ] In some embodiments , a pipeline select command 
2613 is used when a command sequence requires the graph 
ics processor to explicitly switch between pipelines . In some 
embodiments , a pipeline select command 2613 is required 
only once within an execution context before issuing pipe 
line commands unless the context is to issue commands for 
both pipelines . In some embodiments , a pipeline flush 
command is 2612 is required immediately before a pipeline 
switch via the pipeline select command 2613 . 
[ 0307 ] In some embodiments , a pipeline control command 
2614 configures a graphics pipeline for operation and is used 
to program the 3D pipeline 2622 and the media pipeline 
2624. In some embodiments , pipeline control command 
2614 configures the pipeline state for the active pipeline . In 
one embodiment , the pipeline control command 2614 is 
used for pipeline synchronization and to clear data from one 
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or more cache memories within the active pipeline before 
processing a batch of commands . 
[ 0308 ] In some embodiments , commands for the return 
buffer state 2616 are used to configure a set of return buffers 
for the respective pipelines to write data . Some pipeline 
operations require the allocation , selection , or configuration 
of one or more return buffers into which the operations write 
intermediate data during processing . In some embodiments , 
the graphics processor also uses one or more return buffers 
to store output data and to perform cross thread communi 
cation . In some embodiments , configuring the return buffer 
state 2616 includes selecting the size and number of return 
buffers to use for a set of pipeline operations . 
[ 0309 ] The remaining commands in the command 
sequence differ based on the active pipeline for operations . 
Based on a pipeline determination 2620 , the command 
sequence is tailored to the 3D pipeline 2622 beginning with 
the 3D pipeline state 2630 , or the media pipeline 2624 
beginning at the media pipeline state 2640 . 
[ 0310 ] The commands for the 3D pipeline state 2630 
include 3D state setting commands for vertex buffer state , 
vertex element state , constant color state , depth buffer state , 
and other state variables that are to be configured before 3D 
primitive commands are processed . The values of these 
commands are determined at least in part based the particu 
lar 3D API in use . In some embodiments , 3D pipeline state 
2630 commands are also able to selectively disable or 
bypass certain pipeline elements if those elements will not 
be used . 
[ 0311 ] In some embodiments , 3D primitive 2632 com 
mand is used to submit 3D primitives to be processed by the 
3D pipeline . Commands and associated parameters that are 
passed to the graphics processor via the 3D primitive 2632 
command are forwarded to the vertex fetch function in the 
graphics pipeline . The vertex fetch function uses the 3D 
primitive 2632 command data to generate vertex data struc 
tures . The vertex data structures are stored in one or more 
return buffers . In some embodiments , 3D primitive 2632 
command is used to perform vertex operations on 3D 
primitives via vertex shaders . To process vertex shaders , 3D 
pipeline 2622 dispatches shader execution threads to graph 
ics processor execution units . 
[ 0312 ] In some embodiments , 3D pipeline 2622 is trig 
gered via an execute 2634 command or event . In some 
embodiments , a register write triggers command execution . 
In some embodiments execution is triggered via a ' go ' or 
‘ kick'command in the command sequence . In one embodi 
ment command execution is triggered using a pipeline 
synchronization command to flush the command sequence 
through the graphics pipeline . The 3D pipeline will perform 
geometry processing for the 3D primitives . Once operations 
are complete , the resulting geometric objects are rasterized 
and the pixel engine colors the resulting pixels . Additional 
commands to control pixel shading and pixel back end 
operations may also be included for those operations . 
[ 0313 ] In some embodiments , the graphics processor com 
mand sequence 2610 follows the media pipeline 2624 path 
when performing media operations . In general , the specific 
use and manner of programming for the media pipeline 2624 
depends on the media or compute operations to be per 
formed . Specific media decode operations may be offloaded 
to the media pipeline during media decode . In some embodi 
ments , the media pipeline can also be bypassed and media 
decode can be performed in whole or in part using resources 

provided by one or more general - purpose processing cores . 
In one embodiment , the media pipeline also includes ele 
ments for general - purpose graphics processor unit ( GPGPU ) 
operations , where the graphics processor is used to perform 
SIMD vector operations using computational shader pro 
grams that are not explicitly related to the rendering of 
graphics primitives . 
[ 0314 ] In some embodiments , media pipeline 2624 is 
configured in a similar manner as the 3D pipeline 2622. A 
set of commands to configure the media pipeline state 2640 
are dispatched or placed into a command queue before the 
media object commands 2642. In some embodiments , com 
mands for the media pipeline state 2640 include data to 
configure the media pipeline elements that will be used to 
process the media objects . This includes data to configure 
the video decode and video encode logic within the media 
pipeline , such as encode or decode format . In some embodi 
ments , commands for the media pipeline state 2640 also 
support the use of one or more pointers to “ indirect ” state 
elements that contain a batch of state settings . 
[ 0315 ] In some embodiments , media object commands 
2642 supply pointers to media objects for processing by the 
media pipeline . The media objects include memory buffers 
containing video data to be processed . In some embodi 
ments , all media pipeline states must be valid before issuing 
a media object command 2642. Once the pipeline state is 
configured and media object commands 2642 are queued , 
the media pipeline 2624 is triggered via an execute com 
mand 2644 or an equivalent execute event ( e.g. , register 
write ) . Output from media pipeline 2624 may then be post 
processed by operations provided by the 3D pipeline 2622 or 
the media pipeline 2624. In some embodiments , GPGPU 
operations are configured and executed in a similar manner 
as media operations . 
[ 0316 ] Graphics Software Architecture 
[ 0317 ] FIG . 27 illustrates exemplary graphics software 
architecture for a data processing system 2700 according to 
some embodiments . In some embodiments , software archi 
tecture includes a 3D graphics application 2710 , an operat 
ing system 2720 , and at least one processor 2730. In some 
embodiments , processor 2730 includes a graphics processor 
2732 and one or more general - purpose processor core ( s ) 
2734. The graphics application 2710 and operating system 
2720 each execute in the system memory 2750 of the data 
processing system . 
[ 0318 ] In some embodiments , 3D graphics application 
2710 contains one or more shader programs including 
shader instructions 2712. The shader language instructions 
may be in a high - level shader language , such as the High 
Level Shader Language ( HLSL ) or the OpenGL Shader 
Language ( GLSL ) . The application also includes executable 
instructions 2714 in a machine language suitable for execu 
tion by the general - purpose processor core ( s ) 2734. The 
application also includes graphics objects 2716 defined by 
vertex data . 
[ 0319 ] In some embodiments , operating system 2720 is a 
Microsoft® Windows® operating system from the 
Microsoft Corporation , a proprietary UNIX - like operating 
system , or an open source UNIX - like operating system 
using a variant of the Linux kernel . The operating system 
2720 can support a graphics API 2722 such as the Direct3D 
API or the OpenGL API . When the Direct3D API is in use , 
the operating system 2720 uses a front - end shader compiler 
2724 to compile any shader instructions 2712 in HLSL into 
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a lower - level shader language . The compilation may be a 
just - in - time ( JIT ) compilation or the application can perform 
shader pre - compilation . In some embodiments , high - level 
shaders are compiled into low - level shaders during the 
compilation of the 3D graphics application 2710 . 
[ 0320 ] In some embodiments , user mode graphics driver 
2726 contains a back - end shader compiler 2727 to convert 
the shader instructions 2712 into a hardware specific repre 
sentation . When the OpenGL API is in use , shader instruc 
tions 2712 in the GLSL high - level language are passed to a 
user mode graphics driver 2726 for compilation . In some 
embodiments , user mode graphics driver 2726 uses operat 
ing system kernel mode functions 2728 to communicate 
with a kernel mode graphics driver 2729. In some embodi 
ments , kernel mode graphics driver 2729 communicates 
with graphics processor 2732 to dispatch commands and 
instructions . 
[ 0321 ] IP Core Implementations 
[ 0322 ] One or more aspects of at least one embodiment 
may be implemented by representative code stored on a 
machine - readable medium which represents and / or defines 
logic within an integrated circuit such as a processor . For 
example , the machine - readable medium may include 
instructions which represent various logic within the pro 
cessor . When read by a machine , the instructions may cause 
the machine to fabricate the logic to perform the techniques 
described herein . Such representations , known as “ IP cores , ” 
are reusable units of logic for an integrated circuit that may 
be stored on a tangible , machine - readable medium as a 
hardware model that describes the structure of the integrated 
circuit . The hardware model may be supplied to various 
customers or manufacturing facilities , which load the hard 
ware model on fabrication machines that manufacture the 
integrated circuit . The integrated circuit may be fabricated 
such that the circuit performs operations described in asso 
ciation with any of the embodiments described herein . 
[ 0323 ] FIG . 28 is a block diagram illustrating an IP core 
development system 2800 that may be used to manufacture 
an integrated circuit to perform operations according to an 
embodiment . The IP core development system 2800 may be 
used to generate modular , re - usable designs that can be 
incorporated into a larger design or used to construct an 
entire integrated circuit ( e.g. , an SOC integrated circuit ) . A 
design facility 2830 can generate a software simulation 2810 
of an IP core design in a high - level programming language 
( e.g. , C / C ++ ) . The software simulation 2810 can be used to 
design , test , and verify the behavior of the IP core using a 
simulation model 2812. The simulation model 2812 may 
include functional , behavioral , and / or timing simulations . A 
register transfer level ( RTL ) design 2815 can then be created 
or synthesized from the simulation model 2812. The RTL 
design 2815 is an abstraction of the behavior of the inte 
grated circuit that models the flow of digital signals between 
hardware registers , including the associated logic performed 
using the modeled digital signals . In addition to an RTL 
design 2815 , lower - level designs at the logic level or tran 
sistor level may also be created , designed , or synthesized . 
Thus , the particular details of the initial design and simula 
tion may vary . 
[ 0324 ] The RTL design 2815 or equivalent may be further 
synthesized by the design facility into a hardware model 
2820 , which may be in a hardware description language 
( HDL ) , or some other representation of physical design data . 
The HDL may be further simulated or tested to verify the IP 

core design . The IP core design can be stored for delivery to 
a 3rd party fabrication facility 2865 using non - volatile 
memory 2840 ( e.g. , hard disk , flash memory , or any non 
volatile storage medium ) . Alternatively , the IP core design 
may be transmitted ( e.g. , via the Internet ) over a wired 
connection 2850 or wireless connection 2860. The fabrica 
tion facility 2865 may then fabricate an integrated circuit 
that is based at least in part on the IP core design . The 
fabricated integrated circuit can be configured to perform 
operations in accordance with at least one embodiment 
described herein . 
[ 0325 ] Exemplary System on a Chip Integrated Circuit 
[ 0326 ] FIGS . 29-31 illustrate exemplary integrated cir 
cuits and associated graphics processors that may be fabri 
cated using one or more IP cores , according to various 
embodiments described herein . In addition to what is illus 
trated , other logic and circuits may be included , including 
additional graphics processors / cores , peripheral interface 
controllers , or general purpose processor cores . 
[ 0327 ] FIG . 29 is a block diagram illustrating an exem 
plary system on a chip integrated circuit 2900 that may be 
fabricated using one or more IP cores , according to an 
embodiment . Exemplary integrated circuit 2900 includes 
one or more application processor ( s ) 2905 ( e.g. , CPUs ) , at 
least one graphics processor 2910 , and may additionally 
include an image processor 2915 and / or a video processor 
2920 , any of which may be a modular IP core from the same 
or multiple different design facilities . Integrated circuit 2900 
includes peripheral or bus logic including a USB controller 
2925 , UART controller 2930 , an SPI / SDIO controller 2935 , 
and an IPS / IPC controller 2940. Additionally , the integrated 
circuit can include a display device 2945 coupled to one or 
more of a high - definition multimedia interface ( HDMI ) 
controller 2950 and a mobile industry processor interface 
( MIPI ) display interface 2955. Storage may be provided by 
a flash memory subsystem 2960 including flash memory and 
a flash memory controller . Memory interface may be pro 
vided via a memory controller 2965 for access to SDRAM 
or SRAM memory devices . Some integrated circuits addi 
tionally include an embedded security engine 2970 . 
[ 0328 ] FIG . 30 is a block diagram illustrating an exem 
plary graphics processor 3010 of a system on a chip inte 
grated circuit that may be fabricated using one or more IP 
cores , according to an embodiment . Graphics processor 
3010 can be a variant of the graphics processor 2910 of FIG . 
29. Graphics processor 3010 includes a vertex processor 
3005 and one or more fragment processor ( s ) 3015A - 3015N 
( e.g. , 3015A , 3015B , 3015C , 3015D , through 3015N - 1 , and 
3015N ) . Graphics processor 3010 can execute different 
shader programs via separate logic , such that the vertex 
processor 3005 is optimized to execute operations for vertex 
shader programs , while the one or more fragment processor 
( s ) 3015A - 3015N execute fragment ( e.g. , pixel ) shading 
operations for fragment or pixel shader programs . The 
vertex processor 3005 performs the vertex processing stage 
of the 3D graphics pipeline and generates primitives and 
vertex data . The fragment processor ( s ) 3015A - 3015N use 
the primitive and vertex data generated by the vertex pro 
cessor 3005 to produce a framebuffer that is displayed on a 
display device . In one embodiment , the fragment processor 
( s ) 3015A - 3015N are optimized to execute fragment shader 
programs as provided for in the OpenGL API , which may be 
used to perform similar operations as a pixel shader program 
as provided for in the Direct 3D API . 
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[ 0329 ] Graphics processor 3010 additionally includes one 
or more memory management units ( MMUs ) 3020A - 3020B , 
cache ( s ) 3025A - 3025B , and circuit interconnect ( s ) 3030A 
3030B . The one or more MMU ( s ) 3020A - 3020B provide for 
virtual to physical address mapping for graphics processor 
3010 , including for the vertex processor 3005 and / or frag 
ment processor ( s ) 3015A - 3015N , which may reference ver 
tex or image / texture data stored in memory , in addition to 
vertex or image / texture data stored in the one or more 
cache ( s ) 3025A - 3025B . In one embodiment , the one or more 
MMU ( s ) 3020A - 3020B may be synchronized with other 
MMUs within the system , including one or more MMUS 
associated with the one or more application processor ( s ) 
2905 , image processor 2915 , and / or video processor 2920 of 
FIG . 29 , such that each processor 2905-2920 can participate 
in a shared or unified virtual memory system . The one or 
more circuit interconnect ( s ) 3030A - 3030B enable graphics 
processor 3010 to interface with other IP cores within the 
SoC , either via an internal bus of the SoC or via a direct 
connection , according to embodiments . 
[ 0330 ] FIG . 31 is a block diagram illustrating an addi 
tional exemplary graphics processor 3110 of a system on a 
chip integrated circuit that may be fabricated using one or 
more IP cores , according to an embodiment . Graphics pro 
cessor 3110 can be a variant of the graphics processor 2910 
of FIG . 29. Graphics processor 3110 includes the one or 
more MMU ( s ) 3020A - 3020B , cache ( s ) 3025A - 3025B , and 
circuit interconnect ( s ) 3030A - 3030B of the integrated cir 
cuit 3000 of FIG . 30 . 

[ 0331 ] Graphics processor 3110 includes one or more 
shader core ( s ) 3115A - 3115N ( e.g. , 3115A , 3115B , 3115C , 
3115D , 3115E , 3115F , through 3015N - 1 , and 3015N ) , which 
provides for a unified shader core architecture in which a 
single core or type or core can execute all types of program 
mable shader code , including shader program code to imple 
ment vertex shaders , fragment shaders , and / or compute 
shaders . The exact number of shader cores present can vary 
among embodiments and implementations . Additionally , 
graphics processor 3110 includes an inter - core task manager 
3105 , which acts as a thread dispatcher to dispatch execution 
threads to one or more shader core ( s ) 3115A - 3115N . Graph 
ics processor 3110 additionally includes a tiling unit 3118 to 
accelerate tiling operations for tile - based rendering , in 
which rendering operations for a scene are subdivided in 
image space . Tile - based rendering can be used to exploit 
local spatial coherence within a scene or to optimize use of 
internal caches . 
[ 0332 ] References to " one embodiment " , " an embodi 
ment " , " example embodiment ” , “ various embodiments ” , 
etc. , indicate that the embodiment ( s ) so described may 
include particular features , structures , or characteristics , but 
not every embodiment necessarily includes the particular 
features , structures , or characteristics . Further , some 
embodiments may have some , all , or none of the features 
described for other embodiments . 
[ 0333 ] In the foregoing specification , embodiments have 
been described with reference to specific exemplary embodi 
ments thereof . It will , however , be evident that various 
modifications and changes may be made thereto without 
departing from the broader spirit and scope of embodiments 
as set forth in the appended claims . The Specification and 
drawings are , accordingly , to be regarded in an illustrative 
rather than a restrictive sense . 

[ 0334 ] In the following description and claims , the term 
" coupled " along with its derivatives , may be used . 
" Coupled ” is used to indicate that two or more elements 
co - operate or interact with each other , but they may or may 
not have intervening physical or electrical components 
between them . 
[ 0335 ] As used in the claims , unless otherwise specified 
the use of the ordinal adjectives " first " , " second ” , “ third ” , 
etc. , to describe a common element , merely indicate that 
different instances of like elements are being referred to , and 
are not intended to imply that the elements so described must 
be in a given sequence , either temporally , spatially , in 
ranking , or in any other manner . 
[ 0336 ] The following clauses and / or examples pertain to 
further embodiments or examples . Specifics in the examples 
may be used anywhere in one or more embodiments . The 
various features of the different embodiments or examples 
may be variously combined with some features included and 
others excluded to suit a variety of different applications . 
Examples may include subject matter such as a method , 
means for performing acts of the method , at least one 
machine - readable medium including instructions that , when 
performed by a machine cause the machine to perform acts 
of the method , or of an apparatus or system for facilitating 
hybrid communication according to embodiments and 
examples described herein . 
[ 0337 ] Some embodiments pertain to Example 1 that 
includes an apparatus to facilitate sharing of data and 
compression and expansion of models , the apparatus com 
prising : detection / observation logic to detect a first proces 
sor processing information relating to a neural network at 
the apparatus , wherein the first processor comprises a first 
graphics processor and the apparatus comprises a first 
autonomous machine ; and data sharing / retrieval logic to 
facilitate the first processor to store one or more portions of 
the information in a library at a database , wherein the one or 
more portions are accessible to a second processor of a 
computing device . 
[ 0338 ] Example 2 includes the subject matter of Example 
1 , wherein the data sharing / retrieval logic is further to 
facilitate the second processor to access and retrieve the one 
or more portions of the information from the library when 
the second processor performs tasks relating to the neural 
network , wherein the neural network includes a convolu 
tional neural network ( CNN ) , wherein second processor 
comprises a second graphics processor and the computing 
device comprises a second autonomous machine . 
[ 0339 ] Example 3 includes the subject matter of Examples 
1-2 , further comprising library generation / mapping logic to 
generate the library at the database , wherein the library 
generation / mapping logic is further to map the one or more 
portions of the information to first processor . 
[ 0340 ] Example 4 includes the subject matter of Examples 
1-3 , wherein the first and second autonomous machines 
include autonomous vehicles in communication over one or 
more communication mediums including a cloud network , 
wherein the database includes a cloud database . 
[ 0341 ] Example 5 includes the subject matter of Examples 
1-4 , further comprising compression / expansion logic to 
compress a model with an item , wherein the compressed 
model along with the item is communicated over to the 
second autonomous machine over the one or more commu 
nication mediums . 
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[ 0342 ] Example 6 includes the subject matter of Examples 
1-5 , wherein the compression / expansion logic is further to 
facilitate reception of the compressed model and the item at 
the second autonomous machine , wherein the compressed 
model is uncompressed using the item , wherein the item 
incudes one or more of an artefact , a light , and a hint . 
[ 0343 ] Example 7 includes the subject matter of Examples 
1-6 , wherein the first graphics processor is co - located with 
an application processor on a common semiconductor pack 
age . 
[ 0344 ] Some embodiments pertain to Example 8 that 
includes a method for facilitating sharing of data and com 
pression and expansion of models , the method comprising : 
detecting a first processor processing information relating to 
a neural network at a first computing device , wherein the 
first processor comprises a first graphics processor and the 
first computing device comprises a first autonomous 
machine ; and facilitating the first processor to store one or 
more portions of the information in a library at a database , 
wherein the one or more portions are accessible to a second 
processor of a computing device . 
[ 0345 ] Example 9 includes the subject matter of Example 
8 , further comprising facilitating the second processor to 
access and retrieve the one or more portions of the infor 
mation from the library when the second processor performs 
tasks relating to the neural network , wherein the neural 
network includes a convolutional neural network ( CNN ) , 
wherein second processor comprises a second graphics 
processor and the computing device comprises a second 
autonomous machine . 
[ 0346 ] Example 10 includes the subject matter of 
Examples 8-9 , further comprising generating the library at 
the database ; and mapping the one or more portions of the 
information to first processor . 
[ 0347 ] Example 11 includes the subject matter of 
Examples 8-10 , wherein the first and second autonomous 
machines include autonomous vehicles in communication 
over one or more communication mediums including a 
cloud network , wherein the database includes a cloud data 
base . 
[ 0348 ] Example 12 includes the subject matter of 
Examples 8-11 , further comprising compressing a model 
with an item , wherein the compressed model along with the 
item is communicated over to the second autonomous 
machine over the one or more communication mediums 
performance counters that are regarded as faulty or outside 
a range of approval . 
[ 0349 ] Example 13 includes the subject matter of 
Examples 8-12 , further comprising facilitating reception of 
the compressed model and the item at the second autono 
mous machine , wherein the compressed model is uncom 
pressed using the item , wherein the item incudes one or 
more of an artefact , a light , and a hint . 
[ 0350 ] Example 14 includes the subject matter of 
Examples 8-13 , wherein the first graphics processor is 
co - located with an application processor on a common 
semiconductor package . 
[ 0351 ] Some embodiments pertain to Example 15 that 
includes a graphics processing system comprising a com 
puting device having memory coupled to a processor , the 
processor to : detect a first processor processing information 
relating to a neural network at the first computing device , 
wherein the first processor comprises a first graphics pro 
cessor and the first computing device comprises a first 

autonomous machine ; and facilitating the first processor to 
store one or more portions of the information in a library at 
a database , wherein the one or more portions are accessible 
to a second processor of a computing device . 
[ 0352 ] Example 16 includes the subject matter of Example 
15 , wherein the processor is further to facilitate the second 
processor to access and retrieve the one or more portions of 
the information from the library when the second processor 
performs tasks relating to the neural network , wherein the 
neural network includes a convolutional neural network 
( CNN ) , wherein second processor comprises a second 
graphics processor and the computing device comprises a 
second autonomous machine . 
[ 0353 ] Example 17 includes the subject matter of Example 
15-16 , wherein the processor is further to facilitate gener 
ating the library at the database ; and mapping the one or 
more portions of the information to first processor . 
[ 0354 ] Example 18 includes the subject matter of Example 
15-17 , wherein the first and second autonomous machines 
include autonomous vehicles in communication over one or 
more communication mediums including a cloud network , 
wherein the database includes a cloud database . 
[ 0355 ] Example 19 includes the subject matter of 
Examples 15-18 , wherein the operations further comprise 
compressing a model with an item , wherein the compressed 
model along with the item is communicated over to the 
second autonomous machine over the one or more commu 
nication mediums . 
[ 0356 ] Example 20 includes the subject matter of 
Examples 15-19 , wherein the operations further comprise 
facilitating reception of the compressed model and the item 
at the second autonomous machine , wherein the compressed 
model is uncompressed using the item , wherein the item 
incudes one or more of an artefact , a light , and a hint . 
[ 0357 ] Example 21 includes the subject matter of 
Examples 15-20 , wherein the first graphics processor is 
co - located with an application processor on a common 
semiconductor package . 
[ 0358 ] Example 22 includes at least one non - transitory or 
tangible machine - readable medium comprising a plurality of 
instructions , when executed on a computing device , to 
implement or perform a method as claimed in any of claims 
or examples 8-14 . 
[ 0359 ] Example 23 includes at least one machine - readable 
medium comprising a plurality of instructions , when 
executed on a computing device , to implement or perform a 
method as claimed in any of claims or examples 8-14 . 
[ 0360 ] Example 24 includes a system comprising a 
mechanism to implement or perform a method as claimed in 
any of claims or examples 8-14 . 
[ 0361 ] Example 25 includes an apparatus comprising 
means for performing a method as claimed in any of claims 
or examples 8-14 . 
[ 0362 ] Example 26 includes a computing device arranged 
to implement or perform a method as claimed in any of 
claims or examples 8-14 . 
[ 0363 ] Example 27 includes a communications device 
arranged to implement or perform a method as claimed in 
any of claims or examples 8-14 . 
[ 0364 ] Example 28 includes at least one machine - readable 
medium comprising a plurality of instructions , when 
executed on a computing device , to implement or perform a 
method or realize an apparatus as claimed in any preceding 
claims . 
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[ 0365 ] Example 29 includes at least one non - transitory or 
tangible machine - readable medium comprising a plurality of 
instructions , when executed on a computing device , to 
implement or perform a method or realize an apparatus as 
claimed in any preceding claims . 
[ 0366 ] Example 30 includes a system comprising a 
mechanism to implement or perform a method or realize an 
apparatus as claimed in any preceding claims . 
[ 0367 ] Example 31 includes an apparatus comprising 
means to perform a method as claimed in any preceding 
claims . 
[ 0368 ] Example 32 includes a computing device arranged 
to implement or perform a method or realize an apparatus as 
claimed in any preceding claims . 
[ 0369 ] Example 33 includes a communications device 
arranged to implement or perform a method or realize an 
apparatus as claimed in any preceding claims . 
[ 0370 ] The drawings and the forgoing description give 
examples of embodiments . Those skilled in the art will 
appreciate that one or more of the described elements may 
well be combined into a single functional element . Alterna 
tively , certain elements may be split into multiple functional 
elements . Elements from one embodiment may be added to 
another embodiment . For example , orders of processes 
described herein may be changed and are not limited to the 
manner described herein . Moreover , the actions of any flow 
diagram need not be implemented in the order shown ; nor do 
all of the acts necessarily need to be performed . Also , those 
acts that are not dependent on other acts may be performed 
in parallel with the other acts . The scope of embodiments is 
by no means limited by these specific examples . Numerous 
variations , whether explicitly given in the specification or 
not , such as differences in structure , dimension , and use of 
material , are possible . The scope of embodiments is at least 
as broad as given by the following claims . 

1-20 . ( canceled ) 
21. An apparatus comprising : 
a transmitter and a receiver for a first autonomous vehicle 

to transmit and receive data over one or more commu 
nication mediums with one or more other autonomous 
vehicles , the one or more other autonomous vehicles 
including a second autonomous vehicle ; and 

one or more processors including a graphics processor , 
wherein the one or more processors are to : 
establish communications with the second autonomous 

vehicle and determine to share data with the second 
autonomous vehicle , 

process a neural network model for transmission to the 
second autonomous vehicle , the processing of the 
neural network model including compressing the 
neural network model to generate a compressed 
neural network model , and 

transmit the compressed neural network model from 
the first autonomous vehicle to the second autono 
mous vehicle over the one or more communication 
mediums . 

22. The apparatus of claim 21 , wherein processing the 
neural network model for transmission further includes 
assigning an artefact to the compressed neural network 
model , the artefact to identify the compressed neural net 
work model , and wherein the one or more processors are to 
communicate the artefact and the compressed neural net 
work model to the second autonomous vehicle . 

23. The apparatus of claim 21 , wherein the one or more 
communication mediums include a cloud network . 

24. The apparatus of claim 21 , wherein the one or more 
processors are further to detect the second autonomous 
vehicle . 

25. The apparatus of claim 21 , wherein determining to 
share the data with the second autonomous vehicle is based 
on one or more of : 

location of the first autonomous vehicle and the second 
autonomous vehicle ; 

the first autonomous vehicle and the second autonomous 
vehicle having a similar view ; or 

the first autonomous vehicle and the second autonomous 
vehicle experiencing same environmental conditions . 

26. The apparatus of claim 21 , wherein the data to be 
shared with the second autonomous vehicle includes one or 
more of traffic data , weather information , and emergency 
alerts . 

27. The apparatus of claim 21 , wherein the neural network 
model includes a convolutional neural network ( CNN ) 
model . 

28. The apparatus of claim 21 , wherein the compression 
of the neural network model includes reducing a number of 
layers from the neural network model to generate the 
compressed neural network model . 

29. The apparatus of claim 21 , wherein the graphics 
processor is co - located with an application processor on a 
common semiconductor package . 

30. At least one non - transitory machine - readable medium 
comprising instructions that when executed by one or more 
processors , cause the one or more processors to perform 
operations comprising : 

establishing communications between a first autonomous 
vehicle and a second autonomous vehicle ; 

determining to share data between the first autonomous 
vehicle and the second autonomous vehicle ; 

processing a neural network model at the first autonomous 
vehicle for transmission to the second autonomous 
vehicle , the processing of the neural network model 
including compressing the neural network model to 
generate a compressed neural network model , the com 
pression of the neural network model including reduc 
ing a number of layers from the neural network model 
to generate the compressed model ; and 

transmitting the compressed neural network model from 
the first autonomous vehicle to the second autonomous 
vehicle over one or more communication mediums . 

31. The at least one non - transitory machine - readable 
medium of claim 30 , wherein processing the neural network 
model for transmission further includes assigning an artefact 
to the compressed neural network model , the artefact to 
identify the compressed neural network model , and wherein 
the one or more processors are to communicate the artefact 
and the compressed neural network model to the second 
autonomous vehicle . 

32. The at least one non - transitory machine - readable 
medium of claim 30 , wherein the one or more communica 
tion mediums include a cloud network . 

33. The at least one non - transitory machine - readable 
medium of claim 30 , wherein the instructions further include 
instructions that when executed by the one or more proces 
sors , cause the one or more processors to perform operations 
comprising : 

detecting the second autonomous vehicle . 
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34. The at least one non - transitory machine - readable 
medium of claim 30 , wherein determining to share the data 
with the second autonomous vehicle is based on one or more 
of : 

location of the first autonomous vehicle and the second 
autonomous vehicle ; 

the first autonomous vehicle and the second autonomous 
vehicle having a similar view ; or 

the first autonomous vehicle and the second autonomous 
vehicle experiencing same environmental conditions . 

35. The at least one non - transitory machine - readable 
medium of claim 30 , wherein the data to be shared between 
the first autonomous vehicle and the second autonomous 
vehicle includes one or more of traffic data , weather infor 
mation , and emergency alerts . 

36. A method comprising : 
establishing communications between a first autonomous 

vehicle and a second autonomous vehicle ; 
receiving a compressed neural network model at the first 

autonomous vehicle from the second autonomous 
vehicle over one or more communication mediums , the 

compressed neural network model including data to be 
shared between the first autonomous vehicle and the 
second autonomous vehicle ; and 

expanding the compressed neural network model to gen 
erate an original neural network model . 

37. The method of claim 36 , wherein the one or more 
communication mediums include a cloud network . 

38. The method of claim 36 , further comprising : 
receiving , at the first autonomous vehicle , an artefact from 

the second autonomous vehicle ; 
wherein expanding the received compressed neural net 
work model including applying the artefact in expan 
sion of the compressed neural network model . 

39. The method of claim 38 , wherein the artefact and the 
compressed model are received separately by the first 
autonomous vehicle . 

40. The method of claim 38 , wherein the artefact serves 
as both an extension to the compressed model and a form of 
identification for the compressed neural network model in 
communication . 

a 


