
MONT IN
US 20210390654A1

(19) United States
(12) Patent Application Publication

Appu et al .
(10) Pub . No .: US 2021/0390654 A1
(43) Pub . Date : Dec. 16 , 2021

(54) EFFICIENT SHARING AND COMPRESSION
EXPANSION OF DATA ACROSS
PROCESSING SYSTEMS

continuation of application No. 15 / 495,081 , filed on
Apr. 24 , 2017 , now Pat . No. 10,497,084 .

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(72) Inventors : Abhishek R. Appu , El Dorado Hills ,
CA (US) ; Altug Koker , El Dorado
Hills , CA (US) ; John C. Weast ,
Portland , OR (US) ; Mike B.
Macpherson , Portland , OR (US) ;
Dukhwan Kim , San Jose , CA (US) ;
Linda L. Hurd , Cool , CA (US) ; Sara
S. Baghsorkhi , San Jose , CA (US) ;
Justin E. Gottschlich , Santa Clara , CA
(US) ; Prasoonkumar Surti , Folsom ,
CA (US) ; Chandrasekaran Sakthivel ,
Sunnyvale , CA (US) ; Joydeep Ray ,
Folsom , CA (US)

Publication Classification
(51) Int . Cl .

G06T 1/20 (2006.01)
H04L 29/08 (2006.01)
G06F 9/54 (2006.01)
GOON 3/063 (2006.01)
G06N 3/04 (2006.01)
GOON 3/08 (2006.01)

(52) U.S. CI .
??? G06T 1/20 (2013.01) ; H04L 67/10

(2013.01) ; G06F 9/544 (2013.01) ; GO6N
37084 (2013.01) ; G06N 3/0454 (2013.01) ;

G06N 3/0445 (2013.01) ; G06N 3/063
(2013.01)

(57) ABSTRACT

(73) Assignee : Intel Corporation , Santa Clara , CA
(US)

(21) Appl . No .: 17 / 355,267

A mechanism is described for facilitating sharing of data and
compression expansion of models at autonomous machines .
A method of embodiments , as described herein , includes
detecting a first processor processing information relating to
a neural network at a first computing device , where the first
processor comprises a first graphics processor and the first
computing device comprises a first autonomous machine .
The method further includes facilitating the first processor to
store one or more portions of the information in a library at
a database , where the one or more portions are accessible to
a second processor of a computing device .

(22) Filed : Jun . 23 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 696,852 , filed on

Nov. 26 , 2019 , now Pat . No. 11,049,213 , which is a

Wireless
Network
Adapter

Network
Adapter

TO Switch
Add - in

Device (s)
120 Display

Device (s)

VO Hub
System
Storage

Input
Device (s) O

I / O Subsystem

Communication Link

Parallel Processor (s)
Memory
Hub

System
Memory

Communication

Display
Device (s) Processor (s)

Processing Subsystem

Patent Application Publication Dec. 16 , 2021 Sheet 1 of 41 US 2021/0390654 A1

Wireless
Network
Adapter
119

Network
Adapter
118

I / O Switch
116

Add - In
Device (s)

120 Display
Device (s)

VO Hub System
Storage

Device (s)
I / O Subsystem

Coniinunication Link

WRX * ** wwwwwwwww.thing
WWW

one or more ????
Parallel Processor (s)

Memory
Hub

System
Memory

Communication
VA 010 MO Co

???????????? nanam
WYN

Display
Device (s) Processor (s)

Processing Subsystem

FIG . 1

Patent Application Publication Dec. 16 , 2021 Sheet 2 of 41 US 2021/0390654 A1

wwwwwwwwwwwwwwwwww

Parallel
Processor
200 Parallel Processor Memory 222

Memory
Unit
224A

Memory
Unit
2243

Memory
Unit
224N

??? ??
3 3 3 3 3 3 3 3 3 3 3 3 3 32 33

:)

Partion Partion Partion
Unit Unit Unit
2204 2200 220N

Memory Interface 218

Memory Crossbar 216

Cluster
2144

Cluster
214B

Cluster
21N

Processing Cluster Array 212

Scheduler 210

Front End
208

Host
Interface

206
Unit
204

Parallel Processing Unit 202

Memory Hub

FIG . 2A

Patent Application Publication Dec. 16 , 2021 Sheet 3 of 41 US 2021/0390654 A1

To / From
Memory Unit

224

Frame buffer
Interface

225

ROP
226

L2 Cache
221

Partition Unit
220

To / From
Memory
Crossbar

FIG . 2B

Patent Application Publication Dec. 16 , 2021 Sheet 4 of 41 US 2021/0390654 A1

To Memory Crossbar
216

and / or other Processing Clusters

MMU PreROP Data Crossbar
240

To / From
Memory
Crossbar

Texture Unit
236 Graphics

Multiprocessor
234 Li Cache

248
WYYYYYYYYYYYYYY

Processing
Cluster

Pipeline Manager
232

To / From Scheduler
210

FIG . 20

Patent Application Publication Dec. 16 , 2021 Sheet 5 of 41 US 2021/0390654 A1

ma TA XXXXXXXXXX xxxx

Shared Memory Cache Memory
272

Memory and Cache Interconnect 268

Load / Store GPGPU
Cores
262 266

X SE CE 2a T EX TS 13 ** W

? ? ? ?? ?? ?8 ?? ?? ?? ?? ? www www

Register File 258

Address
Mapping

Unit
256

Instruction Unit
254

Graphics
Multiprocessor

234
Instruction Cache 252

From
Pipeline Manager

232

FIG . 2D

Patent Application Publication Dec. 16 , 2021 Sheet 6 of 41 US 2021/0390654 A1

3 .

Graphics Multiprocessor 325

Interconnect Fabric 327

Shared Memory 346

Texture Unit (s) 3444 Texture Unit (s) 344B

Cache Memory 342

Load / Store GPGPU
Unit Core
3401 338A

GPGPU GPGPU Load / Store GPGPU
Core Core Unit Core
3374 3364 340B 3381

GPGPU GPGPU
Core Core
3371 336B

Register File 334A Register File 334B
*************** wwwwwwwww

Instruction Unit 3324 Instruction Unit 332B

Instruction Cache 330

FIG . 3A

Patent Application Publication Dec. 16 , 2021 Sheet 7 of 41 US 2021/0390654 A1

Graphics Multiprocessor 350

Interconnect Fabric 352

Shared Memory 362

Texture Unit (s) 3604 Texture Unit (s) 360B

Cache Memory 3584

Execution Resources 3564 Execution Resources 356B

Texture Unit (s) 3600 Texture Unit (s) 360D

Cache Memory 358B

Execution Resources 356C Execution Resources 3561

Instruction Cache 354

FIG . 3B ??

Patent Application Publication Dec. 16.2021 Sheet 8 of 41 US 2021 / 0390654A1

430 435 431

==== Processor
Memory

Multi - Core
Processor

Multi - Core
Processor

406

Processor
Memory

442 4

?? ER ESPORT
Memory GPU GPU

410
GPU
412

GPU
413

GPU
Memory
23 420

? f
444 445

450 453
452 Memory

GPU
Memory
422

FIG . 4A

ODO

20 at 12 20

* et de 0 a

***** **** **** ***** ***** **** ***** **** **** **** **** **** ***** *****

Coherence Bus 464

3

Ww wWw wWwwWw wW

Graphics Acceleration 446

? 8

Core 4604

3 3 3

3 8 3 } 3 8 3

1 2 ? 1

$

TLB

W

?

g
8

+25

43.5

437

3

1

GRAPHICS PROCESSING
GEX MEM

i

1

??

Patent Application Publication

3

?

1

3

8 8 8 8 8

Cache (s) 462A

$

.

8 3

3

& war www.aam we www -

ACCELERATOR INTEGRATION

I

3 3

Www www www me *

3

GRAPHICS
GFX

PROCESSING MEM

8

? . I

Core 460B

3 3

2 8 3

2 ?

INTRPT MGMT 447

?

9 8

TLB 461B

Core 460D

A I 8

3 ?

1

Context MGMT
3

8 å 8

I A

?

Cache (s) 462B

B

GRAPHICS
GFX

non PROCESSING MEM N

M

5

1

8
g

3

Registers

1 A .

How ... WOW

?

Cache (s) 462D

Dec. 16 , 2021 Sheet 9 of 41

Core 400C

8

5

}

Fetch

8

?

TLB 461C
8

1

3 3 }

8

8

B

8 8 8 R

Cache +38

Cache (s)

?

3

2

?

8

3

8

- an ? ? on on ? ?? ? ce my ???

8

9

MMU +39

i Processor
407

Shared Cache (s)
456

8 8 13

8

??

O R O P Q R 20 Do oo MOD 0 DO 1o ano

VOX 00 00 00 00 00 00 00 00 00 00 on or on 0 0 0 0

* O o o 2

wa wan na nas www ws na na ww www ww wou un man now www ww nim na sau un man nu sau sun nan nou aan van and

15

US 2021/0390654 A1

SYSTEM MEMORY 441 FIG . 4B

WWW
4+ + 74 94 94 + 4+ VA 2 5

min ??

Coherence Bus 46

Graphics Acceleration
8

Core 460A

3

3

8

API

TLB 4614

PROXY 423

?

437

??

1

T
1

GRAPHICS
PROCESSING MEM

433

$

1

3 3 3 3 3 3

?? ? 3

Patent Application Publication

3 8

Cache (s) 462A

8 ?

$

8

3

ACCELERATOR INTEGRATION 436

2 $ &

GRAPHICS PROCESSING

mm pe o woo 0 0 OC

MEM
.

Core 460B FOR ?? CRPORON A ORA

8

3 3

3 3

$ 3

INTRPT MGMT

&

3 3

TLB 461B

1

Core 460D

3

MEM

GRAPHICS PROCESSING N

Cache (s) 462B

??

Context MGMT 448

461D

3

M

?

3

?

1 A

& cu o O con motor

Com 100 GOR acx Ch 00 C 0 CO MADRID CRX X X WOWO MAKU O GWM on Act 40 x cm 0 0 0 0

3

0.0 Wt 00 02

O 000

Cache (s) 4620

Core 4420

Registers

Dec. 16 , 2021 Sheet 10 of 41

$

8

? 3

&

TLB 4610

2 2

8 8

Fetch

T

3 3 3 $

8 8

$ &

Cache (s) 4620

3

th

Cache 438

&

W

Ev ww porn ww www mweny

$ 3 3 3

Processor

Shared Cache (s)
426

MMU

3 13 3

HM

C2 0 C 2 0 2

do C O 000 ac 10 O 400 CA6 000 a 100 * 900 ta

CRX x SYSTEM MEMORY

US 2021/0390654 A1

FIG . 4C

Patent Application Publication Dec. 16 , 2021 Sheet 11 of 41 US 2021/0390654 A1 6

MY

Processor 407
W Y Y Y Y Y Y Y Y Y Y Y M M M M M M M M M M M M M M M M

3 3
3 9

3 Application 480 9
9 d Application 3

3

3
3

3
3
3
3 9 GPU Invocation 481 GPU Invocation

J
3
$
3
WWWWWWWWWWWWWWWWWWWW 8 8 wwwwwwwwwwww w w w w w w WWWW

System Memory 441
Application Effective Address

Space 482 » 10

Processing Element
485 WWWWWWWWWWWWWWWW 7 o

3
1 : 1
B
3
3

Processing Element
483

3 3
?
3 Work Descriptor (WD)

486 Work Descriptor (WD) 3

3 }
L

8
B - VP • • • • • • • • 1 0 1

00 00 00 00 00 * 0 0 0 0 0 0 0 0 0 0 0 ? ? ? ? ? ?? ?? ? 1 2 3

wwwwwwwwwwwwwwwww

Accelerator Integration Slice 490

MMU
439

Interrupt WD
Fetch
491 ????? Registers

Z + t

INT
Effective
Address Context

MGMT 76 € 861

Save / Restore

Graphics Acceleration 446

FIG . 4D at

Patent Application Publication Dec. 16 , 2021 Sheet 12 of 41 US 2021/0390654 A1

WWW w

Processor 407

w WY W

OS Hypervisor Application
480

System Memory 441
Application Effective Address

Space 482
Wwwwwwwwwwwwwwww w w w w w w w w w w w w w w w

3

OS Virtual Address
Space 485

3
:

Hypervisor Real
Address Space 498

3
3

W X Y W X Y 1000

Processing Element
483

R
3
3
3

3

Segment / Page
486

Process Element
List
409 Work Descriptor (WD)

J
3

? ?? ? ? ? ? ? ? ? ? ? ? ? 3 1 00 w Y 0 0

or we nu ve or we w war and we we were our wer we ver our me
w wwwwwwwwwwwwwwwwwwwwww

Accelerator Integration Slice

MMU
439

Fetch Registers
Interrupt
MGMT

Context
MGMT

INT
492

Effective
Address
493

Save / Restore

Graphics Acceleration 446

FIG . 4E

Patent Application Publication Dec. 16 , 2021 Sheet 13 of 41 US 2021/0390654 A1

Wuuuuu wowo xwwww

Multi - core
Processor

GPU GPU
413

* **** ***** ****** 3 X 4 X 4 5 X X 3 * * * w * * r * ++ 00 300 g Po os 60 00 00 o or 3

MMU 439A MMU 439B MMU 4300 MMU 439D MMU 439E

Bias :
Coherence

494A

Bias /
Coherence
494B

Bias /
Coherence
4940

Bias /
Coherence
494D

Bias /
Coherence

in na now on ** * WW * M * ******** www w w w w w w w w

?? 3 ? Processor
Memory
401

$

Processor
Memory
402

Memory
420

Memory
421

GPU
Memory
422

GPU
Memory
423 3

J ??
De 1 93 S 2 , 920 X KO POWER 4 4 94 4 4 4 4 K O L I G 240 *

Unified Memory

FIG . 4F

Patent Application Publication Dec. 16 , 2021 Sheet 14 of 41 US 2021/0390654 A1

Graphics
Processing

Pipeline
500

Raster Operations Unit 526

Memory Fragment / Pixel Processing Unit 524
Interface

WWWWWWWW wwwwwwwwwwvYWY

Rasterizer 522

Viewport Scale , Cull , and Clip Unit 520

Primitive Assembler 518

Geometry Processing Unit 516

Primitive Assembler 514

www

Tessellation Evaluation Processing Unit 512

Tessellation Unit 510

Tessellation Control Processing Unit 508

Primitive Assembler 506

Vertex Processing Unit 504

Data Assembler 502
wwwwwwwwwwwwwwwwwwwwwwwwww

WWWWW

Instruction Stream
and Parameters

FIG . 5

Patent Application Publication Dec. 16 , 2021 Sheet 15 of 41 US 2021/0390654 A1

wwwwwwwwwwwwwwwww wwwwwww

(COMPUTING DEVICE
e.g , Host Machine)

Data Sharing And Compression Expansion
Mechanism

***************************** w XXX

Operating System (OS)
606

w

Graphics Driver

www

Graphics Processing Unit (GPU)
wwww

w W

Central Processing
Unit (CPU)

612

Memory
608

Input / Output (1/0) Source (s) (e.g , Camera (s) ,
Robotic Eye (s) , Microprocessor (s) , Speaker (s) ,

Sensor (s) , Display Screen (s) , Media Player (s) , etc.)

FIG . 6

Patent Application Publication Dec. 16 , 2021 Sheet 16 of 41 US 2021/0390654 A1

Computing Device
(e.g. , Autonomous

Machine)
COMPUTING DEVICE

(e.g. , Communication Device , Mobile Device , Smart
Device , Gaming Device , Autonomous Machine , Desktop

Computer , Server Computer , etc.)

CPU
742

GPU

Data Sharing And Compression
Expansion Mechanism

Detection / Observation Logic
Communication
Medium (s) (e.g. ,
Cloud network ,

Internet , Proximity
Network , etc.)

725
Library Generation and Mapping Logic

Data Sharing / Retreived Logic
705

Communication / Compatibility Logic
DATABASE (S)

(e.g. , Cloud
Databases)

Compression / Expansion Logic
709

XXXX

1 11 ?
Surface
Library

731
730

GPU Memory CPU
612 608

FIG . 7

Patent Application Publication Dec. 16 , 2021 Sheet 17 of 41 US 2021/0390654 A1

800 7
810 ? Autonomous

Machine / Vehicel
Autonomous

Machine / Vehicel
Autonomous

Machine / Vehicel

CPU
742

CPU CPU
812

GPU
744

GPU
614

GPU
WW

1111111111111111111111111111111 1

Communication
Medium (s) (e.g. ,
Cloud Network)

725

Surface
Library DATABASE (S) (e.g. ,

Cloud Databases)
730

FIG . 8A

Patent Application Publication Dec. 16 , 2021 Sheet 18 of 41 US 2021/0390654 Ai

851A 8578 Sko
853

859

Apply Compression
with Artefact Transmit Model +

Artefact over the air
WWWWWWWWWWWWWW

8554

Artefact
725

(e.g ,

863 861
t 855B

Artefact
Combine

Compressed Model
+ Artefact

Receive Model I
Artefact (in Vehicle

for Example)
krimin

873

FIG . 8B

Patent Application Publication Dec. 16 , 2021 Sheet 19 of 41 US 2021/0390654 A1

w 900

?

DETECT FIRST GRAPHICS PROCESSOR OF FIRST
AUTONOMOUS MACHINE (E.G. , VEHICLE) PROCESSING

INFORMATION RELATING TO CONVOLUTIONAL
NEURAL NETWORK (CNN)

901

FACILITATE FIRST GRAPHICS PROCESSOR TO STORE
ANY INTERMEDIATE NEURAL NETWORK DATA

RELATING TO CNN AS DATA SURFACE IN SURFACE
LIBRARY AT DATABASE OVER CLOUD NETWORK TO Bare
SHARE DATA SURFACE WITH OTHER PROCESSORS OF

OTHER AUTONOMOUS MACHINES
903

DETECT SECOND GRAPHICS PROCESSOR OF SECOND
AUTONOMOUS MACHINE PROCESSING INFORMATION

RELATING TO THE SAME CNN

w

FACILITATE SECOND GRAPHICS PROCESSOR TO ACCESS
AND RETRIEVE DATA SURFACE AT SURFACE LIBRARY

TO USE WITH CNN
907

FIG . 9

Patent Application Publication Dec. 16 , 2021 Sheet 20 of 41 US 2021/0390654 A1

Machine Learning Application

Machine Learning Framework

Compute Framework

GPGPU Driver
1008

wwwwwwwwwwwww

GPGPU Hardware

FIG . 10

1100 Memory

Memory

Patent Application Publication

Host Interface 1102 Global Scheduler 1104

Compute Cluster 11064

Compute Cluster 1106B

Compute Cluster 1106C

Compute Cluster 11106D

1

Cache Memory 1708

1

Dec. 16 , 2021 Sheet 21 of 41

Compute Cluster 1106E

Compute Cluster 1106F

Compute Cluster 1106G

Compute Cluster 1106H

IO Hub 1108

Memory Controller I1124

Memory Controller

GPU Link 1110

sauce

ACCORDO

US 2021/0390654 A1

FIG . 11

Patent Application Publication Dec. 16 , 2021 Sheet 22 of 41 US 2021/0390654 A1

P2P GPU
Links

1216

>

GPGPU
12064

GPGPU
1206B

11

? ? ? ? ?? ?? ?? x

wwwwwwwww wwwwwww

GPGPU GPGPU
12060

6

Host Interface Switch
1204

Processor
1202

FIG . 12

Patent Application Publication Dec. 16 , 2021 Sheet 23 of 41 US 2021/0390654 A1

1308
1304

1302
1306

0 kW

* The tech u vor

UNO DO
$

SON ON go wo
?i ?? :

SD HDD to do near IN N V

ON 3o W no at ww ou * * * D a 4422 W R 00 DETTA
So 0 m * tok OO O * * XS

RGB Components Convolutional Layers Fully Connected Layers

FIG . 13A

Input to Convolutional
Layer
1312

Convolutional Layer
1314

Convolution Stage
1316

Detector Stage

Pooling Stage
1320

Next layer
1322

FIG . 13B

FIG . 14

?
? ? ?

{

? ? ?
}

3
?

?

3
3
3

*** AN TAR WAR A REPTE w www mmm WAV Want Me WWW 4 1 W M AM WW IMA MAMA A

1406 1404 1402

X2999999999999999999

US 2021703906441 Dec. 16.2021 Sheet 24 of 41 Patent Application Publication

Patent Application Publication Dec. 16 , 2021 Sheet 25 of 41 US 2021/0390654 A1

New Data
ISLA

Training
Framework D

Training
Dataset
1502

Untrained Neural
Network
ISO

Trained Neural
Network

ISAIR

Result
1514

FIG.15

Www

Node 1

Node 2

Model Parallelism 1602

Data Parallelism 1604

11 RE
Node 1

Patent Application Publication

Layer 1

Node 2

Node 3

Node 4

Layer 2

Node 3

Layer 3

Node 4

Layer 4

Model and Data Parallelism 1606

Dec. 16 , 2021 Sheet 26 of 41

Node 1

Node 2

Node 3

Node 4

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

?

?

-

GPU

GPU

GPU

GPU

w

WWWWWWWWWW

new

wwwwwwwwwwwwwww

US 2021/0390654 A1

WWWWWW

WWWWWWWWWW

WWWWWWWWWWW

FIG . 16

Patent Application Publication Dec. 16 , 2021 Sheet 27 of 41 US 2021/0390654 A1

MEDIA PROCESSOR
1702

VISION
PROCESSOR

ON - CHIP MEMORY 1705
1.000.000

GPGPU MULTI - CORE
PROCESSOR

FIG . 17

Patent Application Publication Dec. 16 , 2021 Sheet 28 of 41 US 2021/0390654 A1

* *** LUR * ? ?? MURU ***
NEL MY KEY tret VV try

?? :
* Yr

PROCESSOR CORE (S) - 180 GRAPHICS
PROCESSOR (S)

1808

CACHE
1804

REGISTER
FILE INSTRUCTION SET

1809 wwww

WARMAN

PROCESSOR (S)
1802

KYYKKY

PROCESSOR BUS

1810

MEMORY DEVICE - 1820 WWW *** KU ke **

MEMORY
CONTROLLER INSTRUCTIONS - 1821

EXTERNAL
GRAPHICS
PROCESSOR

1812 1816 DATA - 1822 ?? ANNE
WY

Kuu wu

T
DATA STORAGE

DEVICE
1824

LEGACY I / O
CONTROLLER

AL

USB CONTROLLER (S)
1842
YYYYY

www WW WWW

WIRELESS
TRANSCEIVER

1826

1/0
CONTROLLER

HUB
KEYBOARDI
MOUSE
1841

ht

+3 : 33 : 33
wwwww

FIRMWARE
INTERFACE

1828
AUDIO CONTROLLER

1846
ww

ELE

?
NETWORK

CONTROLLER
1834 FIG . 18 PLAKU

PROCESSOR 1900

Patent Application Publication

CORE 202A

wwwwwwwwwwwww

w

CACHE UNIT (S) 1904A

CORE 202N
1

CACHE UNIT (S) 1904N

SYSTEM AGENT CORE 1910

www

BUS CONTROLLER UNIT (S) 1916

buus

and

EMBEDDED MEMORY MODULE 1918

1913

MEMORY CONTROLLER 1914
SHARED CACHE UNIT (S) - 1906

RING - 1912

JUUUUUUUU DISPLAY CONTROLLER 1911

Dec. 16 , 2021 Sheet 29 of 41

GRAPHICS PROCESSOR 1908 COLLIER

US 2021/0390654 A1

FIG . 19

GRAPHICS PROCESSOR 2000

Patent Application Publication

GRAPHICS PROCESSING ENGINE 2010

g

DISPLAY CONTROLLER
BUT ENGINE

3D PIPELINE

3D / MEDIA SUB - SYSTEM

MEDIA PIPELINE

VIDEO CODEC ENGINE 2006

2002

2004

2012

2015

2016

1

nnnn

wwwwww

rrrr

w

1 1

] 1 II 1
15

Dec. 16 , 2021 Sheet 30 of 41

w

w

w

w

w

W

MEMORY INTERFACE - 2014

DISPLAY DEVICE

US 2021/0390654 A1

2020

FIG . 20

GRAPHICS PROCESSING ENGINE 2110

W

RIYA

M

W

Www

WA

wang

UNIFIED RETURN BUFFER 2118

Patent Application Publication

mm

3D PIPELINE 2112

IT

2121

SAMPLER

www

wwwwww ws

21221

COMMAND STREAMER 2103

MATH

I

21231

E +++++ . 1td

www

GRAPHICS CORE ARRAY 2114

SHARED FUNCTION LOGIC 2120

INTER - THREAD COMMUNICATION

MEDIA PIPELNE 2116

Dec. 16 , 2021 Sheet 31 of 41

ww

? ?

2125

LILLK

arma

NOME
CA

CACHE (S)

Ows

WALA

mm DVD I

gaa
de

I
1

wolen

O

W

Ca.
TX

CD
Doc .

O

MOD

...

C

DOCT CD

0

A

MOOD
KO
CA wanamke

DOMESSE
test

CAD
X 1
COD 1

sanceses
HERHANA

hadow COCK

1 DCC CE

ORDER
2.0 1
mouc

From Memory

US 2021/0390654 A1

FIG . 21

PIPELINE FRONT - END 2204

GRAPHICS PROCESSSOR 2200

MEDIA ENGINE- 2237

2202

COMMAND STREAMER 2203

MEX 2233

Patent Application Publication

2230

0.0.0.0 ,

C.C.C.C.C.

DO

DID

OD

71

SUB - CORE 1450A

SUB - CORE 550N

VIDEO FRONT END 2234

m od

COTT

EUS 2252A
SAMPLERS 2254A

EUS 2252N
SAMPLERS 2254N

wwwwwwwwww

www

www

Co
C.C.C.C.C.

...

U

U

WWWWWWW

MW

WWW

www .

w

www

TID

on

RING INTERCONECT

SHARED RESOURCES 2270A

www www w
S x K x KKK KKK KKKKK KKK KKK KK KKK KKK

www w w w w w w w w w www

SHARED - RESOURCES 2270N

GEOMETRY PIPELINE 2236

Dec. 16 , 2021 Sheet 32 of 41

SUB - CORE - 1460A

SUB - CORE - 560N

UUUUUUUUUU

EUS 2262A
SAMPLERS 2264A

EUS 2262N
1 11

SAMPLERS 2264N
www

UUUUUUUUUUUUUU
con

DID

WWWW

000

GRAPHICS CORE - 2280A

GRAPHICS CORE- 2280N
w

US 2021/0390654 A1

...

C.

GULLO
????

FIG . 22

EXECUTION LOGIC 2300

Patent Application Publication

on

TY

mmmmmm

Sure wowww

I

SHADER THREAD PROCESSOR DISPATCHER 2302

2304

EU 2308A

EU 2308C

EU
2308N - 1

SAMPLER 2310

LULU

UUUUUUUU

? ,

DATA CACHE 2312

I

INSTRUCTION CACHE 2306

Dec. 16 , 2021 Sheet 33 of 41

2308B
2308D

2308N

www

DATA PORT 2314

porno
0

US 2021/0390654 A1

FIG . 23

GRAPHICS PROCESSOR INSTRUCTION FORMATS 2400 128 - BIT INSTRUCTION
2410

mamman

Patent Application Publication

WWW

w

strin

OPCODE CONTROL EXEC - SIZE DEST SRCO SRC1 SRC2 2412 2414 2416 2418 2420 2422 2424

ACCESS / ADDRESS MODE 2426

w
WYR

64 - BIT COMPACT INSTRUCTION
2430 DXCEL OPCODE INDEX CONTROL DEST SRCO SRC1 2412 2413 2414 2418 2420 2422

Dec. 16 , 2021 Sheet 34 of 41

OPCODE DECODE 2440

765432

opcode = 000xxxxxb

Move / Logic - 2442

THE

10XXXX
opcode = 0010xxxxb

Flow Control - 2444
wwwww Miscellaneous - 2446

minn

opcode = 0011xxxxb opcode = 0100xxxxb opcode = 0101xxxxb

Parallel Math - 2448

W

US 2021/0390654 A1

Vector Math - 2450

om

FIG . 24

Patent Application Publication Dec. 16 , 2021 Sheet 35 of 41 US 2021/0390654 A1

GRAPHICS PROCESSOR
2500 MEDIA PIPELINE

2530
DISPLAY ENGINE

COMMAND
STREAMER

2503 GRAPHICS
PIPELINE

2520
m Vi

VIDEO
beton FRONT - END

2534

MEDIA
ENGINE

2537
2502

2D ENGINE
2541

DISPLAY
CONTROLLER

2543
* XX VERTEX

FETCHER
2505 1731 EXECUTION LOGIC 1750

VERTEX
SHADER

2507

EXECUTION
UNITS
2552A L1

CACHE
2651

ISAMPLER
1754 TEXTURE

CACHE DATA
PORT 2558
2556 SHADER

25.11

EXECUTION
UNITS
2552B

RING INTERCONNECT THREAD DISPATCHER TESSELLATOR
25.13

1 RENDER
CACHE
1778 DOMAIN

SHADER
2517

RASTER
DEPTH
2573

CACHE
2675

PIXEL
OPS
2577 DEPTH

CACHE
2579

1

GEOMETRY
SHADER
2519

STREAM RENDER OUTPUT
PIPELINE
2570 2523

1
CLP /
SETUP
2529

M

TYNUUTUU XXXVXXXXXXXXXXXXULXCLXXLXXLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

FIG . 25

Patent Application Publication Dec. 16 , 2021 Sheet 36 of 41 US 2021/0390654 A1

FIG . 26A GRAPHICS PROCESSOR COMMAND FORMAT
2600

www www www www w w w

CLIENT
2602

OPCODE
2604

SUB - OPCODE
2605

DATA
2606

1 COMMAND SIZE
2608

www www ?????????? WUUUUUUU w
99 wa w wowwwww w www w w

FIG . 26B GRAPHICS PROCESSOR COMMAND SEQUENCE
2610

W W W

I PIPELINE FLUSH
2612 000000 ????????

W w

www wwwwww w w guna

I PIPELINE SELECT
2613

Louw w W W

PIPELINE CONTROL
2614
wwwww

RETURN BUFFER STATE

2622 2620 2624
3D Pipeline ?

3D PIPELINE STATE
2630

MEDIA PIPELINE
STATE 2640

3D PRIMITIVE
2632

MEDIA OBJECT
2642

MYYYYYYYY MYYYYYYY

EXECUTE
2634

EXECUTE
2644

Patent Application Publication Dec. 16 , 2021 Sheet 37 of 41 US 2021/0390654 A1

DATA PROCESSING SYSTEM - 2700

wwww wwwww wwwww www

3D GRAPHICS APPLICATION
2710

SHADER INSTRUCTIONS
2712

EXECUTABLE
INSTRUCTIONS 2714 www

WWW

GRAPHICS
OBJECTS
2716 MYYYYY

OPERATING SYSTEM (OS)
2720

MEMORY
2750

USER MODE GRAPHICS DRIVER
2726 SHADER

COMPILER
2724

GRAPHICSAP
2722

www SHADER COMPILER
2727

UU

OS KERNEL MODE FUNCTIONS
2728 KERNEL MODE GRAPHICS

DRIVER
2729

MIX

GRAPHICS
PROCESSOR

2732
PROCESSOR

2730
GENERAL

PURPOSE CORE (S)
2734 6 + * 123REA WWWWWWWW

FIG . 27

IP CORE DEVELOPMENT - 2800

BALL

Patent Application Publication

NON - VIOLATILE MEMORY 2840

FABRICATION FACILITY 2865

SIMULATION MODEL 2812

SOFTWARE SIMULATION 2810

HARDWARE MODEL (HDL OR PHYSICAL
DESIGN DATA) 2820

REGISTER TRANSFER LEVEL DESIGN 2815

OD

Dec. 16 , 2021 Sheet 38 of 41

WIRED CONNECTION 2850

DESIGN FACILITY 2830

benetan

Wwwwww

WIRELESS CONNECTION 2860

US 2021/0390654 A1

FIG . 28

Patent Application Publication Dec. 16 , 2021 Sheet 39 of 41 US 2021/0390654 A1

SOC
INTEGRATED CIRCUIT

2900

APPLICATION
PROCESSOR (S)

2905

GRAPHICS
PROCESSOR

2910
wwuuuuuuuu

IMAGE
PROCESSOR

2915

VIDEO
PROCESSOR

2920
3 : : 33 wwwwww

USB
2925

UART
2930

SPI / SDIO
2935

28 / 12c
2940

DISPLAY
2945

w wu HHHHHHHHHH

** WY M w

I SECURITY
| ENGINE I
} 2970

MEMORY
2965

FLASH
2960

MIPI
2955 1 2950
YYYYYYYYYYY

HHHHHHHHHH
M W YYYY YYYY mo

FIG . 29

Patent Application Publication Dec. 16 , 2021 Sheet 40 of 41 US 2021/0390654 A1

GRAPHICS PROCESSOR
3010

VERTEX PROCESSOR
3005

MYYYYYYYYYYYYYYYYYYYYYYYYYYYY

M mi w MY M

FRAGMENT
PROCESSOR

3015A

FRAGMENT
PROCESSOR

3015C

FRAGMENT
PROCESSORI

3015N - 1
Bum M w w M w w M w w m

www w ??? **

} I FRAGMENT
PROCESSOR

3015B

FRAGMENT
PROCESSOR

3015D

FRAGMENT
PROCESSOR

3015N } 1
mWWW

UUUU w w w Lus u ww w w w www

MMU
3020A

MMU
3020B

CACHE
3025A

CACHE
30258

1000

WAKE KU INTERCONNECT
3030A

INTERCONNECT
3030B
YYYYYYYYYYYYYY

www

FIG . 30

Patent Application Publication Dec. 16 , 2021 Sheet 41 of 41 US 2021/0390654 A1

GRAPHICS PROCESSOR
3110

INTER - CORE TASK MANAGER
(e.g. , THREAD DISPATCHER)

3105
)

w M M M wy w w ww

SHADER
CORE
3115A

I SHADER II SHADER 1
CORE IL CORE I
3115C 3115E

I SHADER I
1 CORE

3115N - 1
Lw MYYYYYYYYYYYYY

M w
?????????????????????? Em w WYYYYYYYYYYY

w w M YYYY mi

w w w w w UU

1 SHADER I I SHADER II SHADER I
CORE IL IL CORE CORE 1 CORE I

3115D 3115F

1 SHADER 1
CORE
3115N 3115B 11 w

1111119 TD
wwwwwwwww wwwwwww www ?

TILING UNIT
3118

w w M w w w M M w w M

MMU
3120A

MMU
3120B

?????

w w w w w

CACHE
3125A

CACHE
3125B

MYYYYY

w w

INTERCONNECT
3130A

INTERCONNECT
3130B

L. w ????? www

FIG . 31

US 2021/0390654 Al Dec. 16 , 2021
1

EFFICIENT SHARING AND COMPRESSION
EXPANSION OF DATA ACROSS

PROCESSING SYSTEMS

RELATED APPLICATION

synchronously together as often as possible to increase
processing efficiency . The efficiency provided by parallel
machine learning algorithm implementations allows the use
of high capacity networks and enables those networks to be
trained on larger datasets .
[0006] Conventional techniques do not provide for data
sharing across processing systems through a library , which
is inefficient and cumbersome . Further , conventional tech
niques are limited to compression of data and thus do not
anticipate expansion or re - expansion of compression mod
els .

a [0001] This Application is a continuation of and claims the
benefit of and priority to U.S. application Ser . No. 16/696 ,
852 , entitled EFFICIENT SHARING AND COMPRES
SION EXPANSION OF DATA ACROSS PROCESSING
SYSTEMS , by Abhishek R. Appu , et al . , filed Nov. 26 , 2019 ,
now allowed , which is a continuation of and claims the
benefit of and priority to U.S. application Ser . No. 15/495 ,
081 , entitled EFFICIENT SHARING AND COMPRES
SION EXPANSION OF DATA ACROSS PROCESSING
SYSTEMS , by Abhishek R. Appu , et al . , filed Apr. 24 , 2017 ,
now issued as U.S. Pat . No. 10,497,084 , the entire contents
of which are incorporated herein by reference .

BRIEF DESCRIPTION OF THE DRAWINGS

FIELD

a
[0002] Embodiments described herein relate generally to
data processing and more particularly to facilitate a tool for
facilitating efficient sharing and compression expansion of
data across processing systems .

BACKGROUND

[0007] Embodiments are illustrated by way of example ,
and not by way of limitation , in the figures of the accom
panying drawings in which like reference numerals refer to
similar elements . So that the manner in which the above
recited features can be understood in detail , a more particu
lar description , briefly summarized above , may be had by
reference to embodiments , some of which are illustrated in
the appended drawings . It is to be noted , however , that the
appended drawings illustrate only typical embodiments and
are therefore not to be considered limiting of its scope , for
the drawings may illustrate other equally effective embodi
ments .
[0008] FIG . 1 is a block diagram illustrating a computer
system configured to implement one or more aspects of the
embodiments described herein .
[0009] FIG . 2A - 2D illustrate a parallel processor compo
nents , according to an embodiment .
[0010] FIG . 3A - 3B are block diagrams of graphics mul
tiprocessors , according to embodiments .
[0011] FIG . 4A - 4F illustrate an exemplary architecture in
which a plurality of graphics processing units are commu
nicatively coupled to a plurality of multi - core processors .
[0012] FIG . 5 is a conceptual diagram of a graphics
processing pipeline , according to an embodiment .
[0013] FIG . 6 illustrates a computing device hosting a
smart resource distribution mechanism according to one
embodiment .
[0014] FIG . 7 illustrates smart resource distribution
mechanism according to one embodiment .
[0015] FIG . 8A illustrates a tree - like communication
structure for facilitating energy - efficient distribution of deep
learning according to one embodiment .
[0016] FIG . 8B illustrates a process structure for facilitat
ing effective communication in distributed deep learning
according to one embodiment .
[0017] FIG . 9 illustrates a method for facilitating effi
ciency in energy , communication , and debugging at autono
mous machines according to one embodiment .
[0018] FIG . 10 illustrates a machine learning software
stack , according to an embodiment .
[0019] FIG . 11 illustrates a highly - parallel general - pur
pose graphics processing unit , according to an embodiment .
[0020] FIG . 12 illustrates a multi - GPU computing system ,
according to an embodiment .
[0021] FIG . 13A - 13B illustrate layers of exemplary deep
neural networks .
[0022] FIG . 14 illustrates training and deployment of a
deep neural network .
[0023] FIG . 15 illustrates training and deployment of a
deep neural network

[0003] Current parallel graphics data processing includes
systems and methods developed to perform specific opera
tions on graphics data such as , for example , linear interpo
lation , tessellation , rasterization , texture mapping , depth
testing , etc. Traditionally , graphics processors used fixed
function computational units to process graphics data ; how
ever , more recently , portions of graphics processors have
been made programmable , enabling such processors to sup
port a wider variety of operations for processing vertex and
fragment data .
[0004] To further increase performance , graphics proces
sors typically implement processing techniques such as
pipelining that attempt to process , in parallel , as much
graphics data as possible throughout the different parts of the
graphics pipeline . Parallel graphics processors with single
instruction , multiple thread (SIMT) architectures
designed to maximize the amount of parallel processing in
the graphics pipeline . In an SIMT architecture , groups of
parallel threads attempt to execute program instructions
synchronously together as often as possible to increase
processing efficiency . A general overview of software and
hardware for SIMT architectures can be found in Shane
Cook , CUDA Programming , Chapter 3 , pages 37-51 (2013)
and / or Nicholas Wilt , CUDA Handbook , A Comprehensive
Guide to GPU Programming , Sections 2.6.2 to 3.1.2 (June
2013) .
[0005] Machine learning has been successful at solving
many kinds of tasks . The computations that arise when
training and using machine learning algorithms (e.g. , neural
networks) lend themselves naturally to efficient parallel
implementations . Accordingly , parallel processors such as
general - purpose graphic processing units (GPGPUs) have
played a significant role in the practical implementation of
deep neural networks . Parallel graphics processors with
single instruction , multiple thread (SIMT) architectures are
designed to maximize the amount of parallel processing in
the graphics pipeline . In an SIMT architecture , groups of
parallel threads attempt to execute program instructions

are

a

US 2021/0390654 A1 Dec. 16 , 2021
2

a [0024] FIG . 16 is a block diagram illustrating distributed
learning .
[0025] FIG . 17 illustrates an exemplary inferencing sys
tem on a chip (SOC) suitable for performing inferencing
using a trained model .
[0026] FIG . 18 is a block diagram of an embodiment of a
computer system with a processor having one or more
processor cores and graphics processors .
[0027] FIG . 19 is a block diagram of one embodiment of
a processor having one or more processor cores , an inte
grated memory controller , and an integrated graphics pro

a

cessor .

a

[0028] FIG . 20 is a block diagram of one embodiment of
a graphics processor which may be a discreet graphics
processing unit , or may be graphics processor integrated
with a plurality of processing cores .
[0029] FIG . 21 is a block diagram of an embodiment of a
graphics processing engine for a graphics processor .
[0030] FIG . 22 is a block diagram of another embodiment
of a graphics processor .
[0031] FIG . 23 is a block diagram of thread execution
logic including an array of processing elements .
[0032] FIG . 24 illustrates a graphics processor execution
unit instruction format according to an embodiment .
[0033] FIG . 25 is a block diagram of another embodiment
of a graphics processor which includes a graphics pipeline ,
a media pipeline , a display engine , thread execution logic ,
and a render output pipeline .
[0034] FIG . 26A is a block diagram illustrating a graphics
processor command format according to an embodiment .
[0035] FIG . 26B is a block diagram illustrating a graphics
processor command sequence according to an embodiment .
[0036] FIG . 27 illustrates exemplary graphics software
architecture for a data processing system according to an
embodiment .
[0037] FIG . 28 is a block diagram illustrating an IP core
development system that may be used to manufacture an
integrated circuit to perform operations according to an
embodiment .
[0038] FIG . 29 is a block diagram illustrating an exem
plary system on a chip integrated circuit that may be
fabricated using one or more IP cores , according to an
embodiment .
[0039] FIG . 30 is a block diagram illustrating an exem
plary graphics processor of a system on a chip integrated
circuit .
[0040] FIG . 31 is a block diagram illustrating an addi
tional exemplary graphics processor of a system on a chip
integrated circuit .

a

referenced throughout this document . Further , terms like
“ autonomous machine ” or simply “ machine ” , “ autonomous
vehicle ” or simply “ vehicle ” , “ autonomous agent or simply
" agent ” , “ autonomous device ” or “ computing device ” ,
“ robot ” , and / or the like , may be interchangeably referenced
throughout this document .
[0043] In some embodiments , a graphics processing unit
(GPU) is communicatively coupled to host / processor cores
to accelerate graphics operations , machine - learning opera
tions , pattern analysis operations , and various general pur
pose GPU (GPGPU) functions . The GPU may be commu
nicatively coupled to the host processor / cores over a bus or
another interconnect (e.g. , a high - speed interconnect such as
PCIe or NVLink) . In other embodiments , the GPU may be
integrated on the same package or chip as the cores and
communicatively coupled to the cores over an internal
processor bus / interconnect (i.e. , internal to the package or
chip) . Regardless of the manner in which the GPU is
connected , the processor cores may allocate work to the
GPU in the form of sequences of commands / instructions
contained in a work descriptor . The GPU then uses dedicated
circuitry / logic for efficiently processing these commands /
instructions .
[0044] In the following description , numerous specific
details are set forth . However , embodiments , as described
herein , may be practiced without these specific details . In
other instances , well - known circuits , structures and tech
niques have not been shown in detail in order not to obscure
the understanding of this description .
[0045] System Overview I
[0046] FIG . 1 is a block diagram illustrating a computing
system 100 configured to implement one or more aspects of
the embodiments described herein . The computing system
100 includes a processing subsystem 101 having one or
more processor (s) 102 and a system memory 104 commu
nicating via an interconnection path that may include a
memory hub 105. The memory hub 105 may be a separate
component within a chipset component or may be integrated
within the one or more processor (s) 102. The memory hub
105 couples with an I / O subs m 111 via a communication
link 106. The I / O subsystem 111 includes an I / O hub 107
that can enable the computing system 100 to receive input
from one or more input device (s) 108. Additionally , the I / O
hub 107 can enable a display controller , which may be
included in the one or more processor (s) 102 , to provide
outputs to one or more display device (s) 110A . In one
embodiment , the one or more display device (s) 110A
coupled with the I / O hub 107 can include a local , internal ,
or embedded display device .
[0047] In one embodiment , the processing subsystem 101
includes one or more parallel processor (s) 112 coupled to
memory hub 105 via a bus or other communication link 113 .
The communication link 113 may be one of any number of
standards based communication link technologies or proto
cols , such as , but not limited to PCI Express , or may be a
vendor specific communications interface or communica
tions fabric . In one embodiment , the one or more parallel
processor (s) 112 form a computationally focused parallel or
vector processing system that an include a large number of
processing cores and / or processing clusters , such as a many
integrated core (MIC) processor . In one embodiment , the
one or more parallel processor (s) 112 form a graphics
processing subsystem that can output pixels to one of the one
or more display device (s) 110A coupled via the I / O Hub 107 .

a

.

DETAILED DESCRIPTION

a

[004] Embodiments provide for a novel technique for
facilitating data sharing across processing systems using a
surface library such that data produced on one graphics
processor , application processor , etc. , can be retrieved from
the surface library and used by another if working on the
same convolution . Embodiments further provide for a novel
technique for facilitating expansion or re - expansion of com
pressed models for performance and communication effi
ciency .
[0042] It is to be noted that terms or acronyms like
“ convolutional neural network ” , “ CNN ” , “ neural network ” ,
“ NN ” , “ deep neural network ” , “ DNN ” , “ recurrent neural
network ” , “ RNN ” , and / or the like may be interchangeably

-

>

US 2021/0390654 A1 Dec. 16 , 2021
3

The one or more parallel processor (s) 112 can also include
a display controller and display interface (not shown) to
enable a direct connection to one or more display device (s)
110B .
[0048] Within the I / O subsystem 111 , a system storage
unit 114 can connect to the I / O hub 107 to provide a storage
mechanism for the computing system 100. An I / O switch
116 can be used to provide an interface mechanism to enable
connections between the I / O hub 107 and other components ,
such as a network adapter 118 and / or wireless network
adapter 119 that may be integrated into the platform , and
various other devices that can be added via one or more
add - in device (s) 120. The network adapter 118 can be an
Ethernet adapter or another wired network adapter . The
wireless network adapter 119 can include one or more of a
Wi - Fi , Bluetooth , near field communication (NFC) , or other
network device that includes one or more wireless radios .
[0049] The computing system 100 can include other com
ponents not explicitly shown , including USB or other port
connections , optical storage drives , video capture devices ,
and the like , may also be connected to the I / O hub 107 .
Communication paths interconnecting the various compo
nents in FIG . 1 may be implemented using any suitable
protocols , such as PCI (Peripheral Component Interconnect)
based protocols (e.g. , PCI - Express) , or any other bus or
point - to - point communication interfaces and / or protocol (s) ,
such as the NV - Link high - speed interconnect , or intercon
nect protocols known in the art .
[0050] In one embodiment , the one or more parallel pro
cessor (s) 112 incorporate circuitry optimized for graphics
and video processing , including , for example , video output
circuitry , and constitutes a graphics processing unit (GPU) .
In another embodiment , the one or more parallel processor
(s) 112 incorporate circuitry optimized for general purpose
processing , while preserving the underlying computational
architecture , described in greater detail herein . In yet another
embodiment , components of the computing system 100 may
be integrated with one or more other system elements on a
single integrated circuit . For example , the one or more
parallel processor (s) , 112 memory hub 105 , processor (s)
102 , and I / O hub 107 can be integrated into a system on chip
(SOC) integrated circuit . Alternatively , the components of
the computing system 100 can be integrated into a single
package to form a system in package (SIP) configuration . In
one embodiment , at least a portion of the components of the
computing system 100 can be integrated into a multi - chip
module (MCM) , which can be interconnected with other
multi - chip modules into a modular computing system .
[0051] It will be appreciated that the computing system
100 shown herein is illustrative and that variations and
modifications are possible . The connection topology , includ
ing the number and arrangement of bridges , the number of
processor (s) 102 , and the number of parallel processor (s)
112 , may be modified as desired . For instance , in some
embodiments , system memory 104 is connected to the
processor (s) 102 directly rather than through a bridge , while
other devices communicate with system memory 104 via the
memory hub 105 and the processor (s) 102. In other alter
native topologies , the parallel processor (s) 112 are con
nected to the I / O hub 107 or directly to one of the one or
more processor (s) 102 , rather than to the memory hub 105 .
In other embodiments , the I / O hub 107 and memory hub 105
may be integrated into a single chip . Some embodiments
may include two or more sets of processor (s) 102 attached

via multiple sockets , which can couple with two or more
instances of the parallel processor (s) 112 .
[0052] Some of the particular components shown herein
are optional and may not be included in all implementations
of the computing system 100. For example , any number of
add - in cards or peripherals may be supported , or some
components may be eliminated . Furthermore , some archi
tectures may use different terminology for components
similar to those illustrated in FIG . 1. For example , the
memory hub 105 may be referred to as a Northbridge in
some architectures , while the I / O hub 107 may be referred
to as a Southbridge .
[0053] FIG . 2A illustrates a parallel processor 200 , accord
ing to an embodiment . The various components of the
parallel processor 200 may be implemented using one or
more integrated circuit devices , such as programmable pro
cessors , application specific integrated circuits (ASICs) , or
field programmable gate arrays (FPGA) . The illustrated
parallel processor 200 is a variant of the one or more parallel
processor (s) 112 shown in FIG . 1 , according to an embodi
ment .

[0054] In one embodiment , the parallel processor 200
includes a parallel processing unit 202. The parallel pro
cessing unit includes an 1/0 unit 204 that enables commu
nication with other devices , including other instances of the
parallel processing unit 202. The I / O unit 204 may be
directly connected to other devices . In one embodiment , the
1/0 unit 204 connects with other devices via the use of a hub
or switch interface , such as memory hub 105. The connec
tions between the memory hub 105 and the I / O unit 204
form a communication link 113. Within the parallel process
ing unit 202 , the I / O unit 204 connects with a host interface
206 and a memory crossbar 216 , where the host interface
206 receives commands directed to performing processing
operations and the memory crossbar 216 receives commands
directed to performing memory operations .
[0055] When the host interface 206 receives a command
buffer via the I / O unit 204 , the host interface 206 can direct
work operations to perform those commands to a front end
208. In one embodiment , the front end 208 couples with a
scheduler 210 , which is configured to distribute commands
or other work items to a processing cluster array 212. In one
embodiment , the scheduler 210 ensures that the processing
cluster array 212 is properly configured and in a valid state
before tasks are distributed to the processing clusters of the
processing cluster array 212 .
[0056] The processing cluster array 212 can include up to
“ N ” processing clusters (e.g. , cluster 214A , cluster 214B ,
through cluster 214N) . Each cluster 214A - 214N of the
processing cluster array 212 can execute a large number of
concurrent threads . The scheduler 210 can allocate work to
the clusters 214A - 214N of the processing cluster array 212
using various scheduling and / or work distribution algo
rithms , which may vary depending on the workload arising
for each type of program or computation . The scheduling
can be handled dynamically by the scheduler 210 , or can be
assisted in part by compiler logic during compilation of
program logic configured for execution by the processing
cluster array 212 .
[0057] In one embodiment , different clusters 214A - 214N
of processing cluster array 212 can be allocated for process
ing different types of programs or for performing different
types of computations .

a

US 2021/0390654 A1 Dec. 16 , 2021
4

[0058] The processing cluster array 212 can be configured
to perform various types of parallel processing operations .
In one embodiment , the processing cluster array 212 is
configured to perform general - purpose parallel compute
operations . For example , the processing cluster array 212
can include logic to execute processing tasks including
filtering of video and / or audio data , performing modeling
operations , including physics operations , and performing
data transformations .
[0059] In one embodiment , the processing cluster array
212 is configured to perform parallel graphics processing
operations . In embodiments in which the parallel processor
200 is configured to perform graphics processing operations ,
the processing cluster array 212 can include additional logic
to support the execution of such graphics processing opera
tions , including , but not limited to texture sampling logic to
perform texture operations , as well as tessellation logic and
other vertex processing logic . Additionally , the processing
cluster array 212 can be configured to execute graphics
processing related shader programs such as , but not limited
to vertex shaders , tessellation shaders , geometry shaders ,
and pixel shaders . The parallel processing unit 202 can
transfer data from system memory via the I / O unit 204 for
processing . During processing the transferred data can be
stored to on - chip memory (e.g. , parallel processor memory
222) during processing , then written back to system
memory .
[0060] In one embodiment , when the parallel processing
unit 202 is used to perform graphics processing , the sched
uler 210 can be configured to divide the processing work
load into approximately equal sized tasks , to better enable
distribution of the graphics processing operations to multiple
clusters 214A - 214N of the processing cluster array 212. In
some embodiments , portions of the processing cluster array
212 can be configured to perform different types of process
ing . For example , a first portion may be configured to
perform vertex shading and topology generation , a second
portion may be configured to perform tessellation and geom
etry shading , and a third portion may be configured to
perform pixel shading or other screen space operations , to
produce a rendered image for display . Intermediate data
produced by one or more of the clusters 214A - 214N may be
stored in buffers to allow the intermediate data to be trans
mitted between clusters 214A - 214N for further processing .
[0061] During operation , the processing cluster array 212
can receive processing tasks to be executed via the scheduler
210 , which receives commands defining processing tasks
from front end 208. For graphics processing operations ,
processing tasks can include indices of data to be processed ,
e.g. , surface (patch) data , primitive data , vertex data , and / or
pixel data , as well as state parameters and commands
defining how the data is to be processed (e.g. , what program
is to be executed) . The scheduler 210 may be configured to
fetch the indices corresponding to the tasks or may receive
the indices from the front end 208. The front end 208 can be
configured to ensure the processing cluster array 212 is
configured to a valid state before the workload specified by
incoming command buffers (e.g. , batch - buffers , push buf
fers , etc.) is initiated .
[0062] Each of the one or more instances of the parallel
processing unit 202 can couple with parallel processor
memory 222. The parallel processor memory 222 can be
accessed via the memory crossbar 216 , which can receive
memory requests from the processing cluster array 212 as

well as the I / O unit 204. The memory crossbar 216 can
access the parallel processor memory 222 via a memory
interface 218. The memory interface 218 can include mul
tiple partition units (e.g. , partition unit 220A , partition unit
220B , through partition unit 220N) that can each couple to
a portion (e.g. , memory unit) of parallel processor memory
222. In one implementation , the number of partition units
220A - 220N is configured to be equal to the number of
memory units , such that a first partition unit 220A has a
corresponding first memory unit 224A , a second partition
unit 220B has a corresponding memory unit 224B , and an
Nth partition unit 220N has a corresponding Nth memory
unit 224N . In other embodiments , the number of partition
units 220A - 220N may not be equal to the number of
memory devices .
[0063] In various embodiments , the memory units 224A
224N can include various types of memory devices , includ
ing dynamic random access memory (DRAM) or graphics
random access memory , such as synchronous graphics ran
dom access memory (SGRAM) , including graphics double
data rate (GDDR) memory . In one embodiment , the memory
units 224A - 224N may also include 3D stacked memory ,
including but not limited to high bandwidth memory
(HBM) . Persons skilled in the art will appreciate that the
specific implementation of the memory units 224A - 224N
can vary , and can be selected from one of various conven
tional designs . Render targets , such as frame buffers or
texture maps may be stored across the memory units 224A
224N , allowing partition units 220A - 220N to write portions
of each render target in parallel to efficiently use the avail
able bandwidth of parallel processor memory 222. In some
embodiments , a local instance of the parallel processor
memory 222 may be excluded in favor of a unified memory
design that utilizes system memory in conjunction with local
cache memory .
[0064] In one embodiment , any one of the clusters 214A
214N of the processing cluster array 212 can process data
that will be written to any of the memory units 224A - 224N
within parallel processor memory 222. The memory cross
bar 216 can be configured to transfer the output of each
cluster 214A - 214N to any partition unit 220A - 220N or to
another cluster 214A - 214N , which can perform additional
processing operations on the output . Each cluster 214A
214N can communicate with the memory interface 218
through the memory crossbar 216 to read from or write to
various external memory devices . In one embodiment , the
memory crossbar 216 has a connection to the memory
interface 218 to communicate with the I / O unit 204 , as well
as a connection to a local instance of the parallel processor
memory 222 , enabling the processing units within the dif
ferent processing clusters 214A - 214N to communicate with
system memory or other memory that is not local to the
parallel processing unit 202. In one embodiment , the
memory crossbar 216 can use virtual channels to separate
traffic streams between the clusters 214A - 214N and the
partition units 220A - 220N .
[0065] While a single instance of the parallel processing
unit 202 is illustrated within the parallel processor 200 , any
number of instances of the parallel processing unit 202 can
be included . For example , multiple instances of the parallel
processing unit 202 can be provided on a single add - in card ,
or multiple add - in cards can be interconnected . The different
instances of the parallel processing unit 202 can be config
ured to inter - operate even if the different instances have

US 2021/0390654 A1 Dec. 16 , 2021
5

a

a

different numbers of processing cores , different amounts of
local parallel processor memory , and / or other configuration
differences . For example , and in one embodiment , some
instances of the parallel processing unit 202 can include
higher precision floating point units relative to other
instances . Systems incorporating one or more instances of
the parallel processing unit 202 or the parallel processor 200
can be implemented in a variety of configurations and form
factors , including but not limited to desktop , laptop , or
handheld personal computers , servers , workstations , game
consoles , and / or embedded systems .
[0066] FIG . 2B is a block diagram of a partition unit 220 ,
according to an embodiment . In one embodiment , the par
tition unit 220 is an instance of one of the partition units
220A - 220N of FIG . 2A . As illustrated , the partition unit 220
includes an L2 cache 221 , a frame buffer interface 225 , and
a ROP 226 (raster operations unit) . The L2 cache 221 is a
read / write cache that is configured to perform load and store
operations received from the memory crossbar 216 and ROP
226. Read misses and urgent write - back requests are output
by L2 cache 221 to frame buffer interface 225 for process
ing . Dirty updates can also be sent to the frame buffer via the
frame buffer interface 225 for opportunistic processing . In
one embodiment , the frame buffer interface 225 interfaces
with one of the memory units in parallel processor memory ,
such as the memory units 224A - 224N of FIG . 2A (e.g. ,
within parallel processor memory 222) .
[0067] In graphics applications , the ROP 226 is a process
ing unit that performs raster operations , such as stencil , z
test , blending , and the like . The ROP 226 then outputs
processed graphics data that is stored in graphics memory . In
some embodiments , the ROP 226 includes compression
logic to compress z or color data that is written to memory
and decompress z or color data that is read from memory . In
some embodiments , the ROP 226 is included within each
processing cluster (e.g. , cluster 214A - 214N of FIG . 2A)
instead of within the partition unit 220. In such embodiment ,
read and write requests for pixel data are transmitted over
the memory crossbar 216 instead of pixel fragment data .
[0068] The processed graphics data may be displayed on
a display device , such as one of the one or more display
device (s) 110 of FIG . 1 , routed for further processing by the
processor (s) 102 , or routed for further processing by one of
the processing entities within the parallel processor 200 of
FIG . 2A .
[0069] FIG . 2C is a block diagram of a processing cluster
214 within a parallel processing unit , according to an
embodiment . In one embodiment , the processing cluster is
an instance of one of the processing clusters 214A - 214N of
FIG . 2A . The processing cluster 214 can be configured to
execute many threads in parallel , where the term “ thread ”
refers to an instance of a particular program executing on a
particular set of input data . In some embodiments , single
instruction , multiple - data (SIMD) instruction issue tech
niques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units . In other embodiments , single - instruction ,
multiple - thread (SIMT) techniques are used to support par
allel execution of a large number of generally synchronized
threads , using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the processing clusters . Unlike a SIMD execution regime ,
where all processing engines typically execute identical
instructions , SIMT execution allows different threads to

more readily follow divergent execution paths through a
given thread program . Persons skilled in the art will under
stand that a SIMD processing regime represents a functional
subset of a SIMT processing regime .
[0070] Operation of the processing cluster 214 can be
controlled via a pipeline manager 232 that distributes pro
cessing tasks to SIMT parallel processors . The pipeline
manager 232 receives instructions from the scheduler 210 of
FIG . 2A and manages execution of those instructions via a
graphics multiprocessor 234 and / or a texture unit 236. The
illustrated graphics multiprocessor 234 is an exemplary
instance of an SIMT parallel processor . However , various
types of SIMT parallel processors of differing architectures
may be included within the processing cluster 214. One or
more instances of the graphics multiprocessor 234 can be
included within a processing cluster 214. The graphics
multiprocessor 234 can process data and a data crossbar 240
can be used to distribute the processed data to one of
multiple possible destinations , including other shader units .
The pipeline manager 232 can facilitate the distribution of
processed data by specifying destinations for processed data
to be distributed vis the data crossbar 240 .
[0071] Each graphics multiprocessor 234 within the pro
cessing cluster 214 can include an identical set of functional
execution logic (e.g. , arithmetic logic units , load - store units ,
etc.) . The functional execution logic can be configured in a
pipelined manner in which new instructions can be issued
before previous instructions are complete . The functional
execution logic may be provided . The functional logic
supports a variety of operations including integer and float
ing point arithmetic comparison operations , Boolean opera
tions bit - shifting , and computation of various algebraic
functions . In one embodiment , the same functional - unit
hardware can be leveraged to perform different operations
and any combination of functional units may be present .
[0072] The instructions transmitted to the processing clus
ter 214 constitutes a thread . A set of threads executing across
the set of parallel processing engines is a thread group . A
thread group executes the same program on different input
data . Each thread within a thread group can be assigned to
a different processing engine within a graphics multiproces
sor 234. A thread group may include fewer threads than the
number of processing engines within the graphics multipro
cessor 234. When a thread group includes fewer threads than
the number of processing engines , one or more of the
processing engines may be idle during cycles in which that
thread group is being processed . A thread group may also
include more threads than the number of processing engines
within the graphics multiprocessor 234. When the thread
group includes more threads than the number of processing
engines within the graphics multiprocessor 234 , processing
can be performed over consecutive clock cycles . In one
embodiment , multiple thread groups can be executed con
currently on a graphics multiprocessor 234 .
[0073] In one embodiment , the graphics multiprocessor
234 includes an internal cache memory to perform load and
store operations . In one embodiment , the graphics multipro
cessor 234 can forego an internal cache and use a cache
memory (e.g. , L1 cache 308) within the processing cluster
214. Each graphics multiprocessor 234 also has access to L2
caches within the partition units (e.g. , partition units 220A
220N of FIG . 2A) that are shared among all processing
clusters 214 and may be used to transfer data between
threads . The graphics multiprocessor 234 may also access

a

a

US 2021/0390654 A1 Dec. 16 , 2021
6

cores 262 and load / store units 266 are coupled with cache
memory 272 and shared memory 270 via a memory and
cache interconnect 268 .

[0078] In one embodiment , the instruction cache 252
receives a stream of instructions to execute from the pipeline
manager 232. The instructions are cached in the instruction
cache 252 and dispatched for execution by the instruction
unit 254. The instruction unit 254 can dispatch instructions
as thread groups (e.g. , warps) , with each thread of the thread
group assigned to a different execution unit within GPGPU
core 262. An instruction can access any of a local , shared , or
global address space by specifying an address within a
unified address space . The address mapping unit 256 can be
used to translate addresses in the unified address space into
a distinct memory address that can be accessed by the
load / store units 266 .

a

off - chip global memory , which can include one or more of
local parallel processor memory and / or system memory .
Any memory external to the parallel processing unit 202
may be used as global memory . Embodiments in which the
processing cluster 214 includes multiple instances of the
graphics multiprocessor 234 can share common instructions
and data , which may be stored in the L1 cache 308 .
[0074] Each processing cluster 214 may include an MMU
245 (memory management unit) that is configured to map
virtual addresses into physical addresses . In other embodi
ments , one or more instances of the MMU 245 may reside
within the memory interface 218 of FIG . 2A . The MMU 245
includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile (talk more
about tiling) and optionally a cache line index . The MMU
245 may include address translation lookaside buffers (TLB)
or caches that may reside within the graphics multiprocessor
234 or the L1 cache or processing cluster 214. The physical
address is processed to distribute surface data access locality
to allow efficient request interleaving among partition units .
The cache line index may be used to determine whether a
request for a cache line is a hit or miss .
[0075] In graphics and computing applications , a process
ing cluster 214 may be configured such that each graphics
multiprocessor 234 is coupled to a texture unit 236 for
performing texture mapping operations , e.g. , determining
texture sample positions , reading texture data , and filtering
the texture data . Texture data is read from an internal texture
L1 cache (not shown) or in some embodiments from the L1
cache within graphics multiprocessor 234 and is fetched
from an L2 cache , local parallel processor memory , or
system memory , as needed . Each graphics multiprocessor
234 outputs processed tasks to the data crossbar 240 to
provide the processed task to another processing cluster 214
for further processing or to store the processed task in an L2
cache , local parallel processor memory , or system memory
via the memory crossbar 216. A preROP 242 (pre - raster
operations unit) is configured to receive data from graphics
multiprocessor 234 , direct data to ROP units , which may be
located with partition units as described herein (e.g. , parti
tion units 220A - 220N of FIG . 2A) . The preROP 242 unit can
perform optimizations for color blending , organize pixel
color data , and perform address translations .
[0076] It will be appreciated that the core architecture
described herein is illustrative and that variations and modi
fications are possible . Any number of processing units , e.g. ,
graphics multiprocessor 234 , texture units 236 , preROPs
242 , etc. , may be included within a processing cluster 214 .
Further , while only one processing cluster 214 is shown , a
parallel processing unit as described herein may include any
number of instances of the processing cluster 214. In one
embodiment , each processing cluster 214 can be configured
to operate independently of other processing clusters 214
using separate and distinct processing units , Ll caches , etc.
[0077] FIG . 2D shows a graphics multiprocessor 234 ,
according to one embodiment . In such embodiment , the
graphics multiprocessor 234 couples with the pipeline man
ager 232 of the processing cluster 214. The graphics mul
tiprocessor 234 has an execution pipeline including but not
limited to an instruction cache 252 , an instruction unit 254 ,
an address mapping unit 256 , a register file 258 , one or more
general purpose graphics processing unit (GPGPU) cores
262 , and one or more load / store units 266. The GPGPU

[0079] The register file 258 provides a set of registers for
the functional units of the graphics multiprocessor 324. The
register file 258 provides temporary storage for operands
connected to the data paths of the functional units (e.g. ,
GPGPU cores 262 , load / store units 266) of the graphics
multiprocessor 324. In one embodiment , the register file 258
is divided between each of the functional units such that
each functional unit is allocated a dedicated portion of the
register file 258. In one embodiment , the register file 258 is
divided between the different warps being executed by the
graphics multiprocessor 324 .
[0080] The GPGPU cores 262 can each include floating
point units (FPUs) and / or integer arithmetic logic units
(ALUS) that are used to execute instructions of the graphics
multiprocessor 324. The GPGPU cores 262 can be similar in
architecture or can differ in architecture , according to
embodiments . For example , and in one embodiment , a first
portion of the GPGPU cores 262 include a single precision
FPU and an integer ALU while a second portion of the
GPGPU cores include a double precision FPU . In one
embodiment , the FPUs can implement the IEEE 754-2008
standard for floating point arithmetic or enable variable
precision floating point arithmetic . The graphics multipro
cessor 324 can additionally include one or more fixed
function or special function units to perform specific func
tions such as copy rectangle or pixel blending operations . In
one embodiment one or more of the GPGPU cores can also
include fixed or special function logic .
[0081] The memory and cache interconnect 268 is an
interconnect network that connects each of the functional
units of the graphics multiprocessor 324 to the register file
258 and to the shared memory 270. In one embodiment , the
memory and cache interconnect 268 is a crossbar intercon
nect that allows the load / store unit 266 to implement load
and store operations between the shared memory 270 and
the register file 258. The register file 258 can operate at the
same frequency as the GPGPU cores 262 , thus data transfer
between the GPGPU cores 262 and the register file 258 is
very low latency . The shared memory 270 can be used to
enable communication between threads that execute on the
functional units within the graphics multiprocessor 234. The
cache memory 272 can be used as a data cache for example ,
to cache texture data communicated between the functional
units and the texture unit 236. The shared memory 270 can
also be used as a program managed cached . Threads execut
ing on the GPGPU cores 262 can programmatically store

a

US 2021/0390654 A1 Dec. 16 , 2021
7

data within the shared memory in addition to the automati
cally cached data that is stored within the cache memory
272 .
[0082] FIGS . 3A - 3B illustrate additional graphics multi
processors , according to embodiments . The illustrated
graphics multiprocessors 325 , 350 are variants of the graph
ics multiprocessor 234 of FIG . 2C . The illustrated graphics
multiprocessors 325 , 350 can be configured as a streaming
multiprocessor (SM) capable of simultaneous execution of a
large number of execution threads .
[0083] FIG . 3A shows a graphics multiprocessor 325
according to an additional embodiment . The graphics mul
tiprocessor 325 includes multiple additional instances of
execution resource units relative to the graphics multipro
cessor 234 of FIG . 2D . For example , the graphics multipro
cessor 325 can include multiple instances of the instruction
unit 332A - 332B , register file 334A - 334B , and texture unit (s)
344A - 344B . The graphics multiprocessor 325 also includes
multiple sets of graphics or compute execution units (e.g. ,
GPGPU core 336A - 336B , GPGPU core 337A - 337B ,
GPGPU core 338A - 338B) and multiple sets of load / store
units 340A - 340B . In one embodiment , the execution
resource units have a common instruction cache 330 , texture
and / or data cache memory 342 , and shared memory 346 .
The various components can communicate via an intercon
nect fabric 327. In one embodiment , the interconnect fabric
327 includes one or more crossbar switches to enable
communication between the various components of the
graphics multiprocessor 325 .
[0084] FIG . 3B shows a graphics multiprocessor 350
according to an additional embodiment . The graphics pro
cessor includes multiple sets of execution resources 356A
356D , where each set of execution resource includes mul
tiple instruction units , register files , GPGPU cores , and load
store units , as illustrated in FIG . 2D and FIG . 3A . The
execution resources 356A - 356D can work in concert with
texture unit (s) 360A - 360D for texture operations , while
sharing an instruction cache 354 , and shared memory 362. In
one embodiment , the execution resources 356A - 356D can
share an instruction cache 354 and shared memory 362 , as
well as multiple instances of a texture and / or data cache
memory 358A - 358B . The various components can commu
nicate via an interconnect fabric 352 similar to the intercon
nect fabric 327 of FIG . 3A .
[0085] Persons skilled in the art will understand that the
architecture described in FIGS . 1 , 2A - 2D , and 3A - 3B are
descriptive and not limiting as to the scope of the present
embodiments . Thus , the techniques described herein may be
implemented on any properly configured processing unit ,
including , without limitation , one or more mobile applica
tion processors , one or more desktop or server central
processing units (CPUs) including multi - core CPUs , one or
more parallel processing units , such as the parallel process
ing unit 202 of FIG . 2A , as well as one or more graphics
processors or special purpose processing units , without
departure from the scope of the embodiments described
herein .
[0086] In some embodiments , a parallel processor or
GPGPU as described herein is communicatively coupled to
host / processor cores to accelerate graphics operations ,
machine learning operations , pattern analysis operations ,
and various general purpose GPU (GPGPU) functions . The
GPU may be communicatively coupled to the host proces
sor / cores over a bus or other interconnect (e.g. , a high - speed

interconnect such as PCIe or NVLink) . In other embodi
ments , the GPU may be integrated on the same package or
chip as the cores and communicatively coupled to the cores
over an internal processor bus / interconnect (i.e. , internal to
the package or chip) . Regardless of the manner in which the
GPU is connected , the processor cores may allocate work to
the GPU in the form of sequences of commands / instructions
contained in a work descriptor . The GPU then uses dedicated
circuitry / logic for efficiently processing these commands /
instructions .
[0087] Techniques for GPU to Host Processor Intercon
nection

[0088] FIG . 4A illustrates an exemplary architecture in
which a plurality of GPUs 410-413 are communicatively
coupled to a plurality of multi - core processors 405-406 over
high - speed links 440-443 (e.g. , buses , point - to - point inter
connects , etc.) . In one embodiment , the high - speed links
440-443 support a communication throughput of 4 GB / s , 30
GB / s , 80 GB / s or higher , depending on the implementation .
Various interconnect protocols may be used including , but
not limited to , PCIe 4.0 or 5.0 and NVLink 2.0 . However ,
the underlying principles of the invention are not limited to
any particular communication protocol or throughput .
[0089] In addition , in one embodiment , two or more of the
GPUs 410-413 are interconnected over high - speed links
444-445 , which may be implemented using the same or
different protocols / links than those used for high - speed links
440-443 . Similarly , two or more of the multi - core processors
405-406 may be connected over high speed link 433 which
may be symmetric multi - processor (SMP) buses operating at
20 GB / s , 30 GB / s , 120 GB / s or higher . Alternatively , all
communication between the various system components
shown in FIG . 4A may be accomplished using the same
protocols / links (e.g. , over a common interconnection fab
ric) . As mentioned , however , the underlying principles of the
invention are not limited to any particular type of intercon
nect technology .
[0090] In one embodiment , each multi - core processor
405-406 is communicatively coupled to a processor memory
401-402 , via memory interconnects 430-431 , respectively ,
and each GPU 410-413 is communicatively coupled to GPU
memory 420-423 over GPU memory interconnects 450-453 ,
respectively . The memory interconnects 430-431 and 450
453 may utilize the same or different memory access tech
nologies . By way of example , and not limitation , the pro
cessor memories 401-402 and GPU memories 420-423 may
be volatile memories such as dynamic random access
memories (DRAMs) (including stacked DRAMs) , Graphics
DDR SDRAM (GDDR) (e.g. , GDDR5 , GDDR6) , or High
Bandwidth Memory (HBM) and / or may be non - volatile
memories such as 3D XPoint or Nano - Ram . In one embodi
ment , some portion of the memories may be volatile
memory and another portion may be non - volatile memory
(e.g. , using a two - level memory (2LM) hierarchy) .
[0091] As described below , although the various proces
sors 405-406 and GPUs 410-413 may be physically coupled
to a particular memory 401-402 , 420-423 , respectively , a
unified memory architecture may be implemented in which
the same virtual system address space (also referred to as the
" effective address ” space) is distributed among all of the
various physical memories . For example , processor memo
ries 401-402 may each comprise 64 GB of the system
memory address space and GPU memories 420-423 may

9

US 2021/0390654 A1 Dec. 16 , 2021
8

each comprise 32 GB of the system memory address space
(resulting in a total of 256 GB addressable memory in this
example) .
[0092] FIG . 4B illustrates additional details for an inter
connection between a multi - core processor 407 and a graph
ics acceleration module 446 in accordance with one embodi
ment . The graphics acceleration module 446 may include
one or more GPU chips integrated on a line card which is
coupled to the processor 407 via the high - speed link 440 .
Alternatively , the graphics acceleration module 446 may be
integrated on the same package or chip as the processor 407 .
[0093] The illustrated processor 407 includes a plurality of
cores 460A - 460D , each with a translation lookaside buffer
461A - 461D and one or more caches 462 A - 462D . The cores
may include various other components for executing instruc
tions and processing data which are not illustrated to avoid
obscuring the underlying principles of the invention (e.g. ,
instruction fetch units , branch prediction units , decoders ,
execution units , reorder buffers , etc.) . The caches 462A
462D may comprise level 1 (L1) and level 2 (L2) caches . In
addition , one or more shared caches 426 may be included in
the caching hierarchy and shared by sets of the cores
460A - 460D . For example , one embodiment of the processor
407 includes 24 cores , each with its own L1 cache , twelve
shared L2 caches , and twelve shared L3 caches . In this
embodiment , one of the L2 and L3 caches are shared by two
adjacent cores . The processor 407 and the graphics accel
erator integration module 446 connect with system memory
441 , which may include processor memories 401-402 .
[0094] Coherency is maintained for data and instructions
stored in the various caches 462A - 462D , 456 and system
memory 441 via inter - core communication over a coherence
bus 464. For example , each cache may have cache coher
ency logic / circuitry associated therewith to communicate to
over the coherence bus 464 in response to detected reads or
writes to particular cache lines . In one implementation , a
cache snooping protocol is implemented over the coherence
bus 464 to snoop cache accesses . Cache snooping / coherency
techniques are well understood by those of skill in the art
and will not be described in detail here to avoid obscuring
the underlying principles of the invention .
[0095] In one embodiment , a proxy circuit 425 commu
nicatively couples the graphics acceleration module 446 to
the coherence bus 464 , allowing the graphics acceleration
module 446 to participate in the cache coherence protocol as
a peer of the cores . In particular , an interface 435 provides
connectivity to the proxy circuit 425 over high - speed link
440 (e.g. , a PCIe bus , NVLink , etc.) and an interface 437
connects the graphics acceleration module 446 to the link
440 .

[0096] In one implementation , an accelerator integration
circuit 436 provides cache management , memory access ,
context management , and interrupt management services on
behalf of a plurality of graphics processing engines 431 ,
432 , N of the graphics acceleration module 446. The graph
ics processing engines 431 , 432 , N may each comprise a
separate graphics processing unit (GPU) . Alternatively , the
graphics processing engines 431 , 432 , N may comprise
different types of graphics processing engines within a GPU
such as graphics execution units , media processing engines
(e.g. , video encoders / decoders) , samplers , and blit engines .
In other words , the graphics acceleration module may be a
GPU with a plurality of graphics processing engines 431

432 , N or the graphics processing engines 431-432 , N may
be individual GPUs integrated on a common package , line
card , or chip .
[0097] In one embodiment , the accelerator integration
circuit 436 includes a memory management unit (MMU)
439 for performing various memory management functions
such as virtual - to - physical memory translations (also
referred to as effective - to - real memory translations) and
memory access protocols for accessing system memory 441 .
The MMU 439 may also include a translation lookaside
buffer (TLB) (not shown) for caching the virtual / effective to
physical / real address translations . In one implementation , a
cache 438 stores commands and data for efficient access by
the graphics processing engines 431-432 , N. In one embodi
ment , the data stored in cache 438 and graphics memories
433-434 , N is kept coherent with the core caches 462A
462D , 456 and system memory 411. As mentioned , this may
be accomplished via proxy circuit 425 which takes part in
the cache coherency mechanism on behalf of cache 438 and
memories 433-434 , N (e.g. , sending updates to the cache
438 related to modifications / accesses of cache lines on
processor caches 462A - 462D , 456 and receiving updates
from the cache 438) .
[0098] A set of registers 445 store context data for threads
executed by the graphics processing engines 431-432 , N and
a context management circuit 448 manages the thread con
texts . For example , the context management circuit 448 may
perform save and restore operations to save and restore
contexts of the various threads during contexts switches
(e.g. , where a first thread is saved and a second thread is
stored so that the second thread can be execute by a graphics
processing engine) . For example , on a context switch , the
context management circuit 448 may store current register
values to a designated region in memory (e.g. , identified by
a context pointer) . It may then restore the register values
when returning to the context . In one embodiment , an
interrupt management circuit 447 receives and processes
interrupts received from system devices .
[0099] In one implementation , virtual / effective addresses
from a graphics processing engine 431 are translated to
real / physical addresses in system memory 411 by the MMU
439. One embodiment of the accelerator integration circuit
436 supports multiple (e.g. , 4 , 8 , 16) graphics accelerator
modules 446 and / or other accelerator devices . The graphics
accelerator module 446 may be dedicated to a single appli
cation executed on the processor 407 or may be shared
between multiple applications . In one embodiment , a virtu
alized graphics execution environment is presented in which
the resources of the graphics processing engines 431-432 , N
are shared with multiple applications or virtual machines
(VMs) . The resources may be subdivided into “ slices ” which
are allocated to different VMs and / or applications based on
the processing requirements and priorities associated with
the VMs and / or applications .
[0100] Thus , the accelerator integration circuit acts as a
bridge to the system for the graphics acceleration module
446 and provides address translation and system memory
cache services . In addition , the accelerator integration circuit
436 may provide virtualization facilities for the host pro
cessor to manage virtualization of the graphics processing
engines , interrupts , and memory management .
[0101] Because hardware resources of the graphics pro
cessing engines 431-432 , N are mapped explicitly to the real
address space seen by the host processor 407 , any host

US 2021/0390654 A1 Dec. 16 , 2021
9

-9

processor can address these resources directly using an
effective address value . One function of the accelerator
integration circuit 436 , in one embodiment , is the physical
separation of the graphics processing engines 431-432 , N so
that they appear to the system as independent units .
[0102] As mentioned , in the illustrated embodiment , one
or more graphics memories 433-434 , M are coupled to each
of the graphics processing engines 431-432 , N , respectively .
The graphics memories 433-434 , M store instructions and
data being processed by each of the graphics processing
engines 431-432 , N. The graphics memories 433-434 , M
may be volatile memories such as DRAMs (including
stacked DRAMs) , GDDR memory (e.g. , GDDR5 , GDDR6) ,
or HBM , and / or may be non - volatile memories such as 3D
XPoint or Nano - Ram .
[0103] In one embodiment , to reduce data traffic over link
440 , biasing techniques are used to ensure that the data
stored in graphics memories 433-434 , M is data which will
be used most frequently by the graphics processing engines
431-432 , N and preferably not used by the cores 460A - 460D
(at least not frequently) . Similarly , the biasing mechanism
attempts to keep data needed by the cores (and preferably
not the graphics processing engines 431-432 , N) within the
caches 462A - 462D , 456 of the cores and system memory
411 .
[0104] FIG . 4C illustrates another embodiment in which
the accelerator integration circuit 436 is integrated within
the processor 407. In this embodiment , the graphics pro
cessing engines 431-432 , N communicate directly over the
high - speed link 440 to the accelerator integration circuit 436
via interface 437 and interface 435 (which , again , may be
utilize any form of bus or interface protocol) . The accelera
tor integration circuit 436 may perform the same operations
as those described with respect to FIG . 4B , but potentially at
a higher throughput given its close proximity to the coher
ency bus 462 and caches 462A - 462D , 426 .
[0105] One embodiment supports different programming
models including a dedicated - process programming model
(no graphics acceleration module virtualization) and shared
programming models (with virtualization) . The latter may
include programming models which are controlled by the
accelerator integration circuit 436 and programming models
which are controlled by the graphics acceleration module
446 .
[0106] In one embodiment of the dedicated process model ,
graphics processing engines 431-432 , N are dedicated to a
single application or process under a single operating sys
tem . The single application can funnel other application
requests to the graphics engines 431-432 , N , providing
virtualization within a VM / partition .
[0107] In the dedicated - process programming models , the
graphics processing engines 431-432 , N , may be shared by
multiple VM / application partitions . The shared models
require a system hypervisor to virtualize the graphics pro
cessing engines 431-432 , N to allow access by each oper
ating system . For single - partition systems without a hyper
visor , the graphics processing engines 431-432 , N are owned
by the operating system . In both cases , the operating system
can virtualize the graphics processing engines 431-432 , N to
provide access to each process or application .
[0108] For the shared programming model , the graphics
acceleration module 446 or an individual graphics process
ing engine 431-432 , N selects a process element using a
process handle . In one embodiment , process elements are

stored in system memory 411 and are addressable using the
effective address to real address translation techniques
described herein . The process handle may be an implemen
tation - specific value provided to the host process when
registering its context with the graphics processing engine
431-432 , N (that is , calling system software to add the
process element to the process element linked list) . The
lower 16 - bits of the process handle may be the offset of the
process element within the process element linked list .
[0109] FIG . 4D illustrates an exemplary accelerator inte
gration slice 490. As used herein , a “ slice ” comprises a
specified portion of the processing resources of the accel
erator integration circuit 436. Application effective address
space 482 within system memory 411 stores process ele
ments 483. In one embodiment , the process elements 483 are
stored in response to GPU invocations 481 from applications
480 executed on the processor 407. A process element 483
contains the process state for the corresponding application
480. A work descriptor (WD) 484 contained in the process
element 483 can be a single job requested by an application
or may contain a pointer to a queue of jobs . In the latter case ,
the WD 484 is a pointer to the job request queue in the
application's address space 482 .
[0110] The graphics acceleration module 446 and / or the
individual graphics processing engines 431-432 , N can be
shared by all or a subset of the processes in the system .
Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 484 to a
graphics acceleration module 446 to start a job in a virtu
alized environment .

[0111] In one implementation , the dedicated - process pro
gramming model is implementation - specific . In this model ,
a single process owns the graphics acceleration module 446
or an individual graphics processing engine 431. Because
the graphics acceleration module 446 is owned by a single
process , the hypervisor initializes the accelerator integration
circuit 436 for the owning partition and the operating system
initializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration
module 446 is assigned .
[0112] In operation , a WD fetch unit 491 in the accelerator
integration slice 490 fetches the next WD 484 which
includes an indication of the work to be done by one of the
graphics processing engines of the graphics acceleration
module 446. Data from the WD 484 may be stored in
registers 445 and used by the MMU 439 , interrupt manage
ment circuit 447 and / or context management circuit 446 as
illustrated . For example , one embodiment of the MMU 439
includes segment / page walk circuitry for accessing segment /
page tables 486 within the OS virtual address space 485. The
interrupt management circuit 447 may process interrupt
events 492 received from the graphics acceleration module
446. When performing graphics operations , an effective
address 493 generated by a graphics processing engine
431-432 , N is translated to a real address by the MMU 439 .
[0113] In one embodiment , the same set of registers 445
are duplicated for each graphics processing engine 431-432 ,
N and / or graphics acceleration module 446 and may be
initialized by the hypervisor or operating system . Each of
these duplicated registers may be included in an accelerator
integration slice 490. Exemplary registers that may be
initialized by the hypervisor are shown in Table 1 .

9

US 2021/0390654 A1 Dec. 16 , 2021
10

TABLE 1

Hypervisor Initialized Registers
1 Slice Control Register
2 Real Address (RA) Scheduled Processes Area Pointer
3 Authority Mask Override Register
4 Interrupt Vector Table Entry Offset
5 Interrupt Vector Table Entry Limit
6 State Register
7 Logical Partition ID
8 Real address (RA) Hypervisor Accelerator Utilization Record Pointer
9 Storage Description Register

[0114] Exemplary registers that may be initialized by the
operating system are shown in Table 2 .

TABLE 2

Operating System Initialized Registers

system call with a graphics acceleration module 446 type , a
work descriptor (WD) , an authority mask register (AMR)
value , and a context save / restore area pointer (CSRP) . The
graphics acceleration module 446 type describes the targeted
acceleration function for the system call . The graphics
acceleration module 446 type may be a system - specific
value . The WD is formatted specifically for the graphics
acceleration module 446 and can be in the form of a graphics
acceleration module 446 command , an effective address
pointer to a user - defined structure , an effective address
pointer to a queue of commands , or any other data structure
to describe the work to be done by the graphics acceleration
module 446. In one embodiment , the AMR value is the AMR
state to use for the current process . The value passed to the
operating system is similar to an application setting the
AMR . If the accelerator integration circuit 436 and graphics
acceleration module 446 implementations do not support a
User Authority Mask Override Register (UAMOR) , the
operating system may apply the current UAMOR value to
the AMR value before passing the AMR in the hypervisor
call . The hypervisor 496 may optionally apply the current
Authority Mask Override Register (AMOR) value before
placing the AMR into the process element 483. In one
embodiment , the CSRP is one of the registers 445 containing
the effective address of an area in the application's address
space 482 for the graphics acceleration module 446 to save
and restore the context state . This pointer is optional if no
state is required to be saved between jobs or when a job is
preempted . The context save / restore area may be pinned
system memory .
[0120] Upon receiving the system call , the operating sys
tem 495 may verify that the application 480 has registered
and been given the authority to use the graphics acceleration
module 446. The operating system 495 then calls the hyper
visor 496 with the information shown in Table 3 .

1
2
3
4
5
6

Process and Thread Identification
Effective Address (EA) Context Save / Restore Pointer
Virtual Address (VA) Accelerator Utilization Record Pointer
Virtual Address (VA) Storage Segment Table Pointer
Authority Mask
Work descriptor

a

TABLE 3

OS to Hypervisor Call Parameters

[0115] In one embodiment , each WD 484 is specific to a
particular graphics acceleration module 446 and / or graphics
processing engines 431-432 , N. It contains all the informa
tion a graphics processing engine 431-432 , N requires to do
its work or it can be a pointer to a memory location where
the application has set up a command queue of work to be
completed .
[0116] FIG . 4E illustrates additional details for one
embodiment of a shared model . This embodiment includes
a hypervisor real address space 498 in which a process
element list 499 is stored . The hypervisor real address space
498 is accessible via a hypervisor 496 which virtualizes the
graphics acceleration module engines for the operating
system 495 .
[0117] The shared programming models allow for all or a
subset of processes from all or a subset of partitions in the
system to use a graphics acceleration module 446. There are
two programming models where the graphics acceleration
module 446 is shared by multiple processes and partitions :
time - sliced shared and graphics directed shared .
[0118] In this model , the system hypervisor 496 owns the
graphics acceleration module 446 and makes its function
available to all operating systems 495. For a graphics
acceleration module 446 to support virtualization by the
system hypervisor 496 , the graphics acceleration module
446 may adhere to the following requirements : 1) An
application's job request must be autonomous (that is , the
state does not need to be maintained between jobs) , or the
graphics acceleration module 446 must provide a context
save and restore mechanism . 2) An application's job request
is guaranteed by the graphics acceleration module 446 to
complete in a specified amount of time , including any
translation faults , or the graphics acceleration module 446
provides the ability to preempt the processing of the job . 3)
The graphics acceleration module 446 must be guaranteed
fairness between processes when operating in the directed
shared programming model .
[0119] In one embodiment , for the shared model , the
application 480 is required to make an operating system 495

1 A work descriptor (WD)
2 An Authority Mask Register (AMR) value (potentially masked) .
3 An effective address (EA) Context Save / Restore Area Pointer (CSRP)
4 A process ID (PID) and optional thread ID (TID)
5 A virtual address (VA) accelerator utilization record pointer (AURP)
6 The virtual address of the storage segment table pointer (SSTP)
7 A logical interrupt service number (LISN)

[0121] Upon receiving the hypervisor call , the hypervisor
496 verifies that the operating system 495 has registered and
been given the authority to use the graphics acceleration
module 446. The hypervisor 496 then puts the process
element 483 into the process element linked list for the
corresponding graphics acceleration module 446 type . The
process element may include the information shown in Table
4

TABLE 4

Process Element Information

1 A work descriptor (WD)
2 An Authority Mask Register (AMR) value (potentially masked) .
3 An effective address (EA) Context Save / Restore Area Pointer (CSRP)
4 A process ID (PID) and optional thread ID (TID)
5 A virtual address (VA) accelerator utilization record pointer (AURP)
6 The virtual address of the storage segment table pointer (SSTP)

US 2021/0390654 A1 Dec. 16 , 2021
11

TABLE 4 - continued

Process Element Information

7 A logical interrupt service number (LISN)
8 Interrupt vector table , derived from the hypervisor call parameters .
9 A state register (SR) value

10 A logical partition ID (LPID)
11 A real address (RA) hypervisor accelerator utilization record pointer
12 The Storage Descriptor Register (SDR)

a

[0122] In one embodiment , the hypervisor initializes a
plurality of accelerator integration slice 490 registers 445 .
[0123] As illustrated in FIG . 4F , one embodiment of the
invention employs a unified memory addressable via a
common virtual memory address space used to access the
physical processor memories 401-402 and GPU memories
420-423 . In this implementation , operations executed on the
GPUs 410-413 utilize the same virtual / effective memory
address space to access the processors memories 401-402
and vice versa , thereby simplifying programmability . In one
embodiment , a first portion of the virtual / effective address
space is allocated to the processor memory 401 , a second
portion to the second processor memory 402 , a third portion
to the GPU memory 420 , and so on . The entire virtual /
effective memory space (sometimes referred to as the effec
tive address space) is thereby distributed across each of the
processor memories 401-402 and GPU memories 420-423 ,
allowing any processor or GPU to access any physical
memory with a virtual address mapped to that memory .
[0124] In one embodiment , bias / coherence management
circuitry 494A - 494E within one or more of the MMUS
439A - 439E ensures cache coherence between the caches of
the host processors (e.g. , 405) and the GPUs 410-413 and
implements biasing techniques indicating the physical
memories in which certain types of data should be stored .
While multiple instances of bias / coherence management
circuitry 494A - 494E are illustrated in FIG . 4F , the bias /
coherence circuitry may be implemented within the MMU
of one or more host processors 405 and / or within the
accelerator integration circuit 436 .
[0125] One embodiment allows GPU - attached memory
420-423 to be mapped as part of system memory , and
accessed using shared virtual memory (SVM) technology ,
but without suffering the typical performance drawbacks
associated with full system cache coherence . The ability to
GPU - attached memory 420-423 to be accessed as system
memory without onerous cache coherence overhead pro
vides a beneficial operating environment for GPU offload .
This arrangement allows the host processor 405 software to
setup operands and access computation results , without the
overhead of tradition I / O DMA data copies . Such traditional
copies involve driver calls , interrupts and memory mapped
I / O (MMIO) accesses that are all inefficient relative to
simple memory accesses . At the same time , the ability to
access GPU attached memory 420-423 without cache coher
ence overheads can be critical to the execution time of an
offloaded computation . In cases with substantial streaming
write memory traffic , for example , cache coherence over
head can significantly reduce the effective write bandwidth
seen by a GPU 410-413 . The efficiency of operand setup , the
efficiency of results access , and the efficiency of GPU
computation all play a role in determining the effectiveness
of GPU offload .

[0126] In one implementation , the selection of between
GPU bias and host processor bias is driven by a bias tracker
data structure . A bias table may be used , for example , which
may be a page - granular structure (i.e. , controlled at the
granularity of a memory page) that includes 1 or 2 bits per
GPU - attached memory page . The bias table may be imple
mented in a stolen memory range of one or more GPU
attached memories 420-423 , with or without a bias cache in
the GPU 410-413 (e.g. , to cache frequently / recently used
entries of the bias table) . Alternatively , the entire bias table
may be maintained within the GPU .
[0127] In one implementation , the bias table entry asso
ciated with each access to the GPU - attached memory 420
423 is accessed prior the actual access to the GPU memory ,
causing the following operations . First , local requests from
the GPU 410-413 that find their page in GPU bias are
forwarded directly to a corresponding GPU memory 420
423. Local requests from the GPU that find their page in host
bias are forwarded to the processor 405 (e.g. , over a high
speed link as discussed above) . In one embodiment , requests
from the processor 405 that find the requested page in host
processor bias complete the request like a normal memory
read . Alternatively , requests directed to a GPU - biased page
may be forwarded to the GPU 410-413 . The GPU may then
transition the page to a host processor bias if it is not
currently using the page .
[0128] The bias state of a page can be changed either by
a software - based mechanism , a hardware - assisted software
based mechanism , or , for a limited set of cases , a purely
hardware - based mechanism .
[0129] One mechanism for changing the bias state
employs an API call (e.g. OpenCL) , which , in turn , calls the
GPU's device driver which , in turn , sends a message (or
enqueues a command descriptor) to the GPU directing it to
change the bias state and , for some transitions , perform a
cache flushing operation in the host . The cache flushing
operation is required for a transition from host processor 405
bias to GPU bias , but is not required for the opposite
transition .
[0130] In one embodiment , cache coherency is maintained
by temporarily rendering GPU - biased pages uncacheable by
the host processor 405. To access these pages , the processor
405 may request access from the GPU 410 which may or
may not grant access right away , depending on the imple
mentation . Thus , to reduce communication between the
processor 405 and GPU 410 it is beneficial to ensure that
GPU - biased pages are those which are required by the GPU
but not the host processor 405 and vice versa .
[0131] Graphics Processing Pipeline
[0132] FIG . 5 illustrates a graphics processing pipeline
500 , according to an embodiment . In one embodiment , a
graphics processor can implement the illustrated graphics
processing pipeline 500. The graphics processor can be
included within the parallel processing subsystems as
described herein , such as the parallel processor 200 of FIG .
2A , which , in one embodiment , is a variant of the parallel
processor (s) 112 of FIG . 1. The various parallel processing
systems can implement the graphics processing pipeline 500
via one or more instances of the parallel processing unit
(e.g. , parallel processing unit 202 of FIG . 2A) as described
herein . For example , a shader unit (e.g. , graphics multipro
cessor 234 of FIG . 2D) may be configured to perform the
functions of one or more of a vertex processing unit 504 , a
tessellation control processing unit 508 , a tessellation evalu

9

US 2021/0390654 A1 Dec. 16 , 2021
12

ation processing unit 512 , a geometry processing unit 516 ,
and a fragment / pixel processing unit 524. The functions of
data assembler 502 , primitive assemblers 506 , 514 , 518 ,
tessellation unit 510 , rasterizer 522 , and raster operations
unit 526 may also be performed by other processing engines
within a processing cluster (e.g. , processing cluster 214 of
FIG . 3A) and a corresponding partition unit (e.g. , partition
unit 220A - 220N of FIG . 2C) . The graphics processing
pipeline 500 may also be implemented using dedicated
processing units for one or more functions . In one embodi
ment , one or more portions of the graphics processing
pipeline 500 can be performed by parallel processing logic
within a general - purpose processor (e.g. , CPU) . In one
embodiment , one or more portions of the graphics process
ing pipeline 500 can access on - chip memory (e.g. , parallel
processor memory 222 as in FIG . 2A) via a memory
interface 528 , which may be an instance of the memory
interface 218 of FIG . 2A .
[0133] In one embodiment , the data assembler 502 is a
processing unit that collects vertex data for surfaces and
primitives . The data assembler 502 then outputs the vertex
data , including the vertex attributes , to the vertex processing
unit 504. The vertex processing unit 504 is a programmable
execution unit that executes vertex shader programs , light
ing and transforming vertex data as specified by the vertex
shader programs . The vertex processing unit 504 reads data
that is stored in cache , local or system memory for use in
processing the vertex data and may be programmed to
transform the vertex data from an object - based coordinate
representation to a world space coordinate space or a nor
malized device coordinates space .
[0134] A first instance of a primitive assembler 506
receives vertex attributes from the vertex processing unit
504. The primitive assembler 506 readings stored vertex
attributes as needed and constructs graphics primitives for
processing by tessellation control processing unit 508. The
graphics primitives include triangles , line segments , points ,
patches , and so forth , as supported by various graphics
processing application programming interfaces (APIs) .
[0135] The tessellation control processing unit 508 treats
the input vertices as control points for a geometric patch .
The control points are transformed from an input represen
tation from the patch (e.g. , the patch's bases) to a represen
tation that is suitable for use in surface evaluation by the
tessellation evaluation processing unit 512. The tessellation
control processing unit 508 can also compute tessellation
factors for edges of geometric patches . A tessellation factor
applies to a single edge and quantifies a view - dependent
level of detail associated with the edge . A tessellation unit
510 is configured to receive the tessellation factors for edges
of a patch and to tessellate the patch into multiple geometric
primitives such as line , triangle , or quadrilateral primitives ,
which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri
butes for each vertex associated with the geometric primi
tives .
[0136] A second instance of a primitive assembler 514
receives vertex attributes from the tessellation evaluation
processing unit 512 , reading stored vertex attributes as
needed , and constructs graphics primitives for processing by
the geometry processing unit 516. The geometry processing
unit 516 is a programmable execution unit that executes

geometry shader programs to transform graphics primitives
received from primitive assembler 514 as specified by the
geometry shader programs . In one embodiment , the geom
etry processing unit 516 is programmed to subdivide the
graphics primitives into one or more new graphics primi
tives and calculate parameters used to rasterize the new
graphics primitives .
[0137] In some embodiments , the geometry processing
unit 516 can add or delete elements in the geometry stream .
The geometry processing unit 516 outputs the parameters
and vertices specifying new graphics primitives to primitive
assembler 518. The primitive assembler 518 receives the
parameters and vertices from the geometry processing unit
516 and constructs graphics primitives for processing by a
viewport scale , cull , and clip unit 520. The geometry pro
cessing unit 516 reads data that is stored in parallel processor
memory or system memory for use in processing the geom
etry data . The viewport scale , cull , and clip unit 520 per
forms clipping , culling , and viewport scaling and outputs
processed graphics primitives to a rasterizer 522 .
[0138] The rasterizer 522 can perform depth culling and
other depth - based optimizations . The rasterizer 522 also
performs scan conversion on the new graphics primitives to
generate fragments and outputs those fragments and asso
ciated coverage data to the fragment / pixel processing unit
524 .
[0139] The fragment / pixel processing unit 524 is a pro
grammable execution unit that is configured to execute
fragment shader programs or pixel shader programs . The
fragment / pixel processing unit 524 transforming fragments
or pixels received from rasterizer 522 , as specified by the
fragment or pixel shader programs . For example , the frag
ment / pixel processing unit 524 may be programmed to
perform operations included but not limited to texture map
ping , shading , blending , texture correction and perspective
correction to produce shaded fragments or pixels that are
output to a raster operations unit 526. The fragment / pixel
processing unit 524 can read data that is stored in either the
parallel processor memory or the system memory for use
when processing the fragment data . Fragment or pixel
shader programs may be configured to shade at sample ,
pixel , tile , or other granularities , depending on the sampling
rate configured for the processing units .
(0140] The raster operations unit 526 is a processing unit
that performs raster operations including , but not limited to
stencil , z test , blending , and the like , and outputs pixel data
as processed graphics data to be storage in graphics memory ,
e.g. , parallel processor memory 222 as in FIG . 2A , and / or
system memory 104 as in FIG . 1 , to be displayed on the one
or more display device (s) 110 or for further processing by
one of the one or more processor (s) 102 or parallel processor
(s) 112. In some embodiments , the raster operations unit 526
is configured to compress z or color data that is written to
memory and decompress z or color data that is read from
memory .
[0141] FIG . 6 illustrates a computing device 600 hosting
a data sharing and compression expansion mechanism
(“ sharing and expansion mechanism ”) 610 according to one
embodiment . Computing device 600 represents a commu
nication and data processing device including (but not
limited to) smart wearable devices , smartphones , virtual
reality (VR) devices , head - mounted display (HMDs) ,
mobile computers , Internet of Things (IoT) devices , laptop
computers , desktop computers , server computers , etc. , and

US 2021/0390654 A1 Dec. 16 , 2021
13

be similar to or the same as computing device 100 of FIG .
1 ; accordingly , for brevity , clarity , and ease of understand
ing , many of the details stated above with reference to FIGS .
1-5 are not further discussed or repeated hereafter .
[0142] Computing device 600 may further include (with
out limitations) an autonomous machine or an artificially
intelligent agent , such as a mechanical agent or machine , an
electronics agent or machine , a virtual agent or machine , an
electro - mechanical agent or machine , etc. Examples of
autonomous machines or artificially intelligent agents may
include (without limitation) robots , autonomous vehicles (e.g. , self - driving cars , self - flying planes , self - sailing boats ,
etc.) , autonomous equipment (self - operating construction
vehicles , self - operating medical equipment , etc.) , and / or the
like . Throughout this document , “ computing device ” may be
interchangeably referred to as “ autonomous machine ” or
" artificially intelligent agent " or simply " robot " .
[0143] It contemplated that although " autonomous
vehicle ” and “ autonomous driving ” are referenced through
out this document , embodiments are not limited as such . For
example , " autonomous vehicle ” is not limed to an automo
bile but that it may include any number and type of autono
mous machines , such as robots , autonomous equipment ,
household autonomous devices , and / or the like , and any one
or more tasks or operations relating to such autonomous
machines may be interchangeably referenced with autono
mous driving
[0144] Computing device 600 may further include (with
out limitations) large computing systems , such as server
computers , desktop computers , etc. , and may further include
set - top boxes (e.g. , Internet - based cable television set - top
boxes , etc.) , global positioning system (GPS) -based devices ,
etc. Computing device 600 may include mobile computing
devices serving as communication devices , such as cellular
phones including smartphones , personal digital assistants
(PDAs) , tablet computers , laptop computers , e - readers ,
smart televisions , television platforms , wearable devices
(e.g. , glasses , watches , bracelets , smartcards , jewelry , cloth
ing items , etc.) , media players , etc. For example , in one
embodiment , computing device 600 may include a mobile
computing device employing a computer platform hosting
an integrated circuit (“ IC ”) , such as system on a chip (“ SOC ”
or “ SOC ”) , integrating various hardware and / or software
components of computing device 600 on a single chip .
[0145] As illustrated , in one embodiment , computing
device 600 may include any number and type of hardware
and / or software components , such as (without limitation)
graphics processing unit (“ GPU ” or simply " graphics pro
cessor ”) 614 , graphics driver (also referred to as “ GPU
driver ” , “ graphics driver logic ” , “ driver logic ” , user - mode
driver (UMD) , UMD , user - mode driver framework
(UMDF) , UMDF , or simply “ driver ") 616 , central process
ing unit (“ CPU ” or simply " application processor ”) 612 ,
memory 608 , network devices , drivers , or the like , as well as
input / output (1/0) sources 604 , such as touchscreens , touch
panels , touch pads , virtual or regular keyboards , virtual or
regular mice , ports , connectors , etc. Computing device 600
may include operating system (OS) 606 serving as an
interface between hardware and / or physical resources of the
computer device 600 and a user . It is contemplated that
graphics processor 614 and application processor 612 may
be one or more of processor (s) 102 of FIG . 1 .
[014] It is to be appreciated that a lesser or more
equipped system than the example described above may be

preferred for certain implementations . Therefore , the con
figuration of computing device 600 may vary from imple
mentation to implementation depending upon numerous
factors , such as price constraints , performance requirements ,
technological improvements , or other circumstances .
[0147] Embodiments may be implemented as any or a
combination of : one or more microchips or integrated cir
cuits interconnected using a parentboard , hardwired logic ,
software stored by a memory device and executed by a
microprocessor , firmware , an application specific integrated
circuit (ASIC) , and / or a field programmable gate array
(FPGA) . The terms “ logic ” , “ module ” , “ component ” ,
“ engine ” , and “ mechanism ” may include , by way of
example , software or hardware and / or combinations of soft
ware and hardware .
[0148] In one embodiment , sharing and expansion mecha
nism 610 may be hosted or facilitated by operating system
606 of computing device 600. In another embodiment ,
sharing and expansion mechanism 610 may be hosted by or
part of graphics processing unit (" GPU ” or simply “ graphics
processor ”) 614 or firmware of graphics processor 614. For
example , sharing and expansion mechanism 610 may be
embedded in or implemented as part of the processing
hardware of graphics processor 614. Similarly , in yet
another embodiment , sharing and expansion mechanism 610
may be hosted by or part of central processing unit (“ CPU ”
or simply " application processor ") 612. For example , shar
ing and expansion mechanism 610 may be embedded in or
implemented as part of the processing hardware of applica
tion processor 612. In yet another embodiment , sharing and
expansion mechanism 610 may be hosted by or part of any
number and type of components of computing device 600 ,
such as a portion of sharing and expansion mechanism 610
may be hosted by or part of operating system 606 , another
portion may be hosted by or part of graphics processor 614 ,
another portion may be hosted by or part of application
processor 612 , while one or more portions of sharing and
expansion mechanism 610 may be hosted by or part of
operating system 606 and / or any number and type of devices
of computing device 600. It is contemplated that one or more
portions or components of sharing and expansion mecha
nism 610 may be employed as hardware , software , and / or
firmware .
[0149] It is contemplated that embodiments are not limited
to any particular implementation or hosting of sharing and
expansion mechanism 610 and that sharing and expansion
mechanism 610 and one or more of its components may be
implemented as hardware , software , firmware , or any com
bination thereof .
[0150] Computing device 600 may host network interface
(s) to provide access to a network , such as a LAN , a wide
area network (WAN) , a metropolitan area network (MAN) ,
a personal area network (PAN) , Bluetooth , a cloud network ,
a mobile network (e.g. , 3rd Generation (3G) , 4th Generation
(4G) , etc.) , an intranet , the Internet , etc. Network interface
(s) may include , for example , a wireless network interface
having antenna , which may represent one or more antenna
(e) . Network interface (s) may also include , for example , a
wired network interface to communicate with remote
devices via network cable , which may be , for example , an
Ethernet cable , a coaxial cable , a fiber optic cable , a serial
cable , or a parallel cable .
[0151] Embodiments may be provided , for example , as a
computer program product which may include one or more

US 2021/0390654 A1 Dec. 16 , 2021
14

614 , application processor 612 , field programmable gate
array (FPGA) , application - specific integrated circuit
(ASIC) , and / or the like , using a surface library . For example ,
in one embodiment , any processor working on the same
convolution can retrieve data from the surface library , where
this data had been produced by another processor . In another
embodiment , this data may be stored persistently across
runs .

>

9

machine - readable media having stored thereon machine
executable instructions that , when executed by one or more
machines such as a computer , network of computers , or
other electronic devices , may result in the one or more
machines carrying out operations in accordance with
embodiments described herein . Amachine - readable medium
may include , but is not limited to , floppy diskettes , optical
disks , CD - ROMs (Compact Disc - Read Only Memories) ,
and magneto - optical disks , ROMs , RAMS , EPROMs (Eras
able Programmable Read Only Memories) , EEPROMs
(Electrically Erasable Programmable Read Only Memories) ,
magnetic or optical cards , flash memory , or other type of
media / machine - readable medium suitable for storing
machine - executable instructions .
[0152] Moreover , embodiments may be downloaded as a
computer program product , wherein the program may be
transferred from a remote computer (e.g. , a server) to a
requesting computer (e.g. , a client) by way of one or more
data signals embodied in and / or modulated by a carrier wave
or other propagation medium via a communication link
(e.g. , a modem and / or network connection) .
[0153] Throughout the document , term " user ” may be
interchangeably referred to as " viewer ” , " observer ” , “ per
son ” , “ individual ” , “ end - user " , and / or the like . It is to be
noted that throughout this document , terms like “ graphics
domain ” may be referenced interchangeably with " graphics
processing unit ” , “ graphics processor ” , or simply “ GPU ”
and similarly , “ CPU domain ” or “ host domain ” may be
referenced interchangeably with " computer processing
unit " , " application processor ” , or simply " CPU ” .
[0154] It is to be noted that terms like “ node ” , “ computing
node ” , “ server ” , “ server device ” , “ cloud computer " , " cloud
server ” , “ cloud server computer " , " machine " , " host
machine ” , " device ” , “ computing device ” , “ computer ” ,
" computing system ” , and the like , may be used interchange
ably throughout this document . It is to be further noted that
terms like " application ” , “ software application ” , “ program ” ,
“ software program ” , “ package ” , “ software package ” , and
the like , may be used interchangeably throughout this docu
ment . Also , terms like “ job ” , “ input ” , “ request ” , “ message ” ,
and the like , may be used interchangeably throughout this
document .
[0155] FIG . 7 illustrates sharing and expansion mecha
nism 610 of FIG . 6 according to one embodiment . For
brevity , many of the details already discussed with reference
to FIGS . 1-6 are not repeated or discussed hereafter . In one
embodiment , sharing and expansion mechanism 610 may
include any number and type of components , such as (with
out limitations) : detection / observation logic 701 ; library
generation / mapping logic 703 ; data sharing / retrieval logic
705 ; communication / compatibility logic 707 ; and compres
sion / expansion logic 709 .
[0156] As aforementioned , data sharing is an efficient
manner for having access to all the relevant data without
going through long processes and procedures or re - inventing
the wheel . However , conventional data sharing techniques
are limited in their user as they do not provide for data
sharing across processing systems , where one processing
system can retrieve any portion of shared data if that portion
is relevant to the work being performed by or at the
processing system .
[0157] Embodiments provide for a novel technique for
offering to share data produced on any number and type of
processing systems or devices , such as graphics processor

[0158] In one embodiment , detection / observation logic
701 may be used to detect and observe processors , such as
graphics processor 614 , as they work on , for example ,
convolution , where this information may be shared with
sharing / retrieval logic 703 and library logic 705. For
example , if graphics processor 614 is working on convolu
tion neural networks (CNNs) , graphics processor 614 may
be facilitated by sharing / retrieval logic 703 to store the
intermediate neural network (NN) data as a data surface in
surface library 731 located at one or more cloud databases
or datacenters , such as database (s) 730 , in communication
with computing devices 600 , 740 over one or more com
munication medium (s) 725 , such as a cloud network .
[0159] In one embodiment , library logic 703 may be used
to generate one or more surface libraries , such as surface
library 731 , as desired or necessitated , as graphics processor
614 is detected by detection / observation logic 701 as work
ing on the convolution and having data that is capable of
being stored at surface library 731 and subsequently used by
one or more other processing devices , such as application
processor 612 , application processor 742 , graphics proces
sor 744 , etc. In another embo ment , if there are available
sufficient number of or amount of space in surface libraries ,
additional or new surface libraries may not be generated and
data sharing / retrieval logic 703 may simply be used to
trigger graphics processor 614 to store its data at one of the
libraries , such as surface library 731 , and establish mapping
of the data stored with the corresponding processing device ,
such as graphics processor 614 , as facilitated by library logic
705 .

[0160] Once the data has been stored , in one embodiment ,
it is now available to other processing devices , whether it be
application processor 612 at computing device 600 , or one
or more processing devices at another deep learning system ,
such as application and graphics processors 742 , 744 at
computing device 740 , over communication medium 730 .
For example , if graphics processor 744 is also working to the
same or similar convolution or problem as graphics proces
sor 614 , graphics processor 744 may access the intermediate
NN data at surface library 731 as facilitated by sharing
retrieval logic 703 .
[0161] For example , if computing devices 600 , 740 are
two autonomous machines (e.g. , vehicles , robots , etc.) that
are side - by - side , having a similar view , experiencing the
same environmental conditions , etc. , the two graphics pro
cessors 612 , 742 , respectively , can shared the NN data using
surface library 731 at database (s) 730 over communication
medium (s) 725 .
[0162] Further , in one embodiment , any surfaces produced
in this matter may be optionally compressed by compres
sion / expansion logic 709 for an even faster transmission
time . Moreover , shared surfaces , as facilitated by shared
library 731 , may be used for cross - checking results by
multiple deep learning systems , such as autonomous
machines 600 , 740 as further illustrated in FIG . 8A .

US 2021/0390654 A1 Dec. 16 , 2021
15

a

[0163] Embodiments further provide for a novel technique
for re - expansion of compressed models for achieving high
performance and communication efficiency . For example ,
certain models can be too large to send over the air and thus ,
model compression may be used to reduce the number of
layers and one or more of the models may be expended back
to their original size , such as in high performance computing
(HPC) .
[0164] Conventional techniques are merely limited in their
approach to communicating data models between a number
of autonomous machines , such as vehicles , etc. , which is
inefficient in most cases , such as when there are millions of
autonomous vehicles , such as autonomous machines 600
and 740 , involved on the road , requiring a large amount of
bandwidth to deliver data models over one or more com
munication medium (s) 725 .
[0165] Embodiments provide for a novel technique for
compressing data models , while expanding them with an
artefact to allow for smooth communication over commu
nication medium (s) 725 without being costly , such as in
terms of system or network resources , bandwidth , etc.
[0166] For example , in case of a large number of autono
mous vehicles , such as autonomous machines 600 , 740 ,
being on the road , it would be desirable to facilitate com
munication of information between such vehicles , such as
traffic data , whether information , emergency alerts , etc. , as
frequency and quickly as desired or necessitated . However ,
conventional systems are not capable of expanding com
pressed models .
[0167] In one embodiment , as further illustrated with
respect to FIG . 8B , compression / expansion logic 709 may
be used to compress a data model and assign an artefact to
the compressed model such that the artefact serves as both
an extension to the compressed model and a form of
identification if the compressed model is communicated
from one machine 600 to another machine 740 over com
munication medium (s) 725 .
[0168] It is contemplated that “ artefact ” or the use of
artefact is merely according to one embodiment and that
there may be other several techniques by which a com
pressed model may be re - combined to get the original
model , such additional techniques may include (without
limitation) using a “ light ” retraining within the vehicle ,
" hints ” from peer vehicles / drivers , and / or the like .
[0169] For example , in one embodiment , an original or
regular model of data may be compressed by applying an
artefact by compression / expansion logic 709 , where this
compressed model and the corresponding artefact are com
municated from one autonomous machine 600 to another
autonomous machine 740 over one or more communication
medium (s) 725 (e.g. , cloud , Internet , etc.) . The artefact may
then be received at autonomous machine 740 (in autono
mous vehicle , for example) , followed by the reception of a
combo of compressed model and artifact . The two are then
separated and autonomous machine 740 can now use the
model in its original and uncompressed model .
[0170] Further , communication / compatibility logic 707
may be used to facilitate the needed communication and
compatibility between any number of devices of computing
device 600 and various components of sharing and expan
sion mechanism 610 .
[0171] Communication / compatibility logic 707 may be
used to facilitate dynamic communication and compatibility
between computing device 600 and any number and type of

other computing devices (such as mobile computing device ,
desktop computer , server computing device , etc.) ; process
ing devices or components (such as CPUs , GPUs , etc.) ;
capturing / sensing / detecting devices (such as capturing / sens
ing components including cameras , depth sensing cameras ,
camera sensors , red green blue (“ RGB ” or “ rgb ”) sensors ,
microphones , etc.) ; display devices (such as output compo
nents including display screens , display areas , display pro
jectors , etc.) ; user / context - awareness components and / or
identification / verification sensors / devices (such as biometric
sensors / detectors , scanners , etc.) ; database (s) 730 , such as
memory or storage devices , databases , and / or data sources
(such as data storage devices , hard drives , solid - state drives ,
hard disks , memory cards or devices , memory circuits , etc.) ;
communication medium (s) 725 , such as one or more com
munication channels or networks (e.g. , cloud networks , the
Internet , intranets , cellular networks , proximity networks ,
such as Bluetooth , Bluetooth low energy (BLE) , Bluetooth
Smart , Wi - Fi proximity , Radio Frequency Identification
(RFID) , Near Field Communication (NFC) , Body Area
Network (BAN) , etc.) ; wireless or wired communications
and relevant protocols (e.g. , Wi - Fi® , WiMAX , Ethernet ,
etc.) ; connectivity and location management techniques ;
software applications / websites (e.g. , social and / or business
networking websites , etc. , business applications , games and
other entertainment applications , etc.) ; and programming
languages , etc. , while ensuring compatibility with changing
technologies , parameters , protocols , standards , etc.
[0172] Further , any use of a particular brand , word , term ,
phrase , name , and / or acronym , such as “ detecting ” , “ observ
ing ” , “ training ” , “ selecting ” , “ compressing ” , “ associating ” ,
“ applying ” , “ sharing ” , “ storing ” , “ retrieving ” , “ surface
library ” , “ compressed model ” , “ expanded model ” , “ expand
ing ” , “ training set ” , “ agent ” , “ machine ” , “ vehicle ” , “ robot ” ,
“ driving ” , “ CNN ” , “ DNN ” , “ NN ” , “ execution unit ” , “ EU ” ,
" shared local memory ” , “ SLM ” , “ graphics streams ” ,
" cache ” , “ graphics cache ” , “ GPU ” , “ graphics processor ” ,
« GPU domain ” , “ GPGPU ” , “ CPU ” , “ application proces
sor ” , “ CPU domain ” , “ graphics driver ” , “ workload ” , " appli
cation ” , “ graphics pipeline ” , “ pipeline processes ” , “ API ” ,
“ 3D API ” , “ OpenGL® ” , “ DirectX® ” , “ hardware ” , “ soft
ware ” , “ agent ” , “ graphics driver ” , “ kernel mode graphics
driver ” , “ user - mode driver ” , “ user - mode driver framework ” ,
“ buffer ” , “ graphics buffer ” , “ task ” , “ process ” , “ operation ” ,
" software application ” , “ game ” , etc. , should not be read to
limit embodiments to software or devices that carry that
label in products or in literature external to this document .
[0173] It is contemplated that any number and type of
components may be added to and / or removed from com
pression and expansion mechanism 610 to facilitate various
embodiments including adding , removing , and / or enhancing
certain features . For brevity , clarity , and ease of understand
ing of compression and expansion mechanism 610 , many of
the standard and / or known components , such as those of a
computing device , are not shown or discussed here . It is
contemplated that embodiments , as described herein , are not
limited to any particular technology , topology , system ,
architecture , and / or standard and are dynamic enough to
adopt and adapt to any future changes .
[0174] FIG . 8A illustrates a network setup 800 for data
sharing and retrieval across processing systems according to
one embodiment . For brevity , many of the details previously
discussed with reference to FIGS . 1-7 may not be discussed
or repeated hereafter . Any processes relating to setup 800

2

US 2021/0390654 A1 Dec. 16 , 2021
16

2

may be performed by processing logic that may comprise
hardware (e.g. , circuitry , dedicated logic , programmable
logic , etc.) , software (such as instructions run on a process
ing device) , or a combination thereof , as facilitated by
sharing and expansion mechanism 610 of FIG . 6. The
processes associated with setup 800 may be illustrated or
recited in linear sequences for brevity and clarity in presen
tation ; however , it is contemplated that any number of them
can be performed in parallel , asynchronously , or in different
orders . Further , embodiments are not limited to any particu
lar architectural placement , framework , setup , or structure of
processes and / or components , such as setup 800 .
[0175] As illustrated here and described with reference to
FIG . 7 , the novel technique for data sharing and retrieval as
facilitated by sharing and expansion mechanism 610 may
hosted and used by any number and type of computing
devices , such as autonomous machines 600 , 740 , 810 (e.g. ,
vehicles , robots , etc.) over one or more communication
mediums 725 , such as a cloud network .
[0176] In the illustrated embodiment , database (s) 730 ,
such as cloud databases (s) or datacenter (s) , may host one or
more surface libraries , such as surface library 731 , where
data , such as intermediate NN data , may be stored , retrieved ,
and shared by any number and type of processing devices ,
such as processors 612 , 614 , 742 , 744 and 812 , 814 of
autonomous machines 600 , 740 , and 810 , respectively .
[0177] FIG . 8B illustrates a transaction sequence 850 for
data sharing and retrieval across processing systems accord
ing to one embodiment . For brevity , many of the details
previously discussed with reference to FIGS . 1-7 may not be
discussed or repeated hereafter . Any processes relating to
transaction sequence 850 may be performed by processing
logic that may comprise hardware (e.g. , circuitry , dedicated
logic , programmable logic , etc.) , software (such as instruc
tions run on a processing device) , or a combination thereof ,
as facilitated by sharing and expansion mechanism 610 of
FIG . 6. The processes associated with transaction sequence
850 may be illustrated or recited in linear sequences for
brevity and clarity in presentation ; however , it is contem
plated that any number of them can be performed in parallel ,
asynchronously , or in different orders . Further , embodiments
are not limited to any particular architectural placement ,
framework , setup , or structure of processes and / or compo
nents , such as transaction sequence 850 .
[0178] As illustrated , in one embodiment , original model
851A is selected and the compressed at block 853 and
expanded with artefact 855 , resulting in compressed model
857A . This compressed model 857A is then transmitted
along with artefact from one autonomous machine or any
computing device to another autonomous machine or any
other computing device at block 859 over communication
medium 725 (e.g. , cloud network , Internet , proximity net
work , Bluetooth , etc.) .
[0179] The transmitted compressed model is received at
the receiving autonomous machine at 861 , where it is
received as a combined package 863 having a combination
of compressed model 857B (that is the same as compressed
model 857A) and artefact 855B (which is the same as
artefact 855A) . At the autonomous machine , artefact 855B is
removed and compressed model 857B is expanded back into
uncompressed model 851B (which is the same as uncom
pressed original model 851) .
[0180] FIG.9 illustrates a method 900 for facilitating data
sharing across processing devices using surface library

according to one embodiment . For brevity , many of the
details previously discussed with reference to FIGS . 1-8B
may not be discussed or repeated hereafter . Any processes
relating to method 900 may be performed by processing
logic that may comprise hardware (e.g. , circuitry , dedicated
logic , programmable logic , etc.) , software (such as instruc
tions run on a processing device) , or a combination thereof ,
as facilitated by sharing and expansion mechanism 610 of
FIG . 6. The processes associated with method 900 may be
illustrated or recited in linear sequences for brevity and
clarity in presentation ; however , it is contemplated that any
number of them can be performed in parallel , asynchro
nously , or in different orders .
[0181] Method 900 begins at block 901 with detection of
a processor , such as a graphics processor at an autonomous
machine , working on a CNN . At block 903 , the processor is
facilitated to store any intermediate NN data relating to the
CNN as a data surface in a surface library at a database , such
as a cloud database , over a communication medium , such as
a cloud network . In one embodiment , this surface library and
other such surface libraries may be created at various
database or datacenters and make available to any number
and type of processors at various autonomous machines .
[0182] At bock 905 , another processor of this or another
autonomous is working on the same CNN and access the
data surface stored at the surface library by the graphics
processor . This processor may be another processor may be
an application processor at the same or another autonomous
machine or another graphics processor or other such pro
cessors at the same or another autonomous machine . At
block 907 , this second processor , such as graphics processor ,
at another autonomous machine then accesses the data
surface and proceeds with retrieving this stored data to be
used for working on the CNN . Further , surface produced this
may be optionally compressed for faster transmission time .
[0183] Machine Learning Overview
[0184] A machine learning algorithm is an algorithm that
can learn based on a set of data . Embodiments of machine
learning algorithms can be designed to model high - level
abstractions within a data set . For example , image recogni
tion algorithms can be used to determine which of several
categories to which a given input belong ; regression algo
rithms can output a numerical value given an input ; and
pattern recognition algorithms can be used to generate
translated text or perform text to speech and / or speech
recognition .
[0185] An exemplary type of machine learning algorithm
is a neural network . There are many types of neural net
works ; a simple type of neural network is a feedforward
network . A feedforward network may be implemented as an
acyclic graph in which the nodes are arranged in layers .
Typically , a feedforward network topology includes an input
layer and an output layer that are separated by at least one
hidden layer . The hidden layer transforms input received by
the input layer into a representation that is useful for
generating output in the output layer . The network nodes are
fully connected via edges to the nodes in adjacent layers , but
there are no edges between nodes within each layer . Data
received at the nodes of an input layer of a feedforward
network are propagated (i.e. , “ fed forward ”) to the nodes of
the output layer via an activation function that calculates the
states of the nodes of each successive layer in the network
based on coefficients (" weights ”) respectively associated
with each of the edges connecting the layers . Depending on

a

US 2021/0390654 A1 Dec. 16 , 2021
17

the specific model being represented by the algorithm being
executed , the output from the neural network algorithm can
take various forms .
[0186] Before a machine learning algorithm can be used to
model a particular problem , the algorithm is trained using a
training data set . Training a neural network involves select
ing a network topology , using a set of training data repre
senting a problem being modeled by the network , and
adjusting the weights until the network model performs with
a minimal error for all instances of the training data set . For
example , during a supervised learning training process for a
neural network , the output produced by the network in
response to the input representing an instance in a training
data set is compared to the " correct ” labeled output for that
instance , an error signal representing the difference between
the output and the labeled output is calculated , and the
weights associated with the connections are adjusted to
minimize that error as the error signal is backward propa
gated through the layers of the network . The network is
considered “ trained ” when the errors for each of the outputs
generated from the instances of the training data set are
minimized .
[0187] The accuracy of a machine learning algorithm can
be affected significantly by the quality of the data set used
to train the algorithm . The training process can be compu
tationally intensive and may require a significant amount of
time on a conventional general - purpose processor . Accord
ingly , parallel processing hardware is used to train many
types of machine learning algorithms . This is particularly
useful for optimizing the training of neural networks , as the
computations performed in adjusting the coefficients in
neural networks lend themselves naturally to parallel imple
mentations . Specifically , many machine learning algorithms
and software applications have been adapted to make use of
the parallel processing hardware within general - purpose
graphics processing devices .
[0188] FIG . 10 is a generalized diagram of a machine
learning software stack 1000. A machine learning applica
tion 1002 can be configured to train a neural network using
training dataset to use a trained deep neural network to

implement machine intelligence . The machine learning
application 1002 can include training and inference func
tionality for a neural network and / or specialized software
that can be used to train a neural network before deploy
ment . The machine learning application 1002 can implement
any type of machine intelligence including but not limited to
image recognition , mapping and localization , autonomous
navigation , speech synthesis , medical imaging , or language
translation .
[0189] Hardware acceleration for the machine learning
application 1002 can be enabled via a machine learning
framework 1004. The machine learning framework 1004
can provide a library of machine learning primitives .
Machine learning primitives are basic operations that are
commonly performed by machine learning algorithms .
Without the machine learning framework 1004 , developers
of machine learning algorithms would be required to create
and optimize the main computational logic associated with
the machine learning algorithm , then re - optimize the com
putational logic as new parallel processors are developed .
Instead , the machine learning application can be configured
to perform the necessary computations using the primitives
provided by the machine learning framework 1004. Exem
plary primitives include tensor convolutions , activation

functions , and pooling , which are computational operations
that are performed while training a convolutional neural
network (CNN) . The machine learning framework 1004 can
also provide primitives to implement basic linear algebra
subprograms performed by many machine learning algo
rithms , such as matrix and vector operations .
[0190] The machine learning framework 1004 can process
input data received from the machine learning application
1002 and generate the appropriate input to a compute
framework 1006. The compute framework 1006 can abstract
the underlying instructions provided to the GPGPU driver
1008 to enable the machine learning framework 1004 to take
advantage of hardware acceleration via the GPGPU hard
ware 1010 without requiring the machine learning frame
work 1004 to have intimate knowledge of the architecture of
the GPGPU hardware 1010. Additionally , the compute
framework 1006 can enable hardware acceleration for the
machine learning framework 1004 across a variety of types
and generations of the GPGPU hardware 1010 .
[0191] GPGPU Machine Learning Acceleration
[0192] FIG . 11 illustrates a highly - parallel general - pur
pose graphics processing unit 1100 , according to an embodi
ment . In one embodiment , the general - purpose processing
unit (GPGPU) 1100 can be configured to be particularly
efficient in processing the type of computational workloads
associated with training deep neural networks . Additionally ,
the GPGPU 1100 can be linked directly to other instances of
the GPGPU to create a multi - GPU cluster to improve
training speed for particularly deep neural networks .
[0193] The GPGPU 1100 includes a host interface 1102 to
enable a connection with a host processor . In one embodi
ment , the host interface 1102 is a PCI Express interface .
However , the host interface can also be a vendor specific
communications interface or communications fabric . The
GPGPU 1100 receives commands from the host processor
and uses a global scheduler 1104 to distribute execution
threads associated with those commands to a set of compute
clusters 1106A - H . The compute clusters 1106A - H share a
cache memory 1108. The cache memory 1108 can serve as
a higher - level cache for cache memories within the compute
clusters 1106A - H .

[0194] The GPGPU 1100 includes memory 1114A - B
coupled with the compute clusters 1106A - H via a set of
memory controllers 1112A - B . In various embodiments , the
memory 1114A - B can include various types of memory
devices including dynamic random memory
(DRAM) or graphics random access memory , such as syn
chronous graphics random access memory (SGRAM) ,
including graphics double data rate (GDDR) memory . In one
embodiment , the memory units 224A - N may also include
3D stacked memory , including but not limited to high
bandwidth memory (HBM) .
[0195] In embodiment , each compute cluster
GPLAB06A - H includes a set of graphics multiprocessors ,
such as the graphics multiprocessor 400 of FIG . 4A . The
graphics multiprocessors of the compute cluster multiple
types of integer and floating point logic units that can
perform computational operations at a range of precisions
including suited for machine learning computations . For
example , and in one embodiment at least a subset of the
floating - point units in each of the compute clusters 1106A - H
can be configured to perform 16 - bit or 32 - bit floating point

access

one

.

US 2021/0390654 A1 Dec. 16 , 2021
18

embodiment the processor 1202 includes direct support for
the P2P GPU links 1216 and can connect directly to the
GPGPUs 1206A - D .

a

operations , while a different subset of the floating - point units
can be configured to perform 64 - bit floating point opera
tions .

[0196] Multiple instances of the GPGPU 1100 can be
configured to operate as a compute cluster . The communi
cation mechanism used by the compute cluster for synchro
nization and data exchange varies across embodiments . In
one embodiment , the multiple instances of the GPGPU 1100
communicate over the host interface 1102. In one embodi
ment . the GPGPU 1100 includes an 1/0 hub 1108 that
couples the GPGPU 1100 with a GPU link 1110 that enables
a direct connection to other instances of the GPGPU . In one
embodiment , the GPU link 1110 is coupled to a dedicated
GPU - to - GPU bridge that enables communication and syn
chronization between multiple instances of the GPGPU
1100. In one embodiment , the GPU link 1110 couples with
a high - speed interconnect to transmit and receive data to
other GPGPUs or parallel processors . In one embodiment ,
the multiple instances of the GPGPU 1100 are located in
separate data processing systems and communicate via a
network device that is accessible via the host interface 1102 .
In one embodiment , the GPU link 1110 can be configured to
enable a connection to a host processor in addition to or as
an alternative to the host interface 1102 .

a

a

[0197] While the illustrated configuration of the GPGPU
1100 can be configured to train neural networks , one
embodiment provides alternate configuration of the GPGPU
1100 that can be configured for deployment within a high
performance or low power inferencing platform . In an
inferencing configuration , the GPGPU 1100 includes fewer
of the compute clusters 1106A - H relative to the training
configuration . Additionally , memory technology associated
with the memory 1114A - B may differ between inferencing
and training configurations . In one embodiment , the infer
encing configuration of the GPGPU 1100 can support infer
encing specific instructions . For example , an inferencing
configuration can provide support for one or more 8 - bit
integer dot product instructions , which are commonly used
during inferencing operations for deployed neural networks .
[0198] FIG . 12 illustrates a multi - GPU computing system
1200 , according to an embodiment . The multi - GPU com
puting system 1200 can include a processor 1202 coupled to
multiple GPGPUs 1206A - D via a host interface switch
1204. The host interface switch 1204 , in one embodiment , is
a PCI express switch device that couples the processor 1202
to a PCI express bus over which the processor 1202 can
communicate with the set of GPGPUS 1206A - D . Each of the
multiple GPGPUs 1206A - D can be an instance of the
GPGPU 1100 of FIG . 11. The GPGPUs 1206A - D can
interconnect via a set of high - speed point to point GPU to
GPU links 1216. The high - speed GPU to GPU links can
connect to each of the GPGPUs 1206A - D via a dedicated
GPU link , such as the GPU link 1110 as in FIG . 11. The P2P
GPU links 1216 enable direct communication between each
of the GPGPUs 1206A - D without requiring communication
over the host interface bus to which the processor 1202 is
connected . With GPU - to - GPU traffic directed to the P2P
GPU links , the host interface bus remains available for
system memory access or to communicate with other
instances of the multi - GPU computing system 1200 , for
example , via one or more network devices . While in the
illustrated embodiment the GPGPUs 1206A - D connect to
the processor 1202 via the host interface switch 1204 , in one

Machine Learning Neural Network Implementations
[0199] The computing architecture provided by embodi
ments described herein can be configured to perform the
types of parallel processing that is particularly suited for
training and deploying neural networks for machine learn
ing . A neural network can be generalized as a network of
functions having a graph relationship . As is well - known in
the art , there are a variety of types of neural network
implementations used in machine learning . One exemplary
type of neural network is the feedforward network , as
previously described .
[0200] A second exemplary type of neural network is the
Convolutional Neural Network (CNN) . A CNN is a special
ized feedforward neural network for processing data having
a known , grid - like topology , such as image data . Accord
ingly , CNNs are commonly used for compute vision and
image recognition applications , but they also may be used
for other types of pattern recognition such as speech and
language processing . The nodes in the CNN input layer are
organized into a set of “ filters ” (feature detectors inspired by
the receptive fields found in the retina) , and the output of
each set of filters is propagated to nodes in successive layers
of the network . The computations for a CNN include apply
ing the convolution mathematical operation to each filter to
produce the output of that filter . Convolution is a specialized
kind of mathematical operation performed by two functions
to produce a third function that is a modified version of one
of the two original functions . In convolutional network
terminology , the first function to the convolution can be
referred to as the input , while the second function can be
referred to as the convolution kernel . The output may be
referred to as the feature map . For example , the input to a
convolution layer can be multidimensional array of data
that defines the various color components of an input image .
The convolution kernel can be a multidimensional array of
parameters , where the parameters are adapted by the training
process for the neural network .
[0201] Recurrent neural networks (RNNs) are a family of
feedforward neural networks that include feedback connec
tions between layers . RNNs enable modeling of sequential
data by sharing parameter data across different parts of the
neural network . The architecture for a RNN includes cycles .
The cycles represent the influence of a present value of a
variable on its own value at a future time , as at least a portion
of the output data from the RNN is used as feedback for
processing subsequent input in a sequence . This feature
makes RNNs particularly useful for language processing due
to the variable nature in which language data can be com
posed .
[0202] The figures described below present exemplary
feedforward , CNN , and RNN networks , as well as describe
a general process for respectively training and deploying
each of those types of networks . It will be understood that
these descriptions are exemplary and non - limiting as to any
specific embodiment described herein and the concepts
illustrated can be applied generally to deep neural networks
and machine learning techniques in general .
[0203] The exemplary neural networks described above
can be used to perform deep learning . Deep learning is
machine learning using deep neural networks . The deep

a

US 2021/0390654 A1 Dec. 16 , 2021
19

a

neural networks used in deep learning are artificial neural
networks composed of multiple hidden layers , as opposed to
shallow neural networks that include only a single hidden
layer . Deeper neural networks are generally more computa
tionally intensive to train . However , the additional hidden
layers of the network enable multistep pattern recognition
that results in reduced output error relative to shallow
machine learning techniques .
[0204] Deep neural networks used in deep learning typi
cally include a front - end network to perform feature recog
nition coupled to a back - end network which represents a
mathematical model that can perform operations (e.g. ,
object classification , speech recognition , etc.) based on the
feature representation provided to the model . Deep learning
enables machine learning to be performed without requiring
hand crafted feature engineering to be performed for the
model . Instead , deep neural networks can learn features
based on statistical structure or correlation within the input
data . The learned features can be provided to a mathematical
model that can map detected features to an output . The
mathematical model used by the network is generally spe
cialized for the specific task to be performed , and different
models will be used to perform different task .
[0205] Once the neural network is structured , a learning
model can be applied to the network to train the network to
perform specific tasks . The learning model describes how to
adjust the weights within the model to reduce the output
error of the network . Backpropagation of errors is a common
method used to train neural networks . An input vector is
presented to the network for processing . The output of the
network is compared to the desired output using a loss
function and an error value is calculated for each of the
neurons in the output layer . The error values are then
propagated backwards until each neuron has an associated
error value which roughly represents its contribution to the
original output . The network can then learn from those
errors using an algorithm , such as the stochastic gradient
descent algorithm , to update the weights of the of the neural
network .
[0206] FIG . 13A - B illustrate an exemplary convolutional
neural network . FIG . 13A illustrates various layers within a
CNN . As shown in FIG . 13A , an exemplary CNN used to
model image processing can receive input 1302 describing
the red , green , and blue (RGB) components of an input
image . The input 1302 can be processed by multiple con
volutional layers (e.g. , convolutional layer 1304 , convolu
tional layer 1306) . The output from the multiple convolu
tional layers may optionally be processed by a set of fully
connected layers 1308. Neurons in a fully connected layer
have full connections to all activations in the previous layer ,
as previously described for a feedforward network . The
output from the fully connected layers 1308 can be used to
generate an output result from the network . The activations
within the fully connected layers 1308 can be computed
using matrix multiplication instead of convolution . Not all
CNN implementations are make use of fully connected
layers DPLA08 . For example , in some implementations the
convolutional layer 1306 can generate output for the CNN .
[0207] The convolutional layers are sparsely connected ,
which differs from traditional neural network configuration
found in the fully connected layers 1308. Traditional neural
network layers are fully connected , such that every output
unit interacts with every input unit . However , the convolu
tional layers are sparsely connected because the output of

the convolution of a field is input (instead of the respective
state value of each of the nodes in the field) to the nodes of
the subsequent layer , as illustrated . The kernels associated
with the convolutional layers perform convolution opera
tions , the output of which is sent to the next layer . The
dimensionality reduction performed within the convolu
tional layers is one aspect that enables the CNN to scale to
process large images .
[0208] FIG . 13B illustrates exemplary computation stages
within a convolutional layer of a CNN . Input to a convolu
tional layer 1312 of a CNN can be processed in three stages
of a convolutional layer 1314. The three stages can include
a convolution stage 1316 , a detector stage 1318 , and a
pooling stage 1320. The convolution layer 1314 can then
output data to a successive convolutional layer . The final
convolutional layer of the network can generate output
feature map data or provide input to a fully connected layer ,
for example , to generate a classification value for the input
to the CNN .
[0209] In the convolution stage 1316 performs several
convolutions in parallel to produce a set of linear activations .
The convolution stage 1316 can include an affine transfor
mation , which is any transformation that can be specified as
a linear transformation plus a translation . Affine transfor
mations include rotations , translations , scaling , and combi
nations of these transformations . The convolution stage
computes the output of functions (e.g. , neurons) that are
connected to specific regions in the input , which can be
determined as the local region associated with the neuron .
The neurons compute a dot product between the weights of
the neurons and the region in the local input to which the
neurons are connected . The output from the convolution
stage 1316 defines a set of linear activations that are pro
cessed by successive stages of the convolutional layer 1314 .
[0210] The linear activations can be processed by a detec
tor stage 1318. In the detector stage 1318 , each linear
activation is processed by a non - linear activation function .
The non - linear activation function increases the nonlinear
properties of the overall network without affecting the
receptive fields of the convolution layer . Several types of
non - linear activation functions may be used . One particular
type is the rectified linear unit (ReLU) , which uses an
activation function defined as f (x) = max (0 , x) , such that the
activation is thresholded at zero .
[0211] The pooling stage 1320 uses a pooling function that
replaces the output of the convolutional layer 1306 with a
summary statistic of the nearby outputs . The pooling func
tion can be used to introduce translation invariance into the
neural network , such that small translations to the input do
not change the pooled outputs . Invariance to local transla
tion can be useful in scenarios where the presence of a
feature in the input data is more important than the precise
location of the feature . Various types of pooling functions
can be used during the pooling stage 1320 , including max
pooling , average pooling , and 12 - norm pooling . Addition
ally , some CNN implementations do not include a pooling
stage . Instead , such implementations substitute and addi
tional convolution stage having an increased stride relative
to previous convolution stages .
[0212] The output from the convolutional layer 1314 can
then be processed by the next layer 1322. The next layer
1322 can be an additional convolutional layer or one of the
fully connected layers 1308. For example , the first convo
lutional layer 1304 of FIG . 13A can output to the second

US 2021/0390654 A1 Dec. 16 , 2021
20

a

convolutional layer 1306 , while the second convolutional
layer can output to a first layer of the fully connected layers
1308 .

[0213] FIG . 14 illustrates an exemplary recurrent neural
network 1400. In a recurrent neural network (RNN) , the
previous state of the network influences the output of the
current state of the network . RNNs can be built in a variety
of ways using a variety of functions . The use of RNNs
generally revolves around using mathematical models to
predict the future based on a prior sequence of inputs . For
example , an RNN may be used to perform statistical lan
guage modeling to predict an upcoming word given a
previous sequence of words . The illustrated RNN 1400 can
be described has having an input layer 1402 that receives an
input vector , hidden layers 1404 to implement a recurrent
function , a feedback mechanism 1405 to enable a ‘ memory '
of previous states , and an output layer 1406 to output a
result . The RNN 1400 operates based on time - steps . The
state of the RNN at a given time step is influenced based on
the previous time step via the feedback mechanism 1405 .
For a given time step , the state of the hidden layers 1404 is
defined by the previous state and the input at the current time
step . An initial input (x ,) at a first - time step can be processed
by the hidden layer 1404. A second input (x2) can be
processed by the hidden layer 1404 using state information
that is determined during the processing of the initial input
(x1) . A given state can be computed as sz = f (Ux , + WSt - 1) ,
where U and W are parameter matrices . The function f is
generally a nonlinearity , such as the hyperbolic tangent
function (Tan h) or a variant of the rectifier function f (x)
= max (0 , x) . However , the specific mathematical function
used in the hidden layers 1404 can vary depending on the
specific implementation details of the RNN 1400 .
[0214] In addition to the basic CNN and RNN networks
described , variations on those networks may be enabled .
One example RNN variant is the long short term memory
(LSTM) RNN . LSTM RNNs are capable of learning long
term dependencies that may be necessary for processing
longer sequences of language . A variant on the CNN is a
convolutional deep belief network , which has a structure
similar to a CNN and is trained in a manner similar to a deep
belief network . A deep belief network (DBN) is a generative
neural network that is composed of multiple layers of
stochastic (random) variables . DBNs can be trained layer by - layer using greedy unsupervised learning . The learned
weights of the DBN can then be used to provide pre - train
neural networks by determining an optimal initial set of
weights for the neural network .
[0215] FIG . 15 illustrates training and deployment of a
deep neural network . Once a given network has been struc
tured for a task the neural network is trained using a training
dataset 1502. Various training frameworks 1504 have been
developed to enable hardware acceleration of the training
process . For example , the machine learning framework 1004
of FIG . 10 may be configured as a training framework 1004 .
The training framework 1004 can hook into an untrained
neural network 1506 and enable the untrained neural net to
be trained using the parallel processing resources described
herein to generate a trained neural net 1508 .
[0216] To start the training process the initial weights may
be chosen randomly or by pre - training using a deep belief
network . The training cycle then be performed in either a
supervised or unsupervised manner .

[0217] Supervised learning is a learning method in which
training is performed as a mediated operation , such as when
the training dataset 1502 includes input paired with the
desired output for the input , or where the training dataset
includes input having known output and the output of the
neural network is manually graded . The network processes
the inputs and compares the resulting outputs against a set of
expected or desired outputs . Errors are then propagated back
through the system . The training framework 1504 can adjust
to adjust the weights that control the untrained neural
network 1506. The training framework 1504 can provide
tools to monitor how well the untrained neural network 1506
is converging towards a model suitable to generating correct
answers based on known input data . The training process
occurs repeatedly as the weights of the network are adjusted
to refine the output generated by the neural network . The
training process can continue until the neural network
reaches a statistically desired accuracy associated with a
trained neural net 1508. The trained neural network 1508
can then be deployed to implement any number of machine
learning operations .
[0218] Unsupervised learning is a learning method in
which the network attempts to train itself using unlabeled
data . Thus , for unsupervised learning the training dataset
1502 will include input data without any associated output
data . The untrained neural network 1506 can learn groupings
within the unlabeled input and can determine how individual
inputs are related to the overall dataset . Unsupervised train
ing can be used to generate a self - organizing map , which is
a type of trained neural network 1507 capable of performing
operations useful in reducing the dimensionality of data .
Unsupervised training can also be used to perform anomaly
detection , which allows the identification of data points in an
input dataset that deviate from the normal patterns of the
data .
[0219] Variations on supervised and unsupervised training
may also be employed . Semi - supervised learning is a tech
nique in which in the training dataset 1502 includes a mix of a
labeled and unlabeled data of the same distribution . Incre
mental learning is a variant of supervised learning in which
input data is continuously used to further train the model .
Incremental learning enables the trained neural network
1508 to adapt to the new data 1512 without forgetting the
knowledge instilled within the network during initial train
ing .
[0220] Whether supervised or unsupervised , the training
process for particularly deep neural networks may be too
computationally intensive for a single compute node .
Instead of using a single compute node , a distributed net
work of computational nodes can be used to accelerate the
training process .
[0221] FIG . 16 is a block diagram illustrating distributed
learning . Distributed learning is a training model that uses
multiple distributed computing nodes to perform supervised
or unsupervised training of a neural network . The distributed
computational nodes can each include one or more host
processors and one or more of the general - purpose process
ing nodes , such as the highly - parallel general - purpose
graphics processing unit 1100 as in FIG . 1100. As illustrated ,
distributed learning can be performed model parallelism
1602 , data parallelism 1604 , or a combination of model and
data parallelism 1604 .
[0222] In model parallelism 1602 , different computational
nodes in a distributed system can perform training compu

a

a

US 2021/0390654 A1 Dec. 16 , 2021
21

tations for different parts of a single network . For example ,
each layer of a neural network can be trained by a different
processing node of the distributed system . The benefits of
model parallelism include the ability to scale to particularly
large models . Splitting the computations associated with
different layers of the neural network enables the training of
very large neural networks in which the weights of all layers
would not fit into the memory of a single computational
node . In some instances , model parallelism can be particu
larly useful in performing unsupervised training of large
neural networks .
[0223] In data parallelism 1604 , the different nodes of the
distributed network have a complete instance of the model
and each node receives a different portion of the data . The
results from the different nodes are then combined . While
different approaches to data parallelism are possible , data
parallel training approaches all require a technique of com
bining results and synchronizing the model parameters
between each node . Exemplary approaches to combining
data include parameter averaging and update based data
parallelism . Parameter averaging trains each node on a
subset of the training data and sets the global parameters
(e.g. , weights , biases) to the average of the parameters from
each node . Parameter averaging uses a central parameter
server that maintains the parameter data . Update based data
parallelism is similar to parameter averaging except that
instead of transferring parameters from the nodes to the
parameter server , the updates to the model are transferred .
Additionally , update based data parallelism can be per
formed in a decentralized manner , where the updates are
compressed and transferred between nodes .
[0224] Combined model and data parallelism 1606 can be
implemented , for example , in a distributed system in which
each computational node includes multiple GPUs . Each
node can have a complete instance of the model with
separate GPUs within each node are used to train different
portions of the model .
[0225) Distributed training has increased overhead rela
tive to training on a single machine . However , the parallel
processors and GPGPUs described herein can each imple
ment various techniques to reduce the overhead of distrib
uted training , including techniques to enable high bandwidth
GPU - to - GPU data transfer and accelerated remote data
synchronization .
[0226] Exemplary Machine Learning Applications
[0227] Machine learning can be applied to solve a variety
of technological problems , including but not limited to
computer vision , autonomous driving and navigation ,
speech recognition , and language processing . Computer
vision has traditionally been one of the most active research
areas for machine learning applications . Applications of
computer vision range from reproducing human visual abili
ties , such as recognizing faces , to creating new categories of
visual abilities . For example , computer vision applications
can be configured to recognize sound waves from the
vibrations induced in objects visible in a video . Parallel
processor accelerated machine learning enables computer
vision applications to be trained using significantly larger
training dataset than previously feasible and enables infer
encing systems to be deployed using low power parallel
processors .
[0228] Parallel processor accelerated machine learning
has autonomous driving applications including lane and road
sign recognition , obstacle avoidance , navigation , and driv

ing control . Accelerated machine learning techniques can be
used to train driving models based on datasets that define the
appropriate responses to specific training input . The parallel
processors described herein can enable rapid training of the
increasingly complex neural networks used for autonomous
driving solutions and enables the deployment of low power
inferencing processors in a mobile platform suitable for
integration into autonomous vehicles .
[0229] Parallel processor accelerated deep neural net
works have enabled machine learning approaches to auto
matic speech recognition (ASR) . ASR includes the creation
of a function that computes the most probable linguistic
sequence given an input acoustic sequence . Accelerated
machine learning using deep neural networks have enabled
the replacement of the hidden Markov models (HMMs) and
Gaussian mixture models (GMMs) previously used for ASR .
[0230] Parallel processor accelerated machine learning
can also be used to accelerate natural language processing .
Automatic learning procedures can make use of statistical
inference algorithms to produce models that are robust to
erroneous or unfamiliar input . Exemplary natural language
processor applications include automatic machine transla
tion between human languages .
[0231] The parallel processing platforms used for machine
learning can be divided into training platforms and deploy
ment platforms . Training platforms are generally highly
parallel and include optimizations to accelerate multi - GPU
single node training and multi - node , multi - GPU training .
Exemplary parallel processors suited for training include the
highly - parallel general - purpose graphics processing unit
1100 of FIG . 1100 and the multi - GPU computing system
1200 of FIG . 1200. On the contrary , deployed machine
learning platforms generally include lower power parallel
processors suitable for use in products such as cameras ,
autonomous robots , and autonomous vehicles .
[0232] FIG . 17 illustrates an exemplary inferencing sys
tem on a chip (SOC) 1700 suitable for performing inferenc
ing using a trained model . The SOC 1700 can integrate
processing components including a media processor 1702 , a
vision processor 1704 , a GPGPU 1706 and a multi - core
processor 1708. The SOC 1700 can additionally include
on - chip memory 1705 that can enable a shared on - chip data
pool that is accessible by each of the processing compo
nents . The processing components can be optimized for low
power operation to enable deployment to a variety of
machine learning platforms , including autonomous vehicles
and autonomous robots . For example , one implementation
of the SOC 1700 can be used as a portion of the main control
system for an autonomous vehicle . Where the SOC 1700 is
configured for use in autonomous vehicles the SOC is
designed and configured for compliance with the relevant
functional safety standards of the deployment jurisdiction .
[0233] During operation , the media processor 1702 and
vision processor 1704 can work in concert to accelerate
computer vision operations . The media processor 1702 can
enable low latency decode of multiple high - resolution (e.g. ,
4K , 8K) video streams . The decoded video streams can be
written to a buffer in the on - chip - memory 1705. The vision
processor 1704 can then parse the decoded video and
perform preliminary processing operations on the frames of
the decoded video in preparation of processing the frames
using a trained image recognition model . For example , the
vision processor 1704 can accelerate convolution operations
for a CNN that is used to perform image recognition on the a

US 2021/0390654 A1 Dec. 16 , 2021
22

a

high - resolution video data , while back end model compu
tations are performed by the GPGPU 1706 .
[0234] The multi - core processor 1708 can include control
logic to assist with sequencing and synchronization of data
transfers and shared memory operations performed by the
media processor 1702 and the vision processor 1704. The
multi - core processor 1708 can also function as an applica
tion processor to execute software applications that can
make use of the inferencing compute capability of the
GPGPU 1706. For example , at least a portion of the navi
gation and driving logic can be implemented in software
executing on the multi - core processor 1708. Such software
can directly issue computational workloads to the GPGPU
1706 or the computational workloads can be issued to the
multi - core processor 1708 , which can offload at least a
portion of those operations to the GPGPU 1706 .
[0235] The GPGPU 1706 can include compute clusters
such as a low power configuration of the compute clusters
1106A - 1106H within the highly - parallel general - purpose
graphics processing unit 1100. The compute clusters within
the GPGPU 1706 can support instruction that are specifi
cally optimized to perform inferencing computations on a
trained neural network . For example , the GPGPU 1706 can
support instructions to perform low precision computations
such as 8 - bit and 4 - bit integer vector operations .
[0236] System Overview II
[0237] FIG . 18 is a block diagram of a processing system
1800 , according to an embodiment . In various embodiments ,
the system 1800 includes one or more processors 1802 and
one or more graphics processors 1808 , and may be a single
processor desktop system , a multiprocessor workstation
system , or a server system having a large number of pro
cessors 1802 or processor cores 1807. In on embodiment ,
the system 1800 is a processing platform incorporated
within a system - on - a - chip (SOC) integrated circuit for use in
mobile , handheld , or embedded devices .
[0238] An embodiment of system 1800 can include , or be
incorporated within a server - based gaming platform , a game
console , including a game and media console , a mobile
gaming console , a handheld game console , or an online
game console . In some embodiments system 1800 is a
mobile phone , smart phone , tablet computing device or
mobile Internet device . Data processing system 1800 can
also include , couple with , or be integrated within a wearable
device , such as a smart watch wearable device , smart
eyewear device , augmented reality device , or virtual reality
device . In some embodiments , data processing system 1800
is a television or set top box device having one or more
processors 1802 and a graphical interface generated by one
or more graphics processors 1808 .
[0239] In some embodiments , the one or more processors
1802 each include one or more processor cores 1807 to
process instructions which , when executed , perform opera
tions for system and user software . In some embodiments ,
each of the one or more processor cores 1807 is configured
to process a specific instruction set 1809. In some embodi
ments , instruction set 1809 may facilitate Complex Instruc
tion Set Computing (CISC) , Reduced Instruction Set Com
puting (RISC) , or computing via a Very Long Instruction
Word (VLIW) . Multiple processor cores 1807 may each
process a different instruction set 1809 , which may include
instructions to facilitate the emulation of other instruction
sets . Processor core 1807 may also include other processing
devices , such a Digital Signal Processor (DSP) .

[0240] In some embodiments , the processor 1802 includes
cache memory 1804. Depending on the architecture , the
processor 1802 can have a single internal cache or multiple
levels of internal cache . In some embodiments , the cache
memory is shared among various components of the pro
cessor 1802. In some embodiments , the processor 1802 also
uses an external cache (e.g. , a Level - 3 (L3) cache or Last
Level Cache (LLC)) (not shown) , which may be shared
among processor cores 1807 using known cache coherency
techniques . A register file 1806 is additionally included in
processor 1802 which may include different types of regis
ters for storing different types of data (e.g. , integer registers ,
floating point registers , status registers , and an instruction
pointer register) . Some registers may be general - purpose
registers , while other registers may be specific to the design
of the processor 1802 .
[0241] In some embodiments , processor 1802 is coupled
to a processor bus 1810 to transmit communication signals
such as address , data , or control signals between processor
1802 and other components in system 1800. In one embodi
ment , the system 1800 uses an exemplary ‘ hub ' system
architecture , including a memory controller hub 1816 and an
Input Output (I / O) controller hub 1830. A memory controller
hub 1816 facilitates communication between a memory
device and other components of system 1800 , while an I / O
Controller Hub (CH) 1830 provides connections to I / O
devices via a local I / O bus . In one embodiment , the logic of
the memory controller hub 1816 is integrated within the
processor
[0242] Memory device 1820 can be a dynamic random
access memory (DRAM) device , a static random access
memory (SRAM) device , flash memory device , phase
change memory device , or some other memory device
having suitable performance to serve as process memory . In
one embodiment , the memory device 1820 can operate as
system memory for the system 1800 , to store data 1822 and
instructions 1821 for use when the one or more processors
1802 executes an application or process . Memory controller
hub 1816 also couples with an optional external graphics
processor 1812 , which may communicate with the one or
more graphics processors 1808 in processors 1802 to per
form graphics and media operations .
[0243] In some embodiments , ICH 1830 enables periph
erals to connect to memory device 1820 and processor 1802
via a high - speed I / O bus . The I / O peripherals include , but
are not limited to , an audio controller 1846 , a firmware
interface 1828 , a wireless transceiver 1826 (e.g. , Wi - Fi ,
Bluetooth) , a data storage device 1824 (e.g. , hard disk drive ,
flash memory , etc.) , and a legacy I / O controller 1840 for
coupling legacy (e.g. , Personal System 2 (PS / 2)) devices to
the system . One or more Universal Serial Bus (USB) con
trollers 1842 connect input devices , such as keyboard and
mouse 1844 combinations . A network controller 1834 may
also couple to ICH 1830. In some embodiments , a high
performance network controller (not shown) couples to
processor bus 1810. It will be appreciated that the system
1800 shown is exemplary and not limiting , as other types of
data processing systems that are differently configured may
also be used . For example , the I / O controller hub 1830 may
be integrated within the one or more processor 1802 , or the
memory controller hub 1816 and I / O controller hub 1830
may be integrated into a discreet external graphics proces
sor , such as the external graphics processor 1812 .

a

a

US 2021/0390654 A1 Dec. 16 , 2021
23

[0244] FIG . 19 is a block diagram of an embodiment of a
processor 1900 having one or more processor cores 1902A
1902N , an integrated memory controller 1914 , and an inte
grated graphics processor 1908. Those elements of FIG . 19
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein , but
are not limited to such . Processor 1900 can include addi
tional cores up to and including additional core 1902N
represented by the dashed lined boxes . Each of processor
cores 1902A - 1902N includes one or more internal cache
units 1904A - 1904N . In some embodiments , each processor
core also has access to one or more shared cached units
1906 .

[0245] The internal cache units 1904A - 1904N and shared
cache units 1906 represent a cache memory hierarchy within
the processor 1900. The cache memory hierarchy may
include at least one level of instruction and data cache within
each processor core and one or more levels of shared
mid - level cache , such as a Level 2 (L2) , Level 3 (L3) , Level
4 (L4) , or other levels of cache , where the highest level of
cache before external memory is classified as the LLC . In
some embodiments , cache coherency logic maintains coher
ency between the various cache units 1906 and 1904A
1904N .

[0246] In some embodiments , processor 1900 may also
include a set of one or more bus controller units 1916 and a
system agent core 1910. The one or more bus controller units
1916 manage a set of peripheral buses , such as one or more
Peripheral Component Interconnect buses (e.g. , PCI , PCI
Express) . System agent core 1910 provides management
functionality for the various processor components . In some
embodiments , system agent core 1910 includes one or more
integrated memory controllers 1914 to manage access to
various external memory devices (not shown) .
[0247] In some embodiments , one or more of the proces
sor cores 1902A - 1902N include support for simultaneous
multi - threading . In such embodiment , the system agent core
1910 includes components for coordinating and operating
cores 1902A - 1902N during multi - threaded processing . Sys
tem agent core 1910 may additionally include a power
control unit (PCU) , which includes logic and components to
regulate the power state of processor cores 1902A - 1902N
and graphics processor 1908 .
[0248] In some embodiments , processor 1900 additionally
includes graphics processor 1908 to execute graphics pro
cessing operations . In some embodiments , the graphics
processor 1908 couples with the set of shared cache units
1906 , and the system agent core 1910 , including the one or
more integrated memory controllers 1914. In some embodi
ments , a display controller 1911 is coupled with the graphics
processor 1908 to drive graphics processor output to one or
more coupled displays . In some embodiments , display con
troller 1911 may be a separate module coupled with the
graphics processor via at least one interconnect , or may be
integrated within the graphics processor 1908 or system
agent core 1910 .
[0249] In some embodiments , a ring based interconnect
unit 1912 is used to couple the internal components of the
processor 1900. However , an alternative interconnect unit
may be used , such as a point - to - point interconnect , a
switched interconnect , or other techniques , including tech

niques well known in the art . In some embodiments , graph
ics processor 1908 couples with the ring interconnect 1912
via an I / O link 1913 .
[0250] The exemplary I / O link 1913 represents at least one
of multiple varieties of I / O interconnects , including an
on - package I / O interconnect which facilitates communica
tion between various processor components and a high
performance embedded memory module 1918 , such as an
eDRAM module . In some embodiments , each of the pro
cessor cores 1902-1902N and graphics processor 1908 use
embedded memory modules 1918 as a shared Last Level
Cache .

[0251] In some embodiments , processor cores 1902A
1902N are homogenous cores executing the same instruction
set architecture . In another embodiment , processor cores
1902A - 1902N are heterogeneous in terms of instruction set
architecture (ISA) , where one or more of processor cores
1902A - N execute a first instruction set , while at least one of
the other cores executes a subset of the first instruction set
or a different instruction set . In one embodiment processor
cores 1902A - 1902N are heterogeneous in terms of micro
architecture , where one or more cores having a relatively
higher power consumption couple with one or more power
cores having a lower power consumption . Additionally ,
processor 1900 can be implemented on one or more chips or
as an SoC integrated circuit having the illustrated compo
nents , in addition to other components .
[0252] FIG . 20 is a block diagram of a graphics processor
2000 , which may be a discrete graphics processing unit , or
may be a graphics processor integrated with a plurality of
processing cores . In some embodiments , the graphics pro
cessor communicates via a memory mapped I / O interface to
registers on the graphics processor and with commands
placed into the processor memory . In some embodiments ,
graphics processor 2000 includes a memory interface 2014
to access memory . Memory interface 2014 can be an inter
face to local memory , one or more internal caches , one or
more shared external caches , and / or to system memory .
[0253] In some embodiments , graphics processor 2000
also includes a display controller 2002 to drive display
output data to a display device 2020. Display controller 2002
includes hardware for one or more overlay planes for the
display and composition of multiple layers of video or user
interface elements . In some embodiments , graphics proces
sor 2000 includes a video codec engine 2006 to encode ,
decode , or transcode media to , from , or between one or more
media encoding formats , including , but not limited to Mov
ing Picture Experts Group (MPEG) formats such as MPEG
2 , Advanced Video Coding (AVC) formats such as H.264 /
MPEG - 4 AVC , as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421M / VC - 1 , and Joint Pho
tographic Experts Group (JPEG) formats such as JPEG , and
Motion JPEG (MJPEG) formats .
[0254] In some embodiments , graphics processor 2000
includes a block image transfer (BLIT) engine 2004 to
perform two - dimensional (2D) rasterizer operations includ
ing , for example , bit - boundary block transfers . However , in
one embodiment , 2D graphics operations are performed
using one or more components of graphics processing
engine (GPE) 2010. In some embodiments , graphics pro
cessing engine 2010 is a compute engine for performing
graphics operations , including three - dimensional (3D)
graphics operations and media operations .

.

US 2021/0390654 A1 Dec. 16 , 2021
24

additionally include batch command buffers storing batches
of multiple commands . The commands for the 3D pipeline
2012 can also include references to data stored in memory ,
such as but not limited to vertex and geometry data for the
3D pipeline 2012 and / or image data and memory objects for
the media pipeline 2016. The 3D pipeline 2012 and media
pipeline 2016 process the commands and data by performing
operations via logic within the respective pipelines or by
dispatching one or more execution threads to a graphics core
array 2114 .

[0255] In some embodiments , GPE 2010 includes a 3D
pipeline 2012 for performing 3D operations , such as ren
dering three - dimensional images and scenes using process
ing functions that act upon 3D primitive shapes (e.g. ,
rectangle , triangle , etc.) . The 3D pipeline 2012 includes
programmable and fixed function elements that perform
various tasks within the element and / or spawn execution
threads to a 3D / Media sub - system 2015. While 3D pipeline
2012 can be used to perform media operations , an embodi
ment of GPE 2010 also includes a media pipeline 2016 that
is specifically used to perform media operations , such as
video post - processing and image enhancement .
[0256] In some embodiments , media pipeline 2016
includes fixed function or programmable logic units to
perform one or more specialized media operations , such as
video decode acceleration , video de - interlacing , and video
encode acceleration in place of , or on behalf of video codec
engine 2006. In some embodiments , media pipeline 2016
additionally includes a thread spawning unit to spawn
threads for execution on 3D / Media sub - system 2015. The
spawned threads perform computations for the media opera
tions on one or more graphics execution units included in
3D / Media sub - system 2015 .
[0257] In some embodiments , 3D / Media subsystem 2015
includes logic for executing threads spawned by 3D pipeline
2012 and media pipeline 2016. In one embodiment , the
pipelines send thread execution requests to 3D / Media sub
system 2015 , which includes thread dispatch logic for arbi
trating and dispatching the various requests to available
thread execution resources . The execution resources include
an array of graphics execution units to process the 3D and
media threads . In some embodiments , 3D / Media subsystem
2015 includes one or more internal caches for thread instruc
tions and data . In some embodiments , the subsystem also
includes shared memory , including registers and addressable
memory , to share data between threads and to store output
data .
[0258] 3D / Media Processing
[0259] FIG . 21 is a block diagram of a graphics processing
engine 2110 of a hics processor in accordance with
some embodiments . In one embodiment , the graphics pro
cessing engine (GPE) 2110 is a version of the GPE 2010
shown in FIG . 20. Elements of FIG . 21 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein , but are not limited to
such . For example , the 3D pipeline 2012 and media pipeline
2016 of FIG . 20 are illustrated . The media pipeline 2016 is
optional in some embodiments of the GPE 2110 and may not
be explicitly included within the GPE 2110. For example ,
and in at least one embodiment , a separate media and / or
image processor is coupled to the GPE 2110 .
[0260] In some embodiments , GPE 2110 couples with or
includes a command streamer 2103 , which provides a com
mand stream to the 3D pipeline 2012 and / or media pipelines
2016. In some embodiments , command streamer 2103 is
coupled with memory , which can be system memory , or one
or more of internal cache memory and shared cache
memory . In some embodiments , command streamer 2103
receives commands from the memory and sends the com
mands to 3D pipeline 2012 and / or media pipeline 2016. The
commands are directives fetched from a ring buffer , which
stores commands for the 3D pipeline 2012 and media
pipeline 2016. In one embodiment , the ring buffer can

[0261] In various embodiments , the 3D pipeline 2012 can
execute one or more shader programs , such as vertex shad
ers , geometry shaders , pixel shaders , fragment shaders ,
compute shaders , or other shader programs , by processing
the instructions and dispatching execution threads to the
graphics core array 2114. The graphics core array 2114
provides a unified block of execution resources . Multi
purpose execution logic (e.g. , execution units) within the
graphic core array 2114 includes support for various 3D API
shader languages and can execute multiple simultaneous
execution threads associated with multiple shaders .
[0262] In some embodiments , the graphics core array 2114
also includes execution logic to perform media functions ,
such as video and / or image processing . In one embodiment ,
the execution units additionally include general - purpose
logic that is programmable to perform parallel general
purpose computational operations , in addition to graphics
processing operations . The general - purpose logic can per
form processing operations in parallel or in conjunction with
general purpose logic within the processor core (s) 1807 of
FIG . 18 or core 1902A - 1902N as in FIG . 19 .
[0263] Output data generated by threads executing on the
graphics core array 2114 can output data to memory in a
unified return buffer (URB) 2118. The URB 2118 can store
data for multiple threads . In some embodiments , the URB
2118 may be used to send data between different threads
executing on the graphics core array 2114. In some embodi
ments , the URB 2118 may additionally be used for synchro
nization between threads on the graphics core array and
fixed function logic within the shared function logic 2120 .
[0264] In some embodiments , graphics core array 2114 is
scalable , such that the array includes a variable number of
graphics cores , each having a variable number of execution
units based on the target power and performance level of
GPE 2110. In one embodiment , the execution resources are
dynamically scalable , such that execution resources may be
enabled or disabled as needed .
[0265] The graphics core array 2114 couples with shared
function logic 2120 that includes multiple resources that are
shared between the graphics cores in the graphics core array .
The shared functions within the shared function logic 2120
are hardware logic units that provide specialized supple
mental functionality to the graphics core array 2114. In
various embodiments , shared function logic 2120 includes
but is not limited to sampler 2121 , math 2122 , and inter
thread communication (ITC) 2123 logic . Additionally , some
embodiments implement one or more cache (s) 2125 within
the shared function logic 2120. A shared function is imple
mented where the demand for a given specialized function
is insufficient for inclusion within the graphics core array
2114. Instead a single instantiation of that specialized func
tion is implemented as a stand - alone entity in the shared
function logic 2120 and shared among the execution
resources within the graphics core array 2114. The precise

US 2021/0390654 A1 Dec. 16 , 2021
25

a

2

a

set of functions that are shared between the graphics core
array 2114 and included within the graphics core array 2114
varies between embodiments .
[0266] FIG . 22 is a block diagram of another embodiment
of a graphics processor 2200. Elements of FIG . 22 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein , but are
not limited to such .
[0267] In some embodiments , graphics processor 2200
includes a ring interconnect 2202 , a pipeline front - end 2204 ,
a media engine 2237 , and graphics cores 2280A - 2280N . In
some embodiments , ring interconnect 2202 couples the
graphics processor to other processing units , including other
graphics processors or one or more general - purpose proces
sor cores . In some embodiments , the graphics processor is
one of many processors integrated within a multi - core
processing system .
[0268] In some embodiments , graphics processor 2200
receives batches of commands via ring interconnect 2202 .
The incoming commands are interpreted by a command
streamer 2203 in the pipeline front - end 2204. In some
embodiments , graphics processor 2200 includes scalable
execution logic to perform 3D geometry processing and
media processing via the graphics core (s) 2280A - 2280N .
For 3D geometry processing commands , command streamer
2203 supplies commands to geometry pipeline 2236. For at
least some media processing commands , command streamer
2203 supplies the commands to a video front end 2234 ,
which couples with a media engine 2237. In some embodi
ments , media engine 2237 includes a Video Quality Engine
(VQE) 2230 for video and image post - processing and a
multi - format encode / decode (MFX) 2233 engine to provide
hardware - accelerated media data encode and decode . In
some embodiments , geometry pipeline 2236 and media
engine 2237 each generate execution threads for the thread
execution resources provided by at least one graphics core
2280A .
[0269] In some embodiments , graphics processor 2200
includes scalable thread execution resources featuring
modular cores 2280A - 2280N (sometimes referred to as core
slices) , each having multiple sub - cores 2250A - 2250N ,
2260A - 2260N (sometimes referred to as core sub - slices) . In
some embodiments , graphics processor 2200 can have any
number of graphics cores 2280A through 2280N . In some
embodiments , graphics processor 2200 includes a graphics
core 2280A having at least a first sub - core 2250A and a
second core sub - core 2260A . In other embodiments , the
graphics processor is a low power processor with a single
sub - core (e.g. , 2250A) . In some embodiments , graphics
processor 2200 includes multiple graphics cores 2280A
2280N , each including a set of first sub - cores 2250A - 2250N
and a set of second sub - cores 2260A - 2260N . Each sub - core
in the set of first sub - cores 2250A - 2250N includes at least a
first set of execution units 2252A - 2252N and media / texture
samplers 2254A - 2254N . Each sub - core in the set of second
sub - cores 2260A - 2260N includes at least a second set of
execution units 2262A - 2262N and samplers 2264A - 2264N .
In some embodiments , each sub - core 2250A - 2250N ,
2260A - 2260N shares a set of shared resources 2270A
2270N . In some embodiments , the shared resources include
shared cache memory and pixel operation logic . Other
shared resources may also be included in the various
embodiments of the graphics processor .

[0270] Execution Logic
[0271] FIG . 23 illustrates thread execution logic 2300
including an array of processing elements employed in some
embodiments of a GPE . Elements of FIG . 23 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein , but are not
limited to such .
[0272] In some embodiments , thread execution logic 2300
includes a pixel shader 2302 , a thread dispatcher 2304 ,
instruction cache 2306 , scalable execution unit array
including a plurality of execution units 2308A - 2308N , a
sampler 2310 , a data cache 2312 , and a data port 2314. In
one embodiment , the included components are intercon
nected via an interconnect fabric that links to each of the
components . In some embodiments , thread execution logic
2300 includes one or more connections to memory , such as
system memory or cache memory , through one or more of
instruction cache 2306 , data port 2314 , sampler 2310 , and
execution unit array 2308A - 2308N . In some embodiments ,
each execution unit (e.g. 2308A) is an individual vector
processor capable of executing multiple simultaneous
threads and processing multiple data elements in parallel for
each thread . In some embodiments , execution unit array
2308A - 2308N includes any number individual execution
units .
[0273] In some embodiments , execution unit array 2308A
2308N is primarily used to execute “ shader ” programs . In
some embodiments , the execution units in array 2308A
2308N execute an instruction set that includes native support
for many standard 3D graphics shader instructions , such that
shader programs from graphics libraries (e.g. , Direct 3D and
OpenGL) are executed with a minimal translation . The
execution units support vertex and geometry processing
(e.g. , vertex programs , geometry programs , vertex shaders) ,
pixel processing (e.g. , pixel shaders , fragment shaders) and
general - purpose processing (e.g. , compute and media shad
ers) .
[0274] Each execution unit in execution unit array 2308A
2308N operates on arrays of data elements . The number of
data elements is the “ execution size , " or the number of
channels for the instruction . An execution channel is a
logical unit of execution for data element access , masking ,
and flow control within instructions . The number of chan
nels may be independent of the number of physical Arith
metic Logic Units (ALUs) or Floating Point Units (FPUs)
for a particular graphics processor . In some embodiments ,
execution units 2308A - 2308N support integer and floating
point data types .
[0275] The execution unit instruction set includes single
instruction multiple data (SIMD) or single instruction mul
tiple thread (SIMT) instructions . The various data elements
can be stored as a packed data type in a register and the
execution unit will process the various elements based on
the data size of the elements . For example , when operating
on a 256 - bit wide vector , the 256 bits of the vector are stored
in a register and the execution unit operates on the vector as
four separate 64 - bit packed data elements (Quad - Word
(QW) size data elements) , eight separate 32 - bit packed data
elements (Double Word (DW) size data elements) , sixteen
separate 16 - bit packed data elements (Word (W) size data
elements) , or thirty - two separate 8 - bit data elements (byte
(B) size data elements) . However , different vector widths
and register sizes are possible .

US 2021/0390654 A1 Dec. 16 , 2021
26

[0276] One or more internal instruction caches (e.g. , 2306)
are included in the thread execution logic 2300 to cache
thread instructions for the execution units . In some embodi
ments , one or more data caches (e.g. , 2312) are included to
cache thread data during thread execution . In some embodi
ments , sampler 2310 is included to provide texture sampling
for 3D operations and media sampling for media operations .
In some embodiments , sampler 2310 includes specialized
texture or media sampling functionality to process texture or
media data during the sampling process before providing the
sampled data to an execution unit .
[0277] During execution , the graphics and media pipelines
send thread initiation requests to thread execution logic 2300
via thread spawning and dispatch logic . In some embodi
ments , thread execution logic 2300 includes a local thread
dispatcher 2304 that arbitrates thread initiation requests
from the graphics and media pipelines and instantiates the
requested threads on one or more execution units 2308A
2308N . For example , the geometry pipeline (e.g. , 2236 of
FIG . 22) dispatches vertex processing , tessellation , or geom
etry processing threads to thread execution logic 2300 (FIG .
23) . In some embodiments , thread dispatcher 2304 can also
process runtime thread spawning requests from the execut
ing shader programs .
[0278] Once a group of geometric objects has been pro
cessed and rasterized into pixel data , pixel shader 2302 is
invoked to further compute output information and cause
results to be written to output surfaces (e.g. , color buffers ,
depth buffers , stencil buffers , etc.) . In some embodiments ,
pixel shader 2302 calculates the values of the various vertex
attributes that are to be interpolated across the rasterized
object . In some embodiments , pixel shader 2302 then
executes an application programming interface (API) -sup
plied pixel shader program . To execute the pixel shader
program , pixel shader 2302 dispatches threads to an execu
tion unit (e.g. , 2308A) via thread dispatcher 2304. In some
embodiments , pixel shader 2302 uses texture sampling logic
in sampler 2310 to access texture data in texture maps stored
in memory . Arithmetic operations on the texture data and the
input geometry data compute pixel color data for each
geometric fragment , or discards one or more pixels from
further processing .
[0279] In some embodiments , the data port 2314 provides
a memory access mechanism for the thread execution logic
2300 output processed data to memory for processing on a
graphics processor output pipeline . In some embodiments ,
the data port 2314 includes or couples to one or more cache
memories (e.g. , data cache 2312) to cache data for memory
access via the data port .
[0280] FIG . 24 is a block diagram illustrating a graphics
processor instruction formats 2400 according to some
embodiments . In one or more embodiment , the graphics
processor execution units support an instruction set having
instructions in multiple formats . The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction , while the dashed lines include
components that are optional or that are only included in a
sub - set of the instructions . In some embodiments , instruc
tion format 2400 described and illustrated are macro - instruc
tions , in that they are instructions supplied to the execution
unit , as opposed to micro - operations resulting from instruc
tion decode once the instruction is processed .
[0281] In some embodiments , the graphics processor
execution units natively support instructions in a 128 - bit

instruction format 2410. A 64 - bit compacted instruction
format 2430 is available for some instructions based on the
selected instruction , instruction options , and number of
operands . The native 128 - bit instruction format 2410 pro
vides access to all instruction options , while some options
and operations are restricted in the 64 - bit instruction format
2430. The native instructions available in the 64 - bit instruc
tion format 2430 vary by embodiment . In some embodi
ments , the instruction is compacted in part using a set of
index values in an index field 2413. The execution unit
hardware references a set of compaction tables based on the
index values and uses the compaction table outputs to
reconstruct a native instruction in the 128 - bit instruction
format 2410 .
[0282] For each format , instruction opcode 2412 defines
the operation that the execution unit is to perform . The
execution units execute each instruction in parallel across
the multiple data elements of each operand . For example , in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep
resenting a texture element or picture element . By default ,
the execution unit performs each instruction across all data
channels of the operands . In some embodiments , instruction
control field 2414 enables control over certain execution
options , such as channels selection (e.g. , predication) and
data channel order (e.g. , swizzle) . For 128 - bit instructions
2410 an exec - size field 2416 limits the number of data
channels that will be executed in parallel . In some embodi
ments , exec - size field 2416 is not available for use in the
64 - bit compact instruction format 2430 .
[0283] Some execution unit instructions have up to three
operands including two source operands , srco 2420 , src1
2422 , and one destination 2418. In some embodiments , the
execution units support dual destination instructions , where
one of the destinations is implied . Data manipulation
instructions can have a third source operand (e.g. , SRC2
2424) , where the instruction opcode 2412 determines the
number of source operands . An instruction's last source
operand can be an immediate (e.g. , hard - coded) value passed
with the instruction .
[0284] In some embodiments , the 128 - bit instruction for
mat 2410 includes an access / address mode information 2426
specifying , for example , whether direct register addressing
mode or indirect register addressing mode is used . When
direct register addressing mode is used , the register address
of one or more operands is directly provided by bits in the
instruction 2410 .
[0285] In some embodiments , the 128 - bit instruction for
mat 2410 includes an access / address mode field 2426 , which
specifies an address mode and / or an access mode for the
instruction . In one embodiment , the access mode to define a
data access alignment for the instruction . Some embodi
ments support access modes including a 16 - byte aligned
access mode and a 1 - byte aligned access mode , where the
byte alignment of the access mode determines the access
alignment of the instruction operands . For example , when in
a first mode , the instruction 2410 may use byte - aligned
addressing for source and destination operands and when in
a second mode , the instruction 2410 may use 16 - byte
aligned addressing for all source and destination operands .
[0286] In one embodiment , the address mode portion of
the access / address mode field 2426 determines whether the
instruction is to use direct or indirect addressing . When
direct register addressing mode is used bits in the instruction

US 2021/0390654 A1 Dec. 16 , 2021
27

a

2410 directly provide the register address of one or more
operands . When indirect register addressing mode is used ,
the register address of one or more operands may be
computed based on an address register value and an address
immediate field in the instruction .
[0287] In some embodiments , instructions are grouped
based on opcode 2412 bit - fields to simplify Opcode decode
2440. For an 8 - bit opcode , bits 4 , 5 , and 6 allow the
execution unit to determine the type of opcode . The precise
opcode grouping shown is merely an example . In some
embodiments , a move and logic opcode group 2442 includes
data movement and logic instructions (e.g. , move (mov) ,
compare (cmp)) . In some embodiments , move and logic
group 2442 shares the five most significant bits (MSB) ,
where move (mov) instructions are in the form of
0000xxxxb and logic instructions are in the form of
0001xxxxb . A flow control instruction group 2444 (e.g. , call ,
jump (jmp)) includes instructions in the form of 0010xxxxb
(e.g. , 0x20) . A miscellaneous instruction group 2446
includes a mix of instructions , including synchronization
instructions (e.g. , wait , send) in the form of 0011xxxxb (e.g. ,
0x30) . A parallel math instruction group 2448 includes
component - wise arithmetic instructions (e.g. , add , multiply
(mul)) in the form of 0100xxxxb (e.g. , Ox40) . The parallel
math group 2448 performs the arithmetic operations in
parallel across data channels . The vector math group 2450
includes arithmetic instructions (e.g. , dp4) in the form of
0101xxxxb (e.g. , Ox50) . The vector math group performs
arithmetic such as dot product calculations on vector oper
ands .
[0288] Graphics Pipeline
[0289] FIG . 25 is a block diagram of another embodiment
of a graphics processor 2500. Elements of FIG . 25 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein , but are
not limited to such .
[0290] In some embodiments , graphics processor 2500
includes a graphics pipeline 2520 , a media pipeline 2530 , a
display engine 2540 , thread execution logic 2550 , and a
render output pipeline 2570. In some embodiments , graphics
processor 2500 is a graphics processor within a multi - core
processing system that includes one or more general - pur
pose processing cores . The graphics processor is controlled
by register writes to one or more control registers (not
shown) or via commands issued to graphics processor 2500
via a ring interconnect 2502. In some embodiments , ring
interconnect 2502 couples graphics processor 2500 to other
processing components , such as other graphics processors or
general - purpose processors . Command from ring intercon
nect 2502 are interpreted by a command streamer 2503 ,
which supplies instructions to individual components of
graphics pipeline 2520 or media pipeline 2530 .
[0291] In some embodiments , command streamer 2503
directs the operation of a vertex fetcher 2505 that reads
vertex data from memory and executes vertex - processing
commands provided by command streamer 2503. In some
embodiments , vertex fetcher 2505 provides vertex data to a
vertex shader 2507 , which performs coordinate space trans
formation and lighting operations to each vertex . In some
embodiments , vertex fetcher 2505 and vertex shader 2507
execute vertex - processing instructions by dispatching
execution threads to execution units 2552A , 2552B via a
thread dispatcher 2531 .

[0292] In some embodiments , execution units 2552A ,
2552B are an array of vector processors having an instruc
tion set for performing graphics and media operations . In
some embodiments , execution units 2552A , 2552B have an
attached L1 cache 2551 that is specific for each array or
shared between the arrays . The cache can be configured as
a data cache , an instruction cache , or a single cache that is
partitioned to contain data and instructions in different
partitions .
[0293] In some embodiments , graphics pipeline 2520
includes tessellation components to perform hardware - ac
celerated tessellation of 3D objects . In some embodiments ,
a programmable hull shader 2511 configures the tessellation
operations . A programmable domain shader 2517 provides
back - end evaluation of tessellation output . A tessellator
2513 operates at the direction of hull shader 2511 and
contains special purpose logic to generate a set of detailed
geometric objects based on a coarse geometric model that is
provided as input to graphics pipeline 2520. In some
embodiments , if tessellation is not used , tessellation com
ponents 2511 , 2513 , 2517 can be bypassed .
[0294] In some embodiments , complete geometric objects
can be processed by a geometry shader 2519 via one or more
threads dispatched to execution units 2552A , 2552B , or can
proceed directly to the clipper 2529. In some embodiments ,
the geometry shader operates on entire geometric objects ,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline . If the tessellation is disabled
the geometry shader 2519 receives input from the vertex
shader 2507. In some embodiments , geometry shader 2519
is programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled .
[0295] Before rasterization , a clipper 2529 processes ver
tex data . The clipper 2529 may be a fixed function clipper or
a programmable clipper having clipping and geometry
shader functions . In some embodiments , a rasterizer and
depth test component 2573 in the render output pipeline
2570 dispatches pixel shaders to convert the geometric
objects into their per pixel representations . In some embodi
ments , pixel shader logic is included in thread execution
logic 2550. In some embodiments , an application can bypass
rasterization and access un - rasterized vertex data via a
stream out unit 2523 .
[0296] The graphics processor 2500 has an interconnect
bus , interconnect fabric , or some other interconnect mecha
nism that allows data and message passing amongst the
major components of the processor . In some embodiments ,
execution units 2552A , 2552B and associated cache (s) 2551 ,
texture and media sampler 2554 , and texture / sampler cache
2558 interconnect via a data port 2556 to perform memory
access and communicate with render output pipeline com
ponents of the processor . In some embodiments , sampler
2554 , caches 2551 , 2558 and execution units 2552A , 2552B
each have separate memory access paths .
[0297] In some embodiments , render output pipeline 2570
contains a rasterizer and depth test component 2573 that
converts vertex - based objects into an associated pixel - based
representation . In some embodiments , the render output
pipeline 2570 includes a windower / masker unit to perform
fixed function triangle and line rasterization . An associated
render cache 2578 and depth cache 2579 are also available
in some embodiments . A pixel operations component 2577
performs pixel - based operations on the data , though in some
instances , pixel operations associated with 2D operations

a

2

US 2021/0390654 A1 Dec. 16 , 2021
28

mand data . In some embodiments , a graphics processor
command parser examines the client field of each command
to condition the further processing of the command and
route the command data to the appropriate client unit . In
some embodiments , the graphics processor client units
include a memory interface unit , a render unit , a 2D unit , a
3D unit , and a media unit . Each client unit has a correspond
ing processing pipeline that processes the commands . Once
the command is received by the client unit , the client unit
reads the opcode 2604 and , if present , sub - opcode 2605 to
determine the operation to perform . The client unit performs
the command using information in data field 2606. For some
commands an explicit command size 2608 is expected to
specify the size of the command . In some embodiments , the
command parser automatically determines the size of at least
some of the commands based on the command opcode . In
some embodiments , commands are aligned via multiples of
a double word .

[0304] The flow diagram in FIG . 26B shows an exemplary
graphics processor command sequence 2610. In some
embodiments , software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up ,
execute , and terminate a set of graphics operations . A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence . Moreover ,
the commands may be issued as batch of commands in a
command sequence , such that the graphics processor will
process the sequence of commands in at least partially
concurrence .

(e.g. bit block image transfers with blending) are performed
by the 2D engine 2541 , or substituted at display time by the
display controller 2543 using overlay display planes . In
some embodiments , a shared L3 cache 2575 is available to
all graphics components , allowing the sharing of data with
out the use of main system memory .
[0298] In some embodiments , graphics processor media
pipeline 2530 includes a media engine 2537 and a video
front end 2534. In some embodiments , video front end 2534
receives pipeline commands from the command streamer
2503. In some embodiments , media pipeline 2530 includes
a separate command streamer . In some embodiments , video
front - end 2534 processes media commands before sending
the command to the media engine 2537. In some embodi
ments , media engine 2537 includes thread spawning func
tionality to spawn threads for dispatch to thread execution
logic 2550 via thread dispatcher 2531 .
[0299] In some embodiments , graphics processor 2500
includes a display engine 2540. In some embodiments ,
display engine 2540 is external to processor 2500 and
couples with the graphics processor via the ring interconnect
2502 , or some other interconnect bus or fabric . In some
embodiments , display engine 2540 includes a 2D engine
2541 and a display controller 2543. In some embodiments ,
display engine 2540 contains special purpose logic capable
of operating independently of the 3D pipeline . In some
embodiments , display controller 2543 couples with a display
device (not shown) , which may be a system integrated
display device , as in a laptop computer , or an external
display device attached via a display device connector .
[0300] In some embodiments , graphics pipeline 2520 and
media pipeline 2530 are configurable to perform operations
based on multiple graphics and media programming inter
faces and are not specific to any one application program
ming interface (API) . In some embodiments , driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com
mands that can be processed by the graphics processor . In
some embodiments , support is provided for the Open Graph
ics Library (OpenGL) and Open Computing Language
(OpenCL) from the Khronos Group , the Direct3D library
from the Microsoft Corporation , or support may be provided
to both OpenGL and D3D . Support may also be provided for
the Open Source Computer Vision Library (OpenCV) . A
future API with a compatible 3D pipeline would also be
supported if a mapping can be made from the pipeline of the
future API to the pipeline of the graphics processor .
[0301] Graphics Pipeline Programming
[0302] FIG . 26A is a block diagram illustrating a graphics
processor command format 2600 according to some embodi
ments . FIG . 26B is a block diagram illustrating a graphics
processor command sequence 2610 according to an embodi
ment . The solid lined boxes in FIG . 26A illustrate the
components that are generally included in a graphics com
mand while the dashed lines include components that are
optional or that are only included in a sub - set of the graphics
commands . The exemplary graphics processor command
format 2600 of FIG . 26A includes data fields to identify a
target client 2602 of the command , a command operation
code (opcode) 2604 , and the relevant data 2606 for the
command . A sub - opcode 2605 and a command size 2608 are
also included in some commands .
[0303] In some embodiments , client 2602 specifies the
client unit of the graphics device that processes the com

[0305] In some embodiments , the graphics processor com
mand sequence 2610 may begin with a pipeline flush
command 2612 to cause any active graphics pipeline to
complete the currently pending commands for the pipeline .
In some embodiments , the 3D pipeline 2622 and the media
pipeline 2624 do not operate concurrently . The pipeline flush
is performed to cause the active graphics pipeline to com
plete any pending commands . In response to a pipeline flush ,
the command parser for the graphics processor will pause
command processing until the active drawing engines com
plete pending operations and the relevant read caches are
invalidated . Optionally , any data in the render cache that is
marked ‘ dirty ' can be flushed to memory . In some embodi
ments , pipeline flush command 2612 can be used for pipe
line synchronization or before placing the graphics proces
sor into a low power state .
[0306] In some embodiments , a pipeline select command
2613 is used when a command sequence requires the graph
ics processor to explicitly switch between pipelines . In some
embodiments , a pipeline select command 2613 is required
only once within an execution context before issuing pipe
line commands unless the context is to issue commands for
both pipelines . In some embodiments , a pipeline flush
command is 2612 is required immediately before a pipeline
switch via the pipeline select command 2613 .
[0307] In some embodiments , a pipeline control command
2614 configures a graphics pipeline for operation and is used
to program the 3D pipeline 2622 and the media pipeline
2624. In some embodiments , pipeline control command
2614 configures the pipeline state for the active pipeline . In
one embodiment , the pipeline control command 2614 is
used for pipeline synchronization and to clear data from one

2

a

US 2021/0390654 A1 Dec. 16 , 2021
29

or more cache memories within the active pipeline before
processing a batch of commands .
[0308] In some embodiments , commands for the return
buffer state 2616 are used to configure a set of return buffers
for the respective pipelines to write data . Some pipeline
operations require the allocation , selection , or configuration
of one or more return buffers into which the operations write
intermediate data during processing . In some embodiments ,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communi
cation . In some embodiments , configuring the return buffer
state 2616 includes selecting the size and number of return
buffers to use for a set of pipeline operations .
[0309] The remaining commands in the command
sequence differ based on the active pipeline for operations .
Based on a pipeline determination 2620 , the command
sequence is tailored to the 3D pipeline 2622 beginning with
the 3D pipeline state 2630 , or the media pipeline 2624
beginning at the media pipeline state 2640 .
[0310] The commands for the 3D pipeline state 2630
include 3D state setting commands for vertex buffer state ,
vertex element state , constant color state , depth buffer state ,
and other state variables that are to be configured before 3D
primitive commands are processed . The values of these
commands are determined at least in part based the particu
lar 3D API in use . In some embodiments , 3D pipeline state
2630 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used .
[0311] In some embodiments , 3D primitive 2632 com
mand is used to submit 3D primitives to be processed by the
3D pipeline . Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 2632
command are forwarded to the vertex fetch function in the
graphics pipeline . The vertex fetch function uses the 3D
primitive 2632 command data to generate vertex data struc
tures . The vertex data structures are stored in one or more
return buffers . In some embodiments , 3D primitive 2632
command is used to perform vertex operations on 3D
primitives via vertex shaders . To process vertex shaders , 3D
pipeline 2622 dispatches shader execution threads to graph
ics processor execution units .
[0312] In some embodiments , 3D pipeline 2622 is trig
gered via an execute 2634 command or event . In some
embodiments , a register write triggers command execution .
In some embodiments execution is triggered via a ' go ' or
‘ kick'command in the command sequence . In one embodi
ment command execution is triggered using a pipeline
synchronization command to flush the command sequence
through the graphics pipeline . The 3D pipeline will perform
geometry processing for the 3D primitives . Once operations
are complete , the resulting geometric objects are rasterized
and the pixel engine colors the resulting pixels . Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations .
[0313] In some embodiments , the graphics processor com
mand sequence 2610 follows the media pipeline 2624 path
when performing media operations . In general , the specific
use and manner of programming for the media pipeline 2624
depends on the media or compute operations to be per
formed . Specific media decode operations may be offloaded
to the media pipeline during media decode . In some embodi
ments , the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources

provided by one or more general - purpose processing cores .
In one embodiment , the media pipeline also includes ele
ments for general - purpose graphics processor unit (GPGPU)
operations , where the graphics processor is used to perform
SIMD vector operations using computational shader pro
grams that are not explicitly related to the rendering of
graphics primitives .
[0314] In some embodiments , media pipeline 2624 is
configured in a similar manner as the 3D pipeline 2622. A
set of commands to configure the media pipeline state 2640
are dispatched or placed into a command queue before the
media object commands 2642. In some embodiments , com
mands for the media pipeline state 2640 include data to
configure the media pipeline elements that will be used to
process the media objects . This includes data to configure
the video decode and video encode logic within the media
pipeline , such as encode or decode format . In some embodi
ments , commands for the media pipeline state 2640 also
support the use of one or more pointers to “ indirect ” state
elements that contain a batch of state settings .
[0315] In some embodiments , media object commands
2642 supply pointers to media objects for processing by the
media pipeline . The media objects include memory buffers
containing video data to be processed . In some embodi
ments , all media pipeline states must be valid before issuing
a media object command 2642. Once the pipeline state is
configured and media object commands 2642 are queued ,
the media pipeline 2624 is triggered via an execute com
mand 2644 or an equivalent execute event (e.g. , register
write) . Output from media pipeline 2624 may then be post
processed by operations provided by the 3D pipeline 2622 or
the media pipeline 2624. In some embodiments , GPGPU
operations are configured and executed in a similar manner
as media operations .
[0316] Graphics Software Architecture
[0317] FIG . 27 illustrates exemplary graphics software
architecture for a data processing system 2700 according to
some embodiments . In some embodiments , software archi
tecture includes a 3D graphics application 2710 , an operat
ing system 2720 , and at least one processor 2730. In some
embodiments , processor 2730 includes a graphics processor
2732 and one or more general - purpose processor core (s)
2734. The graphics application 2710 and operating system
2720 each execute in the system memory 2750 of the data
processing system .
[0318] In some embodiments , 3D graphics application
2710 contains one or more shader programs including
shader instructions 2712. The shader language instructions
may be in a high - level shader language , such as the High
Level Shader Language (HLSL) or the OpenGL Shader
Language (GLSL) . The application also includes executable
instructions 2714 in a machine language suitable for execu
tion by the general - purpose processor core (s) 2734. The
application also includes graphics objects 2716 defined by
vertex data .
[0319] In some embodiments , operating system 2720 is a
Microsoft® Windows® operating system from the
Microsoft Corporation , a proprietary UNIX - like operating
system , or an open source UNIX - like operating system
using a variant of the Linux kernel . The operating system
2720 can support a graphics API 2722 such as the Direct3D
API or the OpenGL API . When the Direct3D API is in use ,
the operating system 2720 uses a front - end shader compiler
2724 to compile any shader instructions 2712 in HLSL into

a

a

US 2021/0390654 A1 Dec. 16 , 2021
30

a

a lower - level shader language . The compilation may be a
just - in - time (JIT) compilation or the application can perform
shader pre - compilation . In some embodiments , high - level
shaders are compiled into low - level shaders during the
compilation of the 3D graphics application 2710 .
[0320] In some embodiments , user mode graphics driver
2726 contains a back - end shader compiler 2727 to convert
the shader instructions 2712 into a hardware specific repre
sentation . When the OpenGL API is in use , shader instruc
tions 2712 in the GLSL high - level language are passed to a
user mode graphics driver 2726 for compilation . In some
embodiments , user mode graphics driver 2726 uses operat
ing system kernel mode functions 2728 to communicate
with a kernel mode graphics driver 2729. In some embodi
ments , kernel mode graphics driver 2729 communicates
with graphics processor 2732 to dispatch commands and
instructions .
[0321] IP Core Implementations
[0322] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine - readable medium which represents and / or defines
logic within an integrated circuit such as a processor . For
example , the machine - readable medium may include
instructions which represent various logic within the pro
cessor . When read by a machine , the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein . Such representations , known as “ IP cores , ”
are reusable units of logic for an integrated circuit that may
be stored on a tangible , machine - readable medium as a
hardware model that describes the structure of the integrated
circuit . The hardware model may be supplied to various
customers or manufacturing facilities , which load the hard
ware model on fabrication machines that manufacture the
integrated circuit . The integrated circuit may be fabricated
such that the circuit performs operations described in asso
ciation with any of the embodiments described herein .
[0323] FIG . 28 is a block diagram illustrating an IP core
development system 2800 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment . The IP core development system 2800 may be
used to generate modular , re - usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g. , an SOC integrated circuit) . A
design facility 2830 can generate a software simulation 2810
of an IP core design in a high - level programming language
(e.g. , C / C ++) . The software simulation 2810 can be used to
design , test , and verify the behavior of the IP core using a
simulation model 2812. The simulation model 2812 may
include functional , behavioral , and / or timing simulations . A
register transfer level (RTL) design 2815 can then be created
or synthesized from the simulation model 2812. The RTL
design 2815 is an abstraction of the behavior of the inte
grated circuit that models the flow of digital signals between
hardware registers , including the associated logic performed
using the modeled digital signals . In addition to an RTL
design 2815 , lower - level designs at the logic level or tran
sistor level may also be created , designed , or synthesized .
Thus , the particular details of the initial design and simula
tion may vary .
[0324] The RTL design 2815 or equivalent may be further
synthesized by the design facility into a hardware model
2820 , which may be in a hardware description language
(HDL) , or some other representation of physical design data .
The HDL may be further simulated or tested to verify the IP

core design . The IP core design can be stored for delivery to
a 3rd party fabrication facility 2865 using non - volatile
memory 2840 (e.g. , hard disk , flash memory , or any non
volatile storage medium) . Alternatively , the IP core design
may be transmitted (e.g. , via the Internet) over a wired
connection 2850 or wireless connection 2860. The fabrica
tion facility 2865 may then fabricate an integrated circuit
that is based at least in part on the IP core design . The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein .
[0325] Exemplary System on a Chip Integrated Circuit
[0326] FIGS . 29-31 illustrate exemplary integrated cir
cuits and associated graphics processors that may be fabri
cated using one or more IP cores , according to various
embodiments described herein . In addition to what is illus
trated , other logic and circuits may be included , including
additional graphics processors / cores , peripheral interface
controllers , or general purpose processor cores .
[0327] FIG . 29 is a block diagram illustrating an exem
plary system on a chip integrated circuit 2900 that may be
fabricated using one or more IP cores , according to an
embodiment . Exemplary integrated circuit 2900 includes
one or more application processor (s) 2905 (e.g. , CPUs) , at
least one graphics processor 2910 , and may additionally
include an image processor 2915 and / or a video processor
2920 , any of which may be a modular IP core from the same
or multiple different design facilities . Integrated circuit 2900
includes peripheral or bus logic including a USB controller
2925 , UART controller 2930 , an SPI / SDIO controller 2935 ,
and an IPS / IPC controller 2940. Additionally , the integrated
circuit can include a display device 2945 coupled to one or
more of a high - definition multimedia interface (HDMI)
controller 2950 and a mobile industry processor interface
(MIPI) display interface 2955. Storage may be provided by
a flash memory subsystem 2960 including flash memory and
a flash memory controller . Memory interface may be pro
vided via a memory controller 2965 for access to SDRAM
or SRAM memory devices . Some integrated circuits addi
tionally include an embedded security engine 2970 .
[0328] FIG . 30 is a block diagram illustrating an exem
plary graphics processor 3010 of a system on a chip inte
grated circuit that may be fabricated using one or more IP
cores , according to an embodiment . Graphics processor
3010 can be a variant of the graphics processor 2910 of FIG .
29. Graphics processor 3010 includes a vertex processor
3005 and one or more fragment processor (s) 3015A - 3015N
(e.g. , 3015A , 3015B , 3015C , 3015D , through 3015N - 1 , and
3015N) . Graphics processor 3010 can execute different
shader programs via separate logic , such that the vertex
processor 3005 is optimized to execute operations for vertex
shader programs , while the one or more fragment processor
(s) 3015A - 3015N execute fragment (e.g. , pixel) shading
operations for fragment or pixel shader programs . The
vertex processor 3005 performs the vertex processing stage
of the 3D graphics pipeline and generates primitives and
vertex data . The fragment processor (s) 3015A - 3015N use
the primitive and vertex data generated by the vertex pro
cessor 3005 to produce a framebuffer that is displayed on a
display device . In one embodiment , the fragment processor
(s) 3015A - 3015N are optimized to execute fragment shader
programs as provided for in the OpenGL API , which may be
used to perform similar operations as a pixel shader program
as provided for in the Direct 3D API .

a

a

US 2021/0390654 A1 Dec. 16 , 2021
31

2

.

[0329] Graphics processor 3010 additionally includes one
or more memory management units (MMUs) 3020A - 3020B ,
cache (s) 3025A - 3025B , and circuit interconnect (s) 3030A
3030B . The one or more MMU (s) 3020A - 3020B provide for
virtual to physical address mapping for graphics processor
3010 , including for the vertex processor 3005 and / or frag
ment processor (s) 3015A - 3015N , which may reference ver
tex or image / texture data stored in memory , in addition to
vertex or image / texture data stored in the one or more
cache (s) 3025A - 3025B . In one embodiment , the one or more
MMU (s) 3020A - 3020B may be synchronized with other
MMUs within the system , including one or more MMUS
associated with the one or more application processor (s)
2905 , image processor 2915 , and / or video processor 2920 of
FIG . 29 , such that each processor 2905-2920 can participate
in a shared or unified virtual memory system . The one or
more circuit interconnect (s) 3030A - 3030B enable graphics
processor 3010 to interface with other IP cores within the
SoC , either via an internal bus of the SoC or via a direct
connection , according to embodiments .
[0330] FIG . 31 is a block diagram illustrating an addi
tional exemplary graphics processor 3110 of a system on a
chip integrated circuit that may be fabricated using one or
more IP cores , according to an embodiment . Graphics pro
cessor 3110 can be a variant of the graphics processor 2910
of FIG . 29. Graphics processor 3110 includes the one or
more MMU (s) 3020A - 3020B , cache (s) 3025A - 3025B , and
circuit interconnect (s) 3030A - 3030B of the integrated cir
cuit 3000 of FIG . 30 .

[0331] Graphics processor 3110 includes one or more
shader core (s) 3115A - 3115N (e.g. , 3115A , 3115B , 3115C ,
3115D , 3115E , 3115F , through 3015N - 1 , and 3015N) , which
provides for a unified shader core architecture in which a
single core or type or core can execute all types of program
mable shader code , including shader program code to imple
ment vertex shaders , fragment shaders , and / or compute
shaders . The exact number of shader cores present can vary
among embodiments and implementations . Additionally ,
graphics processor 3110 includes an inter - core task manager
3105 , which acts as a thread dispatcher to dispatch execution
threads to one or more shader core (s) 3115A - 3115N . Graph
ics processor 3110 additionally includes a tiling unit 3118 to
accelerate tiling operations for tile - based rendering , in
which rendering operations for a scene are subdivided in
image space . Tile - based rendering can be used to exploit
local spatial coherence within a scene or to optimize use of
internal caches .
[0332] References to " one embodiment " , " an embodi
ment " , " example embodiment ” , “ various embodiments ” ,
etc. , indicate that the embodiment (s) so described may
include particular features , structures , or characteristics , but
not every embodiment necessarily includes the particular
features , structures , or characteristics . Further , some
embodiments may have some , all , or none of the features
described for other embodiments .
[0333] In the foregoing specification , embodiments have
been described with reference to specific exemplary embodi
ments thereof . It will , however , be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of embodiments
as set forth in the appended claims . The Specification and
drawings are , accordingly , to be regarded in an illustrative
rather than a restrictive sense .

[0334] In the following description and claims , the term
" coupled " along with its derivatives , may be used .
" Coupled ” is used to indicate that two or more elements
co - operate or interact with each other , but they may or may
not have intervening physical or electrical components
between them .
[0335] As used in the claims , unless otherwise specified
the use of the ordinal adjectives " first " , " second ” , “ third ” ,
etc. , to describe a common element , merely indicate that
different instances of like elements are being referred to , and
are not intended to imply that the elements so described must
be in a given sequence , either temporally , spatially , in
ranking , or in any other manner .
[0336] The following clauses and / or examples pertain to
further embodiments or examples . Specifics in the examples
may be used anywhere in one or more embodiments . The
various features of the different embodiments or examples
may be variously combined with some features included and
others excluded to suit a variety of different applications .
Examples may include subject matter such as a method ,
means for performing acts of the method , at least one
machine - readable medium including instructions that , when
performed by a machine cause the machine to perform acts
of the method , or of an apparatus or system for facilitating
hybrid communication according to embodiments and
examples described herein .
[0337] Some embodiments pertain to Example 1 that
includes an apparatus to facilitate sharing of data and
compression and expansion of models , the apparatus com
prising : detection / observation logic to detect a first proces
sor processing information relating to a neural network at
the apparatus , wherein the first processor comprises a first
graphics processor and the apparatus comprises a first
autonomous machine ; and data sharing / retrieval logic to
facilitate the first processor to store one or more portions of
the information in a library at a database , wherein the one or
more portions are accessible to a second processor of a
computing device .
[0338] Example 2 includes the subject matter of Example
1 , wherein the data sharing / retrieval logic is further to
facilitate the second processor to access and retrieve the one
or more portions of the information from the library when
the second processor performs tasks relating to the neural
network , wherein the neural network includes a convolu
tional neural network (CNN) , wherein second processor
comprises a second graphics processor and the computing
device comprises a second autonomous machine .
[0339] Example 3 includes the subject matter of Examples
1-2 , further comprising library generation / mapping logic to
generate the library at the database , wherein the library
generation / mapping logic is further to map the one or more
portions of the information to first processor .
[0340] Example 4 includes the subject matter of Examples
1-3 , wherein the first and second autonomous machines
include autonomous vehicles in communication over one or
more communication mediums including a cloud network ,
wherein the database includes a cloud database .
[0341] Example 5 includes the subject matter of Examples
1-4 , further comprising compression / expansion logic to
compress a model with an item , wherein the compressed
model along with the item is communicated over to the
second autonomous machine over the one or more commu
nication mediums .

US 2021/0390654 A1 Dec. 16 , 2021
32

a

a

[0342] Example 6 includes the subject matter of Examples
1-5 , wherein the compression / expansion logic is further to
facilitate reception of the compressed model and the item at
the second autonomous machine , wherein the compressed
model is uncompressed using the item , wherein the item
incudes one or more of an artefact , a light , and a hint .
[0343] Example 7 includes the subject matter of Examples
1-6 , wherein the first graphics processor is co - located with
an application processor on a common semiconductor pack
age .
[0344] Some embodiments pertain to Example 8 that
includes a method for facilitating sharing of data and com
pression and expansion of models , the method comprising :
detecting a first processor processing information relating to
a neural network at a first computing device , wherein the
first processor comprises a first graphics processor and the
first computing device comprises a first autonomous
machine ; and facilitating the first processor to store one or
more portions of the information in a library at a database ,
wherein the one or more portions are accessible to a second
processor of a computing device .
[0345] Example 9 includes the subject matter of Example
8 , further comprising facilitating the second processor to
access and retrieve the one or more portions of the infor
mation from the library when the second processor performs
tasks relating to the neural network , wherein the neural
network includes a convolutional neural network (CNN) ,
wherein second processor comprises a second graphics
processor and the computing device comprises a second
autonomous machine .
[0346] Example 10 includes the subject matter of
Examples 8-9 , further comprising generating the library at
the database ; and mapping the one or more portions of the
information to first processor .
[0347] Example 11 includes the subject matter of
Examples 8-10 , wherein the first and second autonomous
machines include autonomous vehicles in communication
over one or more communication mediums including a
cloud network , wherein the database includes a cloud data
base .
[0348] Example 12 includes the subject matter of
Examples 8-11 , further comprising compressing a model
with an item , wherein the compressed model along with the
item is communicated over to the second autonomous
machine over the one or more communication mediums
performance counters that are regarded as faulty or outside
a range of approval .
[0349] Example 13 includes the subject matter of
Examples 8-12 , further comprising facilitating reception of
the compressed model and the item at the second autono
mous machine , wherein the compressed model is uncom
pressed using the item , wherein the item incudes one or
more of an artefact , a light , and a hint .
[0350] Example 14 includes the subject matter of
Examples 8-13 , wherein the first graphics processor is
co - located with an application processor on a common
semiconductor package .
[0351] Some embodiments pertain to Example 15 that
includes a graphics processing system comprising a com
puting device having memory coupled to a processor , the
processor to : detect a first processor processing information
relating to a neural network at the first computing device ,
wherein the first processor comprises a first graphics pro
cessor and the first computing device comprises a first

autonomous machine ; and facilitating the first processor to
store one or more portions of the information in a library at
a database , wherein the one or more portions are accessible
to a second processor of a computing device .
[0352] Example 16 includes the subject matter of Example
15 , wherein the processor is further to facilitate the second
processor to access and retrieve the one or more portions of
the information from the library when the second processor
performs tasks relating to the neural network , wherein the
neural network includes a convolutional neural network
(CNN) , wherein second processor comprises a second
graphics processor and the computing device comprises a
second autonomous machine .
[0353] Example 17 includes the subject matter of Example
15-16 , wherein the processor is further to facilitate gener
ating the library at the database ; and mapping the one or
more portions of the information to first processor .
[0354] Example 18 includes the subject matter of Example
15-17 , wherein the first and second autonomous machines
include autonomous vehicles in communication over one or
more communication mediums including a cloud network ,
wherein the database includes a cloud database .
[0355] Example 19 includes the subject matter of
Examples 15-18 , wherein the operations further comprise
compressing a model with an item , wherein the compressed
model along with the item is communicated over to the
second autonomous machine over the one or more commu
nication mediums .
[0356] Example 20 includes the subject matter of
Examples 15-19 , wherein the operations further comprise
facilitating reception of the compressed model and the item
at the second autonomous machine , wherein the compressed
model is uncompressed using the item , wherein the item
incudes one or more of an artefact , a light , and a hint .
[0357] Example 21 includes the subject matter of
Examples 15-20 , wherein the first graphics processor is
co - located with an application processor on a common
semiconductor package .
[0358] Example 22 includes at least one non - transitory or
tangible machine - readable medium comprising a plurality of
instructions , when executed on a computing device , to
implement or perform a method as claimed in any of claims
or examples 8-14 .
[0359] Example 23 includes at least one machine - readable
medium comprising a plurality of instructions , when
executed on a computing device , to implement or perform a
method as claimed in any of claims or examples 8-14 .
[0360] Example 24 includes a system comprising a
mechanism to implement or perform a method as claimed in
any of claims or examples 8-14 .
[0361] Example 25 includes an apparatus comprising
means for performing a method as claimed in any of claims
or examples 8-14 .
[0362] Example 26 includes a computing device arranged
to implement or perform a method as claimed in any of
claims or examples 8-14 .
[0363] Example 27 includes a communications device
arranged to implement or perform a method as claimed in
any of claims or examples 8-14 .
[0364] Example 28 includes at least one machine - readable
medium comprising a plurality of instructions , when
executed on a computing device , to implement or perform a
method or realize an apparatus as claimed in any preceding
claims .

US 2021/0390654 A1 Dec. 16 , 2021
33

[0365] Example 29 includes at least one non - transitory or
tangible machine - readable medium comprising a plurality of
instructions , when executed on a computing device , to
implement or perform a method or realize an apparatus as
claimed in any preceding claims .
[0366] Example 30 includes a system comprising a
mechanism to implement or perform a method or realize an
apparatus as claimed in any preceding claims .
[0367] Example 31 includes an apparatus comprising
means to perform a method as claimed in any preceding
claims .
[0368] Example 32 includes a computing device arranged
to implement or perform a method or realize an apparatus as
claimed in any preceding claims .
[0369] Example 33 includes a communications device
arranged to implement or perform a method or realize an
apparatus as claimed in any preceding claims .
[0370] The drawings and the forgoing description give
examples of embodiments . Those skilled in the art will
appreciate that one or more of the described elements may
well be combined into a single functional element . Alterna
tively , certain elements may be split into multiple functional
elements . Elements from one embodiment may be added to
another embodiment . For example , orders of processes
described herein may be changed and are not limited to the
manner described herein . Moreover , the actions of any flow
diagram need not be implemented in the order shown ; nor do
all of the acts necessarily need to be performed . Also , those
acts that are not dependent on other acts may be performed
in parallel with the other acts . The scope of embodiments is
by no means limited by these specific examples . Numerous
variations , whether explicitly given in the specification or
not , such as differences in structure , dimension , and use of
material , are possible . The scope of embodiments is at least
as broad as given by the following claims .

1-20 . (canceled)
21. An apparatus comprising :
a transmitter and a receiver for a first autonomous vehicle

to transmit and receive data over one or more commu
nication mediums with one or more other autonomous
vehicles , the one or more other autonomous vehicles
including a second autonomous vehicle ; and

one or more processors including a graphics processor ,
wherein the one or more processors are to :
establish communications with the second autonomous

vehicle and determine to share data with the second
autonomous vehicle ,

process a neural network model for transmission to the
second autonomous vehicle , the processing of the
neural network model including compressing the
neural network model to generate a compressed
neural network model , and

transmit the compressed neural network model from
the first autonomous vehicle to the second autono
mous vehicle over the one or more communication
mediums .

22. The apparatus of claim 21 , wherein processing the
neural network model for transmission further includes
assigning an artefact to the compressed neural network
model , the artefact to identify the compressed neural net
work model , and wherein the one or more processors are to
communicate the artefact and the compressed neural net
work model to the second autonomous vehicle .

23. The apparatus of claim 21 , wherein the one or more
communication mediums include a cloud network .

24. The apparatus of claim 21 , wherein the one or more
processors are further to detect the second autonomous
vehicle .

25. The apparatus of claim 21 , wherein determining to
share the data with the second autonomous vehicle is based
on one or more of :

location of the first autonomous vehicle and the second
autonomous vehicle ;

the first autonomous vehicle and the second autonomous
vehicle having a similar view ; or

the first autonomous vehicle and the second autonomous
vehicle experiencing same environmental conditions .

26. The apparatus of claim 21 , wherein the data to be
shared with the second autonomous vehicle includes one or
more of traffic data , weather information , and emergency
alerts .

27. The apparatus of claim 21 , wherein the neural network
model includes a convolutional neural network (CNN)
model .

28. The apparatus of claim 21 , wherein the compression
of the neural network model includes reducing a number of
layers from the neural network model to generate the
compressed neural network model .

29. The apparatus of claim 21 , wherein the graphics
processor is co - located with an application processor on a
common semiconductor package .

30. At least one non - transitory machine - readable medium
comprising instructions that when executed by one or more
processors , cause the one or more processors to perform
operations comprising :

establishing communications between a first autonomous
vehicle and a second autonomous vehicle ;

determining to share data between the first autonomous
vehicle and the second autonomous vehicle ;

processing a neural network model at the first autonomous
vehicle for transmission to the second autonomous
vehicle , the processing of the neural network model
including compressing the neural network model to
generate a compressed neural network model , the com
pression of the neural network model including reduc
ing a number of layers from the neural network model
to generate the compressed model ; and

transmitting the compressed neural network model from
the first autonomous vehicle to the second autonomous
vehicle over one or more communication mediums .

31. The at least one non - transitory machine - readable
medium of claim 30 , wherein processing the neural network
model for transmission further includes assigning an artefact
to the compressed neural network model , the artefact to
identify the compressed neural network model , and wherein
the one or more processors are to communicate the artefact
and the compressed neural network model to the second
autonomous vehicle .

32. The at least one non - transitory machine - readable
medium of claim 30 , wherein the one or more communica
tion mediums include a cloud network .

33. The at least one non - transitory machine - readable
medium of claim 30 , wherein the instructions further include
instructions that when executed by the one or more proces
sors , cause the one or more processors to perform operations
comprising :

detecting the second autonomous vehicle .

2

a

US 2021/0390654 A1 Dec. 16 , 2021
34

34. The at least one non - transitory machine - readable
medium of claim 30 , wherein determining to share the data
with the second autonomous vehicle is based on one or more
of :

location of the first autonomous vehicle and the second
autonomous vehicle ;

the first autonomous vehicle and the second autonomous
vehicle having a similar view ; or

the first autonomous vehicle and the second autonomous
vehicle experiencing same environmental conditions .

35. The at least one non - transitory machine - readable
medium of claim 30 , wherein the data to be shared between
the first autonomous vehicle and the second autonomous
vehicle includes one or more of traffic data , weather infor
mation , and emergency alerts .

36. A method comprising :
establishing communications between a first autonomous

vehicle and a second autonomous vehicle ;
receiving a compressed neural network model at the first

autonomous vehicle from the second autonomous
vehicle over one or more communication mediums , the

compressed neural network model including data to be
shared between the first autonomous vehicle and the
second autonomous vehicle ; and

expanding the compressed neural network model to gen
erate an original neural network model .

37. The method of claim 36 , wherein the one or more
communication mediums include a cloud network .

38. The method of claim 36 , further comprising :
receiving , at the first autonomous vehicle , an artefact from

the second autonomous vehicle ;
wherein expanding the received compressed neural net
work model including applying the artefact in expan
sion of the compressed neural network model .

39. The method of claim 38 , wherein the artefact and the
compressed model are received separately by the first
autonomous vehicle .

40. The method of claim 38 , wherein the artefact serves
as both an extension to the compressed model and a form of
identification for the compressed neural network model in
communication .

a

